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Abstract—Bearing is the major contributor to wind
turbine gearbox failures. Accurate remaining useful life
prediction for drivetrain gearboxes of wind turbines is of
great importance to achieve condition-based maintenance
to improve the wind turbine reliability and reduce the cost
of wind power. However, remaining useful life prediction is
a challenging work due to the limited monitoring data and
the lack of an accurate physical fault degradation model.
The particle filtering method has been used for the
remaining useful life prediction of wind turbine drivetrain
gearboxes, but suffers from the particle impoverishment
problem due to a low particle diversity, which may lead to
unsatisfactory prediction results. To solve this problem,
this paper proposes an enhanced particle filtering
algorithm in which an adaptive neuro-fuzzy inference
system is designed to learn the state transition function in
the fault degradation model using the fault indicator
extracted from the monitoring data; a particle modification
method and an improved multinomial resampling method
are proposed to improve the particle diversity in the
resampling process to solve the particle impoverishment
problem. The enhanced particle filtering algorithm is
applied successfully to predict the remaining useful life of
a bearing in the drivetrain gearbox of a 2.5 MW wind
turbine equipped with a doubly-fed induction generator.

Index Terms—Enhanced particle filtering (EPF), gearbox,
prediction, remaining useful life (RUL), wind turbine.

NOMENCLATURE
n Order of Markov model.
Xi Actual value of state at time k.
Zp Measurement of state at time k.
Vi Measurement noise.
%L.,  State of the i" particle at time k+1.
i The nonlinear state transition function in the fault

degradation model.
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Uy Gaussian white noise in the state transition function.
N Number of particles.

Xr+1  Estimated value of state at time k+1.

wi Weight of the i particle at time k.

o(*) Dirac delta function.

Nii;  Number of the resampled particles whose states are
equal to &, .

Ny Effective number of particles.

Nyres  Threshold used to perform resampling.

E Set containing the states of small-weight particles.

E, Set containing the states of large-weight particles.

W Threshold for separating large- and small-weight
particles.

w Weights of particles sorted in the descending order.

Xkn State of a particle in Ej.

X State of a particle in E).

Xiom State of a modified small-weight particle.

Wi Weight of x3;.

wk,  Weight of x.

N, Number of particles contained in ).

N, Number of particles contained in £,.

X, Set containing the states of the original large-weight
particles and modified small-weight particles.

x'y State of the i” resampled particle stored in Xj,.

N, Number of the resampled particles whose states are
equal to x'}.

XL Set containing the states of new resampled particles
generated from x'}.

Ah; Deviation of the state of a new resampled particle.

A Decentralization parameter.

Xi Set containing the states of all the new resampled
particles.

Zi+m  Predicted measurement of state at time k+m.

T, Prediction period.

e Metrics for evaluating the particle filtering
performance.

N; Number of experiments for RUL prediction.

T, Monitoring period.

Q}({u) State predicted at time k for the u™ experiment.

I. INTRODUCTION

Gearbox failure is one of the leading reliability issues in
doubly-fed induction generator (DFIG)-based wind turbines
[1]-[3]- According to a report [4], gearbox is the leading
contributor to the downtime of both onshore and offshore
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DFIG-based wind turbines ranging from 500 kW to 5 MW.
Moreover, the replacement costs for drivetrain gearboxes are
high. For instance, replacing the gearbox in the drivetrain of a
5 MW wind turbine can cost more than $600,000 [5].
According to another survey [6], the majority of wind turbine
gearbox failures are caused by bearings. Among various
bearing failures, axial cracks on the bearings in the high-speed
stages (HSSs) are the leading causes. Therefore, to reduce the
downtime and maintenance costs of DFIG-based wind
turbines, it is highly desired to detect bearing faults and
predict the remaining useful life (RUL) of the bearings in the
gearboxes as early as possible. In this way, the traditional
scheduled maintenance can be replaced by condition-based
maintenance (CBM) so that the faulty components can be
repaired timely to prevent further damages of the drivetrains
or catastrophic failures of the wind turbines [7].

The CBM is gaining growing interests for improving the
reliability of complex systems in industrial, military, and other
applications. The CBM relies on the assessment of the health
condition of the system using a program consisting of
condition monitoring, feature extraction, fault diagnosis, fault
prognosis, maintenance action, etc. Fault prognosis is a key
part of the CBM and is performed after fault diagnosis to
predict the future progress and propagation of the fault and the
RUL of the system being monitored. However, unlike fault
diagnosis for drivetrain gearboxes of wind turbines, which has
been widely studied by academic and industry [8]-[19], fault
prognosis and RUL prediction are relatively new domains.

