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Abstract: Protein-peptide interactions play essential roles in many cellular processes and their
structural characterization is the major focus of current experimental and theoretical research.
Two decades ago, it was proposed to employ the steered molecular dynamics (SMD) to assess
the strength of protein-peptide interactions. The idea behind using SMD simulations is that the
mechanical stability can be used as a promising and an efficient alternative to computationally
highly demanding estimation of binding affinity. However, mechanical stability defined as a peak in
force-extension profile depends on the choice of the pulling direction. Here we propose an uncommon
choice of the pulling direction along resultant dipole moment (RDM) vector, which has not been
explored in SMD simulations so far. Using explicit solvent all-atom MD simulations, we apply SMD
technique to probe mechanical resistance of ligand-receptor system pulled along two different vectors.
A novel pulling direction—when ligand unbinds along the RDM vector—results in stronger forces
compared to commonly used ligand unbinding along center of masses vector. Our observation
that RDM is one of the factors influencing the mechanical stability of protein-peptide complex can
be used to improve the ranking of binding affinities by using mechanical stability as an effective
scoring function.

Keywords: steered molecular dynamics; all-atom molecular dynamics simulation; resultant dipole
moment; mechanical stability; protein-peptide interactions

1. Introduction

Discovery of a new effective drug is a costly and time-consuming process. Billions of US dollars
and years in research are spent to place an approved drug on the market. The cost of success is
very high due to the fact that many drug candidates fail. One of the possibilities to reduce costs
and improve efficiency in current drug discovery processes is to use computer-aided drug design.
With the help of molecular modeling, one can predict the success of a potential new drug based on its
ability to bind strongly to the target. One of the most popular computational approaches to estimate
binding energy is molecular docking simulation by AutoDock [1], whereby the bound conformation of
ligand-receptor complex is predicted followed by binding affinity estimation. AutoDock tool can be
used for high-throughput virtual drug screening involving thousands to millions of drug candidates.
However, it is worth noting that its high performance comes at the cost of accuracy. Limitations of
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AutoDock and other similar software packages that neglect entropic and solvation effects as well as
dynamics properties of the receptor lead to lower accuracy compared to more sophisticated methods
such as exact free energy perturbation calculations [2] and molecular mechanics Poisson—-Boltzmann
surface area (MMPBSA) approach [3]. The first method archived unprecedented level of accuracy
establishing an astonishing agreement between experimental and computationally predicted values of
binding affinities [2]. The later approach is an efficient method for the estimation of relative binding
affinity for diverse biomolecular systems in reasonable time, however at present applicability of
both methods for screening large compounds libraries is limited. Fast and simple methods based
on a single or a minimal set of biomolecular structural features, which will be able to reveal latent
details in quantitative terms about the strength of protein-peptide complex in a consistent and general
manner, are still lacking. Consequently, further development of effective protein-peptide docking
techniques [4-7] and finding an efficient alternative to binding affinity [8-15] have been a major focus
of computational studies in recent years.

Recently, steered molecular dynamics (SMD) simulations have become popular to measure
mechanical stability which could be used to assess the strength of the molecular interactions. The SMD
approach was shown to be an efficient alternative to conventional MMPBSA method, but it can be
few orders of magnitude faster [9], which enables screening of a correspondingly larger number of
compounds. Such gain in performance is possible due to extreme conditions used in SMD simulations,
e.g., the pulling speed in simulation is several orders of magnitude higher than that used in single
molecule force spectroscopy experiments. Recent studies claim that mechanical unfolding pathways
of some proteins are insensitive to pulling forces and speeds if all-atom explicit solvent simulations
are employed [16-18]. Therefore, it is reasonable to assume that the mechanical stability measured
as a force required to unbind a ligand from the receptor corresponds to the strength of interactions.
In other words, mechanical stability computed in explicit solvent all-atom SMD simulations could be
efficiently used to assess the strength of molecular interactions much faster than conventional methods
like MMPBSA.

