
Hardware Trojan Detection and Functionality
Determination for Soft IPs

Thao Le
Computer Science and Computer Engineering

Department
University of Arkansas

Fayetteville, U.S.A.
tpl001@uark.edu

Lucas Weaver
Computer Science and Computer Engineering

Department
University of Arkansas

Fayetteville, U.S.A.
lcweaver@uark.edu

Jia Di
Computer Science and Computer Engineering

Department
University of Arkansas

Fayetteville, U.S.A.
jdi@uark.edu

Shaojie Zhang
Computer Science Department
University of Central Florida

Orlando, U.S.A.
shzhang@cs.ucf.edu

Yier Jin
Electrical and Computer
Engineering Department

University of Florida
Gainesville, U.S.A.
yier.jin@ece.ufl.edu

Abstract— Due to the increasing complexity of hardware
designs, third-party hardware Intellectual Property (IP) cores
are often incorporated to alleviate the burden on hardware
designers. However, the prevalent use of third-party IPs has
raised security concerns such as hardware Trojans. These
Trojans inserted in the soft IPs are very difficult to detect
through functional testing and no single detection methodology
has been able to completely address this issue. Based on a
Register-Transfer Level (RTL) soft IP analysis method named
Structural Checking, this paper presents a hardware Trojan
detection methodology and tool by detailing the implementation
of a Golden Reference Library for matching an unknown IP to a
functionally similar Golden Reference. The matching result is
quantified in percentages so that two different IPs with similar
functions have a higher percentage match. A match of the
unknown IP to a whitelist IP advances it to be identified with a
known functionality, while a match to a blacklist IP causes it to
be detected as Trojan-infested.

Keywords— Asset, Structural Checking, Golden Reference
Library, Hardware Trojan Detection

I. INTRODUCTION

As the complexity of integrated circuits (ICs) keeps
increasing, it is no longer financially efficient to design
everything in-house from scratch. Acquiring and integrating
third-party Intellectual Property (IP) blocks have become
common practice. However, since these IPs are not designed
in-house, their security and integrity cannot be guaranteed.
Hardware Trojans may be inserted into these soft IPs, which
pose a great threat to a large number of important applications,
such as defense and financial systems. Hardware Trojans are
the malicious insertion or modification triggered by a specific
event or sequence of events, resulting in a payload
compromising the operation of the circuit. Potential payloads
include denial of service, information leakage, or data
tampering, inducing great damage to the system incorporating
this IP and completely compromising the higher-level security
mechanisms.

Many solutions have been proposed focusing on hardware
Trojan detection. One approach is to analyze side-channel
signals in order to identify the impact of hardware Trojans.
Multiple side-channel characteristics have been analyzed in
research, such as power [1], current [2], and timing [3]. Trojans
are revealed by comparing each of these characteristics to those
of a Trojan-free design. Another technique integrates sensors to
the empty space of a layout. Sensors used in [4] provide “self-
authentication” by measuring circuit delays, while similar
research in [5] measures path delays. Additionally, an on-chip
ring oscillator network discussed in [6] performs power
analysis that aids in Trojan detection.

In contrast to those solutions analyzing circuit
characteristics, several other methods focus on activating
potential Trojans. For example, the research in [7] utilizes
randomized test vectors generated in a probabilistic manner.
Similarly, the research in [8] applies test vectors designed to
activate nets that are rarely activated, as they could be the
targets of a Trojan. Also, by narrowing down the potential
regions for Trojan detection and testing these regions
thoroughly, the research in [9] finds some success in
identifying Trojans.

Another strategy for Trojan detection focuses specifically
on the security of third-party IPs and how to provide improved
trust to these designs. For example, in [10] researchers use
testing methods to identify vulnerable portions of the third-
party IP. Additionally, the research in [11] uses formal
verification and sequential Automatic Test Pattern Generation
(ATPG) for the same purpose. Another technique in [12]
presents a strategy of Design-for-Trojan-Test in order to limit
the abilities of an attacker to insert Trojan triggers. The
research in [13] involves the comparison of IP blocks with a
similar function in order to identify malicious logic. FANCI
tool in [21] provides a statistical analysis to determine
backdoor signals. Last but not least, the research in [14]
identifies vulnerable signals by applying statistical analysis to
determine the observability of the signal.

