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ABSTRACT

The rapidly growing body of research in adversarial machine learn-
ing has demonstrated that deep neural networks (DNNs) are highly
vulnerable to adversarially generated images. This underscores
the urgent need for practical defense techniques that can be read-
ily deployed to combat attacks in real-time. Observing that many
attack strategies aim to perturb image pixels in ways that are vi-
sually imperceptible, we place JPEG compression at the core of
our proposed SHIELD defense framework, utilizing its capability to
effectively “compress away” such pixel manipulation. To immunize
a DNN model from artifacts introduced by compression, SHIELD
“vaccinates” the model by retraining it with compressed images,
where different compression levels are applied to generate multiple
vaccinated models that are ultimately used together in an ensemble
defense. On top of that, SHIELD adds an additional layer of pro-
tection by employing randomization at test time that compresses
different regions of an image using random compression levels,
making it harder for an adversary to estimate the transformation
performed. This novel combination of vaccination, ensembling, and
randomization makes SHIELD a fortified multi-pronged defense.
We conducted extensive, large-scale experiments using the Ima-
geNet dataset, and show that our approaches eliminate up to 98%
of gray-box attacks delivered by strong adversarial techniques such
as Carlini-Wagner’s L2 attack and DeepFool. Our approaches are
fast and work without requiring knowledge about the model.
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Figure 1: SHIELD Framework Overview. SHIELD combats ad-
versarial images (in red) by removing perturbation in real-
time using Stochastic Local Quantization (SLQ) and an en-
semble of vaccinated models which are robust to the com-
pression transformation. Our approach eliminates up to 98%
of gray-box attacks delivered by strong adversarial tech-
niques such as Carlini-Wagner’s L2 attack and DeepFool.
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1 INTRODUCTION

Deep neural networks (DNNs), while enjoying tremendous success
in recent years, suffer from serious vulnerabilities to adversarial
attacks [33]. For example, in computer vision applications, an at-
tacker can add visually imperceptible perturbations to an image
and mislead a DNN model into making arbitrary predictions. When
the attacker has complete knowledge of a DNN model, these per-
turbations can be computed by using the gradient information of
the model, which guides the adversary in discovering vulnerable
regions of the input space that would most drastically affect the
model output [11, 27]. But even in a black-box scenario, where
the attacker does not know the exact network architecture, one
can use a substitute model to craft adversarial perturbations that
are transferable to the target model [25]. To make this even more
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troubling, it is possible to print out physical 2D or 3D objects to
fool recognition systems in realistic settings [2, 30].

The threat of adversarial attack casts a shadow over deploying
DNNs in security and safety-critical applications like self-driving
cars. To better understand and fix the vulnerabilities, there is a
growing body of research on defending against various attacks
and making DNN models more robust [3, 22, 26]. However, the
progress of defense research has been lagging behind the attack
side so far. Moreover, research on defense rarely focuses on practi-
cality and scalability, both essential for real-world deployment. For
example, total variation denoising and image quilting are image pre-
processing techniques that have potential in mitigating adversarial
perturbations to some extent [14], but they incur significant com-
putational overhead, calling into question how feasibly they can be
used in practical applications, which often require fast, real-time
defense [8, 9].

1.1 Our Contributions and Impact

1. Compression as Fast, Practical, Effective Defense. We lever-
age the idea that compression — a central concept that underpins
numerous successful data mining techniques — can offer powerful,
scalable, and practical protection for deep learning models against
adversarial image perturbations in real-time. Motivated by the ob-
servation that many attack strategies aim to perturb images in
ways that are visually imperceptible to the naked eye, we show that
systematic adaptation of the widely available JPEG compression
technique can effectively compress away such pixel “noise”, espe-
cially since JPEG is particularly designed to reducing image details
that are imperceptible to humans. (Section 3.1)

2. SHIELD: Multifaceted Defense Framework. Building on our

principal idea of compression, we contribute the novel SHIELD

defense framework that combines randomization, vaccination and
ensembling into a fortified multi-pronged defense:

(1) We exploit JPEG’s flexibility in supporting varying compres-
sion levels to develop strong ensemble models that span the
spectrum of compression levels;

(2) We show that a model can be “vaccinated” by training on com-
pressed images, increasing its robustness towards compression
transformation for both adversarial and benign images;

(3) SHIELD employs stochastic quantization that compresses differ-
ent regions of an image using randomly sampled compression
levels, making it harder for the adversary to estimate the trans-
formation performed.

