Fast GPU Implementation of a Scan-Specific Deep
Learning Reconstruction for Accelerated Magnetic
Resonance Imaging

Chi Zhang*, Sebastian Weingirtner*'*, Steen Moeller!, Kamil Ugurbil’ and Mehmet Akgakaya* '
* Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN
T Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
¥ Computer Assisted Clinical Medicine, University Hospital Mannheim, Heidelberg University, Heidelberg, Germany
Emails: {zhan4906, sweingae, moell018, ugurb001, akcakaya}@umn.edu

Abstract—RAKI is a novel fast MRI image reconstruction
algorithm that has been recently proposed, which gives satisfying
results for highly accelerated MRI. However, due to RAKI
reconstruction depends on multiple convolutional neural net-
works, implementing RAKI reconstruction is a time-consuming
task. In this study, we present accelerate strategies for RAKI
implementation aided by GPU parallel programming. Aiming
at the characteristics of RAKI, we limited the iteration num-
ber of solving optimization problems in the network training
stage, while maintaining the reconstruction results are visually
satisfying. Further more, according to the independence between
multiple networks, we parallelized the training tasks by CPU
multiprocessing, which maximizes the performance by fully
utilizing GPU resources. According to our experiments, these
efforts gave more than 60x speed up compared with conventional,
sequential implementation. With the ability of completing RAKI
reconstruction in minutes, we are able to bring RAKI into
practical applications.

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is one of the most
popular medical imaging technique in modern medicine. Com-
pared with other common imaging modalities such as X-ray
imaging and computed tomography (CT), MRI is known as a
superior technique that not only gives better image quality for
body tissues but also free from any exposure to radiation [1].
Unlike conventional imaging, MRI does not acquire grayscale
image directly. Instead, it gives a discrete-sampled Fourier
transform of the object image (so-called k-space). The final
image is obtained after applying an inverse Fourier transform
of the k-space data. This nature of MRI suggests a high-
resolution MRI image requires plenty of samples in k-space.
However, massive sampling in k-space is a time-consuming
task. Blurring and other distortions might occur with even
tiny movements of the object during the scanning. Thus
in practice, it is impossible to simply extend the scanning
time as long as we need. To obtain satisfying resolution
within limited scanning time, i.e. limited sample amount,
several fast MRI image reconstruction algorithms based on
parallel imaging [2] were proposed, such as SMASH [3],
SENSE [4], GRAPPA [5], SPIRIT [6]. In parallel imaging,
several independent receiver coils scan the same object from
different positions simultaneously, which brings information

redundancy that could be exploited by the algorithms to
eliminate image aliasing artifact caused by under-sampling
in k-space. Thus full-sampling in k-space is not necessary
anymore to achieve certain resolution. Depending on much
fewer samples in k-space, people can reconstruct a high-
resolution MRI image with an acceptable trade-off between
signal-to-noise-ratio (SNR) and sample amount in k-space.

The reconstruction can be implemented in either image
domain (SENSE) or in k-space directly (SMASH, GRAPPA
and SPIRiT). RAKI [7] is an improved GRAPPA-like method
that reconstructs under-sampled k-space with estimated point-
spread functions (kernel) in k-space. In conventional GRAPPA
reconstructions, kernels are calibrated by a linear approxi-
mation based on certain preserved calibration data (so-called
auto-calibration-signal, ACS [8]). However, the hypothesis of
linearity limits the quality of GRAPPA reconstruction. In
RAKI, kernels are trained by multi-layer convolutional neural
networks (CNN), which does not assume any linearity. It is
capable of estimating the complex point-wise correlations in k-
space. According to M. Akcakaya et al, RAKI gives significant
improvement both on SNR and dealiasing in high accelerated
cases.