This work is supported by NSF award CNS-
1703602 and CNS-1812071.

56978-1-5386-6544-2/IVSW18/ c©2018 IEEE

TABLE I. EXTERNAL ASSETS IN EACH CATEGORY

Asset
Data Timing System Control Specific System Control Miscellaneous

DATA_COMPUTATIONAL STATUS SET MEMORY_OP CRITICAL

DATA_MEMORY DONE RESET DATA_OP COMPONENT

DATA_PERIPHERAL HOLD READ INTERRUPT_OP ADDRESS_SENSITIVE

DATA_COMMUNICATION READY WRITE PROGRAM_COUNTER_OP CONSTANT

DATA_ENCRYPTION BUSY SELECT INTERRUPT_CONTROL KEY

DATA_SENSITIVE COUNT EXECUTE PERIPHERAL_CONTROL REGISTER

WAIT LOAD REGISTER_FILE_CONTROL PROGRAM_COUNTER

TIMER_CONTROL MODE COMMUNICATION_CONTROL ERROR_HANDLING

CLOCK_CONTROL ENABLE COMMUNICATION_PROTOCOL EXCEPTION_HANDLING

SYSTEM_TIMING HANDSHAKING COMMUNICATION_STATUS STATE

SUBSYSTEM_TIMING SHIFT INTERRUPT

INSTRUCTION

SYSTEM_CONTROL

TABLE II. INTERNAL ASSETS AND THEIR DESCRIPTION

Asset Description

PROCESS_SENSITIVE Assigned to a signal in a process sensitivity list.

PROCESS_OPERATION_SENSITIVE Assigned to a signal being modified in a process block.

CONDITIONAL_DRIVING Assigned to a signal in a conditional statement.

CONDITIONAL_DRIVEN Assigned to a signal being modified in a conditional block.

CONCURRENT_DRIVING Assigned to a signal driving another signal in a concurrent statement.

CONCURRENT_DRIVEN Assigned to a signal being driven by another signal in a concurrent statement.

CC_OPERATION_SENSITIE Assigned to a signal being driven by two or more signals and logic operations.

Different from the research in [13] which compares two
untrusted IPs to detect Trojans, the Golden Reference Library
Matching method in [16] compares an untrusted Register-
Transfer Level (RTL) IP asset pattern and functionality with
those of a collection of trusted IPs in a Golden Reference
Library (GRL). In term of hardware Trojan scenarios, Trojan
detection methods in [16] uncover case-specific hardware
Trojan signals or components while FANCI [21] flags
suspicious primary signals based on their statistically rare
activity. While both tools achieve the Trojan detection goal, the
method in [16] gives the users extra benefits by identifying the
functionality of the unknown IP. This methodology is based off
the Structural Checking methodology [15]. Since Structural
Checking does not perform any simulation, it serves as an
assistant tool to the end user for Trojan detection.

II. BACKGROUND AND DEFINITION

A. Structural Checking and GRL Matching Flow
The Structural Checking methodology for detecting

hardware Trojans consists of several distinct steps. The first
step, VHDL Parsing, is to analyze the VHDL code of a RTL
soft IP and create a structure in memory of the internal
connections and expressions. The next step consists of the
assignments of roles to all signals of the design. In the context
of Structural Checking, these roles are termed assets. This is
performed through a graphical user interface, allowing users to
easily assign assets to the primary I/O ports. Following the
asset assignment, filtering is performed by passing assets along
direct connections extracted during the VHDL parsing. The
results of asset filtering are used in the determination of the
IP’s functionality. This step is termed Golden Reference
Library (GRL) Matching. Finally, the results of GRL matching
are used for functionality determination and Trojan detection.