The major methods for fault prognosis and RUL prediction
can be generally categorized into model-based (or physics-
based) methods and data-driven methods. The model-based
methods assume that an accurate physical degradation model
can be obtained to predict the development of a failure process
[20]. Different model-based methods have been proposed for
RUL prediction [21], [22]. However, it is usually difficult to
build accurate physical degradation models for complex real-
world systems; and the identification of model parameters
requires extensive experiments and empirical data. In the data-
driven methods, the raw monitoring data is transformed into
relevant information from which the degradation models are
derived without concerning about the physics of the system
degradation processes [23]. The data-driven methods mainly
use statistical or artificial intelligence (AI) tools to learn the
degradation processes and predict the future health states of
the systems. A data-driven method typically consists of two
phases: learning the fault degradation process in the first phase
and then predicting its future state in the second phase.
Different data-driven methods have been developed and
successfully applied for RUL prediction [24]-[26]. However, it
is not easy to explain the physical meaning of the results
obtained from the data-driven models. Moreover, it may
require significant computational resources to train the Al
algorithms and process the data [27].

Particle filtering (PF) is a widely-used method to estimate
and update the states and parameters in model-based methods
based on the concept of sequential importance sampling (SIS)
and Bayesian theory [28]. In the PF, the posterior distribution

of the state is approximated by a number of weighted particles.
The PF is suitable for predicting a nonlinear stochastic process
with noisy measurements and, thus, has attracted great
attentions from both academia and industry [29]-[31]. In the
past two decades, the PF has been applied to a variety of
applications related to wind energy conversion systems. In [32]
and [33], the PF approach was used to optimize the layout of a
wind farm to minimize the wake effects and maximize the
power generation. In [34], the PF was used to acquire the
stator flux of a DFIG, which is an unmeasurable internal state
of the DFIG, to enlighten the design of the control scheme.
Meanwhile, the PF has also been widely used in the CBM area,
such as blade fault diagnosis and prognosis [35], wind turbine
drivetrain main bearing [36] and gearbox [37] fault prognosis,
and helicopter bearing fault prognosis [38]. Since a wind
turbine drivetrain gearbox is a complex system with many
components and usually operates under varying conditions, it
is hard to obtain an accurate physical degradation model to
describe the fault development of the bearings in the gearbox.
In [39], an adaptive-neuro-fuzzy-inference-system-based PF
(ANFIS-PF) algorithm was proposed for the RUL prediction
of wind turbine drivetrain gearboxes. In that PF algorithm, a
data-driven model called ANFIS was designed to learn the
state transition function of the fault degradation model to
remove the need for a physical degradation model. Thus, the
ANFIS-PF is a hybrid method that can leverage the strengths
of both data-driven and model-based methods and is suitable
for the RUL prediction of wind turbine drivetrain gearboxes
whose physical degradation models are hard to obtain.

However, the accuracy of the PF methods is limited by the
particle impoverishment problem in the resampling procedure.
The problem occurs when all but a few particles have
negligible weights. As a result, the posterior distribution of the
state is inaccurately approximated by a small number of large-
weight particles. This problem will reduce the diversity of the
particles and, thus, can lead to misleading state estimation
results. Several modified PF algorithms have been proposed to
solve the particle impoverishment problem. A simple strategy
is to rough the overcentralized particles with Gaussian noise
[40]. However, that strategy only relies on the resampled
particles with large weights. In severe cases, these particles
may only have very few distinct values and, thus, provide little
improvement of the particle diversity. In [41], the authors
proposed a resample-move algorithm to mitigate the particle
impoverishment based on the Markov chain Monte Carlo
sampling. The Kullback—Leibler Distance (KLD)-sampling
[42] and KLD-resampling [43] approaches were proposed to
determine the number of particles used in the PF based on the
KLD between the actual distribution and the distribution
estimated by particles. In [44], an intelligent PF algorithm
inspired by the genetic algorithm (GA) was proposed to solve
the particle impoverishment problem. However, the GA
operators increased the complexity and computational cost of
the PF algorithm.

This paper proposes a new particle modification method
and an improved multinomial resampling method to solve the
particle impoverishment problem in the resampling process of
the existing PF algorithms. The particle modification method
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modifies the weights of small-weight particles so that they
become large-weight ones. Then, the improved multinomial
resampling method further increases the diversity of the
particles. The proposed particle modification and improved
multinomial resampling methods do not increase the
computational complexity when compared to the traditional
multinomial resampling method. The proposed methods are
used for the particle resampling in the PF algorithm, leading to
an enhanced PF (EPF) algorithm. Based on the EPF algorithm,
a strategy is designed for the continuous RUL prediction of
the bearings in wind turbine drivetrain gearboxes to facilitate
the CBM to reduce the costs caused by repair and downtime.
The paper is organized as follows. Section II briefly reviews
the PF algorithm and discusses the particle impoverishment
problem encountered in the PF algorithm. Section III presents
the proposed EPF-based RUL prediction strategy. In Section
IV, the EPF-based strategy is validated by predicting the RUL
of a bearing in the drivetrain gearbox of a 2.5 MW wind
turbine in the field. Section V summarizes the paper by some
concluding remarks and recommendations for the future work.