However, training multi-layer CNN is a time consuming
task. With conventional implementation, RAKI costs hours to
reconstruct a single 2D image. To bring RAKI into practical
applications, we accelerated RAKI implementation aided by
graphic processing units (GPUs) and TensorFlowa popular
deep learning framework that is widely used in machine
learning field. In CNN training stage, we compared several
optimization approaches and set a stopping criteria that limits
the iteration amount while ensuring a satisfying result. Exploit-
ing the independence between multiple coil images, we par-
allelized the multiple kernel training tasks on GPUs by CPU
multiprocessing, in order to fully utilize GPU resources and
achieve further acceleration. These efforts gave a 60x speed
up in our experiment that complete the RAKI reconstruction
in minutes.

II. ROBUST ARTIFICIAL-NEURAL-NETWORKS FOR
K-SPACE INTERPOLATION (RAKI)

The basic idea of RAKI is first to find a set of shift-invariant
convolution kernels in k-space, then estimate the missing data
in sub-sampled k-space by performing convolution of its’
nearby sampled data with the kernels. The whole k-space is
reconstructed in a point-wise manner. In this study, a three-
layer CNN is employed to estimate the kernel. For an imaging
coil ¢, let k; , . denotes its’ k-space sample in 2D position
(x,y) in ACS region, w., represents the convolution kernel of
layer n, kernel calibration stage for coil ¢ can be described as
solving an optimization problem:

min koo — Loy * Wer % wea *wes® (1)
We,1,We,2,We,3, ;; Y Y
where * denotes convolution, ACS is a limited region of fully
sampled k-space for calibration usage, I, , is a collection of
sampled points around position (x,y) that been used to estimate
ks y,c. Convolution kernels w5, are obtained by CNN training
depends on ACS data as training sets. The missing data in sub-
sampled k-space is then reconstructed by:

kz,y,c = Iw,y * Wep * We,2 * We,3 (2)
where l%Ly,C is the estimated value for position (x,y), coil ¢ in
k-space. To minimize reconstruction error, sampled data will
be put back to corresponding position to replace the estimated
values. A reconstructed image that free from aliasing is then
obtained after an inverse Fourier transform.

IITI. FAST RAKI IMPLEMENTATION

A. GPU Acceleration and TensorFlow

RAKI trains multiple CNNs during the reconstruction.
However, due to CNN training is a time-consuming task,
it is necessary to accelerate RAKI in order to put it into
practical use. Nowadays, GPUs are widely used to serve the
purpose of accelerating deep learning applications. Different
from CPU that process multiple tasks in a sequential manner,
GPU launches multiple threads handling with multiple tasks in
the same time, which is known as parallel computing model.
Although CPU has better single thread performance, GPU
works better than CPU when it is possible to solve massive
independent tasks in parallel manner (Figure 1). Typical com-
putations involved in CNN training such as convolution is
highly parallelizable, thus they could be processed much faster
by GPU than CPU. TensorFlow [9] is a popular deep learning
framework that provides various essential deep learning func-
tions, which includes forward/inverse convolution, activation
functions, optimization solvers, etc. Furthermore, TensorFlow
supports GPU acceleration aided by CUDA (GPU computing
frame work developed by NVIDIA Co.) and CuDNN [10],
a CUDA-based deep learning library, which give the edge-
cutting performance of deep learning applications.

CPU: : Time1l ' Time2 'Time3

| 1
- - -
1

Fig. 1. Sequential processing pattern of CPU (up) and parallel processing
model of GPU (down). Although CPU has faster single thread performance,
GPU can still faster than CPU when handling with massive parallelizable
tasks.

B. Optimization Solver

Choosing a proper optimizer plays significant role in RAKI
reconstruction and its’ acceleration. There are various opti-
mizers available for particular cases. Once proper optimizer
is been chosen, there is only trade-offs between accuracy and
iteration time. Conventional deep learning applications require
as many iterations as it could to reach higher accuracy of
regression. However, in RAKI, our aim is not tiny increase of
regression accuracy but visual improvement. Thus the ideal
optimizer for RAKI should be the fastest one achieves a
visually satisfying standard, rather than optimizers that able
to converge to a high accuracy after numerous iterations.
However, the trade-offs between visual quality and iteration
number is difficult to observe. Insufficient iteration leads
to blurring and even aliasing in final result, while massive
iterations take a long time that is impractical in medical
applications, and it does not promise a better visual quality.
A straightforward way to handle with such trade-off is setting
a stop criteria that stops the iteration when improvement is
sufficiently small, which does not effect the visual experience.
For coil ¢, layer n, we set the stopping criteria as:

