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Abstract—Simultaneous multi-slice or multi-band (SMS/MB)
imaging allows accelerated coverage in magnetic resonance imag-
ing (MRI). Multiple slices are excited and acquired at the same
time, and reconstructed using the redundancies in receiver coil ar-
rays, similar to parallel imaging. SMS/MB reconstruction is cur-
rently performed with linear reconstruction techniques. Recently,
a nonlinear reconstruction method for parallel imaging, Robust
Artificial-neural-networks for k-space Interpolation (RAKI) was
proposed and shown to improve upon linear methods. This
method uses convolutional neural networks (CNN) trained solely
on subject-specific calibration data. In this study, we sought to
extend RAKI to SMS/MB imaging reconstruction. CNN training
was performed on calibration data acquired prior to SMS/MB
imaging, in a manner consistent with the existing linear methods.
These CNNs were used to reconstruct a time series of functional
MRI (fMRI) data. CNN network parameters were optimized
using an extensive search of the parameter space. With these
optimal parameters, RAKI substantially improves image quality
compared to a commonly used linear reconstruction algorithm,
especially for high acceleration rates.

I. INTRODUCTION

Acquisition times in Magnetic Resonance Imaging (MRI)
remain long, especially compared to other imaging modalities.
Therefore several methods for accelerating MRI have been
proposed. Parallel imaging is the most clinically utilized
strategy [1]-[3]. These methods use the differences in the
receiver profiles of coil arrays [4], which lead to redundancies
in acquisition. Redundancies in these profiles are estimated
from calibration data that is acquired at the beginning of
each MRI exam or scan [2], [3]. The reconstruction can be
performed in image domain using a least squares formulation
[2] or in k-space using linear shift-invariant interpolation [3].

A related acceleration technique, called simultaneous multi-
slice or multi-band (SMS/MB) imaging provides fast coverage
of the scans by encoding and acquiring multiple slices simul-
taneously [5]. The images are then recovered in a manner
similar to parallel imaging, using the distinct sensitivities of
the coils, which exhibit further variations for different slices.
Several reconstruction methods have been proposed, including
image domain techniques [6]-[8] and k-space interpolation
strategies [9], [10]. For all these methods, scan-specific cal-
ibration data is acquired prior to SMS/MB imaging. The
SMS/MB calibration data is often higher resolution compared
to parallel imaging, as one calibration dataset is typically
used to reconstruct series of images. SMS/MB imaging has

been used in large-scale NIH projects, such as the Human
Connectome Project [11], for fast acquisition of functional
MRI (fMRI) and diffusion MRI.

The linear reconstruction approaches that are frequently
used for accelerated MRI suffer from noise amplification
that increases with higher undersampling rates [2], [3]. Thus,
alternative strategies have been explored. Recently, multiple
methods that use machine learning for improved regularization
have been suggested [12]-[19]. These regularizers are learned
on large training databases, which deviates from the scan-
specific calibration of the linear strategies. In another line of
work, a method called Robust Artificial-neural-networks for k-
space Interpolation (RAKI) has been proposed for improving
parallel imaging in a scan-specific manner [20]. RAKI uses
multi-layer CNNss, trained on subject-specific calibration data,
to interpolate missing points in k-space, extending on the
linear convolutional kernels of conventional methods, such
as Generalized Autocalibrating Partial Parallel Acquisition
(GRAPPA) [3]. This method was shown to reduce the noise
amplification in parallel imaging compared to GRAPPA [20].

In this study, we sought to extend the utility of RAKI to
SMS/MB imaging. Subject-specific training of the CNNs was
performed using the SMS/MB calibration data. Due to the
higher resolution of the calibration data, bigger networks or
convolutional kernels can be utilized, while over-fitting of the
CNNs may also be a concern. Thus, extensive search of the
parameter space was performed to yield CNNs that are robust
to over-fitting, while improving noise performance. SMS/MB
RAKI was applied to 8-fold and 16-fold accelerated fMRI, and
compared to a conventional linear method called RO-SENSE-
GRAPPA [21], showing improved robustness to noise.

II. METHODS

A. Background on k-space Interpolation and RAKI

k-space interpolation approaches are widely used for par-
allel imaging reconstruction of undersampled MRI data, with
GRAPPA [3] being one of the most clinically-used methods. In
GRAPPA, the ACS can be obtained integrally or as a separate
scan. A set of linear shift-invariant convolution kernel are
estimated from this ACS data, which are subsequently utilized
to interpolate the missing points in a uniformly undersampled
k-space acquisition using the acquired ones in its vicinity [3].