II. A BRIEF REVIEW OF THE PF METHOD AND PARTICLE
IMPOVERISHMENT PROBLEM

A. Background of the PF Method

In Bayes’ theorem, the posterior probability density
function (PDF) of the state, which is the fault indicator in the
RUL prediction, is constructed based on all available
measurements of the state. For a real-world nonlinear system,
it is often difficult to obtain the analytic solution of the
posterior PDF [45]. To solve this problem, the PF was
proposed to approximate the posterior PDF of the state using a
set of particles. In the RUL prediction applications, the
measurement equation can be simply expressed in the
following form [38].

Ly =X TV (1)
where x; and z; are the actual value and measurement of the
state at the time instant &, respectively; and v; is the estimated
measurement noise, which is assumed to follow a Gaussian
distribution.

By using the measurements of the state, the PF predicts the
state recursively in three main steps: propagate, update, and
resample [46].

Propagate: The state of each particle is propagated using an
n"-order Markov model, which predicts the trajectory of the
state:

X = SeE X X )by @)
where %}, , is the state of the i"™ particle at the time instant k+1;
u; 1s a Gaussian white noise; f; represents the nonlinear state
transition function in the fault degradation model; and the
symbol * on top of each variable indicates that it is an
estimated or predicted value of the variable.

According to the propagated states £, (i = 1, -, N) and
their current weights, the state at the time instant k+1, Xj.q,
can be predicted as follows:

N
ikﬂ = Zwllc)%llcﬂ (3)
i=1

where w} is the weight of the i particle at the time & and N is
the number of particles.

Update: When a measurement z;.; becomes available, the
weight of each particle is updated according to the importance
sampling principle [46]:

W/i+1 o< W;;»p(zkﬂ |)AC11+1) 4)
where o denotes “in proportion to” and p(z,., | £;,,) is the
likelihood function.

Then, the updated weights are normalized as follows.

5 i=1929”'9N (5)

Thus, the posterior PDF of the state can be approximated by
the particles with associated weights as follows:

N
p(xk+1 | Zl:kH) = ZWII(‘Flg(xk‘F] - 'i:ll(+]) (6)

i=1
where d(¢) is the Dirac delta function.

Resample: The PF method usually suffers from the problem
of particle weights degeneracy after a few iterations, i.e., all
but a few particles will have negligible weights. It has been
shown in [40] that the weight degeneracy problem is
unavoidable. To solve this problem, resampling of particles is
usually performed in the PF [47]-[51]. In the resampling
process, the states and weights of the selected particles are
updated to reduce the discrepancy between the weights of
different particles. A widely-used resampling method is called
multinomial resampling [40] in which the particles with small
weights are eliminated; and new particles (called resampled
particles) are created by duplicating the states of the particles
with large weights. The weights of all the resampled particles
are set to be equal to 1/N. Then, the posterior PDF of the state
can be approximated by the resampled particles as:

1 < i A
P(Xy | 21400) = N sz+15(xk+1 = X1 @)
pa

where N, is the number of the resampled particles whose
states are equal to Xy, ;.

B. The Particle Impoverishment Problem

In the multinomial resampling process, if the number of the
large-weight particles is much less than that of the small-
weight particles, the states of the resampled particles may only
share a few distinct values. This will lead to a low diversity of
the resampled particles and may cause incorrect state
prediction results. Fig. 1 illustrates the weight degeneracy and
particle impoverishment problems of the PF algorithm
designed to predict a one-dimensional (1D) state variable. Fig.
1(a) shows the posterior PDF of a 1D state variable to be
approximated by the particles in the PF algorithm. In Fig. 1(b),
the filled circles represent the particles; the radiuses of the
circles represent the weights of the particles; and the location
of each circle’s center represents the state value of the particle.
Since the weight degeneracy phenomenon is observed in Fig.
1(b), namely, only a few particles have predominantly large
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Fig. 1. lllustration of weight degeneracy and particle impoverishment
problems in the resampling process: (a) posterior PDF of a 1D state
variable, (b) weight degeneracy, and (c) particle impoverishment.
radiuses, resampling is needed. This, however, leads to the
particle impoverishment problem as the resampled particles
represented by the hollow circles only share a few distinct
values, as shown in Fig. 1(c). As a result, the diversity of the
resampled particles is reduced compared to the original
particles. As shown in Fig. 1(c), the resampled particles
cannot approximate the posterior PDF of the state variable
accurately because no resampled particles are created within
several gray regions with high probabilities. Some literatures
have shown that the loss of diversity of the resampled particles
will lead to an inaccurate approximation of the posterior
distribution of the state and, thus, will have a negative impact
on the state prediction results of the PF-based methods [52]-
[54]. A straightforward method to solve the impoverishment
problem is to increase the number of particles. However, this
will increase the computational burden of the PF algorithm
significantly. Thus, other computationally efficient methods
are desired.

