WORDS, HAUSDORFF DIMENSION AND RANDOMLY
FREE GROUPS

MICHAEL LARSEN AND ANER SHALEV

ABSTRACT. We bound the size of fibers of word maps in finite and
residually finite groups, and derive various applications. Our main result
shows that, for any word 1 # w € Fj there exists ¢ > 0 such that if " is a
residually finite group with infinitely many non-isomorphic non-abelian
upper composition factors, then all fibers of the word map w : I'¥ = T
have Hausdorff dimension at most d — e.

We conclude that profinite groups G := I, T as above, satisfy no
probabilistic identity, and therefore they are randomly free, namely, for
any d > 1, the probability that randomly chosen elements g1,...,94 € G
freely generate a free subgroup (isomorphic to Fy) is 1. This solves an
open problem from [DPSS].

Additional applications and related results are also established. For
example, combining our results with recent results of Bors, we conclude
that a profinite group in which the set of elements of finite odd order
has positive measure has an open prosolvable subgroup. This may be
regarded as a probabilistic version of the Feit-Thompson theorem.
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1. INTRODUCTION

In the past few decades there has been considerable interest in the theory
of word maps, see for instance [Bo, LiS, La, Sh, LS1, LST, GT, N2], as well
as Segal’s monograph [Se| and the references therein. Many of these works
focus on the image of word maps on finite simple groups and on a related
Waring type problem. There is also increasing interest in fibers of word
maps and related problems, see [LS2, LS3, B1, B2].

In this paper we prove various results showing that fibers of word maps
are small, not just in a measure-theoretic sense, but also in the stronger
sense of Hausdorff dimension. Our results apply for a wide family of finite
and infinite groups, well beyond the family of finite simple groups.

The main result of this paper is the following.

Theorem 1.1. Let I' be a residually finite group with infinitely many non-
isomorphic non-abelian upper composition factors. Let d > 1 and let w € Fy
be a non-trivial word. Then there exists e > 0 depending only on w such that
the Hausdorff dimension of any fiber of the associated word map w : I'* — T’
is at most d — e.

Here F; denotes a free group of rank d freely generated by z,...2z4. A
word w = w(x1,...,zq) € Fy (which we write in reduced form) gives rise to
a word map w : I'¥ — I" on any group I', which is induced by substitution.

By an upper composition factor of I' we mean a composition factor of
some finite quotient I'/A of ', where A is a normal subgroup of T" of finite
index (and we assume A is open if I is a profinite group).

For a residually finite group I' and d > 1, we define the Hausdorff dimen-
sion of a subset S C I'? by

) .. log|SA?/AY
Hdim(S) =1 f—————
im(S) N log [T/A|
where A ranges over the finite index normal subgroups of I (and again if
I' is profinite we also assume that A is open). Thus Hdim(I'¥) = d and
Theorem 1.1 states that, under the assumptions of the theorem we have

Hdim(w™'(g)) < d — e

for every g € T'.

In fact the proof of Theorem 1.1 gives a bit more; see Theorem 5.2 for an
effective finitary version.

These results may be regarded as a far-reaching extension of the main
result of [LS2], stating that, for w as above there exists € = e(w) > 0 such
that, if T is a large enough finite simple group then the fibers of w : T4 — T
have size at most |T'|~¢. Here and throughout this paper, by a finite simple
group we mean a non-abelian finite simple group.

We now list several consequences of Theorem 1.1. The first one deals with
linear groups and strengthens results from [LS3].
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It is easy to see, using strong approximation (see [N1, Pi, We]), that a
finitely generated linear group which is not virtually solvable has infinitely
many finite simple groups of Lie type as upper composition factors. Applying
Theorem 1.1, we deduce the following.

Theorem 1.2. Let I be a finitely generated linear group over any field.
Suppose T is not virtually solvable. Then the fibers of any word map on T'¢
induced by a non-trivial word w € Fy have Hausdorff dimension less then d.

The next consequence of our main result deals with probabilistic identi-
ties. We need more notation. Given a word w € Fj; and a finite group G, let
pw,c denote the associated probability distribution on G. Thus, for g € G
we have pu.c(g) = [w™ (9)|/|G|".

Recall that a word 1 # w € Fy is said to be a probabilistic identity of a
residually finite group I if there exists § > 0 such that, in any finite quotient
H of T', we have p,, (1) > 0. This amounts to saying that, in the profinite
completion G of T, the probability (with respect to the normalized Haar
measure on G) that w(gy,...,94) = 1 where g1,...,94 € G are random
elements is positive.

For example, w = z? is a probabilistic identity of the infinite dihedral
group I' = D..

It follows from [Ma] that a residually finite group which satisfies the prob-
abilistic identity x? is finite-by-abelian-by-finite. A similar conclusion holds
for the probabilistic identity [z1, z2], as follows from the earlier paper [Ne],
which is applied in [Ma]. However, very little is known about groups satis-
fying more general probabilistic identities.

Now, let I' be a residually finite group with infinitely many non-isomorphic
non-abelian upper composition factors, and let 1 # w € Fy. By Theorem
1.1 we see that I" has arbitrarily large finite quotients H such that p,, g(1) <
|H|~¢, which tends to 0. This implies the following new result.

