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1 Abstract—Bearing is the major contributor to wind 
turbine gearbox failures. Accurate remaining useful life 
prediction for drivetrain gearboxes of wind turbines is of 
great importance to achieve condition-based maintenance 
to improve the wind turbine reliability and reduce the cost 
of wind power. However, remaining useful life prediction is 
a challenging work due to the limited monitoring data and 
the lack of an accurate physical fault degradation model. 
The particle filtering method has been used for the 
remaining useful life prediction of wind turbine drivetrain 
gearboxes, but suffers from the particle impoverishment 
problem due to a low particle diversity, which may lead to 
unsatisfactory prediction results. To solve this problem, 
this paper proposes an enhanced particle filtering 
algorithm in which an adaptive neuro-fuzzy inference 
system is designed to learn the state transition function in 
the fault degradation model using the fault indicator 
extracted from the monitoring data; a particle modification 
method and an improved multinomial resampling method 
are proposed to improve the particle diversity in the 
resampling process to solve the particle impoverishment 
problem. The enhanced particle filtering algorithm is 
applied successfully to predict the remaining useful life of 
a bearing in the drivetrain gearbox of a 2.5 MW wind 
turbine equipped with a doubly-fed induction generator. 
 

Index Terms—Enhanced particle filtering (EPF), gearbox, 
prediction, remaining useful life (RUL), wind turbine. 

NOMENCLATURE 
n Order of Markov model. 
xk Actual value of state at time k. 
zk  Measurement of state at time k. 
vk Measurement noise. 𝑥ො௞ାଵ௜  State of the ith particle at time k+1. 
fk The nonlinear state transition function in the fault 

degradation model. 
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uk Gaussian white noise in the state transition function. 
N  Number of particles. 𝑥ො௞ାଵ Estimated value of state at time k+1. 𝑤௞௜  Weight of the ith particle at time k. 
δ(•) Dirac delta function. 𝑁௞ାଵ௜  Number of the resampled particles whose states are 

equal to 𝑥ො௞ାଵ௜ . 
Neff Effective number of particles. 
Nthres Threshold used to perform resampling. 
El Set containing the states of small-weight particles. 
Eh Set containing the states of large-weight particles. 
Wth  Threshold for separating large- and small-weight 

particles. 𝑊ഥ  Weights of particles sorted in the descending order. 𝑥௞௛௧  State of a particle in Eh. 𝑥௞௟௦  State of a particle in El. 𝑥௞௠௦  State of a modified small-weight particle. 𝑤௞௟௦  Weight of 𝑥௞௟௦ . 𝑤௞௛௧  Weight of 𝑥௞௛௧ . 
Nh Number of particles contained in Eh. 
Nl Number of particles contained in El. 𝑋௞ᇱ  Set containing the states of the original large-weight 

particles and modified small-weight particles. 𝑥ᇱ௞௜  State of the ith resampled particle stored in 𝑋௞ᇱ . 𝑁ᇱ௞௜  Number of the resampled particles whose states are 
equal to 𝑥ᇱ௞௜ . 𝑋ത௞௜  Set containing the states of new resampled particles 
generated from 𝑥ᇱ௞௜ . ∆ℎ௝ Deviation of the state of a new resampled particle. 

λ  Decentralization parameter. 𝑋ത௞ Set containing the states of all the new resampled 
particles. 𝑧̂௞ା௠ Predicted measurement of state at time k+m. 

Tp Prediction period. 
e1,2  Metrics for evaluating the particle filtering 

performance. 
Ns Number of experiments for RUL prediction. 
Tm Monitoring period. 𝑥ො௞(௨)  State predicted at time k for the uth experiment. 