SMD simulations which mimic the Atomic Force Microscopy (AFM) experiment have been
successfully used to study many processes including protein unfolding [19], enzyme-inhibitor
unbinding [9] and disaggregation of beta-amyloid oligomers [20]. In our previous paper, we demonstrated
that kinetic stability of the fibril state can be accessed via mechanical stability extracted from SMD
simulation in such a way that the higher mechanical stability or kinetic stability the faster fibril
formation [21]. A common strategy in SMD simulations applied to single molecules is to pull a
protein by force ramped linearly with a time and monitor the mechanical stability as a function of
the end-to-end displacement (or time). More than two decades ago, SMD simulations were utilized
to measure the interaction strength of the streptavidin-biotin complex. The idea behind using SMD
simulations is that the mechanical stability or rupture force required to unbind peptide from the
receptor corresponds to the strength of the interactions or in other words peptide mechanical stability
is proportional to its binding energy. The ligand was pulled along the vector connecting center of
masses (COM) of receptor and ligand. Primarily due to easy implementation of COM’s pulling,
this direction has become a widely accepted option in MD studies of ligand unbinding. However,
it should be pointed out that pulling in the direction connecting the COMs of the protein-peptide
system does not necessary align the force vector with it. In this work, we attempt to identify the most
prominent non-bonded interaction-based force which may act as a crucial determinant that influences
the stability of the protein-peptide complex.

Recently it has been shown [22] that any protein molecule in solution can be represented by a
set of polarizable dipoles embedded in a dielectric medium of solvent molecules. Taking a clue from
this study, we investigated the role of the resultant dipole moment vector emerging out of the local
stretch of protein backbone. In contrast to COMs pulling, the electrostatic force emerging out of the
resultant dipole moment ensures the stability of any protein or biological complex. The resultant
vector of the peptide-dipoles characterizing the local stretch of protein backbone in the peptide
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binding site may act as an important determinant of the mechanical strength of protein-peptide
complex, especially because, the side-chain dipole moments may either neutralize itself, or, may
become neutralized by the innumerable non-bonded interactions which dominate the interactional
space involving disordered regions.

In this paper, we investigate the effect of the novel pulling direction on the mechanical stability
of ligand-receptor complex using solvent all-atom SMD simulations. As follows from the studies of
mechanjgal unfalding of prateingethe rupture force (or unfolding time in constant force experiments)
is sensitive to the pulling direction [23,24]. To our best knowledge, the idea of the pulling ligand
from the redeptisiraRshgvecisivheiize dihokitasbehtierosetoriing Abediesrp o toesbiynisrpiekéity For the
calmodﬁﬁW?of?@%&%&%&%E‘R‘%ﬁﬁg E]; %%Bf%%msf&élf?ngglfﬁwgg LS ¥ the rest
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of bindjirest of the paper) sisidigdriechart shbstabili fyubingstheg WidiMeseawe fifesctits drs sbringef tierctions.
compared to pulling along COMs vector. We conclude that resultant dipole moment is an important
2. ResultstanidfDéscingsflonmechanical stability of biological complexes. This can be used to improve the
ranking of binding affinities by using mechanical stability or its derivatives as effective scoring functions.

2.1. Assessing the Mechanical Stability of 2LLO Peptide-Protein Complex Using Steered Molecular Dynamics
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force-extension profile, SMD simulations can be used to investigate the molecular determinants of
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A and B as well as A’ and G in a single domain of a multi-domain construct (Figure 1b). Thus, not
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mechanical stability. Using all-atom explicit solvent SMD simulations [17,26,33-35], it was found that
each peak in the force-extension profile is associated with breaking hydrogen bonds between strands
A and B as well as A’ and G in a single domain of a multi-domain construct (Figure 1b). Thus, not only
protein mechanical stability, but also molecular interactions and the mechanism behind mechanical
unfolding can be revealed using SMD simulations.
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2.2. Mechanical Stabilit De ends on the Pulling Direction of 2LLO Ligand-Receptor Complex
Molecules 2018, 23, X EER REVIEW 50£10
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So far, we have performed SMD simulations for 2LLO protein-peptide complex. The important
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question arises whether the effect of superior mechanical stability of RDM over COM vectors is
universal and holds also for other protein-peptide complexes. In order to check whether our approach
holds the same increase on dissociation force trend compared to COM, we performed additional SMD
simulations for two different protein-peptide systems. Unlike the first protein-peptide complex that
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. 290/B15, 2224530431318
69-76,87-92, 96, 100

219-220, 242, 252-257,

1JD5 259-263, 265-279, 282-283, 0.226i + 0.182j — 0.957k —0.77i — 0.416j — 0.484k 7739 £ 1494 5959 £55.1
285-290, 311, 314-315, 317-318

0636104+ 07644 0.790{ + 0451 0-395k 486-1==53-6 432.4 + 42.1




Molecules 2018, 23, 1995 7 of 10

Table 2. List of 3 complexes used in the all atom SMD simulations. The bound structures of the
complexes are obtained from the structures deposited in Protein Data Bank. The lengths and structural
classes of both the proteins and the peptides are provided.