Theorem 1.3. Let I' be a residually finite group with infinitely many non-
isomorphic non-abelian upper composition factors. Then I' does not satisfy
any probabilistic identity.

This result generalizes Theorem 1.2 in [LS3], showing that a finitely gener-
ated linear group which satisfies a probabilistic identity is virtually solvable.
It also enables us to solve an open problem regarding randomly free groups.

We say that a profinite group G is randomly free if, for every d > 1, the
probability that a d-tuple of elements of G freely generates a free subgroup
is 1. We use freely generate in the sense of abstract group theory, i.e., no
non-trivial word evaluated at the chosen elements should give the identity. A
residually finite group is said to be randomly free if its profinite completion
is randomly free.

See [Ep] and [Sz] for earlier results on groups in which almost all subgroups
are free.

We need the following straightforward observation.
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Lemma 1.4. A residually finite group I' is randomly free if and only if it
does not satisfy any probabilistic identity.

To show this, let G be the profinite completion of I'. Note that g1,...,gq4 €
G freely generate a free subgroup of G if and only if w(gy,...,g4) # 1 for
every 1 # w € F;. Now, suppose I' does not satisfy any probabilistic identity.
Then the probability that w(g1,...,94) =1 (9; € G) is 0 for any such word
w. As Haar measure is o-additive, the probability that there exists w # 1
such that w(gi,...,94) = 1 is also 0. Thus, g1,...,94 € G freely generate
a free subgroup with probability 1, proving that I' is randomly free. The
reverse implication is trivial.

Combining the above lemma with Theorem 1.3 we obtain the following.

Theorem 1.5. Let I' be a residually finite group with infinitely many non-
isomorphic non-abelian upper composition factors. Then I' is randomly free.

This immediately implies (using strong approximation) the following prob-
abilistic Tits alternative, which is the main result of [LS3].

Corollary 1.6. A finitely generated linear group is either virtually solvable
or randomly free.

Theorem 1.5 (applied to profinite groups G) solves a problem raised in
2003 in [DPSS] (see Problem 7 there). A partial solution, assuming G has
infinitely many alternating groups as upper composition factors, was given
in 2005 by Abért, see [Ab, Theorem 1.7]. Hence it remains to prove the
theorem assuming G has infinitely many simple groups of Lie type as upper
composition factors.

A recent work of Bors [B1] can be used to handle the case where G has
classical groups of unbounded rank as composition factors. Indeed Theorem
1.1.2 there implies Theorem 1.3 in this case. Hence it remains to handle
the case where G has infinitely many groups of Lie type of bounded rank as
upper composition factors.

After discussing various consequences of Theorem 1.1, let us now state
some results of independent interest on finite groups, which play a crucial
role in its proof. The first result deals with almost simple groups of Lie type
of bounded rank.

Theorem 1.7. For any non-trivial word w = w(x1,...,x4) and any positive
integer r, there exist N,e > 0 depending only on w and r such that, if T is
a finite simple group of Lie type of order > N and rank < r, then for all
91s---59d,9 € Aut (T),

| {(tr,.. . ta) € T | w(trgn, ... taga) = g} |< |T|*C

Combining this with results from [LS2] and [B1], we show that, for any
1 # w € Fy there exist N, e > 0 such that for any almost simple group G of
size at least N and any g € G we have p,, ¢(g) < |G|~“—see Corollary 4.6
below. This extends the main result of [LS2] from simple groups to almost
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simple groups. This extension is by no means routine, and it occupies a
large part of our paper.

Combining the result above with other tools we deduce the following more
general theorem on finite groups which are semisimple in the sense of Fitting.

Theorem 1.8. Let G be a finite group such that TF < G < Aut (T*) for
some k > 1 and a finite simple group T. Suppose w # 1 is a word. Then
there exist constants N = N(w),e = e(w) > 0 depending only on w such
that, if |T| > N, then for any g € G we have p, c(g) < |T*|7¢.

Note that, if G is any finite group with a chief factor G1 /Gy = T*, then
G has a semisimple quotient G/Cq(G1/G2) (the section centralizer) lying
between T* and its automorphism group, to which Theorem 1.8 may be
applied.

The next result enables us to pass from any finite group with a large
non-abelian composition factor to a large semisimple quotient K as above,
in which the chief factor 7% is almost as large as K.

Proposition 1.9. For any 6 > 0 there exists f = f(J) > 0 such that if G
is a finite group with a non-abelian composition factor of order > f, then

G has a quotient K with a composition factor T of order > f such that
TF < K < Aut (T%) and |T*| > |K|' 9.

Results 1.8 and 1.9 easily imply our main result, namely Theorem 1.1.

Finally, combining Theorem 1.8 with a new result of Bors [B2, 1.1.2] we
obtain a result which may be regarded as a probabilistic version of the Odd
Order Theorem of Feit and Thompson [FT]. For a finite group G denote
by Rad (G) the solvable radical of G, namely the maximal solvable normal
subgroup of G.

