


troubling, it is possible to print out physical 2D or 3D objects to

fool recognition systems in realistic settings [2, 30].

The threat of adversarial attack casts a shadow over deploying

DNNs in security and safety-critical applications like self-driving

cars. To better understand and fix the vulnerabilities, there is a

growing body of research on defending against various attacks

and making DNN models more robust [3, 22, 26]. However, the

progress of defense research has been lagging behind the attack

side so far. Moreover, research on defense rarely focuses on practi-

cality and scalability, both essential for real-world deployment. For

example, total variation denoising and image quilting are image pre-

processing techniques that have potential in mitigating adversarial

perturbations to some extent [14], but they incur significant com-

putational overhead, calling into question how feasibly they can be

used in practical applications, which often require fast, real-time

defense [8, 9].

1.1 Our Contributions and Impact

1. Compression as Fast, Practical, Effective Defense.We lever-

age the idea that compression Ð a central concept that underpins

numerous successful data mining techniques Ð can offer powerful,

scalable, and practical protection for deep learning models against

adversarial image perturbations in real-time. Motivated by the ob-

servation that many attack strategies aim to perturb images in

ways that are visually imperceptible to the naked eye, we show that

systematic adaptation of the widely available JPEG compression

technique can effectively compress away such pixel łnoisež, espe-

cially since JPEG is particularly designed to reducing image details

that are imperceptible to humans. (Section 3.1)

2. Shield: Multifaceted Defense Framework. Building on our

principal idea of compression, we contribute the novel Shield

defense framework that combines randomization, vaccination and

ensembling into a fortified multi-pronged defense:

(1) We exploit JPEG’s flexibility in supporting varying compres-

sion levels to develop strong ensemble models that span the

spectrum of compression levels;

(2) We show that a model can be łvaccinatedž by training on com-

pressed images, increasing its robustness towards compression

transformation for both adversarial and benign images;

(3) Shield employs stochastic quantization that compresses differ-

ent regions of an image using randomly sampled compression

levels, making it harder for the adversary to estimate the trans-

formation performed.

Shield does not require any change in the model architecture, and

can recovers significant amount of model accuracy lost to adversar-

ial instances, with little effect on the accuracy for benign instances.

Shield stands for Secure Heterogeneous Image Ensemble with

Localized Denoising. (Sections 3.2 & 3.3)

3. Extensive Evaluation Against Major Attacks. We perform

extensive experiments using the full ImageNet benchmark dataset

with 50K images, demonstrating that our approach is fast, effective

and scalable. Our approaches eliminate up to 98% of gray-box at-

tacks delivered by some of the most recent, strongest attacks, such

as Carlini-Wagner’s L2 attack [4] and DeepFool [24]. (Section 4)

4. Impact to Intel and Beyond. This work is making multiple

positive impacts on Intel’s research and product development plans.

Introduced with the Sandy Bridge CPU microarchitecture, Intel’s

Quick Sync Video (QSV) technology dedicates a hardware core

for high-speed video processing, performs JPEG compression up

to 24X faster than TensorFlow implementations, paving the way

for real-time defense in safety-critical applications, such as au-

tonomous vehicles. This research has sparked insightful discus-

sion among research and development teams at Intel, on the pri-

ority of secure deep learning that necessitates tight integration

of practical defense strategies, software platforms and hardware

accelerators. We believe our work will accelerate the industry’s

emphasis on this important topic. To ensure reproducibility of

our results, we have open-sourced our code on GitHub (https:

//github.com/poloclub/jpeg-defense). (Section 5)

2 BACKGROUND: ADVERSARIAL ATTACKS

Our work focuses on defending against adversarial attacks on deep

learning models. This section provides background information for

readers new to the adversarial attack literature.

Given a trained classifier C and an instance x ∈ X, the objec-

tive of an adversarial untargeted attack is to compute a perturbed

instance x ′ such that C(x ′) , C(x) and d(x ,x ′) ≤ ρ for some

distance function d(·, ·) and ρ ≥ 0. Popular choices of d(·, ·) are

Euclidean distance d(x ,x ′) = ∥x − x ′∥2, and Chebychev distance

d(x ,x ′) = ∥x − x ′∥∞. A targeted attack is similar, but is required to

induce a classification for a specific target class t , i.e., C(x ′) = t . In

both cases, depending onwhether the attacker has full knowledge of

C or not, the attack can be further categorized into white-box attack

and black-box attack. The latter is obviously harder for the attacker

since less information is known about the model, but has been

shown to be possible in practice by relying on the property of trans-

ferability from a substitute model to the target model when both of

them are DNNs trained using gradient backpropagation [25, 33].