SHIELD does not require any change in the model architecture, and
can recovers significant amount of model accuracy lost to adversar-
ial instances, with little effect on the accuracy for benign instances.
SHIELD stands for Secure Heterogeneous Image Ensemble with
Localized Denoising. (Sections 3.2 & 3.3)

3. Extensive Evaluation Against Major Attacks. We perform
extensive experiments using the full ImageNet benchmark dataset
with 50K images, demonstrating that our approach is fast, effective
and scalable. Our approaches eliminate up to 98% of gray-box at-
tacks delivered by some of the most recent, strongest attacks, such
as Carlini-Wagner’s L2 attack [4] and DeepFool [24]. (Section 4)
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4. Impact to Intel and Beyond. This work is making multiple
positive impacts on Intel’s research and product development plans.
Introduced with the Sandy Bridge CPU microarchitecture, Intel’s
Quick Sync Video (QSV) technology dedicates a hardware core
for high-speed video processing, performs JPEG compression up
to 24X faster than TensorFlow implementations, paving the way
for real-time defense in safety-critical applications, such as au-
tonomous vehicles. This research has sparked insightful discus-
sion among research and development teams at Intel, on the pri-
ority of secure deep learning that necessitates tight integration
of practical defense strategies, software platforms and hardware
accelerators. We believe our work will accelerate the industry’s
emphasis on this important topic. To ensure reproducibility of
our results, we have open-sourced our code on GitHub (https:
//github.com/poloclub/jpeg-defense). (Section 5)

2 BACKGROUND: ADVERSARIAL ATTACKS

Our work focuses on defending against adversarial attacks on deep
learning models. This section provides background information for
readers new to the adversarial attack literature.

Given a trained classifier C and an instance x € X, the objec-
tive of an adversarial untargeted attack is to compute a perturbed
instance x” such that C(x”) # C(x) and d(x,x’) < p for some
distance function d(:,-) and p > 0. Popular choices of d(-,-) are
Euclidean distance d(x,x”) = ||x — x’||2, and Chebychev distance
d(x,x") = ||x — x'||co. A targeted attack is similar, but is required to
induce a classification for a specific target class ¢, i.e., C(x’) = t. In
both cases, depending on whether the attacker has full knowledge of
C or not, the attack can be further categorized into white-box attack
and black-box attack. The latter is obviously harder for the attacker
since less information is known about the model, but has been
shown to be possible in practice by relying on the property of trans-
ferability from a substitute model to the target model when both of
them are DNNs trained using gradient backpropagation [25, 33].

The seminal work by Szegedy et al. [33] proposed the first ef-
fective adversarial attack on DNN image classifiers by solving a
box-constrained L-BFGS optimization problem and showed that
the computed perturbations to the images were indistinguishable
to the human eye — a rather troublesome property for people
trying to identify adversarial images. This discovery has gained
tremendous interest, and many new attack algorithms have been
invented [11, 23, 24, 27] and applied to other domains such as mal-
ware detection [12, 15], sentiment analysis [28], and reinforcement
learning [16, 20]. Below, we describe the major, well-studied attacks
in the literature, against which we will evaluate our approach.

Carlini-Wagner’s Ly (CW-L2) [4] is an optimization-based attack
that adds a relaxation term to the perturbation minimization prob-
lem based on a differentiable surrogate of the model. They pose the
optimization as minimizing:

llx = x’|lz + Amax ( — x, Z(x")g — max{Z(x" ) : k" £k}) (1)
where Kk controls the confidence with which an image is misclas-

sified by the DNN, and Z(-) is the output from the logit layer (last
layer before the softmax function is applied for prediction) of C.
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DeepFool (DF) [24] constructs an adversarial instance under an
L, constraint by assuming the decision boundary to be hyperpla-
nar. The authors leverage this simplification to compute a minimal
adversarial perturbation that results in a sample that is close to the
original instance but orthogonally cuts across the nearest decision
boundary. In this respect, DF is an untargeted attack. Since the
underlying assumption about the decision boundary being com-
pletely linear in higher dimensions is an oversimplification of the
actual case, DF keeps reiterating until a true adversarial instance is
found. The resulting perturbations are harder for humans to detect
compared to perturbations introduced by other attacks.

