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ABSTRACT. We study hypocoercivity for a class of linearized BGK models
for continuous phase spaces. We develop methods for constructing entropy
functionals that enable us to prove exponential relaxation to equilibrium with
explicit and physically meaningful rates. In fact, we not only estimate the ex-
ponential rate, but also the second time scale governing the time one must wait
before one begins to see the exponential relaxation in the L' distance. This
waiting time phenomenon, with a long plateau before the exponential decay
“kicks in” when starting from initial data that is well-concentrated in phase
space, is familiar from work of Aldous and Diaconis on Markov chains, but is
new in our continuous phase space setting. Our strategies are based on the en-
tropy and spectral methods, and we introduce a new “index of hypocoercivity”
that is relevant to models of our type involving jump processes and not only
diffusion. At the heart of our method is a decomposition technique that allows
us to adapt Lyapunov’s direct method to our continuous phase space setting
in order to construct our entropy functionals. These are used to obtain precise
information on linearized BGK models. Finally, we also prove local asymptotic
stability of a nonlinear BGK model.

1. Introduction. This paper is concerned with the large time behavior of nonlin-
ear BGK models (named after the physicists Bhatnagar-Gross-Krook [8]) and their
linearizations around their Maxwellian steady state. With respect to position, we
consider here only models on T := (%T)d7 the d-dimensional torus of side length
L without confinement potential. Then, the usual BGK model for a phase space
density f(x,v,t); x € ’i‘d, v € RY satisfies the kinetic evolution equation

8tf+'l)'vzf:Qf::Mf(iC,U,t)_f(iC,U,t), t207 (1)
where M denotes the local Maxwellian corresponding to f; i.e., the local Maxwell-
ian with the same hydrodynamic moments as f:
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v—u(x,t 2 1+g v—u(x,t 2 x,t
My o) = — 2D gyt | p@ )T kel
(2nT(2,1))? (27 P(w,1))?
with density
pla,t) = f(z,v,t) do,
Rd
mean velocity
1
u(x,t) := / vf(z,v,t) dv,
p(x,t) Jra
temperature
1
T(x,t) = —— —u(z,t)? t) d
(@1) = s [ (e DR o) du

and pressure (setting the gas constant R = 1)
1
Pz, t) :=T(z,t)p(z,t) = a/ lv —u(x, t)|>f(z,v,t) dv .
Rd

Let dZ := L% dz denote the normalized Lebesgue measure on T¢, and consider
normalized initial data f!(x,v) such that

/~ flz,v)dzdv=1, / vf(z,v) dZ dv =0,
TdxR4

Td xR
/ o2 f(z,0) dZ dv=d . (2)
Td xR4

This means, our system has unit mass, zero mean momentum, and unit position-
averaged pressure (w.l.o.g. this can be obtained by a Galilean transformation and
choice of units). One easily checks that this normalization is conserved under the
flow of (1). Hence the system (1) is expected to have the unique, space-homogeneous
steady state

2
() = My(v) = (2m)"Fe= %

the centered Maxwellian at unit temperature, which clearly has the same normal-
ization as (2). A standard argument involving the Boltzmann entropy confirms that
this is indeed the case, but it gives no information on the rate of convergence to
equilibrium, nor does it even prove convergence. We remark that (1) involves two
different time scales: the generic transport time is O(L), while the relaxation time
is O(1). The goal of this paper is to prove the large time convergence to this f>
for solutions of (1) and its linearizations in 1, 2, and 3D with explicitly computable
exponential rates.

This extends our previous work [1], which considered the 1D linear BGK model:

Of +v-Vof = Qunf = Mr(v) /f(x,v,t) dv— f(,o8), >0, (3)
R
where M7 denotes the normalized Maxwellian at some temperature 7" > 0:
My (v) = (27TT)_1/26_|”‘2/2T )

In [1] we studied the rate at which normalized solutions of (3) approach the steady
state f>° = My as t — oo. This problem is interesting since the collision mech-
anism drives the local velocity distribution towards My, but a more complicated
mechanism involving the interaction of the streaming term vd, and the collision
operator Qi is responsible for the emergence of spatial uniformity.
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To elucidate this key point, let us define the operator L by

Lf(z,v) :=—v O, f(z,v) + Quin f(z,v) .

The evolution equation (3) can be written 9;f = Lf. Let H denote the weighted
space L2(T¢ x R% My ' (v) dZ dv), where in the current discussion d = 1. Then
Quin is self-adjoint on H, Lf*° = 0, and a simple computation shows that if f(¢) is
a solution of (3),

*dllf(t) = F2N5 = 20£ (), LF(6))2e = 20f (1), Qunf (D)2 = =2IIf = Mrpl3, ,

where, as before, p(z,t) := [, f(z,v,t) dv. Thus, while the norm [|f(t) — f>||3 is
monotone decreasing, the derivative is zero whenever f(¢) has the form f(t) = Mpp
for any smooth density p. In particular, the inequality

(f = 2L = ) < =AIf = Il (4)
is valid in general for A = 0, but for no positive value of A. If (4) were valid for
some A > 0, we would have had || f(t) — f*°[|3, < e || fI — f°°||%, for all solutions
of our equation, and we would say that the evolution equation is coercive. However,

while this is not the case, it does turn out that one still has constants 1 < ¢ < oo
and A > 0 such that

1F () = N5 < ce™ T = £ -

(The fact that there exist initial data f(0) # f°° for which the derivative of the
norm is zero shows that necessarily ¢ > 1.) In Villani’s terminology (see §3.2 of
[30]), this means that our evolution equation is hypocoercive.

Since f(t) and f°° are probability densities, a natural norm in which to measure
the distance between them is the L' distance, or, what is the same up to a factor
of 2, the total variation distance between the corresponding probability measures.
However, as is well known, the norm || - || controls the L! norms. Specifically, by
the Cauchy-Schwarz inequality,

7= 121 = [ 1 M5 () = 1P M) o do

= (/TdXRd |f (2,0, )Myt (v) = 1| Mp(v) dF dv>2 (5)

:Hf( ) foo”Ll Td xR, dz dv) *

Many hypocoercive equations have been studied in recent years [30, 16, 14, 13, 5],
including BGK models in §1.4 and §3.1 of [13], but sharp decay rates were rarely an
issue there. In our earlier work [1], we established hypocoercivity for such models
in 1D by an approach that yields explicit — and quite reasonable — values for ¢ and
A. To this end, our main tools have been variants of the entropy—entropy production
method.

The articles [1] and [13] only consider BGK models with conserved mass, and
partly also with conserved energy. But the tools presented there did not apply
to BGK equations that also conserve momentum. This is in fact an important
structural restriction that we shall formalize in §2.2 with the notion hypocoercivity
index. The common feature of all models analyzed in [1] as well as in [13] is that their
hypocoercivity index is 1. The main goal of this paper is to extend the methods
from [1] (i.e. constructing feasible Lyapunov functionals) to models with higher
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hypocoercivity index. Applied to BGK equations this then also includes models
with conserved momentum.

The existence of global solutions for the Cauchy problem of (1) has been proven
in case of unbounded domains [23] and bounded domains [27, 24], respectively. In
case of bounded domains (such as 2 € T%), these solutions are essentially bounded
and unique [24]. For a space-inhomogeneous nonlinear BGK model with an external
confinement potential, the global existence of solutions for its Cauchy problem and
their strong convergence in L' to a Maxwellian equilibrium state has been proven
recently [9].

In the first part of this paper we shall study the linearization of the BGK equation
(1) around the centered Maxwellian with constant-in-z temperature equal to one.
To this end we consider f close to the global equilibrium M;(v), with A defined by
flz,v,t) = My (v) + h(x,v,t). Then

plx,t) =14 o(x,t) with o(z,t) := h(z,v,t) dv
Rd

(o) (. 1) = / il v.t) dv = pla, )

with the vector function u(x,t) := / vh(z,v,t) dv , (6)
Rd
1 1 |, )|
P == —ul? — 14+ = _ AP
(@20 = [ Qo= uP) o) do =14 3 [r(avn) - HE0E
with 7(x,t) := |v|2h(z,v,t) dv
Rd

The conservation of the normalizations (2) implies

/ o(xz,t)dz =0, / u(x,t) dz =0, and / T(z,t) dz=0. (7)
T4 T4 T4

The perturbation h then satisfies
Oh(z,v,t) +v - Vih(z,v,t) = [Ms(z,v,t) — My(v)] — h(z,v,t), t>0.
For o, p, and 7 small we have
My (z,v) — M (v)

d

T R St O PV
(2w{1+l[7< - gy 2 @) - 0+ o)

1+o(x)

d \1r|2
2 2

L Ivl2

~ My (v [ a(x)+v-u(x)+(—+)7(x)] ;
(8)

which yields the linearized BGK model that we shall analyze in dimensions 1, 2,
and 3 in this paper:

Oh(z,v,t) +v - Vih(z,v,t)

Ml(v)K + g - W;)U(:c,t) Foplat) + ( . ';’S)T(x t)} 9)
— h(z,v,1),
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for t > 0. Here and in the sequel we only have h(z,v,t) ~ f(x,v,t) — M;(v), but
for simplicity of notation we shall still denote the perturbation by h.

Theorem 1.1 (decay estimate for the linearized BGK equation (9) in
dimensions 1, 2, and 3). For each side length L > 0 and for dimensions d =
1,2,3, there exists a (quadratic) entropy functional E4(f) and a decay rate A*(L) > 0
satisfying

ca(L)E(S) < IIf = Mil}, < Ca(L)EX(S) (10)
with some positive constants cq, Cy given explicitly in the proofs. Moreover, any
solution h(t) to (9) with E4(h! + M;) < oo, where h! is normalized according to
(7), then satisfies

EURE) + M) < e MDDt gd(pl L) . >0, (11)

Remark 1. (a) Combining (5) and the bound on the right in (10), we obtain a
Pinsker type inequality [25] for our entropy. Let f := h + M;. Then

||f_ M1||L1('i‘d><1R<d,d5c dv) = Cd(L)gd(f) : (12)

(b) For any solution h(t) to (9) with EY(h! + My) < oo, where h! is normalized
according to (7), the function f(¢) := h(t) + M, satisfies

- ~ \d
1F(8) = Mill s az a0y <\ CalL)EL(F e X' E) 172 (13)

due to (11) and (12) with f := h! + M;. However, since f(t) and M; are
both probability measures, we also have

I1£(t) = Ml 1 (paxre, dz av) < 2 (14)

for all t. Moreover, if most of the mass density is initially located in a small
portion of T9: e.g., if the gas molecules are initially released from a small
container into a vacuum in the rest of T%, then | f(t) — M| g1 (Faxra, 4z dv)
will be close to 2 until the streaming has had time to distribute the particles
more uniformly over T?. Our estimates bound the time that it takes for this
to happen.

Combining (13) with (14) yields

~ . ~ _ d
L) — Ml s g s any < mm{z, Ca(L) (1) @) “2} L)

for ¢ > 0. Our bound (13) improves the trivial bound (14) only for ¢ > tinit
where
log Cyq(L) 4 log E4(f1) — 210g 2

NI(L)

For the one dimensional case, it is shown in Remark 9 that A'(L) = O(1/L?)
in the limit L — oco. Moreover, the constant C(L) approaches 1 in the limit
L — oo by using the limiting behavior a.(L) = O(1/L) in expression (73).
For initial data fI with all of the gas molecules initially located in a small
region of T¢ with a volume fraction of order ¢, the initial entropy & o f! ) will
satisfy 51(f1) = O(e7?). In this case, ti,i; is approximately given by

O(—L*(C +loge)) fore< 1, L >>1

tinit 1=
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and some positive constant C'. Thus one time scale in our problems is given,
or at least bounded, by tin;t. After this time, the solution satisfies

- yd L
||f(t) _ Ml”Ll(’i"dx]Rd,dgE av) < 2 ANYL) (t—tinit)/2 7 (16)

and the second time scale, is given by 2/A%(L), the waiting time after #;,;; for
£ (t) — M| 1 (Fayra, gz av) to decrease by a factor of 1/e; see Fig. 1.

These two times scales are quite similar to what one observes in interacting
particle systems or even in card shuffling; see [3, 12]. In particular, [3, Fig. 2]
is quite similar to our Fig. 1 below.

(¢) The resemblance of (16) to the results of Aldous and Diaconis for finite Markov
chains in [3, 12], and in particular for card shuffling, is not a coincidence. The
equation (3) can be interpreted as the Kolmogorov forward equation for a
Markov process. Exponential rates for related Markov process have been
obtained by probabilistic methods; see [7] for an early study of this type.
However, the approach in [7] relies on compactness arguments and does not
yield explicit values for ¢ or A. One difference between our results and those
for finite Markov chains is that in our case, the initial relative entropy can be
infinite. In card shuffling, starting form a perfectly ordered deck of cards, one
starts from a state of maximal—but finite—relative entropy, and the waiting
time for uniformization from this state dominates that of any other starting
point. For this reason, the initial waiting time for finite Markov chains is a
universal “worst case”, while this is impossible in our setting; our result must
refer to E4(fT).

(d) Our bound on the decay rate is monotonically decreasing in L and satisfies
M(L =0) > 0and AL = 00) = 0 (for d = 1 see Fig. 2 below). Moreover
ca(L=0)=Cy4(L =0)=1 (see (72), (73) below).

To prove local asymptotic stability for the nonlinear BGK equation (1) in 3D,
we make use of another set of norms: For v > 0, let H7(’i‘3) be the Sobolev space
consisting of the completion of smooth functions ¢ on T? in the Hilbertian norm

leliz ==Y (L+ k) |enl
keZ3
where ¢y, (k € Z3) is the kth Fourier coefficient of . Let H. denote the Hilbert
space HY(T?) @ L2(R3; M7 h); this is the tensor product of the two factors, defined

as the completion of the vector space generated by products of elements of these
two spaces, see e.g. [26, §II.4]. Then the inner product in H, is given by

b, = [ Fo)[00- A0 gl o) M7 (o) d do.

Theorem 1.2 (decay estimates for the linearized and nonlinear BGK equa-
tion (1) in 3D). Let L = 27 and let the initial data f! satisfy the normalization (2).

(a) For all v > 0 there is an entropy functional £,(f) satisfying
3 3
1) = If =Ml < 2&/(f)
such that, if h is a solution of the linearized BGK equation (9) in 3D with
initial data h' and E,(h! + My) < oo, then

E,(h(t) + My) < e V20 (W + My),  t>0.
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decay function

151
HE:
05
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tinit tinit + by
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FI1GURE 1. These two functions illustrate the time dependent decay
estimate from (15). The values of Cy, A? correspond to the 1D case
with L = 27, and we chose Sd(fl) = 15. We also show the two
time scales of the BGK equation: t;,;; marks the intersection point
of the two (blue) curves and it corresponds to the generic transport
time. t3 1= tinit +% marks the intersection point of the exponential
curve with the value 2/e, and to —tin;¢ corresponds to the relaxation
time scale. For larger values of L, t;,;; will be much larger.

(b) Moreover, for all v > 3/2, there is an explicitly computable 6., > 0 such that,
if f is a solution of the nonlinear BGK equation (1) with initial data f1 and
(P M3, < 6, then for the same entropy functional £, the following
decay estimate holds:

E,(F(1) < e POE (1) . 120,

Note that part (a) of this theorem generalizes Theorem 1.1 to the Sobolev-type
entropies &, (f) in the case d = 3, L = 2m. The above theorem actually holds for
any L > 0. We restricted it to L = 27 only to simplify the presentation, being able
to give an explicit decay rate.

This paper is organized as follows: In §2 we review from [1] a Lyapunov-type
method for hypocoercive ODEs that yields their sharp exponential decay rate.
While this approach requires all eigenvectors of the system matrix, we also de-
velop an approach using simplified Lyapunov functionals. This alternative strategy
comes at the price of yielding only a suboptimal decay rate, but it can be extended
to infinite dimensional systems and BGK equations. In §3 we apply the second
strategy to the linearized BGK model (9) in 1D, proving exponential decay of the
solution towards the spatially uniform Maxwellian, as stated in Theorem 1.1. This
is based on decomposing (9) into spatial Fourier modes and introducing a Hermite
function basis in velocity direction. In the Sections 4 and 5 we extend our result to
2D and 3D, respectively. But this is not straightforward, as it is already not obvious
how to choose a convenient Hermite function basis in multi dimensions. Finally, in



8 FRANZ ACHLEITNER, ANTON ARNOLD AND ERIC A. CARLEN

§6 we prove local exponential stability of the nonlinear BGK equation (1) in 3D as
stated in Theorem 1.2(b).

2. Decay of hypocoercive ODEs. The local convergence result in Theorem
1.2(b) is obtained from the global convergence result in Theorem 1.1 and a rel-
atively straightforward control of the errors involved in linearization. Therefore,
the essential content of the paper concerns the linearized BGK equations. To this
end we shall rewrite them as ODEs — of infinite dimension — in fact. We therefore
begin this section with a discussion of the hypocoercivity structure of ODEs and
review (from [1]) a Lyapunov-type method that yields their sharp decay rate.

2.1. Lyapunov’s direct method. To illustrate the method we start with linear,
finite dimensional ODEs. Consider an ODE for a vector f(t) € C™:

%f = _Cf7 t Z 07
(17)
f(0)=frecn,
for some (typically non-Hermitian) matrix C € C™**™. The stability of the steady
state fY = 0 is determined by the eigenvalues of matrix C:

Theorem 2.1. Let C € C"*" and let A\; (j = 1,...,n) denote the eigenvalues of
C (counted with their multiplicity).

