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Abstract. We study hypocoercivity for a class of linearized BGK models

for continuous phase spaces. We develop methods for constructing entropy
functionals that enable us to prove exponential relaxation to equilibrium with
explicit and physically meaningful rates. In fact, we not only estimate the ex-
ponential rate, but also the second time scale governing the time one must wait

before one begins to see the exponential relaxation in the L1 distance. This
waiting time phenomenon, with a long plateau before the exponential decay
“kicks in” when starting from initial data that is well-concentrated in phase

space, is familiar from work of Aldous and Diaconis on Markov chains, but is
new in our continuous phase space setting. Our strategies are based on the en-
tropy and spectral methods, and we introduce a new “index of hypocoercivity”
that is relevant to models of our type involving jump processes and not only

diffusion. At the heart of our method is a decomposition technique that allows
us to adapt Lyapunov’s direct method to our continuous phase space setting
in order to construct our entropy functionals. These are used to obtain precise
information on linearized BGK models. Finally, we also prove local asymptotic

stability of a nonlinear BGK model.

1. Introduction. This paper is concerned with the large time behavior of nonlin-
ear BGK models (named after the physicists Bhatnagar-Gross-Krook [8]) and their
linearizations around their Maxwellian steady state. With respect to position, we

consider here only models on T̃d :=
(

L
2πT

)d
, the d-dimensional torus of side length

L without confinement potential. Then, the usual BGK model for a phase space
density f(x, v, t); x ∈ T̃d, v ∈ R

d satisfies the kinetic evolution equation

∂tf + v · ∇xf = Qf :=Mf (x, v, t)− f(x, v, t) , t ≥ 0 , (1)

where Mf denotes the local Maxwellian corresponding to f ; i.e., the local Maxwell-
ian with the same hydrodynamic moments as f :
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Mf (x, v, t) =
ρ(x, t)

(2πT (x, t))
d
2

e−
|v−u(x,t)|2

2T (x,t) =
ρ(x, t)1+

d
2

(2πP (x, t))
d
2

e−
|v−u(x,t)|2ρ(x,t)

2P (x,t) ,

with density

ρ(x, t) :=

∫

Rd

f(x, v, t) dv ,

mean velocity

u(x, t) :=
1

ρ(x, t)

∫

Rd

vf(x, v, t) dv ,

temperature

T (x, t) :=
1

dρ(x, t)

∫

Rd

|v − u(x, t)|2f(x, v, t) dv ,

and pressure (setting the gas constant R = 1)

P (x, t) := T (x, t)ρ(x, t) =
1

d

∫

Rd

|v − u(x, t)|2f(x, v, t) dv .

Let dx̃ := L−d dx denote the normalized Lebesgue measure on T̃d, and consider
normalized initial data f I(x, v) such that
∫

T̃d×Rd

f I(x, v) dx̃ dv = 1 ,

∫

T̃d×Rd

vf I(x, v) dx̃ dv = 0 ,

∫

T̃d×Rd

|v|2f I(x, v) dx̃ dv = d . (2)

This means, our system has unit mass, zero mean momentum, and unit position-
averaged pressure (w.l.o.g. this can be obtained by a Galilean transformation and
choice of units). One easily checks that this normalization is conserved under the
flow of (1). Hence the system (1) is expected to have the unique, space-homogeneous
steady state

f∞(v) =M1(v) := (2π)−
d
2 e−

|v|2

2 ,

the centered Maxwellian at unit temperature, which clearly has the same normal-
ization as (2). A standard argument involving the Boltzmann entropy confirms that
this is indeed the case, but it gives no information on the rate of convergence to
equilibrium, nor does it even prove convergence. We remark that (1) involves two
different time scales: the generic transport time is O(L), while the relaxation time
is O(1). The goal of this paper is to prove the large time convergence to this f∞

for solutions of (1) and its linearizations in 1, 2, and 3D with explicitly computable
exponential rates.

This extends our previous work [1], which considered the 1D linear BGK model:

∂tf + v · ∇xf = Qlinf :=MT (v)

∫

R

f(x, v, t) dv − f(x, v, t) , t ≥ 0 , (3)

where MT denotes the normalized Maxwellian at some temperature T > 0:

MT (v) = (2πT )−1/2e−|v|2/2T .

In [1] we studied the rate at which normalized solutions of (3) approach the steady
state f∞ = MT as t → ∞. This problem is interesting since the collision mech-
anism drives the local velocity distribution towards MT , but a more complicated
mechanism involving the interaction of the streaming term v∂x and the collision
operator Qlin is responsible for the emergence of spatial uniformity.



ON MULTI-DIMENSIONAL HYPOCOERCIVE BGK MODELS 3

To elucidate this key point, let us define the operator L by

Lf(x, v) := −v ∂xf(x, v) +Qlinf(x, v) .

The evolution equation (3) can be written ∂tf = Lf . Let H denote the weighted

space L2(T̃d × R
d;M−1

T (v) dx̃ dv), where in the current discussion d = 1. Then
Qlin is self-adjoint on H, Lf∞ = 0, and a simple computation shows that if f(t) is
a solution of (3),

d

dt
‖f(t)− f∞‖2H = 2〈f(t),Lf(t)〉H = 2〈f(t),Qlinf(t)〉H = −2‖f −MT ρ‖2H ,

where, as before, ρ(x, t) :=
∫
R
f(x, v, t) dv. Thus, while the norm ‖f(t) − f∞‖H is

monotone decreasing, the derivative is zero whenever f(t) has the form f(t) =MT ρ
for any smooth density ρ. In particular, the inequality

〈f − f∞,L(f − f∞)〉H ≤ −λ‖f − f∞‖2H (4)

is valid in general for λ = 0, but for no positive value of λ. If (4) were valid for
some λ > 0, we would have had ‖f(t)− f∞‖2H ≤ e−tλ‖f I − f∞‖2H for all solutions
of our equation, and we would say that the evolution equation is coercive. However,
while this is not the case, it does turn out that one still has constants 1 < c < ∞
and λ > 0 such that

‖f(t)− f∞‖2H ≤ ce−tλ‖f I − f∞‖2H .

(The fact that there exist initial data f(0) 6= f∞ for which the derivative of the
norm is zero shows that necessarily c > 1.) In Villani’s terminology (see §3.2 of
[30]), this means that our evolution equation is hypocoercive.

Since f(t) and f∞ are probability densities, a natural norm in which to measure
the distance between them is the L1 distance, or, what is the same up to a factor
of 2, the total variation distance between the corresponding probability measures.
However, as is well known, the norm ‖ · ‖H controls the L1 norms. Specifically, by
the Cauchy-Schwarz inequality,

‖f(t)− f∞‖2H =

∫

T̃d×Rd

|f(x, v, t)M−1
T (v)− 1|2MT (v) dx̃ dv

≥
(∫

T̃d×Rd

|f(x, v, t)M−1
T (v)− 1|MT (v) dx̃ dv

)2

=‖f(t)− f∞‖2
L1(T̃d×Rd, dx̃ dv)

.

(5)

Many hypocoercive equations have been studied in recent years [30, 16, 14, 13, 5],
including BGK models in §1.4 and §3.1 of [13], but sharp decay rates were rarely an
issue there. In our earlier work [1], we established hypocoercivity for such models
in 1D by an approach that yields explicit – and quite reasonable – values for c and
λ. To this end, our main tools have been variants of the entropy–entropy production
method.

The articles [1] and [13] only consider BGK models with conserved mass, and
partly also with conserved energy. But the tools presented there did not apply
to BGK equations that also conserve momentum. This is in fact an important
structural restriction that we shall formalize in §2.2 with the notion hypocoercivity
index. The common feature of all models analyzed in [1] as well as in [13] is that their
hypocoercivity index is 1. The main goal of this paper is to extend the methods
from [1] (i.e. constructing feasible Lyapunov functionals) to models with higher
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hypocoercivity index. Applied to BGK equations this then also includes models
with conserved momentum.

The existence of global solutions for the Cauchy problem of (1) has been proven
in case of unbounded domains [23] and bounded domains [27, 24], respectively. In

case of bounded domains (such as x ∈ T̃d), these solutions are essentially bounded
and unique [24]. For a space-inhomogeneous nonlinear BGK model with an external
confinement potential, the global existence of solutions for its Cauchy problem and
their strong convergence in L1 to a Maxwellian equilibrium state has been proven
recently [9].

In the first part of this paper we shall study the linearization of the BGK equation
(1) around the centered Maxwellian with constant-in-x temperature equal to one.
To this end we consider f close to the global equilibrium M1(v), with h defined by
f(x, v, t) =M1(v) + h(x, v, t). Then

ρ(x, t) =1 + σ(x, t) with σ(x, t) :=

∫

Rd

h(x, v, t) dv ,

(ρu)(x, t) =

∫

Rd

vf(x, v, t) dv = µ(x, t)

with the vector function µ(x, t) :=

∫

Rd

vh(x, v, t) dv ,

P (x, t) =
1

d

∫

Rd

(|v − u|2)f(x, v, t) dv = 1 +
1

d

[
τ(x, t)− |µ(x, t)|2

1 + σ(x, t)

]

with τ(x, t) :=

∫

Rd

|v|2h(x, v, t) dv .

(6)

The conservation of the normalizations (2) implies
∫

T̃d

σ(x, t) dx̃ = 0 ,

∫

T̃d

µ(x, t) dx̃ = 0 , and

∫

T̃d

τ(x, t) dx̃ = 0 . (7)

The perturbation h then satisfies

∂th(x, v, t) + v · ∇xh(x, v, t) = [Mf (x, v, t)−M1(v)]− h(x, v, t) , t ≥ 0 .

For σ, µ, and τ small we have

Mf (x, v)−M1(v)

=
(1 + σ(x))1+

d
2

(
2π
{
1 + 1

d

[
τ(x)− |µ|2(x)

1+σ(x)

]}) d
2

exp
{
− |v(1 + σ(x))− µ(x)|2

2
(
1 + 1

d

[
τ(x)− |µ|2(x)

1+σ(x)

])
(1 + σ(x))

}

− (2π)−
d
2 e−

|v|2

2

≈M1(v)

[(
1 +

d

2
− |v|2

2

)
σ(x) + v · µ(x) +

(
− 1

2
+

|v|2
2d

)
τ(x)

]
,

(8)

which yields the linearized BGK model that we shall analyze in dimensions 1, 2,
and 3 in this paper:

∂th(x, v, t) + v · ∇xh(x, v, t)

=M1(v)

[(
1 +

d

2
− |v|2

2

)
σ(x, t) + v · µ(x, t) +

(
− 1

2
+

|v|2
2d

)
τ(x, t)

]

− h(x, v, t) ,

(9)
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for t ≥ 0. Here and in the sequel we only have h(x, v, t) ≈ f(x, v, t) −M1(v), but
for simplicity of notation we shall still denote the perturbation by h.

Theorem 1.1 (decay estimate for the linearized BGK equation (9) in
dimensions 1, 2, and 3). For each side length L > 0 and for dimensions d =
1, 2, 3, there exists a (quadratic) entropy functional Ed(f) and a decay rate λd(L) > 0
satisfying

cd(L)Ed(f) ≤ ‖f −M1‖2H ≤ Cd(L)Ed(f) , (10)

with some positive constants cd, Cd given explicitly in the proofs. Moreover, any
solution h(t) to (9) with Ed(hI +M1) < ∞, where hI is normalized according to
(7), then satisfies

Ed(h(t) +M1) ≤ e−λd(L) t Ed(hI +M1) , t ≥ 0 . (11)

Remark 1. (a) Combining (5) and the bound on the right in (10), we obtain a

Pinsker type inequality [25] for our entropy. Let f̃ := h+M1. Then

‖f̃ −M1‖L1(T̃d×Rd, dx̃ dv) ≤
√
Cd(L)Ed(f̃) . (12)

(b) For any solution h(t) to (9) with Ed(hI +M1) < ∞, where hI is normalized

according to (7), the function f̃(t) := h(t) +M1 satisfies

‖f̃(t)−M1‖L1(T̃d×Rd, dx̃ dv) ≤
√
Cd(L)Ed(f̃ I)e−λd(L) t/2 , (13)

due to (11) and (12) with f̃ I := hI +M1. However, since f̃(t) and M1 are
both probability measures, we also have

‖f̃(t)−M1‖L1(T̃d×Rd, dx̃ dv) ≤ 2 (14)

for all t. Moreover, if most of the mass density is initially located in a small
portion of T̃d; e.g., if the gas molecules are initially released from a small
container into a vacuum in the rest of T̃d, then ‖f̃(t) −M1‖L1(T̃d×Rd, dx̃ dv)

will be close to 2 until the streaming has had time to distribute the particles
more uniformly over T̃d. Our estimates bound the time that it takes for this
to happen.

Combining (13) with (14) yields

‖f̃(t)−M1‖L1(T̃d×Rd, dx̃ dv) ≤ min

{
2,

√
Cd(L) Ed(f̃ I) e−λd(L) t/2

}
, (15)

for t ≥ 0. Our bound (13) improves the trivial bound (14) only for t > tinit
where

tinit :=
logCd(L) + log Ed(f̃ I)− 2 log 2

λd(L)
.

For the one dimensional case, it is shown in Remark 9 that λ1(L) = O(1/L2)
in the limit L → ∞. Moreover, the constant C1(L) approaches 1 in the limit
L → ∞ by using the limiting behavior α∗(L) = O(1/L) in expression (73).

For initial data f̃ I with all of the gas molecules initially located in a small
region of T̃d with a volume fraction of order ǫ, the initial entropy E1(f̃ I) will

satisfy E1(f̃ I) = O(ǫ−2). In this case, tinit is approximately given by

O(−L2(C + log ǫ)) for ǫ≪ 1, L≫ 1
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and some positive constant C. Thus one time scale in our problems is given,
or at least bounded, by tinit. After this time, the solution satisfies

‖f̃(t)−M1‖L1(T̃d×Rd, dx̃ dv) ≤ 2e−λd(L) (t−tinit)/2 , (16)

and the second time scale, is given by 2/λd(L), the waiting time after tinit for

‖f̃(t)−M1‖L1(T̃d×Rd, dx̃ dv) to decrease by a factor of 1/e; see Fig. 1.

These two times scales are quite similar to what one observes in interacting
particle systems or even in card shuffling; see [3, 12]. In particular, [3, Fig. 2]
is quite similar to our Fig. 1 below.

(c) The resemblance of (16) to the results of Aldous and Diaconis for finite Markov
chains in [3, 12], and in particular for card shuffling, is not a coincidence. The
equation (3) can be interpreted as the Kolmogorov forward equation for a
Markov process. Exponential rates for related Markov process have been
obtained by probabilistic methods; see [7] for an early study of this type.
However, the approach in [7] relies on compactness arguments and does not
yield explicit values for c or λ. One difference between our results and those
for finite Markov chains is that in our case, the initial relative entropy can be
infinite. In card shuffling, starting form a perfectly ordered deck of cards, one
starts from a state of maximal—but finite—relative entropy, and the waiting
time for uniformization from this state dominates that of any other starting
point. For this reason, the initial waiting time for finite Markov chains is a
universal “worst case”, while this is impossible in our setting; our result must
refer to Ed(f̃ I).

(d) Our bound on the decay rate is monotonically decreasing in L and satisfies
λd(L = 0) > 0 and λd(L = ∞) = 0 (for d = 1 see Fig. 2 below). Moreover
cd(L = 0) = Cd(L = 0) = 1 (see (72), (73) below).

To prove local asymptotic stability for the nonlinear BGK equation (1) in 3D,

we make use of another set of norms: For γ ≥ 0, let Hγ(T̃3) be the Sobolev space

consisting of the completion of smooth functions ϕ on T̃3 in the Hilbertian norm

‖ϕ‖2Hγ :=
∑

k∈Z3

(1 + |k|2)γ |ϕk|2 ,

where ϕk (k ∈ Z
3) is the kth Fourier coefficient of ϕ. Let Hγ denote the Hilbert

space Hγ(T̃3)⊗L2(R3;M−1
1 ); this is the tensor product of the two factors, defined

as the completion of the vector space generated by products of elements of these
two spaces, see e.g. [26, §II.4]. Then the inner product in Hγ is given by

〈f, g〉Hγ
=

∫

T̃3×R3

f(x, v) [(1−∆x)
γ
g(x, v)]M−1

1 (v) dx̃ dv .

Theorem 1.2 (decay estimates for the linearized and nonlinear BGK equa-
tion (1) in 3D). Let L = 2π and let the initial data f I satisfy the normalization (2).

(a) For all γ ≥ 0 there is an entropy functional Eγ(f) satisfying
3

4
Eγ(f) ≤ ‖f −M1‖2Hγ

≤ 3

2
Eγ(f)

such that, if h is a solution of the linearized BGK equation (9) in 3D with
initial data hI and Eγ(hI +M1) <∞, then

Eγ(h(t) +M1) ≤ e−t/2820Eγ(hI +M1) , t ≥ 0 .
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Figure 1. These two functions illustrate the time dependent decay
estimate from (15). The values of Cd, λ

d correspond to the 1D case

with L = 2π, and we chose Ed(f̃ I) = 15. We also show the two
time scales of the BGK equation: tinit marks the intersection point
of the two (blue) curves and it corresponds to the generic transport
time. t2 := tinit+

2
λ marks the intersection point of the exponential

curve with the value 2/e, and t2−tinit corresponds to the relaxation
time scale. For larger values of L, tinit will be much larger.

(b) Moreover, for all γ > 3/2, there is an explicitly computable δγ > 0 such that,
if f is a solution of the nonlinear BGK equation (1) with initial data f I and
‖f I −M1‖Hγ

< δγ , then for the same entropy functional Eγ , the following
decay estimate holds:

Eγ(f(t)) ≤ e−t/2820Eγ(f I) , t ≥ 0 .

Note that part (a) of this theorem generalizes Theorem 1.1 to the Sobolev-type
entropies Eγ(f) in the case d = 3, L = 2π. The above theorem actually holds for
any L > 0. We restricted it to L = 2π only to simplify the presentation, being able
to give an explicit decay rate.

This paper is organized as follows: In §2 we review from [1] a Lyapunov-type
method for hypocoercive ODEs that yields their sharp exponential decay rate.
While this approach requires all eigenvectors of the system matrix, we also de-
velop an approach using simplified Lyapunov functionals. This alternative strategy
comes at the price of yielding only a suboptimal decay rate, but it can be extended
to infinite dimensional systems and BGK equations. In §3 we apply the second
strategy to the linearized BGK model (9) in 1D, proving exponential decay of the
solution towards the spatially uniform Maxwellian, as stated in Theorem 1.1. This
is based on decomposing (9) into spatial Fourier modes and introducing a Hermite
function basis in velocity direction. In the Sections 4 and 5 we extend our result to
2D and 3D, respectively. But this is not straightforward, as it is already not obvious
how to choose a convenient Hermite function basis in multi dimensions. Finally, in
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§6 we prove local exponential stability of the nonlinear BGK equation (1) in 3D as
stated in Theorem 1.2(b).

2. Decay of hypocoercive ODEs. The local convergence result in Theorem
1.2(b) is obtained from the global convergence result in Theorem 1.1 and a rel-
atively straightforward control of the errors involved in linearization. Therefore,
the essential content of the paper concerns the linearized BGK equations. To this
end we shall rewrite them as ODEs – of infinite dimension – in fact. We therefore
begin this section with a discussion of the hypocoercivity structure of ODEs and
review (from [1]) a Lyapunov-type method that yields their sharp decay rate.

2.1. Lyapunov’s direct method. To illustrate the method we start with linear,
finite dimensional ODEs. Consider an ODE for a vector f(t) ∈ C

n:




d
dtf = −Cf, t ≥ 0 ,

f(0) = f I ∈ C
n ,

(17)

for some (typically non-Hermitian) matrix C ∈ C
n×n. The stability of the steady

state f0 ≡ 0 is determined by the eigenvalues of matrix C:

Theorem 2.1. Let C ∈ C
n×n and let λj (j = 1, . . . , n) denote the eigenvalues of

C (counted with their multiplicity).

(S1) The equilibrium f0 of (17) is stable if and only if (i) ℜ(λj) ≥ 0 for all j =
1, . . . , n; and (ii) all eigenvalues with ℜ(λj) = 0 are non-defective1.

(S2) The equilibrium f0 of (17) is asymptotically stable if and only if ℜ(λj) > 0
for all j = 1, . . . , n.

(S3) The equilibrium f0 of (17) is unstable in all other cases.

For positive definite Hermitian matrices C, using the Lyapunov functional ‖f‖2
in the energy method allows to obtain the sharp decay rate, which is the smallest
eigenvalue µ of C: The derivative of ‖f‖2 along solutions f(t) of (17) satisfies

d

dt
‖f(t)‖2 = −〈f(t) , (C∗ +C)f(t)〉 = −2〈f(t) , Cf(t)〉 ≤ −2µ‖f(t)‖2 ,

where C∗ denotes the Hermitian transpose of C. Note that the derivative of ‖f‖2
depends only on the Hermitian part 1

2 (C
∗ +C) of matrix C, such that for a Her-

mitian matrix C there is no loss of information.
But for non-Hermitian matrices it is more natural to use a modified norm:

‖f‖2P := 〈f,Pf〉 ,
for some positive definite Hermitian matrix P ∈ C

n×n, to be derived from C. The
derivative of ‖f‖2P along solutions f(t) of (17) satisfies

d

dt
‖f(t)‖2P = −〈f(t) , (C∗P+PC)f(t)〉 .