PDB ID of The Protein-Peptide Complex Protein Peptide
Length Class Length Class
2LLO 80 o/ B (34/2%) 19 o (84%)
1DDV 104 o/ B (13/45%) 6 unstructured
1JD5 105 o/ B (41/7%) 8 B (40%)

3. Materials and Methods

We used GROMOS43al [42] force-field [43] to describe the peptides and SPC [44] water model
for solvent. All-atom MD simulations have been carried out using Gromacs program suite [45] which
was previously successfully employed by our group for studying protein folding, unfolding and
aggregation [46—49]. We use periodic boundary conditions and calculate the electrostatic interactions
by the particle mesh Ewald method [50]. The non-bonded interaction pair-lists are updated every 10 fs,
using a cutoff of 1.4 nm. All bond lengths are constrained with the linear constraint solver LINCS [51],
allowing us to integrate the equations of motion with a time step of 2 fs.

To avoid improper structures, the whole system was minimized with the steepest-descent method,
before being equilibrated at 310 K with two successive molecular dynamics runs of length 1ns each;
the first one at constant volume, the second at constant pressure (1 atm). Initial velocities of the
atoms were generated from the Maxwell distribution at 310 K. The temperature was kept close to
310 K using the v-rescale thermostat. Data analysis was done using the corresponding Gromacs
programs and snapshots of all peptides were created with Visual Molecular Dynamics molecular
graphics software [52]. Resultant dipole moment was defined as net dipole moment of those receptor
backbone atoms which interacts with the bonded ligand.

During the steered molecular dynamics (SMD) simulations, the spring constant was chosen as
k = 1000 kJ/(mol'-nm?) ~ 1700 pN /nm, which corresponds to the upper limit of k of cantilever used
in AFM experiments. We applied an external force to the center of mass (COM) of the ligand and
pulled it along two different vectors. The first vector is drawn between COM of pulled peptide and
COM of the receptor. The second vector is the resultant dipole moment defined as net dipole moment
of those receptor backbone atoms which interacts with the bonded ligand. Pulled movement of the
peptide under external force caused its dissociation from the receptor and the total force needed to
bring about this dissociation was measured by F = k(vt — x), where x denoted the displacement of
the pulled peptide from its initial position. The resulting force was computed for each time step to
generate a force-extension profile, which recorded a single peak showing the most mechanically
resisting conformation in our system. Once the critical interactions were disrupted, the pulled
peptide was found to no longer resist the applied force. Overall, the simulation procedure could be
described similarly to those followed during the AFM experiments, except that the pulling speeds
in our SMD simulations were fixed at several orders of magnitude higher than those used in AFM
experiments [53]. We performed simulations at room temperature (T = 310 K) for v = 10’ nm/s and
generated 50 trajectories for each pulling direction. The 50 peak forces extracted were subsequently
used to construct histogram of most probable rupture forces.

4. Conclusions

In the reported here studies we have tested the influence of RDM pulling direction on mechanical
stability of three peptide-protein complexes. Unlike in widely-used COMs pulling simulations where
COM does not talk about the forces that contribute to the stability of the complex, RDM vector
retains information about the electrostatic forces associated with the resultant dipole moment. Pulling
along COMs vector turns out to lead to a weaker resistance compared to RDM direction which has
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a significant electrostatic force aligned with it. Thus, together with other geometric and dynamics
properties of protein binding pockets [54], RDM is one of the important factors influencing stability
of biological complexes. Consequently, we hypothesize that peptide ligand binding affinity might
be more accurately predicted using mechanical stability obtained by a computational approach that
incorporates RDM factor in SMD studies. Our finding can provide a basis, through qualitative,
for improvement of the computationally predicted mechanical stability. We believe that this should
lead to development of new strategies that employ the mechanical stability as an effective scoring
function for ranking binding affinities and/or for the quick testing of peptide ligands that might
eventually block formation of pathological aggregates.
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