[ll. PROPOSED EPF ALGORITHM FOR RUL PREDICTION

This section proposes a new EPF algorithm to predict the
RUL of the bearings in DFIG-based wind turbine drivetrain
gearboxes. The EPF algorithm solves the particle
impoverishment problem in the resampling process of the
existing PF algorithms. In the EPF algorithm, a particle
modification method is first designed to modify the small-
weight particles to become large-weight particles. Thus, more
particles have the chance to be selected in the resampling
process. Next, an improved multinomial resampling method is
proposed to adjust the resampled particles to further increase
their diversity.

A. Particle Modification

The effective sample size of particles, Ny, can be regarded
as a measure of the dispersion of the weights, which is
obtained as follows [28]:

N
Ny = {1/ Z(Wz’c)z} ®)
i=1

where [*] denotes rounding a number. When N is less than a
fixed threshold N,.;, resampling should be performed. The
value of Ny, can affect the frequency of executing the
resampling process. When resampling is required, the particle
weights are overcentralized, namely, many particles have
small weights and, therefore, contribute little to approximating
the posterior distribution of the state. Due to the small number
of the large-weight particles with distinct state values, the
posterior PDF expressed by (7) is inaccurately approximated,
causing a particle impoverishment problem. To solve this
problem, the weights of the small-weight particles are
increased to obtain more large-weight particles to make the
particle weights more even, which implies that the weights of
the original large-weight particles will reduce. Therefore,
more particles can be selected in the resampling process. In
this way, the diversity of the resampled particles will be
improved to solve the particle impoverishment problem.

To modify the small-weight particles, the first step is to
separate them from the large-weight particles. This is achieved
by a particle selection method designed as follows:

Xl e {E i < W ©)
E,, we 2 W,

where E; and E), are the sets containing the states of the

particles with small and large weights, respectively; and Wy, is

the threshold used for the separation. The weights wi (i =1, -,

N) of the N particles are sorted in the descending order and

stored in W, i.e.,

W=, W)} (10)

where W, > >--->W, . Then, the weight of the N

particle in W is selected as the threshold Wy,:
Wi =W(Nyy) an
After separating the particles, all the small-weight particles
are modified with the help of the large-weight particles; while
the large-weight particles remain the same. Let xj; be the state
of a small-weight particle in E; to be modified and x£, be the
state of a large-weight particle in Ej, used to help with the
modification. Then, the state of a modified small-weight
particle, xj,,, is obtained by the linear interpolation as follows:

N s 1 t
s _ Wi X T Wi X,

km —

Wig + Wi (2
where wi; and wi, are the weights of x3; and x£, stored in W,
respectively; s = 1, -, Ny t =1, -+, N;; N, and N, are the
numbers of particles in £; and E), respectively; and N, is equal
to N,z For each x§; in E}, x§, is randomly selected from Ej,.
Let X;, be the set that contains the states of the original large-
weight and modified small-weight particles. Then, the weights
of the modified small-weight particles in X}, are updated as:
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1 =~z =y )

N 27,

where W, , is the weight of the modified small-weight particle

—s _ =5
Wi = Wil

(13)

Xy in E; at the time instant k—1. Then, the weight of the

original small-weight particle, Wy, , stored in W is replaced

by W, . Then, normalization is performed as follows for the
weights of all the particles stored in W:

—i
— W,

Wi =T
Zwk

i

i=1,2,-,N (14)

B. Improved Multinomial Resampling

In the traditional multinomial resampling, the states of the
resampled particles are simply replicas of the states of the
particles with large weights. This may lead to an inaccurately

approximation of the posterior distribution of the state variable.

Assume that the number of the resampled particles whose
states are equal to x' € X} in the multinomial resampling is
N’}. When N}, > 1, instead of making N}, copies ofx’fc,.the
states of the new resampled particles are generated from x', in
the proposed improved multinomial resampling method and
are stored in X}:

X{ =il VY =2

X, ={xx (1A j =12+, p; N', =2pHl; p>0

X = (0 x X (AR} j =1 piN Y =2p+2,p >0

(15)

where X ,i(i =1, -, N) are the sets that contain the states of the
new resampled particles generated from x’f; ; AhJ is the
deviation of the state of a new resampled particle from x’fc and
is computed as:

oo N" -1
Ahj:ﬂe N,j:1,27'“7 L

(16)

where 4 is used to adjust the decentralization degree of the
states of the new resampled particles. To further increase the
diversity of the resampled particles such that their states will
cover a larger range, the overlap between the states of the new
resampled particles should be minimized in the improved
multinomial resampling process. Therefore, Ah! , which
represents the largest deviation expressed by (16), should be
less than a half of the average minimum difference between

the state of each particle, x’fc € X; (i=1, -, N), and the states
of all other particles x'y, € X;, (j = 1, -, N; j # i). Thus, the
value of 1 should satisfy the following:

J#l (17)

N v
!
i=l X k

1 L X
0<A<—e" min||[I-2£
2N Z 12

Finally, the states of all of the new resampled particles
generated in the improved multinomial resampling process are
collected in the set X, = {X%, X2, -, XL}.