I. INTRODUCTION 
Gearbox failure is one of the leading reliability issues in 

doubly-fed induction generator (DFIG)-based wind turbines 
[1]-[3]. According to a report [4], gearbox is the leading 
contributor to the downtime of both onshore and offshore 
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DFIG-based wind turbines ranging from 500 kW to 5 MW. 
Moreover, the replacement costs for drivetrain gearboxes are 
high. For instance, replacing the gearbox in the drivetrain of a 
5 MW wind turbine can cost more than $600,000 [5]. 
According to another survey [6], the majority of wind turbine 
gearbox failures are caused by bearings. Among various 
bearing failures, axial cracks on the bearings in the high-speed 
stages (HSSs) are the leading causes. Therefore, to reduce the 
downtime and maintenance costs of DFIG-based wind 
turbines, it is highly desired to detect bearing faults and 
predict the remaining useful life (RUL) of the bearings in the 
gearboxes as early as possible. In this way, the traditional 
scheduled maintenance can be replaced by condition-based 
maintenance (CBM) so that the faulty components can be 
repaired timely to prevent further damages of the drivetrains 
or catastrophic failures of the wind turbines [7]. 

The CBM is gaining growing interests for improving the 
reliability of complex systems in industrial, military, and other 
applications. The CBM relies on the assessment of the health 
condition of the system using a program consisting of 
condition monitoring, feature extraction, fault diagnosis, fault 
prognosis, maintenance action, etc. Fault prognosis is a key 
part of the CBM and is performed after fault diagnosis to 
predict the future progress and propagation of the fault and the 
RUL of the system being monitored. However, unlike fault 
diagnosis for drivetrain gearboxes of wind turbines, which has 
been widely studied by academic and industry [8]-[19], fault 
prognosis and RUL prediction are relatively new domains. 

The major methods for fault prognosis and RUL prediction 
can be generally categorized into model-based (or physics-
based) methods and data-driven methods. The model-based 
methods assume that an accurate physical degradation model 
can be obtained to predict the development of a failure process 
[20]. Different model-based methods have been proposed for 
RUL prediction [21], [22]. However, it is usually difficult to 
build accurate physical degradation models for complex real-
world systems; and the identification of model parameters 
requires extensive experiments and empirical data. In the data-
driven methods, the raw monitoring data is transformed into 
relevant information from which the degradation models are 
derived without concerning about the physics of the system 
degradation processes [23]. The data-driven methods mainly 
use statistical or artificial intelligence (AI) tools to learn the 
degradation processes and predict the future health states of 
the systems. A data-driven method typically consists of two 
phases: learning the fault degradation process in the first phase 
and then predicting its future state in the second phase. 
Different data-driven methods have been developed and 
successfully applied for RUL prediction [24]-[26]. However, it 
is not easy to explain the physical meaning of the results 
obtained from the data-driven models. Moreover, it may 
require significant computational resources to train the AI 
algorithms and process the data [27].  

Particle filtering (PF) is a widely-used method to estimate 
and update the states and parameters in model-based methods 
based on the concept of sequential importance sampling (SIS) 
and Bayesian theory [28]. In the PF, the posterior distribution 

of the state is approximated by a number of weighted particles. 
The PF is suitable for predicting a nonlinear stochastic process 
with noisy measurements and, thus, has attracted great 
attentions from both academia and industry [29]-[31]. In the 
past two decades, the PF has been applied to a variety of 
applications related to wind energy conversion systems. In [32] 
and [33], the PF approach was used to optimize the layout of a 
wind farm to minimize the wake effects and maximize the 
power generation. In [34], the PF was used to acquire the 
stator flux of a DFIG, which is an unmeasurable internal state 
of the DFIG, to enlighten the design of the control scheme. 
Meanwhile, the PF has also been widely used in the CBM area, 
such as blade fault diagnosis and prognosis [35], wind turbine 
drivetrain main bearing [36] and gearbox [37] fault prognosis, 
and helicopter bearing fault prognosis [38]. Since a wind 
turbine drivetrain gearbox is a complex system with many 
components and usually operates under varying conditions, it 
is hard to obtain an accurate physical degradation model to 
describe the fault development of the bearings in the gearbox. 
In [39], an adaptive-neuro-fuzzy-inference-system-based PF 
(ANFIS-PF) algorithm was proposed for the RUL prediction 
of wind turbine drivetrain gearboxes. In that PF algorithm, a 
data-driven model called ANFIS was designed to learn the 
state transition function of the fault degradation model to 
remove the need for a physical degradation model. Thus, the 
ANFIS-PF is a hybrid method that can leverage the strengths 
of both data-driven and model-based methods and is suitable 
for the RUL prediction of wind turbine drivetrain gearboxes 
whose physical degradation models are hard to obtain. 