3rd International Verification and Security Workshop (IVSW) 57

TABLE III. ASSET PATTERN CHARACTERISTIC WEIGHT

Asset Pattern Characteristic Weight
input port signal external asset 3×
output port signal external asset 3×
internal signal external asset 1×
input port signal internal asset 1×
output port signal internal asset 1×
internal signal internal asset 1×

i2c_master
Best Match: i2c : 92.5 (75.0, 100.0, 100.0, 100.0, 100.0, 100.0)
Communication Match: 62
Computational Match: 26
Decoder/Encoder Match: 27
Interrupt Unit Match: 50
Control Generation Match: 13
Peripheral Match: 3
Register File Match: 17
Encryption Unit Match: 20
Shift Register Match: 17
Timing Match: 20

Fig. 1. A portion of a matching report file

B. Assets
Critical to the Structural Checking process are the concept

of assets and asset patterns of a soft IP. Assets define the role
of a signal while asset pattern is the accumulation of assets in a
design. Asset patterns are generated by asset filtering and are
important for functionality matching.

1) Asset Definition
Introduced originally in [15], assets mean to capture the

purpose/use/contribution of the signal using descriptions of
common functionalities that a signal may possess. In this way,
end-users gain a better understanding of the roles of each
signal. There are external and internal assets.

a) External Assets
External assets are the set of potential functionalities

assigned to the primary port signals of a soft IP by the user.
They were created with the purpose of encompassing all
possible roles that a port signal may assume in a design. A total
of 50 external assets have been developed and categorized
based on functionalities, as shown in Table I.

b) Internal Assets
Internal assets are automatically assigned by the tool to

both primary port signals and internal signals. Internal assets
are assigned based on a signal’s logical role in the VHDL code
and are broken down into three major categories —
concurrent, process, and conditional [20]. Table II shows a list
of internal assets and their descriptions.

2) Asset Pattern
After assets are assigned to the signals, they are filtered

along direct connections in order to populate the entire set of
signals with a collection of assets. The set of assets assigned to
a specific signal path is termed an asset trace. The entire
collection of asset traces of a design is termed an asset pattern.

C. Asset Filtering
The idea of asset filtering is comparable to the taint

analysis proposed in [17]. The taint value propagates from the
input bit to the dependent output bit of a logic gate in the gate-
level netlist. Similarly, the external assets assigned to primary
inputs are filtered to the next signal connections until they
reach the dependent primary outputs. Then, the external assets
previously assigned to primary outputs are filtered backward to
the primary inputs that they are dependent on. The filtering rule
for the internal assets is slightly different form the external
asset filtering rule. The internal assets in the process category
propagate within the process block boundary of the VHDL
code. Similarly, the conditional internal asset category
propagates within the conditional block boundary of the VHDL
code. Finally, the internal assets in the concurrent category
follow the same filtering rule as external asset filtering. The
entire filtering process operates at RT-Level.

D. Golden Reference Libaray (GRL)
The initial entries of GRL are various small designs

collected from OpenCores [19]. Since they are small,
exhaustive verification is feasible. More entries are added from
in-house designs. Structural Checking is then applied to

generate asset patterns for all entries and functionalities are
assigned manually.

The GRL contains asset patterns of trusted soft IPs
collected as GRL files. Each GRL file has an associated
functionality. The functionality matching of Structural
Checking utilizes the set of GRL files to match an unknown
design to a functionality associated with the closest matched
asset pattern. The current GRL contains a total of 122
files/entries, which are the asset patterns of distinctive designs
with (blacklist) and without (whitelist) Trojan inserted. Note
that these entries already consider the situation where a port
signal may be assigned different assets.

Each GRL file contains six characteristics that are analyzed
independently. The asset pattern can first be broken down into
the external asset pattern characteristic and the internal asset
pattern characteristic, depending on whether the asset pattern
characteristic contains external or internal assets. Each of these
asset pattern characteristics can be further broken down into
primary inputs, primary outputs, and internal signals. It is
necessary for each of these components to be analyzed
independently in order to detect possible Trojans aimed at each
specific portion of the design.

III. GOLDEN REFERENCE MATCHING METHODOLOGY
The GRL is the standard merit for identifying an unknown

design’s functionality, which is critical for Trojan detection. In
order to determine the functionality of an unknown IP
precisely, the asset pattern of that IP needs to be matched
properly to GRL entries.

