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Abstract— Due to the increasing complexity of hardware 
designs, third-party hardware Intellectual Property (IP) cores
are often incorporated to alleviate the burden on hardware 
designers. However, the prevalent use of third-party IPs has 
raised security concerns such as hardware Trojans. These 
Trojans inserted in the soft IPs are very difficult to detect 
through functional testing and no single detection methodology 
has been able to completely address this issue. Based on a 
Register-Transfer Level (RTL) soft IP analysis method named 
Structural Checking, this paper presents a hardware Trojan 
detection methodology and tool by detailing the implementation 
of a Golden Reference Library for matching an unknown IP to a 
functionally similar Golden Reference. The matching result is 
quantified in percentages so that two different IPs with similar 
functions have a higher percentage match. A match of the 
unknown IP to a whitelist IP advances it to be identified with a 
known functionality, while a match to a blacklist IP causes it to 
be detected as Trojan-infested.

Keywords— Asset, Structural Checking, Golden Reference 
Library, Hardware Trojan Detection

I. INTRODUCTION

As the complexity of integrated circuits (ICs) keeps 
increasing, it is no longer financially efficient to design 
everything in-house from scratch. Acquiring and integrating 
third-party Intellectual Property (IP) blocks have become 
common practice. However, since these IPs are not designed 
in-house, their security and integrity cannot be guaranteed. 
Hardware Trojans may be inserted into these soft IPs, which 
pose a great threat to a large number of important applications, 
such as defense and financial systems. Hardware Trojans are 
the malicious insertion or modification triggered by a specific 
event or sequence of events, resulting in a payload 
compromising the operation of the circuit. Potential payloads 
include denial of service, information leakage, or data 
tampering, inducing great damage to the system incorporating 
this IP and completely compromising the higher-level security 
mechanisms. 

Many solutions have been proposed focusing on hardware 
Trojan detection. One approach is to analyze side-channel 
signals in order to identify the impact of hardware Trojans. 
Multiple side-channel characteristics have been analyzed in 
research, such as power [1], current [2], and timing [3]. Trojans 
are revealed by comparing each of these characteristics to those 
of a Trojan-free design. Another technique integrates sensors to 
the empty space of a layout. Sensors used in [4] provide “self-
authentication” by measuring circuit delays, while similar 
research in [5] measures path delays. Additionally, an on-chip 
ring oscillator network discussed in [6] performs power 
analysis that aids in Trojan detection.

In contrast to those solutions analyzing circuit 
characteristics, several other methods focus on activating 
potential Trojans. For example, the research in [7] utilizes 
randomized test vectors generated in a probabilistic manner. 
Similarly, the research in [8] applies test vectors designed to 
activate nets that are rarely activated, as they could be the 
targets of a Trojan. Also, by narrowing down the potential 
regions for Trojan detection and testing these regions 
thoroughly, the research in [9] finds some success in 
identifying Trojans.

Another strategy for Trojan detection focuses specifically 
on the security of third-party IPs and how to provide improved 
trust to these designs. For example, in [10] researchers use 
testing methods to identify vulnerable portions of the third-
party IP. Additionally, the research in [11] uses formal 
verification and sequential Automatic Test Pattern Generation 
(ATPG) for the same purpose. Another technique in [12] 
presents a strategy of Design-for-Trojan-Test in order to limit 
the abilities of an attacker to insert Trojan triggers. The 
research in [13] involves the comparison of IP blocks with a 
similar function in order to identify malicious logic. FANCI 
tool in [21] provides a statistical analysis to determine 
backdoor signals. Last but not least, the research in [14] 
identifies vulnerable signals by applying statistical analysis to 
determine the observability of the signal.
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TABLE I. EXTERNAL ASSETS IN EACH CATEGORY