(51) The equilibrium f° of (17) is stable if and only if (i) R(N;) > 0 for all j =
1,...,n; and (i) all eigenvalues with R(\;) = 0 are non-defective.

(52) The equilibrium f° of (17) is asymptotically stable if and only if R(\;) > 0
forallj=1,... n.

(S3) The equilibrium f° of (17) is unstable in all other cases.

For positive definite Hermitian matrices C, using the Lyapunov functional || f||?
in the energy method allows to obtain the sharp decay rate, which is the smallest
eigenvalue p of C: The derivative of || f||? along solutions f(t) of (17) satisfies

%Ilf(t)ll2 = —(f(t) , (C*+ O)f(t)) = —2(f(t) , Cf(1)) < —2ul f(D]?,

where C* denotes the Hermitian transpose of C. Note that the derivative of || f||
depends only on the Hermitian part %(C* + C) of matrix C, such that for a Her-
mitian matrix C there is no loss of information.

But for non-Hermitian matrices it is more natural to use a modified norm:

£l = (£.Pf),
for some positive definite Hermitian matrix P € C"*™, to be derived from C. The
derivative of || f||% along solutions f(t) of (17) satisfies

éllf(t)ll% =—{f(t) , (CP+PC)f(1)).

Then, f% = 0 is asymptotically stable, if there exists a positive definite Hermitian
matrix P such that C*P + PC is positive definite. To determine the decay rate to
£, and to choose P conveniently we shall use the following algebraic result.

1 An eigenvalue is defective if its geometric multiplicity is strictly less than its algebraic multi-
plicity. This difference is called defect.
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Lemma 2.2 ([1, Lemma 2]). For any fized matriz C € C"*™, let p := min{R(A)|A
is an eigenvalue of C}. Let {\;|1 < j < jo} be all the eigenvalues of C with
R(N;j) = p, only counting their geometric multiplicity. If all \; (7 =1,...,jo) are
non-defective, then there exists a positive definite Hermitian matric P € C™*™ with

C'P + PC > 24P . (18)

But P is not uniquely determined. Moreover, if all eigenvalues of C are non-
defective, such matrices P satisfying (18) are given by

P:=> bjw ow;, (19)
j=1
where w; € C" (j =1,...,n) denote the normalized (right) eigenvectors of C* (i.e.
C*w; = A\jw; ), and b; € RT (j =1,...,n) are arbitrary weights.

Remark 2. (i) The construction of Lyapunov functionals to reveal optimal de-
cay rates in ODEs was already included in the classical textbook [6, §22.4],
see also [5, Lemma 4.3] for real matrices C € R™*™ and [1, Lemma 2| for com-
plex matrices C. In particular, if C is a real matrix, then the inequality (18)
of Lemma 2.2 holds true for some real positive definite symmetric matrices
P e R»*™,

(ii) For the extension of the above lemma to the case of defective eigenvalues
see [5, Lemma 4.3(i)] and [2, Prop. 2.2]. But the construction of P then
involves also the generalized eigenvectors.

(iii) The Lyapunov inequality (18) is a special case of a linear matrix inequality.
In a standard reference book of system and control theory [11], the problem
of finding the maximal positive constant p and a positive definite matrix
P satisfying (18) is formulated as a generalized eigenvalue problem, see [11,
§5.1.3]. The optimal value for the constant p is pointed out, but the associated
matrices P (like in our construction (19)) are not specified.

Now we consider examples, where all eigenvalues of C € C"*" are non-defective
and have positive real parts. Then the origin is the unique and asymptotically
stable steady state f° = 0 of (17): Due to Lemma 2.2, there exists a positive definite
Hermitian matrix P € C**™ such that C*P+PC > 2uP where p = min R(\;) > 0.
Thus, the derivative of || f||% = (f , Pf) along solutions of (17) satisfies

d . .
allf(ﬂll%» < =2ullf@)p  with p=minR();),
which implies
IFOIp <e B, >0, (20)
Let )\]P (j = 1,...,n) denote the positive eigenvalues of the positive definite Her-

mitian matrix P being ordered by magnitude such that 0 < AP < ... < AP. Then
the matrix inequality A\PT < P < APT implies the equivalence of norms

Mol < [lolfp < A7Jll* - voeC™.
Thus the decay in P-norm (20) translates into a decay in the Euclidean norm
IF I < ce™ L)1, (21)

with the constant ¢ = A\F' /AP > 1, i.e. the condition number of P. Note that ¢ = 1
if and only if P is a positive multiple of I.
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Remark 3. In a popular textbook on linear systems theory [17], the exponential
decay (21) is obtained as follows [17, §8.5]: For a stable matrix —C (i.e. all eigen-
values of —C have negative real part) and a matrix Q, the unique solution P of
Lyapunov’s equation

C'P+PC=Q

is given by
o0
P ::/ e Tt Qe Ctat.
0

If Q is a positive definite symmetric matrix, then the unique solution P is also
symmetric and positive definite. Moreover, the P-norm of any solution f(t) of (17)
satisfies

éllf(ﬂll% == (f(t), (CP+PC)f(t)) = = {f(t) , Qf (1))
Q

. .Q ) min A; 9
<-—minAS|f@)]° < _max)\]P If®le

where )\? and )\JP are the positive eigenvalues of the positive definite symmetric
matrices Q and P. This implies (20) with 21 = min )\? /max /\f. However, only a
suitable choice for Q would allow to recover the optimal decay rate as achieved in
Lemma 2.2.

The preceding discussion allows to characterize coercive and hypocoercive sys-
tems of linear ODEs (as well as matrices) according to the definition in the intro-
duction: Equation (17) with matrix C is coercive, if the Hermitian part of C is
positive definite, i.e.

Jk >0 such that Cp :=3(C+ C*) > «l.

In this case, the trivial energy method (i.e. multiplying (17) by f(¢)" and using
|| £1|? as a Lyapunov functional) shows decay of f(t) with rate x and ¢ = 1. But this
exponential rate is not necessarily sharp, e.g. for some non-Hermitian matrices C.

Equation (17) with matrix C is hypocoercive (with trivial kernel), if there exists
1 > 0 such that all eigenvalues of C satisfy

RO >p,  j=1,..n.

While this notion was originally coined for operators in PDEs, such matrices are
typically also called positive stable.

Comparing the spectrum of C and Cy, it is well known that the maximum
constants x and g satisfy k < p. If all eigenvalues of C with R(\;) = p are non-
defective, then f(t) decays at least with rate pu. However, if C has a defective
eigenvalue with R(\) = p, then f(t) decays “slightly slower”, i.e. with rate u — e,
for any € > 0 (see [5, Proposition 4.5] and [2, Proposition 2.2] for details — applied
to hypocoercive Fokker-Planck equations). Very recently this decay result has been
improved as follows: In this case there is still a positive definite matrix P, but it
cannot be given by the simple formula (19), and (20) becomes

IF @B < OO+ em)e | 13 (22)

for some C' > 0, where m is the maximal defect of the eigenvalues of C with
R(A;j) = p. See [4] for more information.
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2.2. Index of hypocoercivity. For the BGK models analyzed below we intend to
construct convenient Lyapunov functionals of the form (f, P f), where the matrix
P does not necessarily have to reveal the sharp spectral gap of C (in the sense of
Lemma 2.2). To this end we first give a definition of the structural complexity of a
hypocoercive equation of the form

d
af+iC1f:*sz7 t>0. (23)

Here we decomposed the matrix C € C"*" as C = iC; + Cy with Hermitian
matrices C; and Cy with Co > 0. In the special case C; = 0, (ker Cy)* corresponds
to the subspace of decaying solutions f(t), and ker Cs to the non-decaying subspace.
In hypocoercive equations, the semigroup generated by the skew-Hermitian matrix
1C1 may turn non-decaying directions into decaying directions, hence allowing for
an exponential decay of all solutions. More precisely, we assume

IreNy and 3k >0 : > CiCy(Cy) > kI (24)
=0

Definition 2.3. For Hermitian matrices C; and Cy with Co > 0, the hypocoercivity
index of the matrix C (and of the ODE (23)) is the smallest 7 € Ny, such that (24)
holds.

Clearly, 7 = 0 corresponds to coercive matrices C; i.e., those for which all ei-
genvalues of its Hermitian part %(C + C*) are strictly positive. A simple com-
putation shows that this definition is invariant under a change of basis. We note
that condition (24) is identical to the matrix condition in Lemma 2.3 of [5], which
characterizes the hypoellipticity of degenerate Fokker-Planck operators of the form
Lf = div(DVf + Czf) (using the matrix correspondence D = Cy, C = Cy).
Hence, condition (24) for the ODE (23) and its hypocoercivity index can be seen as
an analogue of the finite rank Hérmander condition for hypoelliptic and degener-
ate diffusion equations [20, Th. 1.1]. While the hypocoercivity index of degenerate
parabolic equations determines the algebraic regularization rate (e.g. from L? into
H*', see [30, Th. A.12], [5, Th. 4.8], and [18, Th. 1.1]) its role in hypocoercive ODEs
is not yet clear.

2.2.1. Equivalent hypocoercivity conditions. Next, we collect several statements
which are equivalent to condition (24). They will be useful for the analysis in
§2.3.

Proposition 1. Suppose that C1 € C"*™ and Cy € C™*"™ are Hermitian matrices.
Suppose furthermore that Cy is positive semi-definite. Then the following conditions
are equivalent:

(B1) There exists T € Ny such that

rank{y/Cs, C11/Ca,...,CI\/Cs} = n ,

which is often called Kalman rank condition.

(B2) The matrices C1 and Cy satisfy condition (24).

(B3) No non-trivial subspace of ker Cy is invariant under Cj.

(B4) No eigenvector of Cy lies in the kernel of Ca.

(B5) There exists a skew-Hermitian matriz X such that Coy + [K,Cq] = Cy +
(KC; — C1K) is positive definite.
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Moreover, the smallest possible T in (B1) and (B2) coincides; it is the hypocoercivity
index of C.

Proof. The equivalence of (B1) and (B2) (with the same 7) follows from [2, Lemma
2.3]. The equivalence of (B2)—(B4) follows from [5, Lemma 2.3]. The equivalence
of (B4) and (B5) follows by the same arguments as for real symmetric matrices
in [28, Theorem 2.5]. O

Remark 4.
(a) In order to use condition (B1) later on also for “infinite matrices” we give here
an equivalent version:

There exists 7 € Ny such that m ker (\/CQC{) = {0}. (B1)

=0

(b) If 7 € Ny is such that

rank{\/ 02701\/ CQ, .. .70‘{\/ CQ}
= rank{y/Cs,C11/Cy,...,C]/Cy, CT™\/Cy} ,

then for all Kk € N
rank{\/ CQ, Cl V CQ, ey CI\/ CQ}
= rank{y/Csy, C1y/Cs,...,CTT"\/Cy} .

Condition (25) implies that the columns of C]™!,/Cy are linear combinations
of the columns of CJ/Cs, j € {0,... ,7}. This implies that CT+k/C, are
linear combinations of the columns of CJ\/Cs, j € {k—1,...,7 + k — 1}.
Hence, for a hypocoercive matrix we have to gain with each added term in
(25) at least one rank until we reach full rank, i.e. space dimension n. Thus,
for hypocoercive matrices its hypocoercivity index is bounded from above by
the dimension of ker Cy (or equivalently corank of Cs).

In [30, Remark 17] the connections of the above conditions to Kawashima’s
nondegeneracy condition for the study of degenerate hyperbolic-parabolic systems
[22] and Hormander’s rank condition for hypoelliptic equations [20] are noted.

For real symmetric matrices C1,Cqy € R™*™ with Cy > 0, condition (B4) is
equivalent to the condition that C := iC; 4+ Csy has only eigenvalues with positive
real part, see [28, Theorem 1.1]. And the latter statement is equivalent to the
exponential stability of (23). Using Proposition 1, we shall now prove a similar
statement for Hermitian matrices:

Lemma 2.4. Hermitian matrices C1 and Cq with Co > 0 satisfy condition (24) if
and only if all eigenvalues ¢ of C :=iCy + Cq have positive real part R(Ac) > 0.

To show Lemma 2.4 for Hermitian matrices, we will follow the proofs of [29,

Prop. 2.4] and [28, Lemma 3.2] for real symmetric matrices.

Proof of Lemma 2./. First, we show that condition (24) implies that all eigenvalues
Ac of C :=iC; + C; have positive real part R(Ac) > 0: Let ¢ be an eigenvector
of C corresponding to an eigenvalue A, i.e.

Ap=C¢ = (iC1 + C2)¢ . (26)
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Take the complex inner product of this equation with ¢, to obtain
Mo, ¢) = (Co, ¢) ,
using (¢, 1) = $Tz/1 for all ¢, € C™. Its real part satisfies
R(A) (@, ¢) = (C20,9) , (27)

due to the assumptions on the matrices C; and Cs. Moreover, there exists a skew-
Hermitian matrix K such that Cy + [K, C4] is positive definite by Proposition 1.
We multiply equation (26) with iK and take the inner product with ¢ such that

MiKo, ¢) = (iIKCg,¢) .
Its real part satisfies
2R(MN) (K¢, ¢) = ((C1K — KC1)¢, ¢) — i((C2K + KCb)¢, ¢) (28)
since Cq, Cs and 7K are Hermitian matrices. Moreover,
2R((IKC2¢, ¢)) =((Cz iK +iKC3)¢, ¢)

=(y/C3 iK¢, \/C2¢) + (/Cas, /Cs iKo)
<2(|v/Cad|\/Ca iK| < 2M || v/Ta 4] (29)

<ell6I + T M(Ca9,6)

for any positive e. Here we used M := ||/Cs iK]|| and ||/C2¢||? = (C29, ¢) since
C; > 0. Combining equations (27) and (28) as 2:(27)—a-(28) for some constant
a > 0 to be chosen later, we derive

2R (I211* — a(iKe, 9))
= ((C2 + a(KCy - C1K))6,¢) + (C20, §) +ia((C2K + KC2)¢, ) -
There exists ag > 0 such that @, := [|¢]|? — a(iK¢, ¢) satisfies
I911?/2 < @0 < 2/|¢lI* Vo€ (~ag,a0), (31)

since 1K is a Hermitian matrix. Recall that the skew-Hermitian matrix K was
chosen such that Cy + [K, Cy] is positive definite by Proposition 1. Therefore, the
estimate

(30)

((C2 + a(KCi — CiK))¢, ¢) > aml|¢|? (32)
holds for all & € [0, 1], where m > 0 is the smallest eigenvalue of the positive definite
Hermitian matrix Co+ (KC; — C1K). Thus we deduce from (30) and the estimates
(32), (29) that

RON)Pa 2 alm = 6] + (1 - a=)(C20,6) .

Choosing € = m/2 and o = min{1, ap, ¢/M?}, we finally derive with (31)
ROV = == > 0.

Finally, we show the reverse implication via a proof of its negation. If condi-
tion (B4) does not hold, then there exists a ¢ € ker Cs and an (eigenvalue) p € R
such that C1¢ = u¢. This implies (iCy + C2)¢ = iu¢. Thus ¢ is an eigenvector of
C :=iC; + C,, for the purely imaginary eigenvalue u. Thus not all eigenvalues \¢
of C have positive real part.

We conclude that, if all eigenvalues Ac of C have positive real part R(Ac) > 0,
then condition (B4) — and equivalently (24) — must hold. O



14 FRANZ ACHLEITNER, ANTON ARNOLD AND ERIC A. CARLEN

Remark 5. In the study of hypocoercivity for discrete velocity BGK models, a
family of matrices C*) := ik C; 4+ Cy (k € Z) for some real symmetric matrices
Cy,Cy € R™™™ with Cy > 0 has to be considered, see [1, §4.1-§4.2]. Following the
proof of [29, Prop. 2.4], a uniform bound for the real parts of the eigenvalues Ac o)
of these matrices C*) (k € Z) can be proven:

am  k?

8 14 k2 ”
Remark 6. Next we relate our study of equation (23) to the one of Tdtf +Lf=0
in [30]. In the first part of [30], operators L = A*A + B with a skew-symmetric
operator B are considered. Our operator/matrix C = iC; +Cs (for some Hermitian
matrices C1,Cy € C™*™ with Cy > 0) is of the form L = A*A + B for the
choice A = /Cy and B = iC; acting on the complex Hilbert space C". First, we
notice that K := ker L = ker A N ker B, see [30, Prop. 1.2]. There, the study of
hypocoercivity is based on the assumptions [30, (3.4)—(3.5)]:

%()\C(k)) > 0 Vk € Z \ {0} .

JreNy :  ker (Z D;D;) =kerL = K , (33)
k=0
or more clearly,
IreNg : Z D;D; is coercive on Kt | (34)
k=0

where the iterated commutators Dy, (k € Ny) are defined recursively as
Dy :=A, D, = [Dkfl,B] =D, 1B-BD, ;, keN.

In [30, Remark 17] it is noted (without a proof) that on finite dimensional Hilbert
spaces, condition (34) is equivalent to (B3) in Proposition 1 (with credit to Denis
Serre).

The following simple example shows that this “equivalence” needs a small mod-
ification in complex Hilbert spaces: Consider the matrices

1 0 . i 0
A= (b 0). moia- (i 0)

Matrix A has kernel ker A = span{ (?)} Moreover Dy = A and D, = 0 for all
k € N. Hence, K = ker A Nker B = ker A and conditions (33) and (34) are satisfied
for all 7 € Ny. But (B3) does not hold.