A. Basic Asset Trace Matching
After asset filtering, the target IP has six asset pattern

characteristics, the same as a GRL entry. These characteristics
are compared in pairs. For example, the input port signal

58 3rd International Verification and Security Workshop (IVSW)

TABLE IV. BASIC ASSET TRACE MATCHING EXAMPLES

Case Unknown Design Asset Traces GRL Entry Asset Traces Match
1 DATA_MEMORY, CRITICAL DATA_ MEMORY, CRITICAL 100%
2 DATA_ MEMORY, CRITICAL SYSTEM_CONTROL 0%
3 DATA_ MEMORY, CRITICAL DATA_ MEMORY, CRITICAL, SYSTEM_CONTROL 67%
4 DATA_ MEMORY, SYSTEM_CONTROL DATA_ MEMORY, SYSTEM_TIMING 50%

TABLE V. PARTIAL ASSET TRACE MATCHING EXAMPLES

Case Unknown Design Asset Traces GRL Entry Asset Traces Match
1 SYSTEM_CONTROL CLOCK_CONTROL 50%
2 DATA_ MEMORY, DATA_ SENSITIVE DATA_ SENSITIVE 50%
3 DATA_ MEMORY DATA_COMPUTATIONAL 0%
4 ENABLE, SET SET, SYSTEM_CONTROL 75%
5 RESET SET, SYSTEM_CONTROL 25%

external asset trace of the unknown IP is compared to the same
characteristic of each GRL entry. The matching result is the
percentage of the identical portion between two characteristics.
The same process is applied to other characteristics. Several
examples are included in Table III. In Table III, case number 1
is the 100% match because the asset traces of both the GRL
entry and the unknown IP are the same. In case number 2, 0%
is the result of two completely different asset traces. Case
number 3 shows the result of 67% because two out of three
assets in the unknown IP’s asset trace are identical to the asset
trace of the GRL entry. The last case presents the scenario
where one out of the two assets is the same on both asset
traces, so the result yields 50%. If each case represents an asset
pattern characteristic, the final matching result is 54.25% as the
average of the four cases.

B. Partial Asset Trace Mathcing
The partial asset trace matching algorithm is developed to

gain more precisions in matching assets between two traces of
the same characteristic. This is due to the fact that assets in the
two asset traces often originate from the same category. An
asset that represents a specific role is considered as 50% match
to an asset that represents a general role in the same asset
category. For instance, the match result of a
SYSTEM_CONTROL asset and a CLOCK_CONTROL asset is
50% because they are listed in the same system control
category, which would be 0% using the basic matching
algorithm and would not present the similar nature of the two
assets. Table IV illustrates different scenarios where partial
matching is applied.

C. Pattern Mathcing Compilation
Once all asset pattern characteristics of the unknown IP

have been matched to the corresponding asset pattern
characteristics of the GRL entry, a final match value is
determined, which is the main factor for the functionality of the
matched GRL entry to be assigned to the unknown IP. Even
though each asset pattern characteristic contributes to the
overall match value, not all characteristics are weighted
equally. The weighting for each characteristic is performed
experimentally by first recognizing that there are multiple
implementations representing the same functionality. The
internal characteristics of a functionality, which includes all

internal asset characteristics along with the external assets
filtered to internal signals, have the potential to be vastly
different from another design with the same functionality. For
this reason, the asset pattern characteristics related to internal
characteristics are weighted less than the port signal external
asset characteristics. In addition, the experimental results show
the external asset pattern characteristics have a greater
influence in the functionality determination than the internal
characteristics. Hence, they have a higher weight. Table V
shows the weighting applied to the associated characteristic.
After applying these weights to the asset pattern characteristics,
a final highest match value is determined for each GRL entry
to the unknown IP. The functionality of the GRL entity with
the highest match value is then assigned to the unknown IP.

D. Functionality Matching
To aid in the asset pattern matching algorithm, a

functionality determination algorithm is developed to precisely
identify the functionality of an unknown IP. The functionality-
specific external asset is considered as the major indication of
the potential functionality for the unknown IP. Functionality-
specific assets are assets that have a clear link to a functionality
category as defined previously. Any general-purpose assets are
disregarded for consideration in this matching method. Thus,
for any unknown IP containing a functionality-specific external
asset, the GRL entries with the corresponding functionality are
weighted 1.5 times higher than others. This weight number is
calculated based on observation experiments throughout testing
various IPs collect from open source website [18-19]. For
example, if the DATA_ENCRYPTION asset is found in an input
port signal external asset pattern, the percentage of the asset
pattern that contains DATA_ENCRYPTION in all GRL entries
of encryption unit functionality is multiplied by 1.5.