Asset
Data Timing System Control Specific System Control Miscellaneous

DATA_COMPUTATIONAL STATUS SET MEMORY_OP CRITICAL

DATA_MEMORY DONE RESET DATA_OP COMPONENT

DATA_PERIPHERAL HOLD READ INTERRUPT_OP ADDRESS_SENSITIVE

DATA_COMMUNICATION READY WRITE PROGRAM_COUNTER_OP CONSTANT

DATA_ENCRYPTION BUSY SELECT INTERRUPT_CONTROL KEY

DATA_SENSITIVE COUNT EXECUTE PERIPHERAL_CONTROL REGISTER

WAIT LOAD REGISTER_FILE_CONTROL PROGRAM_COUNTER

TIMER_CONTROL MODE COMMUNICATION_CONTROL ERROR_HANDLING

CLOCK_CONTROL ENABLE COMMUNICATION_PROTOCOL EXCEPTION_HANDLING

SYSTEM_TIMING HANDSHAKING COMMUNICATION_STATUS STATE

SUBSYSTEM_TIMING SHIFT INTERRUPT

INSTRUCTION

SYSTEM_CONTROL

TABLE II. INTERNAL ASSETS AND THEIR DESCRIPTION

Asset Description

PROCESS_SENSITIVE Assigned to a signal in a process sensitivity list.

PROCESS_OPERATION_SENSITIVE Assigned to a signal being modified in a process block.

CONDITIONAL_DRIVING Assigned to a signal in a conditional statement.

CONDITIONAL_DRIVEN Assigned to a signal being modified in a conditional block.

CONCURRENT_DRIVING Assigned to a signal driving another signal in a concurrent statement.

CONCURRENT_DRIVEN Assigned to a signal being driven by another signal in a concurrent statement.

CC_OPERATION_SENSITIE Assigned to a signal being driven by two or more signals and logic operations.

Different from the research in [13] which compares two 
untrusted IPs to detect Trojans, the Golden Reference Library 
Matching method in [16] compares an untrusted Register-
Transfer Level (RTL) IP asset pattern and functionality with 
those of a collection of trusted IPs in a Golden Reference 
Library (GRL). In term of hardware Trojan scenarios, Trojan 
detection methods in [16] uncover case-specific hardware 
Trojan signals or components while FANCI [21] flags 
suspicious primary signals based on their statistically rare 
activity. While both tools achieve the Trojan detection goal, the 
method in [16] gives the users extra benefits by identifying the 
functionality of the unknown IP. This methodology is based off 
the Structural Checking methodology [15]. Since Structural 
Checking does not perform any simulation, it serves as an 
assistant tool to the end user for Trojan detection.

II. BACKGROUND AND DEFINITION

A. Structural Checking and GRL Matching Flow
The Structural Checking methodology for detecting 

hardware Trojans consists of several distinct steps. The first 
step, VHDL Parsing, is to analyze the VHDL code of a RTL 
soft IP and create a structure in memory of the internal 
connections and expressions. The next step consists of the 
assignments of roles to all signals of the design. In the context 
of Structural Checking, these roles are termed assets. This is 
performed through a graphical user interface, allowing users to 
easily assign assets to the primary I/O ports. Following the 
asset assignment, filtering is performed by passing assets along 
direct connections extracted during the VHDL parsing. The 
results of asset filtering are used in the determination of the 
IP’s functionality. This step is termed Golden Reference 
Library (GRL) Matching. Finally, the results of GRL matching 
are used for functionality determination and Trojan detection.
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TABLE III. ASSET PATTERN CHARACTERISTIC WEIGHT

Asset Pattern Characteristic Weight
input port signal external asset 3×
output port signal external asset 3×
internal signal external asset 1×
input port signal internal asset 1×
output port signal internal asset 1×
internal signal internal asset 1×

i2c_master
Best Match: i2c : 92.5 (75.0, 100.0, 100.0, 100.0, 100.0, 100.0)
Communication Match: 62
Computational Match: 26
Decoder/Encoder Match: 27
Interrupt Unit Match: 50
Control Generation Match: 13
Peripheral Match: 3
Register File Match: 17
Encryption Unit Match: 20
Shift Register Match: 17
Timing Match: 20

Fig.  1.  A portion of a matching report file

B. Assets
Critical to the Structural Checking process are the concept 

of assets and asset patterns of a soft IP. Assets define the role 
of a signal while asset pattern is the accumulation of assets in a 
design. Asset patterns are generated by asset filtering and are 
important for functionality matching.