Fig. 1. Generation of ACS signal for SMS/MB reconstruction. a) Fully
sampled slices were obtained from calibration scans prior to fMRI acquisition.
b) Image slices were concatenated in image domain along the readout
direction. c¢) This readout-concatenated image was transformed to k-space,
which served as the calibration data for CNN training.

As with other linear approaches, GRAPPA suffers from noise
amplification at high acceleration rates [2].

RAKI extends on this linear convolution by performing non-
linear interpolation using CNNs [20]. Similar to GRAPPA,
the CNNs are trained from the ACS data, which are subse-
quently used to interpolate the missing k-space points from
the acquired ones. In [20], a three-layer CNN was used,
although deeper architectures are also possible for larger ACS
data. The first two layers of the network include convolutions

Fig. 2. Reconstruction procedure for SMS/MB imaging. a) Folded image
in k-space (left) and image domain (right) at the acquisition matrix size.
b) Zero-filled k-space data in k-space (top) and image domain (bottom). c)
Reconstructed image after using k-space interpolation in k-space (top) and
image domain (bottom).

Fig. 3. Reconstruction quality varies among different CNNs. a) A CNN that
failed to recover the first slice properly. b) A CNN capable of reconstructing
all slices while controlling the noise level. c) A CNN that recovers the first
slice but suffers from noise amplification.

and a point-wise non-linear operation via the rectified linear
unit (ReLU), defined as ReLU(z) = max(x,0). The last
layer of the network only contains convolutions to generate
the final estimates. This non-linear interpolation strategy was
shown to improve upon the noise amplification associated with
GRAPPA [20].

B. RAKI for SMS/MB Imaging

In extending RAKI to SMS/MB imaging, we used a readout
concatenation strategy to transform the SMS/MB reconstruc-
tion into a one-dimensional interpolation problem [21]. To
generate the ACS signal, fully sampled slices were obtained
in individual scans prior to the fMRI acquisition. These were
concatenated along the readout direction in image domain
(Figure 1) to generate the calibration data that was used for
CNN training. Subsequently, the SMS/MB-encoded images
(Figure 2a) were zero-filled in k-space with the corresponding
MB rates (Figure 2b). Image unfolding was then achieved
by k-space interpolation using RAKI trained on the subject-
specific calibration data (Figure 2c).

For SMS/MB RAKI, we used a three-layer CNN similar
to RAKI [20]. The input to the network is the acquired and
zero-filled k-space data across all coils (mapped to the real
field), and the output is the missing points in each coil. For
an SMS/MB acceleration rate of R, the output contains R — 1
channels. For outputting coil ¢, the first two layers of the net-
work implement non-linear functions Fy (z) = ReLU(W§ *x),
and F¥(z) = ReLU(W$  x), while the last layer is given by
F$(z) = w§ * x. Here, w{, w5, w§ are sets of convolutional
operators used in reconstructing the data in the ¢ channel,
which were respectively in size z, x yg, Xi; X op, where
p € {1,2,3}. By design 0§ = R— 1. The overall interpolation
function is given as F°(z) = F§(F§5(Ff(z))). For each
channel in the receiver coil array, a corresponding CNN is
trained from the ACS data based on the mean-square error
loss function. A total of 2n,. such CNNs are trained, where n.
is the number of coils in the receiver array, and the factor of
2 is due to the mapping of the complex k-space values to R.

C. In Vivo Imaging Experiments

Imaging was performed on a 3T Siemens Magnetom Prisma
(Siemens Healthcare, Erlangen, Germany) scanner with a
32-channel receiver head coil-array. fMRI acquisition was



Fig. 4. Reconstruction results using the two networks with the optimal set of parameters as determined by extensive search of the parameter space, a) The
reconstruction results for the first set of parameters. b) The reconstruction results for the second set of parameters.