stop if i ||Wem,i — 7I)C7n7i_1||2 < threshold 3)

where 0., denotes the weight calculated by the ith
iteration for coil ¢, layer n. In practice, this way is capable of
achieving the same visual experience as using a large, fixed
iteration number for training. Figure 2 lists the reconstruction
result by different optimizers and iterations. In our experi-
ment, Adam optimizer is appeared to be the best choice for
RAKI. RAKI with Adam optimizer gives a visually satisfying
reconstruction result within the least time cost and iterations.
However, it is also obvious in the figure that in our case,
running 2500 iterations is not necessary, for it did not give
any noticeable improvement compared with the result of 1000
iterations. To determine an exact optimal iteration number is
difficult, for the situation could be various coil to coil, and we

employed stochastic starting point at the CNN training stage,
which has been proved to be beneficial by existing works [11].
Indeed, the optimal iteration number should be controlled by
an adaptive mechanism, which limits the iteration number for
the sake of performance, and considering the diversity between
coils, it should also allow more iterations when it is necessary.
A proper threshold will be the key to reach the balance
between reconstruction quality and time cost. Moreover, using
a this strategy of adaptive iteration number gives a uniformed
error among the multiple kernels, for they will all reach a
similar training error controlled by the threshold. Uniformed
training error indicates uniformed contrast, sharpness, and
noise level in every individual coil images. Considering the
final image is combined by all individual coil images without
any bias, setting a stopping criteria in the kernel training stage
is also helpful to final image combination.

-
N

Yy
N
T

-
o
T

©

©
T

~
T

2]
T

Average Time Cost Each Task (sec)

(9]

10 14 18 22 26 30
Parallelized Tasks Amount

N
(o2}

Fig. 2. Comparison between different optimizers, and trade-offs between
iteration number and visual quality.

C. Farallelizing Training Tasks by CPU Multiprocessing

In RAKI reconstruction, multiple kernels are trained corre-
spond to multiple coils. GPUs with strong processing power
and large memory can handle with single training task easily.
However, considering each individual training task is depends
on limited data set, it does not require a big amount of
GPU resources. Consequently, handling the kernel training
tasks in a serial manner is a waste of GPU resources, which
limits the benefit of GPU acceleration. Noticing the fact
that in RAKI, convolution kernels are trained independently,
thus training multiple kernels is also parallelizable. Therefore,
another possible way to accelerate RAKI reconstruction is
parallelizing multiple kernel training tasks on GPU, which can
be equivalently considered as increasing GPU utilization.

GPU operation is controlled by CPU callings. To active a
GPU task, we need to first allocate GPU resources and transfer
the dependence data by CPU. After the initiate jobs are settled,
GPU begins operating by receive a launching command send
by CPU. To achieve the parallelization of training tasks, we
can launch multiple CPU processes that each of them serves