Fig. 2 illustrates the effectiveness of the particle
modification and improved multinomial resampling processes

TABLE I:
THE PARTICLE MODIFICATION AND IMPROVED MULTINOMIAL RESAMPLING
PROCEDURE IN THE EPF ALGORITHM.

(a) Obtain the particles and their associated weights at the time step £ and
calculate the effective sample size N, of particles.
(b) If Noyp < Neires, resampling is needed.
(¢) Sort W,i (i=1, -, N) in the descending order and store them in W.
(d) Set the N,;" weight in 7" as Wy,
(e) Divide the particles into small- and large-weight ones and store them in £,
and £, respectively.
() Fori=1,2,--,N,
Implement the particle modification method according to (12) to obtain
the states of the modified small-weight particles, and store them
together with the states of the large-weight particles in Xj,.
End
(g) Update and normalize the weights w.
(h) Perform the multinomial resampling:
Fori=1,2,-,N
Generate a random number y; from the uniformly distribution over the
interval (0, 17;
Find the variable j € {1, ---, N} that satisfies:
Jo J .
—1 1
Wi <y; < Wik (18)
i=1 i=1
Set x’f; as the state of the i resampled particle; and set the weight of
the i" resampled particle as 1/N.
End
(i) Fori=1,2,-,N

Generate the states of new resampled particles e X ,’{ according to (15).
End

in the EPF algorithm. The filled circles with slash lines in
purple and red denote the small-weight and large-weight
particles, respectively. The filled circles with grid in yellow
represent the modified small-weight particles. The solid-line
plus dashed-line hollow circles in green represent the
resampled particles obtained from the traditional multinomial
resampling method; and the solid-line hollow circles in green
and purple are the new resampled particles obtained from the
proposed improved multinomial resampling method. The
radiuses of the circles denote the normalized weights of the

@ Large-weight particles
@ Small-weight particles

—H—0.~—~.—0—.Oo—.—.—.—o—o—o—-—>

Particle modification .
Modified small-

weight particles
Improved multinomial resampling

O+ Resampled particles of
multinomial resampling

O+0 Resampled particles of
improved multinomial
resampling

Posterior PDF

50 00
O O~0000 O 0OCDO00
State x

Fig. 2. lllustration of the effectiveness of the particle modification and
improved multinomial resampling processes in the EPF algorithm.




IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

corresponding particles. After the particle modification
procedure, the normalized weights of the small-weight
particles are increased while the normalized weights of the
large-weight particles are reduced. Therefore, the normalized

weights W’;C of the particles after the modification become
more even. Thus, more particles are available for resampling.
After applying the improved multinomial resampling method,
the diversity of the resampled particles is further increased.
Thus, more regions of the posterior PDF of the state variable

are covered by the new resampled particles, as shown in Fig. 2.

In this way, the particle impoverishment problem can be
solved. An implementation of the particle modification and
improved multinomial resampling procedures in the EPF
algorithm is presented in Table 1.

It is important to consider the computational complexity
when designing a PF algorithm. The computational
complexity of the traditional multinomial resampling method
(i.e., Step (h) in Table I) is of an order O(Nlog(N)) [55]. The
log(N) term arises from the binary search for j in (18). A
quicksort algorithm [56] with the computational complexity of
an order O(Nlog(N)) is used to sort wi in the descending order
in Step (c¢) and determine the range of 4 in Step (i) of the
resampling procedure in the EPF. The computational
complexities of the steps (f) and (g) are of orders O(V,) and
O(N), respectively. Therefore, the computational complexities
of the particle modification method and the improved

multinomial resampling method are both of orders O(Nlog(N)).

Therefore, the total computational complexity of the particle
modification and improved multinomial resampling process in
the EPF is of an order O(Nlog(N)), which is the same as the
traditional multinomial resampling method. In summary,
compared to the traditional multinomial resampling method,
the resampling process in the proposed EPF algorithm has a
merit of solving the particle impoverishment problem without
increasing the computational complexity.

C. RUL Prediction

The RUL is defined as the time between now and the
moment when the predicted fault indicator reaches a threshold.
If the value of the fault indicator exceeds the threshold, it
indicates that the system has failed and can no longer be used,
and maintenance should be performed. Since the
measurements at future time instants cannot be obtained, it is
necessary to predict the future measurements and update the
weights of the particles.