Then, f0 ≡ 0 is asymptotically stable, if there exists a positive definite Hermitian
matrix P such that C∗P+PC is positive definite. To determine the decay rate to
f0, and to choose P conveniently we shall use the following algebraic result.

1An eigenvalue is defective if its geometric multiplicity is strictly less than its algebraic multi-
plicity. This difference is called defect.
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Lemma 2.2 ([1, Lemma 2]). For any fixed matrix C ∈ C
n×n, let µ := min{ℜ(λ)|λ

is an eigenvalue of C}. Let {λj |1 ≤ j ≤ j0} be all the eigenvalues of C with
ℜ(λj) = µ, only counting their geometric multiplicity. If all λj (j = 1, . . . , j0) are
non-defective, then there exists a positive definite Hermitian matrix P ∈ C

n×n with

C∗P+PC ≥ 2µP . (18)

But P is not uniquely determined. Moreover, if all eigenvalues of C are non-
defective, such matrices P satisfying (18) are given by

P :=

n∑

j=1

bj wj ⊗ w∗
j , (19)

where wj ∈ C
n (j = 1, . . . , n) denote the normalized (right) eigenvectors of C∗ (i.e.

C∗wj = λ̄jwj), and bj ∈ R
+ (j = 1, . . . , n) are arbitrary weights.

Remark 2. (i) The construction of Lyapunov functionals to reveal optimal de-
cay rates in ODEs was already included in the classical textbook [6, §22.4],
see also [5, Lemma 4.3] for real matrices C ∈ R

n×n and [1, Lemma 2] for com-
plex matrices C. In particular, if C is a real matrix, then the inequality (18)
of Lemma 2.2 holds true for some real positive definite symmetric matrices
P ∈ R

n×n.
(ii) For the extension of the above lemma to the case of defective eigenvalues

see [5, Lemma 4.3(i)] and [2, Prop. 2.2]. But the construction of P then
involves also the generalized eigenvectors.

(iii) The Lyapunov inequality (18) is a special case of a linear matrix inequality.
In a standard reference book of system and control theory [11], the problem
of finding the maximal positive constant µ and a positive definite matrix
P satisfying (18) is formulated as a generalized eigenvalue problem, see [11,
§5.1.3]. The optimal value for the constant µ is pointed out, but the associated
matrices P (like in our construction (19)) are not specified.

Now we consider examples, where all eigenvalues of C ∈ C
n×n are non-defective

and have positive real parts. Then the origin is the unique and asymptotically
stable steady state f0 = 0 of (17): Due to Lemma 2.2, there exists a positive definite
Hermitian matrix P ∈ C

n×n such that C∗P+PC ≥ 2µP where µ = minℜ(λj) > 0.
Thus, the derivative of ‖f‖2P = 〈f , Pf〉 along solutions of (17) satisfies

d

dt
‖f(t)‖2P ≤ −2µ‖f(t)‖2P with µ = minℜ(λj),

which implies

‖f(t)‖2P ≤ e−2µt‖f I‖2P , t ≥ 0 . (20)

Let λPj (j = 1, . . . , n) denote the positive eigenvalues of the positive definite Her-

mitian matrix P being ordered by magnitude such that 0 < λP1 ≤ . . . ≤ λPn . Then
the matrix inequality λP1 I ≤ P ≤ λPn I implies the equivalence of norms

λP1 ‖v‖2 ≤ ‖v‖2P ≤ λPn ‖v‖2 ∀v ∈ C
n .

Thus the decay in P-norm (20) translates into a decay in the Euclidean norm

‖f(t)‖2 ≤ ce−2µt‖f I‖2 , (21)

with the constant c = λPn /λ
P
1 ≥ 1, i.e. the condition number of P. Note that c = 1

if and only if P is a positive multiple of I.
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Remark 3. In a popular textbook on linear systems theory [17], the exponential
decay (21) is obtained as follows [17, §8.5]: For a stable matrix −C (i.e. all eigen-
values of −C have negative real part) and a matrix Q, the unique solution P of
Lyapunov’s equation

C∗P+PC = Q

is given by

P :=

∫ ∞

0

e−C∗t Q e−Ct dt .

If Q is a positive definite symmetric matrix, then the unique solution P is also
symmetric and positive definite. Moreover, the P-norm of any solution f(t) of (17)
satisfies

d

dt
‖f(t)‖2P =− 〈f(t) , (C∗P+PC)f(t)〉 = −〈f(t) , Qf(t)〉

≤ −minλQj ‖f(t)‖2 ≤ −
minλQj
maxλPj

‖f(t)‖2P ,

where λQj and λPj are the positive eigenvalues of the positive definite symmetric

matrices Q and P. This implies (20) with 2µ = minλQj /maxλPj . However, only a
suitable choice for Q would allow to recover the optimal decay rate as achieved in
Lemma 2.2.

The preceding discussion allows to characterize coercive and hypocoercive sys-
tems of linear ODEs (as well as matrices) according to the definition in the intro-
duction: Equation (17) with matrix C is coercive, if the Hermitian part of C is
positive definite, i.e.

∃κ > 0 such that CH := 1
2 (C+C∗) ≥ κI .

In this case, the trivial energy method (i.e. multiplying (17) by f(t)⊤ and using
‖f‖2 as a Lyapunov functional) shows decay of f(t) with rate κ and c = 1. But this
exponential rate is not necessarily sharp, e.g. for some non-Hermitian matrices C.

Equation (17) with matrix C is hypocoercive (with trivial kernel), if there exists
µ > 0 such that all eigenvalues of C satisfy

ℜ(λj) ≥ µ , j = 1, ..., n .

While this notion was originally coined for operators in PDEs, such matrices are
typically also called positive stable.

Comparing the spectrum of C and CH , it is well known that the maximum
constants κ and µ satisfy κ ≤ µ. If all eigenvalues of C with ℜ(λj) = µ are non-
defective, then f(t) decays at least with rate µ. However, if C has a defective
eigenvalue with ℜ(λ) = µ, then f(t) decays “slightly slower”, i.e. with rate µ − ε,
for any ε > 0 (see [5, Proposition 4.5] and [2, Proposition 2.2] for details – applied
to hypocoercive Fokker-Planck equations). Very recently this decay result has been
improved as follows: In this case there is still a positive definite matrix P, but it
cannot be given by the simple formula (19), and (20) becomes

‖f(t)‖2P ≤ C(1 + t2m)e−2µt‖f I‖2P (22)

for some C > 0, where m is the maximal defect of the eigenvalues of C with
ℜ(λj) = µ. See [4] for more information.
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2.2. Index of hypocoercivity. For the BGK models analyzed below we intend to
construct convenient Lyapunov functionals of the form 〈f,Pf〉, where the matrix
P does not necessarily have to reveal the sharp spectral gap of C (in the sense of
Lemma 2.2). To this end we first give a definition of the structural complexity of a
hypocoercive equation of the form

d

dt
f + i C1f = −C2f , t ≥ 0 . (23)

Here we decomposed the matrix C ∈ C
n×n as C = iC1 + C2 with Hermitian

matrices C1 and C2 with C2 ≥ 0. In the special caseC1 = 0, (kerC2)
⊥ corresponds

to the subspace of decaying solutions f(t), and kerC2 to the non-decaying subspace.
In hypocoercive equations, the semigroup generated by the skew-Hermitian matrix
iC1 may turn non-decaying directions into decaying directions, hence allowing for
an exponential decay of all solutions. More precisely, we assume

∃τ ∈ N0 and ∃κ > 0 :

τ∑

j=0

Cj
1C2(C1)

j ≥ κI . (24)

Definition 2.3. For Hermitian matricesC1 andC2 with C2 ≥ 0, the hypocoercivity
index of the matrix C (and of the ODE (23)) is the smallest τ ∈ N0, such that (24)
holds.

Clearly, τ = 0 corresponds to coercive matrices C; i.e., those for which all ei-
genvalues of its Hermitian part 1

2 (C + C∗) are strictly positive. A simple com-
putation shows that this definition is invariant under a change of basis. We note
that condition (24) is identical to the matrix condition in Lemma 2.3 of [5], which
characterizes the hypoellipticity of degenerate Fokker-Planck operators of the form
Lf = div(D∇f + Cxf) (using the matrix correspondence D = C2, C = C1).
Hence, condition (24) for the ODE (23) and its hypocoercivity index can be seen as
an analogue of the finite rank Hörmander condition for hypoelliptic and degener-
ate diffusion equations [20, Th. 1.1]. While the hypocoercivity index of degenerate
parabolic equations determines the algebraic regularization rate (e.g. from L2 into
H1, see [30, Th. A.12], [5, Th. 4.8], and [18, Th. 1.1]) its role in hypocoercive ODEs
is not yet clear.

2.2.1. Equivalent hypocoercivity conditions. Next, we collect several statements
which are equivalent to condition (24). They will be useful for the analysis in
§2.3.

Proposition 1. Suppose that C1 ∈ C
n×n and C2 ∈ C

n×n are Hermitian matrices.
Suppose furthermore that C2 is positive semi-definite. Then the following conditions
are equivalent:

(B1) There exists τ ∈ N0 such that

rank{
√
C2,C1

√
C2, . . . ,C

τ
1

√
C2} = n ,

which is often called Kalman rank condition.
(B2) The matrices C1 and C2 satisfy condition (24).
(B3) No non-trivial subspace of kerC2 is invariant under C1.
(B4) No eigenvector of C1 lies in the kernel of C2.
(B5) There exists a skew-Hermitian matrix K such that C2 + [K,C1] = C2 +

(KC1 −C1K) is positive definite.
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Moreover, the smallest possible τ in (B1) and (B2) coincides; it is the hypocoercivity
index of C.

Proof. The equivalence of (B1) and (B2) (with the same τ) follows from [2, Lemma
2.3]. The equivalence of (B2)–(B4) follows from [5, Lemma 2.3]. The equivalence
of (B4) and (B5) follows by the same arguments as for real symmetric matrices
in [28, Theorem 2.5].

Remark 4.
(a) In order to use condition (B1) later on also for “infinite matrices” we give here

an equivalent version:

There exists τ ∈ N0 such that
τ⋂

j=0

ker
(√

C2C
j
1

)
= {0}. (B1’)

(b) If τ ∈ N0 is such that

rank{
√

C2,C1

√
C2, . . . ,C

τ
1

√
C2}

= rank{
√

C2,C1

√
C2, . . . ,C

τ
1

√
C2,C

τ+1
1

√
C2} ,

(25)

then for all k ∈ N

rank{
√
C2,C1

√
C2, . . . ,C

τ
1

√
C2}

= rank{
√

C2,C1

√
C2, . . . ,C

τ+k
1

√
C2} .

Condition (25) implies that the columns of Cτ+1
1

√
C2 are linear combinations

of the columns of Cj
1

√
C2, j ∈ {0, . . . , τ}. This implies that Cτ+k

1

√
C2 are

linear combinations of the columns of Cj
1

√
C2, j ∈ {k − 1, . . . , τ + k − 1}.

Hence, for a hypocoercive matrix we have to gain with each added term in
(25) at least one rank until we reach full rank, i.e. space dimension n. Thus,
for hypocoercive matrices its hypocoercivity index is bounded from above by
the dimension of kerC2 (or equivalently corank of C2).

In [30, Remark 17] the connections of the above conditions to Kawashima’s
nondegeneracy condition for the study of degenerate hyperbolic-parabolic systems
[22] and Hörmander’s rank condition for hypoelliptic equations [20] are noted.

For real symmetric matrices C1,C2 ∈ R
n×n with C2 ≥ 0, condition (B4) is

equivalent to the condition that C := iC1 +C2 has only eigenvalues with positive
real part, see [28, Theorem 1.1]. And the latter statement is equivalent to the
exponential stability of (23). Using Proposition 1, we shall now prove a similar
statement for Hermitian matrices:

Lemma 2.4. Hermitian matrices C1 and C2 with C2 ≥ 0 satisfy condition (24) if
and only if all eigenvalues λC of C := iC1 +C2 have positive real part ℜ(λC) > 0.

To show Lemma 2.4 for Hermitian matrices, we will follow the proofs of [29,
Prop. 2.4] and [28, Lemma 3.2] for real symmetric matrices.

Proof of Lemma 2.4. First, we show that condition (24) implies that all eigenvalues
λC of C := iC1 +C2 have positive real part ℜ(λC) > 0: Let φ be an eigenvector
of C corresponding to an eigenvalue λ, i.e.

λφ = Cφ = (iC1 +C2)φ . (26)
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Take the complex inner product of this equation with φ, to obtain

λ〈φ, φ〉 = 〈Cφ, φ〉 ,

using 〈φ, ψ〉 = φ
⊤
ψ for all φ, ψ ∈ C

n. Its real part satisfies

ℜ(λ)〈φ, φ〉 = 〈C2φ, φ〉 , (27)

due to the assumptions on the matrices C1 and C2. Moreover, there exists a skew-
Hermitian matrix K such that C2 + [K,C1] is positive definite by Proposition 1.
We multiply equation (26) with iK and take the inner product with φ such that

λ〈iKφ, φ〉 = 〈iKCφ, φ〉 .
Its real part satisfies

2ℜ(λ)〈iKφ, φ〉 = 〈(C1K−KC1)φ, φ〉 − i〈(C2K+KC2)φ, φ〉 , (28)

since C1, C2 and iK are Hermitian matrices. Moreover,

2ℜ(〈iKC2φ, φ〉) =〈(C2 iK+ iKC2)φ, φ〉
=〈
√

C2 iKφ,
√
C2φ〉+ 〈

√
C2φ,

√
C2 iKφ〉

≤2‖
√

C2φ‖‖
√

C2 iKφ‖ ≤ 2M‖
√

C2φ‖‖φ‖

≤ǫ ‖φ‖2 + 1

ǫ
M2〈C2φ, φ〉

(29)

for any positive ǫ. Here we used M := ‖
√
C2 iK‖ and ‖

√
C2φ‖2 = 〈C2φ, φ〉 since

C2 ≥ 0. Combining equations (27) and (28) as 2·(27)−α·(28) for some constant
α > 0 to be chosen later, we derive

2ℜ(λ)
(
‖φ‖2 − α〈iKφ, φ〉

)

= 〈(C2 + α(KC1 −C1K))φ, φ〉+ 〈C2φ, φ〉+ iα〈(C2K+KC2)φ, φ〉 .
(30)

There exists α0 > 0 such that Φα := ‖φ‖2 − α〈iKφ, φ〉 satisfies
‖φ‖2/2 ≤ Φα ≤ 2‖φ‖2 ∀ α ∈ (−α0, α0) , (31)

since iK is a Hermitian matrix. Recall that the skew-Hermitian matrix K was
chosen such that C2 + [K,C1] is positive definite by Proposition 1. Therefore, the
estimate

〈(C2 + α(KC1 −C1K))φ, φ〉 ≥ αm‖φ‖2 (32)

holds for all α ∈ [0, 1], wherem > 0 is the smallest eigenvalue of the positive definite
Hermitian matrix C2+(KC1−C1K). Thus we deduce from (30) and the estimates
(32), (29) that

2ℜ(λ)Φα ≥ α(m− ǫ)‖φ‖2 + (1− α
M2

ǫ
)〈C2φ, φ〉 .

Choosing ǫ = m/2 and α = min{1, α0, ǫ/M
2}, we finally derive with (31)

ℜ(λ) ≥ αm

8
> 0 .

Finally, we show the reverse implication via a proof of its negation. If condi-
tion (B4) does not hold, then there exists a φ ∈ kerC2 and an (eigenvalue) µ ∈ R

such that C1φ = µφ. This implies (iC1 +C2)φ = iµφ. Thus φ is an eigenvector of
C := iC1 +C2 for the purely imaginary eigenvalue iµ. Thus not all eigenvalues λC
of C have positive real part.

We conclude that, if all eigenvalues λC of C have positive real part ℜ(λC) > 0,
then condition (B4) – and equivalently (24) – must hold.
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Remark 5. In the study of hypocoercivity for discrete velocity BGK models, a
family of matrices C(k) := ik C1 + C2 (k ∈ Z) for some real symmetric matrices
C1,C2 ∈ R

n×n with C2 ≥ 0 has to be considered, see [1, §4.1-§4.2]. Following the
proof of [29, Prop. 2.4], a uniform bound for the real parts of the eigenvalues λC(k)

of these matrices C(k) (k ∈ Z) can be proven:

ℜ(λC(k)) ≥ αm

8

k2

1 + k2
> 0 ∀k ∈ Z \ {0} .

Remark 6. Next we relate our study of equation (23) to the one of d
dtf +Lf = 0

in [30]. In the first part of [30], operators L = A∗A + B with a skew-symmetric
operator B are considered. Our operator/matrix C = iC1+C2 (for some Hermitian
matrices C1,C2 ∈ C

n×n with C2 ≥ 0) is of the form L = A∗A + B for the
choice A =

√
C2 and B = iC1 acting on the complex Hilbert space C

n. First, we
notice that K := kerL = kerA ∩ kerB, see [30, Prop. I.2]. There, the study of
hypocoercivity is based on the assumptions [30, (3.4)–(3.5)]:

∃τ ∈ N0 : ker
( τ∑

k=0

D∗
kDk

)
= kerL =: K , (33)

or more clearly,

∃τ ∈ N0 :

τ∑

k=0

D∗
kDk is coercive on K⊥ , (34)

where the iterated commutators Dk (k ∈ N0) are defined recursively as

D0 := A , Dk := [Dk−1,B] = Dk−1B−BDk−1 , k ∈ N .

In [30, Remark 17] it is noted (without a proof) that on finite dimensional Hilbert
spaces, condition (34) is equivalent to (B3) in Proposition 1 (with credit to Denis
Serre).

The following simple example shows that this “equivalence” needs a small mod-
ification in complex Hilbert spaces: Consider the matrices

A =

(
1 0
0 0

)
, B = iA =

(
i 0
0 0

)
.

Matrix A has kernel kerA = span{
(
0
1

)
}. Moreover D0 = A and Dk = 0 for all

k ∈ N. Hence, K = kerA∩ kerB = kerA and conditions (33) and (34) are satisfied
for all τ ∈ N0. But (B3) does not hold.

Now we give a proof of a slightly modified equivalence. On finite dimensional
Hilbert spaces, conditions (33) and (34) are obviously equivalent. Moreover, we will
make use of Proposition 1 and only show the equivalence of (B1) and a modified (33):

Lemma 2.5. Let the matrices C1 and C2 ≥ 0 be Hermitian and define A :=
√
C2

and B := iC1. Then (A,B) satisfies

condition (33) together with kerA ∩ kerB = {0} (35)

if and only if (C1,C2) satisfies (B1). Moreover, the smallest possible τ in (35) and
(B1) coincides.

Proof. First, notice that for all τ ∈ N0

τ⋂

k=0

kerDk = ker

τ∑

k=0

D∗
kDk . (36)
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Defining K′ :=
⋂

k≥0 kerDk, the inclusion K ⊂ K′ is proven in [30, Prop I.15]. Next
we prove that

w ∈
τ⋂

k=0

kerDk =: K′
τ is equivalent to ABkw = 0 ∀k ∈ {0, . . . , τ} (37)

by induction: For τ = 0, w ∈ kerD0 = kerA holds. Assume now condition (37) for
τ and prove it for τ+1. Operator Dτ+1 is defined as Dτ+1 = [Dτ ,B] = DτB−BDτ

and using w ∈
⋂τ+1

k=0 kerDk yields

0 =Dτ+1w = [Dτ ,B]w = (DτB−BDτ )w = DτBw

=(Dτ−1B−BDτ−1)Bw = Dτ−1B
2w −B2Dτ−1w

=Dτ−1B
2w = . . . = D0B

τ+1w = ABτ+1w .

The converse, 0 = ABτ+1w = Dτ+1w, is proven similarly. Thus the equiva-
lence (37) holds.

Finally we prove the equivalence of (B1) and (35): If condition (B1) holds for one
τ0, then ABkw = 0 for all k ∈ {0, . . . , τ0} implies w = 0. Due to the equivalence
in (37), K′ ⊂ K′

τ0 = {0}. Hence, {0} ⊂ K ⊂ K′
τ0 = {0}. With (36) this proves

condition (33) with τ = τ0 and kerL = kerA ∩ kerB = {0}.
If condition (33) holds together with kerA ∩ kerB = {0}, then K = kerL =

kerA∩kerB = {0} and there exists τ ∈ N0 such that ker
(∑τ

k=0 D
∗
kDk

)
= kerL =

K. Due to (36),
τ⋂

k=0

kerDk = ker

τ∑

k=0

D∗
kDk = kerL = K = {0} .