Theorem 1.10. (i) Let k be an odd integer and let w = x*. Then for
any € > 0 there is a number M = M(k,€) such that, if G is any
finite group satisfying pw,c(g) > € for some g € G, then

IG/Rad (G)] < M.

(ii) Let G be a profinite group and suppose that the set of elements of
G of finite odd order has positive Haar measure. Then G has a
prosolvable open normal subgroup.

Therefore profinite groups as in part (ii) above are virtually prosolvable.
Part (i) above shows that, for odd k, if the probability that ¢* =1 in G is
bounded away from zero, then G has a solvable normal subgroup of bounded
index.

However, it is not true that if the probability that ¢ € G has odd order is
at least € > 0 (or even at least 1 —¢), then G is solvable-by-bounded. Indeed,
simple groups of Lie type in characteristic 2 provide counterexamples (since
most of their elements are semisimple, hence of odd order).
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A result similar to part (i) of Theorem 1.10 with w = [z1,...,z4], a left
normed commutator, also follows by combining Theorem 1.1.2 of Bors [B2]
with Theorem 1.8 above.

Let us now discuss the strategy of the proof of Theorem 1.7, which is the
basis of most of our other results. The main idea is, roughly, to convert
it to a problem in algebraic geometry. If, to simplify slightly, 7" = G(IF,)
for some algebraic group G of bounded rank, then the parameter ¢ must
go to infinity as |T| — co. Any non-trivial word w defines a non-constant
morphism G? — G. The fibers are therefore of dimension < ddim G — 1,
and as ¢ goes to infinity and g varies, the “complexity” of the fibers remains
bounded, so we can deduce that

[w™(g)] = O(IG(Fy)|*~Y/ )

from standard point counting results for varieties over finite fields. This idea
is not new to this paper (see, e.g., [DPSS, LS2]). However, there are techni-
cal difficulties in implementing it when we must take outer automorphisms
of T" into account. For field automorphisms, when [F, is large but its charac-
teristic p is small, this requires a new idea, namely finding big gaps between
consecutive powers of Frobenius appearing in any specified d-tuple of cosets
of T (see the proof of Theorem 1.7, below). The Suzuki and Ree groups
also pose a technical challenge, since we are no longer counting points on
varieties over finite fields but rather taking fixed points of maps which are
square roots of ordinary Frobenius maps.

In §2, we develop a simple formalism for making precise the idea of
bounded complexity mentioned above. In §3, we present upper bounds for
certain point counting problems. There are two main variants, one aimed
at proving estimates which are uniform in characteristic and one aimed at
dealing with the special difficulties of the Suzuki-Ree case. In §4 we prove
Theorem 1.7 and extend it to all almost simple groups.

Finally, in §5 we study finite semisimple groups and finite groups in
general. This is where results 1.8, 1.9, 1.1 and 1.10 are established. If
TF < G < Aut (T*) = Aut (T) Sy as in Theorem 1.8, then G induces a
transitive permutation group P on the k copies of T', and tools from the the-
ory of permutation groups become relevant. Theorem 1.8 is proved, roughly,
by using the case k = 1, which has already been established, and by finding
a large set of independent equations induced by the given word equation on
G.

We then prove Proposition 1.9 by bounding the order of P above, and
deduce a finitary version—Theorem 5.2—of Theorem 1.1, which readily im-
plies it.

We would like to thank the referee for pointing out several deficiencies in
the original version of this paper.
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2. DEGREE BOUNDS

Definition 2.1. Let R be a commutative ring. By a generated commutative
algebra over R (GCA for short), we mean a pair (A,S) consisting of a
commutative R-algebra A and a finite set S of generators of A over R.
An isomorphism (A4,S) — (B,T) of GCAs is an isomorphism A — B of
R-algebras which maps S onto 7.

Thus, every GCA is isomorphic to one of the form

(Rler,...an)/ 1T, Bx ).

For a € A we define degga to be the minimum integer m such that a can
be realized as a degree m polynomial in the elements S with coefficients in
R. If (A,S) and (B,T) are GCAs over R and ¢: A — B is an R-algebra
homomorphism, we define

(1) deg ¢ = max degy ¢(s).
se
The following lemma is obvious:

Lemma 2.2. With notation as above,

degr #(a) < deg ¢ degg a.
If (C,U) is also a GCA over R, and 1p: B — C' is an R-algebra homomor-
phism,

deg o ¢ < deg @ deg .
If R' is a commutative R-algebra and (A’,S") denotes the base change of
(A,S) to R (i.e., A=A®rR, and S'={s®1|s e S}), then

deggra ®1 < degga.

The following lemma, asserting that every ¢-Frobenius map has degree at
most ¢, is likewise immediate from the definitions:

Lemma 2.3. If (A,S) is a GCA over R =TF,, and ¢: A — A denote the
q-Frobenius map, then deg ¢ < q.

We say generating sets S and T of A are equivalent if they generate
the same R-submodule of A. In this case, degga = degpa for all a € A.
Thus, every surjective R-algebra homomorphism ¢: R[zq,...,zy] — A de-
termines a well-defined equivalence class of generating sets in A represented
by {¢(z1),...,¢(xn)}. Geometrically, a closed immersion of Spec A into
a vector space scheme over R determines a generating set, and two closed
immersions which are the same up to an invertible linear transformation
determine equivalent generating sets.