1) Asset Definition
Introduced originally in [15], assets mean to capture the 

purpose/use/contribution of the signal using descriptions of 
common functionalities that a signal may possess. In this way, 
end-users gain a better understanding of the roles of each 
signal. There are external and internal assets.

a) External Assets
External assets are the set of potential functionalities 

assigned to the primary port signals of a soft IP by the user. 
They were created with the purpose of encompassing all 
possible roles that a port signal may assume in a design. A total 
of 50 external assets have been developed and categorized 
based on functionalities, as shown in Table I.

b) Internal Assets
Internal assets are automatically assigned by the tool to 

both primary port signals and internal signals. Internal assets 
are assigned based on a signal’s logical role in the VHDL code
and are broken down into three major categories —
concurrent, process, and conditional [20]. Table II shows a list 
of internal assets and their descriptions.

2) Asset Pattern
After assets are assigned to the signals, they are filtered 

along direct connections in order to populate the entire set of 
signals with a collection of assets. The set of assets assigned to 
a specific signal path is termed an asset trace. The entire 
collection of asset traces of a design is termed an asset pattern.

C. Asset Filtering
The idea of asset filtering is comparable to the taint 

analysis proposed in [17]. The taint value propagates from the 
input bit to the dependent output bit of a logic gate in the gate-
level netlist. Similarly, the external assets assigned to primary 
inputs are filtered to the next signal connections until they 
reach the dependent primary outputs. Then, the external assets 
previously assigned to primary outputs are filtered backward to 
the primary inputs that they are dependent on. The filtering rule 
for the internal assets is slightly different form the external 
asset filtering rule. The internal assets in the process category 
propagate within the process block boundary of the VHDL 
code. Similarly, the conditional internal asset category 
propagates within the conditional block boundary of the VHDL 
code. Finally, the internal assets in the concurrent category 
follow the same filtering rule as external asset filtering. The 
entire filtering process operates at RT-Level.

D. Golden Reference Libaray (GRL)
The initial entries of GRL are various small designs 

collected from OpenCores [19]. Since they are small, 
exhaustive verification is feasible. More entries are added from 
in-house designs. Structural Checking is then applied to 

generate asset patterns for all entries and functionalities are 
assigned manually.

The GRL contains asset patterns of trusted soft IPs 
collected as GRL files. Each GRL file has an associated 
functionality. The functionality matching of Structural 
Checking utilizes the set of GRL files to match an unknown 
design to a functionality associated with the closest matched 
asset pattern. The current GRL contains a total of 122 
files/entries, which are the asset patterns of distinctive designs 
with (blacklist) and without (whitelist) Trojan inserted. Note 
that these entries already consider the situation where a port 
signal may be assigned different assets.

Each GRL file contains six characteristics that are analyzed 
independently. The asset pattern can first be broken down into 
the external asset pattern characteristic and the internal asset 
pattern characteristic, depending on whether the asset pattern 
characteristic contains external or internal assets. Each of these 
asset pattern characteristics can be further broken down into 
primary inputs, primary outputs, and internal signals. It is 
necessary for each of these components to be analyzed 
independently in order to detect possible Trojans aimed at each 
specific portion of the design.

III. GOLDEN REFERENCE MATCHING METHODOLOGY
The GRL is the standard merit for identifying an unknown 

design’s functionality, which is critical for Trojan detection. In 
order to determine the functionality of an unknown IP 
precisely, the asset pattern of that IP needs to be matched 
properly to GRL entries.