From the equivalence (37) we then obtain: If some w ∈ C
n satisfies ABkw = 0 for

all k ∈ {0, . . . , τ}, it follows that w = 0. Therefore condition (B1) holds with the
same index τ . This finishes the proof.

2.3. Ansatz for the transformation matrix P. For finite dimensional matrices
with non-defective eigenvalues, an optimal transformation matrix P (yielding the
sharp spectral gap and thus the sharp decay rate) can be constructed as stated in
Lemma 2.2. But for “infinite matrices” the eigenfunctions wj will not be known in
general. Hence, an optimal matrix P cannot be obtained from formula (19). Even
for finite dimensional systems with n large, it may not be possible to construct
explicitly the matrix P defined in (19). However, Lemma 2.2 still provides a guide
to the construction of a non-optimal choice of P that can still be used to prove
hypocoercivity and to give a quantitative decay rate. We shall exploit this in §3–6
to prove hypocoercivity for BGK equations. To this end we shall only consider
minimal matrices P, i.e. matrices with a minimal number of non-zero entries in
P− I, such that Lemma 2.2 still allows to deduce hypocoercivity (but then with a
suboptimal rate µ).

Our focus will be to find a usable and simple ansatz for P and to prove that
such an ansatz will give rise to a matrix inequality of the form (18). The structure
of these ansatzes shall be derived from the connectivity structure of the matrix
C: We consider examples of equations (23), where we assume w.l.o.g. that the
Hermitian matrix C2 is diagonal and hence real. Next we consider how the zero and
negative diagonal elements of −C2 (or equivalently the non-decaying and decaying
eigenmodes of d

dtf = −C2f) are coupled via a (non-zero) off-diagonal pair in the
Hermitian matrix C1. More precisely, a non-zero off-diagonal element of C1 at
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j, k (and hence also at k, j) couples, in the evolution equation, the j-th mode of
C2 to its k-th mode (or diagonal element). In the sequel we shall use a simple
graphical representation of such connections: there the dots ◦ and • represent,
respectively, zero and negative diagonal elements of −C2, and an arrow between
such dots represents their connection (or coupling).

For each zero element in the diagonal of C2, we next consider a shortest connec-
tion graph to a non-zero element in diag(C2) – realized by a sequence of non-zero
off-diagonal elements of C1. This leads to a guideline to find a simple ansatz for
a minimal transformation matrix of the form P = I + A: The ansatz parameters
of the Hermitian matrix A ∈ C

n×n should be put at the positions of the non-
zero off-diagonal coupling elements of C1 that are needed to establish the shortest
connection graphs – choosing only one graph per zero element in diag(C2).

Next we shall list some hypocoercive cases with low dimensionality of kerC2,
because these are the most important cases in kinetic equations (as discussed in §3–
6). For those cases we shall then prove that the above mentioned ansatzes indeed
allow to establish a spectral gap of C.

2.3.1. Hypocoercive matrix with dim(kerC2) = 1. In this situation there exists only
one (structurally relevant) case. For (23) to be hypocoercive, the only zero element
of the diagonal of C2 (w.l.o.g. say with index j = 1) needs to be coupled (via C1)
to a positive element of the diagonal of C2 .

Due to our assumptions,

C2 = diag{0, c2, . . . , cn} with cj > 0; j = 2, ..., n; and C1 = (cj,k)j,k∈{1,...,n} .

The matrix C = iC1+C2 is hypocoercive if and only if (B3) holds. Since kerC2 =
span{e1}, Condition (B3) reads here C1e1 6∈ span{e1}. Thus, we conclude from
C1e1 = (c1,1, . . . , cn,1)

⊤ that cj,1 6= 0 for some j ∈ {2, . . . , n}. Of course, j does not
have to be unique, but we now fix one such index j0. This means that c1,j0 = cj0,1 6=
0. In this case the hypocoercivity index is always 1, since Remark 4(b) yields here
that the hypocoercivity index is less or equal dim(kerC2) = 1.

W.l.o.g. we assume j0 = 2. The coupling within the relevant 2× 2-subspace (i.e.
the upper left 2× 2 block of the matrix C) can then be symbolized as ◦−→• . Such
an example was analyzed in §4.3 of [1] (representing a linear BGK equation in 1D)
using a transformation matrix with the ansatz

P = I+




0 λ
λ̄ 0

0

0 0


 , (38)

for some λ ∈ C. Here, P and I are square matrices of the same size as C, possibly
even infinite. The second matrix on the r.h.s. has the same size, but only its upper
left 2× 2 block is non-zero.

While the above transformation matrix P is not optimal, this approach is impor-
tant in practice: in theory, Lemma 2.2 provides the optimal transformation matrix
P to deduce the optimal ODE-decay (20) or (22). But in practice, its computation
is tedious, particularly when the system matrix involves a parameter, which is the
case for the BGK-models to be analyzed below (cf. Remark 5). For large systems,
there is therefore a need to design a method that does not require all eigenvectors,
even if the resulting decay rates are then sub-optimal. For the case dim(kerC2) = 1,
an approximate transformation matrix P of the simple structure (38) is sufficient,
and it always allows to prove an explicit exponential decay of the ODE (23): the
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following theorem shows that C and P satisfy a matrix inequality of form (18), but
not necessarily with the optimal constant µ. Moreover, it shows that the ansatz
(38) from §4.3 of [1] was not a “wild guess” but rather a systematic approach.

Theorem 2.6. Let C1 and C2 be Hermitian matrices with C2 ≥ 0, dim(kerC2) = 1
such that C := iC1+C2 is hypocoercive. For |λ| < 1 the Hermitian matrix P in (38)
is positive definite. If a sufficiently small λ ∈ C is chosen such that ℑ(λc1,2) > 0,
then the Hermitian matrix C∗P+PC is also positive definite.

Proof. We set P = I+ rA with

λ = reiφ and A =




0 eiφ

e−iφ 0
0

0 0


 .

Then we consider C∗P + PC = 2C2 + r(C∗A + AC) as a perturbation of the
matrix 2C2 for sufficiently small r ≥ 0. In particular, zero is a simple eigenvalue
of C2 with eigenvector e1. For small r ≥ 0, the eigenvalues of C∗P+PC are close
to the eigenvalues of 2C2. Therefore, we only need to study the evolution of the
zero eigenvalue w.r.t. r. Due to [19, Thm. 6.3.12], the lowest eigenvalue µ(r) is
a continuous function satisfying limr→0 µ(r) = 0. Moreover, it is differentiable at
r = 0 with

dµ

dr

∣∣
r=0

=
e∗1(C

∗A+AC)e1
e∗1e1

= (C∗A+AC)1,1

=− ie−iφc1,2 + i(e−iφc1,2)
∗ = 2ℑ(e−iφc1,2) .

Due to our assumptions, c1,2 6= 0. Hence, we can choose φ such that ℑ(e−iφc1,2)
is positive. For such a choice, the smallest eigenvalue µ(r) of 2C2 + r(C∗A+AC)
will be positive. This finishes the proof.

2.3.2. Hypocoercive matrix with dim(kerC2) = 2. Up to a change in basis of Cn,
we consider the Hermitian matrices

C2 = diag{0, 0, c3, . . . , cn} ≥ 0 and C1 = (cj,k)j,k∈{1,...,n} ∈ C
n×n (39)

such that cj > 0 for j ≥ 3 and cj,j ∈ R for all j ∈ {1, . . . , n}. We only consider
hypocoercive matrices C = iC1 + C2. Then, C1 cannot have a block-diagonal
structure of partition size (2, n−2) as, otherwise, the kernel ofC2 would be invariant
under C1 in contradiction to condition (B3). Hence, we shall assume in the sequel
w.l.o.g. that c2,3 6= 0.

In order to construct (later on) appropriate transformation matrices P we shall
distinguish two cases depending on the rank of the upper right submatrix Cur

1 =
(cj,k)j∈{1,2}, k∈{3,...,n} of C1. These cases with appropriate ansatz for the matrix P
are summarized in Table 1.
Case 2A. In this case the upper right submatrix Cur

1 ∈ C
2×(n−2) has rank 2. Its

hypocoercivity index is 1 which can be inferred from condition (B1): Using

C1

√
C2 =

(
0,0,

√
c3



c1,3
...

cn,3


 , . . . ,

√
cn



c1,n
...

cn,n



)
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Case 2A:

C1 =




∗ ∗
∗ ∗

∗ • ∗ · · · ∗
• ∗ ∗ · · · ∗

∗ •
• ∗
∗ ∗
...

...
∗ ∗

*



, P = I+




0 0 0 λ1
0 0 λ2 0

0 λ2 0 0

λ1 0 0 0

0

0 0



, (40)

where the upper right submatrix Cur
1 ∈ C

2×(n−2) has rank 2. Here, we assume
w.l.o.g. that |c1,4c2,3| ≥ |c1,3c2,4| and c1,4 c2,3 6= c1,3 c2,4, such that c2,3 6= 0 and
c1,4 6= 0.

Case 2B:

C1 =




∗ ∗
∗ ∗

∗ ∗ · · · ∗
• ∗ · · · ∗

∗ •
∗ ∗
...

...
∗ ∗

*



, P = I+U




0 λ1 0

λ1 0 λ2
0 λ2 0

0

0 0


U∗, (41)

where the upper right submatrix Cur
1 ∈ C

2×(n−2) has rank 1. Again, we assume
w.l.o.g. that c2,3 6= 0. The right choice for the unitary matrix U depends on the
structure of C1:

(2B1) C1 =




∗ •
• ∗

0 0 · · · 0
• ∗ · · · ∗

0 •
0 ∗
...

...
0 ∗

*



, U = I , (42)

(2B2) C1 =




∗ ∗
∗ ∗

• ∗ · · · ∗
• ∗ · · · ∗

• •
∗ ∗
...

...
∗ ∗

*



, U =

(
Uul 0
0 I

)
, (43)

with upper left submatrix Uul = 1√
|c1,3|2+|c2,3|2

(
c2,3 c1,3
−c1,3 c2,3

)
.

Table 1. We give a classification of Hermitian matrices C1, such
that the associated matrix C = iC1 + diag(0, 0, c2, . . . , cn) is
hypocoercive. The restrictions on the coefficients of C1 are de-
picted as 0 if zero, • if non-zero, and ∗ if there is no restriction.
Furthermore, we give the corresponding two-parameter ansatz for
the transformation matrix P = I+A. The guideline to construct
an admissible Hermitian perturbation matrix A, is to put the pa-
rameters λj at the positions of the (non-zero) coupling elements of
C1. In case (2B2) this will be apparent after a suitable transfor-
mation, see the proof of Theorem 2.9.
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we see that

rank
(√

C2,C1

√
C2

)
= rank

(
e3, . . . , en,

√
c3



c1,3
...

cn,3


 , . . . ,

√
cn



c1,n
...

cn,n



)
.

Due to rankCur
1 = 2, we have rank

(√
C2,C1

√
C2

)
= n. Hence, the hypocoercivity

index of C is 1. Such an example (a linearized BGK equation in 1D) was analyzed
in §4.4 of [1] using a transformation matrix with ansatz (40).

Up to a renumbering of the indices {j ≥ 3}, we assume c1,4 c2,3 6= c1,3 c2,4.
Moreover, up to a renumbering of the indices j ∈ {3, 4}, we assume |c1,4c2,3| ≥
|c1,3c2,4| such that c1,4 6= 0 and c2,3 6= 0. Thus, w.l.o.g. we assume that the zero in
the diagonal of C2 at j = 1 is connected to j = 4, and the zero at j = 2 is connected
to j = 3.

The two zeros in the diagonal of C2 are connected (via C1) to two different
positive entries in the diagonal of C2, i.e. to two decaying modes (and possibly, in
addition, also to the same). Hence, this case can occur only for n ≥ 4. Here, the
two connections in the relevant (upper left) 4 × 4-subspace can be symbolized as
◦−→• ◦−→• .
Case 2B. In this case the upper right submatrix Cur

1 ∈ C
2×(n−2) has rank 1. Then

rank
(√

C2,C1

√
C2

)
= n− 1. Hence, the hypocoercivity index of C is 2 since it is

bounded from above by dim(kerC2) = 2, see Remark 4(b).

Lemma 2.7. Let C1 be a Hermitian matrix whose upper right submatrix Cur
1 ∈

C
2×(n−2) has rank 1, and let C2 be a positive semi-definite Hermitian matrix with

dim(kerC2) = 2. Up to a change of basis, the Hermitian matrices C1 and C2

satisfy (39) with c2,3 = c3,2 6= 0. Then, the matrix C := iC1 +C2 is hypocoercive
if and only if

c1,3 c2,3 (c1,1 − c2,2)− c21,3 c2,1 + c22,3 c1,2 6= 0 . (44)

Proof. Up to a change of basis, the Hermitian matrices C1 and C2 satisfy (39).
The upper right submatrix Cur

1 ∈ C
2×(n−2) has rank 1, therefore at least one coef-

ficient of Cur
1 is non-zero. Another change of basis moves this non-zero coefficient

to position (2, 3), hence, w.l.o.g. let c2,3 = c3,2 6= 0. To prove that condition (44)
is necessary and sufficient, we use the characterization in Proposition 1. Condi-
tion (B4) for one-dimensional subspaces of kerC2 reads

∀ (α, β) ∈ C
2\{(0, 0)} : C1(αe1+βe2) = α




c1,1
c2,1
...

cn,1


+β




c1,2
c2,2
...

cn,2


 /∈ span{αe1+βe2} .

This is equivalent to the following condition:

For all (α, β) ∈ C
2 \ {(0, 0)}, (αc1,1 + βc1,2)β 6= (αc2,1 + βc2,2)α (45)

or ∃j ∈ {3, . . . , n} : αcj,1 + βcj,2 6= 0 holds. (46)

Due to the assumption rankCur
1 = 1, there exists a unique γ ∈ C (namely γ =

−c3,1/c3,2, since c2,3 = c3,2 6= 0) such that cj,1 + γ cj,2 = 0 for all j ∈ {3, . . . , n}.
Therefore, the second condition (46) holds if and only if β 6= αγ. If β = αγ then
the first condition (45) has to hold. Inserting β = αγ in (45) yields

0 6= αβ(c1,1 − c2,2) + β2c1,2 − α2c2,1 = α2(γ(c1,1 − c2,2) + γ2c1,2 − c2,1) . (47)
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Using γ = −c3,1/c3,2, the r.h.s. of (47) reads

α2

c23,2

(
− c3,1 c3,2(c1,1 − c2,2) + c23,1c1,2 − c23,2 c2,1

)

= − α2

c23,2
(c1,3 c2,3(c1,1 − c2,2)− c21,3c2,1 + c22,3 c1,2) .

Thus, matrix C is hypocoercive if and only if condition (44) holds.

This finishes the complete classification of the situation when dim(kerC2) = 2.
Our ansatz for matrix P depends on the structure of matrix C1. Therefore we
distinguish between the subcases (2B1) and (2B2), see also Table 1. We shall prove
that these ansatzes will allow for a matrix inequality of the form (18) and hence for
an explicit exponential decay (20) in the ODE (23). As in Theorem 2.6 we shall
construct P as a perturbation of I. To verify, then, a matrix inequality of the form
(18) we shall use the following perturbation result on multiple eigenvalues:

Lemma 2.8 (Theorem II.2.3 in [21]). Let C1 and C2 be Hermitian matrices with
C2 ≥ 0 and dim(kerC2) = k ∈ N0, such that the associated matrix C = iC1 +C2

is hypocoercive. Let {vj ; j = 1, . . . , k} be an orthonormal basis of the kernel kerC2

and let A be a Hermitian matrix (which makes P(r) := I + rA a positive definite
Hermitian matrix for sufficiently small r ≥ 0). Then, for sufficiently small r > 0,
the k lowest eigenvalues µj(r) of the Hermitian matrix C∗P(r) +P(r)C satisfy

µj(r) = rξj + o(r) , j = 1, ..., k , (48)

where ξj are the eigenvalues of R∗(C∗A+AC)R and R := (v1, . . . , vk) ∈ C
n×k.

We will use this result to construct perturbation matrices A and to check the
admissibility of the various ansatzes for the transformation matrices P – mostly in
the case dim(kerC2) = 2. The two matrices in Lemma 2.8 are related via

C∗P(r) +P(r)C = C∗(I+ rA) + (I+ rA)C = 2C2 + r(C∗A+AC) , (49)

and C2 has a k-fold 0-eigenvalue by assumption. Now, if A is chosen such that
all eigenvalues ξj , j = 1, ..., k in (48) are positive, then we deduce the positive
definiteness of C∗P(r) +P(r)C for sufficiently small r > 0.

We remark that the positivity of ξ1, ..., ξk is first of all a sufficient condition for
the positive definiteness of C∗P(r) +P(r)C (for sufficiently small r > 0). But one
sees easily from (49) that it is also necessary.

Theorem 2.9. Let C1 and C2 be Hermitian matrices with C2 ≥ 0 and kerC2

is a two-dimensional subspace, such that the associated matrix C = iC1 + C2 is
hypocoercive. Then there exists a two-parameter ansatz for a positive definite ma-
trix P = P(λ1, λ2), according to Table 1, such that C∗P + PC is positive definite
(for an appropriate choice of λ1, λ2).

Proof. First, one easily checks that all matrices P from Table 1 are positive definite
if |λ1|2 + |λ2|2 < 1. Thus, P(r) := I + rA with A := P − I yields for r ∈ [0, 1] a
family of positive definite Hermitian matrices P(r).

Now, up to a change of basis in C
n, we assume without loss of generality that

C2 is a diagonal matrix of the form C2 = diag(0, 0, c3, . . . , cn) with cj > 0. Then,
kerC2 = span{e1, e2} and we choose R = (e1, e2) ∈ R

n×2. According to Lemma
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2.8, the positive definiteness of C∗P + PC (for sufficiently small r > 0) can be
inferred from the positive definiteness of R∗(C∗A+AC)R.

Next we deal with each case of C1 and its corresponding ansatz P = I +A (as
listed in Table 1) separately: we need to prove that λ1 and λ2 can be chosen such
that R∗(C∗A+AC)R is indeed positive definite.

Case 2A. We consider C1 = (cj,k)j,k∈{1,...,n} satisfying w.l.o.g.

|c1,4 c2,3| ≥ |c1,3 c2,4| and c1,4 c2,3 6= c1,3 c2,4 , (50)

such that c2,3 = c3,2 6= 0 and c1,4 = c4,1 6= 0. For

R∗(C∗A+AC)R = i

(
−c1,4 λ1 + c1,4 λ1 +c2,4 λ1 − c1,3 λ2

−c2,4 λ1 + c1,3 λ2 −c2,3 λ2 + c2,3 λ2

)

to be positive definite, all three of its minors have to be positive for appropriately
chosen λ1 and λ2. We set

λ1 := −iℓ1c1,4 , λ2 := −iℓ2c2,3 , (51)

for some positive numbers ℓ1 and ℓ2. Then, the minors of first order satisfy

−i(c1,4 λ1 − c1,4 λ1) = 2ℑ(c1,4 λ1) = 2ℓ1 |c1,4|2 > 0 ,

−i(c2,3 λ2 − c2,3 λ2) = 2ℑ(c2,3 λ2) = 2ℓ2 |c2,3|2 > 0 .

The minor of second order reads (using (51))

det(R∗(C∗A+AC)R) = 4ℓ1ℓ2|c1,4|2|c2,3|2 − |ℓ1 c2,4 c1,4 + ℓ2 c1,3 c2,3|2

= 4ℓ1ℓ2|c1,4|2|c2,3|2 − |ℓ1 c2,4 c1,4|2 − |ℓ2 c1,3 c2,3|2

− ℓ1ℓ2 c2,4 c1,4 c1,3 c2,3 − ℓ1ℓ2 c2,4 c1,4 c1,3 c2,3

= −
(
ℓ1|c1,4 c2,4| − ℓ2|c1,3 c2,3|

)2

+ ℓ1ℓ2

[
4|c1,4 c2,3|2 − 2|c1,4 c2,4 c1,3 c2,3| − c2,4 c1,4 c1,3 c2,3 − c2,4 c1,4 c1,3 c2,3

]

= −
(
ℓ1|c1,4 c2,4| − ℓ2|c1,3 c2,3|

)2

+ ℓ1ℓ2

[
(3|c1,4 c2,3|+ |c1,3 c2,4|)(|c1,4 c2,3| − |c1,3 c2,4|) + |c1,4 c2,3 − c1,3c2,4|2

]
.

Then, the minor of second order is positive for the choice ℓ1 = ǫ|c1,3 c2,3| and
ℓ2 = ǫ|c1,4 c2,4| with any ǫ > 0, due to our assumption (50). Finally, for sufficiently
small ǫ > 0 the Hermitian matrix P is positive definite.

Case 2B. First, we verify that the ansatz for P in (41) is admissible in case (2B1).
In subcase (2B1), we consider w.l.o.g.

C1 = (cj,k)j,k∈{1,...,n} with c1,2 = c2,1 6= 0 , c2,3 = c3,2 6= 0 , c1,3 = c3,1 = 0 .