During the RUL prediction, the state of each particle is
propagated recursively with a fixed state transition function f;
learned by an ANFIS using the latest available measurement:

i

'%i-ﬁ—m = ﬁc ()/ellc+m—n > xllc+m—n+1 [ '),e/lc+m—1 ) + uk ’ m= 1’ 2” ] ];7 (19)
where T), is the prediction period in time steps. Therefore, the
predicted measurement at time k+m can be determined by:

N
A~ P oai
Zhtm = 2 Witm1Xem TVt (20

i=1

Then, the weights can be updated according to z kam

| Initialize particles |
| Learn state transition function 4———

l

(Improved mul!t'momial ) Propagate particles with fault degradation model
resamplin; ~ i oA - ~
fp . e R
| Particle modification | l T
f . | State estimation X, = ZW,LJ?;‘J
Yes i=l
. : i Update and l
No 7 3
Weichts ., -4 normalize weights :
degenerated? w. oW, ; —_ _
- New zp ) [ RUL
available? " Prediction
Obtain new state | Yes
Xik 1= 2k+1"Vier1

L

Fig. 3. Flowchart of the EPF-based strategy for the RUL prediction of
DFIG-based wind turbine drivetrain gearboxes.
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Next, the weight normalization is performed as follows:

W£+M=WA—+,-ms i=1,2,--N (22)
Z Wk+m
Thus, the state at k+m can be predicted by:
N
)’ek+m = Zw/lc-#m'%/lc-#m (23)
i=1

If the weights degeneracy problem occurs during the RUL
prediction, it is necessary to perform resampling. When the
state at a future time instant predicted by (23) reaches the
threshold, the predicted RUL is determined to be the time
between now (i.e., the time instant k) and that future time
instant and is denoted as RUL;.

D. The Overall EPF-Based RUL Prediction Strategy

The flowchart of the overall EPF-based RUL prediction
strategy is shown in Fig. 3. The states of all particles are
propagated using f; in the propagate step. When a new
measurement is available, the weights of the particles are
updated and normalized; and a new value of the state x;.; can
be obtained according to (1) and is used to train the ANFIS to
learn the state transition function. If the particle weights
degeneracy phenomenon occurs, the small-weight particles
will be modified to obtain more large-weight particles. Then,
the improved multinomial resampling is performed to obtain
the resampled particles with a larger diversity. If there is no
new measurement, the RUL prediction will be performed.
Compared to the widely used multinomial resampling
algorithm, the proposed particle modification and improved
multinomial resampling methods improve the diversity of the
particles by making their weights more even. Thus, the
particle impoverishment problem can be solved.
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IV. FIELD TEST VALIDATION

The proposed EPF-based RUL prediction strategy is applied
to predict the RUL of a bearing in the drivetrain gearbox of a
2.5 MW DFIG wind turbine in the field, which had been
operated for approximately five years before maintenance was
performed. To show the superior performance of the EPF
algorithm, the general PF algorithm with an exponential fault
degradation model [37] and the ANFIS-PF algorithm proposed
in [39] are used for comparison. A 4™-order Markov model is
adopted in the three PF methods. A 4™-order Butterworth low-
pass filter is used to smooth the measurements of the fault
indicator obtained to improve the learning of the ANFIS.

The RUL of the bearing is predicted repeatedly for N, = 30
times, i.e., 30 experiments. To evaluate the performance of the
three PF algorithms, the following two metrics are defined:

1 Ny T 1 Ny T"7+T17
— 2 (u) — s(u)
a=y 22—t e =52 X iy
stm u=1 k=1 sTp u=l k=T, +1

where T, is the monitoring period in time steps; and )2]((”) is

the state predicted at the time instant & for the ™ experiment.
The first metric e; is used to evaluate the state estimation
result in the monitoring period. During this period, the states
of particles of the three PF algorithms are propagated and their
weights are updated recursively for the state estimation, i.e.,
one-step-ahead prediction. Meanwhile, during this period, the
ANFISs in the ANFIS-PF and EPF algorithms are trained to
obtain their optimal parameters. The second metric e, is used
to evaluate the RUL prediction result. During the RUL
prediction period, no additional monitoring data is available
and the RUL prediction is performed with the data collected
from the monitoring period only.

The drivetrain gearbox of the 2.5 MW DFIG wind turbine
has two planetary stages and one helical stage. The fault
indicator is the root mean square (RMS) value of the vibration
data recorded from the vibration sensor located on the case of

TABLE II:
ACTUAL TIME OF CRITICAL TIME INDEXES.