Lemma 2.4. Let R be a field, G = Spec A an adjoint semisimple alge-
braic group over R, a an automorphism of G as algebraic group over R,
and p: G — AY™E the adjoint representation with respect to some basis of
the Lie algebra of G. Up to equivalence, p and p o a determine the same
equivalence class of generating sets of A.
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Proof. The homomorphisms p and po«a give the same representation, which
means they are conjugate, so they define the same equivalence class of gen-
erating sets. ([l

In general, given an adjoint semisimple algebraic group G over a field I,
we regard its coordinate ring A as a GCA endowed with a generating set S
belonging to this equivalence class.

Proposition 2.5. Let G := Spec A be an adjoint semisimple algebraic group
over Fy, with root system ®. Let F),, denote the p-Frobenius endomorphism
of G. Let B1,..., B be automorphisms of G defined over Iy, ji,...,7 non-
negative integers, and ni,...,n; € {1,...,d}. Then, for G as above, the
morphism G¢ — G given by

(2) (g1:---+94) = FJ'Br(gn) =+ FJ Bilgn, ) ™!

has degree O(p’), where j := max; j; and where degree is defined by (1)
with the coordinate rings of G and G¢ equipped with generating sets S and
ST 118 respectively. (The implicit constant depends on ® and I but not
onporj.)

Proof. As the multiplication and inversion morphisms on G have degrees
which are bounded independent of p, by Lemma 2.2 and induction on [, it
suffices to prove the claim for g — FJ(3(g). The proposition follows from

Lemma 2.2, Lemma 2.3, and Lemma 2.4.
O

3. PoinT BOUNDS
It is well known that a degree s hypersurface in AN has at most sq¢’¥ !
points over [F,. We present several variants of this observation.

Proposition 3.1. Let p be prime, q a power of p, X C AN over F, be the
closed subscheme defined by the ideal (f1,..., fn), where f; € Fplz1,...,2N]
have degrees d1,...,dy,. If

dl e dn S AQ7
then
X (Fp) N AN(F)| < 24+ 1)Vdy -+ - dpg®™ X
Proof. Let
oi(xoy ..., TN) = xg"fi(xl/:zo, .oy ZN/T0).

The intersection of the hypersurfaces in PN defined by the ¢; defines a
closed subscheme X of PV, and the intersection of this subscheme Wit}lAN
is X. Therefore, the number of irreducible components of X over IF), is

less than or equal to the number of components in X, which by a suitable
version of Bézout’s theorem (see [Fu, 12.3.1]), implies that the number of
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such components is less than or equal to dj - - - d,. This implies the theorem
for dim X = 0.

We proceed by double induction, first on dim X and then on N. The base
case for the inner induction is N = dim X, and the proposition holds in
this case trivially. For the induction step, we count pairs (z, H) consisting
of a point z € X(F,) N AY(F,) and H an F,-rational hyperplane in AV
containing z (but not necessarily 0). The number of such pairs for a given
z € X(F,) NAN(F,) is [PN=(F,)|, so the total number is

(14q+-+¢"HXEF,) NAN(E,)-

We say that H is bad for X if it contains an irreducible component of
X of dimension dim X. The number of hyperplanes containing a given top-
dimensional component is at most

14 gt gN-dimX—1

so the number of bad hyperplanes is less than

2qN—dimX—1dl cood

mn-.

By the induction hypothesis for N, the number of pairs (z, H) where H is
bad is less than

2¢NTAmX=g, L, A+ )N T - dpgi™mE < 24244+ 1)V 1N d - - d,.

By the induction hypothesis for dim X, the number of pairs (z, H) where H
is good is less than

(g+@+ - +¢")2A+ )N dy - dygt™mETL
Thus, the total number of pairs is less than
(q+4°+--+¢V)2A+ D)Ndy - dpg™,
SO
X (Fp) NAN(Fy)| < 24+ 1)Vdy -+ dpg™ X,
and the proposition holds by induction. [l

Proposition 3.2. Let (A, S) be a GCA over Z. Let (A, Sy) be a GCA over
F, such that there exists an isomorphism v: A ® Fq —- Ay ® ﬁq with respect
to which S®1 and Sq®1 are equivalent, and let Y = Spec Aq. If f € A®E1
18 not a zero divisor, then

{y € Y(Fy) | f(y) = 0} = O((degggy f)a™™ ).

Here the implicit constant depends only on (A, S) (in particular, not on
q, Ag, Sq, or v).