Then, the connections in the relevant (upper left) 3×3-subspace can be symbolized
as ◦−→◦−→• ; see (42). To prove that the ansatz for P in (41) with U = I is
admissible, we use Lemma 2.8 and we need to check the positive definiteness of

R∗(C∗A+AC)R = i

(
−c1,2λ1 + c1,2λ1 (c2,2 − c1,1)λ1
(c1,1 − c2,2)λ1 c1,2λ1 − c1,2λ1 − c2,3λ2 + c2,3λ2

)
(52)

for appropriately chosen λ1 and λ2. The minors of first order are

−i(c1,2λ1 − c1,2λ1) = 2ℑ(c1,2λ1)
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and i(c1,2λ1−c1,2λ1−c2,3λ2+c2,3λ2) = −2ℑ(c1,2λ1)+2ℑ(c2,3λ2). They are positive
if and only if

0 < ℑ(c1,2λ1) < ℑ(c2,3λ2) . (53)

Due to our assumptions c1,2 6= 0 and c2,3 6= 0, we can choose λ1 and λ2 such that
this condition is satisfied. The minor of second order reads

det(R∗(C∗A+AC)R) = 4ℑ(c1,2λ1)
(
ℑ(c2,3λ2)−ℑ(c1,2λ1)

)
− |c1,1 − c2,2|2|λ1|2 ,

where the first summand is positive due to (53). First we choose λ1 and λ2 such
that the minors of first order are positive. Then we consider rλ1 for r ∈ (0, 1)
instead of λ1, and we choose r ∈ (0, 1) sufficiently small such that the second minor
becomes positive, and hence (52) is positive definite.

In subcase (2B2), we consider w.l.o.g.

C1 = (cj,k)j,k∈{1,...,n} with c1,3 = c3,1 6= 0 , c2,3 = c3,2 6= 0 ,

and recall the hypocoercivity condition (44). The guideline to construct a simple
ansatz for P at the beginning of this section would suggest to connect each non-
decaying mode to the same decaying mode. However, for some examples in subcase
(2B2) this ansatz is not admissible. Therefore this guideline is not universally true.

The motivation for the (alternative) P-ansatz (41) with unitary matrix U in (43)

is that the transformation C̃1 = U−1C1U yields a matrix of form (2B1) with
c̃1,j = 0 for j ≥ 3 (since rank(Cur

1 ) = 1), c̃2,3 = 1 and
(
C̃1

)
1,2

= c̃1,2 = 1
|c1,3|2+|c2,3|2

(
(c1,1 − c2,2)c1,3c2,3 + c1,2c

2
2,3 − c1,2c

2
1,3

)
6= 0 ,

due to the hypocoercivity condition (44). To prove that the ansatz for P in (41)
with U in (42) is admissible, we consider

C∗P+PC = C∗(I+UAU∗) + (I+UAU∗)C = 2C2 +C∗UAU∗ +UAU∗C .

Due to Lemma 2.8, we need to check the positive definiteness of R̃∗(C∗UAU∗ +

UAU∗C)R̃ for appropriately chosen λ1 and λ2. Using R̃ = UR, we deduce

R̃∗(C∗UAU∗ +UAU∗C)R̃ = iR∗U∗(−C∗
1UAU∗ +UAU∗C1)UR

= iR∗(− (U∗C∗
1U)A+A(U∗C1U)

)
R .

Recalling that U∗C1U = U−1C1U is of form (2B1), the positive definiteness of
iR∗(− (U∗C∗

1U)A+A(U∗C1U)
)
R for suitable λ1 and λ2 follows as in case (2B1).

For dim(kerC2) = 1 or 2, we just listed all possible cases. But for dim(kerC2) =
3 we will next only consider the one situation relevant below for the linearized BGK
equation in 1D, i.e. (65), (66).

2.3.3. Hypocoercive matrix with dim(kerC2) = 3. If the three zeros in the diagonal
of C2 are connected (via C1) only consecutively to a positive entry in the diagonal
of C2, the relevant 4×4-subspace can be symbolized as ◦−→◦−→◦−→•. Proceeding
as in §2.3.2 one easily checks that

rank
(√

C2,C1

√
C2,C

2
1

√
C2

)
= n− 1 ,

rank
(√

C2,C1

√
C2,C

2
1

√
C2,C

3
1

√
C2

)
= n ,

and hence the hypocoercivity index of C is 3.
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With C1 of the form

C1 =




∗ • 0
• ∗ •
0 • ∗

0 0 · · · 0
0 0 · · · 0
• ∗ · · · ∗

0 0 •
0 0 ∗
...

...
...

0 0 ∗

*




, (54)

a natural ansatz for a simple transformation matrix is given by

P = I+




0 λ1 0 0

λ1 0 λ2 0

0 λ2 0 λ3
0 0 λ3 0

0

0 0




, (55)

with some λ1, λ2, λ3 ∈ C.
Indeed, this ansatz always yields a useful Lyapunov functional and hence a quan-

titative exponential decay rate, as we shall now show under the simplifying restric-
tion c1,1 = c2,2 = c3,3 (which is the relevant situation in §3):
Theorem 2.10. Let C2 = diag(0, 0, 0, c4, ..., cn) with cj > 0, and C1 be a Hermitian
matrices of form (54) and satisfying c1,1 = c2,2 = c3,3. Then there exists a three-
parameter ansatz for a positive definite matrix P = P(λ1, λ2, λ3) of form (55), such
that C∗P+PC is positive definite (for an appropriate choice of λ1, λ2, λ3).

Proof. First, the matrix P is positive definite if |λ1|2 + |λ2|2 + |λ3|2 < 1. Thus,
P(r) := I + rA with A := P − I yields for r ∈ [0, 1] a family of positive definite
Hermitian matrices P(r).

We have kerC2 = span{e1, e2, e3} and R = (e1, e2, e3) ∈ R
n×3. According to

Lemma 2.8, the positive definiteness of C∗P+PC (for sufficiently small r > 0) can
be inferred from the positive definiteness of R∗(C∗A+AC)R.

As in the proof of Theorem 2.9 we search for conditions on λj (j = 1, 2, 3) such
that the eigenvalues of

R∗(C∗A+AC)R =

=




2ℑ(c1,2λ1) 0 i(c2,3λ1 − c1,2λ2)

0 −2ℑ(c1,2λ1 − c2,3λ2) 0

i(c1,2λ2 − c2,3λ1) 0 −2ℑ(c2,3λ2 − c3,4λ3)


 (56)

are positive. If all minors are positive, then the matrix will be positive definite (by
Sylvester’s criterion). From the three minors of first order we deduce the conditions

0 < ℑ(c1,2λ1) < ℑ(c2,3λ2) < ℑ(c3,4λ3) , (57)

which also imply the positivity of the second minor, i.e.

4ℑ(c1,2λ1)ℑ(c2,3λ2 − c1,2λ1) > 0 .

To satisfy the former conditions it is convenient to choose

arg(λ1) = arg(c1,2)−
π

2
, arg(λ2) = arg(c2,3)−

π

2
, arg(λ3) = arg(c3,4)−

π

2
, (58)

just as in (51). The determinant of (56) reads

2ℑ(c2,3λ2 − c1,2λ1)
[
4ℑ(c1,2λ1)ℑ(c3,4λ3 − c2,3λ2)− |c2,3λ1 − c1,2λ2|2

]
. (59)
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Now the parameters λj (j = 1, 2, 3) can be chosen in analogy to the proof of Theorem
2.9, case (2B) to satisfy the conditions (57). Once λ1, λ2, and arg(λ3) are fixed, we
can choose |λ3| large enough to also satisfy the positivity of (59).

This analysis to construct appropriate matrices P could, of course, also be ex-
tended to higher dimensions of kerC2, but this gets more cumbersome. In §4 and
§5 we have dim(kerC2) = 4 and 5, respectively.

3. Linearized BGK equation in 1D. In this section we shall analyze the large
time behavior of the linearized BGK equation (9) in 1D,

∂th(x, v, t) + v ∂xh(x, v, t)

=M1(v)

[(
3

2
− v2

2

)
σ(x, t) + vµ(x, t) +

(
−1

2
+
v2

2

)
τ(x, t)

]
− h(x, v, t) ,

(60)

for the perturbation h(x, v, t) ≈ f(x, v, t) − M1(v). To prepare for the proof of
Theorem 1.1 we shall use an expansion in v–modes, as in [1]. Using the probabilists’
Hermite polynomials,

Hm(v) := (−1)me
v2

2
dm

dvm
e−

v2

2 , m ∈ N0 , (61)

we define the normalized Hermite functions corresponding to T = 1:

gm(v) := (2πm!)−1/2Hm(v) e−
v2

2 . (62)

They satisfy ∫

R

gm(v)gn(v)M
−1
1 (v) dv = δmn , m, n ∈ N0 ,

and the recurrence relation

v gm(v) =
√
m+ 1 gm+1(v) +

√
mgm−1(v) , m ∈ N . (63)

The first three normalized Hermite functions gm(v) are

g0(v) =M1(v) , g1(v) = vM1(v) and g2(v) =
v2 − 1√

2
M1(v) .

With this notation, (60) reads

∂th(x, v, t) + v ∂xh(x, v, t)

=

(
g0(v)−

1√
2
g2(v)

)
σ(x, t) + g1(v)µ(x, t) +

1√
2
g2(v)τ(x, t)− h(x, v, t) .

We start with the x–Fourier series of h:

h(x, v, t) =
∑

k∈Z

hk(v, t) e
ik 2π

L
x .

Each spatial mode hk(v, t) is decoupled and evolves according to

d

dt
hk + ik 2π

L v hk

= g0(v)σk(t) + g1(v)µk(t) + g2(v)
1√
2
(τk(t)− σk(t))− hk , k ∈ Z; t ≥ 0 .

(64)

Here, σk, µk and τk denote the spatial modes of the v–moments σ, µ and τ defined
in (6); hence

σk :=

∫

R

hk(v, t) dv , µk :=

∫

R

v hk(v, t) dv , τk :=

∫

R

v2 hk(v, t) dv .
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Next we expand hk(·, t) ∈ L2(R;M−1
1 ) in the orthonormal basis {gm(v)}m∈N0

:

hk(v, t) =
∞∑

m=0

ĥk,m(t) gm(v) , with ĥk,m = 〈hk(v), gm(v)〉L2(M−1
1 ) .

For each k ∈ Z, the “infinite vector” ĥk(t) = (ĥk,0(t), ĥk,1(t), ...)
⊤ ∈ ℓ2(N0) con-

tains all Hermite coefficients of hk(·, t). In particular we have

ĥk,0 =

∫

R

hk(v)g0(v)M
−1
1 (v) dv = σk , ĥk,1 =

∫

R

hk(v)g1(v)M
−1
1 (v) dv = µk ,

and

ĥk,2 =

∫

R

hk(v)g2(v)M
−1
1 (v) dv =

1√
2
(τk − σk) .

Hence, (64) can be written equivalently as

d

dt
hk(v, t) + ik 2π

L v hk(v, t)

= g0(v)ĥk,0(t) + g1(v)ĥk,1(t) + g2(v)ĥk,2(t)− hk(v, t) , k ∈ Z ; t ≥ 0 .

Thus, the vector of its Hermite coefficients satisfies

d

dt
ĥk(t) + ik 2π

L L1ĥk(t) = −L2ĥk(t) , k ∈ Z ; t ≥ 0 , (65)

where the operators L1, L2 are represented by “infinite matrices” on ℓ2(N0):

L1 =




0
√
1 0 · · ·√

1 0
√
2 0

0
√
2 0

√
3... 0

√
3

. . .


 , L2 = diag(0, 0, 0, 1, 1, · · · ) . (66)

Remark 7. The bi-diagonal form of L1 is a direct expression of the two-term
recursion relation (63). This is not special to the Hermite polynomials; a similar
expression holds for the orthogonal polynomials with respect to any even reference
measure.

Equation (65) provides a decomposition of the generator in its skew-symmetric
part −ik 2π

L L1 and its symmetric part −L2, the latter introducing the decay in the
evolution.

We remark that (65) simplifies for the spatial mode h0 with k = 0. One easily
verifies that, for all d, the flow of (9) preserves (7), i.e. σ0(t) = 0, µ0(t) = 0,
τ0(t) = 0 for all t ≥ 0. Hence, (64) yields

d

dt
h0(v, t) = −h0(v, t) , t ≥ 0 . (67)

For k 6= 0, we note that the linearized BGK equation is very similar to the
equation specified in [1, §4.4]: The only difference is that L2 now has one more
zero – at the second entry on the diagonal, which corresponds to the conservation
of momentum. For k 6= 0, (65) has the structure of the example in §2.3.3, and thus
hypocoercivity index 3. This has a simple interpretation: The mass-conservation
mode is coupled to the momentum-conservation mode, which is coupled to the
energy-conservation mode. Finally, the latter is coupled to the decreasing mode
that corresponds to g3(v). The hypocoercivity index of (65) can also be obtained
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directly from Definition 2.3, in its equivalent formulation (B1’) that also applies to
“infinite matrices”: With kerL2 = span{e0, e1, e2}, and the relations

L1e0 = e1 , L1e1 = e0 +
√
2e2 , L1e2 =

√
2e1 +

√
3e3 ,

we again find τ = 3.
We define the matrices Ck := ik 2π

L L1+L2, k ∈ Z which determine the evolution
of the spatial modes of the BGK equation in 1D, cf. (65). Our next goal is to
establish a spectral gap of Ck, uniformly in k 6= 0. This will prove Theorem 1.1
in 1D. Clearly, this matrix corresponds to C = iC1 + C2 in §2.3. There, the
construction of the transformation matrix P(r) = I+ rA was based on Lemma 2.8,
and hence on proving the positive definiteness of

R∗(C∗A+AC)R = iR∗(−C∗
1A+AC1)R .

Here, the operator L1 carries the coefficient ik 2π
L with k ∈ Z \ {0}. To compensate

for k, it is natural to choose the perturbation matrix A proportional to 1
k . Following

§2.3.3 we hence use the ansatz (55) for the k–dependent transformation matrices
Pk: For parameters λj ; j = 1, 2, 3 to be chosen below, we define Pk, k 6= 0 to be
the infinite matrix that has



1 λ1/k 0 0

λ1/k 1 λ2/k 0

0 λ2/k 1 λ3/k

0 0 λ3/k 1


 (68)

as its upper-left 4×4 block, with all other entries being those of the identity. Under
the assumption |λ1|2 + |λ2|2 + |λ3|2 < 1, the matrix Pk will be positive definite for
all k 6= 0. Recalling that L1 is an (infinite) real matrix as well as the parameter
choice in (58), it is natural to choose also here arg(λj) = −π

2 . Hence (68) turns into


1 −iα/k 0 0
iα/k 1 −iβ/k 0
0 iβ/k 1 −iγ/k
0 0 iγ/k 1


 , (69)

with α := |λ1|, β := |λ2|, γ := |λ3|.
Now, (the infinite dimensional analog of) Theorem 2.10 asserts that the above

ansatz will yield an admissible transformation matrix P and hence an exponential
decay rate for (65), uniformly in k. But, as a perturbation result, it neither provides
an explicit value for the decay rate µ, nor does it yield a rather natural ratio between
the parameters λj . These two aspects will be our next task.

Remark 8. To justify the infinite dimensional analog of Theorem 2.10, we decom-
pose

C∗
kP(r) +P(r)Ck = 2L2 + r (C∗

kA+ACk) = 2I+ (2L2 − 2I) + r (C∗
kA+ACk) .

To investigate the spectrum of the Hermitian operator C∗
kP(r)+P(r)Ck in ℓ2(N0),

it is sufficient to compute the spectrum of the compact operator (2L2 − 2I) +
r (C∗

kA+ACk). The compact operators 2L2 − 2I = 2diag(−1,−1,−1, 0, . . .) and
C∗

kA+ACk act on a common finite-dimensional subspace of ℓ2(N0), hence we can
use Lemma 2.8 to analyze the restriction of the compact operators on this finite-
dimensional subspace: The three lowest eigenvalues of (2L2−2I)+r (C∗

kA+ACk),
for sufficiently small r ≥ 0, satisfy

µ̃j(r) = −2 + rξj + o(r) ; j = 1, 2, 3 ,
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where ξj are the eigenvalues of R∗(C∗
kA + ACk)R and R = (e1, e2, e3) ∈ C

n×3

(recall that ker(L2) = span{e1, e2, e3}). Then the three lowest eigenvalues of
C∗

kP(r) +P(r)Ck, for sufficiently small r ≥ 0, satisfy

µj(r) = rξj + o(r) .

Next we search for conditions on α, β, γ > 0 such that the eigenvalues ξj of

R∗(C∗
kA+ACk)R = 2π

L




2α 0
√
2α− β

0 2(
√
2β − α) 0√

2α− β 0 2(
√
3γ −

√
2β)




are positive. If all minors are positive, then the matrix will be positive definite (by
Sylvester’s criterion). We deduce the conditions

0 < α <
√
2β <

√
3γ and 0 < 4α(

√
3γ −

√
2β)− |

√
2α− β|2 ,

which are special cases of (57), (59). In fact, the matrix L
2π R∗(C∗

kA+ACk)R has

the eigenvalues 2(
√
2β − α) and

√
3γ −

√
2β + α±

√
(
√
3γ −

√
2β − α)2 + (

√
2α− β)2 .

We note that the special choice β :=
√
2α and γ :=

√
3α makes all eigenvalues of

R∗(C∗
kA+ACk)R equal, which seems to be beneficial to obtain eventually a good

decay estimate. Moreover, it will simplify the proof of Lemma 3.1.
In the following lemma we establish an infinite dimensional analog of Lemma 2.2

– for (65), the transformed linearized BGK equation in 1D. However, here we shall
not aim at obtaining the optimal decay constant µ in the matrix inequality (18).
Still, µ will be independent of the modal index k ∈ Z, thus providing exponential
decay of the full solution.

Lemma 3.1. For each cell length L > 0 we consider α(3) = α(3)(L) > 0 defined

in (107). If the matrices Pk are chosen with some α ∈ (0, α(3)), β =
√
2α, and

γ =
√
3α uniformly for all |k| ∈ N, then Pk from (69) and C∗

kPk + PkCk are
positive definite for all k ∈ Z \ {0}. Moreover,

C∗
kPk +PkCk ≥ 2µPk uniformly in |k| ∈ N , (70)

with

µ :=
δ3(1, α)

8(1− 2πα/L)2(1 + α
√

3 +
√
6)
> 0 ,

where δ3(1, α) := detD
(3)

1,α,
√
2α,

√
3α
> 0 with D

(3)

k,α,
√
2α,

√
3α

defined in (108).

The proof of this lemma is deferred to Appendix A.

Remark 9. (a) Consider

α∗ = argmax
α∈[0,α(3)]

δ3(1, α)

8(1− 2πα/L)2(1 + α
√

3 +
√
6)

.

Choosing Pk with α = α∗, β =
√
2α, and γ =

√
3α uniformly for all |k| ∈ N,

yields (70) with the constant

µ∗ =
δ3(1, α∗)

8(1− 2πα∗/L)2(1 + α∗
√
3 +

√
6)

= max
α∈[0,α(3)]

δ3(1, α)

8(1− 2πα/L)2(1 + α
√

3 +
√
6)

.

(71)
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(b) In the limit L → ∞, the matrix C∗
kPk + PkCk has zero eigenvalues, which

is apparent from its upper left submatrix Dk,α,
√
2α,

√
3α defined in (106). Ac-

cordingly, α(3) → 0 with α(3) = O( 1
L ) and µ∗ = O( 1

L2 ) in the limit L → ∞.
It is no surprise that the exponential decay rate vanishes in this limit, as the
limiting whole space problem only exhibits algebraic decay (cf. [10] for the
large-time analysis of (3) on R

d).
In the limit L→ 0, again α(3) → 0 with α(3) = O(L). Using

lim
L→0

α∗(L)

L
=

4−
√
13

6π
, (72)

we obtain

lim
L→0

µ∗(L) = 3(4−
√
13)

(3−
√
13)2

(1−
√
13)2

= 0.06391670961...

(cf. Fig. 2).

Figure 2. For each cell length L the constant 2µ∗(L) obtained
from Lemma 3.1 and Remark 9(a) yields a bound for the entropy
decay rate in Theorem 1.1.

Applying Lemma 3.1 to each x-Fourier mode ĥk(t), k 6= 0 from (65) allows to
prove exponential decay of the linearized BGK equation in 1D:

Proof of Theorem 1.1 in 1D. We consider a solution h of (9), and let the entropy

functional E1(f̃) be defined by

E1(f̃) :=
∑

k∈Z

〈hk(v),Pkhk(v)〉L2(M−1
1 ) ,
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with f̃(t) := M1 + h(t). Here, the “infinite matrices” P0 := I and Pk defined in
(69) for k 6= 0 are regarded as bounded operators on L2(M−1

1 ). Then

d

dt
E1(f̃) = −

∑

k∈Z

〈hk(v), (C∗
kPk +PkCk)hk(v)〉L2(M−1

1 ) ≤ −2min{1, µ∗} E1(f̃) ,

where 1 is the decay rate of h0, cf. (67). This implies (11) with λ1(L) := 2min{1, µ∗}
and µ∗ from (71).