one corresponding coil by doing all initiate jobs and send the
GPU calling. As the result, GPU will receive multiple callings
in the same time, and it begins to process all of the tasks
simultaneously. This approach can give additional speed up
by avoiding waste of GPU processing power. Theoretically
speaking, as long as the GPU resources are fully utilized,
the best performance restricted by the hardware is achieved.
To guarantee a smooth operation and a correct result, we
need to ensure every training task receive minimum nec-
essary resources. Thus allocating GPU resource is another
crucial factor that need to be considered. TensorFlow gives
a recommended resource allocation for the best performance
depends on several network training parameters, but it can
still work with a reduced performance depended on fewer
resources. Consequently, the performance can be still limited
by GPU memory and bandwidth even they are fully utilized.
For instance, limited memory resource leads to extra time
costs by additional temporary data writing and erasing, which
can be avoided by allocating more memory to the individual
task and erase the temporary data after the reconstruction is
completed. Thus for some cases with certain limited GPU
resources, there exists an optimal number of parallelized tasks
for the best performance. In figure 3, we compared several
parallel task amounts on a NVIDIA GTX 745 GPU (Single
precision 793.30 GFLOPS, 4GB memory), and calculated the
average time of training a kernel. As is shown in figure 3,
within limited amounts, parallelizing multiple tasks on GPU
reduced the average time cost for single kernel training. In
our case, the best performance is given when we parallelize
14 to 26 tasks to be processed in the same time. In practical,
different image size and network parameters would lead to
other optimal region. However, if we put too much load to
the GPU, the performance would drop dramatically. The result
suggests that with limited GPU resources, we need to carefully
design the parallelization by choosing an appropriate number
of parallelized tasks. Parallelizing as much as we could might
not be the best way for the sake of performance.

Gradient
Descent

Adagrad

uolneuay|

Fig. 3. Average time cost for training a kernel with different parallelized task
amount on GTX 745.

IV. EXPERIMENTS AND RESULTS

In our experiment, the brain imaging was performed
at Siemens 7T MRI using a 32-channel head coil. 3D-
MPRAGE was acquired on a patient, with the field of view
230250154mm , resolution is 0.60.60.6mm , with an accel-
eration factor = 3. The data is then sub-sampled to reach an
high acceleration = 6 to test RAKI reconstruction. RAKI is
implemented by python 3.6.2 and TensorFlow 1.3.0, supported
by CUDA 8.0 and CuDNN 7.0.5. Python environment is
created by Anaconda 3.8.3. All programs were run on the
server which has two Intel E5-2643 CPUs (6 cores each,
3.7 GHz), 256 GB memory, and a NVIDIA Tesla K80 GPU
(Single precision 8.74 TFLOPS, 24 GB memory). The sever
runs Linux 3.10.0 OS with GCC 4.8.5.

We chose Adam optimizer with study rate 0.001 in our
experiments. It is been proved by various experiments that
Adam is the most effective optimizer for RAKI reconstruction.
The results of different strategies are shown below in figure 4
to 5. Figure 4 showed the results of Adam optimizer with 2500
iterations (fig. 4-a), and alternatively with a stopping criteria
shown by equation 3 (fig. 4-b), where the threshold is 0.0001.
We can see that visually speaking, there is no conspicuous
difference between the two results. Figure 4-c shows the
difference image between 4-a and 4-b, which is basically a
random noise map with very low amplitude. This fact indicates
these two images have nearly the same reconstruction quality,
no blur or aliasing is remained while using the stopping
criteria. However in this experiment, with proper stopping
strategy, we were able to obtain such satisfying result by 469
iterations in average (averaged by 10 repeats) instead of using
fixed 2500 iterations, which means a four fifth of time saving.
Meanwhile, the average of minimum iteration was about 247
iterations, and the average of maximum iteration was 672. For
some channels that converged slower than others, they were
allowed to run more iterations until they reach a uniformed
training error.

We parallelized 64 training tasks on the GPU we have to
achieve the best performance. Every individual training task
got sufficient resources for a proper operation. The training
time of different strategies are shown in figure 5, where we can
learn that beginning with a sequential implementation based
on Matlab and Matconvnet, it took nearly one and half hour
to complete RAKI reconstruction in our case. Simply employ
parallel programming with high-efficiency framework gave a
nearly 8x speed up but it still take about 12 minutes. Aided by
the strategies we have talked in this paper, it cost 1.57 minutes
to complete the whole process, which is nearly 60x speed up
compared with the sequential version. Promising a satisfying
visual experience, we are able to complete RAKI in minutes
even handling with such complex case with 32 coils (which
needs 64 convolutional neural networks).