E. Matching Report
Structural Checking provides a detailed breakdown of the

asset pattern characteristics match along with the results from
other categories of designs. The results are output in the form
of a human-readable file, including percentage matches for all
functionality categories. This gives the user the opportunity to
understand the matching procedure as well as the rationale for
a design being matched to a specific functionality. An example
of matching result file is in Fig. 1. The first line indicates the

3rd International Verification and Security Workshop (IVSW) 59

TrojanTrigger: process (clk) is
begin

 if rising_edge(clk) then
 TrojanCounter <= TrojanCounter + 1;
 end if;

end process TrojanTrigger;

(a)
process (clk)

begin
 if (clk'event AND clk = '1') then
 state_out <= (z0 & z1 & z2 & z3);
 elsif (trojancounter = x"44444444") then
 state_out <= key_in;
 end if;

end process;
(b)

Fig. 2. A portion of (a) time bomb trigger code and (b) time bomb
key leakage in the AES-T600 entity

unknown entity being analyzed. The second line presents the
highest percentage match GRL entry within current GRL, and
the percentage match of each asset pattern characteristic. The
remainder lists the average percentage match of each
functionality in the GRL with respected to the entity.

IV. TROJAN DETECTION USING GOLDEN REFERENCE
LIBRARY MATCHING

A. Detection Algorithm
Trojan detection in the context of Structural Checking is a

gradual process that analyzes the individual components of the
target IP before determining the presence of a hardware Trojan.
Each of these steps contributes to the identification of Trojan
triggers and payloads.

1) Abnormal Asset Pattern Identification
This method is the analysis of external and internal asset

traces. Certain combinations of assets found within asset traces
expose the inclusion of a Trojan. Moreover, a Trojan can be
suspected if a filtered asset of this signal is not in the same set
as initially assigned.

One type of Trojan attacks that can be detected using this
method is the denial of service attack involving a timing signal.
For instance, a set or reset signal may disable the clock signal
of a synchronous design. This can be detected by searching for
the SET or RESET asset in the clock’s asset trace after the
filtering process. Another type of attack that can be uncovered
by this method is cipher key leakage, for which a Trojan
directs the secret key to the primary output. This can be
detected by checking if the output signal’s asset trace of the
encryption unit has the KEY asset.

2) Trojan functionality identification
The second Trojan detection method is through

functionality identification and assignment. During the process
of GRL matching, Structural Checking finds the GRL entry
that has the highest match. If the unknown IP contains a known
Trojan in the blacklist, a blacklisted functionality will be
assigned to that unknown IP. Otherwise, a whitelist
functionality will be assigned. In addition, Structural Checking
uses the GRL to identify all the sub-entities of the IP in order
to reveal suspicious nets between those sub-entities. The
suspicious nets are often found to be triggers for information-
leakage Trojans.

3) Trojan Detection Report
In a situation where one or more potential Trojans are

identified, a readable text file is generated to inform the user.
This Trojan detection report includes the target design’s entity
name, Trojan types, instance name and signals affected by the
Trojan. Fig. 2 shows a portion of a Trojan detection report of
the entity RSACypher which is a blacklist Trojan-infested RSA
encryption unit. The Trojan found in this RSACypher is
KEY_LEAK meaning that the cipher key is leaked from the
design and the signal affected by this Trojan is inExp.

B. Results and Various Trojan Detection Examples
1) Overall Result Analysis

A total of 21 RTL IPs from both Trust-Hub [18] and
OpenCores [19] are included in the tests. Among these, for 17
Trojan-infested IPs, there are 27 implementations of denial-of-
service and key/data leakage payload. All Trojan-infested IPs
are correctly identified Trojan-infested which yields the false
negative rate 0%. Only one Trojan-free testing IP is identified
as Trojan-infested. Therefore the false positive rate is 4.7%.
Two out of the 21 testing IPs are described below to further
explain the Trojan detection methods.