Iterative Fast Gradient Sign Method (I-FGSM) [19] is the iter-
ative version of the Fast Gradient Sign Method (FGSM) [11],
which is a fast algorithm that computes perturbations subject to an
Loo constraint. FGSM simply takes the sign of the gradient of loss
function J w.r.t. the input x,

x' = x+e€-sign(V]e(0,x,y)) @)

where 0 is the set of parameters of the model and y is the true
label of the instance. The parameter € controls the magnitude of
per-pixel perturbation. I-FGSM iteratively applies FGSM in each
iteration i after clipping the values appropriately at each step:

PO Cl S sign(V]x(ifl)(Q,x(i_l), Y)) (3)

3 PROPOSED METHOD: COMPRESSION AS
DEFENSE

In this section, we present our compression-based approach for
combating adversarial attacks. In Section 3.1, we begin by describ-
ing the technical reasons why compression can remove perturba-
tion. As compression would modify the distribution of the input
space by introducing some artifacts, in Section 3.2, we propose
to “vaccinate” the model by training it with compressed images,
which increases its robustness towards compression transformation
for both adversarial and benign images. Finally, in Section 3.3, we
present our multifaceted SHIELD defense framework that combines
random quantization, vaccination and ensembling into a fortified
multi-pronged defense, which, to the best of our knowledge, has
yet been challenged.

3.1 Preprocessing Images using Compression

Our main idea on rectifying the prediction of a trained model C, with
respect to a perturbed input x’, is to apply a preprocessing operation
g(+) that brings back x’ closer to the original benign instance x,
which implicitly aims to make C(g(x")) = C(x). Constructing such
a g(-) is application dependent. For the image classification problem,
we show that JPEG compression is a powerful preprocessing defense
technique. JPEG compression mainly consists of the following steps:

(1) Convert the given image from RGB to YCp,C, (chrominance
+ luminance) color space.

(2) Perform spatial subsampling of the chrominance channels,
since the human eye is less susceptible to these changes and
relies more on the luminance information.

(3) Transform 8x 8 blocks of the YC;, C, channels to a frequency
domain representation using Discrete Cosine Transform

(DCT).
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Figure 2: SHIELD uses Stochastic Local Quantization (SLQ) to
remove adversarial perturbations from input images. SLQ
divides an image into 8 X 8 blocks and applies a randomly
selected JPEG compression quality (20, 40, 60 or 80) to each
block to mitigate the attack.

(4) Perform quantization of the blocks in the frequency domain
representation according to a quantization table which cor-
responds to a user-defined quality factor for the image.

The last step is where the JPEG algorithm achieves the majority
of compression at the expense of image quality. This step suppresses
higher frequencies more since these coefficients contribute less to
the human perception of the image. As adversarial attacks do not
optimize for maintaining the spectral signature of the image, they
tend to introduce more high frequency components which can be
removed at this step. This step also renders the preprocessing stage
non-differentiable, which makes it non-trivial for an adversary
to optimize against, allowing only estimations to be made of the
transformation [31]. We show in our evaluation (Section 4.2) that
JPEG compression effectively removes adversarial perturbation
across a wide range of compression levels.

3.2 Vaccinating Models with Compressed
Images

As DNNEs are typically trained on high quality images (with little or
compression), they are often invariant to the artifacts introduced
by the preprocessing of JPEG at high-quality settings. This is espe-
cially useful in an adversarial setting as our pilot study has shown
that applying even mild compression removes the perturbations
introduced by some attacks [6]. However, applying too much com-
pression could reduce the model accuracy on benign images.

We propose to “vaccinate” the model by training it with com-
pressed images, especially those at lower JPEG qualities, which
increases the model’s robustness towards compression transfor-
mation for both adversarial and benign images. With vaccination,
we can apply more aggressive compression to remove more adver-
sarial perturbation. In our evaluation (Section 4.3), we show the
significant advantage that our vaccination strategy provides, recov-
ering more than 7 absolute percentage points in model accuracy for
high-perturbation attacks.
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3.3 SHIELD: Multifaceted Defense Framework

To leverage the effectiveness of JPEG compression as a prepro-
cessing technique along with the benefit of vaccinating with JPEG
images, we propose a stochastic variant of the JPEG algorithm that
introduces randomization to the quantization step, making it harder
for the adversaries to estimate the preprocessing transformation.

Figure 2 illustrates our proposed strategy, where we vary the
quantization table for each 8 X 8 block in the frequency domain
to correspond to a random quality factor from a provided set of
qualities, such that the compression level does not remain uniform
across the image. This is equivalent to breaking up the image into
disjoint 8 x 8 blocks, compressing each block with a random quality
factor, and putting the blocks together to re-create the final image.
We call this method Stochastic Local Quantization (SLQ). As the
adversary is free to craft images with varying amounts of perturba-
tion, our defense should offer protection across a wide spectrum.
Thus, we selected the set of qualities {20, 40, 60, 80} as our random-
ization candidates, uniformly spanning the range of JPEG qualities
from 1 (most compressed) to 100 (least compressed).

Comparing our stochastic approach to taking a simple average
over JPEG compressed images, our method allows for maintaining
the original semantics of the image in the blocks compressed to
higher qualities, while performing more localized denoising in the
blocks compressed to lower qualities. In the case of simple aver-
age, all perturbations may not be removed at higher qualities and
they might simply dominate the other components participating
in the average, still posing to be adversarial. Introducing localized
stochasticity reduces this expectation.