However, the accuracy of the PF methods is limited by the 
particle impoverishment problem in the resampling procedure. 
The problem occurs when all but a few particles have 
negligible weights. As a result, the posterior distribution of the 
state is inaccurately approximated by a small number of large-
weight particles. This problem will reduce the diversity of the 
particles and, thus, can lead to misleading state estimation 
results. Several modified PF algorithms have been proposed to 
solve the particle impoverishment problem. A simple strategy 
is to rough the overcentralized particles with Gaussian noise 
[40]. However, that strategy only relies on the resampled 
particles with large weights. In severe cases, these particles 
may only have very few distinct values and, thus, provide little 
improvement of the particle diversity. In [41], the authors 
proposed a resample-move algorithm to mitigate the particle 
impoverishment based on the Markov chain Monte Carlo 
sampling. The Kullback–Leibler Distance (KLD)-sampling 
[42] and KLD-resampling [43] approaches were proposed to 
determine the number of particles used in the PF based on the 
KLD between the actual distribution and the distribution 
estimated by particles. In [44], an intelligent PF algorithm 
inspired by the genetic algorithm (GA) was proposed to solve 
the particle impoverishment problem. However, the GA 
operators increased the complexity and computational cost of 
the PF algorithm. 

This paper proposes a new particle modification method 
and an improved multinomial resampling method to solve the 
particle impoverishment problem in the resampling process of 
the existing PF algorithms. The particle modification method 
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modifies the weights of small-weight particles so that they 
become large-weight ones. Then, the improved multinomial 
resampling method further increases the diversity of the 
particles. The proposed particle modification and improved 
multinomial resampling methods do not increase the 
computational complexity when compared to the traditional 
multinomial resampling method. The proposed methods are 
used for the particle resampling in the PF algorithm, leading to 
an enhanced PF (EPF) algorithm. Based on the EPF algorithm, 
a strategy is designed for the continuous RUL prediction of 
the bearings in wind turbine drivetrain gearboxes to facilitate 
the CBM to reduce the costs caused by repair and downtime. 

The paper is organized as follows. Section II briefly reviews 
the PF algorithm and discusses the particle impoverishment 
problem encountered in the PF algorithm. Section III presents 
the proposed EPF-based RUL prediction strategy. In Section 
IV, the EPF-based strategy is validated by predicting the RUL 
of a bearing in the drivetrain gearbox of a 2.5 MW wind 
turbine in the field. Section V summarizes the paper by some 
concluding remarks and recommendations for the future work. 

II. A BRIEF REVIEW OF THE PF METHOD AND PARTICLE 
IMPOVERISHMENT PROBLEM  

A. Background of the PF Method 
In Bayes’ theorem, the posterior probability density 

function (PDF) of the state, which is the fault indicator in the 
RUL prediction, is constructed based on all available 
measurements of the state. For a real-world nonlinear system, 
it is often difficult to obtain the analytic solution of the 
posterior PDF [45]. To solve this problem, the PF was 
proposed to approximate the posterior PDF of the state using a 
set of particles. In the RUL prediction applications, the 
measurement equation can be simply expressed in the 
following form [38]. 

k k kz x v= +                                   (1) 
where xk and zk are the actual value and measurement of the 
state at the time instant k, respectively; and vk is the estimated 
measurement noise, which is assumed to follow a Gaussian 
distribution. 

By using the measurements of the state, the PF predicts the 
state recursively in three main steps: propagate, update, and 
resample [46]. 

Propagate: The state of each particle is propagated using an 
nth-order Markov model, which predicts the trajectory of the 
state: 

1 1 1ˆ ˆ ˆ ˆ( , , , )+i i i i
k k k k k n kx f x x x u+ − − +=                          (2) 

where 𝑥ො௞ାଵ௜  is the state of the ith particle at the time instant k+1; 
uk is a Gaussian white noise; fk represents the nonlinear state 
transition function in the fault degradation model; and the 
symbol ^ on top of each variable indicates that it is an 
estimated or predicted value of the variable. 