Now we give a proof of a slightly modified equivalence. On finite dimensional
Hilbert spaces, conditions (33) and (34) are obviously equivalent. Moreover, we will
make use of Proposition 1 and only show the equivalence of (B1) and a modified (33):

Lemma 2.5. Let the matrices C1 and Cy > 0 be Hermitian and define A := /Co
and B :=iC;. Then (A,B) satisfies

condition (33) together with ker A Nker B = {0} (35)

if and only if (Cy, Cs) satisfies (B1). Moreover, the smallest possible T in (35) and
(B1) coincides.

Proof. First, notice that for all 7 € Ny

[ ker Dy =ker Y D;Dy, . (36)
k=0 k=0
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Defining K’ := (1),,» ker Dy, the inclusion K C K’ is proven in [30, Prop 1.15]. Next
we prove that -

w e ﬂ ker Dy, =: K. is equivalent to ~ AB*w =0 Vke{0,...,7} (37)
k=0
by induction: For 7 =0, w € ker Dy = ker A holds. Assume now condition (37) for
7 and prove it for 74 1. Operator D, is defined as D, = [D,,B] = D, B—BD..
and using w € ﬂ;ié ker Dy, yields
0=D,;;w=[D,,BJw=(D;B-BD,)w=D,Bw
=(D,_ ;B -BD,_ ;)Bw =D, B*w - B*D,_jw
=D, B?w=...=DB" " 'w=AB "w.

The converse, 0 = AB"t'w = D, w, is proven similarly. Thus the equiva-
lence (37) holds.

Finally we prove the equivalence of (B1) and (35): If condition (B1) holds for one
To, then AB¥w = 0 for all k € {0,..., 7} implies w = 0. Due to the equivalence
n (37), K" € K, = {0}. Hence, {0} C K C K}, = {0}. With (36) this proves
condition (33) with 7 = 79 and ker L = ker A Nker B = {0}.

If condition (33) holds together with ker A NkerB = {0}, then £ = kerL =
ker A Nker B = {0} and there exists 7 € Ny such that ker (Y-, _,D;Dy,) = ker L =
K. Due to (36),

[ kerDy =ker» DjDj =kerL =K = {0} .

k=0 k=0
From the equivalence (37) we then obtain: If some w € C" satisfies AB*w = 0 for
all k € {0,...,7}, it follows that w = 0. Therefore condition (B1) holds with the
same index 7. This finishes the proof. O

2.3. Ansatz for the transformation matrix P. For finite dimensional matrices
with non-defective eigenvalues, an optimal transformation matrix P (yielding the
sharp spectral gap and thus the sharp decay rate) can be constructed as stated in
Lemma 2.2. But for “infinite matrices” the eigenfunctions w; will not be known in
general. Hence, an optimal matrix P cannot be obtained from formula (19). Even
for finite dimensional systems with n large, it may not be possible to construct
explicitly the matrix P defined in (19). However, Lemma 2.2 still provides a guide
to the construction of a non-optimal choice of P that can still be used to prove
hypocoercivity and to give a quantitative decay rate. We shall exploit this in §3-6
to prove hypocoercivity for BGK equations. To this end we shall only consider
minimal matrices P, i.e. matrices with a minimal number of non-zero entries in
P — I, such that Lemma 2.2 still allows to deduce hypocoercivity (but then with a
suboptimal rate p).

Our focus will be to find a usable and simple ansatz for P and to prove that
such an ansatz will give rise to a matrix inequality of the form (18). The structure
of these ansatzes shall be derived from the connectivity structure of the matrix
C: We consider examples of equations (23), where we assume w.l.o.g. that the
Hermitian matrix Cs is diagonal and hence real. Next we consider how the zero and
negative diagonal elements of —Csy (or equivalently the non-decaying and decaying
eigenmodes of % | = —Cyf) are coupled via a (non-zero) off-diagonal pair in the
Hermitian matrix C;. More precisely, a non-zero off-diagonal element of C; at
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J,k (and hence also at k,j) couples, in the evolution equation, the j-th mode of
C, to its k-th mode (or diagonal element). In the sequel we shall use a simple
graphical representation of such connections: there the dots o and e represent,
respectively, zero and negative diagonal elements of —Cs, and an arrow between
such dots represents their connection (or coupling).

For each zero element in the diagonal of Cs, we next consider a shortest connec-
tion graph to a non-zero element in diag(Cs) — realized by a sequence of non-zero
off-diagonal elements of C;. This leads to a guideline to find a simple ansatz for
a minimal transformation matrix of the form P = I + A: The ansatz parameters
of the Hermitian matrix A € C"*"™ should be put at the positions of the non-
zero off-diagonal coupling elements of C; that are needed to establish the shortest
connection graphs — choosing only one graph per zero element in diag(Cs,).

Next we shall list some hypocoercive cases with low dimensionality of ker Cs,
because these are the most important cases in kinetic equations (as discussed in §3—
6). For those cases we shall then prove that the above mentioned ansatzes indeed
allow to establish a spectral gap of C.

2.3.1. Hypocoercive matriz with dim(ker Cy) = 1. In this situation there exists only
one (structurally relevant) case. For (23) to be hypocoercive, the only zero element
of the diagonal of Cy (w.l.0.g. say with index j = 1) needs to be coupled (via Cy)
to a positive element of the diagonal of C, .

Due to our assumptions,

Cy =diag{0,c2,...,cp} withc; >0;7=2,...,n; and Ci = (¢jr)jre{l,..n}-

The matrix C = iCy + Cs is hypocoercive if and only if (B3) holds. Since ker Cy =
span{e; }, Condition (B3) reads here Cye; ¢ span{e;}. Thus, we conclude from
Cier = (c1,1,---,¢n1) " that ¢;1 # 0 for some j € {2,...,n}. Of course, j does not
have to be unique, but we now fix one such index jy. This means that ¢i j, = Cjy1 #
0. In this case the hypocoercivity index is always 1, since Remark 4(b) yields here
that the hypocoercivity index is less or equal dim(ker Cy) = 1.

W.lo.g. we assume jo = 2. The coupling within the relevant 2 x 2-subspace (i.e.
the upper left 2 x 2 block of the matrix C) can then be symbolized as o—>e . Such
an example was analyzed in §4.3 of [1] (representing a linear BGK equation in 1D)
using a transformation matrix with the ansatz

0 Ao
P=I+| X 0 : (38)
0 |0

for some A € C. Here, P and I are square matrices of the same size as C, possibly
even infinite. The second matrix on the r.h.s. has the same size, but only its upper
left 2 x 2 block is non-zero.

While the above transformation matrix P is not optimal, this approach is impor-
tant in practice: in theory, Lemma 2.2 provides the optimal transformation matrix
P to deduce the optimal ODE-decay (20) or (22). But in practice, its computation
is tedious, particularly when the system matrix involves a parameter, which is the
case for the BGK-models to be analyzed below (cf. Remark 5). For large systems,
there is therefore a need to design a method that does not require all eigenvectors,
even if the resulting decay rates are then sub-optimal. For the case dim(ker Cq) = 1,
an approximate transformation matrix P of the simple structure (38) is sufficient,
and it always allows to prove an explicit exponential decay of the ODE (23): the
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following theorem shows that C and P satisfy a matrix inequality of form (18), but
not necessarily with the optimal constant pu. Moreover, it shows that the ansatz
(38) from §4.3 of [1] was not a “wild guess” but rather a systematic approach.

Theorem 2.6. Let C; and Cy be Hermitian matrices with Co > 0, dim(ker Cy) =1
such that C := iC1+Cy is hypocoercive. For |\| < 1 the Hermitian matriz P in (38)
is positive definite. If a sufficiently small A € C is chosen such that S(Ac12) > 0,
then the Hermitian matriz C*P + PC is also positive definite.

Proof. We set P =1+ rA with

A=re® and A=

Then we consider C*P + PC = 2C; + r(C*A + AC) as a perturbation of the
matrix 2C, for sufficiently small » > 0. In particular, zero is a simple eigenvalue
of Cy with eigenvector e;. For small r > 0, the eigenvalues of C*P + PC are close
to the eigenvalues of 2C5. Therefore, we only need to study the evolution of the
zero eigenvalue w.r.t. r. Due to [19, Thm. 6.3.12], the lowest eigenvalue p(r) is
a continuous function satisfying lim, o u(r) = 0. Moreover, it is differentiable at
r = 0 with

du _ej(C*A + AC)e,
drIr=0 " ere;

= — Z‘eiiqﬁCLQ —+ i(67i¢0112)* = 2%(67’%}6172) .

=(C*"A+AC);,

Due to our assumptions, c¢; 2 # 0. Hence, we can choose ¢ such that S(e‘i%m)
is positive. For such a choice, the smallest eigenvalue p(r) of 2Cy + r(C*A + AC)
will be positive. This finishes the proof. O

2.3.2. Hypocoercive matriz with dim(ker Co) = 2. Up to a change in basis of C",
we consider the Hermitian matrices

C, = diag{0,0,¢3,...,¢,} >0 and Cy = (¢j)jreq1,...n} € C™" (39)

such that ¢; > 0 for j > 3 and ¢;; € R for all j € {1,...,n}. We only consider
hypocoercive matrices C = iC; + Cy. Then, C; cannot have a block-diagonal
structure of partition size (2, n—2) as, otherwise, the kernel of Cs would be invariant
under C; in contradiction to condition (B3). Hence, we shall assume in the sequel
w.l.o.g. that cz 3 # 0.

In order to construct (later on) appropriate transformation matrices P we shall
distinguish two cases depending on the rank of the upper right submatrix C{" =
(¢jk)jef1,2}, ke{s,...n} Of Ci. These cases with appropriate ansatz for the matrix P
are summarized in Table 1.

Case 2A. In this case the upper right submatrix C}" & C?*(=2) has rank 2. Its
hypocoercivity index is 1 which can be inferred from condition (B1): Using

C1,3 Cin
Cl\/02<0707\/a yoo 9V Cn

Cn,3 Cn,n
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Case 2A:
ko ok
* k| @ % %k ... 0o 0 0 X\
x e 02/\200
c=|°*" ., P=I+| 0 X 0 0 . (40)
ko ok * R
A 0 0 0
0 |0
ko ok

where the upper right submatrix C%" € C2*("~2) has rank 2. Here, we assume
w.lo.g. that |c1 ac2,3| > |c1,3¢2.4] and ¢y 4 c2 3 # 1,3 ¢2,4, such that ¢z 3 # 0 and
C1,4 # 0.

Case 2B:
* x| x
% k| @ * 0 X O
o >\71 0 AZ 0 *
Ci=] * =« . , P=I+U 0 N 0 U, (41)
0 I
* %

where the upper right submatrix C%" € C2*(»~2) has rank 1. Again, we assume
w.l.o.g. that ¢y 3 # 0. The right choice for the unitary matrix U depends on the
structure of Cy:

x |0 O --- 0
[ * [ ] * *
0O e
(2B1) Ci=| 0 =« . ,  U=I, (42)
0 *
* * ° * *
* * [ ] * *
e o Uul 0
(2B2)  Ci=| * = . : U—( ) I), (43)
B

1 C2.3 C1,3

with upper left submatrix U% = —(—2L___ 27 .
Vl0ers|?+He2 52 \—C13 C23

TABLE 1. We give a classification of Hermitian matrices Cy, such
that the associated matrix C = iC; + diag(0,0,ca,...,¢p) is
hypocoercive. The restrictions on the coefficients of C; are de-
picted as 0 if zero, e if non-zero, and * if there is no restriction.
Furthermore, we give the corresponding two-parameter ansatz for
the transformation matrix P = I+ A. The guideline to construct
an admissible Hermitian perturbation matrix A, is to put the pa-
rameters A; at the positions of the (non-zero) coupling elements of
C;. In case (2B2) this will be apparent after a suitable transfor-
mation, see the proof of Theorem 2.9.
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we see that

1,3 Cln
yeees0/Cn ) .

Cn,3 Cn,n

rank (\/Cg7 C, \/Cg) = rank (63, sy ey y/Cs

Due to rank CY" = 2, we have rank (1/Cz, C11/Cz) = n. Hence, the hypocoercivity
index of C is 1. Such an example (a linearized BGK equation in 1D) was analyzed
in §4.4 of [1] using a transformation matrix with ansatz (40).

Up to a renumbering of the indices {j > 3}, we assume ci14c23 # €1,3C24.
Moreover, up to a renumbering of the indices j € {3,4}, we assume |cy 4¢23| >
|c1,3¢2,4| such that ¢; 4 # 0 and ¢z 3 # 0. Thus, w.l.o.g. we assume that the zero in
the diagonal of Cy at j = 1 is connected to j = 4, and the zero at j = 2 is connected
to j =3.

The two zeros in the diagonal of Cs are connected (via Ci) to two different
positive entries in the diagonal of Cs, i.e. to two decaying modes (and possibly, in
addition, also to the same). Hence, this case can occur only for n > 4. Here, the
two connections in the relevant (upper left) 4 x 4-subspace can be symbolized as
o——>e O0——e .

Case 2B. In this case the upper right submatrix C}" € C?*("=2) has rank 1. Then
rank (\/Cg, C, \/Cg) = n — 1. Hence, the hypocoercivity index of C is 2 since it is
bounded from above by dim(ker Cy) = 2, see Remark 4(b).

Lemma 2.7. Let C; be a Hermitian matriz whose upper right submatriz C}" €
C?*("=2) has rank 1, and let Cy be a positive semi-definite Hermitian matriz with
dim(ker Cy) = 2. Up to a change of basis, the Hermitian matrices C; and Cq
satisfy (39) with ca 3 = €32 # 0. Then, the matriz C := iCy + Cq is hypocoercive
if and only if

C1,3 C23 (6171 — 8272) - Ci3 C21 + C%,B C1,2 75 0. (44)

Proof. Up to a change of basis, the Hermitian matrices C; and Cs satisfy (39).
The upper right submatrix C}" € C2*("~2) has rank 1, therefore at least one coef-
ficient of C{" is non-zero. Another change of basis moves this non-zero coefficient
to position (2,3), hence, w.l.o.g. let co3 = €32 # 0. To prove that condition (44)
is necessary and sufficient, we use the characterization in Proposition 1. Condi-
tion (B4) for one-dimensional subspaces of ker Cy reads

C1,1 C1,2
9 C21 C2,2

V(a,B) € C\{(0,0)} :  Ci(aer+fes) =a . +8 . ¢ span{ae;+fes} .
Cn,1 Cn,2

This is equivalent to the following condition:
For all (a, ) € C*\ {(0,0)}, (aci1+ Beio)B # (aco1 + Bean)a (45)
or 35 € {3,...,n} : acj1+ PBcj2 # 0 holds. (46)
Due to the assumption rank C¥" = 1, there exists a unique v € C (namely v =
70371/6372, since C2,3 = C32 7& 0) such that Ccj1+ 7 ¢ = 0 for all j € {37 - ,TL}.
Therefore, the second condition (46) holds if and only if 8 # avy. If 8 = ay then
the first condition (45) has to hold. Inserting 8 = ary in (45) yields

0# aB(crr — c22) + B2c10 — a’ean = ®(Y(e11 — e22) + 7212 —c21). (47)
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Using v = —c3,1/c3,2, the r.h.s. of (47) reads
o 2 2
CT( —c31 c32(c11 —c22) + €31C1,2 — C3 9 62’1)
3,2
o2
= - (g eslan —a2) —dzer+ g ag).
3,2

Thus, matrix C is hypocoercive if and only if condition (44) holds. O

This finishes the complete classification of the situation when dim(ker Cq) = 2.
Our ansatz for matrix P depends on the structure of matrix C;. Therefore we
distinguish between the subcases (2B1) and (2B2), see also Table 1. We shall prove
that these ansatzes will allow for a matrix inequality of the form (18) and hence for
an explicit exponential decay (20) in the ODE (23). As in Theorem 2.6 we shall
construct P as a perturbation of I. To verify, then, a matrix inequality of the form
(18) we shall use the following perturbation result on multiple eigenvalues:

Lemma 2.8 (Theorem I1.2.3 in [21]). Let Cy and Cy be Hermitian matrices with
Cy > 0 and dim(ker Cq) = k € Ny, such that the associated matrix C = iCq 4+ Cq
is hypocoercive. Let {vj; j =1,...,k} be an orthonormal basis of the kernel ker Cy
and let A be a Hermitian matriz (which makes P(r) := 1+ rA a positive definite
Hermitian matriz for sufficiently small v > 0). Then, for sufficiently small r > 0,
the k lowest eigenvalues (1) of the Hermitian matriz C*P(r) + P(r)C satisfy

pi(r)y=ré&i+o(r), j=1,...k, (48)
where &; are the eigenvalues of R*(C*A + AC)R and R := (v1,...,v;) € C™*F.

We will use this result to construct perturbation matrices A and to check the
admissibility of the various ansatzes for the transformation matrices P — mostly in
the case dim(ker Cy) = 2. The two matrices in Lemma 2.8 are related via

C*P(r) + P(r)C = C*(I+rA) + (I+rA)C =2C, + r(C*A + AC),  (49)

and Cy has a k-fold O-eigenvalue by assumption. Now, if A is chosen such that
all eigenvalues §;, 7 = 1,...,k in (48) are positive, then we deduce the positive
definiteness of C*P(r) + P(r)C for sufficiently small r > 0.

We remark that the positivity of &1, ..., & is first of all a sufficient condition for
the positive definiteness of C*P(r) 4+ P(r)C (for sufficiently small » > 0). But one
sees easily from (49) that it is also necessary.