Proof. Let S = {s1,...,sn} and Sy = {t1,...,txm}, and consider the homo-
morphisms ¢: Z[zy,...,xn| = A and ¢q: Fyly1,...,ym] = A, mapping z;



10 MICHAEL LARSEN AND ANER SHALEV

to s; ® 1 and y; to t; ® 1 respectively. The equivalence of generating sets
guarantees the existence of a commutative diagram

FQ[:CD‘ : '7'%'N] HFq[yl"'wyM]
¢®1i l(ﬁq@l
A®F, - A, ®F,

where the top arrow maps each z; to a linear combination of the y;. If
fi,---, fn is a generating set for ker ¢, then we have an isomorphism of
[F,-algebras

Ay @Fy/((f®@1)) ZFylyr,-- - unl/ (@1, fn® 1 f).
The proposition now follows by applying Proposition 3.1 to

X = Spec Fyfer,..,an] /(1@ Lo fu® L, ).
O

Proposition 3.3. Let ¢ = p/, (A,S) a GCA defined over Fp, and X =
Spec A. For all a € A, we let X, denote Spec A/(a) regarded as a closed
subscheme of X. Let k be a positive integer prime to f, Fy: X — X the g-
Frobenius morphism, and F: X — X an endomorphism such that F* = F,.
If dim X, < dim X and t is a positive integer, then

X, (Fy) N X(F,)""| < O((degg a)p®/H@m X0,
where the implicit constant does not depend on t or a.

Proof. Let g denote the g.c.d. of ¢t and k. Replacing F' by FY and ¢ and k
by t/g and k/g respectively, we may assume without loss of generality that
t and k are relatively prime.

Every endomorphism of a commutative ring maps the nilradical to itself,
so without loss of generality, we may assume that X is reduced. We may
also assume that the irreducible components X, ..., X, of X are permuted
transitively by powers of F'.

By induction, we may assume that the proposition holds for all affine
schemes of dimension less than dim X. Thus, if U is any F-stable dense
open affine subvariety of X, it suffices to prove the proposition for U. If
U is any dense open affine subvariety of X, the orbit of U under (F) is
finite, so we may replace X by an F-stable dense open affine subvariety
of U. Since every quasi-affine variety contains a dense affine subvariety, it
suffices to prove the desired estimate after replacing X by our choice of dense
quasi-affine U C X.

Applying this observation to the complement of

U X;NX;

1<i<j<h
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we may assume that the connected components of X coincide with the irre-
ducible components X, so the proposition is trivial unless ¢ = hs for some
integer s. We may therefore assume that h is relatively prime to k. Replac-
ing F by F" and t and f by s and fh respectively, we may assume without
loss of generality that F' fixes every component of X, so we may reduce to
the case that X itself is irreducible.

If K denotes the fraction field of A, then F* defines an inclusion K «— K,
and (F*)* = (F,)*. As K is finitely generated, the latter inclusion is of

degree ¢4mX — pfdimX By hypothesis, k is relatively prime to f, so k
divides dim X.
Let dim X = mk. We claim that there exists a transcendence basis

bi1,...,b1k,b21, ..., by for K in A such that

. bij1 if j <k,
E b, otherwise.

Indeed, by the same reasoning that shows that the transcendence degree of
K is a multiple of k, we see that every F*-stable subfield of K has tran-
scendence degree a multiple of k. Thus, we can construct the b;; iteratively,
defining bg411 to be any element of A not algebraic over the (algebraically
independent) set {b;; | i < ¢} and setting b; j+1 = (F7)*b;.

Endowing A™ = Spec Fp[z;;] (1 <i<m, 1 <j < k) with the F-action
given by

T otherwise,
we see that the map x;; — b;; is a generically finite F-equivariant morphism
X, — A™k Passing to a sufficiently small F-stable affine open subset
Spec A[1/h] of the base, we may assume that A[1/h] is a finitely generated
free Iy, [x;][1/h]-module of some rank p. We can therefore realize A[1/h] as a
commutative subring of M, (F,[x;;][1/h]). In particular, all elements of S can
be realized in this matrix ring, and it follows that any polynomial of degree
degga in the elements of S can be realized as a matrix whose entries are
polynomials of degree O(degg a) in the x;; and 1/h. The determinant of this
matrix is a polynomial of degree O(degg a) in x;; and 1/h. Every point in the
zero locus X, maps to a point in the zero locus of this polynomial. Since the
map Spec A[1/h] — Spec Fp[x;;][1/h] is of degree p, it suffices to bound the
number of F!-points on the zero locus of this determinant. Expressing the
determinant as a rational function in the z;;, the numerator is a polynomial
of degree O(degg a), and it suffices to bound the number of F'-points of the
zero locus of the numerator, viewed as a hypersurface in Spec Fp[z;;]. Thus,
we can reduce the general problem to the case X = Spec [, [z;;], with the
F-action given by (3).
More explicitly, it suffices to prove that if @ is a polynomial in the x;;,

{(aij) € )" | Q(aij) = 0} = O(deg Q(t/k)p™ ).
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We project A to A* by

Tm: (@ij) = (@m1, ..., Gmk)-

Thus m, is F-equivariant, where

F(ep,y ... ) = (02,03,...,019,6?),
SO
; glt/h] - gli+n)/i) Pl
F(cl,...,ck) (t-l—l ’t+2 ,...,tJrkl )
Lf/kJ Lf/kJ Lt/kJJrl Lt/kJ+1
:(ctJrl 7"'ka N ,cf )

where the ¢; are numbered cyclically. Since s and k are relatively prime, any
F'-fixed (c1,...,c;) is determined by c; satisfying czft = ¢1. The number
of possibilities for ¢; € Fy is therefore p!. Any F'-fixed point (a;;) projects
under 7, to a F'-fixed point.