The seminal work by Szegedy et al. [33] proposed the first ef-

fective adversarial attack on DNN image classifiers by solving a

box-constrained L-BFGS optimization problem and showed that

the computed perturbations to the images were indistinguishable

to the human eye Ð a rather troublesome property for people

trying to identify adversarial images. This discovery has gained

tremendous interest, and many new attack algorithms have been

invented [11, 23, 24, 27] and applied to other domains such as mal-

ware detection [12, 15], sentiment analysis [28], and reinforcement

learning [16, 20]. Below, we describe the major, well-studied attacks

in the literature, against which we will evaluate our approach.

Carlini-Wagner’s L2 (CW-L2) [4] is an optimization-based attack

that adds a relaxation term to the perturbation minimization prob-

lem based on a differentiable surrogate of the model. They pose the

optimization as minimizing:

∥x − x ′∥2 + λmax
(

− κ,Z (x ′)k −max{Z (x ′)k ′ : k
′
, k}

)

(1)

where κ controls the confidence with which an image is misclas-

sified by the DNN, and Z (·) is the output from the logit layer (last

layer before the softmax function is applied for prediction) of C .
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DeepFool (DF ) [24] constructs an adversarial instance under an

L2 constraint by assuming the decision boundary to be hyperpla-

nar. The authors leverage this simplification to compute a minimal

adversarial perturbation that results in a sample that is close to the

original instance but orthogonally cuts across the nearest decision

boundary. In this respect, DF is an untargeted attack. Since the

underlying assumption about the decision boundary being com-

pletely linear in higher dimensions is an oversimplification of the

actual case, DF keeps reiterating until a true adversarial instance is

found. The resulting perturbations are harder for humans to detect

compared to perturbations introduced by other attacks.

Iterative Fast Gradient Sign Method (I-FGSM) [19] is the iter-

ative version of the Fast Gradient Sign Method (FGSM) [11],

which is a fast algorithm that computes perturbations subject to an

L∞ constraint. FGSM simply takes the sign of the gradient of loss

function J w.r.t. the input x ,

x ′ = x + ϵ · siдn(∇Jx (θ ,x ,y)) (2)

where θ is the set of parameters of the model and y is the true

label of the instance. The parameter ϵ controls the magnitude of

per-pixel perturbation. I-FGSM iteratively applies FGSM in each

iteration i after clipping the values appropriately at each step:

x (i) = x (i−1) + ϵ · siдn(∇Jx (i−1) (θ ,x
(i−1)
,y)) (3)

3 PROPOSED METHOD: COMPRESSION AS
DEFENSE

In this section, we present our compression-based approach for

combating adversarial attacks. In Section 3.1, we begin by describ-

ing the technical reasons why compression can remove perturba-

tion. As compression would modify the distribution of the input

space by introducing some artifacts, in Section 3.2, we propose

to łvaccinatež the model by training it with compressed images,

which increases its robustness towards compression transformation

for both adversarial and benign images. Finally, in Section 3.3, we

present our multifaceted Shield defense framework that combines

random quantization, vaccination and ensembling into a fortified

multi-pronged defense, which, to the best of our knowledge, has

yet been challenged.

3.1 Preprocessing Images using Compression

Ourmain idea on rectifying the prediction of a trainedmodelC , with

respect to a perturbed input x ′, is to apply a preprocessing operation

д(·) that brings back x ′ closer to the original benign instance x ,

which implicitly aims to make C(д(x ′)) = C(x). Constructing such

a д(·) is application dependent. For the image classification problem,

we show that JPEG compression is a powerful preprocessing defense

technique. JPEG compression mainly consists of the following steps:

(1) Convert the given image from RGB to YCbCr (chrominance

+ luminance) color space.

(2) Perform spatial subsampling of the chrominance channels,

since the human eye is less susceptible to these changes and

relies more on the luminance information.

(3) Transform 8×8 blocks of theYCbCr channels to a frequency

domain representation using Discrete Cosine Transform

(DCT).

Figure 2: Shield uses Stochastic Local Quantization (SLQ) to

remove adversarial perturbations from input images. SLQ

divides an image into 8 × 8 blocks and applies a randomly

selected JPEG compression quality (20, 40, 60 or 80) to each

block to mitigate the attack.