In our evaluation (Section 4.3), we will show that by using the
spectrum of JPEG compression levels with our stochastic approach,
our model can simultaneously attain a high accuracy on benign
images, while being more robust to adversarial perturbations —
a strong benefit that using a single JPEG quality cannot provide.
Our method is further fortified by using an ensemble of vaccinated
models individually trained on the set of qualities picked for ran-
domization. We show in Section 4.3 how our method can achieve
high model accuracies, comparable to those of much larger ensem-
bles, but is significantly faster.

4 EVALUATION

In this section, we show that our approach is scalable, effective
and practical in removing adversarial image perturbations. For our
experiments, we consider the following scenarios:
e The adversary has access to the full model, including its
architecture and parameters. (Section 4.2)
o The adversary has access to the model architecture, but not
the exact parameters. (Section 4.3)
e The adversary does not have access to the model architecture.
(Section 4.4)

4.1 Experiment Setup

We performed experiments on the full validation set of the Ima-
geNet benchmark image classification dataset [17], which consists
0f 1,000 classes, totaling 50,000 images. We show the performance of
each defense on the ResNet-v2 50 model obtained from the TF-Slim
module in TensorFlow. We construct the attacks using the popular
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Figure 3: Carlini-Wagner-L2 (CW-L2) and DeepFool, two
recent strong attacks, introduce perturbations that lowers
model accuracy to around 10% (2). JPEG compression recov-
ers up to 98% of the original accuracy (with DeepFool), while
SHIELD achieves similar performance, recovering up to 95%
of the original accuracy (with DeepFool).

CleverHans package!, which contains implementations from the
authors of the attacks.

e For Carlini-Wagner-L2 (CW-L2), we set its parameter k = 0,
a common value used in studies [14], as larger values (higher
confidence) incur prohibitively high computation cost.

e DeepFool (DF) is a non-parametric attack that optimizes the
amount of perturbation required to misclassify an image.

e For FGSM and I-FGSM, we vary € from 0 to 8 in steps of 2.

We compare JPEG compression and SHIELD with two popular de-
noising techniques that have potential in defending against adver-
sarial attacks [14, 35]. Median filter (MF) collapses a small window
of pixels into a single value, and may drop some of the adversarial
pixels in the process. Total variation denoising (TVD) aims to reduce
the total variation in an image, and may undo the artificial noise
injected by the attacks. We vary the parameters of each method to
evaluate how their values affect defense performance.

e For JPEG compression, we vary the compression level from
quality 100 (least compressed) to 20 (greatly compressed), in
decrements of 10.

e For median filter (MF), we use window sizes of 3 (smallest
possible) and 5. We tested larger window sizes (e.g., 7), which
led to extremely poor model accuracies, thus were ruled out
as parameter candidates.

e For total variation denoising (TVD), we vary its weight pa-
rameter from 10 through 40, in increments of 10. Reducing
the weight of TVD further (e.g., 0.3) produces blurry images
that lead to poor model accuracy.

4.2 Defending Gray-Box Attacks with Image
Preprocessing

In this section, we investigate the setting where an adversary gains
access to all parameters and weights of a model that is trained

!https://github.com/tensorflow/cleverhans
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Figure 4: SHIELD recovers the accuracy of the model when
attacked with I-FGSM (left) and FGSM (right). Both charts
show the accuracy of the model when undefended (gray
dotted curve). Applying varying JPEG compression quali-
ties (purple curves) helps recover accuracy significantly, and
SHIELD (orange curve) is able to recover more than any sin-
gle JPEG-defended model.

on benign images, but is unaware of the defense strategy. This
constitutes a gray-box attack on the overall classification pipeline.

We show the results of applying JPEG compression at various
qualities on images attacked with Carlini-Wagner-L2 (CW-L2) and
DeepFool (DF) in Figure 3, and on images attacked with I-FGSM
and FGSM in Figure 4.

Combating Carlini-Wagner-L2 (CW-L2) & DeepFool (DF). Al-
though CW-L2 and DF, both considered strong attacks, are highly
effective at lowering model accuracies, Figure 3 shows that even
applying mild JPEG compression (i.e., using higher JPEG qualities)
can recover much of the lost accuracy. Since both methods optimize
for a lower perturbation to fool the model, the noise introduced by
these attacks is imperceptible to the human eye and lies in the high
frequency spectrum, which is destroyed in the quantization step
of the JPEG algorithm. SHIELD performs well, and comparably, for
both attacks. We do not arbitrarily scale the perturbation magnitude
of either attack as in [14], as doing so would violate the attacks’
optimization criteria.