Theorem 2.9. Let C; and Cy be Hermitian matrices with Cy > 0 and ker Cy
is a two-dimensional subspace, such that the associated matriz C = iCq + Csy is
hypocoercive. Then there exists a two-parameter ansatz for a positive definite ma-
triv P = P(\1, \2), according to Table 1, such that C*P + PC is positive definite
(for an appropriate choice of A1, Aa).

Proof. First, one easily checks that all matrices P from Table 1 are positive definite
if [A1]? + [A2]* < 1. Thus, P(r) := I+ rA with A := P — I yields for r € [0,1] a
family of positive definite Hermitian matrices P(r).

Now, up to a change of basis in C™, we assume without loss of generality that
C, is a diagonal matrix of the form C, = diag(0,0,cs,...,c,) with ¢; > 0. Then,
ker C = span{e;, ez} and we choose R = (e1,e2) € R"*2. According to Lemma
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2.8, the positive definiteness of C*P + PC (for sufficiently small » > 0) can be
inferred from the positive definiteness of R*(C*A + AC)R.

Next we deal with each case of C; and its corresponding ansatz P =TI+ A (as
listed in Table 1) separately: we need to prove that A\; and A2 can be chosen such
that R*(C*A + AC)R is indeed positive definite.

Case 2A. We consider C1 = (¢j k) kef1,...,n} satisfying w.lo.g.
|c1,4 c23] > |c1,3 coa] and c¢14 o3 #c13 Coa, (50)
such that cp 3 =¢32 # 0 and ¢; 4 =¢11 # 0. For
R*(C*A + AC)R = i <_Cl’4 Mt 14 AL Fea - L3 AQ)
—Co4 A +Ci3 A2 —Ca3 Aa+Ca3 A2
to be positive definite, all three of its minors have to be positive for appropriately
chosen A1 and \y. We set
M o= —itlicrg, Mg = —ilacag, (51)
for some positive numbers 1 and ¢5. Then, the minors of first order satisfy
—i(c14 A — Cra M) =2%(c1a )\71) =2 |cl,4|2 >0,
—i(c23 X2 — T3 A2) = 23(c2,3 A2) = 20g |2 3]* > 0.
The minor of second order reads (using (51))

det(R*(C*A + AC)R) = 4€1€2|0174|2‘62,3|2 — |£1 C2.4 mﬁ- 62 m 0273|2

2 - [¢1 o4 m‘z —|la 3 62,3\2

= 4€1£2|Cl,4|2|6273

—U1ly c4 C1g C13Cag— {102 Cog C1 4 Ci3 Cog
2

= —(liler,a caa] = balers c2])

2 N _ _
+ 014y [4|61,4 ca3|" —2|c1,4 c2.4 €13 C23| — 24 Cla €13 Ca3 — Co4 Cl4 Cl3 02,3}

2
= —(li|era cau| — Lo]crs ca3)

+ 01l [(3|01,4 casl +le1,s caal)(|e1,a ca,3] — lc1,3 c2.4]) +lc1,4 Co3 — 01,302,4|2} .

Then, the minor of second order is positive for the choice ¢1 = €|c1 3 ¢o,3| and
Uy = €|c1,a c2.4| with any € > 0, due to our assumption (50). Finally, for sufficiently
small € > 0 the Hermitian matrix P is positive definite.

Case 2B. First, we verify that the ansatz for P in (41) is admissible in case (2B1).
In subcase (2B1), we consider w.l.o.g.

Ci1 = (¢jk)jkeft,..m,y Withcio=C1#0, co3=0C32#0, c13=7231=0.

Then, the connections in the relevant (upper left) 3 x 3-subspace can be symbolized
as o—ro—e; see (42). To prove that the ansatz for P in (41) with U =T is
admissible, we use Lemma 2.8 and we need to check the positive definiteness of

(v (—c12M1 + Ciah (c22 —c11)M )
R (CA+AC)R = ’ = — ’ = 52
( ) ( (61,1 - 02,2))\1 01,2>\1 - 01,2/\1 - 02,3>\2 + 62,3)\2 ( )
for appropriately chosen A1 and Ay. The minors of first order are

—i(c10M1 — C12A1) = 2S(c12M1)
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and 7:(01727176172)\1 76273)\724*6273)\2) = 72%(6172)\71)4*2%(62735). They are positive
if and only if
0< %(01,2)\71) < %(02,3/\72) . (53)

Due to our assumptions ¢; 2 # 0 and cz 3 # 0, we can choose Ay and Ay such that
this condition is satisfied. The minor of second order reads

det(R*(C*A =+ AC)R) = 43(6172/\71) (S(ng,)\ig) — 3(6172/\71)) — |Cl,1 — 6272|2‘)\1|2 y

where the first summand is positive due to (53). First we choose A; and Ay such
that the minors of first order are positive. Then we consider rA; for r» € (0,1)
instead of A1, and we choose r € (0, 1) sufficiently small such that the second minor
becomes positive, and hence (52) is positive definite.

In subcase (2B2), we consider w.l.o.g.

Ci = (¢jr)jkef1,..ny With c13=0C31#0, co3 =032 #0,

and recall the hypocoercivity condition (44). The guideline to construct a simple
ansatz for P at the beginning of this section would suggest to connect each non-
decaying mode to the same decaying mode. However, for some examples in subcase
(2B2) this ansatz is not admissible. Therefore this guideline is not universally true.

The motivation for the (alternative) P-ansatz (41) with unitary matrix U in (43)
is that the transformation C; = U~'C,U yields a matrix of form (2B1) with
¢1,; =0 for j > 3 (since rank(C}") = 1), é2 3 = 1 and

(61)1’2 =Cio = m((cm —22)C1,3C23 + 01,20373 - T,QC%B) #0,
due to the hypocoercivity condition (44). To prove that the ansatz for P in (41)
with U in (42) is admissible, we consider
C'P+PC=C"(I1+UAU") + I+ UAU")C =2C, + C*'UAU" + UAU"C.
Due to Ler~nma 2.8, we need to check the positive deﬁniteness of ﬁ*(C*UAU* +
UAU*C)R for appropriately chosen A; and 2. Using R = UR, we deduce
R*(C*UAU* + UAU*C)R = iR*U*(~C!UAU"* + UAU*C;)UR

=iR*(— (U'C{U)A + A(U*C,U))R.

Recalling that U*C,;U = U~!C,U is of form (2B1), the positive definiteness of

iR*(—(U*Cj{U)A+A(U*C,U))R for suitable A; and A, follows as in case (2B1).
O

For dim(ker C3) = 1 or 2, we just listed all possible cases. But for dim(ker Cy) =
3 we will next only consider the one situation relevant below for the linearized BGK
equation in 1D, i.e. (65), (66).

2.3.3. Hypocoercive matriz with dim(ker Co) = 3. If the three zeros in the diagonal
of Cy are connected (via Cy) only consecutively to a positive entry in the diagonal
of C,, the relevant 4 x 4-subspace can be symbolized as o—so—so—e. Proceeding
as in §2.3.2 one easily checks that

rank (\/ CQ, Cl \ CQ, C%\/ Cg) =n-—1 s
rank (1/Ca, C1y/Ca, C3/Cs, C3\/Cs) = n,

and hence the hypocoercivity index of C is 3.
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With C; of the form

*x o 010 O 0
e x |0 O 0
0O e x|e x *
Ci=| 0 0 e , (54)
ou x
0 0 =
a natural ansatz for a simple transformation matrix is given by
0 A 0 0
A0 A 0 0
P=1I+ 0 A 0 Az , (55)
0 0 A3 O
0 |0

with some A\q, Ag, A3 € C.

Indeed, this ansatz always yields a useful Lyapunov functional and hence a quan-
titative exponential decay rate, as we shall now show under the simplifying restric-
tion ¢11 = 2,2 = ¢33 (which is the relevant situation in §3):

Theorem 2.10. Let Cy = diag(0,0,0, ¢y, ..., ¢,) withc; > 0, and Cy be a Hermitian
matrices of form (54) and satisfying c11 = co2 = c33. Then there exists a three-
parameter ansatz for a positive definite matriz P = P (A1, Ao, A3) of form (55), such
that C*P + PC is positive definite (for an appropriate choice of A1, A2, Az ).

Proof. First, the matrix P is positive definite if [A\1]? + [X2|? + |X3]?> < 1. Thus,
P(r) :=I+4rA with A := P — I yields for r € [0,1] a family of positive definite
Hermitian matrices P(r).

We have ker Cy = span{e;, ez, e3} and R = (e1,ez,e3) € R™™3. According to
Lemma 2.8, the positive definiteness of C*P + PC (for sufficiently small » > 0) can
be inferred from the positive definiteness of R*(C*A + AC)R.

As in the proof of Theorem 2.9 we search for conditions on A; (j = 1,2, 3) such
that the eigenvalues of

R*(C*A + AC)R =
23(c1,0M1) 0 ez M 1)) (56)
= 70 L —2%(6172/\1 — 82,3)\2) 70 -
i(Ciala — C23\1) 0 —23(c2,302 — €3,.4A3)

are positive. If all minors are positive, then the matrix will be positive definite (by
Sylvester’s criterion). From the three minors of first order we deduce the conditions

0 < S(e12A1) < S(ez,3h2) < S(esurs), (57)
which also imply the positivity of the second minor, i.e.
4%(0172/\71)%(0273/\72 — 6172)\71) >0.

To satisfy the former conditions it is convenient to choose

arg(\) = arg(er2) — 7, arg(he) = argleas) — o, arg(ha) = arglena) — 7, (58)

2 )
just as in (51). The determinant of (56) reads

23(c2,302 — €12A1) [48(c1,2A1)S(e3,403 — c2302) — |ea s — ci2Xof?] - (59)
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Now the parameters \; (j = 1,2, 3) can be chosen in analogy to the proof of Theorem
2.9, case (2B) to satisfy the conditions (57). Once Ay, Az, and arg(\3) are fixed, we
can choose |A3| large enough to also satisfy the positivity of (59). O]

This analysis to construct appropriate matrices P could, of course, also be ex-
tended to higher dimensions of ker Cq, but this gets more cumbersome. In §4 and
§5 we have dim(ker Cs) = 4 and 5, respectively.

3. Linearized BGK equation in 1D. In this section we shall analyze the large
time behavior of the linearized BGK equation (9) in 1D,
Oth(z,v,t) +v Oph(x,v,t)
2

My () [(‘Z _ ”22) o, t) + opla, t) + (—; + 1;) T(m,t)] -

for the perturbation h(x,v,t) ~ f(x,v,t) — My(v). To prepare for the proof of
Theorem 1.1 we shall use an expansion in v—modes, as in [1]. Using the probabilists’
Hermite polynomials,

(60)

W2 d™ L2
H,,(v) :=(—=1)"e™ Tom ez, meNy, (61)

we define the normalized Hermite functions corresponding to 7' = 1:

1)2

Gm (V) = (2nm)) V2 H,, (v)e” T . (62)
They satisfy
/ Im (V) g (V)M (v) dv = 6pp,  m,n € Ny,
and the recurrence Hielation
Vgm (V) = Vm+1gmi1(v) + Vmgm_1(v), meN. (63)
The first three normalized Hermite functions g,,(v) are
v —1

V2

go(v) = Mi(v) ,  gi(v) =vMi(v) and ga(v) = M (v) .

With this notation, (60) reads

O¢h(z,v,t) +v Oyh(x,v,t)

= (0l) = 520 o(.0) + (0. ) + Jom(o)rant) = ha..).
We start with the z—Fourier series of h:

h(z,v,t) = Z hi(v,t) T
kEZ
Each spatial mode hy(v,t) is decoupled and evolves according to
%hk + ik’%”v h

1 (64)
= go(v)or(t) + g1 (v) pr(t) +92(U)ﬁ (1i(t) —ox(t)) —hx, kE€Z;t>0.

Here, oy, pux and 73, denote the spatial modes of the v—moments o, u and 7 defined
in (6); hence

o = / hi(v,t) dv,  pg = / v hip(v,t) dv, 7%= / v? hy(v,t) do .
R R R
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Next we expand hy(-,t) € L>(R; M; ') in the orthonormal basis {g,, (v) }men,:
h(0,8) = Y i (1) g (v) 5 With Fog g = (Bk(0), 9m (0)) p2pr 1y -
m=0

For each k € Z, the “infinite vector” hy(t) = (hxo(t), hi1(t), ...)T € £2(Ny) con-
tains all Hermite coefficients of hy(-,t). In particular we have

hio = /th(U)QO(U)Mfl(’U) dv =0y, hi1 = /th(v)m(v)Mfl(v) dv =y, ,
and
iLk,Q = /th(v)gg(v)Mfl(v) dv =

Hence, (64) can be written equivalently as

(Tk —O’k) .

Sl

d
Ehk(v’ t) + ik2Zv hy(v,t)

= go(’l))ilk70(t) + g1 (U)]Alk71(t) + gg(v)ﬁk72(t) —hg(v,t), ke€eZ;t>0.
Thus, the vector of its Hermite coefficients satisfies

d - R R
() +ikFE Liby () = ~Lohy(t) . k€Z;t20, (65)

where the operators Ly, Ly are represented by “infinite matrices” on ¢2(Np):

0 Vv1 o0 -
v oo Vv2 o Y
L, = 0 \/i 0 \/g ’ Lo _dlag(oa 0,0, 1, 17) : (66)
0 V3B

Remark 7. The bi-diagonal form of L; is a direct expression of the two-term
recursion relation (63). This is not special to the Hermite polynomials; a similar
expression holds for the orthogonal polynomials with respect to any even reference
measure.

Equation (65) provides a decomposition of the generator in its skew-symmetric
part —ik;%"Ll and its symmetric part —Lo, the latter introducing the decay in the
evolution.

We remark that (65) simplifies for the spatial mode hg with & = 0. One easily
verifies that, for all d, the flow of (9) preserves (7), i.e. oo(t) = 0, uo(t) = 0,
7o(t) = 0 for all ¢ > 0. Hence, (64) yields

%ho(v,t) = —ho(v,t), t>0. (67)

For k # 0, we note that the linearized BGK equation is very similar to the
equation specified in [1, §4.4]: The only difference is that Lo now has one more
zero — at the second entry on the diagonal, which corresponds to the conservation
of momentum. For k # 0, (65) has the structure of the example in §2.3.3, and thus
hypocoercivity index 3. This has a simple interpretation: The mass-conservation
mode is coupled to the momentum-conservation mode, which is coupled to the
energy-conservation mode. Finally, the latter is coupled to the decreasing mode
that corresponds to gs(v). The hypocoercivity index of (65) can also be obtained
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directly from Definition 2.3, in its equivalent formulation (B1’) that also applies to
“infinite matrices”: With ker Lo = span{eg, e1, e}, and the relations

Lieg=e1, Liei=eo+V2e, Liez=V2e1+V3es,
we again find 7 = 3.

We define the matrices Cy, := ik%”Ll + Ls, k € Z which determine the evolution
of the spatial modes of the BGK equation in 1D, cf. (65). Our next goal is to
establish a spectral gap of Cg, uniformly in k& # 0. This will prove Theorem 1.1
in 1D. Clearly, this matrix corresponds to C = iC; + Cs in §2.3. There, the
construction of the transformation matrix P(r) = I+rA was based on Lemma 2.8,
and hence on proving the positive definiteness of

R*(C*A + AC)R =iR*(-CjA + ACy)R.
Here, the operator L carries the coeflicient zk‘%” with k € Z \ {0}. To compensate
for k, it is natural to choose the perturbation matrix A proportional to % Following
§2.3.3 we hence use the ansatz (55) for the k—dependent transformation matrices
Pj: For parameters A;; j = 1,2,3 to be chosen below, we define Py, k # 0 to be
the infinite matrix that has
1 Mk 0 0
M /k 1 Ao/k 0
0 X/k 1 A3/k
0 0 M/k 1
as its upper-left 4 x 4 block, with all other entries being those of the identity. Under
the assumption [A1]2 + [A2|? +|A3]? < 1, the matrix P}, will be positive definite for
all k£ # 0. Recalling that Ly is an (infinite) real matrix as well as the parameter

(68)

choice in (58), it is natural to choose also here arg(\;) = —%. Hence (68) turns into
1 —ia/k 0 0
iafk 1 —if/k 0

0 Bk 1 —iyk]| (69)
0 0 ik 1

with « := [A1], B := |Aa], 7 := | A3

Now, (the infinite dimensional analog of) Theorem 2.10 asserts that the above
ansatz will yield an admissible transformation matrix P and hence an exponential
decay rate for (65), uniformly in k. But, as a perturbation result, it neither provides
an explicit value for the decay rate u, nor does it yield a rather natural ratio between
the parameters \;. These two aspects will be our next task.

Remark 8. To justify the infinite dimensional analog of Theorem 2.10, we decom-
pose

CiP(r)+P(r)C, =2Ly + 7 (C;A + ACy) = 21+ (2Ly — 2I) + 7 (CLA + ACy).