Time index Actual time Time index Actual time
1600 3/8/201522:14:13 2350 3/24/2015 19:53:44
1750 3/17/2015 9:49:54 2680 3/31/2015 16:26:45
1950 3/19/2015 17:49:40 3700 4/21/2015 22:44:38
2050 3/21/2015 1:09:40 4000 4/25/2015 3:15:21
2300 3/23/2015 9:49:28 12170 9/28/2015 7:21:02
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Fig. 4. Extracted fault indicator during the entire data recording period.

the HSS helical gears. The data was recorded from 10/1/2014
to 11/1/2015 only when the output power is larger than 8§5% of
the rated power. Table II shows some critical time indexes and
their corresponding actual time. It should be noted that the
time indexes do not increase with the same interval because
only part of the data were used.

Fig. 4 shows the fault indicator extracted during the entire
data recording period. The fault indicator increases with the
time index during the first 3700 time indexes, indicating that
the selected fault indicator is suitable to indicate the fault
degradation of the bearing in the gearbox. Meanwhile, it can
be observed that the incipient defect occurred around the time
index 1600 and the defect propagated from the time index
1600 to 3700. The actual period of the defect propagation was
around 45 days. After 3700 time indexes, the defect became
mature and the wind turbine still ran normally but a more
severe failure that may cause much more cost to repair and
longer downtime may happen with a higher probability. The
maintenance was performed at the time index 12170 and the
fault was found to be an HSS bearing inner raceway ball
passing defect inside the gearbox. After the faulty components
were replaced, the fault indicator decreased to the normal
value rapidly.

The general PF, ANFIS-PF, and proposed EPF algorithms
are implemented to perform state estimation and RUL
prediction using the same data, where both 7, and 7, are
chosen as 2000. The number of particles NV in the three PF
algorithms is chosen as 100 as a trade-off between prediction
accuracy and computational cost. The quantitative evaluation
results of the three algorithms are compared in Table III. The
general PF and ANFIS-PF algorithms have similar values of ey,
indicating that these two algorithms have the similar state
estimation accuracy. However, the ANFIS-PF has a smaller e,
than the general PF. This is because the ANFIS learned the
fault degradation model during the monitoring period, which
can significantly reduce the prediction error e, in the
prediction period. Moreover, the proposed EPF has the
smallest ¢; and e, among the three algorithms due to the
utilization of the proposed particle modification and improved
multinomial resampling methods.

The advantages of the proposed EPF are further shown in
Fig. 5-7 by comparing with the ANFIS-PF. Fig. 5 compares
the values of the fault indicator estimated and predicted by the
ANFIS-PF and EPF against the actual values during the entire
data recording period, where the first 2000 time indexes are
the monitoring period and the two algorithms predict the fault
indicator from the time index 2001 to 4000 at the 2000™ time
index. In the monitoring period, both algorithms can track the
trend of the fault indicator well. However, in the prediction
period, the fault indicator predicted by the EPF is closer to the
actual value than that predicted by the ANFIS-PF. This means
that the EPF has a smaller e, and, therefore, is more accurate

TABLE Il
QUANTITATIVE EVALUATION RESULTS OF THE THREE PF ALGORITHMS.
General PF ANFIS-PF EPF
e 0.4393 0.4231 0.3645
e 2.6426 0.9647 0.6472
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for the RUL prediction. The results at the time index k£ = 551
are selected to further illustrate the effectiveness of the
proposed EPF in solving the particle impoverishment problem.
At this time index, Ny is smaller than N, which is N/4 in
this case study. Therefore, resampling is needed. Fig. 6
presents the states and weights of the particles before and after
the particle modification. It is obvious that the weights of
many particles are small before the modification, and the
small-weight particles have little contribution to constructing
the posterior PDF of the fault indicator. Since only a small
portion of the particles have large weights, the particle
diversity is low if the resampling is performed directly,
leading to unsatisfactory RUL prediction accuracy. After the
particle modification, some of the small-weight particles are
modified to become large-weight particles. Therefore, the
particle weights become more even and more particles have
the potential to be selected in the resampling process. Fig. 7
shows the improvement of the particle diversity using the
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Fig. 5. Fault indicator estimated and predicted by the ANFIS-PF and
EPF, where the prediction took place at the time index 2000.
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Fig. 6. The particles before and after the particle modification in the
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Fig. 8. Fault indicator predicted by the EPF at different time indexes
against its actual values.

proposed EPF compared to the ANFIS-PF using the
multinomial resampling method. In this paper, 4 is chosen as
0.1 according to (17) to adjust the states of the resampled
particles in the improved multinomial resampling process of
the EPF algorithm. The number of the resampled particles
with different state values is 24 when using the ANFIS-PF and
increases to 82 when using the EPF, which solves the particle
impoverishment problem. Moreover, the number of replicas of
the resampled particles is also reduced by adopting the
improved multinomial resampling in the proposed EPF.