According to the propagated states 𝑥ො௞ାଵ௜  (i = 1, ⋅⋅⋅, N) and 
their current weights, the state at the time instant k+1,  𝑥ො௞ାଵ, 
can be predicted as follows: 
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where 𝑤௞௜  is the weight of the ith particle at the time k and N is 
the number of particles. 

Update: When a measurement zk+1 becomes available, the 
weight of each particle is updated according to the importance 
sampling principle [46]: 

+1 +1 +1ˆ( | )i i i
k k k kw w p z x∝                         (4) 

where ∝ denotes “in proportion to” and +1 +1ˆ( | )i
k kp z x  is the 

likelihood function. 
Then, the updated weights are normalized as follows. 
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Thus, the posterior PDF of the state can be approximated by 
the particles with associated weights as follows: 

+1 1: +1 +1 +1 +1
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N

i i
k k k k k

i
p x z w x xδ

=

≈ −                  (6) 

where δ(•) is the Dirac delta function. 
Resample: The PF method usually suffers from the problem 

of particle weights degeneracy after a few iterations, i.e., all 
but a few particles will have negligible weights. It has been 
shown in [40] that the weight degeneracy problem is 
unavoidable. To solve this problem, resampling of particles is 
usually performed in the PF [47]-[51]. In the resampling 
process, the states and weights of the selected particles are 
updated to reduce the discrepancy between the weights of 
different particles. A widely-used resampling method is called 
multinomial resampling [40] in which the particles with small 
weights are eliminated; and new particles (called resampled 
particles) are created by duplicating the states of the particles 
with large weights. The weights of all the resampled particles 
are set to be equal to 1/N. Then, the posterior PDF of the state 
can be approximated by the resampled particles as: 

+1 1: +1 +1 +1 +1
1

1 ˆ( | ) ( )
N

i i
k k k k k

i
p x z N x x

N
δ

=

≈ −                (7) 

where 𝑁௞ାଵ௜  is the number of the resampled particles whose 
states are equal to 𝑥ො௞ାଵ௜ . 

B. The Particle Impoverishment Problem  
In the multinomial resampling process, if the number of the 

large-weight particles is much less than that of the small-
weight particles, the states of the resampled particles may only 
share a few distinct values. This will lead to a low diversity of 
the resampled particles and may cause incorrect state 
prediction results. Fig. 1 illustrates the weight degeneracy and 
particle impoverishment problems of the PF algorithm 
designed to predict a one-dimensional (1D) state variable. Fig. 
1(a) shows the posterior PDF of a 1D state variable to be 
approximated by the particles in the PF algorithm. In Fig. 1(b), 
the filled circles represent the particles; the radiuses of the 
circles represent the weights of the particles; and the location 
of each circle’s center represents the state value of the particle. 
Since the weight degeneracy phenomenon is observed in Fig. 
1(b), namely, only a few particles have predominantly large 
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radiuses, resampling is needed. This, however, leads to the 
particle impoverishment problem as the resampled particles 
represented by the hollow circles only share a few distinct 
values, as shown in Fig. 1(c). As a result, the diversity of the 
resampled particles is reduced compared to the original 
particles. As shown in Fig. 1(c), the resampled particles 
cannot approximate the posterior PDF of the state variable 
accurately because no resampled particles are created within 
several gray regions with high probabilities. Some literatures 
have shown that the loss of diversity of the resampled particles 
will lead to an inaccurate approximation of the posterior 
distribution of the state and, thus, will have a negative impact 
on the state prediction results of the PF-based methods [52]-
[54]. A straightforward method to solve the impoverishment 
problem is to increase the number of particles. However, this 
will increase the computational burden of the PF algorithm 
significantly. Thus, other computationally efficient methods 
are desired.  