To investigate the spectrum of the Hermitian operator C;P(r) +P(r)Cy, in £%(Ny),
it is sufficient to compute the spectrum of the compact operator (2Lo — 2I) +
r (C;A + ACy). The compact operators 2Ly — 2T = 2diag(—1,—1,—1,0,...) and
C; A + ACy, act on a common finite-dimensional subspace of £%(Np), hence we can
use Lemma 2.8 to analyze the restriction of the compact operators on this finite-
dimensional subspace: The three lowest eigenvalues of (2Lg —2I)+7r (C;A+ACy),
for sufficiently small r > 0, satisfy

wi(r)y=-=2+r&+o(r); j=12,3,
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where &; are the eigenvalues of R*(C;A + AC,)R and R = (eq,e2,e3) € C*3
(recall that ker(Ly) = span{ej,es,es}). Then the three lowest eigenvalues of
C;P(r) + P(r)Cy, for sufficiently small » > 0, satisfy

wi(r) =r& +o(r).
Next we search for conditions on «, 3, v > 0 such that the eigenvalues &; of

2 0 V2a — 15}
R*(C;A+AC,)R= 2" 0 2(V28 — a) 0
V2o —f 0 2(V3y — V28)

are positive. If all minors are positive, then the matrix will be positive definite (by
Sylvester’s criterion). We deduce the conditions

0<a<V28<V3y and 0<4a(V3y—V28) - |V2a - 52,

which are special cases of (57), (59). In fact, the matrix & R*(C;A + ACy)R has
the eigenvalues 2(v/2 — a) and

V3y = V2B +at\/(V3y = V28— a)? + (v2a - B)2.

We note that the special choice 8 := v/2a and v := v/3a makes all eigenvalues of
R*(C;A + ACy)R equal, which seems to be beneficial to obtain eventually a good
decay estimate. Moreover, it will simplify the proof of Lemma 3.1.

In the following lemma we establish an infinite dimensional analog of Lemma 2.2
— for (65), the transformed linearized BGK equation in 1D. However, here we shall
not aim at obtaining the optimal decay constant p in the matrix inequality (18).
Still, p will be independent of the modal index k € Z, thus providing exponential
decay of the full solution.

Lemma 3.1. For each cell length L > 0 we consider a(3) = a®)(L) > 0 defined
in (107). If the matrices Py, are chosen with some o € (0,a), B = \2a, and
v = V3a uniformly for all |k| € N, then Py from (69) and C;Pj + PyCy are
positive definite for all k € 7\ {0}. Moreover,

CiPr + PrCy > 2uPy uniformly in |k| € N | (70)
with
:: d5(1, @) =0
8(1 —2ra/L)2(1+aV/3+6)
where 63(1, ) := det D > 0 with D® defined in (108).

1,a,v2a,V/3a k,o, /20,73
The proof of this lemma is deferred to Appendix A.

Remark 9. (a) Consider

63(17 Oé)
Q, = arg max

ac0.a®] 8(1 — 2ra/L)2(1 + a/3 +6)

Choosing P, with o = o, 8 = v2a, and v = /3 uniformly for all |k| € N,
yields (70) with the constant

(53(1,C¥*)
8(1 — 2mav. /L)% (1 + /3 + /6)
= max %(1, @)

acl0,a®] §(1 — 2ra/L)2(1 + ay/3 + V6)

Hosx =
(71)
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(b) In the limit L — oo, the matrix C;Pj + P;C}, has zero eigenvalues, which
is apparent from its upper left submatrix Dy o v3a/3a defined in (106). Ac-
cordingly, a® — 0 with a® = O(+) and p. = O(Z) in the limit L — oc.
It is no surprise that the exponential decay rate vanishes in this limit, as the
limiting whole space problem only exhibits algebraic decay (cf. [10] for the
large-time analysis of (3) on R?).

In the limit L — 0, again o® — 0 with o(®) = O(L). Using

«(L 4 —+/13
lim 25 _ \ﬁ, (72)
L—o0 L 61
we obtain
3—V13)2
lim py (L) =34 — V13 (7 = 0.06391670961...
Jim e (1) = 304 = VI3) 1
(cf. Fig. 2).
0.06-
0.05-
0.04+
W
0.034
0.02-
0.014 . . . .
5 10 15 20
L

FIGURE 2. For each cell length L the constant 2u.(L) obtained
from Lemma 3.1 and Remark 9(a) yields a bound for the entropy
decay rate in Theorem 1.1.

Applying Lemma 3.1 to each z-Fourier mode hy(t), k # 0 from (65) allows to
prove exponential decay of the linearized BGK equation in 1D:

Proof of Theorem 1.1 in 1D. We consider a solution h of (9), and let the entropy

functional £(f) be defined by

ENF) =Y (0), Prhi(v)) oy

k€EZ
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with f(t) :== M + h(t). Here, the “infinite matrices” Py := I and P}, defined in
(69) for k # 0 are regarded as bounded operators on L?(M; '). Then

d P N ) z
agl(f) = _Z<hk(v)v (CiPy + Pka)hk(v»p(Ml—l) < —2min{1, .} E'(f) ,
kEZ
where 1 is the decay rate of hg, cf. (67). This implies (11) with A(L) := 2min{1, u.}
and p, from (71).
The constants ¢; and C; in the estimate (10) follow from (110):

cl(L)<1+a*(L)m)_l, Cl(L)<1a*(L) 3+\/6>_1 (73)

and this finishes the proof of Theorem 1.1 in 1D. O

To appreciate the above decay estimate, let us compare it to the spectral gap
obtained in numerical tests for L = 27. In this case the estimate from Remark 9
yields the analytic bound with p, = 0.041812... . As a comparison we computed
the spectrum of finite dimensional approximation matrices to Lo + ¢kL1 up to the
matrix size n = 500. Apparently the spectral gap is determined by the lowest spatial
modes k = +1. With increasing n it grows monotonically to fiyum = 0.558296... .
So, our estimate is off by a factor of about 13. Following the strategy from §4.3
in [1], i.e. by maximizing x4 in the matrix inequality C;Py + P,C — 2uPy > 0,
the above estimate on the decay rate could be improved further. But we shall not
pursue this strategy here again.

Let us briefly compare this gap to the situation in the two 1D BGK models
analyzed in §4.3 and §4.4 of [1]. They only differ from the 1D model (65)-(66)
of this section, concerning the matrix Lo: there we had Lo = diag(0, 1, ...) and
L, = diag(0, 1, 0, 1, ...), resp. We recall from §2.2 that both models have hypoco-
ercivity index 1, and their (numerically determined) spectral gaps are 0.6974... and
0.3709717660..., resp. One might expect that removing 1 entries from Lo and hence
increasing the hypocoercivity index would decrease the spectral gap. But this is
obviously not always the case.

4. Linearized BGK equation in 2D. Next we shall analyze the linearized BGK
equation (9) in 2D:
Oh(z,v,t) +v - Vih(z,v,t)
[v]? Il
= Mi(v) | (2 "‘E?*)U(zvt)‘Flj'M(I’t)4*(‘* B +"Zj’)7(xvt) — h(z,v,1) ,
for the perturbation h(z,v,t) ~ f(x,v,t) — M;(v) with t > 0, z € T?, v € R2.
Again we consider the z—Fourier series of h:

h(z,v,t) = > hy(v,t) e T
kez?
each spatial mode hy(v,t) is decoupled and evolves as

d
—hy + 125k v by,

dt
=100 [ 2= B0 0t + (— 2+ 12

B 1 )Tk(t) —hk(v,t).
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Here, oy, pui and 73, denote the spatial modes of the v—moments o, u and 7 defined
in (6); hence

o) 1= hi(v,t) dv, g ::/ v h(v,t) do, 7 ::/ |v? hy(v,t) dv .
R2 R2 R2

Next we shall introduce an orthonormal basis in v-direction, to represent the
spatial modes hy(-,t) € L?(R?; M '), k € Z2. As in 1D we shall again use Hermite
functions. But their multi-dimensional generalization is not unique, and we shall
present two options that seem to be practical:

Basis 1 (“pure tensor-basis”). A complete set of orthogonal polynomials in d vari-
ables can be formed as products of d such polynomials, each in a single variable.
Using the Hermite polynomials H,, in 1D, i.e.

Ho(v) =1, Hy(v)=v, Hy(w)=v*-1, H3(v)=v*-3v, .. withveR,
we construct Hermite polynomials on R? as
H,,(v) = f[ Hp,(v;), veRT, (75)
j=1
with the multi-index m = (my,...,mq) € Ng. They are also generated by a simple
generalization of formula (61):
Hp,(v) = (—1)‘””"@“)2‘2 % g , meNg,
with |m| = Z;l:l m; (see [15], e.g.). For d = 2, we obtain
Hyo(v) = Ho(v1)Ho(ve) =1, Hio(v) = Hi(v1)Ho(ve) = v1 ,
Hy 1(v) = Ho(vi)Hy(v2) = v, Hyo(v) = Ho(vy)Ho(vg) = v} — 1,
Hi1(v) = Hi(v1)Hi(v2) = v1v9 , Hy2(v) = Ho(v1)Ha(va) = v3 — 1,
Hso(v) = Hz(vi)Ho(v2) = v} —3vy,  Hai(v) = Ho(vi)Hy(v2) = (v7 — 1)y ,
Hy 2(v) = Hy(v1)Ha(vg) = v1(v3 — 1), Hpz(v) = Ho(vi)Hz(vz) = v — v,

Using definition (62) of normalized Hermite functions in 1D, we define the normal-
ized Hermite functions in d dimensions as

d
gm (V) == Hgmj (v;) for m = (my,...,mg) € N3 . (76)
j=1

Then, g,, (m € Ng) form an orthonormal basis of L? (Rd; M 1) and inherit a simple
recurrence relation: For k € {1,...,d}, m € Ng, and the Euclidean basis vectors
ey = (5kj)j:1,...,d in R, the recurrence relation

AL + 1 Im+ey (U) + VME Gm—ey, (1)) if mg 7£ Oa
Ukgm (V) = , (77)
Im-tey, (’U) if mp =0 3
holds.
In order to give a vector representation of (74), the evolution equation of the
spatial modes hg(v,t), we first need to introduce a linear ordering of the velocity
basis g, (m € N2). We shall use a lexicographic order, i.e. first (increasingly) with
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respect to the total order |m|, and within a set of order |m| we order w.r.t. my
(decreasingly) (for d = 2). Thus, we obtain the linearly ordered basis

(vf = 1)Mi(v)

Nig

(v = D2 My (v)

SRR

)
)
v) = 5 (v3 = 1)Mi(v)
)
)

= L (v8 — 3v2) My (v) .

5

Given a multi-index m € Ng, its lexicographic index is computed as |m/|(|m|+1)/2+
mo with |m| = mq + mao.

Basis 2 (“energy-basis”). The second basis is a simple variant of the first one. We
recall that the evolution with the BGK equation (1) conserves the (kinetic) energy
and mass. Hence, their difference is also conserved and it is related to the polynomial

2
% — 1. In analogy to the 1D case from §3 it is thus a natural option to construct a

basis of orthogonal polynomials H,,(v), m € Ng, such that % —1 is a basis element.
Compared to {H,,(v)}, in fact, we only have to modify the Hermite polynomials of
second order. For d = 2 they read:

f (o) = L(Hyo(v) + Hoa(v)) = B2 — 1 ifm = (2,0) -
T Hiaw) = v if m=(1,1),

%(Hgyo(’l)) — HO’Q('U)) = % if m= (0, 2) .

Similarly, we define normalized Hermite functions

gm (V) if |m| # 2,
gm(,v) — % (9270(1]) + gO,Q(U)) ?f m = (2, O) ,
g12(0) it m = (1,1),

L (92.0(v) = go2(v)) if m=(0,2).

The elements g, satisfy a recurrence relation similar to (77), except for identities
involving go,0 or go,2. For example,
1 1
v1G2.0(v) =—=v v) + v)) = — (V3 v) +V2 v) + v
192,0(v) /2 1 (92,0( ) + g0,2( )) \/5( 93,0(v) g1,0(v) + g1,2( ))
1
V2

While the first basis g, (m € Ng) inherits a simple recurrence formula with three
elements, the recurrence formulas for the second basis §,, (m € Ng) involve four
elements, when including g2 ,0(v) or go2(v).

To derive the vector representation of (74), it is preferable to use the first basis
with the linear ordering g,, (m € Np). With the identity (g3(v) + g5(v))/V2 =

(\/g §370(’U) + \[2 gl,o('U) + {7172(”0)) .
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(Jv|?/2 — 1) My (v) we rewrite (74) as
d o _ 1 1 91(v)
e+ R0 b =(g0(v) = 595(0) = J595(v))ow(t) + (o)) 1O 9)
+ 27\1/5(93(11) + g5(v))7k(t) - hk(v,t) ,
for k € Z%, t > 0. First we consider the spatial mode hg with £ = 0. With the

same argument as in 1D we again obtain (67), i.e. <tho(v,t) = —ho(v,t). Next we
expand hy(-,t) € L?(R?; M ') in the orthonormal basis {gm (v) Y men, :

o0

hk(’l},t) = ﬁk,m(t) gm(v) ,  with }Alk,m = <hk(v)agm(v)>L2(M1_1) :

m=0

For each spatial mode k € Z2, the “infinite vector” hy(t) = (izho(t), hia(t), ..)7 €
?*(Np) contains all 2D-Hermite coefficients of hx(-,t). In particular we have

]AU@O :/ hk(’l))go(U)Mfl(v) dv =o0y ,
R2

h ) / <gl<v>> - 2
L) = hy (v M; (v) dv = e R,
<hk,2 R2 £) g2(v)) ! @) e
and %(ilhg-f—ilkg,) = fR2 hk(v)%(gg(v) +g5(v))M1_1(v) dv = %Tk — oy, . Thus, we
can rewrite (79) as

d o
o Tk

o (40 () + 22520k

(80)

for k € Z%, t > 0.

Our next goal is to rewrite this system in the Hermite function basis as an
infinite vector system — in analogy to (65) in 1D. In that equation, the operator
L; is multiplied by the (scalar and integer) mode number k, which is then used in
the construction of the transformation matrices Py. To extend this structure and
strategy to 2D, we first have to consider the rotational symmetry of (80): We note
that the basis functions gy and g3 + g5 depend only on |v|, and that the interplay
between the vectors k and v only occurs via k - v. Hence, evolution equations from
the family (80) having the same modulus |k| are identical in the following sense:
Rotating the spatial mode vector k and the v-coordinate system by the same angle,
leaves (80) invariant. Thus it suffices to consider (80) for vectors k = (x,0)" with
the discrete moduli

k€K = {7‘21|E|k622\{0} with r = |k|} .
We skipped here the mode hg, as it was already analyzed before. In the sequel we

also denote h, := h(, ) and h, = ljl(,{70). With this notation, (80) reads

d .
Eh,@ + zz%m)l hy

= gO(’U)iLmO + (g;g?) : (Z::) + M(ﬁmzz + iln,5) — he(v, 1),
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for k € K, t > 0. Then, the vector of its Hermite coefficients satisfies

—h.(t) +i ZrLih(t) = ~Loh,(t), weEK;t>0, (81)

where the operators Li, Lo are represented by symmetric “infinite matrices” on
EQ(N())Z

0 vyI 0 0 0 0O O O 0 0 0 0 0 0
VI 0 0 v2 0 0 0 0 0 0 0O 0 0 0
0 0 0 0 +v1T 0 0 0O 0 0 0 0 0 0
0 v2 0 0 0 0 +v/3 0 0 0 0 0 0 O
0 0 vy1 0 0 0 0 2 0 0 0 0 0 O
Li={0 0 0 0 0 0 0O 0 +v10 0 0 0 0 ,
0 0 0 /3 0 0 0 0 0 0+v4 0 0 0
0 0 0 0 +v2 0 0 0 0 0 0 V3 0 0
0 0 0 0 0 1 0 0 0 0 0 0 v2 0
o 0 0 0 0 0 O 0O 0 0 0 0 0 V1
1 0 -1
L, =diag(0,0,0,3( 0 2 0 ],1,1,---).
-1 0 1

To compute the hypocoercivity index of the BGK model in 2D, it is preferable to
use the second basis with the linear ordering g,, (m € Ng). We shall give the ma-
trix representation of the two dimensional BGK equation (74) in the second velocity
basis, again only for the spatial modes k = (x,0)", k € K. To obtain the corre-
sponding matrices L, and Ly, we simply represent the linear basis transformation
by the infinite matrix

S = diag(1, 1, 1,

S
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which is self-inverse, i.e. S = S™!. Thus we compute L1 = S™1L;S and L, =
S™1'L,S, yielding

010 0 0 0O 0 0 0 00
100 1 0 1 0 0 0 00
000 0 1 0 0 0 0 00

V3 1
0100 0 0 ¥ 0 o 00
001 0 0 0 0 v2 0 00
. V3 _ 1
L1—01030\0fﬂ0 7 00 7
3 3
000Y2 0 ¥ 0 0 0 02
000 0 v2 0 0 0 0 00
1 1
000 5 0 -5 0 0 0 00
000 0 0O 0 0 0 0 00
000 0 O 0 2 0 0 00

Ly =diag(0,0,0,0,1,1,---) .

This second basis representation makes it easy of determine the hypocoercivity
index of the BGK model in 2D. As for the 1D model, we use Definition 2.3 in its
equivalent formulation (B1’): With ker Ly = span{ey, €1, es, e3}, and the relations

Lieg =e1 , Lie; = ey +e3+es5,

]:162 =€y , i1€3:61+\/3/2€6+\/1/2€8,

we find the index 7 = 2. At first glance this may come as a surprise, since the anal-
ogous 1D model has index 3. But in 2D, each of the two momentum-conservation
modes (represented by e; and ey) is directly coupled to a decreasing mode (rep-
resented by es and ey, respectively). These modes are quadratic polynomials, but
orthogonal to |v]|?, where the latter corresponds to the (conserved) kinetic energy,
cf. (78).