The constants c1 and C1 in the estimate (10) follow from (110):

c1(L) =

(
1 + α∗(L)

√
3 +

√
6

)−1

, C1(L) =

(
1− α∗(L)

√
3 +

√
6

)−1

(73)

and this finishes the proof of Theorem 1.1 in 1D.

To appreciate the above decay estimate, let us compare it to the spectral gap
obtained in numerical tests for L = 2π. In this case the estimate from Remark 9
yields the analytic bound with µ∗ = 0.041812... . As a comparison we computed
the spectrum of finite dimensional approximation matrices to L2 + ikL1 up to the
matrix size n = 500. Apparently the spectral gap is determined by the lowest spatial
modes k = ±1. With increasing n it grows monotonically to µnum = 0.558296... .
So, our estimate is off by a factor of about 13. Following the strategy from §4.3
in [1], i.e. by maximizing µ in the matrix inequality C∗

kPk + PkC − 2µPk ≥ 0,
the above estimate on the decay rate could be improved further. But we shall not
pursue this strategy here again.

Let us briefly compare this gap to the situation in the two 1D BGK models
analyzed in §4.3 and §4.4 of [1]. They only differ from the 1D model (65)-(66)
of this section, concerning the matrix L2: there we had L2 = diag(0, 1, . . .) and
L2 = diag(0, 1, 0, 1, . . .), resp. We recall from §2.2 that both models have hypoco-
ercivity index 1, and their (numerically determined) spectral gaps are 0.6974... and
0.3709717660..., resp. One might expect that removing 1 entries from L2 and hence
increasing the hypocoercivity index would decrease the spectral gap. But this is
obviously not always the case.

4. Linearized BGK equation in 2D. Next we shall analyze the linearized BGK
equation (9) in 2D:

∂th(x, v, t) + v · ∇xh(x, v, t)

=M1(v)

[(
2− |v|2

2

)
σ(x, t) + v · µ(x, t) +

(
− 1

2
+

|v|2
4

)
τ(x, t)

]
− h(x, v, t) ,

for the perturbation h(x, v, t) ≈ f(x, v, t)−M1(v) with t ≥ 0, x ∈ T̃2, v ∈ R
2.

Again we consider the x–Fourier series of h:

h(x, v, t) =
∑

k∈Z2

hk(v, t) e
i 2π

L
k·x ;

each spatial mode hk(v, t) is decoupled and evolves as

d

dt
hk + i 2πL k · v hk

=M1(v)

[(
2− |v|2

2

)
σk(t) + v · µk(t) +

(
− 1

2
+

|v|2
4

)
τk(t)

]
− hk(v, t) .

(74)
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Here, σk, µk and τk denote the spatial modes of the v–moments σ, µ and τ defined
in (6); hence

σk :=

∫

R2

hk(v, t) dv , µk :=

∫

R2

v hk(v, t) dv , τk :=

∫

R2

|v|2 hk(v, t) dv .

Next we shall introduce an orthonormal basis in v-direction, to represent the
spatial modes hk(·, t) ∈ L2(R2;M−1

1 ), k ∈ Z
2. As in 1D we shall again use Hermite

functions. But their multi-dimensional generalization is not unique, and we shall
present two options that seem to be practical:

Basis 1 (“pure tensor-basis”). A complete set of orthogonal polynomials in d vari-
ables can be formed as products of d such polynomials, each in a single variable.
Using the Hermite polynomials Hm in 1D, i.e.

H0(υ) = 1 , H1(υ) = υ , H2(υ) = υ2−1 , H3(υ) = υ3−3υ , ... with υ ∈ R ,

we construct Hermite polynomials on R
d as

Hm(v) :=

d∏

j=1

Hmj
(vj) , v ∈ R

d , (75)

with the multi-index m = (m1, . . . ,md) ∈ N
d
0. They are also generated by a simple

generalization of formula (61):

Hm(v) = (−1)|m|e
|v|2

2
∂|m|

∂vm
e−

|v|2

2 , m ∈ N
d
0 ,

with |m| =
∑d

j=1mj (see [15], e.g.). For d = 2, we obtain

H0,0(v) = H0(v1)H0(v2) = 1 , H1,0(v) = H1(v1)H0(v2) = v1 ,

H0,1(v) = H0(v1)H1(v2) = v2 , H2,0(v) = H2(v1)H0(v2) = v21 − 1 ,

H1,1(v) = H1(v1)H1(v2) = v1v2 , H0,2(v) = H0(v1)H2(v2) = v22 − 1 ,

H3,0(v) = H3(v1)H0(v2) = v31 − 3v1 , H2,1(v) = H2(v1)H1(v2) = (v21 − 1)v2 ,

H1,2(v) = H1(v1)H2(v2) = v1(v
2
2 − 1) , H0,3(v) = H0(v1)H3(v2) = v32 − 3v2 .

Using definition (62) of normalized Hermite functions in 1D, we define the normal-
ized Hermite functions in d dimensions as

gm(v) :=

d∏

j=1

gmj
(vj) for m = (m1, . . . ,md) ∈ N

d
0 . (76)

Then, gm (m ∈ N
d
0) form an orthonormal basis of L2(Rd;M−1

1 ) and inherit a simple
recurrence relation: For k ∈ {1, . . . , d}, m ∈ N

d
0, and the Euclidean basis vectors

ek = (δkj)j=1,...,d in R
d, the recurrence relation

vkgm(v) =

{√
mk + 1 gm+ek(v) +

√
mk gm−ek(v) if mk 6= 0 ,

gm+ek(v) if mk = 0 ,
(77)

holds.
In order to give a vector representation of (74), the evolution equation of the

spatial modes hk(v, t), we first need to introduce a linear ordering of the velocity
basis gm (m ∈ N

2
0). We shall use a lexicographic order, i.e. first (increasingly) with
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respect to the total order |m|, and within a set of order |m| we order w.r.t. m1

(decreasingly) (for d = 2). Thus, we obtain the linearly ordered basis

g0(v) := g0,0(v) =M1(v) , g1(v) := g1,0(v) = v1M1(v) ,

g2(v) := g0,1(v) = v2M1(v) , g3(v) := g2,0(v) =
1√
2
(v21 − 1)M1(v) ,

g4(v) := g1,1(v) = v1v2M1(v) , g5(v) := g0,2(v) =
1√
2
(v22 − 1)M1(v) ,

g6(v) := g3,0(v) =
1√
3!
(v31 − 3v1)M1(v) , g7(v) := g2,1(v) =

1√
2
(v21 − 1)v2M1(v) ,

g8(v) := g1,2(v) =
1√
2
v1(v

2
2 − 1)M1(v) , g9(v) := g0,3(v) =

1√
3!
(v32 − 3v2)M1(v) .

Given a multi-index m ∈ N
2
0, its lexicographic index is computed as |m|(|m|+1)/2+

m2 with |m| = m1 +m2.

Basis 2 (“energy-basis”). The second basis is a simple variant of the first one. We

recall that the evolution with the BGK equation (1) conserves the (kinetic) energy
and mass. Hence, their difference is also conserved and it is related to the polynomial
|v|2
2 −1. In analogy to the 1D case from §3 it is thus a natural option to construct a

basis of orthogonal polynomials H̃m(v), m ∈ N
d
0, such that |v|2

2 −1 is a basis element.
Compared to {Hm(v)}, in fact, we only have to modify the Hermite polynomials of
second order. For d = 2 they read:

H̃m(v) :=





Hm(v) if |m| 6= 2 ,

1
2

(
H2,0(v) +H0,2(v)

)
= |v|2

2 − 1 if m = (2, 0) ,

H1,1(v) = v1v2 if m = (1, 1) ,

1
2

(
H2,0(v)−H0,2(v)

)
=

v2
1−v2

2

2 if m = (0, 2) .

(78)

Similarly, we define normalized Hermite functions

g̃m(v) :=





gm(v) if |m| 6= 2 ,

1√
2

(
g2,0(v) + g0,2(v)

)
if m = (2, 0) ,

g1,1(v) if m = (1, 1) ,

1√
2

(
g2,0(v)− g0,2(v)

)
if m = (0, 2) .

The elements g̃m satisfy a recurrence relation similar to (77), except for identities
involving g̃2,0 or g̃0,2. For example,

v1g̃2,0(v) =
1√
2
v1
(
g2,0(v) + g0,2(v)

)
=

1√
2

(√
3 g3,0(v) +

√
2 g1,0(v) + g1,2(v)

)

=
1√
2

(√
3 g̃3,0(v) +

√
2 g̃1,0(v) + g̃1,2(v)

)
.

While the first basis gm (m ∈ N
d
0) inherits a simple recurrence formula with three

elements, the recurrence formulas for the second basis g̃m (m ∈ N
d
0) involve four

elements, when including g̃2,0(v) or g̃0,2(v).
To derive the vector representation of (74), it is preferable to use the first basis

with the linear ordering gm (m ∈ N0). With the identity (g3(v) + g5(v))/
√
2 =
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(|v|2/2− 1)M1(v) we rewrite (74) as

d

dt
hk + i 2πL k · v hk =

(
g0(v)− 1√

2
g3(v)− 1√

2
g5(v)

)
σk(t) +

(
g1(v)

g2(v)

)
· µk(t)

+ 1
2
√
2

(
g3(v) + g5(v)

)
τk(t)− hk(v, t) ,

(79)

for k ∈ Z
2, t ≥ 0. First we consider the spatial mode h0 with k = 0. With the

same argument as in 1D we again obtain (67), i.e. d
dth0(v, t) = −h0(v, t). Next we

expand hk(·, t) ∈ L2(R2;M−1
1 ) in the orthonormal basis {gm(v)}m∈N0

:

hk(v, t) =

∞∑

m=0

ĥk,m(t) gm(v) , with ĥk,m = 〈hk(v), gm(v)〉L2(M−1
1 ) .

For each spatial mode k ∈ Z
2, the “infinite vector” ĥk(t) = (ĥk,0(t), ĥk,1(t), ...)

⊤ ∈
ℓ2(N0) contains all 2D–Hermite coefficients of hk(·, t). In particular we have

ĥk,0 =

∫

R2

hk(v)g0(v)M
−1
1 (v) dv = σk ,

(
ĥk,1

ĥk,2

)
=

∫

R2

hk(v)

(
g1(v)

g2(v)

)
M−1

1 (v) dv = µk ∈ R
2 ,

and 1√
2
(ĥk,3+ ĥk,5) =

∫
R2 hk(v)

1√
2
(g3(v)+ g5(v))M

−1
1 (v) dv = 1

2τk−σk . Thus, we

can rewrite (79) as

d

dt
hk + i 2πL k · v hk

= g0(v)ĥk,0 +

(
g1(v)

g2(v)

)
·
(
ĥk,1

ĥk,2

)
+
g3(v) + g5(v)

2
(ĥk,3 + ĥk,5)− hk(v, t) ,

(80)

for k ∈ Z
2, t ≥ 0.

Our next goal is to rewrite this system in the Hermite function basis as an
infinite vector system – in analogy to (65) in 1D. In that equation, the operator
L1 is multiplied by the (scalar and integer) mode number k, which is then used in
the construction of the transformation matrices Pk. To extend this structure and
strategy to 2D, we first have to consider the rotational symmetry of (80): We note
that the basis functions g0 and g3 + g5 depend only on |v|, and that the interplay
between the vectors k and v only occurs via k · v. Hence, evolution equations from
the family (80) having the same modulus |k| are identical in the following sense:
Rotating the spatial mode vector k and the v-coordinate system by the same angle,
leaves (80) invariant. Thus it suffices to consider (80) for vectors k = (κ, 0)⊤ with
the discrete moduli

κ ∈ K :=
{
r ≥ 1

∣∣ ∃k ∈ Z
2 \ {0} with r = |k|

}
.

We skipped here the mode h0, as it was already analyzed before. In the sequel we

also denote hκ := h(κ,0) and ĥκ := ĥ(κ,0). With this notation, (80) reads

d

dt
hκ + i 2πL κv1 hκ

= g0(v)ĥκ,0 +

(
g1(v)

g2(v)

)
·
(
ĥκ,1

ĥκ,2

)
+
g3(v) + g5(v)

2
(ĥκ,3 + ĥκ,5)− hκ(v, t) ,
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for κ ∈ K, t ≥ 0. Then, the vector of its Hermite coefficients satisfies

d

dt
ĥκ(t) + i 2π

L κL1ĥκ(t) = −L2ĥκ(t) , κ ∈ K ; t ≥ 0 , (81)

where the operators L1, L2 are represented by symmetric “infinite matrices” on
ℓ2(N0):

L1 =




0
√
1 0 0 0 0 0 0 0 0 0 0 0 0 · · ·√

1 0 0
√
2 0 0 0 0 0 0 0 0 0 0 · · ·

0 0 0 0
√
1 0 0 0 0 0 0 0 0 0 · · ·

0
√
2 0 0 0 0

√
3 0 0 0 0 0 0 0 · · ·

0 0
√
1 0 0 0 0

√
2 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 0 0
√
1 0 0 0 0 0 · · ·

0 0 0
√
3 0 0 0 0 0 0

√
4 0 0 0 · · ·

0 0 0 0
√
2 0 0 0 0 0 0

√
3 0 0 · · ·

0 0 0 0 0
√
1 0 0 0 0 0 0

√
2 0 · · ·

0 0 0 0 0 0 0 0 0 0 0 0 0
√
1 · · ·...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .




,

L2 =diag(0, 0, 0, 1
2




1 0 −1
0 2 0
−1 0 1


 , 1, 1, · · · ) .

To compute the hypocoercivity index of the BGK model in 2D, it is preferable to
use the second basis with the linear ordering g̃m (m ∈ N0). We shall give the ma-
trix representation of the two dimensional BGK equation (74) in the second velocity
basis, again only for the spatial modes k = (κ, 0)⊤, κ ∈ K. To obtain the corre-

sponding matrices L̃1 and L̃2, we simply represent the linear basis transformation
by the infinite matrix

S = diag(1, 1, 1, 1√
2



1 0 1

0
√
2 0

1 0 −1


 , 1, 1, · · · ) ,
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which is self-inverse, i.e. S = S−1. Thus we compute L̃1 = S−1L1S and L̃2 =
S−1L2S, yielding

L̃1 =




0 1 0 0 0 0 0 0 0 0 0 · · ·
1 0 0 1 0 1 0 0 0 0 0 · · ·
0 0 0 0 1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0

√
3√
2

0 1√
2

0 0 · · ·
0 0 1 0 0 0 0

√
2 0 0 0 · · ·

0 1 0 0 0 0
√
3√
2

0 − 1√
2

0 0 · · ·
0 0 0

√
3√
2

0
√
3√
2

0 0 0 0 2 · · ·
0 0 0 0

√
2 0 0 0 0 0 0 · · ·

0 0 0 1√
2

0 − 1√
2

0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 2 0 0 0 0 · · ·...

...
...

...
...

...
...

...
...

...
...

. . .




,

L̃2 =diag(0, 0, 0, 0, 1, 1, · · · ) .
This second basis representation makes it easy of determine the hypocoercivity
index of the BGK model in 2D. As for the 1D model, we use Definition 2.3 in its
equivalent formulation (B1’): With ker L̃2 = span{e0, e1, e2, e3}, and the relations

L̃1e0 =e1 , L̃1e1 = e0 + e3 + e5 ,

L̃1e2 =e4 , L̃1e3 = e1 +
√
3/2 e6 +

√
1/2 e8 ,

(82)

we find the index τ = 2. At first glance this may come as a surprise, since the anal-
ogous 1D model has index 3. But in 2D, each of the two momentum-conservation
modes (represented by e1 and e2) is directly coupled to a decreasing mode (rep-
resented by e5 and e4, respectively). These modes are quadratic polynomials, but
orthogonal to |v|2, where the latter corresponds to the (conserved) kinetic energy,
cf. (78).

We define the matrices Cκ := i 2πL κL̃1 + L̃2, κ ∈ K ∪ {0} which determine the
evolution of the spatial modes of the BGK equation in 2D, cf. (81). Our next goal is
to establish a spectral gap of Cκ, uniformly in κ ∈ K. This will prove Theorem 1.1
in 2D. To this end we make an ansatz for the transformation matrices: Following
the detailed motivation from the 1D analog in §3, let Pκ, κ ∈ K be the identity
matrix whose upper-left 7× 7 block is replaced by




1 −iα/κ 0 0 0 0 0
iα/κ 1 0 0 0 −iβ/κ 0
0 0 1 0 −iγ/κ 0 0
0 0 0 1 0 0 −iω/κ
0 0 iγ/κ 0 1 0 0
0 iβ/κ 0 0 0 1 0
0 0 0 iω/κ 0 0 1




(83)

with positive parameters α, β, γ, and ω to be chosen below. The distribution of
the non-zero off-diagonal elements follows from the pattern in matrix L̃1, with the
following rationale: The α-term couples the e0-mode to the e1-mode, which is the
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only choice according to (82). The β-term couples the e1-mode to the decaying
e5-mode, and the γ-term couples the e2-mode to the decaying e4-mode. Finally,
the ω-term couples the e3-mode to the e6-mode, the first decaying mode according
to (82).

Lemma 4.1. If the matrices Pκ are chosen as (83) with β = 2α, γ = α, and

ω =
√
6α uniformly for all κ ∈ K, then there exists 0 < α+ such that Pκ and

C∗
κPκ +PκCκ are positive definite for all α ∈ (0, α+) and κ ∈ K. Moreover,

C∗
κPκ +PκCκ ≥ 2µPκ uniformly in κ ∈ K , (84)

with

µ :=

(
10

14

)10
δ11(1, α, 2α, α,

√
6α)

2
(
1 +

√
6α
) > 0 ,

where δ11(1, α, 2α, α,
√
6α) := detD1,α,2α,α,

√
6α with Dκ,α,2α,α,

√
6α defined in (111).

The proof of this lemma is deferred to Appendix A.

Remark 10. (a) Consider

α∗ = argmax
α∈[0,α+]

δ11(1, α, 2α, α,
√
6α)

2
(
1 +

√
6α
) .

Choosing Pκ with α = α∗, β = 2α, γ = α, and ω =
√
6α uniformly for all

κ ∈ K, yields (84) with the maximal constant

µ∗ =

(
10

14

)10
δ11(1, α∗, 2α∗, α∗,

√
6α∗)

2
(
1 +

√
6α∗

)

= max
α∈[0,α+]

(
10

14

)10
δ11(1, α, 2α, α,

√
6α)

2
(
1 +

√
6α
) .

(85)

(b) For L = 2π, we compute α+ = 0.2102380141... . Moreover, the constant µ∗ is
determined as µ∗ = 0.003013362117... with α∗ = 0.1453311384... .

(c) In the limit L→ +∞, the matrix C∗
κPκ +PκCκ has zero eigenvalues, which

is apparent from its upper left submatrix Dκ,α,2α,α,
√
6α defined in (111). Ac-

cordingly, α+ → 0 in the limit L → ∞. Moreover, α+ → 0 in the limit
L→ 0.

Proof of Theorem 1.1 in 2D. We consider a solution h of (9), and the entropy func-

tional E2(f̃) defined by

E2(f̃) :=
∑

k∈Z2

〈hk(v),P|k|hk(v)〉L2(M−1
1 ) ,

with f̃(t) := M1 + h(t). Here the matrices P0 = I and Pκ defined in (83) for
κ = |k| 6= 0 are regarded as bounded operators on L2(M−1

1 ). Then

d

dt
E2(f̃) = −

∑

k∈Z2

〈hk(v), (C
∗
|k|P|k| +P|k|C|k|)hk(v)〉L2(M−1

1 )
≤ −2min{1, µ∗} E

2(f̃) ,

where 1 is the decay rate of h0, cf. (67). This implies (11) with λ2(L) := 2min{1, µ∗}
and µ∗ from (85).

The constants c2 and C2 in the estimate (10) follow from (112):

c2(L) =
(
1 +

√
6α∗

)−1

, C2(L) =
(
1−

√
6α∗

)−1

.

This finishes the proof of Theorem 1.1 in 2D.
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5. Linearized BGK equation in 3D. Next we shall analyze the linearized BGK
equation (9) in 3D:

∂th(x, v, t) + v · ∇xh(x, v, t)

=M1(v)

[(
5

2
− |v|2

2

)
σ(x, t) + v · µ(x, t) +

(
− 1

2
+

|v|2
6

)
τ(x, t)

]
− h(x, v, t) ,

for the perturbation h(x, v, t) ≈ f(x, v, t)−M1(v) with t ≥ 0, x ∈ T̃3, v ∈ R
3.

Again we consider the x–Fourier series of h:

h(x, v, t) =
∑

k∈Z3

hk(v, t) e
i 2π

L
k·x .

Each spatial mode hk(v, t) is decoupled and evolves as

∂thk + i 2πL k · v hk

=M1(v)

[(
5

2
− |v|2

2

)
σk(t) + v · µk(t) +

(
− 1

2
+

|v|2
6

)
τk(t)

]
− hk(v, t) ,

(86)

Here, σk, µk and τk denote the spatial modes of the v–moments σ, µ and τ defined
in (6); hence

σk :=

∫

R3

hk(v, t) dv , µk :=

∫

R3

v hk(v, t) dv , τk :=

∫

R3

|v|2 hk(v, t) dv .