(4) Perform quantization of the blocks in the frequency domain

representation according to a quantization table which cor-

responds to a user-defined quality factor for the image.

The last step is where the JPEG algorithm achieves the majority

of compression at the expense of image quality. This step suppresses

higher frequencies more since these coefficients contribute less to

the human perception of the image. As adversarial attacks do not

optimize for maintaining the spectral signature of the image, they

tend to introduce more high frequency components which can be

removed at this step. This step also renders the preprocessing stage

non-differentiable, which makes it non-trivial for an adversary

to optimize against, allowing only estimations to be made of the

transformation [31]. We show in our evaluation (Section 4.2) that

JPEG compression effectively removes adversarial perturbation

across a wide range of compression levels.

3.2 Vaccinating Models with Compressed
Images

As DNNs are typically trained on high quality images (with little or

compression), they are often invariant to the artifacts introduced

by the preprocessing of JPEG at high-quality settings. This is espe-

cially useful in an adversarial setting as our pilot study has shown

that applying even mild compression removes the perturbations

introduced by some attacks [6]. However, applying too much com-

pression could reduce the model accuracy on benign images.

We propose to łvaccinatež the model by training it with com-

pressed images, especially those at lower JPEG qualities, which

increases the model’s robustness towards compression transfor-

mation for both adversarial and benign images. With vaccination,

we can apply more aggressive compression to remove more adver-

sarial perturbation. In our evaluation (Section 4.3), we show the

significant advantage that our vaccination strategy provides, recov-

ering more than 7 absolute percentage points in model accuracy for

high-perturbation attacks.
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No Attack CW-L2 (κ = 0) DF I-FGSM (ϵ = 4) FGSM (ϵ = 4)

Defense |L2 | = 0 |L2 | = .0025 |L2 | = .0020 |L2 | = .0533 |L2 | = .0597

No Defense 75.59 10.29 9.78 7.49 18.40

Shield [20, 40, 60, 80] 72.11 71.85 71.88 65.63 59.29

JPEG [quality=100] 74.95 74.37 74.41 52.52 44.00

JPEG [quality=90] 74.83 74.43 74.36 55.18 45.12

JPEG [quality=80] 74.23 73.92 73.88 57.86 46.66

JPEG [quality=70] 73.61 73.11 73.17 59.53 47.96

JPEG [quality=60] 72.97 72.46 72.52 60.74 49.33

JPEG [quality=50] 72.32 71.86 71.91 61.47 50.53

JPEG [quality=40] 71.48 71.03 71.05 62.14 51.81

JPEG [quality=30] 70.08 69.63 69.67 62.52 53.51

JPEG [quality=20] 67.72 67.32 67.34 62.43 55.81

MF [window=3] 71.05 70.44 70.42 60.09 51.06

MF [window=5] 58.48 58.19 58.06 53.59 49.71

TVD [weight=10] 69.14 68.69 68.74 62.40 53.56

TVD [weight=20] 71.87 71.44 71.45 61.90 50.26

TVD [weight=30] 72.82 72.34 72.37 60.70 48.18

TVD [weight=40] 73.31 72.90 72.91 59.60 47.07

Table 1: Summary of model accuracies (in %) for all defenses: Shield, JPEG, median filter (MF), and total variation denoising

(TVD); v/s all attacks: Carlini-Wagner L2 (CW-L2), DeepFool (DF), I-FGSM and FGSM. While all techniques are able to recover

accuracies from CW-L2 and DF, both strongly optimized attacks with lower perturbation strength, the best performing set-

tings are from JPEG (in bold font). Shield benefits from the combination of Stochastic Local Quantization, vaccination and

ensembling, outperforming all other techniques when facing high perturbation delivered by I-FGSM and FGSM.

4.3 Black-Box Attack with Vaccination and
Ensembling

We now turn our attention to the setting where an adversary has

knowledge of the model being used but does not have access to the

model parameters or weights. More concretely, we vaccinate the

ResNet-v2 50 model by retraining on the ImageNet training set and

preprocessing the images with JPEG compression while training.

This setup constitutes a black-box attack, as the attacker only has

access to the original model but not the vaccinated model being

used.