We define the matrices C, := i%’rnfq + I~42, k € K U {0} which determine the
evolution of the spatial modes of the BGK equation in 2D, cf. (81). Our next goal is
to establish a spectral gap of C,, uniformly in x € K. This will prove Theorem 1.1
in 2D. To this end we make an ansatz for the transformation matrices: Following
the detailed motivation from the 1D analog in §3, let P,, x € K be the identity
matrix whose upper-left 7 x 7 block is replaced by

(82)

1 —ia/k 0 0 0 0 0
ia/k 1 0 0 0 —if/k 0
0 0 1 0 —iy/k 0 0
0 0 0 1 0 0 —iw/k (83)
0 0 /K 0 1 0 0
0 1B/kK 0 0 0 1 0
0 0 0 iw/kK 0 0 1

with positive parameters «, 3, 7, and w to be chosen below. The distribution of
the non-zero off-diagonal elements follows from the pattern in matrix Ly, with the
following rationale: The a-term couples the eg-mode to the e;-mode, which is the
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only choice according to (82). The [-term couples the ej;-mode to the decaying
es-mode, and the y-term couples the es-mode to the decaying e4-mode. Finally,
the w-term couples the e3-mode to the eg-mode, the first decaying mode according
to (82).

Lemma 4.1. If the matrices Py are chosen as (83) with f = 2a, v = «a, and
w = V6a uniformly for all k € K, then there exists 0 < o such that P, and
C:P, +P,.C, are positive definite for all o € (0,y) and k € K. Moreover,

C:P.+P.C, >2uP, uniformly in k € K | (84)
with

e <10)10 611(1, @, 20, v, V6 S0,

14 2(1 + v6a)
where 811 (1, a, 20, o, V6ax) := det D, oa.anba WithD, o0 o Ja defined in (111).
The proof of this lemma is deferred to Appendix A.
Remark 10. (a) Consider

o, — arg max 511(1, o, 20, @, v/6x)
a€l0,0] 2(1+ v6a)
Choosing P, with o = o, B = 20, ¥ = o, and w = v/6a uniformly for all
k € K, yields (84) with the maximal constant
10\ *° 511(1,a*,2a*7a*,\/6a*)
a (14> 2(1+ v6ow)

B (10)10 511(1, o, 20, @, V6
a0,y ] \ 14 2(1 + \/60[)

(b) For L = 27, we compute a4 = 0.2102380141... . Moreover, the constant i, is
determined as p, = 0.003013362117... with a, = 0.1453311384... .

(¢) In the limit L — 400, the matrix C:P, + P, C, has zero eigenvalues, which
is apparent from its upper left submatrix D, ,, . /g, defined in (111). Ac-
cordingly, a4y — 0 in the limit L — oo. Moreover, oy — 0 in the limit
L — 0.

Proof of Theorem 1.1 in 2D. We consider a solution h of (9), and the entropy func-
tional £2(f) defined by

EX(f) =Y (hr(v), Pihr(v)) p2 sy
kezZ?

with f(t) := M; + h(t). Here the matrices Py = I and P, defined in (83) for
k= |k| # 0 are regarded as bounded operators on L?(M; *). Then

d 3 * . s
ESQ(f) == > (), (Cix P + Py O )i (v) 2y -1y < —2minf{1, .} E2(F)
kez?

where 1 is the decay rate of hg, cf. (67). This implies (11) with A?(L) := 2min{1, .}
and p, from (85).
The constants ¢z and Cy in the estimate (10) follow from (112):

—1 -1
es(L) = (1 + \/604*) . Cy(L) = (1 - \/6a*> .
This finishes the proof of Theorem 1.1 in 2D. O

(85)




36 FRANZ ACHLEITNER, ANTON ARNOLD AND ERIC A. CARLEN

5. Linearized BGK equation in 3D. Next we shall analyze the linearized BGK
equation (9) in 3D:

Oh(z,v,t) +v - Vyh(z,v,t)

5 _ v o]

= M (v) [(2 - 2)U(aj,t)+v-u(a:,t) + (— 3 + 6) (x,t)] — h(x,v,t) ,

for the perturbation h(x,v,t) ~ f(x,v,t) — M;(v) with t > 0, z € T3, v € R5.
Again we consider the x—Fourier series of h:

h(z,v,t) thvteb'z.

kez3

Each spatial mode hy(v,t) is decoupled and evolves as

athk-i-’t Tk.-v hy

5 [v? [v]?

= M (v) [(2 - 2>(jk(t) o (t) + ( 5+ 6)%@)] Cont) (86)

Here, oy, px and 73, denote the spatial modes of the v—moments o, 1 and 7 defined
in (6); hence

o ::/ hi(v,t) dv,  pg ::/ v hi(v,t) . Tk '—/ |v|2 hi(v,t)
RS R3

Next we introduce an orthonormal basis in v-direction, to represent the spatial
modes hi(-,t) € L2(R* M 1), k € Z3. Again we will use Hermite functions. As
in 2D, their multi-dimensional generalization is not unique, and we present two
options which seem to be practical:

Basis 1 (“pure tensor-basis”). This is a straightforward generalization of the 2D
case. Using (75) and the normalized 1D-Hermite functions g,, (n € Ny), we define
the normalized Hermite functions in 3D as in (76),

3
Hng vj) for m = (ma,...,m3) € Nj .

Then, g, (m € N3) form an orthonormal basis of L?(R3; M; ') and inherit a simple
recurrence relation (77).

As in 2D, we shall use a lexicographic order, i.e. we order {g,, } first (increasingly)
with respect to the total order |m|, and within a set of order |m|, we order first
(decreasingly) with respect to mj, and then msy. Thus, we obtain the linearly
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ordered basis

go(v) = go,0,0(v) = Mi(v) , 91(v) = g1,0,0(v) = v1M1(v) ,

92(v) = go,1,0(v) = v2Mi(v) , 93(v) = 90,0,1(v) = v3M1(v) ,

94(v) = g2,0,0(v) = 5 (v} = )M (v) , 95(v) = g1,1,0(v) = v1v2Mi(v) ,

96(v) = g1,0,1(v) = vivs M1 (v) , 97(v) = g02,0(v) = 5 (v3 — )M (v) ,
98(v) = 90,1,1(v) = vav3 M1 (v) , 99(v) = g0,0,2(v) = 75 (v3 = HMi(v) ,
910(v) = g3,0,0(v) = T (v} — 3v1)Mi(v) 911(v) = g2,1,0(v) = 5 (vF = Dv2Mi(v)
912(v) = g2,01(v) = J5 (v = DusMi(v) , 913(v) = g120(v) = 5v1(v3 — )M (v) ,
914(v) = g1,1,1(v) = vivavs M1 (v) , 915(v) = g1,0.2(v) = J5v1(v5 — 1)Mi(v)
916(v) = 90,3,0(v) = 5 (v3 — 3v2) M1 (v) , 917(v) = 90,21 (v) = J5(v3 — DusMi(v) ,
918(v) = g0.1.2(v) = J5v2(v3 — DMi(v) 919(v) = 90,03(v) = 5 (v — Bva) M1 (v)

o

g20(v) = ga0,0(v) = ﬁ(% — 607 + 3) M1 (v),

Basis 2 (“energy-basis”). In analogy to the 2D case from §4, it is natural to construct

a basis of orthogonal polynomials H,,(v) (m € N2) that involves the kinetic energy
polynomial |v]?/2 (minus a multiple of the mass); in 3D the relevant term is (|v|? —
3)/2. Again, we only have to modify the Hermite polynomials of second order:

/2 .
1(Ha0,0(v) + Ho g0 + Hopo(v)) = 4= — 2 if m = (2,0,0) ,
Hs0,0(v) — (V3 +1)Hop0 + 3(V3 —1)Hoo2(v) if m=(0,2,0),

o (v) = 2 ) |
Ha00(v) + (V3 —1)Hoz0 — 3(vV3+1)Hoo2(v) if m=(0,0,2),
Hp, (v) else.
Similarly, we define normalized Hermite functions
7 (92,0,0(v ) + 90,2,0(v) + 90,0,2(v)) if m =(2,0,0),
() = % (92,0,0(v f“go,z,o( )+ \/g_lgo,o,z(v)) if m = (0,2,0),

%(92,0,0 + Y31 g050(v) — Y go () if m = (0,0,2),
gm (V) else.

We remark that it is most convenient to obtain gg 20 and §o,0,2 from diagonalizing
the matrix Lo (see (90) below). The elements g,,, satisfy a recurrence relation similar
o (77); except for identities involving g2 0.0, §o,2,0 O §o,0,2. For example,

1

v1G2,0,0(v) = %’01 (92,0,0(v) + g0,2,0(v) + go,0,2(v))

= % (V333,0,0(v) + V271,0,0(v) + F1,20(v) + Fr,02(v)) -
Whereas the first basis g,,(v) (m € N3) inherits a simple recurrence formula with
three elements; for the second basis g,,(v) (m € N3) the recurrence formula for
J2,0,0(v) relates five elements.

To derive the vector representation of (86), it is preferable to use the first ba-
sis with the linear ordering g,,(v), m € Ny. With the identity (g4(v) + g7(v) +
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9o(v))/V2 = (Jv|> — 3)M;(v)/2, we rewrite (86) as

g1(v)
Ohi + 1235k - v hyy =go(v)ow(t) + | g2(v) | - pe(t)
g93(v) (87)
T (ga(o) + 9r(0) + gg<v))”“(”;g”“(“ ~ helo, )

for t > 0. As in 1D, the spatially homogeneous mode again satisfies %ho (v,t) =
—ho(v,t), cf. (67). Next we expand hy(-,t) € L*(R?; M; ') in the orthonormal basis
gm (m € Np):

he(0,t) = Y B (8) gm () with  fog o = (e (v); g (V) 2 ag 1y -
m=0

For each spatial mode k € Z3, the “infinite vector” hy(t) = (hy.o(t), hr(t), ...)T €
(?(Np) contains all Hermite coefficients of (-, t). In particular, we have

. . e T S 13
hio =0k, (hui, hio, hes) =pe €R?, %(hk74+hk,7+hk,9) = 5Tk 50k -
Thus, we can rewrite (87) as
) RONS
Ohi + 123k - v hyy =go(v)hio + | g2(v) | - hi,2
93(7)) hy 3

+ 1 (g4(v) + g7(v) + 99 (v)) (higa + bz + hig) — hie(v,t)
(88)

for k € Z3 t > 0. Since (88) is rotationally invariant (as in 2D), it suffices to
consider (88) for vectors k = (x,0) " with the discrete moduli

k€K :={r>1|3keZ®\ {0} with r = [k|} .

With the notation h, := h, o) and h, = fl(,@’o), (88) reads

. g1(v) }:l 1
Ophis + 12 ko1 hy =go(V) o + | g2(v) | - | fo2
93(1}) h 3
+ %(94(1)) +g7(v) + 99(1))) (iln,z; + iLn,7 + iLn,Q) — he(v,t),
for k € K, t > 0. Then, the vector of its Hermite coefficients satisfies

O, (t) + 020 kLih,(t) = —Loh,(t), ke K, t>0, (89)

where the operators Li, Lo are represented by symmetric “infinite matrices” on
62(N0)Z
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01 000 O O0DO0OOO O O 00O0DO0DO0O0GO -
1 000+v2 0 0O000O0O O O O0D00O0O0DOO -
00 00O 1 0000O O O0OO000DO0DO0O0GO -
00 00O O 1 000O0O O OO00O0DO0O0O0GO -
0v200 0 0 0 000+v3 0 0 0000000 -
00100 0 00000 V2 00000000 -
00 01 0 0 0 000 O 0 20000000 -
00 00O O O O O0D0OOO O O 10000O0O0 -
00 00O O O0O0D0OOO O O O01000O0TO0 -
00 00O O O O00D0OOO O OO001000GO0 -

Li={o 0 00+v3 0 0 000 0 0 00000000 -/
00 00 0O +v2 00000 0 0 000000O0GO -
00 00 O 0 20000 0 0 000000O0 -
00 00O O O 01000 O O O00O0DO0DO0O0TO -
00 00O O O O O0D10O0O O O O00O0DO0DO0O0TO -
00 00O O 0001 0O O OO000DO0DO0O0GO -
00 00O O O O0O0D0OOO O O O00O0DO0DO0O0TO -
00 0O0OO O O O0D0OOO O O 00O0DO0DO0O0TO -
00 00O O O O 0D0O0OO O O O00O0DO0DO0O0GO -
00000 0 00000 0 00000000

2 00 -1 0 -1
0 30 0 0 0
03 0 0 0
L, =diag(0, 0, 0, 0, % 100 2 0 -1 C110) (90)
0 00 0 3 0
-1 00 -1 0 2

To determine the hypocoercivity index of the BGK model in 3D, it is preferable to
use the second basis with the linear ordering g,,(v), m € Ny. Again, we shall give
the matrix representation of the BGK equation (86) in the second velocity basis only
for the spatial modes k = (x,0)", » € K. To obtain the corresponding matrices L,
and fJQ, we simply represent the linear basis transformation by the infinite matrix

1 1 1
w0 0
0 1 0 0 0 0
S =diag(1, 1, 1,1 oot ! ! ! 1, 1
= dia, s Ly by by sy Ly Ly”
8 100 “latd) 0 -k )
0 0 O 0 1 0
L0 0 M-k 0 b+
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which is self-inverse, i.e. S = S™!. Thus we compute L1 = S™1L;S and L, =
S~'L,S, which yields

o
o
o

o oo oo o oo oo ool o oo oo —

-ooooo§‘~o§‘»—too>—loooooooo%‘&o
-ooooomo,‘LOOHOooooooo%‘ﬁo

O 0O 0O 0O 00O R OO0 000 OO0 OO0 o oo o o
-ooooo&obuoo»—loooooooo%\ﬁo

L O O 00 00 0 0 0 O O, OO0 = OO0 o O
PO O O OO O O OO0 O O o O o O E o o o o o
PO O O O 0O 0O O 0 O o oo oo § o O O o o o
PO O O O 0O 0 o0 o0 o0 o oo x o oé‘u o o o o
PO O 0O 0O 00 000 000 HO OO0 oo o O
PO O 0O O 0O 0O 0 0O o0 o0 o s oo Oa‘“ o o o o
PO O O 0O 0O 0O 0O 00 0 00 OO0 O o0 o0 oo o o
PO O O OO0 O O OO0 O OO0 OO0 O o0 o0 oo o o
PO O O OO0 0O 0O 00 0 00 OO0 O o0 o0 oo o o
PO O O OO0 0O OO0 O O OO0 OO0 O o0 o0 oo o o
O O OO OO0 OO0 O INO OO0 OO0 o0 o oo o

O O O O O O O O O O O o oo o o o oo
PO O O O O O OO0 O o oo oo o+~ o o oo
O O O O O O OO0 O O o0 o oo O o o oo

with A := —%(1—1— %), B := %(1 —

e ), and

1
V3
L, =diag(0, 0, 0, 0, 0, 1, 1, 1,--4) .

To determine the hypocoercivity index of the BGK model in 3D, we use Definition
2.3 in its equivalent formulation (B1’): With ker Lo = span{eq, e1, e, €3, €4}, and
the relations

Lieo =€y, Lie; =€0+%(€4+€7+€9),
Lies =es5, I~1163 = €6, Lies = %61 +e10 + %(613 +eis),

we find the index 7 = 2 (like in 2D). Each of the three momentum-conservation
modes (represented by eq, es and e3) is directly coupled to a decreasing mode.

We define the matrices C,;, := i%’rm Li+Ly, ke KU {0}, which determine the
evolution of the spatial modes of the BGK equation in 3D, cf. (89). Our next goal is
to establish a spectral gap of C,;, uniformly in x € K. This will prove Theorem 1.1
in 3D. To this end we make an ansatz for the transformation matrices: Following
the detailed motivation from the 1D analog in §3, let P,, k € K be the identity
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matrix whose upper-left 11 x 11 block is replaced by

1 =i 0 0 0 O 0 0 00 0
a1 0 0 0 0 0 -1 0 0 0

0o 0 1 0 0 =iy 0 0 00 0

o 0 0 1 0 0 —-tw 0 00 O

o 0 0 0 1 0 0 0 00 —ip

0 0 iy 0 0 1 0 0 00 0 (91)
0 0 0 Zw 0 0 1 0 00 0

0 43 0 0 0 0 0 1 00 0

o 0 0 0 0 0 0 0 10 0

0o 0 0 0 0 0 0 0 01 0

0 0 0 0 £n 0 0 0 00 1

with positive parameters «, 3, v, w, and 7 to be chosen below. The distribution of
the non-zero off-diagonal elements follows from the pattern in matrix L.

Lemma 5.1. If the matrices P, are chosen as (91) with f =3, v =a, w = a,
and n = « uniformly for all k € K, then there exists a positive ay such that P,; and
C:iP,+P,.C, are positive definite for all o € (0, 1) and for all k € K. Moreover,

CP.,+P.C,>2uP, uniformly in k € K | (92)
with

[ = <2O>20 521(170[7 \/30[,0&,0[701) >0 ,

32 2(1+ 2a)
where 621 (1, ,V3a, a, a, ) = det D, .\ Bacae With the matriz D
defined in (114).

K,a,V/3a,0,0,a

The proof of this lemma is deferred to Appendix A.
Remark 11. (a) Consider

621(17 Q, \/30[7 a, i, a)
i, = arg max
a€l0,04] 2(1 + 20&)

Choosing P, with & = o, 8 = V3, ¥ = @, w = «, and 7 = « uniformly for
all k € K, yields (92) with the maximal constant

20\ %’ 821 (1, e, V30, (s, i, 1)
s = 32

2(1+ 2a,) (93)
. 20\ %° 821 (1, a, V3, i, v, @)
= X —_
acl0,ay] \ 32 2(1 + 20{)

(b) For L = 2w, we compute a; = 0.214287873283229... . Moreover, the constant
i is determined as p,. = 0.0001774540949... with «, = 0.1644256115... .