 

III. PROPOSED EPF ALGORITHM FOR RUL PREDICTION 
This section proposes a new EPF algorithm to predict the 

RUL of the bearings in DFIG-based wind turbine drivetrain 
gearboxes. The EPF algorithm solves the particle 
impoverishment problem in the resampling process of the 
existing PF algorithms. In the EPF algorithm, a particle 
modification method is first designed to modify the small-
weight particles to become large-weight particles. Thus, more 
particles have the chance to be selected in the resampling 
process. Next, an improved multinomial resampling method is 
proposed to adjust the resampled particles to further increase 
their diversity. 

A. Particle Modification 
The effective sample size of particles, Neff, can be regarded 

as a measure of the dispersion of the weights, which is 
obtained as follows [28]: 

2

1
1/ ( )

N
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eff k
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=

 
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                                (8) 

where [•] denotes rounding a number. When Neff is less than a 
fixed threshold Nthres, resampling should be performed. The 
value of Nthres can affect the frequency of executing the 
resampling process. When resampling is required, the particle 
weights are overcentralized, namely, many particles have 
small weights and, therefore, contribute little to approximating 
the posterior distribution of the state. Due to the small number 
of the large-weight particles with distinct state values, the 
posterior PDF expressed by (7) is inaccurately approximated, 
causing a particle impoverishment problem. To solve this 
problem, the weights of the small-weight particles are 
increased to obtain more large-weight particles to make the 
particle weights more even, which implies that the weights of 
the original large-weight particles will reduce. Therefore, 
more particles can be selected in the resampling process. In 
this way, the diversity of the resampled particles will be 
improved to solve the particle impoverishment problem. 

To modify the small-weight particles, the first step is to 
separate them from the large-weight particles. This is achieved 
by a particle selection method designed as follows: 
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where El and Eh are the sets containing the states of the 
particles with small and large weights, respectively; and Wth is 
the threshold used for the separation. The weights 𝑤௞௜  (i = 1, ⋅⋅⋅, 
N) of the N particles are sorted in the descending order and 
stored in 𝑊ഥ , i.e., 

1 2{ , , , }N
k k kW w w w=                             (10) 

where 1 2 N
k k kw w w≥ ≥ ≥ . Then, the weight of the Neff

th 
particle in 𝑊ഥ  is selected as the threshold Wth: 

( )th effW W N=                                      (11) 
After separating the particles, all the small-weight particles 

are modified with the help of the large-weight particles; while 
the large-weight particles remain the same. Let 𝑥௞௟௦  be the state 
of a small-weight particle in El to be modified and 𝑥௞௛௧  be the 
state of a large-weight particle in Eh used to help with the 
modification. Then, the state of a modified small-weight 
particle, 𝑥௞௠௦ , is obtained by the linear interpolation as follows:  

s s t t
s kl kl kh kh
km s t

kl kh

w x w x
x

w w
⋅ + ⋅

=
+

                             (12) 

where 𝑤௞௟௦  and 𝑤௞௛௧  are the weights of 𝑥௞௟௦  and 𝑥௞௛௧  stored in 𝑊ഥ , 
respectively; s = 1, ⋅⋅⋅, Nl; t = 1, ⋅⋅⋅ , Nh; Nl and Nh are the 
numbers of particles in El and Eh, respectively; and Nh is equal 
to Neff. For each 𝑥௞௟௦  in El, 𝑥௞௛௧  is randomly selected from Eh. 
Let 𝑋௞ᇱ  be the set that contains the states of the original large-
weight and modified small-weight particles. Then, the weights 
of the modified small-weight particles in 𝑋௞ᇱ  are updated as: 

 
Fig. 1.  Illustration of weight degeneracy and particle impoverishment 
problems in the resampling process: (a) posterior PDF of a 1D state 
variable, (b) weight degeneracy, and (c) particle impoverishment. 
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where -1
s
kw  is the weight of the modified small-weight particle 𝑥௞௟௦  in El at the time instant k−1. Then, the weight of the 

original small-weight particle, s
klw , stored in 𝑊ഥ  is replaced 

by s
kw . Then, normalization is performed as follows for the 

weights of all the particles stored in 𝑊ഥ : 
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B. Improved Multinomial Resampling 
In the traditional multinomial resampling, the states of the 