Combating I-FSGM & FGSM. As shown in Figure 4, JPEG com-
pression also achieves success in countering I-FGSM and FGSM
attacks, which introduce higher magnitudes of perturbation.

As the amount of perturbation increases, the accuracies of mod-
els without any protection (gray dotted curves in Figure 4) rapidly
falls beneath 19%. JPEG recovers significant portions of the lost
accuracies (purple curves); its effectiveness also gradually and ex-
pectantly declines as perturbation becomes severe. Applying more
compression generally recovers more accuracy (e.g., dark purple
curve, for JPEG quality 20), but at the cost of losing some accuracy
for benign images. SHIELD (orange curve) offers a desirable trade-
off, achieving good performance under severe perturbation while
retaining accuracies comparable to the original models. Applying
less compression (light purple curves) performs well with benign
images but is not as effective when perturbation increases.
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Effectiveness and Runtime Comparison against Median Fil-
ter (MF) and Total Variation Denoising (TVD). We compare
JPEG compression and SHIELD with MF and TVD, two popular
denoising techniques, because they too have potential in defend-
ing against adversarial attacks [14, 35]. Like JPEG, both MF and
TVD are parameterized. Table 1 summarizes the performance of
all the image preprocessing techniques under consideration. While
all techniques are able to recover accuracies from CW-L2 and DF,
both strongly optimized attacks with lower perturbation strength,
the best performing settings are from JPEG (bold font in Table 1).
When faced with large amount of perturbation generated by the
I-FGSM and FSGM attacks, SHIELD benefits from the combination
of Stochastic Local Quantization, vaccination, and ensembling, out-
performing all other techniques.

As developing practical defense is our primary goal, effectiveness,
while important, is only one part of our desirable solution. Another
critical requirement is that our solution be fast and scalable. Thus,
we also compare the runtimes of the image processing techniques.
Our comparison focuses on the most computationally intensive
parts of each technique, ignoring irrelevant overheads (e.g., disk
1/O) common to all techniques. All runtimes are averaged over 3
runs, using the full 50k ImageNet validation images, on a dedicated
desktop computer equipped with an Intel i7-4770K quad-core CPU
clocked at 3.50GHz, 4x8GB RAM, 1TB SSD of Samsung 840 EVO-
Series and 2x3TB WD 7200RPM hard disk, running Ubuntu 14.04.5
LTS and Python 2.7. We used the fastest, most popular Python
implementations of the image processing techniques. We used JPEG
and MF from Pillow 5.0, and TVD from scikit-image.

As shown in Figure 5, JPEG is the fastest, spending no more
than 107 seconds to compress 50k images (at JPEG quality 80). It
is at least 22x faster than TVD, and 14x faster than median filter.
We tested the speed of the TensorFlow implementation of SHIELD,
which also compresses all images at high speed, taking only 150s.

Defense Runtime Comparison

(in seconds; shorter is better)

L] 2040
Total Variation 5, prerm

Denoising
Weight
40

Median Filter

Figure 5: Runtime comparison for three defenses: (1) total
variation denoising (TVD), (2) median filter (MF), and (3)
JPEG compression, timed using the full 50k ImageNet val-
idation images, averaged over 3 runs. JPEG is at least 22x
faster than TVD, and 14x faster than MF.
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No Attack CW-L2 (x = 0) DF I-FGSM (¢ =4) FGSM (e = 4)
Defense Lol =0 |La| = .0025 |Ly| = .0020 |Lo| = .0533  |Ly| = .0597
No Defense 75.59 10.29 9.78 7.49 18.40
SHIELD [20, 40, 60, 80] 72.11 71.85 71.88 65.63 59.29
JPEG [quality=100] 74.95 74.37 74.41 52.52 44.00
JPEG [quality=90] 74.83 74.43 7436 55.18 45.12
JPEG [quality=80] 74.23 73.92 73.88 57.86 46.66
JPEG [quality=70] 73.61 73.11 73.17 59.53 47.96
JPEG [quality=60] 72.97 72.46 72.52 60.74 4933
JPEG [quality=50] 72.32 71.86 71.91 61.47 50.53
JPEG [quality=40] 71.48 71.03 71.05 62.14 51.81
JPEG [quality=30] 70.08 69.63 69.67 62.52 53.51
JPEG [quality=20] 67.72 67.32 67.34 62.43 55.81
MF [window=3] 71.05 70.44 70.42 60.09 51.06
MF [window=5] 58.48 58.19 58.06 53.59 49.71
TVD [weight=10] 69.14 68.69 68.74 62.40 53.56
TVD [weight=20] 71.87 71.44 71.45 61.90 50.26
TVD [weight=30] 72.82 72.34 72.37 60.70 48.18
TVD [weight=40] 7331 72.90 72.91 59.60 47.07