A. Basic Asset Trace Matching
After asset filtering, the target IP has six asset pattern 

characteristics, the same as a GRL entry. These characteristics 
are compared in pairs. For example, the input port signal 
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TABLE IV. BASIC ASSET TRACE MATCHING EXAMPLES

Case Unknown Design Asset Traces GRL Entry Asset Traces Match
1 DATA_MEMORY, CRITICAL DATA_ MEMORY, CRITICAL 100%
2 DATA_ MEMORY, CRITICAL SYSTEM_CONTROL 0%
3 DATA_ MEMORY, CRITICAL DATA_ MEMORY, CRITICAL, SYSTEM_CONTROL 67%
4 DATA_ MEMORY, SYSTEM_CONTROL DATA_ MEMORY, SYSTEM_TIMING 50%

TABLE V. PARTIAL ASSET TRACE MATCHING EXAMPLES

Case Unknown Design Asset Traces GRL Entry Asset Traces Match
1 SYSTEM_CONTROL CLOCK_CONTROL 50%
2 DATA_ MEMORY, DATA_ SENSITIVE DATA_ SENSITIVE 50%
3 DATA_ MEMORY DATA_COMPUTATIONAL 0%
4 ENABLE, SET SET, SYSTEM_CONTROL 75%
5 RESET SET, SYSTEM_CONTROL 25%

external asset trace of the unknown IP is compared to the same 
characteristic of each GRL entry. The matching result is the 
percentage of the identical portion between two characteristics. 
The same process is applied to other characteristics. Several 
examples are included in Table III. In Table III, case number 1 
is the 100% match because the asset traces of both the GRL 
entry and the unknown IP are the same. In case number 2, 0% 
is the result of two completely different asset traces. Case 
number 3 shows the result of 67% because two out of three 
assets in the unknown IP’s asset trace are identical to the asset 
trace of the GRL entry. The last case presents the scenario 
where one out of the two assets is the same on both asset 
traces, so the result yields 50%. If each case represents an asset 
pattern characteristic, the final matching result is 54.25% as the 
average of the four cases.

B. Partial Asset Trace Mathcing
The partial asset trace matching algorithm is developed to 

gain more precisions in matching assets between two traces of 
the same characteristic. This is due to the fact that assets in the 
two asset traces often originate from the same category. An 
asset that represents a specific role is considered as 50% match 
to an asset that represents a general role in the same asset 
category. For instance, the match result of a 
SYSTEM_CONTROL asset and a CLOCK_CONTROL asset is 
50% because they are listed in the same system control 
category, which would be 0% using the basic matching 
algorithm and would not present the similar nature of the two 
assets. Table IV illustrates different scenarios where partial 
matching is applied.

C. Pattern Mathcing Compilation
Once all asset pattern characteristics of the unknown IP 

have been matched to the corresponding asset pattern 
characteristics of the GRL entry, a final match value is 
determined, which is the main factor for the functionality of the 
matched GRL entry to be assigned to the unknown IP. Even 
though each asset pattern characteristic contributes to the 
overall match value, not all characteristics are weighted 
equally. The weighting for each characteristic is performed 
experimentally by first recognizing that there are multiple 
implementations representing the same functionality. The 
internal characteristics of a functionality, which includes all 

internal asset characteristics along with the external assets 
filtered to internal signals, have the potential to be vastly 
different from another design with the same functionality. For 
this reason, the asset pattern characteristics related to internal 
characteristics are weighted less than the port signal external 
asset characteristics. In addition, the experimental results show 
the external asset pattern characteristics have a greater 
influence in the functionality determination than the internal 
characteristics. Hence, they have a higher weight. Table V
shows the weighting applied to the associated characteristic. 
After applying these weights to the asset pattern characteristics, 
a final highest match value is determined for each GRL entry 
to the unknown IP. The functionality of the GRL entity with 
the highest match value is then assigned to the unknown IP.

D. Functionality Matching
To aid in the asset pattern matching algorithm, a 

functionality determination algorithm is developed to precisely 
identify the functionality of an unknown IP. The functionality-
specific external asset is considered as the major indication of 
the potential functionality for the unknown IP. Functionality-
specific assets are assets that have a clear link to a functionality 
category as defined previously. Any general-purpose assets are 
disregarded for consideration in this matching method. Thus, 
for any unknown IP containing a functionality-specific external 
asset, the GRL entries with the corresponding functionality are 
weighted 1.5 times higher than others. This weight number is 
calculated based on observation experiments throughout testing 
various IPs collect from open source website [18-19]. For 
example, if the DATA_ENCRYPTION asset is found in an input 
port signal external asset pattern, the percentage of the asset 
pattern that contains DATA_ENCRYPTION in all GRL entries 
of encryption unit functionality is multiplied by 1.5.