Fig. 8 compares the fault indicator predicted by the EPF at
different time indexes against its actual values. The threshold
of the fault indicator was selected to be 8 m/s” in this field test
validation, which was the same as the threshold used by the
vibration-based condition monitoring system of the wind
turbine to trigger the fault alarm. When the fault indicator is
larger than the threshold, an alarm will be triggered and
maintenance can be scheduled in advance to reduce the costs
caused by repair and downtime of the wind turbine. The actual
fault indicator exceeded 8 m/s” at the time index 2680. In Fig.
8, the prediction made at the time index 1750 failed to give the
alarm because the predicted fault indicator is always less than
the threshold. As time goes on, the predicted value of the fault
indicator is closer to the actual value and has a smaller e,. This
is because when more data becomes available, the ANFIS can
learn the state transition function better. The prediction made
at the time index 2050, which is around 31 days before the
defect became mature at the time index 3700, successfully
captured the trend of the fault propagation.
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l —=o— Actual RUL

%2 2000 - S~ —— ANFIS-PF RUL
< EPF RUL
‘o 1500 | .
E
L] S .
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& 500 b M 4
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Fig. 9. RUL prediction results of a bearing in a 2.5 WM DFIG wind
turbine drivetrain gearbox.

2100 2200 2300
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TABLE IV:
COMPARISON BETWEEN THE ACTUAL RUL AND THE RUL PREDICTED BY THE
EPF ALGORITHM.
Time index where Predicted RUL Actual RUL Error time

prediction is performed| (Time index) (Time index) (Days)
1750 2250 930 24.45
1800 2200 880 24.45
1850 2150 830 24.45
1900 1451 780 15.38
1950 831 730 2.08
2000 567 680 -2.32
2050 815 630 3.85
2100 672 580 191
2150 427 530 -2.13
2200 374 480 -2.20
2250 396 430 -0.71
2300 423 380 0.89

The ANFIS-PF and EPF are then applied to predict the
RUL of the bearing in the wind turbine gearbox every 50 time
indexes from the time index 1750 to 2300. Therefore, there are
totally 12 RUL prediction cases. The results are shown in Fig.
9 and Table IV. The RUL is defined as the interval between
the time at which the prediction is performed and the time at
which the fault indicator exceeds the threshold and the alarm
is triggered. It should be noted that in some RUL prediction
cases, the fault indicator predicted never exceeded the
threshold. In these cases, the predicted RUL is set to be the
interval between the time at which the RUL prediction starts
and the last time step in the prediction period (i.e., the time
index 4000). The error time is defined as the predicted RUL
minus the actual RUL. A large error time of more than 15 days
is observed for the RUL prediction cases from the time index
1750 to 1900 because no enough data is available for training
the ANFIS to learn the state transition function f; in the fault
degradation model. Therefore, the RUL prediction in the
incipient fault stage leads to a large error time and uncertainty.
As the degradation process goes on, more data becomes
available to train the ANFIS to learn f;. Therefore, the error
time reduces gradually and the predicted RUL converges to
the actual RUL. Compared to the ANFIS-PF, the proposed
EPF has less error time. According to Fig. 9 and Table IV, the
RUL can be effectively predicted by the EPF with an error
time of around 2 days at the time index 1950. This
corresponds to the time 17:49:40 on 3/19/2015, which is
around 12 days before the actual fault indicator exceeds the
threshold. Moreover, after the time index 2250, the error time
between the predicted and actual RUL is less than one day.

V. CONCLUSION AND FUTURE WORK

This paper proposed an EPF algorithm for the bearing RUL
prediction of DFIG-based wind turbine drivetrain gearbox. In
the resampling process of the EPF algorithm, a particle
modification method was designed to modify the small-weight
particles to obtain more large-weight ones. Thus, more
particles could be selected as resampled particles. Then, an
improved multinomial resampling method was developed to
further increase the diversity of the resampled particles. Thus,
the particle impoverishment problem was solved. Compared to

the traditional multinomial resampling, the resampling process
of the proposed EPF has the same level of computational
complexity. Compared with the general PF and ANFIS-PF,
the proposed EPF has the best performance in both state
estimation and RUL prediction. The effectiveness and
superiority of the proposed EPF algorithm for the RUL
prediction of the bearings in drivetrain gearboxes were
verified using vibration data recorded from a 2.5 MW DFIG-
based wind turbine in the field.

A challenge in the RUL prediction is the uncertainty of the
prediction results. In the future work, the robustness of the
EPF algorithm will be further studied. An outer correction
loop [57] and sliding mode control techniques [58]-[60] can be
possible solutions to manage the uncertainty and improve the
robustness of the EPF algorithm. Moreover, the effectiveness
of the EPF algorithm is influenced by the decentralization
parameter 4 in (17). In this paper, the value of 1 is tuned by
trial and error within the range determined by (17). In the
future work, further improvement could be made by designing
an adaptive strategy to tune A automatically.
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