Table 1: Summary of model accuracies (in %) for all defenses: SHIELD, JPEG, median filter (MF), and total variation denoising
(TVD); v/s all attacks: Carlini-Wagner L2 (CW-L2), DeepFool (DF), I-FGSM and FGSM. While all techniques are able to recover
accuracies from CW-L2 and DF, both strongly optimized attacks with lower perturbation strength, the best performing set-
tings are from JPEG (in bold font). SHIELD benefits from the combination of Stochastic Local Quantization, vaccination and
ensembling, outperforming all other techniques when facing high perturbation delivered by I-FGSM and FGSM.

4.3 Black-Box Attack with Vaccination and
Ensembling

We now turn our attention to the setting where an adversary has
knowledge of the model being used but does not have access to the
model parameters or weights. More concretely, we vaccinate the
ResNet-v2 50 model by retraining on the ImageNet training set and
preprocessing the images with JPEG compression while training.
This setup constitutes a black-box attack, as the attacker only has
access to the original model but not the vaccinated model being
used.

We denote the original ResNet-v2 50 model as M, which the
adversary has access to. By retraining on images of a particular JPEG
compression quality g, we transform M to Mg, e.g., for JPEG-20
Vaccination, we retrain M on JPEG-compressed images at quality
20 and obtain Myo. When retraining the ResNet-v2 50 models,
we used stochastic gradient descent (SGD) with a learning rate
of 5 x 1073, with a decay of 94% over 25 X 10* iterations. We
conducted the retraining on a GPU cluster with 12 NVIDIA Tesla
K80 GPUs. In this manner, we obtain 8 models from quality 20
through quality 90 in increments of 10 (Mzo, M3g, Mag...Mgp), to
cover a wide spectrum of JPEG qualities. Figure 6 shows the results
of model vaccination against FGSM attacks, whose parameter €
ranges from 0 (no perturbation) to 8 (severe perturbation), in steps of
2. The plots show that retraining the model helps recover even more
model accuracy than using JPEG preprocessing alone (compare the
unvaccinated gray dotted curve vs. the vaccinated orange and purple
curves in Figure 6). We found that a given model My performed
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best when tested with JPEG-compressed images of the same quality
q, which was expected.

We test these models in an ensemble with two different voting
schemes. The first ensemble scheme, denoted as Mq X g, corre-
sponds to each model My, casting a vote on every JPEG quality g
from g € {20, 30, 40, ..., 90}. This has a total cost of 64 votes, from
which we derive the majority vote. In the second scheme, denoted
by Mg — g, each model My votes only on g, the JPEG quality it
was trained on. This incurs a cost of 8 votes.

Table 2 compares the accuracies (against FGSM) and computation
costs of these two schemes with those of SuIELD, which also utilizes
an ensemble (Mag, Myo, Meo, Mso) with a total of 4 votes. SHIELD
achieves very similar performance as compared to the vaccinated
models, at half the cost when compared to Mg — g. Hence, SHIELD
offers a favorable trade-off in terms of scalability with minimal
effect on accuracy.

4.4 Transferability in Black-Box Setting

In this setup, we evaluate the transferability of attacked images
generated using ResNet-v2 50 on ResNet-v2 101 and Inception-
v4. The attacked images are preprocessed using JPEG compres-
sion and Stochastic Local Quantization. In Table 3, we show that
JPEG compression as a defense does not significantly reduce model
accuracies on low perturbation attacks like DF and CW-L2. For
higher-perturbation attacks, the accuracy of Inception-v4 lowers
by a maximum of 10%.
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Vaccinating Models with
Compressed Images Improves Accuracies

Compress (preprocess)
images at JPEG quality 80

JPEG-20
& Vaccination

Model
Accuracy

No vaccination

...at JPEG quality 60

... at JPEG quality 40 ... at JPEG quality 20

| L2 |

Figure 6: Vaccinating a model by retraining it with compressed images helps recover its accuracy. Each plot shows the model
accuracies when preprocessing with different JPEG qualities with the FGSM attack. Each curve in the plot corresponds to a
different model. The gray dotted curve corresponds to the original unvaccinated ResNet-v2 50 model. The orange and purple
curves correspond to the models retrained on JPEG qualities 80 and 20 respectively. Retraining on JPEG compressed images
and applying JPEG preprocessing helps recover accuracy in a gray-box attack.