resampled particles are simply replicas of the states of the 
particles with large weights. This may lead to an inaccurately 
approximation of the posterior distribution of the state variable. 
Assume that the number of the resampled particles whose 
states are equal to 𝑥ᇱ௞௜ ∈ 𝑋௞ᇱ  in the multinomial resampling is 𝑁ᇱ௞௜ . When 𝑁ᇱ௞௜  > 1, instead of making 𝑁ᇱ௞௜  copies of 𝑥ᇱ௞௜ , the 
states of the new resampled particles are generated from 𝑥ᇱ௞௜  in 
the proposed improved multinomial resampling method and 
are stored in 𝑋ത௞௜ : 
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where 𝑋ത௞௜ (i = 1, ⋅⋅⋅, N) are the sets that contain the states of the 
new resampled particles generated from 𝑥ᇱ௞௜ ; ∆ℎ௝  is the 
deviation of the state of a new resampled particle from 𝑥ᇱ௞௜  and 
is computed as: 

2 1 ' 1, 1,2, ,
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h e jλ
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 
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where λ is used to adjust the decentralization degree of the 
states of the new resampled particles. To further increase the 
diversity of the resampled particles such that their states will 
cover a larger range, the overlap between the states of the new 
resampled particles should be minimized in the improved 
multinomial resampling process. Therefore, ∆ℎଵ , which 
represents the largest deviation expressed by (16), should be 
less than a half of the average minimum difference between 
the state of each particle, 𝑥ᇱ௞௜ ∈ 𝑋௞ᇱ  (i = 1, ⋅⋅⋅, N), and the states 
of all other particles 𝑥ᇱ௞௜ ∈ 𝑋௞ᇱ  (j = 1, ⋅⋅⋅, N; j ≠ i). Thus, the 
value of λ should satisfy the following: 
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Finally, the states of all of the new resampled particles 
generated in the improved multinomial resampling process are 
collected in the set 𝑋ത௞ = {𝑋ത௞ଵ, 𝑋ത௞ଶ, ⋅⋅⋅, 𝑋ത௞௜ }. 

Fig. 2 illustrates the effectiveness of the particle 
modification and improved multinomial resampling processes 

in the EPF algorithm. The filled circles with slash lines in 
purple and red denote the small-weight and large-weight 
particles, respectively. The filled circles with grid in yellow 
represent the modified small-weight particles. The solid-line 
plus dashed-line hollow circles in green represent the 
resampled particles obtained from the traditional multinomial 
resampling method; and the solid-line hollow circles in green 
and purple are the new resampled particles obtained from the 
proposed improved multinomial resampling method. The 
radiuses of the circles denote the normalized weights of the 

 

 
Fig. 2.  Illustration of the effectiveness of the particle modification and 
improved multinomial resampling processes in the EPF algorithm. 

TABLE I: 
THE PARTICLE MODIFICATION AND IMPROVED MULTINOMIAL RESAMPLING 

PROCEDURE IN THE EPF ALGORITHM. 
_______________________________________________________________________________________________________________________________ 
 

(a) Obtain the particles and their associated weights at the time step k and 
calculate the effective sample size Neff of particles. 

(b)  If Neff < Nthres, resampling is needed. 
(c)  Sort 𝑤௞௜  (i = 1, ⋅⋅⋅, N) in the descending order and store them in 𝑊ഥ . 
(d)  Set the Neff

th weight in W as Wth. 
(e)  Divide the particles into small- and large-weight ones and store them in El 

and Eh, respectively. 
(f)  For i = 1, 2, ⋅⋅⋅, Nl 

Implement the particle modification method according to (12) to obtain 
the states of the modified small-weight particles, and store them 
together with the states of the large-weight particles in 𝑋௞ᇱ . 

End 
(g)  Update and normalize the weights 𝑤ഥ௞௜ . 
(h)  Perform the multinomial resampling: 

For i = 1, 2, ⋅⋅⋅, N 
Generate a random number yi from the uniformly distribution over the 
interval (0, 1]; 
Find the variable j ∈ {1, ⋅⋅⋅, N} that satisfies: 

1

1 1

j j
i i
k ki

i i

w y w
−

= =

< ≤                                        (18) 

Set 𝑥ᇱ௞௜  as the state of the ith resampled particle; and set the weight of 
the ith resampled particle as 1/N. 