We denote the original ResNet-v2 50 model as M, which the

adversary has access to. By retraining on images of a particular JPEG

compression quality q, we transformM toMq , e.g., for JPEG-20

Vaccination, we retrain M on JPEG-compressed images at quality

20 and obtain M20. When retraining the ResNet-v2 50 models,

we used stochastic gradient descent (SGD) with a learning rate

of 5 × 10
−3, with a decay of 94% over 25 × 10

4 iterations. We

conducted the retraining on a GPU cluster with 12 NVIDIA Tesla

K80 GPUs. In this manner, we obtain 8 models from quality 20

through quality 90 in increments of 10 (M20,M30,M40...M90), to

cover a wide spectrum of JPEG qualities. Figure 6 shows the results

of model vaccination against FGSM attacks, whose parameter ϵ

ranges from 0 (no perturbation) to 8 (severe perturbation), in steps of

2. The plots show that retraining the model helps recover even more

model accuracy than using JPEG preprocessing alone (compare the

unvaccinated gray dotted curve vs. the vaccinated orange and purple

curves in Figure 6). We found that a given model Mq performed

best when tested with JPEG-compressed images of the same quality

q, which was expected.

We test these models in an ensemble with two different voting

schemes. The first ensemble scheme, denoted as Mq × q, corre-

sponds to each model Mq casting a vote on every JPEG quality q

from q ∈ {20, 30, 40, ..., 90}. This has a total cost of 64 votes, from

which we derive the majority vote. In the second scheme, denoted

by Mq − q, each model Mq votes only on q, the JPEG quality it

was trained on. This incurs a cost of 8 votes.

Table 2 compares the accuracies (against FGSM) and computation

costs of these two schemes with those of Shield, which also utilizes

an ensemble (M20,M40,M60,M80) with a total of 4 votes. Shield

achieves very similar performance as compared to the vaccinated

models, at half the cost when compared to Mq − q. Hence, Shield

offers a favorable trade-off in terms of scalability with minimal

effect on accuracy.

4.4 Transferability in Black-Box Setting

In this setup, we evaluate the transferability of attacked images

generated using ResNet-v2 50 on ResNet-v2 101 and Inception-

v4. The attacked images are preprocessed using JPEG compres-

sion and Stochastic Local Quantization. In Table 3, we show that

JPEG compression as a defense does not significantly reduce model

accuracies on low perturbation attacks like DF and CW-L2. For

higher-perturbation attacks, the accuracy of Inception-v4 lowers

by a maximum of 10%.
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for such testing. One promising milestone we reached, utilized In-

tel’s hardware Quick Sync Video (QSV) technology: a hardware

core dedicated and optimized for video encoding and decoding.

It was introduced with Sandy Bridge CPU microarchitecture and

exists currently in various Intel platforms. From our experiments,

JPEG compression by Intel QSV is up to 24 times faster than the

Pillow and TensorFlow implementations when evaluated on the

same ImageNet validation set of 50,000 images. This computational

efficiency is desirable for applications that need real-time defense,

such as autonomous vehicles. In the future, we plan to explore the

feasibility of our approach on more hardware platforms, such as the

Intel Movidius Compute Stick2, which is a low power USB-based

deep learning inference kit.

5.2 New Computational Paradigm: Secure Deep
Learning

This research has sparked insightful discussion with teams of In-

tel QSV, Intel Deep Learning SDK, and Intel Movidius Compute

Stick. This work not only educates industry regarding concepts and

defenses of adversarial machine learning, but also provides opportu-

nities to advance deep learning software and hardware development

to incorporate adversarial machine learning defenses. For example,

almost all defenses incur certain levels of computational overhead.

This may be due to image preprocessing techniques [14, 21], us-

ing multiple models for model ensembles [32], the introduction of

adversarial perturbation detectors [22, 35], or the increase in train-

ing time for adversarial training [11]. However, while hardware

and system improvement for fast deep learning training and infer-

ence remains an active area of research, secure machine learning

workloads still receive relatively less attention, suggesting room

for improvement. We believe this will accelerate the positive shift

of thinking in the industry in the near future, from addressing prob-

lems like “How do we build deep learning accelerators?” to problems

such as “How do we build deep learning accelerators that are not

only fast but also secure?”. Understanding such hardware implica-

tions are important for microprocessor manufacturers, equipment

vendors and companies offering cloud computing services.