Fig. 5. MBI16 reconstruction results. a) Slice 1 to 8 using RO-SENSE-GRAPPA, b) Slice 1 to 8 using SMS/MB RAKI. c) Slice 9 to 16 using RO-SENSE-

GRAPPA. d) Slice 9 to 16 using SMS/MB RAKI.

performed using the Human Connectome Project protocol [22]
with resolution = 2 x 2 x 2mm?, using blipped-CAIPI encoding
[23] with a field-of-view/3 shift between adjacent multiband
slices. Images were acquired using a multiband rate of 8
(MBS8) with echo time = 37ms, repetition time = 800ms, in
accordance with the Human Connectome Project protocol, as
well as at a higher multiband rate of 16 (MB16) with echo time
= 37ms, repetition time = 1000ms. Calibration data containing
the individual slices was acquired prior to the fMRI image
series at the same resolution.

The subject-specific ACS data was used for training of the
CNN as described in Section II-B. The mean-square error
loss function was minimized using the Adam optimizer [24].
Network parameters were optimized using an extensive search
of the parameter space, through the following values: z;, €
{1,3,5,7},y; € {1,2,4,6},145, 05 € {8,16,32,64,128}, for
p € {1,2,3}. As noted earlier, 0§ = R — 1 was fixed.
The trained network corresponding to each set of values
was used to reconstruct both MB8 and MB16 data. These
reconstructions were qualitatively evaluated by an observer
for certain fidelity criteria (Figure 3), which included a) the
reconstruction of low-intensity slices in the higher part of the
skull, b) robustness to overfitting with respect to ghosting

artifacts, c) resilience to noise amplification. The optimized
network parameters were subsequently used for the recon-
struction of MB8 and MB16 datasets. To further test noise
sensitivity, Gaussian white noise was retrospectively added
to MBS datasets, which were subsequently reconstructed. For
comparison in all cases, conventional RO-SENSE-GRAPPA
reconstruction using a 5 x 4 kernel was also implemented on
the same ACS data.

SMS/MB RAKI was implemented using python 3.6.2 and
TensorFlow 1.3.0, supported by CUDA 8.0 and CuDNN 7.0.5.
Python environment was created by Anaconda 3.8.3. GRAPPA
was implemented using Matlab R2012b (MathWorks Inc.,
Natick, MA). All experiments were performed on a server
with two Intel E5-2643 CPUs (6 cores each, 3.7 GHz), 256
GB memory, a NVIDIA Tesla K80 GPU (single precision 8.74
TFLOPS, 24 GB memory),running Linux 3.10.0 OS with GCC
4.8.5.

III. RESULTS

Based on the criteria outlined in Section II-C, the extensive
search of the CNN parameter space yielded two sets of
network parameters for both MB8 and MB16. The first set
corresponded to convolutional kernels of size 3 x 2 x 2n. x 32,
1x1x32x32,5x4x32x R—1 for w{, w5, w§ respectively.



Fig. 6. Noise sensitivity test using MBS data using a) RO-SENSE-GRAPPA, b)SMS/MB RAKI reconstructions.

The second set led to kernels of size 3 x 2 x 2n,. x 32,
Ix1x32x128, 5x4x128x R—1 for w{, w§, w§ respectively.
Figure 4 shows the reconstruction results using these two
networks. No apparent visual difference between these two
results were observed. Thus, the first set of parameters were
used for the remainder of the experiments in order to reduce
running time.

Figure 5 depicts the results of the MB16 fMRI reconstruc-
tion. Figure 5a and c show the results of the conventional
RO-SENSE-GRAPPA reconstruction for the first and second
set of eight slices respectively. These reconstructions exhibit
noise amplification at this high acceleration rate. These noise
artifacts are visibly reduced using the proposed SMS/MB
RAKI approach, as shown in Figure 5b and d for the same
sets of slices, respectively.

Figure 6 shows the results of noise sensitivity for an
MBS reconstruction, when noise is retrospectively added to
the acquired data to simulate a low-SNR acquisition. The
reconstruction noise in RO-SENSE-GRAPPA reconstruction
scales with the increased input noise, rendering these images
unusable. The SMS/MB RAKI approach exhibits higher ro-
bustness to input noise, enabling the reconstruction of these
eight slices from low-SNR k-space data.

IV. CONCLUSION

In this paper we extended the subject-specific CNN inter-
polation of the RAKI reconstruction to SMS/MB imaging.
Parameter selection for the CNN was highlighted in this appli-
cation due to the availability of higher resolution calibration
data. SMS/MB RAKI provided improved noise robustness and
reconstruction quality at high SMS/MB rates compared to a
conventional linear reconstruction approach.
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