4.5 NIPS 2017 Competition Results

In addition to the experiment results shown above, we also partici-
pated in the NIPS 2017 competition on Defense Against Adversarial
Attack using a version of our approach that included JPEG compres-
sion and vaccination to defend against attacks “in the wild” With
only an ensemble of three JPEG compression qualities (90, 80, 70),
our entry received a silver badge in the competition, ranking 16th
out of more than 100 submissions.

5 SIGNIFICANCE AND IMPACT

This work has been making multiple positive impacts on Intel’s
research and product development plans. In this section, we describe
such impacts in detail, and also describe how they may more broadly
influence deep learning and cybersecurity. We then discuss our
work’s scope, limitations, and additional practical considerations.

Ensemble Cost e=0 e€=2 e€=4 e€=6 €=8
Mq X q 64 7390 67.72 60.13 54.44 49.84
Mq -q 8 7354 67.06 59.86 5391 4940
SHIELD 4 72.11 6630 59.29 53.60 48.63

Table 2: Comparison of two ensemble schemes with SHIELD,
when defending against FGSM. M, X g corresponds to
each model M, voting on each JPEG quality g from g €
{20, 30,40, ...,90}. In My — g, each model M, votes only on
¢, the JPEG quality it was trained on. SHIELD offers a favor-
able trade-off, providing at least 2x speed-up as compared to
larger ensembles, while delivering comparable accuracies.
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Inc-v4 (80.2%) RN-v2 101 (77.0%)

Attack  Defense Accuracy (Qual) Accuracy (Qual.)
None  JPEG 79.05  (100) 76.48  (100)
SLQ 75.90 - 73.70 -
CW-L2 JPEG 79.00  (100) 7620  (100)
SLQ 75.80 - 73.60 -
DF JPEG 7891  (100) 76.19  (100)
SLQ 76.29 - 73.70 -
I-FGSM  JPEG 7484  (100) 70.06 (70)
SLQ 73.20 - 69.40 -
FGSM  JPEG 71.00  (100) 64.18 (40)
SLQ 70.01 - 64.64 -

Table 3: JPEG compression as defense does not reduce model
accuracy significantly on transferred attacks with low per-
turbation. Adversarial images crafted using the ResNet-v2
50 model are protected using JPEG alone and Stochastic Lo-
cal Quantization (SLQ), before being fed into two other mod-
els: Inception-v4 (Inc-v4) and ResNet-v2 101 (RN-v2 101).

5.1 Software and Hardware Integration
Milestones

As seen in Section 4, JPEG compression is much faster than other
popular preprocessing techniques; even commodity implementa-
tions from Pillow are fast. However, in order to be deployed into
a real defense pipeline, we need to evaluate its computational effi-
ciency with tighter software and hardware integration. Fortunately,
JPEG compression is a widely-used and mature technique that can
be be easily deployed in various platforms, and due to its widespread
usage, we can use off-the-shelf optimized software and hardware
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for such testing. One promising milestone we reached, utilized In-
tel’s hardware Quick Sync Video (QSV) technology: a hardware
core dedicated and optimized for video encoding and decoding.
It was introduced with Sandy Bridge CPU microarchitecture and
exists currently in various Intel platforms. From our experiments,
JPEG compression by Intel QSV is up to 24 times faster than the
Pillow and TensorFlow implementations when evaluated on the
same ImageNet validation set of 50,000 images. This computational
efficiency is desirable for applications that need real-time defense,
such as autonomous vehicles. In the future, we plan to explore the
feasibility of our approach on more hardware platforms, such as the
Intel Movidius Compute Stick?, which is a low power USB-based
deep learning inference kit.

5.2 New Computational Paradigm: Secure Deep
Learning

This research has sparked insightful discussion with teams of In-
tel QSV, Intel Deep Learning SDK, and Intel Movidius Compute
Stick. This work not only educates industry regarding concepts and
defenses of adversarial machine learning, but also provides opportu-
nities to advance deep learning software and hardware development
to incorporate adversarial machine learning defenses. For example,
almost all defenses incur certain levels of computational overhead.
This may be due to image preprocessing techniques [14, 21], us-
ing multiple models for model ensembles [32], the introduction of
adversarial perturbation detectors [22, 35], or the increase in train-
ing time for adversarial training [11]. However, while hardware
and system improvement for fast deep learning training and infer-
ence remains an active area of research, secure machine learning
workloads still receive relatively less attention, suggesting room
for improvement. We believe this will accelerate the positive shift
of thinking in the industry in the near future, from addressing prob-
lems like “How do we build deep learning accelerators?” to problems
such as “How do we build deep learning accelerators that are not
only fast but also secure?”. Understanding such hardware implica-
tions are important for microprocessor manufacturers, equipment
vendors and companies offering cloud computing services.