End 
(i)   For i = 1, 2, ⋅⋅⋅, N 

       Generate the states of new resampled particles i
kX∈  according to (15). 

  End 
__________________________________________________________________________________________________________________________ 
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corresponding particles. After the particle modification 
procedure, the normalized weights of the small-weight 
particles are increased while the normalized weights of the 
large-weight particles are reduced. Therefore, the normalized 
weights 𝑤ᇱ௞௜  of the particles after the modification become 
more even. Thus, more particles are available for resampling. 
After applying the improved multinomial resampling method, 
the diversity of the resampled particles is further increased. 
Thus, more regions of the posterior PDF of the state variable 
are covered by the new resampled particles, as shown in Fig. 2. 
In this way, the particle impoverishment problem can be 
solved. An implementation of the particle modification and 
improved multinomial resampling procedures in the EPF 
algorithm is presented in Table I. 

It is important to consider the computational complexity 
when designing a PF algorithm. The computational 
complexity of the traditional multinomial resampling method 
(i.e., Step (h) in Table I) is of an order O(Nlog(N)) [55]. The 
log(N) term arises from the binary search for j in (18). A 
quicksort algorithm [56] with the computational complexity of 
an order O(Nlog(N)) is used to sort 𝑤௞௜  in the descending order 
in Step (c) and determine the range of λ in Step (i) of the 
resampling procedure in the EPF. The computational 
complexities of the steps (f) and (g) are of orders O(Nl) and 
O(N), respectively. Therefore, the computational complexities 
of the particle modification method and the improved 
multinomial resampling method are both of orders O(Nlog(N)). 
Therefore, the total computational complexity of the particle 
modification and improved multinomial resampling process in 
the EPF is of an order O(Nlog(N)), which is the same as the 
traditional multinomial resampling method. In summary, 
compared to the traditional multinomial resampling method, 
the resampling process in the proposed EPF algorithm has a 
merit of solving the particle impoverishment problem without 
increasing the computational complexity. 
C. RUL Prediction 

The RUL is defined as the time between now and the 
moment when the predicted fault indicator reaches a threshold. 
If the value of the fault indicator exceeds the threshold, it 
indicates that the system has failed and can no longer be used, 
and maintenance should be performed. Since the 
measurements at future time instants cannot be obtained, it is 
necessary to predict the future measurements and update the 
weights of the particles. 

During the RUL prediction, the state of each particle is 
propagated recursively with a fixed state transition function fk 
learned by an ANFIS using the latest available measurement: 

1 1ˆ ˆ ˆ ˆ( , , , ) ; 1,2, ,i i i i
k m k k m n k m n k m k px f x x x u m T+ + − + − + + −= + =    (19) 

where Tp is the prediction period in time steps. Therefore, the 
predicted measurement at time k+m can be determined by: 

1 1
1

ˆˆ +
N

i i
k m k m k m k

i
z w x v+ + − + +

=

=                            (20) 

Then, the weights can be updated according to ˆk mz + : 

2

0

ˆˆ( )
2

1
0

1
2

i
k m k mz x

i i
k m k mw w e μ

πμ

+ +− −

+ + −=                    (21) 

Next, the weight normalization is performed as follows: 

, 1, 2, ,
i

i k m
k m i

k m
i

ww i N
w

+
+

+

= = ⋅ ⋅ ⋅


                   (22) 

Thus, the state at k+m can be predicted by: 

1

ˆ ˆ
N

i i
k m k m k m

i
x w x+ + +

=

=                               (23) 

If the weights degeneracy problem occurs during the RUL 
prediction, it is necessary to perform resampling. When the 
state at a future time instant predicted by (23) reaches the 
threshold, the predicted RUL is determined to be the time 
between now (i.e., the time instant k) and that future time 
instant and is denoted as RULk. 