There are at most deg ) factors of @) over E,[:L’ij] of the form z,,; — c1,
and for any ¢; € F,, such that z,,1 — ¢ is not such a factor and (cy, ..., cx) is
fixed by F?, the fiber 7,1 (c1,...,cx) is a hypersurface in Am=DE of degree
< degQ. If (c1,...,cp) is fixed by F' and x,,1 — ¢1 divides @, then the
number of F* fixed points in 7, (c1, ..., ¢;) is the number of F? fixed points
of Am=DEk i e ¢m=1) By induction on m, it suffices to consider the base
case, m = 1.

For m = 1, if (c1,...,¢n) is a fixed point of F!, we have
g/l geTem)
C1L=0Cyyp == c(k 1)t+1
so Q(c1,...,c) can be expressed as a polynomial in C(k—1)t+1 of degree at
most

(dim Q)g'~/*1 = (dim Q)pt/ ~It/k1/
< (dim Q)p'/~t/* = (dim Q)pt//F)(dim X~1),

which proves the proposition.

4. ALMOST SIMPLE GROUPS

In this section we bound the size of fibers of word maps for almost simple
groups. Most of the section is devoted to the proof of Theorem 1.7 on almost
simple groups of Lie type of bounded rank.

We make essential use of the following result of Nikolov [N2, Corollary 8],
ruling out a given coset identity in large almost simple groups.

Proposition 4.1. For every word 1 # w € Fy there exists co = co(w) such
that if T is a finite simple group of order > co and G is an almost simple
group with socle T', then for every gi,...,9q4 € G we have w(Tq1,...,Tgq) #

{1}.
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This easily yields the following.

Corollary 4.2. With notation as above, there exists ¢; = c1(w) such that
if |T) > 1 then |w(Tgi,...,Tgq)] > 1.

Proof. Define v(x1,...,T2q) = w(z1,...,20)w(Tqe1,. .., Taq) "
Setting c1(w) = ¢o(v) the result follows. O
Now let w = 27! --- a7l be a reduced word of length [ > 1 in Fy. This
means that ny,...,n; € {1,2...,d}, e, = £1, and n; = n;;1 implies e¢; =
€i+1-

Let G be a group, and let ay,...,q; € Aut (G). The map G¢ — G given

by
(gla s 7gd) = al(gnl)el T al(gm)el

is called a generalized word function (allowing w to be non-reduced) or an
automorphic word map on G¢ based on w (see [Se, §1.3] and [B1, 1.2.1]).

Let T <1 G and consider the word map w : G* — G. Its restriction to
Tgy x --- x Tgy (where g; € G) can be regarded as a map T% — G whose
image lies in a T-coset of G. Indeed, more is true, namely:

Lemma 4.3. With the above notation, the map

(1, ta) = w(gr, -+ ga) " w(tagn, - .- s taga)

is an automorphic word map T* — T based on w.
This well known observation is easily proved by induction on I.

Lemma 4.4. Given integers j1,. .., ji, there exist nonnegative integers ji, . . .
m — [m/l] such that

A= =-=5-7j (modm).

Setting ji+1 = m+j1, we have ji11—j; > 0fore=1,2,...,1,80 jrq1—Jr >
m/l for some 1 < r <, so setting

./ {m_errl"'ji if1<i<r
Ji =

Proof. Without loss of generality, we may assume 0 < j; < --- < j; < m.

Ji — Jr+1 ifr+1<i<m,
the lemma follows. O
We now prove Theorem 1.7.

Proof. For every group T as above, there exists a prime p, an adjoint split
simple algebraic group Gy over F, with root system ®, and a general-
ized Frobenius endomorphism F' of G|, such that T' is the derived group
of Go(F,)¥. Let S denote a fixed set of generators of the coordinate ring A
of the adjoint Chevalley group scheme with root system ® over Z. Let F),
denote the p-Frobenius map of Gj. The condition that F' is a generalized
Frobenius endomorphism means that some positive power of F' is a positive
power of Fj,.
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Fix cosets of T'g1, ..., Tgq of T in Aut (T') and let w € F,; be as above. By
Lemma 4.3 there exist ai,...,o; € Aut (T) such that for (t1,...,tq) € T
the map

(4) (tr,-- - ta) =~ wlgr, .., 9a) wltign, ... taga) = o1 (tn,) - - o (tn,)"
is an automorphic word map Td — T based on w.

Each «; can be written Fj'S;, where §3; is a product of a diagonal au-
tomorphism and a graph automorphism. By Corollary 4.2, the map (4) is
not constant, assuming 7' is large enough given w. We can define (4) as
the restriction to T C Gy (F,) of a morphism G& — G|, defined over F, in
terms of the comultiplication map on the coordinate ring A ® F), of Gy, the
inverse map on A®IF),, and the various endomorphism maps on A®Fp giving
rise to the «;. This morphism cannot be constant, and by Proposition 2.5,
its degree (with respect to S, [[---11Sp) is O(p?), where j = maxi<;<q ji.
There exists s € S, such that the composition of s and G& — G, gives a
non-constant morphism

(5) Gd — Al

defined over F,, and the degree of this morphism is O(p?).