(¢) In the limit L — 400, the matrix C:P, + P, C, has zero eigenvalues, which
is apparent from its upper left submatrix D 3, , ., defined in (114).
Accordingly, a; — 0 in the limit L — co. Moreover oy — 0 in the limit
L —0.

Proof of Theorem 1.1 in 3D. We consider a solution h of (9), and the entropy func-
tional £3(f) defined by

EXf) =Y (k). Pihr(v)) p2(rty (94)

keZ3
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with f(t) := My + h(t). Here the matrices Py = I and P, defined in (91) for
# = |k| # 0 are regarded as bounded operators on L?(M; *). Then

ags(f) == (h(v), (Chy Py + P Clie)he (v)) 12 (v
kez? (95)

< —2min{l, .} £2(f)
where 1 is the decay rate of hg, cf. (67). This implies (11) with A3(L) := 2min{1, .}
and ., from (93). The constants cs and C5 in the estimate (10) follow from (115):
es(L) = (1+20)"", Cs(L)=(1—20,)""
This finishes the proof of Theorem 1.1 in 3D. 0

6. Local exponential stability for the BGK equation in 3D. This analysis
is an extension of §4.5 in [1]. To make is self-contained we give the complete proof
and not only the modification of the key steps.

For v > 0, let HY(T?) be the Sobolev space consisting of the completion of
smooth functions ¢ on T3 in the Hilbertian norm

el == D (L+ k) el
keZ?

where ¢y (k € Z3) is the kth Fourier coefficient of ¢. Let ‘H. denote the Hilbert
space HY(T?) @ L?*(R?; M *(v) dv) (as a tensor product), where the inner product
in H,, is given by

/ Fla,0) [(1— ALY g2, v)] My H(v) dv di,
RS

where dz denotes the normalized Lebesgue measure on T3. Then Ho is simply the
weighted space L?(T? x R?; M, (v) dz dv).

Proof of Theorem 1.2. (a) For any solution h(t) to (9) with EYnL + M) < oo,
normalized according to (7), we consider the function f (t) := h(t)+ fo° with [ =

M. We define a family of entropy functionals &, (v > 0) by
E(F) = 30 (14 K2 (ha0), Pl (0) s (96)
kezZ?

as an extension of the entropy E3( f ) in (94). For all v > 0, the estimates
) <

16D < 133 & () < 013, < 1522 6,(D) < 36,()) (97)

follow from (115) and Remark 11(b). Moreover, the second statement in Theo-
rem 1.2(a) follows just as in the proof of Theorem 1.1 in 3D where the numerical
values are chosen according to Remark 11(b).

(b) Let f be a solution of the BGK equation (1) with constant temperature T' = 1
and define h(z,v,t) := f(z,v,t) — My (v) as in the introduction. Moreover, let o, u
and 7 be defined in terms of f as in (6). For all v > 0, [|o||3;, = (o My, f — [*)z,
with f* = M;j. Then by the Cauchy-Schwarz inequality,

lolz < oMl I = f¥lle, = llolla 1f = £, - (98)
Likewise, [|p)|%~ = (u-vMy, f — f>)5,, and hence

lillZr < M- oMl I = £, < V3llpllallf = F¥ln, (99)



ON MULTI-DIMENSIONAL HYPOCOERCIVE BGK MODELS 43

as well as, ||7||%, = (T|[v]* My, f — f>°)3.,, and hence

1711 < NIl Mallae, 1f = £ Nlae, = VIBIITImvLf = f¥llae, - (100)

Using a Sobolev embedding (with v > 3/2) we can estimate the perturbations of
the first 3 moments in L>°(T?) as

lolloe < CYIF=F= N2, s Mitlloo < CHILF =My 5 NTlloo < CyILf =3, - (101)

Using these estimates it is a simple matter to control the approximation in (8): For
s €10,1] and (z,v) € T? x R3, define (inspired by (8))

(1+50)% (@)
(2m {1+ §[sr(e) - L))
- { B o1+ s0(2)) — su(z)P }
2(1+ 3[s7(2) ~ TmH]) 1+ 50(2))

so that the gain term in the linearized BGK equation (9) is 0,F(0,z,v). In this
notation,

Ry(z,v) =My (x,v) — M;(v)

F(s,z,v):=

3
2

(102)

-/ (0P (s,2.0) — 0,F(0,2,0)] ds

:/01 /0 [02F(s,z,v)] ds dr .

To display the complicated expression for 92 F (s, x,v), we define

1 s?
ps =1+ s0 , us;:iu, Lhs == SiL , Pst=1+*(8 |H|)
Ps 3 Ps
Then 92F(s,x,v) reads
0:F(s,2,9)
F(s,z,v)
15 5 2\ 2 15 5 2
4p§2135p5”u3|>0+<2P5p5+P3Uu5| 708

+

5 _ ) 15 . D Ps - 2 2
7)o (=) w+ (755 - 5o lo-wl’) @.P)

(7
+(- 5() <<v—us>-u>+<—@v—us|2)u|2
(

2
|v—ué,\2 +4 Ps v — u|? 8SPS> ,

+

By W) P 2p2

where 0,P, := so+1 (sa+1)

.
of the order O(0? + |u|? 4+ 72), which will be related to O((f — f>°)?) due to the
estimates (98)—(100).

2
3 9 sl lulo ) One can now verify that 02F(s,z,v) is
o
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Simple but cumbersome calculations now show that if v > 3/2 and [|f — f*°||3,

is sufficiently small, then there exists a finite constant C, depending only on ~ such
that for all s € [0,1],

||652'F(57x7U)H’HV S é’y”f - f°°||3{w )
and hence
IRsll2, < Collf = f2l3, - (103)

[The calculations are simplest for non-negative integer -, in which case the Sobolev
norms can be calculated by differentiation. For v > 3/2 and sufficiently small

Ilf — fll%,, the estimates (101) ensure for all s € [0,1] the boundedness of 0 <
€< |14 s0foo , 1+ 5(sT— i‘_’;;)“w < oo (i.e. the denominators in (102)) for
some fixed € > 0. They also ensure the L?(R?; M; *(v) dv)-integrability of F(s,z, -)

by using

|psv — ,us|2

5P, } < e_|”‘2/3+1 for all z € T? .

exp{ —
In (1), higher powers of | f — f*°||%, (arising due to derivatives of o,  and 7) can
be absorbed into the constant of the quadratic term.|
Now define the linearized BGK operator

5 |uf? 1 |
Qah(x,v,t) := [(2 - 2)0(9:) +v-p(r)+ ( B + 6)7’@)] My (v) — h(x,v,t)

where o, u and 7 are determined by h, and hence f. For all v > 0, Qs is self-adjoint
on H.. Then the nonlinear BGK equation (1) becomes

Oh(z,v,t) +v - Vyh(z,v,t) = Qah(z,v,t) + Ry(x,v,t) , t>0, (104)

which differs from the linearized BGK equation (9) only by the additional term Rj.
It is now a simple matter to prove local exponential stability. We shall use here
exactly the entropy functional &, (f) defined in (96) with f = M; 4+ h. Now assume
that h solves (104). To compute ?dt&, (f) we use an inequality like (95) for the drift
term and for Qzh in (104), as well as ||P[| < (1 + 2a,) and (103) for the term
Ry. This yields
d A 3
) = =20 8,(f) + 21+ 20.)Cy [R5, (105)
(if ||~ |3, is small enough) where we have used the fact that h = f—f°°. Due to (97),
it is now simple to complete the proof of Theorem 1.1(b) for L = 27: In this case,
the best decay rate p, = 0.0001774540949... is attained for a, = 0.1644256115...
(cf. Remark 11(b)). Estimate (105) shows that there is a 6, > 0 so that if the
initial data f7(z,v) satisfies ||f! — f*°||3, < &, then the solution f(t) satisfies

E,(f(1)) < e t/P0e, (1) .

Here we used that the linear decay rate in (105) is slightly better than lem to
compensate the nonlinear term. ]
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Appendix A. Deferred proofs.

Proof of Lemma 3.1. We compute that C;Pj, 4+ P Cy, is twice the identity matrix
whose upper left 5 x 5 block is replaced by

Doy =
20 0 ((v2a — B) 0 0
0 20(+v/28 — ) 0 (V3B —-+2y) 0
= | {(v2a - p) 0 20(v/3v — v/2) —iv/k 20y 1,
0 (V38 — V/27) iy/k 2 — 20\/3y 0
0 0 20y 0 2

where ¢ := 2T We seek to choose a, 3 and 7 to make the matrices Py and Dy, o 4,4
positive definite for all k € Z\ {0}. Under the assumption |a|? +|3|> +|y|? < 1, the
matrix Py will be positive definite for all k& # 0. To simplify the analysis we shall
now set 5 = V2a and v = V3a. On the one hand this will make the first three
diagonal entries of Dy, o g~ equal and annihilate four off-diagonal elements. But,
on the other hand, this will then lead to a reduced decay rate. But optimal decay
rates are anyhow not our goal here — due to considering only a simple ansatz for
the transformation matrices Py. For 8 = V2a and v = V3a we have

20a 0 0 0 0
0 2 0 0 0
Djoas,=| 0 0 2a —iv3a/k 2v/3la |, (106)
0 0 iv3a/k 2—6la 0
0 0 2V3l 0 2

The positive definiteness of Dy o v3a,v3a Wil follow from Sylvester’s criterion, by
choosing v such that all minors of D, 5, /3, Will be positive. Let d;(k, ) denote
the determinant of the lower right j x j submatrix of D, 5, /3, forj =1,2,3,4,5.
For our choice 3 = v2a and v = /3, the first minor §; (k, ) = 2 is always positive
and the second minor d2(k, o) = 4(1 — 3la) is positive for o < 1/(3¢). The third
minor satisfies
S3(k, ) = (72030 — (480% + &) + 8() > 65(1,) forall k #0,

and the lower bound 03(1, «) is positive if

5 1484 - VI116P

0 @),
<a< o 2403

Moreover 0 < a3 < 1/(3¢) for all £ > 0 and maxs~qa® (£) < 0.257. The fourth
and fifth minor are multiples of the third minor:

Sa(k, ) = 20adz(k, ), d5(k, ) = (20a)?03(k, ) .
Hence, all minors are positive under assumption (107).
Matrix Dy, , 5,../3, has a block diagonal structure. Thus it has a double eigen-
value 20 and the eigenvalues of its lower right 3 x 3-submatrix
( 2W0c —iv3a/k  2V3la
3 )
Dk’;ﬂm@a = |ivBa/k  2-6la 0o |- (108)
2v/30ar 0 2

2w
(= — .
’ L

(107)

Let {\1, A2, A3} be the eigenvalues of Dl(j()JK V3an/3a arranged in increasing order.

(3)

b /B 3 is positive definite, the

We seek a lower bound on A;. As long as D
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arithmetic-geometric mean inequality implies

2
ko) = BB 50 (22

TI“[D(B) ] -2
k,a,v2a,v/3a o 63(/€,a)

> A St A
= 0s(k, ) 2 41— ta)?

since Tr[DSL,ﬂa,\/Ea] = 4(1 — fa)). Thus, if Py is chosen with some o € (0,)),

B = v2a, and v = v/3a uniformly for all |k| € N, then

03(1
C;P; + P,Cy, > 4(13(_’2)2 I  uniformly in k| € N, (109)
since min {2/(a, ;2;923; = 4‘?;(}!;332 for all @ € (0,a®). A simple computation

shows that the eigenvalues of Py are 1, 1 = av3 + \/é/k, and 1 £+ av3 — \/é/k
These eigenvalues are positive for all 0 < a < maxysoa® (£), L > 0 and k € N.
Hence, uniformly in ||,

(1-a\/3+V6)I<P, < (1+a\/3+V6)I. (110)

Combining (110) with (109) yields the result (70). O
The following lemma will be needed in the proofs of Lemma 4.1 and Lemma 5.1.
Lemma A.1. Let p(k,«) be a rational function of the form
p(r, @) = (po(a) +p1(a)x) 3= + pa(@)
where pg, p1, and ps are polynomials in «. If there exists & > 0 such that
0<pi(a) and po(a)+2p1(a) <0 Vo €10, d],
then p(1,a) < p(k, ) for all a € [0,a] and 1 < k.

Proof. We want to prove p(1,a) < p(k,a) for all @ € [0,a] and 1 < &, or equiva-
lently,

po(a) +pi(@) < (po(@) +pi(a);z)z  Vael0.a] V1<k.
We multiply the inequality with x?2
(po(a) + p1(a))x* < po(@) + p1(a)

and rearrange the summands

2 2
pola) (k* =1) < pi(a) (& = K%)= —pi () =24

For k = 1 the inequality holds trivially. Therefore, we continue with x > 1 and
divide the inequality by (k% — 1) to obtain
2
po(e) < —p1(a)tt .
Under our assumptions this inequality holds since

po(@) < —2p1 (@) < —p1(a)itft <0.

K

This finishes the proof. O
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Proof of Lemma 4.1. We compute that C:P, + P, C, is twice the identity matrix
whose upper left 11 x 11 block is replaced by Dy o ~,w given as

20 0 0 ta 0 A 0 0 0 0 0
0 —-24 0 0 0 -i3 B 0 —%w 00
0 0 20y 0 -iy 0 0 V2(y 0 00
a0 0 V6lw 0 C —tw 0 0 02w
0 0 iy 0 D 0 0 0 0 00
A i 0 C 0 E 0 0 o 00 |,
3 1
0 B 0 tw 0 0 F 0 —Zw0 0
0 0 V20y 0 0 0 0 2 0 00
1 1
0 —58 0 0 0 0 —J5w 0 2 00
0 0 0 0 0 0 0 0 0 20
0 0 0 2w 0 0 0 0 0 0 2
with £ := 27 /L > 0 and
A=l(a—B), B;:z(gﬁﬂu), C:zé(%w—ﬁ),
D :=2(1 —tv), E:=2(1-1(p), F =2 —V6lw.

We seck to choose «, 8, v and w such that the matrices P,; and Dy, o 5,4,. are
positive definite for all x € K. The positive definiteness of Dy o 3,4, Will follow
from Sylvester’s criterion, if all minors of D, 4 5.+, are positive. This will yield
restrictions on the choice of parameters o, 3, v and w. The analysis will simplify,
if we choose 3, v and w as multiples of «, because then the first four columns will
depend linearly on « and, moreover, several terms will drop out. For § = 2a, v = «
and w = \/504, we compute Df@,oz,Qoz,a,\/ga as

20 0 0 fla 0 —la O 0 0 0 0
0 2a 0O 0 0 —i2a0 0 0 —V2la0 0
0 0 2 0 —ia 0 0 V2 0 0 0
a0 0 6l 0 fla —iV6a 0 0 02V6la
0 0 fa 0 G O 0 0 0 0 0
—la L2000 Lo 0 H 0 0 0 0 0 . (111)
0 0 0 iV6a 0 0 J 0 —V3la0 0
0 0 V2 0 0 0 0 2 0 0 0
0 —V2la 0 0 0 0 —V3a 0 2 0 0
0 0 0 0 0 0 0 0 0 2 0
0 0 0 26l 0 0 0 0 0 0 2
with G = 2(1 — la), H = 2(1 — 2la), J := 2(1 — 3le). Let 9;(k,a, B,7v,w)

denote the determinant of the upper left j x j submatrix of Dy o ~,. for integers
j =1,2,...,11. For our choice 8 = 2a, v = @ and w = v/6a, the minors §,(x, @) :=
§;(k, @, 2a, a,v/6a) are given in Table 2. The first four minors are positive, if a is
positive.

The fifth minor d5(x, «) satisfies for positive a the inequality d5(k, ) > d5(1, @)
for all K € K. Moreover, 65(1, ) is positive for o € (0, as, ) with s, = 40/(46% + 1).
Thus the fifth minor d5(k, «) is positive for all k € K if « € (0, a, ).

The sixth minor dg(k, ) has a factorization as dg(k, o) = 05(k, @)ps(k, ) /€. The
factor pg(k, o) satisfies for positive a the inequality pg(k, o) > pg(1, ) for all k € K.
Moreover, pg(1, ) is positive for a € (0, ap,) With apg := 22¢/(54¢2 + 22). Thus
the sixth minor d¢(k, @) is positive if 0 < a < a5, with ag, = min{as,, ap,} = pg.
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01(k, ) = 2l

Sa(k, ) = 40202

83(k, ) = 803a3

Sa(k, ) = 440

Os(k, ) = 220304 (40 — 40%a — o/ K?)
06(K, ) = 05(k, a)pg(k, )/l

with pg(k, @) = —3402a + 20 — 2a/k%.

67(k, ) = 15305(K, a)pr (K, a)
with pr(k, @) = (pr,0(a) +pr1(@) ;) 7= + prala),
pro(a) =930%2a% — 340a,  pr1(a) = 1202,
pra(a) = 1620402 — 12003 + 2202

0s(k, ) = 44€3a4%p8(n, a)
with pg(k, ) = 203a? — 602 + 40 — o /K2,

dg(k, ) = 8laps(, a)pg(k, )
with po(k, ) = (po,o(a) + po1(a)=z) = + po2(a),
poo(a) = —1203a3 + 1980202 — 680,  po () = 2402,
poa(a) = —810°a3 + 4110402 — 26203 + 4442,

010(k, @) = 209(k, ),

011(k, @) = 64lapg(k, a)pr1 (K, @)

~—

with pr11(, @) = (pro(a) + pria(a) ) 2= + pi12(),
pi1,o(@) = =720%a* — 3000303 + 2940202 — 68Lc,  p111() = 2402,
p11,2(a) = 162060t — 9090503 + 9630102 — 35803 + 4402,

TABLE 2. Let 0;(k,a, 3,7, w) denote the determinant of the upper
left 7 x j submatrix of D, o 3+, for integers j =1,2,...,11. For
our choice B = 2a, v = a and w = v/6a, the minors §;(k, o) =
0 (K, a, 20, v, V60 are given in this table.