D. The Overall EPF-Based RUL Prediction Strategy 
The flowchart of the overall EPF-based RUL prediction 

strategy is shown in Fig. 3. The states of all particles are 
propagated using fk in the propagate step. When a new 
measurement is available, the weights of the particles are 
updated and normalized; and a new value of the state xk+1 can 
be obtained according to (1) and is used to train the ANFIS to 
learn the state transition function. If the particle weights 
degeneracy phenomenon occurs, the small-weight particles 
will be modified to obtain more large-weight particles. Then, 
the improved multinomial resampling is performed to obtain 
the resampled particles with a larger diversity. If there is no 
new measurement, the RUL prediction will be performed. 
Compared to the widely used multinomial resampling 
algorithm, the proposed particle modification and improved 
multinomial resampling methods improve the diversity of the 
particles by making their weights more even. Thus, the 
particle impoverishment problem can be solved. 

 
Fig. 3.  Flowchart of the EPF-based strategy for the RUL prediction of 
DFIG-based wind turbine drivetrain gearboxes. 
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The ANFIS-PF and EPF are then applied to predict the 
RUL of the bearing in the wind turbine gearbox every 50 time 
indexes from the time index 1750 to 2300. Therefore, there are 
totally 12 RUL prediction cases. The results are shown in Fig. 
9 and Table IV. The RUL is defined as the interval between 
the time at which the prediction is performed and the time at 
which the fault indicator exceeds the threshold and the alarm 
is triggered. It should be noted that in some RUL prediction 
cases, the fault indicator predicted never exceeded the 
threshold. In these cases, the predicted RUL is set to be the 
interval between the time at which the RUL prediction starts 
and the last time step in the prediction period (i.e., the time 
index 4000). The error time is defined as the predicted RUL 
minus the actual RUL. A large error time of more than 15 days 
is observed for the RUL prediction cases from the time index 
1750 to 1900 because no enough data is available for training 
the ANFIS to learn the state transition function fk in the fault 
degradation model. Therefore, the RUL prediction in the 
incipient fault stage leads to a large error time and uncertainty. 
As the degradation process goes on, more data becomes 
available to train the ANFIS to learn fk. Therefore, the error 
time reduces gradually and the predicted RUL converges to 
the actual RUL. Compared to the ANFIS-PF, the proposed 
EPF has less error time. According to Fig. 9 and Table IV, the 
RUL can be effectively predicted by the EPF with an error 
time of around 2 days at the time index 1950. This 
corresponds to the time 17:49:40 on 3/19/2015, which is 
around 12 days before the actual fault indicator exceeds the 
threshold. Moreover, after the time index 2250, the error time 
between the predicted and actual RUL is less than one day. 

V. CONCLUSION AND FUTURE WORK 
This paper proposed an EPF algorithm for the bearing RUL 

prediction of DFIG-based wind turbine drivetrain gearbox. In 
the resampling process of the EPF algorithm, a particle 
modification method was designed to modify the small-weight 
particles to obtain more large-weight ones. Thus, more 
particles could be selected as resampled particles. Then, an 
improved multinomial resampling method was developed to 
further increase the diversity of the resampled particles. Thus, 
the particle impoverishment problem was solved. Compared to 

the traditional multinomial resampling, the resampling process 
of the proposed EPF has the same level of computational 
complexity. Compared with the general PF and ANFIS-PF, 
the proposed EPF has the best performance in both state 
estimation and RUL prediction. The effectiveness and 
superiority of the proposed EPF algorithm for the RUL 
prediction of the bearings in drivetrain gearboxes were 
verified using vibration data recorded from a 2.5 MW DFIG-
based wind turbine in the field. 

A challenge in the RUL prediction is the uncertainty of the 
prediction results. In the future work, the robustness of the 
EPF algorithm will be further studied. An outer correction 
loop [57] and sliding mode control techniques [58]-[60] can be 
possible solutions to manage the uncertainty and improve the 
robustness of the EPF algorithm. Moreover, the effectiveness 
of the EPF algorithm is influenced by the decentralization 
parameter λ in (17). In this paper, the value of λ is tuned by 
trial and error within the range determined by (17). In the 
future work, further improvement could be made by designing 
an adaptive strategy to tune λ automatically. 
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