5.3 Scope and Limitations

In this work, we focus on systematically studying the benefit of
compression on its own. As myriads of newer and stronger attack
strategies are continuously discovered, limitations in existing, sin-
gle defenses are revealed. Our approach is not a panacea to defend
all possible (future) attacks, and we do not expect or intend for it to
be used in isolation of other techniques. Rather, our methods should
be used together with other defense techniques, to potentially de-
velop an even stronger defense. Using multi-layered protection is
a proven, long-standing defense strategy that has been pervasive
in security research and in practice [5, 34]. Fortunately, since our
approach primarily involves preprocessing, it is easy to integrate it
into many other defense techniques such as adversarial retraining.

Zhttps://developer.movidius.com
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6 RELATED WORK

Due to intriguing theoretical properties and practical importance,
there has been a surge in the number of papers in the past few
years attempting to find countermeasures against adversarial at-
tacks. These include detecting adversarial examples before per-
forming classification [10, 22], modifying network architecture and
the underlying primitives used [13, 18, 29], modifying the training
process [11, 26], and using preprocessing techniques to remove
adversarial perturbations [3, 7, 14, 21]. The preprocessing approach
is most relevant to our work. Below, we describe two methods in
this category—median filter and total variation denoising, which
we compared against in Section 4. We then discuss some recent
attacks that claim to break preprocessing defenses.

6.1 Image Preprocessing as Defense

Median Filter. This method uses a sliding window over the image
and replaces each pixel with the median value of its neighboring
pixels to spatially smooth the image. The size of the the sliding
window controls the smoothness, for example, a larger window size
produces blurrier images. This technique has been used in multiple
prior defense works [14, 35].

Total Variation Denoising. The method is based on the principle
that images with higher levels of (adversarial) noise tend to have
larger total variations: the sum of the absolute difference between
adjacent pixel values. Denoising is performed by reducing the total
variation while keeping the denoised image close to the original
one. A weighting parameter is used as a trade-off between the level
of total variation and the distance from the original image. Com-
pared with median filter, this method is more effective at removing
adversarial noise while preserving image details [14].

6.2 Attacks against Preprocessing Techniques

One of the reasons why adding preprocessing steps increases attack
difficulty is that many preprocessing operations are non-differentiable,
thus restricting the feasibility of gradient-based attacks. In JPEG
compression, the quantization in the frequency domain is a non-
differentiable operation.

Shin and Song [31] propose a method that approximates the
quantization in JPEG with a differentiable function. They also opti-
mize the perturbation over multiple compression qualities to en-
sure an adversarial image is robust at test time. However, the paper
only reports preliminary results on 1000 images. It is also unclear
whether their attack is effective against our more advanced SHIELD
method, which introduces more randomization to combat against
adversarial noise.

Backward Pass Differentiable Approximation [1] is another po-
tential approach to bypass non-differentiable preprocessing tech-
niques. To attack JPEG preprocessing, it performs forward prop-
agation through the preprocessing and DNN combination but in
the backward pass, the method differentiates with respect to the
JPEG compressed image. This is based on the intuition that the
compressed image should look similar to the original one, so the
operation can be approximated by the identity function. However,
we believe this assumption only holds for higher compression qual-
ities. Since the work did not report the compression quality used in
the experiments, the conclusion remains open for debate.
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7 CONCLUSION

In this paper, we highlighted the urgent need for practical defense
for deep learning models that can be readily deployed. We drew
inspiration from JPEG image compression, a well-known and ubiq-
uitous image processing technique, and placed it at the core of
our new deep learning model defense framework: SHIELD. Since
many attack strategies aim to perturb image pixels in ways that
are visually imperceptible, the SHIELD defense framework utilizes
JPEG compression to effectively “compress away” such pixel ma-
nipulation. SHIELD immunizes DNN models from being confused
by compression artifacts by “vaccinating” a model: re-training it
with compressed images, where different compression levels are
applied to generate multiple vaccinated models that are ultimately
used together in an ensemble defense. Furthermore, SHIELD adds
an additional layer of protection by employing randomization at
test time by compressing different regions of an image using ran-
dom compression levels, making it harder for an adversary to es-
timate the transformation performed. This novel combination of
vaccination, ensembling and randomization makes SHIELD a for-
tified multi-pronged defense, while remaining fast and successful
without requiring knowledge about the model. We conducted ex-
tensive, large-scale experiments using the ImageNet dataset, and
showed that our approaches eliminate up to 98% of gray-box at-
tacks delivered by the recent, strongest attacks. To ensure repro-
ducibility of our results, we have open-sourced our code on GitHub
(https://github.com/poloclub/jpeg-defense).
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