5.3 Scope and Limitations

In this work, we focus on systematically studying the benefit of

compression on its own. As myriads of newer and stronger attack

strategies are continuously discovered, limitations in existing, sin-

gle defenses are revealed. Our approach is not a panacea to defend

all possible (future) attacks, and we do not expect or intend for it to

be used in isolation of other techniques. Rather, our methods should

be used together with other defense techniques, to potentially de-

velop an even stronger defense. Using multi-layered protection is

a proven, long-standing defense strategy that has been pervasive

in security research and in practice [5, 34]. Fortunately, since our

approach primarily involves preprocessing, it is easy to integrate it

into many other defense techniques such as adversarial retraining.

2https://developer.movidius.com

6 RELATEDWORK

Due to intriguing theoretical properties and practical importance,

there has been a surge in the number of papers in the past few

years attempting to find countermeasures against adversarial at-

tacks. These include detecting adversarial examples before per-

forming classification [10, 22], modifying network architecture and

the underlying primitives used [13, 18, 29], modifying the training

process [11, 26], and using preprocessing techniques to remove

adversarial perturbations [3, 7, 14, 21]. The preprocessing approach

is most relevant to our work. Below, we describe two methods in

this categoryÐmedian filter and total variation denoising, which

we compared against in Section 4. We then discuss some recent

attacks that claim to break preprocessing defenses.

6.1 Image Preprocessing as Defense

Median Filter. This method uses a sliding window over the image

and replaces each pixel with the median value of its neighboring

pixels to spatially smooth the image. The size of the the sliding

window controls the smoothness, for example, a larger window size

produces blurrier images. This technique has been used in multiple

prior defense works [14, 35].

Total Variation Denoising. The method is based on the principle

that images with higher levels of (adversarial) noise tend to have

larger total variations: the sum of the absolute difference between

adjacent pixel values. Denoising is performed by reducing the total

variation while keeping the denoised image close to the original

one. A weighting parameter is used as a trade-off between the level

of total variation and the distance from the original image. Com-

pared with median filter, this method is more effective at removing

adversarial noise while preserving image details [14].

6.2 Attacks against Preprocessing Techniques

One of the reasons why adding preprocessing steps increases attack

difficulty is thatmany preprocessing operations are non-differentiable,

thus restricting the feasibility of gradient-based attacks. In JPEG

compression, the quantization in the frequency domain is a non-

differentiable operation.

Shin and Song [31] propose a method that approximates the

quantization in JPEG with a differentiable function. They also opti-

mize the perturbation over multiple compression qualities to en-

sure an adversarial image is robust at test time. However, the paper

only reports preliminary results on 1000 images. It is also unclear

whether their attack is effective against our more advanced Shield

method, which introduces more randomization to combat against

adversarial noise.

Backward Pass Differentiable Approximation [1] is another po-

tential approach to bypass non-differentiable preprocessing tech-

niques. To attack JPEG preprocessing, it performs forward prop-

agation through the preprocessing and DNN combination but in

the backward pass, the method differentiates with respect to the

JPEG compressed image. This is based on the intuition that the

compressed image should look similar to the original one, so the

operation can be approximated by the identity function. However,

we believe this assumption only holds for higher compression qual-

ities. Since the work did not report the compression quality used in

the experiments, the conclusion remains open for debate.
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7 CONCLUSION

In this paper, we highlighted the urgent need for practical defense

for deep learning models that can be readily deployed. We drew

inspiration from JPEG image compression, a well-known and ubiq-

uitous image processing technique, and placed it at the core of

our new deep learning model defense framework: Shield. Since

many attack strategies aim to perturb image pixels in ways that

are visually imperceptible, the Shield defense framework utilizes

JPEG compression to effectively łcompress awayž such pixel ma-

nipulation. Shield immunizes DNN models from being confused

by compression artifacts by łvaccinatingž a model: re-training it

with compressed images, where different compression levels are

applied to generate multiple vaccinated models that are ultimately

used together in an ensemble defense. Furthermore, Shield adds

an additional layer of protection by employing randomization at

test time by compressing different regions of an image using ran-

dom compression levels, making it harder for an adversary to es-

timate the transformation performed. This novel combination of

vaccination, ensembling and randomization makes Shield a for-

tified multi-pronged defense, while remaining fast and successful

without requiring knowledge about the model. We conducted ex-

tensive, large-scale experiments using the ImageNet dataset, and

showed that our approaches eliminate up to 98% of gray-box at-

tacks delivered by the recent, strongest attacks. To ensure repro-

ducibility of our results, we have open-sourced our code on GitHub

(https://github.com/poloclub/jpeg-defense).
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