E. Matching Report
Structural Checking provides a detailed breakdown of the 

asset pattern characteristics match along with the results from 
other categories of designs. The results are output in the form 
of a human-readable file, including percentage matches for all 
functionality categories. This gives the user the opportunity to 
understand the matching procedure as well as the rationale for 
a design being matched to a specific functionality. An example 
of matching result file is in Fig. 1. The first line indicates the 
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TrojanTrigger: process (clk) is
begin

        if rising_edge(clk) then
            TrojanCounter <= TrojanCounter + 1;
        end if;

end process TrojanTrigger;

(a)
process (clk)

begin
      if (clk'event AND clk = '1') then
         state_out <= (z0 & z1 & z2 & z3);
      elsif (trojancounter = x"44444444") then
        state_out <= key_in;
      end if;

end process;
(b)

Fig.  2. A portion of (a) time bomb trigger code and (b) time bomb 
key leakage in the AES-T600 entity

unknown entity being analyzed. The second line presents the 
highest percentage match GRL entry within current GRL, and 
the percentage match of each asset pattern characteristic. The 
remainder lists the average percentage match of each 
functionality in the GRL with respected to the entity.

IV. TROJAN DETECTION USING GOLDEN REFERENCE
LIBRARY MATCHING

A. Detection Algorithm
Trojan detection in the context of Structural Checking is a 

gradual process that analyzes the individual components of the 
target IP before determining the presence of a hardware Trojan. 
Each of these steps contributes to the identification of Trojan 
triggers and payloads.

1) Abnormal Asset Pattern Identification
This method is the analysis of external and internal asset 

traces. Certain combinations of assets found within asset traces 
expose the inclusion of a Trojan. Moreover, a Trojan can be 
suspected if a filtered asset of this signal is not in the same set 
as initially assigned. 

One type of Trojan attacks that can be detected using this 
method is the denial of service attack involving a timing signal. 
For instance, a set or reset signal may disable the clock signal 
of a synchronous design. This can be detected by searching for 
the SET or RESET asset in the clock’s asset trace after the 
filtering process. Another type of attack that can be uncovered 
by this method is cipher key leakage, for which a Trojan 
directs the secret key to the primary output. This can be 
detected by checking if the output signal’s asset trace of the 
encryption unit has the KEY asset.

2) Trojan functionality identification
The second Trojan detection method is through 

functionality identification and assignment. During the process 
of GRL matching, Structural Checking finds the GRL entry 
that has the highest match. If the unknown IP contains a known 
Trojan in the blacklist, a blacklisted functionality will be 
assigned to that unknown IP. Otherwise, a whitelist 
functionality will be assigned. In addition, Structural Checking
uses the GRL to identify all the sub-entities of the IP in order 
to reveal suspicious nets between those sub-entities. The 
suspicious nets are often found to be triggers for information-
leakage Trojans.

3) Trojan Detection Report
In a situation where one or more potential Trojans are 

identified, a readable text file is generated to inform the user. 
This Trojan detection report includes the target design’s entity 
name, Trojan types, instance name and signals affected by the 
Trojan. Fig. 2 shows a portion of a Trojan detection report of 
the entity RSACypher which is a blacklist Trojan-infested RSA 
encryption unit. The Trojan found in this RSACypher is 
KEY_LEAK meaning that the cipher key is leaked from the 
design and the signal affected by this Trojan is inExp.