The seventh minor d(k, ) has a factorization d7(k, o) = 205 (k, a)pr(k, o) /1162,
Due to Lemma A.1, the inequality pr(x,a) > p7(1, @) holds for some positive &,.,,
and consequently 07 (k, ) > 67(1, o) holds for all 0 < o < min{e,,, as, } and k € K.
The quadratic polynomial p7(1, ) has two positive roots 0 < a, — < ayp, + and is
positive for all 0 < o < avp, With «,, := @, —. Consequently, for 0 < o < a5, with
o, = min{as, , &p,, o, } the seventh minor d7(k, @) is positive for all k € K.

The eighth minor ds(k, ) has a factorization. For positive «, factor pg satisfies
the inequality pg(x, ) > ps(1, «) for all k € K. The quadratic polynomial pg(1, «)
has two positive roots 0 < ap,,— < ape 4+ and is positive for all 0 < a <
with g = apg,—. Thus, the eighth minor dg(k, ) is positive for all k € K, if
0 < a < gy with as, == min{as, , s, , Opg}-
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The ninth minor dg(k, ) has a factorization as dg(k, @) = 8latps(k, a)py(k, a).
Due to Lemma A.1, the inequality po(x, ) > po(1, @) holds for some positive c,,,
and consequently dg(k,a) > dg(1,a) holds for all 0 < o < min{a,,,a,,} and
k € K. The cubic polynomial pg(1,«) is positive at o = 0 and lim,—, 00 po(1, @) =
—oo. Hence, there exists a positive root a,, such that pg(1,a) is positive for all
0 < a < ay,. Consequently, for all a € (0, as,) with s, = min{a,, , Gpy, Qpgts
the ninth minor dg(k, ) is positive for all k € K.

The tenth minor 019 satisfies d19(k, @) = 209(k, ). Therefore the tenth minor
d10(k, @) is positive for all kK € K if a € (0, o).

The eleventh minor 11 (k, ) has a factorization §1; = 640a’pg(k, a)p11(k, a).
Due to Lemma A.1l, the inequality pi1(k,a) > p11(1, ) holds for some positive
Qp,,, and consequently d11(k, ) > d11(1, ) holds for all 0 < a < min{ay,,,, aps}
and k € K. The quartic polynomial p11(1, ) is positive at a = 0. Hence, there
exists a positive root ay,,, such that pi1(1, ) is positive for all 0 < a < ay,,.

Consequently, for « € (0, as,,) with as,, == min{a,,, , @p,, , g}, the eleventh
minor 411 (k, @) is positive for all k € K.
Let {\1, A2,..., A1} be the eigenvalues of D, o g, arranged in increasing or-

der. We seck a lower bound on A;. As long as Dy o g, is positive definite, the
arithmetic-geometric mean inequality implies

10
511(H,C¥,5,’}/,W) 10
)‘1(’{;&757770‘)) :—2511(/€7O[,ﬁ,’}/,W) —1ll .
H]HZQ Aj 2311:2 Aj

10 Y r10\"
>4 —_—— >(—] ¢
= 11(H,Oé,ﬂ,'}/7W) (TY[D,{,mﬁ,%w}) fel (14) ll(ﬂaaa/@a’%w) )
since Tr[Dy ,8,4,w] = 14 independently of k, «, 3, v and w. A simple computation
shows that the eigenvalues of P, are 1, 1 +a/k, 14++v/5a/k, and 14 +/6a/k. Hence,
uniformly in kK € K,

(1-V6la)I<P, < (1+V6|a|)I. (112)

L

7 Finally, if P, is chosen with

Thus, all matrices P, are positive definite, if |a| <

ac (0,a4), where oy := min{1/V6, as,, a5, Qs , Qss, sy A1y}

B =2, v =, and w = /6« uniformly for all k € K, then
10
. 10 . .
cCP.,+P.C, > (14> 011(1, a, 20, v, \/604) 1 uniformly in k € K . (113)

Combining (112) with (113) yields the result. O

Proof of Lemma 5.1. We compute that C:P, + P, C, is twice the identity matrix
whose upper left 21 x 21 block is replaced by D,  8,.w,n given in Table 3.  We
seek to choose o, B, v, w and 7 such that the matrices P, and Dy o g~ are
positive definite for all k € K. The positive definiteness of Dy o 8,,w,n Will follow
from Sylvester’s criterion, if all minors of Dy o 8,y,w,n are positive. This will yield
restrictions on the choice of parameters «, 3, 7, w and 1. The analysis will simplify,
if we choose (3, v, w and n as multiples of «, because then the first six columns
will depend linearly on . For 8 = v/3a, v = o, w = o and n = «, we compute
as in Table 4.

K,0,V/ 30, a0, 00
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01(k, ) = 2l

5o (K, @) = 4(v/2 — 1)02a?

83k, ) = 8(v/2 —1)63a®

Sa(k, @) = 16(v/2 — 1)¢*a*
65(r,a) = 2(V2 - 1)5ab
S6(r, ) = 2 (V2 — 1)1a’pg(k, a)

with pg(k, a) = —40a — & + 4L
67(k, ) = 2(V2 - 1)Ba’pg(k, a)?
ds(k, ) = 1202 @° pe(r, @)? ps(k, )

with ps(k, o) = #6204 —2a 4 0/2-1)e
dg(K, ) = 2 dg(k, )

610('%5 Oé) = %€2 o® pG(H7 04)2 plO(H/a Oé)
with pio(k, @) = 9((v/2 — 1)62 + 712)603
—6((8v2 —6)% + Z)ar+40(vV2 — 1)L,

011(k, ) = %ﬁ a® pe(k,a)? p11(k, )

with p11(k, o) = (‘pu,o(a) +P11,1(a)$) % + p11.2()?,
pi1o(@) = (54v/2 — 144) 303 + (672 — 72v/2)02a? — (216 + 144+/2)(a,
p11.1(a) = 18(6 — La)a?,
pr12(a) = (9 — 54v/2)63a3 + (45612 — 24)0%a?
+(472 — 816v/2)fa + 480(v/2 — 1).
p2lid) — 2005 pe(k,a) pu(k, @) pra(k,a)

pe(k,)

with pia(k, @) = 463a% — 1202 + 80 — 2

K2

p
o13(k, ) = 512(&@)% = 511(5,04)(%) = 50 a® pii (K, a)piz(k, a)?

512(%, Oé) = 511(/‘6, Oz)

TABLE 5. Let §,(k, o, 5,7,w,n) denote the determinant of the up-
per left j x j submatrix of D, o g.~,w,n for integers j =1,2,...,21.
For our choice = V3a, v = o, w = a and n = a, the minors
di(k, ) = 0;(k,a, V3a, a, a, ) for integers j = 1,2,...,13, are
given in this table.

Let §,(k, o, 5,7,w,n) denote the determinant of the upper left j x j submatrix
of Dy 0.8,7.w.m for integers j = 1,2,...,21. For our choice 8 = 3o, v =a, w =«
and 1 = «, the minors 0;(k, ) := 6;(k, o, V3a,a,a,a) are given in Tables 5-6.

The first five minors are positive if « is positive.

The sixth minor dg(k, ) satisfies for positive v the inequality dg(k, ) > dg(1, o)
for all k € K. Moreover, the factor ps(1l,«) is positive for o € (0, ;) with
Qpe 1= 40/(40% +1). Thus the sixth minor g(k, ) is positive for all k € K if
0 < o < ag, with ag, 1= .
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Following from the analysis of factor pg(k, @), the seventh minor d7(k, «) is pos-
itive for all k € K if 0 < & < ag, 1= .

The eighth minor dg(k, ) has a factorization. For positive o and k € K, the
inequalities pg(k, ) > ps(1,«) and consequently dg(k, ) > ds(1, ) hold. More-
over, the linear polynomial pg(1, ) is positive for 0 < a < a,, with a,, =
20(v2 — 1)£/3((6v/2 — 4)¢> +5). Thus, for all k € K, the eighth minor dg(k, )
is positive if 0 < o < a5, With o, := min {ap6 L Opg b = Qg

The ninth minor satisfies dg(k, &) = 2 ds(k, @), hence, it is positive for all 0 <
a < o, = a5, and k € K.

The tenth minor d19(k, ) has a factorization. The factor pio(k, @) has the k-
dependent summand (92 — 30)«/k?, which is negative for 0 < o < 10/3¢. Under
this assumption, the inequalities pio(k, @) > p1o(1, ) and 010(k, ) > d10(1, @)
hold for all k € K. The quadratic polynomial pio(1, ) has two positive roots

0 <o < a(fo) and is positive if a < oy, With a,,, = a0, Thus, the

tenth minor d19(k, @) is positive for all kK € K, if 0 < a < ag,, with as,, =
min {ay, , 10/30, ap, } =min {ay, , ap,}-

The eleventh minor d11(k, ) has a factorization. Due to Lemma A.1, the
inequality pi1(k,a) > pi1(1,«) holds for some positive a,,,, and consequently
d11(k, ) > d11(1, ) holds for all 0 < o < @p,, and k € K. The polynomial
p11(1, @) is positive at v = 0, hence there exists a positive number «,,, such that
p11(1, @) is positive for 0 < o < app,, and all kK € K. Consequently, for 0 < a < a5y,
with as,, = min{ay,, , Qp,, , e} the eleventh minor d11(k, ) is positive for all
k€ K.

The twelfth minor d12(k, ) has a factorization. For positive «, the inequalities
p12(k, @) > p12(1, @) and d12(k, &) > d12(1, ) hold for all 0 < o < min{as,,, Ay} =
ag,, and k € K. The quadratic polynomial p13(1,a) has two positive roots 0 <
a1 < a$2) and is positive for 0 < a < ap,, with o, = o?, Thus, the
twelfth minor d12(k, «) is positive for all k € K, if 0 < a < ag,, with ag,, =
min{aps » Qpys s sy, } = min{apm , Qoyy t-

The thirteenth minor satisfies d13(k, @) = 2 ® p11(k, @)p12(k, @)?. Therefore
the thirteenth minor d13(x, @) is positive for all k € K if 0 < a < ag,, with
Qg5 = min{apn ) amz}'

The fourteenth minor d14(k, ) has a factorization. The polynomial p14.1(c) is
positive if 0 < a < 6/¢. Moreover, the quartic polynomial py4,0(a) + 2p14,1 () is
zero at o = 0, having a negative derivative at &« = 0. Thus there exists a positive
number o149 such that p1a,0(c) + 2p14.1 () is negative for 0 < o < o149 Due
to Lemma A.1, the inequality pi4(k, ) > p1a(1,a) holds for 0 < a < @, =
min{6/¢, a1*9} and consequently 814 (k, ) > §14(1, ) holds for all 0 < a < @,
and k € K. The polynomial pi4(1,«) is positive at &« = 0, hence there exists a
positive number «,, such that p14(k, ) is positive for 0 < a < oy, and all k € K.
Consequently, for 0 < a < a5, with a5, := min{ay,,,, &p,,, ap,,} the fourteenth
minor d14(k, a) is positive for all x € K.

The fifteenth minor d15(k, ) = 2 d14(k, @) is positive for all kK € K if 0 < a <
Q55 = Aoy

The sixteenth minor d14(k, ) has a factorization. The polynomial pig1(c) is
positive if 0 < a < 6/£. Under this assumption, the quartic polynomial piso(c) +
2p16.1 () is zero at a = 0, having a negative derivative at a = 0. Thus there exists a
positive number «(16:9) such that P16,0() +2p16,1 () is negative for 0 < o < a(16:0),
Due to Lemma A.1, the inequality p16(k, &) > p16(1, o) holds for all 0 < o < @, ==
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514(!%,0[) = mﬂ a® p12(ff>04>2 p14(f£,04)

with p14(k, o) = (P14,0(04) + p14,1(06)$)$ + CPpraa(a),

prao(a) = (—108v/6 — 72v/3 — 180v/2 — 144)¢*a*
+(360v/6 — 1824+/3 + 720+/2 — 3396)(3a?
+(—=576v/6 + 5952v/3 — 1152v/2 + 11760)(% a2
+(—1152v/6 — 1728+/3 — 2304+/2 — 3456)/a,

prai1(a) =144 (V3 +2) (6 — La) o?,

pra2() = (1440 — 180V/6 + 8283 — 324/2)¢*a
—(9348 — 336+/6 — 5400v/3 — 624+/2)(3a3
+(11056 + 3424+/6 + 63681/3 + 6864+/2) (2
+(4192 — 65281/6 + 1856/3 — 13056+/2) L
+(3840v/6 — 3840+/3 + 7680/2 — 7680).

(515(/17&) =2 514(/4,0[)

516(I€, a) =3

8 _24V3 g 5 p12(k, @)% pis(K, @)

9 (1+3)2
with pig(r, @) = (p16,0(a) + p16,1() ) 2 + *prs2(a),
p16.o(a) = —36(V/2 + 2)04a* + (144V/2 — 744) 0303
+(—288v/2 + 2976) (%02 + (—5761/2 — 864)La,
p16,1 (@) = 72(6 — al)a?,
pie2(q) = 27050 + (—144v/2 + 216)¢*a* + (—241/2 — 2412)03a3
+(1632v/2 + 3104)2a? + (—3264+/2 + 928)fa + 1920(v/2 — 1).

017(k, ) = 2 d16(k, @)
d18(k, @) = 22 616(k, @)
d19(k, @) = 2% d16(k, @)
da0(k, @) = 2% 616(k, @)
b1(, ) = ZECLIORNE 3 iy (s, )? pau ()

with po1(k, ) = (pa1,0(a) + P21,1(04)$) &+ pyio(a),

pa10(@) = (—1152/2 4 2928)°a® + (—468+/2 — 2664)¢*a*
+(75024v/2 — 175272) (30> 4 (—130464+/2 + 300768)¢2
+(—14400v/2 — 25056)/a,

po11(a) = (—1728+/2 4 4392)(6 — La)a?,

po12(a) = 7707055 + (—25248v/2 + 95000)¢*a
+(89448v/2 — 353228)(3a® + (158880+/2 + 38048)¢%a?
+(—417216v/2 4 464416)La + 1920(85v/2 — 109).

TABLE 6. Let §,(k, o, B8,7,w,n) denote the determinant of the up-
per left j x j submatrix of D, o g.~,w,n for integers j = 14,...,21.
For our choice f = V3a, v = o, w = a and n = «a, the minors
§i(k,a) = §;(k, a, V3, a, v, @) are given in this table.
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min{6/¢, a6} and d16(k, ) > d16(1,a) holds for all 0 < a < @,,, and k € K.
The polynomial p1s(1, @) is positive at a = 0, hence there exists a positive number
Qe such that pig(k, @) is positive for 0 < o < ayp,, and all k € K. Consequently,
for 0 < a < ag,, With ag,, = min{ay,s, Aps, Qp,, the sixteenth minor d16(k, @)
is positive for all kK € K.

The seventeenth to twentieth minors are multiples of the sixteenth minor. There-
fore, these minors are positive for all K € K under the same condition 0 < o < a, .

The twenty-first minor da1 (x, @) has a factorization. The polynomial ps; 1 () is
positive if 0 < a < 6/¢. The quintic polynomial pa1 o(a) +2p21 1 () is zero at v = 0,
having a negative derivative at o = 0. Thus there exists a positive number «(?1:0)
such that paj o() 4 2pa; 1 () is negative for 0 < o < a9, Due to Lemma A.1,
the inequality po;(#, ) > pai(1,a) holds for 0 < a < @,,, := min{6/¢, at0},
and 021 (k, @) > d21(1, ) holds for all 0 < o < @,,,, and k € K. The polynomial
p21(1, @) is positive at o = 0, hence there exists a positive number «,,, such that
p21(1, @) is positive for 0 < a < ay,,. Consequently, for 0 < a < ag,, with
sy, = min{ay,, , Qp,, , p,, ) the twenty-first minor dg1(k, @) is positive for all
k€ K.

Let {A1,A2,...,A21} be the eigenvalues of Dy g0, arranged in increasing

77777

arithmetic-geometric mean inequality implies

20
Oo1 (K, , 8,7y, w, 20
A (R, o, B,y w,m) = MG 77)2521(,%7(1,5,%%77) (21)\>
J

21
szz Aj ijz
20 20
Z 521(”7047577?(’0777) <>
Tr[Dy a,8,y,00)
20
20

= (32) 621("{/704767’77(*}777) 9

since Tr[Dy o.8,v.w,n) = 32 independently of , «, 5, v, w and 7.
A simple computation shows that the eigenvalues of P,; are 1, 1 + a/k (3-fold),
and 1+ 2a/k. Hence for positive «

(1-20)I<P, <(1+2a)l (115)

uniformly in . Thus, all matrices P, are positive definite, if 0 < o < 1/2. Finally,
if P, is chosen with

a€ (0,a4), where ay ;= min{1/2, as;, s, .., X5y},

B =1+3a,v=0«,w=a, and 7 = « uniformly for all xk € K, then

c:P,+P.,C,>
PR (G

20
) 091(1,c0) I uniformly in kK € K . (116)

Combining (115) with (116) yields the result. O
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