V. CONCLUSION

In this paper, we present strategies aided by parallel pro-
gramming that accelerate RAKI reconstruction depend on
its’ own characteristics. In addition to conventional CNN

acceleration based on GPU, we shrink the training time by
limiting the iteration number with proper criteria, while ensur-
ing a satisfying visual image quality. We also parallelized the
individual CNN training tasks to have a further performance
improvement. These efforts made considerable contribution to
bring the newly proposed RAKI reconstruction algorithm into
practical applications.

REFERENCES

[1] J. Barentsz, S. Takahashi, W. Oyen, R. Mus, P. De Mulder, R. Reznek,
M. Oudkerk, and W. Mali, ”Commonly Used Imaging Techniques for
Diagnosis and Staging,” J Clin Oncol., vol. 20, no. 24, pp.:3234-44,
2016.

[2] M. Hutchinson, and U. Raff, "Fast MRI data acquisition using multiple
detectors,” Magn. Reson. Med., vol. 6, no. 1, pp.87-91, 1988.

[3] D. K. Sodickson, and W. J. Manning. ”Simultaneous acquisition of
spatial harmonics (SMASH): fast imaging with radiofrequency coil
arrays,” Magn. Reson. Med., vol. 38, no. 4, pp. 591-603, 1997.

[4] K. P. Pruessmann, M. Weiger, M. B. Scheidegger and P. Boesiger,
“SENSE: sensitivity encoding for fast MRI,” Magn. Reson. Med., vol.
42, no. 5, pp. 952-962, 1999.

[5] M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus,
J. Wang, B. Kiefer, and A. Haase, Generalized autocalibrating partially
parallel acquisitions (GRAPPA). Magn. Reson. Med., vol. 47, no. 6, pp.
1202-1210, 2002.

[6] M. Lustig, and J. M. Pauly, ”SPIRIT: Iterative selfconsistent parallel
imaging reconstruction from arbitrary kspace,” Magn. Reson. Med., vol.
64, no. 2, pp. 457-471, 2010.

[71 M. Akgakaya, S. Moeller, S. Weingrtner and K. Uurbil, Scan-
specific Robust Artificial-neural-networks for k-space Interpolation-
based (RAKI) Reconstruction: Database-free Deep Learning for Fast
Imaging, Annual Meeting of the International Society of Magnetic
Resonance in Medicine, Paris, June 2018.

[8] P. M. Jakob, M. A. Griswold, R. R. Edelman, and D. K. Sodickson,
”AUTO-SMASH: a self-calibrating technique for SMASH imaging,”
Magnetic Resonance Materials in Physics, Biology and Medicine, vol.
7, no. 1, pp. 42-54, 1998.

[9] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard, and M. Kudlur, "TensorFlow: A System
for Large-Scale Machine Learning,” in OSDI, vol. 16, pp. 265-283, 2016.

[10] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, CuDNN: Efficient primitives for deep learning,”
arXiv preprint, arXiv:1410.0759, 2014.

[11] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” proceedings of COMPSTAT 2010, pp. 177-186, Physica-Verlag
HD, 2010.

[12] D. P. Kingma, and J. Ba, ”Adam: A method for stochastic optimization,”
arXiv preprint, arXiv:1412.6980. 2014.

[13] J. Sanders, and E. Kandrot, "CUDA by example: an introduction
to general-purpose GPU programming,” Addison-Wesley Professional,
2010.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, pp. 1097-1105, 2012.

figures/4.png

Fig. 4. Reconstruction results with Adam optimizer and different training strategies. (a): Adam optimizer runs 2500 iterations; (b): Adam optimizer with
stopping criteria; (c): the difference of the two results. Notice that (a) and (b) has an intensity range from O to 1, but ¢ has only 0 to 0.022, which indicates
the noise level is small.

100 T T T

85.41

Time Cost (minutes)

Fig. 5. The time cost of different RAKI implemetation strategies, (a):
sequential programming based on Matlab and MatConvnet; (b): parallel
programming with TensorFlow and Python; (c): based on the conditions of
b, apply a stopping criteria on iteration; (d): based on the condition of c,
parallelize multiple tasks on the GPU