B. Results and Various Trojan Detection Examples
1) Overall Result Analysis

A total of 21 RTL IPs from both Trust-Hub [18] and 
OpenCores [19] are included in the tests. Among these, for 17
Trojan-infested IPs, there are 27 implementations of denial-of-
service and key/data leakage payload. All Trojan-infested IPs 
are correctly identified Trojan-infested which yields the false 
negative rate 0%. Only one Trojan-free testing IP is identified 
as Trojan-infested. Therefore the false positive rate is 4.7%.
Two out of the 21 testing IPs are described below to further 
explain the Trojan detection methods.

2) Crypto Core AES-T600
AES-T600 is a Trojan-infested design obtained from 

Trust-Hub. In addition to the original cipher key leakage 
Trojan, two other Trojans are added, i.e., a time bomb counter 
and an additional shift register. After the parsing process, 
assets are assigned to AES-T600 primary port signals. 
Following the assignment process, the filtering process 
generated the asset pattern for AES-T600. This pattern is then 
used to match to other patterns in the GRL in order to obtain a 
functionality for the design. In this case, the functionally of 
AES-T600 is correctly identified as ENCRYPTION_UNIT.
Then, multiple Trojan detection algorithms are used to detect 
Trojans. The parsing process, filtering process and Trojan 
detection process takes on average 6 second, 341second, and 
less than 1 second, respectively, on a 2.4GHz Duo processor 
PC with 16GB of RAM.

The first Trojan detected is the time bomb through the 
blacklisted TROJAN_TRIGGER functionality. Structural 
Checking compares asset pattern of this AES-T600 to both 
whitelisted and blacklisted functionalities in GRL to get the 
highest percentage match. Fig. 2a illustrates the time bomb 
trigger which is inserted to the final encryption round of AES. 
After the time bomb is triggered, the cipher key, which is one 
of the two Trojan inserted, is leaked through the primary output 
of this AES-T600. Fig. 2b illustrates the cipher key leakage of 
the design. The last Trojan is the additional shift register. This 
shift register not only is used to perform shift operations, but 
also allows the attacker to perform power analysis side-channel 
attack on the AES. The shift register is triggered by a time 
bomb counter, which is the first Trojan. This shift register is 
identified as TROJAN_SHIFT_REGISTER via blacklist 
functionality matching.
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if TrojanCounter(31) = '1' then
SER_OUT <= "1";

else
SER_OUT <= BUF(0);

end if;
Fig. 3. A Trojan inserted in UART unit of the microcontroller c16

Type of Trojan found: 
TIME_BOMB_LEAKAGE_TRIGGER
Entity:

UART_TX
Instance:

tx
Signal:

TrojanCounter
…
Blacklist Trojan Detected in Entity: TSC

Trojan Functionality Type: 
TROJAN_SHIFT_REGISTER

Fig. 4. A portion of Trojan detection report of c16

3) Microcontroller c16
Another example is a Trojan-free microcontroller c16

acquired from OpenCores [19]. The Trojan is inserted inside 
the UART communication unit, causing the transmission of
incorrect data. The Trojan counter triggers the attack when it 
reaches a certain value as shown in Fig. 3. Structural Checking
detected this Trojan using the “suspicious connection” 
algorithm to identify a counter in a communication unit. A 
portion of this report is in Fig. 4. It takes on average 18 
seconds to parse, 11 seconds to filter, and less than 1 second to 
detect Trojans on the same computer.

V. CONCLUSION
Golden Reference Library matching is an effective 

methodology that allows Structural Checking to detect 
hardware Trojan in a soft IP. The percentage of matching result 
is determined by the similarity of unknown and known asset 
pattern characteristics. The functionality is then determined by 
the functionality of the matched GRL entry. Hence, the 
matching process between an unknown IP asset pattern and 
trusted GRL asset patterns allows the Trojan detection process 
to be performed efficiently and effectively. The Trojan
detection process using the GRL includes abnormal asset 
pattern identification and Trojan functionality identification. 
For future development, both blacklisted and whitelisted of the 
GRL, as well as the assets, can be easily expanded to improve 
the accuracy and resolution of the matching process, which is 
feasible because the process of creating a GRL entry is 
automated. More Trojan detection methods can be included to 
Structural Checking when those Trojan attacks are discovered.
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