2) Crypto Core AES-T600
AES-T600 is a Trojan-infested design obtained from

Trust-Hub. In addition to the original cipher key leakage
Trojan, two other Trojans are added, i.e., a time bomb counter
and an additional shift register. After the parsing process,
assets are assigned to AES-T600 primary port signals.
Following the assignment process, the filtering process
generated the asset pattern for AES-T600. This pattern is then
used to match to other patterns in the GRL in order to obtain a
functionality for the design. In this case, the functionally of
AES-T600 is correctly identified as ENCRYPTION_UNIT.
Then, multiple Trojan detection algorithms are used to detect
Trojans. The parsing process, filtering process and Trojan
detection process takes on average 6 second, 341second, and
less than 1 second, respectively, on a 2.4GHz Duo processor
PC with 16GB of RAM.

The first Trojan detected is the time bomb through the
blacklisted TROJAN_TRIGGER functionality. Structural
Checking compares asset pattern of this AES-T600 to both
whitelisted and blacklisted functionalities in GRL to get the
highest percentage match. Fig. 2a illustrates the time bomb
trigger which is inserted to the final encryption round of AES.
After the time bomb is triggered, the cipher key, which is one
of the two Trojan inserted, is leaked through the primary output
of this AES-T600. Fig. 2b illustrates the cipher key leakage of
the design. The last Trojan is the additional shift register. This
shift register not only is used to perform shift operations, but
also allows the attacker to perform power analysis side-channel
attack on the AES. The shift register is triggered by a time
bomb counter, which is the first Trojan. This shift register is
identified as TROJAN_SHIFT_REGISTER via blacklist
functionality matching.

60 3rd International Verification and Security Workshop (IVSW)

if TrojanCounter(31) = '1' then
SER_OUT <= "1";

else
SER_OUT <= BUF(0);

end if;
Fig. 3. A Trojan inserted in UART unit of the microcontroller c16

Type of Trojan found:
TIME_BOMB_LEAKAGE_TRIGGER
Entity:

UART_TX
Instance:

tx
Signal:

TrojanCounter
…
Blacklist Trojan Detected in Entity: TSC

Trojan Functionality Type:
TROJAN_SHIFT_REGISTER

Fig. 4. A portion of Trojan detection report of c16

3) Microcontroller c16
Another example is a Trojan-free microcontroller c16

acquired from OpenCores [19]. The Trojan is inserted inside
the UART communication unit, causing the transmission of
incorrect data. The Trojan counter triggers the attack when it
reaches a certain value as shown in Fig. 3. Structural Checking
detected this Trojan using the “suspicious connection”
algorithm to identify a counter in a communication unit. A
portion of this report is in Fig. 4. It takes on average 18
seconds to parse, 11 seconds to filter, and less than 1 second to
detect Trojans on the same computer.

V. CONCLUSION
Golden Reference Library matching is an effective

methodology that allows Structural Checking to detect
hardware Trojan in a soft IP. The percentage of matching result
is determined by the similarity of unknown and known asset
pattern characteristics. The functionality is then determined by
the functionality of the matched GRL entry. Hence, the
matching process between an unknown IP asset pattern and
trusted GRL asset patterns allows the Trojan detection process
to be performed efficiently and effectively. The Trojan
detection process using the GRL includes abnormal asset
pattern identification and Trojan functionality identification.
For future development, both blacklisted and whitelisted of the
GRL, as well as the assets, can be easily expanded to improve
the accuracy and resolution of the matching process, which is
feasible because the process of creating a GRL entry is
automated. More Trojan detection methods can be included to
Structural Checking when those Trojan attacks are discovered.

REFERENCES

[1] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi and B. Sunar,
"Trojan Detection using IC Fingerprinting," Security and Privacy, 2007.
SP '07. IEEE Symposium on, Berkeley, CA, 2007, pp. 296-310.

[2] X. Wang, H. Salmani, M. Tehranipoor and J. Plusquellic, "Hardware
Trojan Detection and Isolation Using Current Integration and Localized
Current Analysis," Defect and Fault Tolerance of VLSI Systems, 2008.
DFTVS '08. IEEE International Symposium on, Boston, MA, 2008, pp.
87-95.