At this point, we divide the problem into the Chevalley-Steinberg case
and the Suzuki-Ree case. In the former, we can identify G,(F,)!" with
G(F,), where G is an adjoint simple algebraic group over Fy, ¢ = p"™, which
becomes isomorphic to G, after extension of scalars from F, to F v and [,
to F x respectively. As F" acts as a (possibly trivial) graph automorphism
of T', we may assume 0 < j; < m for all 7. Applying a suitable power of F},
to o (tn, )" - - ay(tp,)® and using Lemma 4.4, we may assume without loss
of generality that 0 < j; < m — [m/l] for all i. Thus, the S, [[---]]Sp-
degree of the element of A®¢ @ F,, defining (5) is O(p™~[™/!), where by
Proposition 2.5, the implicit constant does not depend on p.

We define a generating set for the coordinate ring of G by choosing a basis
of the adjoint representation of G and letting the generators correspond
to matrix entries in the adjoint representation with respect to this basis.
Extending to E,, this generating set may not be the same as that obtained
by extending S, but it is equivalent. By Proposition 3.2, the theorem holds
for Chevalley and Steinberg groups.

For the Suzuki and Ree cases, we can again use Lemma 4.4 to assume that
the non-constant morphism (5) has degree O(p™~"™/!1). Applying Proposi-
tion 3.3 to this map, we deduce the theorem in these cases.

O

We now deduce the following more general result.

Theorem 4.5. For any non-trivial word w = w(x1,...,xq) there exist
N,e > 0 depending only on w such that, if T is any finite simple group
of order > N, then for all ¢1,...,94,9 € Aut (T),

’ {(t17"')td) € Td ‘ w(tlgl)' "atdgd) = g} |§ ‘T|d_€‘
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Proof. If T is an alternating group of degree larger than some function f(w)
of w, or a classical group of rank larger than f(w), then the conclusion
follows from Theorem 3.1.2 in [Bl]. Indeed, the latter result shows that,
under our assumption on 7', there is € = e(w) > 0 such that all fibers of all
automorphic word maps on 7% based on w have size < |T'|4~¢, which implies

the required conclusion.
Otherwise T is a simple group of Lie type of rank < f(w), and the result

follows by Theorem 1.7.
O

Theorem 4.5 strengthens Proposition 4.1 of Nikolov: not only there is no
fixed coset identity w in large almost simple groups, the probability of w
attaining any fixed value g on each subset T'g; X ... x T'gq tends to zero very
fast as |T'| — oo.

We conclude with the following probabilistic consequence.

Corollary 4.6. For any non-trivial word w there exist N,e > 0 depending
only on w such that, for any almost simple group G of order at least N and
any element g € G we have

pwc(9) < |G

Proof. Since T is generated by two elements we trivially have |G| < |Aut (T")] <
IT|? (much better upper bounds hold, of course). Therefore it suffices
to show that, for some N,e > 0 depending on w, if |T| > N'/2 then
Puclg) < T2

This follows from Theorem 4.5 above, by summing up the probabilities
over all subsets Tg; X ... x Tgq of G¢. O

From this, we can immediately deduce Theorem 1.8 in the case of almost
simple groups.

5. SEMISIMPLE GROUPS AND PROOF OF MAIN THEOREM

In this section we prove Theorem 1.8 and Proposition 1.9 and then use
them to deduce Theorems 1.1 and 1.10.
As in §4, we let w = z7} --- 27 be a reduced word of length [ in Fy.

Proof of Theorem 1.8. Tt is well known that Aut (T%) = Aut (T)? S,. We
fix a d-tuple of cosets of T* in G: TFgy,...,TFgq and g; = (hi1, ..., hii).0;
where h;; € Aut (T') and o; € Sj.

Let w = xlel---xlep where 1 < n; < d, ¢, = 1. Note that n; = n;41
implies e; = €41, since w is reduced. For i =1,...,d let s; = (t;1,...,ti) €
T*.

Fix g € G. f w(s1g1,...,8494) = g then

($n19n) -+ (Sm,90)" = 9,
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SO

((tnllhnllv . 7tn1khn1k)an1)el e ((tnllhnlla L 7tnlkhnlk)0nl)el =4g.

Moving the o, terms all the way to the right of the LHS we can express
this equation in the form

(6) Tl((tnllhnlly s 7tn1khn1k))61 T Tl((tnllhnlla s atnlkhnlk))ela =g,

where 7;, 0 € Sy, do not depend on the t;;. Note that 7;((¢tn,1hn,1, - - - tnkhnk))
is simply
(tnin(l)hmn(lﬁ s 7tm7'i(k)hnin(k))'

Let H <1 G be the kernel of the permutation action of G on the k factors
of T. Then G/H < Sy and T* < H < Aut (T)*.

The equation (6) above has no solutions unless o is the image of g in
G/H. In the latter case it can be written as a system of k equations. We
claim that each of these is a reduced equation of length [ applied to a d-
tuple of cosets of T'. Indeed, if (n;, 7:(j)) = (Ni+1, Tit1(4)) then n; = n;yq so
e; = e;+1. Taking all of these equations together, each variable ¢;; appears
at most [ times.