Next we introduce an orthonormal basis in v-direction, to represent the spatial
modes hk(·, t) ∈ L2(R3;M−1

1 ), k ∈ Z
3. Again we will use Hermite functions. As

in 2D, their multi-dimensional generalization is not unique, and we present two
options which seem to be practical:

Basis 1 (“pure tensor-basis”). This is a straightforward generalization of the 2D

case. Using (75) and the normalized 1D-Hermite functions gn (n ∈ N0), we define
the normalized Hermite functions in 3D as in (76),

gm(v) :=

3∏

j=1

gmj
(vj) for m = (m1, . . . ,m3) ∈ N

3
0 .

Then, gm (m ∈ N
3
0) form an orthonormal basis of L2(R3;M−1

1 ) and inherit a simple
recurrence relation (77).

As in 2D, we shall use a lexicographic order, i.e. we order {gm} first (increasingly)
with respect to the total order |m|, and within a set of order |m|, we order first
(decreasingly) with respect to m1, and then m2. Thus, we obtain the linearly
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ordered basis

g0(v) = g0,0,0(v) = M1(v) , g1(v) = g1,0,0(v) = v1M1(v) ,

g2(v) = g0,1,0(v) = v2M1(v) , g3(v) = g0,0,1(v) = v3M1(v) ,

g4(v) = g2,0,0(v) =
1√
2
(v21 − 1)M1(v) , g5(v) = g1,1,0(v) = v1v2M1(v) ,

g6(v) = g1,0,1(v) = v1v3M1(v) , g7(v) = g0,2,0(v) =
1√
2
(v22 − 1)M1(v) ,

g8(v) = g0,1,1(v) = v2v3M1(v) , g9(v) = g0,0,2(v) =
1√
2
(v23 − 1)M1(v) ,

g10(v) = g3,0,0(v) =
1√
3!
(v31 − 3v1)M1(v) , g11(v) = g2,1,0(v) =

1√
2
(v21 − 1)v2M1(v) ,

g12(v) = g2,0,1(v) =
1√
2
(v21 − 1)v3M1(v) , g13(v) = g1,2,0(v) =

1√
2
v1(v

2
2 − 1)M1(v) ,

g14(v) = g1,1,1(v) = v1v2v3M1(v) , g15(v) = g1,0,2(v) =
1√
2
v1(v

2
3 − 1)M1(v) ,

g16(v) = g0,3,0(v) =
1√
3!
(v32 − 3v2)M1(v) , g17(v) = g0,2,1(v) =

1√
2
(v22 − 1)v3M1(v) ,

g18(v) = g0,1,2(v) =
1√
2
v2(v

2
3 − 1)M1(v) , g19(v) = g0,0,3(v) =

1√
3!
(v33 − 3v3)M1(v) ,

g20(v) = g4,0,0(v) =
1√
4!
(v41 − 6v21 + 3)M1(v), . . . .

Basis 2 (“energy-basis”). In analogy to the 2D case from §4, it is natural to construct
a basis of orthogonal polynomials H̃m(v) (m ∈ N

3
0) that involves the kinetic energy

polynomial |v|2/2 (minus a multiple of the mass); in 3D the relevant term is (|v|2−
3)/2. Again, we only have to modify the Hermite polynomials of second order:

H̃m(v) =





1
2 (H2,0,0(v) +H0,2,0 +H0,0,2(v)) =

|v|2
2 − 3

2 if m = (2, 0, 0) ,

H2,0,0(v)− 1
2 (
√
3 + 1)H0,2,0 +

1
2 (
√
3− 1)H0,0,2(v) if m = (0, 2, 0) ,

H2,0,0(v) +
1
2 (
√
3− 1)H0,2,0 − 1

2 (
√
3 + 1)H0,0,2(v) if m = (0, 0, 2) ,

Hm(v) else.

Similarly, we define normalized Hermite functions

g̃m(v) =





1√
3

(
g2,0,0(v) + g0,2,0(v) + g0,0,2(v)

)
if m = (2, 0, 0) ,

1√
3

(
g2,0,0(v)−

√
3+1
2 g0,2,0(v) +

√
3−1
2 g0,0,2(v)

)
if m = (0, 2, 0) ,

1√
3

(
g2,0,0(v) +

√
3−1
2 g0,2,0(v)−

√
3+1
2 g0,0,2(v)

)
if m = (0, 0, 2) ,

gm(v) else.

We remark that it is most convenient to obtain g̃0,2,0 and g̃0,0,2 from diagonalizing
the matrix L2 (see (90) below). The elements g̃m satisfy a recurrence relation similar
to (77); except for identities involving g̃2,0,0, g̃0,2,0 or g̃0,0,2. For example,

v1g̃2,0,0(v) =
1√
3
v1
(
g2,0,0(v) + g0,2,0(v) + g0,0,2(v)

)

=
1√
3

(√
3g̃3,0,0(v) +

√
2g̃1,0,0(v) + g̃1,2,0(v) + g̃1,0,2(v)

)
.

Whereas the first basis gm(v) (m ∈ N
3
0) inherits a simple recurrence formula with

three elements; for the second basis g̃m(v) (m ∈ N
3
0) the recurrence formula for

g̃2,0,0(v) relates five elements.
To derive the vector representation of (86), it is preferable to use the first ba-

sis with the linear ordering gm(v), m ∈ N0. With the identity (g4(v) + g7(v) +
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g9(v))/
√
2 = (|v|2 − 3)M1(v)/2, we rewrite (86) as

∂thk + i 2πL k · v hk =g0(v)σk(t) +



g1(v)
g2(v)
g3(v)


 · µk(t)

+
(
g4(v) + g7(v) + g9(v)

)τk(t)− 3σk(t)

3
√
2

− hk(v, t)

(87)

for t ≥ 0. As in 1D, the spatially homogeneous mode again satisfies d
dth0(v, t) =

−h0(v, t), cf. (67). Next we expand hk(·, t) ∈ L2(R3;M−1
1 ) in the orthonormal basis

gm (m ∈ N0):

hk(v, t) =

∞∑

m=0

ĥk,m(t) gm(v) with ĥk,m = 〈hk(v), gm(v)〉L2(M−1
1 ) .

For each spatial mode k ∈ Z
3, the “infinite vector” ĥk(t) = (ĥk,0(t), ĥk,1(t), ...)

⊤ ∈
ℓ2(N0) contains all Hermite coefficients of hk(·, t). In particular, we have

ĥk,0 = σk ,
(
ĥk,1 , ĥk,2 , ĥk,3

)⊤
= µk ∈ R

3 , 1√
2
(ĥk,4+ĥk,7+ĥk,9) =

1

2
τk−

3

2
σk .

Thus, we can rewrite (87) as

∂thk + i 2πL k · v hk =g0(v)ĥk,0 +



g1(v)
g2(v)
g3(v)


 ·



ĥk,1
ĥk,2
ĥk,3




+ 1
3

(
g4(v) + g7(v) + g9(v)

)
(ĥk,4 + ĥk,7 + ĥk,9)− hk(v, t) ,

(88)

for k ∈ Z
3, t ≥ 0. Since (88) is rotationally invariant (as in 2D), it suffices to

consider (88) for vectors k = (κ, 0)⊤ with the discrete moduli

κ ∈ K :=
{
r ≥ 1

∣∣ ∃k ∈ Z
3 \ {0} with r = |k|

}
.

With the notation hκ := h(κ,0) and ĥκ := ĥ(κ,0), (88) reads

∂thκ + i 2πL κv1 hκ =g0(v)ĥκ,0 +



g1(v)
g2(v)
g3(v)


 ·



ĥκ,1
ĥκ,2
ĥκ,3




+ 1
3

(
g4(v) + g7(v) + g9(v)

)
(ĥκ,4 + ĥκ,7 + ĥκ,9)− hκ(v, t) ,

for κ ∈ K, t ≥ 0. Then, the vector of its Hermite coefficients satisfies

∂tĥκ(t) + i 2πL κL1ĥκ(t) = −L2ĥκ(t) , κ ∈ K , t ≥ 0 , (89)

where the operators L1, L2 are represented by symmetric “infinite matrices” on
ℓ2(N0):
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L1 =




0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
1 0 0 0

√
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0

√
2 0 0 0 0 0 0 0 0

√
3 0 0 0 0 0 0 0 0 0 · · ·

0 0 1 0 0 0 0 0 0 0 0
√
2 0 0 0 0 0 0 0 0 · · ·

0 0 0 1 0 0 0 0 0 0 0 0
√
2 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 · · ·
0 0 0 0

√
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

0 0 0 0 0
√
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0
√
2 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .




,

L2 =diag(0, 0, 0, 0, 1
3




2 0 0 −1 0 −1

0 3 0 0 0 0

0 0 3 0 0 0

−1 0 0 2 0 −1

0 0 0 0 3 0

−1 0 0 −1 0 2




, 1, 1, · · · ) . (90)

To determine the hypocoercivity index of the BGK model in 3D, it is preferable to
use the second basis with the linear ordering g̃m(v), m ∈ N0. Again, we shall give
the matrix representation of the BGK equation (86) in the second velocity basis only

for the spatial modes k = (κ, 0)⊤, κ ∈ K. To obtain the corresponding matrices L̃1

and L̃2, we simply represent the linear basis transformation by the infinite matrix

S = diag(1, 1, 1, 1,




1√
3

0 0 1√
3

0 1√
3

0 1 0 0 0 0

0 0 1 0 0 0
1√
3

0 0 − 1
2 (1 +

1√
3
) 0 1

2 (1− 1√
3
)

0 0 0 0 1 0
1√
3

0 0 1
2 (1− 1√

3
) 0 − 1

2 (1 +
1√
3
)




, 1, 1, · · · ) .
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which is self-inverse, i.e. S = S−1. Thus we compute L̃1 = S−1L1S and L̃2 =
S−1L2S, which yields

L̃1 =




0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
1 0 0 0

√
2√
3

0 0
√
2√
3

0
√
2√
3

0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0

√
2√
3

0 0 0 0 0 0 0 0 1 0 0 1√
3

0 1√
3

0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 0 0 0

√
2 0 0 0 0 0 0 0 0 0 · · ·

0 0 0 1 0 0 0 0 0 0 0 0
√
2 0 0 0 0 0 0 0 0 · · ·

0
√
2√
3

0 0 0 0 0 0 0 0 1 0 0 A 0 B 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 · · ·
0

√
2√
3

0 0 0 0 0 0 0 0 1 0 0 B 0 A 0 0 0 0 0 · · ·
0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 2 · · ·
0 0 0 0 0

√
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0
√
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

0 0 0 0 1√
3

0 0 A 0 B 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 1√

3
0 0 B 0 A 0 0 0 0 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 · · ·...

...
...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...
...
...

...
. . .




with A := − 1
2

(
1 + 1√

3

)
, B := 1

2

(
1− 1√

3

)
, and

L̃2 =diag(0, 0, 0, 0, 0, 1, 1, 1, · · · ) .

To determine the hypocoercivity index of the BGK model in 3D, we use Definition
2.3 in its equivalent formulation (B1’): With ker L̃2 = span{e0, e1, e2, e3, e4}, and
the relations

L̃1e0 =e1 , L̃1e1 = e0 +
√
2√
3
(e4 + e7 + e9) ,

L̃1e2 =e5 , L̃1e3 = e6 , L̃1e4 =
√
2√
3
e1 + e10 +

1√
3
(e13 + e15) ,

we find the index τ = 2 (like in 2D). Each of the three momentum-conservation
modes (represented by e1, e2 and e3) is directly coupled to a decreasing mode.

We define the matrices Cκ := i 2πL κ L̃1 + L̃2, κ ∈ K ∪ {0}, which determine the
evolution of the spatial modes of the BGK equation in 3D, cf. (89). Our next goal is
to establish a spectral gap of Cκ, uniformly in κ ∈ K. This will prove Theorem 1.1
in 3D. To this end we make an ansatz for the transformation matrices: Following
the detailed motivation from the 1D analog in §3, let Pκ, κ ∈ K be the identity
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matrix whose upper-left 11× 11 block is replaced by



1 − i
κα 0 0 0 0 0 0 0 0 0

i
κα 1 0 0 0 0 0 − i

κβ 0 0 0
0 0 1 0 0 − i

κγ 0 0 0 0 0
0 0 0 1 0 0 − i

κω 0 0 0 0
0 0 0 0 1 0 0 0 0 0 − i

κη
0 0 i

κγ 0 0 1 0 0 0 0 0
0 0 0 i

κω 0 0 1 0 0 0 0
0 i

κβ 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 i

κη 0 0 0 0 0 1




(91)

with positive parameters α, β, γ, ω, and η to be chosen below. The distribution of
the non-zero off-diagonal elements follows from the pattern in matrix L̃1.

Lemma 5.1. If the matrices Pκ are chosen as (91) with β =
√
3α, γ = α, ω = α,

and η = α uniformly for all κ ∈ K, then there exists a positive α+ such that Pκ and
C∗

κPκ+PκCκ are positive definite for all α ∈ (0, α+) and for all κ ∈ K. Moreover,

C∗
κPκ +PκCκ ≥ 2µPκ uniformly in κ ∈ K , (92)

with

µ :=

(
20

32

)20
δ21(1, α,

√
3α, α, α, α)

2(1 + 2α)
> 0 ,

where δ21(1, α,
√
3α, α, α, α) := detD1,α,

√
3α,α,α,α with the matrix Dκ,α,

√
3α,α,α,α

defined in (114).

The proof of this lemma is deferred to Appendix A.

Remark 11. (a) Consider

α∗ = argmax
α∈[0,α+]

δ21(1, α,
√
3α, α, α, α)

2(1 + 2α)
.

Choosing Pκ with α = α∗, β =
√
3α, γ = α, ω = α, and η = α uniformly for

all κ ∈ K, yields (92) with the maximal constant

µ∗ =

(
20

32

)20
δ21(1, α∗,

√
3α∗, α∗, α∗, α∗)

2(1 + 2α∗)

= max
α∈[0,α+]

(
20

32

)20
δ21(1, α,

√
3α, α, α, α)

2(1 + 2α)
.

(93)

(b) For L = 2π, we compute α+ = 0.214287873283229... . Moreover, the constant
µ∗ is determined as µ∗ = 0.0001774540949... with α∗ = 0.1644256115... .

(c) In the limit L→ +∞, the matrix C∗
κPκ +PκCκ has zero eigenvalues, which

is apparent from its upper left submatrix Dκ,α,
√
3α,α,α,α defined in (114).

Accordingly, α+ → 0 in the limit L → ∞. Moreover α+ → 0 in the limit
L→ 0.

Proof of Theorem 1.1 in 3D. We consider a solution h of (9), and the entropy func-

tional E3(f̃) defined by

E3(f̃) :=
∑

k∈Z3

〈hk(v),P|k|hk(v)〉L2(M−1
1 ) , (94)
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with f̃(t) := M1 + h(t). Here the matrices P0 = I and Pκ defined in (91) for
κ = |k| 6= 0 are regarded as bounded operators on L2(M−1

1 ). Then

d

dt
E3(f̃) =−

∑

k∈Z3

〈hk(v), (C∗
|k|P|k| +P|k|C|k|)hk(v)〉L2(M−1

1 )

≤− 2min{1, µ∗} E3(f̃) ,

(95)

where 1 is the decay rate of h0, cf. (67). This implies (11) with λ3(L) := 2min{1, µ∗}
and µ∗ from (93). The constants c3 and C3 in the estimate (10) follow from (115):

c3(L) = (1 + 2α∗)
−1

, C3(L) = (1− 2α∗)
−1

.

This finishes the proof of Theorem 1.1 in 3D.

6. Local exponential stability for the BGK equation in 3D. This analysis
is an extension of §4.5 in [1]. To make is self-contained we give the complete proof
and not only the modification of the key steps.

For γ ≥ 0, let Hγ(T̃3) be the Sobolev space consisting of the completion of

smooth functions ϕ on T̃3 in the Hilbertian norm

‖ϕ‖2Hγ :=
∑

k∈Z3

(1 + |k|2)γ |ϕk|2 ,

where ϕk (k ∈ Z
3) is the kth Fourier coefficient of ϕ. Let Hγ denote the Hilbert

space Hγ(T̃3)⊗L2(R3;M−1
1 (v) dv) (as a tensor product), where the inner product

in Hγ is given by

〈f, g〉Hγ
=

∫

T̃3

∫

R3

f(x, v) [(1−∆x)
γ
g(x, v)]M−1

1 (v) dv dx̃ ,

where dx̃ denotes the normalized Lebesgue measure on T̃3. Then H0 is simply the
weighted space L2(T̃3 × R

3;M−1
1 (v) dx̃ dv).

Proof of Theorem 1.2. (a) For any solution h(t) to (9) with Ed(hI + M1) < ∞,

normalized according to (7), we consider the function f̃(t) := h(t)+ f∞ with f∞ =
M1. We define a family of entropy functionals Eγ (γ ≥ 0) by

Eγ(f̃) :=
∑

k∈Z3

(1 + |k|2)γ〈hk(v),P|k|hk(v)〉L2(M−1
1 ) , (96)

as an extension of the entropy E3(f̃) in (94). For all γ ≥ 0, the estimates

3
4Eγ(f̃) ≤ 1

1+2α∗
Eγ(f̃) ≤ ‖h‖2Hγ

≤ 1
1−2α∗

Eγ(f̃) ≤ 3
2Eγ(f̃) (97)

follow from (115) and Remark 11(b). Moreover, the second statement in Theo-
rem 1.2(a) follows just as in the proof of Theorem 1.1 in 3D where the numerical
values are chosen according to Remark 11(b).

(b) Let f be a solution of the BGK equation (1) with constant temperature T = 1
and define h(x, v, t) := f(x, v, t)−M1(v) as in the introduction. Moreover, let σ, µ
and τ be defined in terms of f as in (6). For all γ ≥ 0, ‖σ‖2Hγ = 〈σM1, f − f∞〉Hγ

with f∞ =M1. Then by the Cauchy-Schwarz inequality,

‖σ‖2Hγ ≤ ‖σM1‖Hγ
‖f − f∞‖Hγ

= ‖σ‖Hγ‖f − f∞‖Hγ
. (98)

Likewise, ‖µ‖2Hγ = 〈µ · vM1, f − f∞〉Hγ
, and hence

‖µ‖2Hγ ≤ ‖µ · vM1‖Hγ
‖f − f∞‖Hγ

≤
√
3‖µ‖Hγ‖f − f∞‖Hγ

, (99)
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as well as, ‖τ‖2Hγ = 〈τ |v|2M1, f − f∞〉Hγ
, and hence

‖τ‖2Hγ ≤ ‖τ |v|2M1‖Hγ
‖f − f∞‖Hγ

=
√
15‖τ‖Hγ‖f − f∞‖Hγ

. (100)

Using a Sobolev embedding (with γ > 3/2) we can estimate the perturbations of

the first 3 moments in L∞(T̃3) as

‖σ‖∞ ≤ Cγ‖f−f∞‖Hγ
, ‖µ‖∞ ≤ Cγ‖f−f∞‖Hγ

, ‖τ‖∞ ≤ Cγ‖f−f∞‖Hγ
. (101)

Using these estimates it is a simple matter to control the approximation in (8): For

s ∈ [0, 1] and (x, v) ∈ T̃3 × R
3, define (inspired by (8))

F (s, x, v) :=
(1 + sσ)

5
2 (x)

(
2π
{
1 + 1

3

[
sτ(x)− s2|µ|2(x)

1+sσ(x)

]}) 3
2

× exp

{
− |v(1 + sσ(x))− sµ(x)|2

2
(
1 + 1

3

[
sτ(x)− s2|µ|2(x)

1+sσ(x)

])
(1 + sσ(x))

}
,

(102)

so that the gain term in the linearized BGK equation (9) is ∂sF (0, x, v). In this
notation,

Rf (x, v) :=Mf (x, v)−M1(v)

−
[(

5

2
− |v|2

2

)
σ(x) + v · µ(x) +

(
−1

2
+

|v|2
6

)
τ(x)

]
M1(v)

=

∫ 1

0

[∂sF (s, x, v)− ∂sF (0, x, v)] ds

=

∫ 1

0

∫ r

0

[
∂2sF (s, x, v)

]
ds dr .

To display the complicated expression for ∂2sF (s, x, v), we define

ρs := 1 + sσ , us :=
s

ρs
µ , µs := sµ , Ps := 1 +

1

3

(
sτ − |µs|2

ρs

)
.