[3] J. Li and J. Lach, "At-speed delay characterization for IC authentication
and Trojan Horse detection," Hardware-Oriented Security and Trust,
2008. HOST 2008. IEEE International Workshop on, Anaheim, CA,
2008, pp. 8-14.

[4] A. Davoodi, Min Li and M. Tehranipoor, "A Sensor-Assisted Self-
Authentication Framework for Hardware Trojan Detection," Design &
Test, IEEE, vol. 30, pp. 74-82, 2013.

[5] F. Saqib, D. Ismari, C. Lamech and J. Plusquellic, "Within-Die Delay
Variation Measurement and Power Transient Analysis Using REBEL,"
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 23, pp. 776-780, 2015.

[6] X. Zhang and M. Tehranipoor, "RON: An on-chip ring oscillator
network for hardware trojan detection," in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2011, pp. 1-6.

[7] S. Jha and S. K. Jha, "Randomization Based Probabilistic Approach to
Detect Trojan Circuits," High Assurance Systems Engineering
Symposium. HASE 2008. 11th IEEE, Nanjing, 2008, pp. 117-124.

[8] F. Wolff, C. Papachristou, S. Bhunia and R. S. Chakraborty, "Towards
Trojan-Free Trusted ICs: Problem Analysis and Detection Scheme,"
Design, Automation and Test in Europe, Munich, 2008, pp. 1362-1365.

[9] M. Banga and M. S. Hsiao, "A region based approach for the
identification of hardware Trojans," Hardware-Oriented Security and
Trust. IEEE International Workshop on, Anaheim, CA, 2008, pp. 40-47.

[10] M. Banga and M. S. Hsiao, "Trusted RTL: Trojan Detection
Methodology in Pre-Silicon Designs," in 2010 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), 2010.

[11] X. Zang and M. Tehranipoor, "Case Study: Detecting Hardware Trojans
in Third-Party Digital IP Cores," in Hardware-Oriented Security and
Trust (HOST), 2011 IEEE International Symposium on, San Diego, CA,
2011.

[12] Y. Jin, N. Kupp and Y. Makris, "DFTT: Design for Trojan Test," in
Electronics, Circuits, and Systems (ICECS), 2010 17th IEEE
International Conference on, Athens, 2010.

[13] T. Reece and W. H. Robinson, "Detection of Hardware Trojans in Third-
Party Intellectual Property Using Untrusted Modules," in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, no. 3, pp. 357-366, March 2016.

[14] H. Salmani and M. Tehranipoor, "Analyzing circuit vulnerability to
hardware trojan insertion at the behavioral level," in Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), 2013 IEEE
International Symposium on, 2013, pp. 190-195.

[15] J. Yust, M. Hinds and J. Di, "Structural Checking: Detecting Malicious
Logic without a Golden Reference," in Journal of Computational
Intelligence and Electronic Systems, vol. 1, no. 2, p. 169177, 2012.

[16] L. Weaver, T. Le and J. Di, “Golden Reference Library Matching of
Structural Checking for Securing Soft IPs,” IEEE SoutheastCon,
Norfolk, VA, 2016.

[17] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood and R. Kastner,
"Theoretical analysis of gate level information flow tracking," in
Proceedings of the 47th Design Automation Conference (DAC '10),
New York, NY, USA, 2010, pp. 244-247.

[18] H. Salmani, M. Tehranipoor, and R. Karri, "On Design vulnerability
analysis and trust benchmark development" IEEE Int. Conference on
Computer Design (ICCD), 2013.

[19] http://opencores.org/
[20] M. Hinds, J. Brady and J. Di, "Signal Assets - a Useful Concept for

Abstracting Circuit Functionality," in 2013 Government Microcircuit
Applications & Critical Technology Conference (GOMACTech), 2013.

[21] A. Waksman, M. Suozzo, S. Sethumadhavan, "FANCI: Identification of
stealthy malicious logic using boolean functional analysis," in the 2013
ACM SIGSAC Conference on Computer & Communications Security
(CCS '13). ACM. New York, NY, USA, 2013, pp. 697-708.

3rd International Verification and Security Workshop (IVSW) 61