We obtain k subsets of {t;;}, each of size at most [, such that each variable
t;; belongs to at most [ subsets. Therefore each subset intersects at most
[(I — 1) other subsets. Starting with one subset, deleting the other subsets
it intersects, choosing a new remaining subset (if there is one), deleting the
other subsets it intersects, choosing a new remaining one (if possible), and

P
subsets correspond to m equations in disjoint sets of variables, which are
clearly independent.

We now apply Theorem 4.5 which implies the case k = 1 of Theorem
1.8. We conclude that there exist V,§ > 0 depending only on w such that,
if |T| > N, then any one of the k equations discussed above holds with
probability < |T|7%. Since our system of equations contains at least m
independent equations, we obtain

—§vm 52—
puclg) < (IT]70)™ < [TH70/EHD,
Setting € = §/(I> — 1 + 1) > 0 we complete the proof of Theorem 1.8.

so on, we construct at least m := { —‘ pairwise disjoint subsets. These

O

The following result, which is Lemma 2.2 of [BCP], will play a key role
in the proof of Proposition 1.9 and Theorem 1.1.

Lemma 5.1. Fiz ¢ > 6. A permutation group of degree k without composi-
tion factors isomorphic to A; with i > ¢ has order at most ¢*~1.

Proof of Proposition 1.9. Fix a positive integer f. Among all chief factors
G1/G3 of G (where G;<G) corresponding to non-abelian composition factors
of order > f choose one of minimal index (namely |G : G1| is minimal).
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Write Gy /Gy = T* for k > 1 and a finite simple group 7. Let C be the
centralizer in G of G1/Go and let K = G/C. Then TF < K < Aut (T*) =
Aut (T) 1 Si. Let H be the kernel of the permutation action of G on the
k copies of T. Then G; < H <G and G/H < Si. By the minimality of
|G : G4 it follows that all non-abelian composition factors of G/H have
order < f < |T.

Let ¢ > 6 be minimal such that G/H does not have a composition factor
A; with i > ¢. Then |G/H| < ¢! by Lemma 5.1. If A; (i > 5) is a
composition factor of G/H then 2! < |A;| < f < |T|. This shows (assuming
f > 64 as we may) that ¢ <log|T'| (where logarithms are to the base 2).

It is well known that |Out (T")| < log|T| for all finite simple groups 7.
We conclude that

K| < [Aut (T)[F|G/H| < |T[*|Out (T)|*(log |T|)* < |T*|(log [T)*.

Now, given d > 0 choose f = f() such that logt < t%/2 for all t > f. Since
|T'| > f we obtain

|K| < |Tk|1+5.
Therefore |T*| > |K|'~9, completing the proof.

Combining results 1.9 and 1.8 we obtain the following.

Theorem 5.2. For every word 1 # w € Fy there exist constants N,e > 0
depending only on w such that, if G is a finite group with a non-abelian
composition factor S with |S| > N, then G has a quotient K with |K| > |S]
such that py k(g) < |K|~€ for all g € K.

Proof. Let N(w),e(w) be as in Theorem 1.8. Fix e with 0 < € < e(w).
Define § = 1 — ¢/e(w) and let f = f(0) be as in Proposition 1.9. Set
N = max(f, N(w)).

Now let G, S be as in the theorem. Since |S| > f, Proposition 1.9 (applied
with |S| in the role of f) shows that there is a quotient K of G and a
finite simple group 7" with |T'| > |S| such that 7% < K < Aut(T*) and
7% > K|

By Theorem 1.8 we have

P (g) < |TH) < | (-0w) — |
for every g € G, as required. O

We now prove Theorem 1.1.

Proof. This follows immediately from Theorem 5.2 applied to finite quotients
of I with non-abelian composition factors of orders tending to infinity.
O
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Proof of Theorem 1.10. We first prove part (i).

Theorem 1.1.2 of [B2] shows that, for certain words w, including =% (k
odd) and [z1,...,z4], if G is a finite group, py, a(g) > € > 0 for some g € G,
and T is a finite simple group, then the multiplicity of T" as a composition
factor of G is bounded above by some function fi(7T,w,€) of T, w and e
only.

Now, by Theorem 1.8 (applied to a suitable quotient of G), if p,, ¢(g) >
e > 0 and T is a non-abelian composition factor of G, then |T'| < fa(w,e€)
for a suitable function fo. This implies that the product of the orders of all
non-abelian composition factors of G is bounded above by

I 1779 < fyw,e),
T?lT‘§f2 (w,e)

for a suitable function fs.

Now Soc (G/Rad (G)) has the form [, 7;" for (non-abelian) simple groups
T, hence [Soc (G/Rad (G))| < f3(w,€). Since G/Rad (G) is embedded in
Aut (Soc (G/Rad (G))) we obtain

|G/Rad (G)| < M,

where M = fy(w, €) = f3(w, €)1°8/3(:9) This proves part (i).

For part (ii), note that, since the Haar measure is o-additive, there exists
an odd integer k > 0 such that the measure of the elements g of the profinite
group G satisfying g* = 1 is positive. The required conclusion now follows
from part (i).

O
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