Then ∂2sF (s, x, v) reads

∂2sF (s, x, v)

F (s, x, v)

=

(
15

4 ρ2s
− 5

2 Ps ρs
|v − us|2

)
σ2 +

(
− 15

2 Ps ρs
+

5

P 2
s

|v − us|2
)
σ ∂sPs

+

(
5

Ps ρ2s

)
σ ((v − us) · µ) +

(
15

4 P 2
s

− 5 ρs
2 P 3

s

|v − us|2
)
(∂sPs)

2

+

(
− 5

P 2
s ρs

)
∂sPs ((v − us) · µ) +

(
− 1

3P 2
s ρ2s

|v − us|2
)
|µ|2

+

(
1

Ps ρs
(v − us) · µ− 1

2

σ

Ps
|v − us|2 + 1

2

ρs
P 2
s

|v − us|2 ∂sPs

)2

,

where ∂sPs := 1
3

(
τ − 2 s|µ|2

sσ+1 + s2|µ|2σ
(sσ+1)2

)
. One can now verify that ∂2sF (s, x, v) is

of the order O(σ2 + |µ|2 + τ2), which will be related to O((f − f∞)2) due to the
estimates (98)–(100).
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Simple but cumbersome calculations now show that if γ > 3/2 and ‖f − f∞‖Hγ

is sufficiently small, then there exists a finite constant C̃γ depending only on γ such
that for all s ∈ [0, 1],

∥∥∂2sF (s, x, v)
∥∥
Hγ

≤ C̃γ‖f − f∞‖2Hγ
,

and hence

‖Rf‖Hγ
≤ C̃γ‖f − f∞‖2Hγ

. (103)

[The calculations are simplest for non-negative integer γ, in which case the Sobolev
norms can be calculated by differentiation. For γ > 3/2 and sufficiently small
‖f − f∞‖Hγ

, the estimates (101) ensure for all s ∈ [0, 1] the boundedness of 0 <

ǫ < ‖1 + sσ‖∞ , ‖1 + 1
3 (sτ −

s2|µ|2
1+sσ )‖∞ < ∞ (i.e. the denominators in (102)) for

some fixed ǫ > 0. They also ensure the L2(R3;M−1
1 (v) dv)-integrability of F (s, x, ·)

by using

exp
{
− |ρsv − µs|2

2Psρs

}
≤ e−|v|2/3+1 for all x ∈ T̃3 .

In (1), higher powers of ‖f − f∞‖Hγ
(arising due to derivatives of σ, µ and τ) can

be absorbed into the constant of the quadratic term.]
Now define the linearized BGK operator

Q2h(x, v, t) :=

[(
5

2
− |v|2

2

)
σ(x) + v ·µ(x) +

(
− 1

2
+

|v|2
6

)
τ(x)

]
M1(v)− h(x, v, t)

where σ, µ and τ are determined by h, and hence f . For all γ ≥ 0, Q2 is self-adjoint
on Hγ . Then the nonlinear BGK equation (1) becomes

∂th(x, v, t) + v · ∇xh(x, v, t) = Q2h(x, v, t) +Rf (x, v, t) , t ≥ 0 , (104)

which differs from the linearized BGK equation (9) only by the additional term Rf .
It is now a simple matter to prove local exponential stability. We shall use here

exactly the entropy functional Eγ(f) defined in (96) with f =M1 +h. Now assume

that h solves (104). To compute d
dtEγ(f) we use an inequality like (95) for the drift

term and for Q2h in (104), as well as ‖P|k|‖ ≤ (1 + 2α∗) and (103) for the term
Rf . This yields

d

dt
Eγ(f) ≤ −2µ Eγ(f) + 2(1 + 2α∗)C̃γ‖h‖3Hγ

, (105)

(if ‖h‖Hγ
is small enough) where we have used the fact that h = f−f∞. Due to (97),

it is now simple to complete the proof of Theorem 1.1(b) for L = 2π: In this case,
the best decay rate µ∗ = 0.0001774540949... is attained for α∗ = 0.1644256115...
(cf. Remark 11(b)). Estimate (105) shows that there is a δγ > 0 so that if the
initial data f I(x, v) satisfies ‖f I − f∞‖Hγ

< δγ , then the solution f(t) satisfies

Eγ(f(t)) ≤ e−t/2820Eγ(f I) .

Here we used that the linear decay rate in (105) is slightly better than 1
2820 , to

compensate the nonlinear term.
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Appendix A. Deferred proofs.

Proof of Lemma 3.1. We compute that C∗
kPk +PkCk is twice the identity matrix

whose upper left 5× 5 block is replaced by

Dk,α,β,γ =

=




2ℓα 0 ℓ(
√
2α− β) 0 0

0 2ℓ(
√
2β − α) 0 ℓ(

√
3β −

√
2γ) 0

ℓ(
√
2α− β) 0 2ℓ(

√
3γ −

√
2β) −iγ/k 2ℓγ

0 ℓ(
√
3β −

√
2γ) iγ/k 2− 2ℓ

√
3γ 0

0 0 2ℓγ 0 2



,

where ℓ := 2π
L . We seek to choose α, β and γ to make the matrices Pk and Dk,α,β,γ

positive definite for all k ∈ Z\{0}. Under the assumption |α|2+ |β|2+ |γ|2 < 1, the
matrix Pk will be positive definite for all k 6= 0. To simplify the analysis we shall
now set β =

√
2α and γ =

√
3α. On the one hand this will make the first three

diagonal entries of Dk,α,β,γ equal and annihilate four off-diagonal elements. But,
on the other hand, this will then lead to a reduced decay rate. But optimal decay
rates are anyhow not our goal here – due to considering only a simple ansatz for
the transformation matrices Pk. For β =

√
2α and γ =

√
3α we have

Dk,α,β,γ =




2ℓα 0 0 0 0
0 2ℓα 0 0 0
0 0 2ℓα −i

√
3α/k 2

√
3ℓα

0 0 i
√
3α/k 2− 6ℓα 0

0 0 2
√
3ℓα 0 2


 . (106)

The positive definiteness of Dk,α,
√
2α,

√
3α will follow from Sylvester’s criterion, by

choosing α such that all minors of Dk,α,
√
2α,

√
3α will be positive. Let δj(k, α) denote

the determinant of the lower right j×j submatrix ofDk,α,
√
2α,

√
3α for j = 1, 2, 3, 4, 5.

For our choice β =
√
2α and γ =

√
3α, the first minor δ1(k, α) = 2 is always positive

and the second minor δ2(k, α) = 4(1 − 3ℓα) is positive for α < 1/(3ℓ). The third
minor satisfies

δ3(k, α) = α
(
72ℓ3α2 − (48ℓ2 + 6

k2 )α+ 8ℓ
)
≥ δ3(1, α) for all k 6= 0 ,

and the lower bound δ3(1, α) is positive if

0 < α < α(3) :=
1 + 8ℓ2 −

√
1 + 16ℓ2

24ℓ3
, ℓ :=

2π

L
. (107)

Moreover 0 < α(3) < 1/(3ℓ) for all ℓ > 0 and maxℓ>0 α
(3)(ℓ) < 0.257. The fourth

and fifth minor are multiples of the third minor:

δ4(k, α) = 2ℓαδ3(k, α), δ5(k, α) = (2ℓα)2δ3(k, α) .

Hence, all minors are positive under assumption (107).
Matrix Dk,α,

√
2α,

√
3α has a block diagonal structure. Thus it has a double eigen-

value 2ℓα and the eigenvalues of its lower right 3× 3-submatrix

D
(3)

k,α,
√
2α,

√
3α

=




2ℓα −i
√
3α/k 2

√
3ℓα

i
√
3α/k 2− 6ℓα 0

2
√
3ℓα 0 2


 . (108)

Let {λ1, λ2, λ3} be the eigenvalues of D
(3)

k,α,
√
2α,

√
3α

arranged in increasing order.

We seek a lower bound on λ1. As long as D
(3)

k,α,
√
2α,

√
3α

is positive definite, the
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arithmetic-geometric mean inequality implies

λ1(k, α) =
δ3(k, α)

λ2λ3
≥ δ3(k, α)

(
λ2 + λ3

2

)−2

≥ δ3(k, α)



Tr[D

(3)

k,α,
√
2α,

√
3α
]

2




−2

=
δ3(k, α)

4(1− ℓα)2
,

since Tr[D
(3)

k,α,
√
2α,

√
3α
] = 4(1 − ℓα). Thus, if Pk is chosen with some α ∈ (0, α(3)),

β =
√
2α, and γ =

√
3α uniformly for all |k| ∈ N, then

C∗
kPk +PkCk ≥ δ3(1, α)

4(1− ℓα)2
I uniformly in |k| ∈ N , (109)

since min
{
2ℓα, δ3(1,α)

4(1−ℓα)2

}
= δ3(1,α)

4(1−ℓα)2 for all α ∈ (0, α(3)). A simple computation

shows that the eigenvalues of Pk are 1, 1 ± α
√
3 +

√
6/k, and 1 ± α

√
3−

√
6/k.

These eigenvalues are positive for all 0 ≤ α ≤ maxℓ>0 α
(3)(ℓ), L > 0 and k ∈ N.

Hence, uniformly in |k|,
(
1− α

√
3 +

√
6
)
I ≤ Pk ≤

(
1 + α

√
3 +

√
6
)
I . (110)

Combining (110) with (109) yields the result (70).

The following lemma will be needed in the proofs of Lemma 4.1 and Lemma 5.1.

Lemma A.1. Let p(κ, α) be a rational function of the form

p(κ, α) =
(
p0(α) + p1(α)

1
κ2

)
1
κ2 + p2(α) ,

where p0, p1, and p2 are polynomials in α. If there exists α̃ > 0 such that

0 ≤ p1(α) and p0(α) + 2p1(α) ≤ 0 ∀α ∈ [0, α̃] ,

then p(1, α) ≤ p(κ, α) for all α ∈ [0, α̃] and 1 ≤ κ.

Proof. We want to prove p(1, α) ≤ p(κ, α) for all α ∈ [0, α̃] and 1 ≤ κ, or equiva-
lently,

p0(α) + p1(α) ≤
(
p0(α) + p1(α)

1
κ2

)
1
κ2 ∀α ∈ [0, α̃] ∀1 ≤ κ .

We multiply the inequality with κ2

(
p0(α) + p1(α)

)
κ2 ≤ p0(α) + p1(α)

1
κ2

and rearrange the summands

p0(α) (κ
2 − 1) ≤ p1(α)

(
1
κ2 − κ2) = −p1(α) (κ

2−1)(κ2+1)
κ2 .

For κ = 1 the inequality holds trivially. Therefore, we continue with κ > 1 and
divide the inequality by (κ2 − 1) to obtain

p0(α) ≤ −p1(α)κ
2+1
κ2 .

Under our assumptions this inequality holds since

p0(α) ≤ −2p1(α) ≤ −p1(α)κ
2+1
κ2 ≤ 0 .

This finishes the proof.
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Proof of Lemma 4.1. We compute that C∗
κPκ +PκCκ is twice the identity matrix

whose upper left 11× 11 block is replaced by Dκ,α,β,γ,ω given as



2ℓα 0 0 ℓα 0 A 0 0 0 0 0
0 −2A 0 0 0 − i

κβ B 0 − 1√
2
ℓβ 0 0

0 0 2ℓγ 0 − i
κγ 0 0

√
2ℓγ 0 0 0

ℓα 0 0
√
6ℓω 0 C − i

κω 0 0 0 2ℓω
0 0 i

κγ 0 D 0 0 0 0 0 0
A i

κβ 0 C 0 E 0 0 0 0 0
0 B 0 i

κω 0 0 F 0 − 1√
2
ℓω 0 0

0 0
√
2ℓγ 0 0 0 0 2 0 0 0

0 − 1√
2
ℓβ 0 0 0 0 − 1√

2
ℓω 0 2 0 0

0 0 0 0 0 0 0 0 0 2 0
0 0 0 2ℓω 0 0 0 0 0 0 2




,

with ℓ := 2π/L > 0 and

A :=ℓ(α− β) , B :=ℓ
(√

3√
2
β − ω

)
, C :=ℓ

(√
3√
2
ω − β

)
,

D :=2(1− ℓγ) , E :=2(1− ℓβ) , F :=2−
√
6ℓω .

We seek to choose α, β, γ and ω such that the matrices Pκ and Dκ,α,β,γ,ω are
positive definite for all κ ∈ K. The positive definiteness of Dκ,α,β,γ,ω will follow
from Sylvester’s criterion, if all minors of Dκ,α,β,γ,ω are positive. This will yield
restrictions on the choice of parameters α, β, γ and ω. The analysis will simplify,
if we choose β, γ and ω as multiples of α, because then the first four columns will
depend linearly on α and, moreover, several terms will drop out. For β = 2α, γ = α
and ω =

√
6α, we compute Dκ,α,2α,α,

√
6α as




2ℓα 0 0 ℓα 0 −ℓα 0 0 0 0 0
0 2ℓα 0 0 0 − i

κ2α 0 0 −
√
2ℓα 0 0

0 0 2ℓα 0 − i
κα 0 0

√
2ℓα 0 0 0

ℓα 0 0 6ℓα 0 ℓα − i
κ

√
6α 0 0 0 2

√
6ℓα

0 0 i
κα 0 G 0 0 0 0 0 0

−ℓα i
κ2α 0 ℓα 0 H 0 0 0 0 0

0 0 0 i
κ

√
6α 0 0 J 0 −

√
3ℓα 0 0

0 0
√
2ℓα 0 0 0 0 2 0 0 0

0 −
√
2ℓα 0 0 0 0 −

√
3ℓα 0 2 0 0

0 0 0 0 0 0 0 0 0 2 0
0 0 0 2

√
6ℓα 0 0 0 0 0 0 2




. (111)

with G := 2(1 − ℓα), H := 2(1 − 2ℓα), J := 2(1 − 3ℓα). Let δj(κ, α, β, γ, ω)
denote the determinant of the upper left j × j submatrix of Dκ,α,β,γ,ω for integers

j = 1, 2, . . . , 11. For our choice β = 2α, γ = α and ω =
√
6α, the minors δj(κ, α) :=

δj(κ, α, 2α, α,
√
6α) are given in Table 2. The first four minors are positive, if α is

positive.
The fifth minor δ5(κ, α) satisfies for positive α the inequality δ5(κ, α) ≥ δ5(1, α)

for all κ ∈ K. Moreover, δ5(1, α) is positive for α ∈ (0, αδ5) with αδ5 := 4ℓ/(4ℓ2 + 1).
Thus the fifth minor δ5(κ, α) is positive for all κ ∈ K if α ∈ (0, αδ5).

The sixth minor δ6(κ, α) has a factorization as δ6(κ, α) = δ5(κ, α)p6(κ, α)/ℓ. The
factor p6(κ, α) satisfies for positive α the inequality p6(κ, α) ≥ p6(1, α) for all κ ∈ K.
Moreover, p6(1, α) is positive for α ∈ (0, αp6

) with αp6
:= 22ℓ/(54ℓ2 + 22). Thus

the sixth minor δ6(κ, α) is positive if 0 < α < αδ6 with αδ6 := min{αδ5 , αp6
} = αp6

.
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δ1(κ, α) = 2ℓα

δ2(κ, α) = 4ℓ2α2

δ3(κ, α) = 8ℓ3α3

δ4(κ, α) = 44ℓ4α4

δ5(κ, α) = 22ℓ3α4(4ℓ− 4ℓ2α− α/κ2)

δ6(κ, α) = δ5(κ, α)p6(κ, α)/ℓ

with p6(κ, α) := − 54
11ℓ

2α+ 2ℓ− 2α/κ2.

δ7(κ, α) = 2
11ℓ2 δ5(κ, α)p7(κ, α)

with p7(κ, α) =
(
p7,0(α) + p7,1(α)

1
κ2

)
1
κ2 + p7,2(α),

p7,0(α) = 93ℓ2α2 − 34ℓα, p7,1(α) = 12α2,

p7,2(α) = 162ℓ4α2 − 120ℓ3α+ 22ℓ2.

δ8(κ, α) = 44ℓ3α4 δ7(κ,α)
δ5(κ,α)

p8(κ, α)

with p8(κ, α) = 2ℓ3α2 − 6ℓ2α+ 4ℓ− α/κ2.

δ9(κ, α) = 8ℓα4p8(κ, α)p9(κ, α)

with p9(κ, α) =
(
p9,0(α) + p9,1(α)

1
κ2

)
1
κ2 + p9,2(α),

p9,0(α) = −12ℓ3α3 + 198ℓ2α2 − 68ℓα, p9,1(α) = 24α2,

p9,2(α) = −81ℓ5α3 + 411ℓ4α2 − 262ℓ3α+ 44ℓ2.

δ10(κ, α) = 2δ9(κ, α),

δ11(κ, α) = 64ℓα4p8(κ, α)p11(κ, α)

with p11(κ, α) =
(
p11,0(α) + p11,1(α)

1
κ2

)
1
κ2 + p11,2(α),

p11,0(α) = −72ℓ4α4 − 300ℓ3α3 + 294ℓ2α2 − 68ℓα, p11,1(α) = 24α2,

p11,2(α) = 162ℓ6α4 − 909ℓ5α3 + 963ℓ4α2 − 358ℓ3α+ 44ℓ2.

Table 2. Let δj(κ, α, β, γ, ω) denote the determinant of the upper
left j × j submatrix of Dκ,α,β,γ,ω for integers j = 1, 2, . . . , 11. For

our choice β = 2α, γ = α and ω =
√
6α, the minors δj(κ, α) =

δj(κ, α, 2α, α,
√
6α) are given in this table.

The seventh minor δ7(κ, α) has a factorization δ7(κ, α) = 2δ5(κ, α)p7(κ, α)/11ℓ
2.

Due to Lemma A.1, the inequality p7(κ, α) ≥ p7(1, α) holds for some positive α̃p7
,

and consequently δ7(κ, α) ≥ δ7(1, α) holds for all 0 ≤ α ≤ min{α̃p7
, αδ5} and κ ∈ K.

The quadratic polynomial p7(1, α) has two positive roots 0 < αp7,− < αp7,+ and is
positive for all 0 < α < αp7

with αp7
:= αp7,−. Consequently, for 0 < α < αδ7 with

αδ7 := min{αδ5 , α̃p7
, αp7

} the seventh minor δ7(κ, α) is positive for all κ ∈ K.
The eighth minor δ8(κ, α) has a factorization. For positive α, factor p8 satisfies

the inequality p8(κ, α) > p8(1, α) for all κ ∈ K. The quadratic polynomial p8(1, α)
has two positive roots 0 < αp8,− < αp8,+ and is positive for all 0 < α < αp8

with αp8
:= αp8,−. Thus, the eighth minor δ8(κ, α) is positive for all κ ∈ K, if

0 < α < αδ8 with αδ8 := min{αδ5 , αδ7 , αp8
}.
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The ninth minor δ9(κ, α) has a factorization as δ9(κ, α) = 8ℓα4p8(κ, α)p9(κ, α).
Due to Lemma A.1, the inequality p9(κ, α) ≥ p9(1, α) holds for some positive α̃p9

,
and consequently δ9(κ, α) ≥ δ9(1, α) holds for all 0 ≤ α ≤ min{α̃p9

, αp8
} and

κ ∈ K. The cubic polynomial p9(1, α) is positive at α = 0 and limα→∞ p9(1, α) =
−∞. Hence, there exists a positive root αp9

such that p9(1, α) is positive for all
0 < α < αp9

. Consequently, for all α ∈ (0, αδ9) with αδ9 := min{αp9
, α̃p9

, αp8
},

the ninth minor δ9(κ, α) is positive for all κ ∈ K.
The tenth minor δ10 satisfies δ10(κ, α) = 2δ9(κ, α). Therefore the tenth minor

δ10(κ, α) is positive for all κ ∈ K if α ∈ (0, αδ9).
The eleventh minor δ11(κ, α) has a factorization δ11 = 64ℓα4p8(κ, α)p11(κ, α).

Due to Lemma A.1, the inequality p11(κ, α) ≥ p11(1, α) holds for some positive
α̃p11

, and consequently δ11(κ, α) ≥ δ11(1, α) holds for all 0 ≤ α ≤ min{α̃p11
, αp8

}
and κ ∈ K. The quartic polynomial p11(1, α) is positive at α = 0. Hence, there
exists a positive root αp11

such that p11(1, α) is positive for all 0 < α < αp11
.

Consequently, for α ∈ (0, αδ11) with αδ11 :=:= min{αp11
, α̃p11

, αp8
}, the eleventh

minor δ11(κ, α) is positive for all κ ∈ K.
Let {λ1, λ2, . . . , λ11} be the eigenvalues of Dκ,α,β,γ,ω arranged in increasing or-

der. We seek a lower bound on λ1. As long as Dκ,α,β,γ,ω is positive definite, the
arithmetic-geometric mean inequality implies

λ1(κ, α, β, γ, ω) =
δ11(κ, α, β, γ, ω)∏11

j=2 λj
≥ δ11(κ, α, β, γ, ω)

(
10

∑11
j=2 λj

)10

≥δ11(κ, α, β, γ, ω)
(

10

Tr[Dκ,α,β,γ,ω]

)10

≥
(
10

14

)10

δ11(κ, α, β, γ, ω) ,

since Tr[Dκ,α,β,γ,ω] = 14 independently of κ, α, β, γ and ω. A simple computation

shows that the eigenvalues of Pκ are 1, 1±α/κ, 1±
√
5α/κ, and 1±

√
6α/κ. Hence,

uniformly in κ ∈ K,
(
1−

√
6|α|

)
I ≤ Pκ ≤

(
1 +

√
6|α|

)
I . (112)

Thus, all matrices Pκ are positive definite, if |α| < 1√
6
. Finally, if Pκ is chosen with

α ∈ (0, α+) , where α+ := min{1/
√
6 , αδ5 , αδ6 , αδ7 , αδ8 , αδ9 , αδ11} ,

β = 2α, γ = α, and ω =
√
6α uniformly for all κ ∈ K, then

C∗
κPκ +PκCκ ≥

(
10

14

)10

δ11(1, α, 2α, α,
√
6α) I uniformly in κ ∈ K . (113)

Combining (112) with (113) yields the result.

Proof of Lemma 5.1. We compute that C∗
κPκ +PκCκ is twice the identity matrix

whose upper left 21 × 21 block is replaced by Dκ,α,β,γ,ω,η given in Table 3. We
seek to choose α, β, γ, ω and η such that the matrices Pκ and Dκ,α,β,γ,ω,η are
positive definite for all κ ∈ K. The positive definiteness of Dκ,α,β,γ,ω,η will follow
from Sylvester’s criterion, if all minors of Dκ,α,β,γ,ω,η are positive. This will yield
restrictions on the choice of parameters α, β, γ, ω and η. The analysis will simplify,
if we choose β, γ, ω and η as multiples of α, because then the first six columns
will depend linearly on α. For β =

√
3α, γ = α, ω = α and η = α, we compute

Dκ,α,
√
3α,α,α,α as in Table 4.
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A
N
T
O
N

A
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A
N
D

E
R
IC

A
.
C
A
R
L
E
N




2ℓα 0 0 0
√
2√
3
ℓα 0 0 A 0

√
2√
3
ℓα 0 0 0 0 0 0 0 0 0 0 0

0 B 0 0 0 0 0 − i
κβ 0 0 −C 0 0 3+

√
3

6 ℓβ 0 3−
√
3

6 ℓβ 0 0 0 0 0

0 0 2ℓγ 0 0 − i
κγ 0 0 0 0 0

√
2ℓγ 0 0 0 0 0 0 0 0 0

0 0 0 2ℓω 0 0 − i
κω 0 0 0 0 0

√
2ℓω 0 0 0 0 0 0 0 0√

2√
3
ℓα 0 0 0 2ℓη 0 0 D 0 ℓη − i

κη 0 0 0 0 0 0 0 0 0 2ℓη

0 0 i
κγ 0 0 2− 2ℓγ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 i
κω 0 0 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A i
κβ 0 0 D 0 0 F 0 −

√
2√
3
ℓβ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0√
2√
3
ℓα 0 0 0 ℓη 0 0 −

√
2√
3
ℓβ 0 2 0 0 0 0 0 0 0 0 0 0 0

0 −C 0 0 i
κη 0 0 0 0 0 2− 2ℓη 0 0 − 1√

3
ℓη 0 − 1√

3
ℓη 0 0 0 0 0

0 0
√
2ℓγ 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 0
√
2ℓω 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

0 3+
√
3

6 ℓβ 0 0 0 0 0 0 0 0 − 1√
3
ℓη 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 3−

√
3

6 ℓβ 0 0 0 0 0 0 0 0 − 1√
3
ℓη 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 2ℓη 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2




Table 3. Matrix Dκ,α,β,γ,ω,η with ℓ := 2π/L > 0 and A := ℓ√
3
(
√
2α−

√
3β), B := 2√

3
ℓ(
√
2β −

√
3α), C := ℓ√

3
(
√
2η −

√
3β), D := ℓ√

3
(
√
3η −

√
2β), E := 2− 2ℓω, and F := 2− 2

√
2√
3
ℓβ.
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1




2ℓα 0 0 0
√
2√
3
ℓα 0 0

√
2−3√
3
ℓα 0

√
2√
3
ℓα 0 0 0 0 0 0 0 0 0 0 0

0 B 0 0 0 0 0 − i
κ

√
3α 0 0 3−

√
2√

3
ℓα 0 0

√
3+1
2 ℓα 0

√
3−1
2 ℓα 0 0 0 0 0

0 0 2ℓα 0 0 − i
κα 0 0 0 0 0

√
2ℓα 0 0 0 0 0 0 0 0 0

0 0 0 2ℓα 0 0 − i
κα 0 0 0 0 0

√
2ℓα 0 0 0 0 0 0 0 0√

2√
3
ℓα 0 0 0 2ℓα 0 0 −B

2 0 ℓα − i
κα 0 0 0 0 0 0 0 0 0 2ℓα

0 0 i
κα 0 0 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 i
κα 0 0 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0√

2−3√
3
ℓα i

κ

√
3α 0 0 −B

2 0 0 F 0 −
√
2ℓα 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0√
2√
3
ℓα 0 0 0 ℓα 0 0 −

√
2ℓα 0 2 0 0 0 0 0 0 0 0 0 0 0

0 3−
√
2√

3
ℓα 0 0 i

κα 0 0 0 0 0 E 0 0 − 1√
3
ℓα 0 − 1√

3
ℓα 0 0 0 0 0

0 0
√
2ℓα 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 0
√
2ℓα 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

0
√
3+1
2 ℓα 0 0 0 0 0 0 0 0 − 1√

3
ℓα 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0

√
3−1
2 ℓα 0 0 0 0 0 0 0 0 − 1√

3
ℓα 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 2ℓα 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2




(114)

Table 4. Matrix Dκ,α,
√
3α,α,α,α with ℓ := 2π/L > 0 and B := 2(

√
2− 1)ℓα, E := 2− 2ℓα, F := 2− 2

√
2ℓα.
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δ1(κ, α) = 2ℓα

δ2(κ, α) = 4(
√
2− 1)ℓ2α2

δ3(κ, α) = 8(
√
2− 1)ℓ3α3

δ4(κ, α) = 16(
√
2− 1)ℓ4α4

δ5(κ, α) = 80
3 (

√
2− 1)ℓ5α5

δ6(κ, α) = 40
3 (

√
2− 1)ℓ4α5p6(κ, α)

with p6(κ, α) = −4ℓ2α− α
κ2 + 4ℓ.

δ7(κ, α) = 20
3 (

√
2− 1)ℓ3α5p6(κ, α)

2

δ8(κ, α) = 12ℓ2 α5 p6(κ, α)
2 p8(κ, α)

with p8(κ, α) =
2−3

√
2

3 ℓ2α− 5
6

α
κ2 + 10

9 (
√
2− 1)ℓ.

δ9(κ, α) = 2 δ8(κ, α)

δ10(κ, α) = 4
3ℓ

2 α5 p6(κ, α)
2 p10(κ, α)

with p10(κ, α) = 9((
√
2− 1)ℓ2 + 1

κ2 )ℓα
2

−6((8
√
2− 6)ℓ2 + 5

κ2 )α+ 40(
√
2− 1)ℓ.

δ11(κ, α) = 2
9ℓ α

5 p6(κ, α)
2 p11(κ, α)

with p11(κ, α) =
(
p11,0(α) + p11,1(α)

1
κ2

)
1
κ2 + p11,2(α)ℓ

2,

p11,0(α) = (54
√
2− 144)ℓ3α3 + (672− 72

√
2)ℓ2α2 − (216 + 144

√
2)ℓα,

p11,1(α) = 18(6− ℓα)α2,

p11,2(α) = (9− 54
√
2)ℓ3α3 + (456

√
2− 24)ℓ2α2

+(472− 816
√
2)ℓα+ 480(

√
2− 1).

δ12(κ, α) = δ11(κ, α)
p12(κ,α)
p6(κ,α)

= 2
9ℓ α

5 p6(κ, α) p11(κ, α) p12(κ, α)

with p12(κ, α) = 4ℓ3α2 − 12ℓ2α+ 8ℓ− 2α
κ2 .

δ13(κ, α) = δ12(κ, α)
p12(κ,α)
p6(κ,α)

= δ11(κ, α)
(

p12(κ,α)
p6(κ,α)

)2
= 2

9ℓ α
5 p11(κ, α)p12(κ, α)

2

Table 5. Let δj(κ, α, β, γ, ω, η) denote the determinant of the up-
per left j× j submatrix of Dκ,α,β,γ,ω,η for integers j = 1, 2, . . . , 21.

For our choice β =
√
3α, γ = α, ω = α and η = α, the minors

δj(κ, α) = δj(κ, α,
√
3α, α, α, α) for integers j = 1, 2, . . . , 13, are

given in this table.

Let δj(κ, α, β, γ, ω, η) denote the determinant of the upper left j × j submatrix

of Dκ,α,β,γ,ω,η for integers j = 1, 2, . . . , 21. For our choice β =
√
3α, γ = α, ω = α

and η = α, the minors δj(κ, α) := δj(κ, α,
√
3α, α, α, α) are given in Tables 5–6.

The first five minors are positive if α is positive.
The sixth minor δ6(κ, α) satisfies for positive α the inequality δ6(κ, α) ≥ δ6(1, α)

for all κ ∈ K. Moreover, the factor p6(1, α) is positive for α ∈ (0, αp6
) with

αp6
:= 4ℓ/(4ℓ2 + 1). Thus the sixth minor δ6(κ, α) is positive for all κ ∈ K if

0 < α < αδ6 with αδ6 := αp6
.
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Following from the analysis of factor p6(κ, α), the seventh minor δ7(κ, α) is pos-
itive for all κ ∈ K if 0 < α < αδ7 := αδ6 .

The eighth minor δ8(κ, α) has a factorization. For positive α and κ ∈ K, the
inequalities p8(κ, α) ≥ p8(1, α) and consequently δ8(κ, α) ≥ δ8(1, α) hold. More-
over, the linear polynomial p8(1, α) is positive for 0 < α < αp8

with αp8
:=

20(
√
2− 1)ℓ/3((6

√
2− 4)ℓ2 + 5). Thus, for all κ ∈ K, the eighth minor δ8(κ, α)

is positive if 0 < α < αδ8 with αδ8 := min
{
αp6

, αp8
} = αp8

.
The ninth minor satisfies δ9(κ, α) = 2 δ8(κ, α), hence, it is positive for all 0 <

α < αδ9 := αδ8 and κ ∈ K.
The tenth minor δ10(κ, α) has a factorization. The factor p10(κ, α) has the κ-

dependent summand (9ℓα − 30)α/κ2, which is negative for 0 < α < 10/3ℓ. Under
this assumption, the inequalities p10(κ, α) ≥ p10(1, α) and δ10(κ, α) ≥ δ10(1, α)
hold for all κ ∈ K. The quadratic polynomial p10(1, α) has two positive roots

0 < α
(10)
− < α

(10)
+ and is positive if α < αp10

with αp10
:= α

(10)
− . Thus, the

tenth minor δ10(κ, α) is positive for all κ ∈ K, if 0 < α < αδ10 with αδ10 :=
min

{
αp6

, 10/3ℓ , αp10
} = min

{
αp6

, αp10
}.

The eleventh minor δ11(κ, α) has a factorization. Due to Lemma A.1, the
inequality p11(κ, α) ≥ p11(1, α) holds for some positive α̃p11

, and consequently
δ11(κ, α) ≥ δ11(1, α) holds for all 0 < α < α̃p11

and κ ∈ K. The polynomial
p11(1, α) is positive at α = 0, hence there exists a positive number αp11

such that
p11(1, α) is positive for 0 < α < αp11

and all κ ∈ K. Consequently, for 0 < α < αδ11

with αδ11 := min{αp11
, α̃p11

, αp6
} the eleventh minor δ11(κ, α) is positive for all

κ ∈ K.
The twelfth minor δ12(κ, α) has a factorization. For positive α, the inequalities

p12(κ, α) ≥ p12(1, α) and δ12(κ, α) ≥ δ12(1, α) hold for all 0 < α < min{αδ11 , αp6
} =

αδ11 and κ ∈ K. The quadratic polynomial p12(1, α) has two positive roots 0 <

α
(12)
− ≤ α

(12)
+ and is positive for 0 < α < αp12

with αp12
:= α

(12)
− . Thus, the

twelfth minor δ12(κ, α) is positive for all κ ∈ K, if 0 < α < αδ12 with αδ12 :=
min{αp6

, αp12
, αδ11} = min{αp12

, αδ11}.
The thirteenth minor satisfies δ13(κ, α) = 2

9ℓ α
5 p11(κ, α)p12(κ, α)

2. Therefore
the thirteenth minor δ13(κ, α) is positive for all κ ∈ K if 0 < α < αδ13 with
αδ13 := min{αp11

, αp12
}.

The fourteenth minor δ14(κ, α) has a factorization. The polynomial p14,1(α) is
positive if 0 < α < 6/ℓ. Moreover, the quartic polynomial p14,0(α) + 2p14,1(α) is
zero at α = 0, having a negative derivative at α = 0. Thus there exists a positive
number α(14,0) such that p14,0(α) + 2p14,1(α) is negative for 0 < α < α(14,0). Due
to Lemma A.1, the inequality p14(κ, α) ≥ p14(1, α) holds for 0 ≤ α ≤ α̃p14

:=

min{6/ℓ , α(14,0)}, and consequently δ14(κ, α) ≥ δ14(1, α) holds for all 0 ≤ α ≤ α̃p14

and κ ∈ K. The polynomial p14(1, α) is positive at α = 0, hence there exists a
positive number αp14

such that p14(κ, α) is positive for 0 < α < αp14
and all κ ∈ K.

Consequently, for 0 < α < αδ14 with αδ14 := min{αp12
, α̃p14

, αp14
} the fourteenth

minor δ14(κ, α) is positive for all κ ∈ K.
The fifteenth minor δ15(κ, α) = 2 δ14(κ, α) is positive for all κ ∈ K if 0 < α <

αδ15 := αδ14 .
The sixteenth minor δ16(κ, α) has a factorization. The polynomial p16,1(α) is

positive if 0 < α < 6/ℓ. Under this assumption, the quartic polynomial p16,0(α) +
2p16,1(α) is zero at α = 0, having a negative derivative at α = 0. Thus there exists a

positive number α(16,0) such that p16,0(α)+2p16,1(α) is negative for 0 < α < α(16,0).
Due to Lemma A.1, the inequality p16(κ, α) ≥ p16(1, α) holds for all 0 ≤ α ≤ α̃p16

:=
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δ14(κ, α) = 1
9 (1+

√
3)2
ℓ α5 p12(κ, α)

2 p14(κ, α)

with p14(κ, α) =
(
p14,0(α) + p14,1(α)

1
κ2

)
1
κ2 + ℓ2p14,2(α),

p14,0(α) = (−108
√
6− 72

√
3− 180

√
2− 144)ℓ4α4

+(360
√
6− 1824

√
3 + 720

√
2− 3396)ℓ3α3

+(−576
√
6 + 5952

√
3− 1152

√
2 + 11760)ℓ2α2

+(−1152
√
6− 1728

√
3− 2304

√
2− 3456)ℓα,

p14,1(α) = 144 (
√
3 + 2) (6− ℓα) α2,

p14,2(α) = (1440− 180
√
6 + 828

√
3− 324

√
2)ℓ4α4

−(9348− 336
√
6− 5400

√
3− 624

√
2)ℓ3α3

+(11056 + 3424
√
6 + 6368

√
3 + 6864

√
2)ℓ2α2

+(4192− 6528
√
6 + 1856

√
3− 13056

√
2)ℓα

+(3840
√
6− 3840

√
3 + 7680

√
2− 7680).

δ15(κ, α) = 2 δ14(κ, α)

δ16(κ, α) = 8
9

2+
√
3

(1+
√
3)2
ℓ α5 p12(κ, α)

2 p16(κ, α)

with p16(κ, α) =
(
p16,0(α) + p16,1(α)

1
κ2

)
1
κ2 + ℓ2p16,2(α),

p16,0(α) = −36(
√
2 + 2)ℓ4α4 + (144

√
2− 744)ℓ3α3

+(−288
√
2 + 2976)ℓ2α2 + (−576

√
2− 864)ℓα,

p16,1(α) = 72(6− αℓ)α2,

p16,2(α) = 27ℓ5α5 + (−144
√
2 + 216)ℓ4α4 + (−24

√
2− 2412)ℓ3α3

+(1632
√
2 + 3104)ℓ2α2 + (−3264

√
2 + 928)ℓα+ 1920(

√
2− 1).

δ17(κ, α) = 2 δ16(κ, α)

δ18(κ, α) = 22 δ16(κ, α)

δ19(κ, α) = 23 δ16(κ, α)

δ20(κ, α) = 24 δ16(κ, α)

δ21(κ, α) = 256(
√
3+2)(24

√
2+61)

23121(
√
3+1)2

ℓ α5 p12(κ, α)
2 p21(κ, α)

with p21(κ, α) =
(
p21,0(α) + p21,1(α)

1
κ2

)
1
κ2 + ℓ2p21,2(α),

p21,0(α) = (−1152
√
2 + 2928)ℓ5α5 + (−468

√
2− 2664)ℓ4α4

+(75024
√
2− 175272)ℓ3α3 + (−130464

√
2 + 300768)ℓ2α2

+(−14400
√
2− 25056)ℓα,

p21,1(α) = (−1728
√
2 + 4392)(6− ℓα)α2,

p21,2(α) = 7707ℓ5α5 + (−25248
√
2 + 95000)ℓ4α4

+(89448
√
2− 353228)ℓ3α3 + (158880

√
2 + 38048)ℓ2α2

+(−417216
√
2 + 464416)ℓα+ 1920(85

√
2− 109).

Table 6. Let δj(κ, α, β, γ, ω, η) denote the determinant of the up-
per left j × j submatrix of Dκ,α,β,γ,ω,η for integers j = 14, . . . , 21.

For our choice β =
√
3α, γ = α, ω = α and η = α, the minors

δj(κ, α) = δj(κ, α,
√
3α, α, α, α) are given in this table.
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min{6/ℓ , α(16,0)}, and δ16(κ, α) ≥ δ16(1, α) holds for all 0 ≤ α ≤ α̃p16
and κ ∈ K.

The polynomial p16(1, α) is positive at α = 0, hence there exists a positive number
αp16

such that p16(κ, α) is positive for 0 < α < αp16
and all κ ∈ K. Consequently,

for 0 < α < αδ16 with αδ16 := min{αp16
, α̃p16

, αp12
} the sixteenth minor δ16(κ, α)

is positive for all κ ∈ K.
The seventeenth to twentieth minors are multiples of the sixteenth minor. There-

fore, these minors are positive for all κ ∈ K under the same condition 0 < α < αδ16 .
The twenty-first minor δ21(κ, α) has a factorization. The polynomial p21,1(α) is

positive if 0 < α < 6/ℓ. The quintic polynomial p21,0(α)+2p21,1(α) is zero at α = 0,

having a negative derivative at α = 0. Thus there exists a positive number α(21,0)

such that p21,0(α) + 2p21,1(α) is negative for 0 < α < α(21,0). Due to Lemma A.1,

the inequality p21(κ, α) ≥ p21(1, α) holds for 0 ≤ α ≤ α̃p21
:= min{6/ℓ , α(21,0)},

and δ21(κ, α) ≥ δ21(1, α) holds for all 0 ≤ α ≤ α̃p21
and κ ∈ K. The polynomial

p21(1, α) is positive at α = 0, hence there exists a positive number αp21
such that

p21(1, α) is positive for 0 < α < αp21
. Consequently, for 0 < α < αδ21 with

αδ21 = min{αp21
, α̃p21

, αp12
} the twenty-first minor δ21(κ, α) is positive for all

κ ∈ K.
Let {λ1, λ2, . . . , λ21} be the eigenvalues of Dκ,α,β,γ,ω,η arranged in increasing

order. We seek a lower bound on λ1. As long as Dκ,α,β,γ,ω,η is positive definite, the
arithmetic-geometric mean inequality implies

λ1(κ, α, β, γ, ω, η) =
δ21(κ, α, β, γ, ω, η)∏21

j=2 λj
≥ δ21(κ, α, β, γ, ω, η)

(
20

∑21
j=2 λj

)20

≥ δ21(κ, α, β, γ, ω, η)

(
20

Tr[Dκ,α,β,γ,ω,η]

)20

=

(
20

32

)20

δ21(κ, α, β, γ, ω, η) ,

since Tr[Dκ,α,β,γ,ω,η] = 32 independently of κ, α, β, γ, ω and η.
A simple computation shows that the eigenvalues of Pκ are 1, 1± α/κ (3-fold),

and 1± 2α/κ. Hence for positive α

(1− 2α)I ≤ Pκ ≤ (1 + 2α)I (115)

uniformly in κ. Thus, all matrices Pκ are positive definite, if 0 < α < 1/2. Finally,
if Pκ is chosen with

α ∈ (0, α+) , where α+ := min{1/2 , αδ6 , αδ7 , . . . , αδ21} ,

β =
√
3α, γ = α, ω = α, and η = α uniformly for all κ ∈ K, then

C∗
κPκ +PκCκ ≥

(
20

32

)20

δ21(1, α) I uniformly in κ ∈ K . (116)

Combining (115) with (116) yields the result.
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