
Exponential Family Estimation via

Dynamics Embedding

∗Bo Dai1, ∗∗Hanjun Dai2, Niao He3, Arthur Gretton4, Le Song2, Dale Schuurmans1

1Google Brain, 2Georgia Tech, 3 UIUC, 4 UCL

Abstract

We present an efficient algorithm to solve maximum likelihood estimation (MLE)
for general exponential family, even in cases when the natural parameter is rep-
resented by a deep neural network. Popular algorithms such as Contrastive Di-
vergence require computing an expensive sampler through Markov chain Monte
Carlo methods and are inefficient. Rooted in a novel primal-dual view of the MLE,
the proposed algorithm jointly learns the model as well as a dual sampler for the
exponential family. Inspired by the recent success in dynamics-based sampling
algorithms, we further parametrize the sampler by mimicking various dynamical
systems, resulting in different neural network architectures as dynamics embed-
dings. Through coupled model and sampler learning, the proposed algorithm
achieves both efficient sampling and estimation. Finally, we test the proposed
estimator empirically on several synthetic benchmarks.

1 Introduction

The exponential family is one of the most important classes of distributions in statistics and machine
learning. It includes many commonly used distributions, e.g., Gaussian, Poisson and multinomial
distribution, and undirected graphical models, e.g., restricted Boltzmann machine and Markov
random field. The natural form of the exponential family over Ω ⊂ R

d with the sufficient statistics
f (·) : Ω → R is defined as

pf (x) = exp (f(x)−A (f)) , (1)

where A (f) := log
∫
Ω
exp (f (x)) dx and f ∈ F denotes the valid parametrization family. Given

samples D = [xi]
N
i=1, the maximum log-likelihood estimation (MLE) of the exponential family, i.e.,

max
f∈F

L (f) = ÊD [f (x)]−A (f) , (2)

has already been well-studied, whose desirable statistical properties such as asymptotic unbiasedness,
consistency and asymptotic normality have been established. However, due to the intractability of
A (f), the MLE optimization (2) is difficult to solve. Contrastive Divergence (CD) [Hinton, 2002]
has been one of the dominant methods for exponential family estimation. Observing that the gradient
∂L(f)
∂f

= ED [∇ff (x)] − Epf (x) [∇ff (x)], the CD algorithm applies stochastic gradient descent

with MCMC samples. When the MCMC steps T → ∞, the bias of the stochastic gradient approaches
0, yet the gradient computation becomes prohibitive. On the other hand, when T is small, computing
the stochastic gradient is efficient, but the bias could be significant, leading to suboptimal solutions.
In summary, how to efficiently solve the MLE optimization has not been answered properly.

In this paper, we exploit the primal-dual view of the MLE, which bypasses the computation of the
intractable log-partition function in Section 2.1. Moreover, such a novel view provides a natural
objective for jointly learning a sampler for the model, as an alternative to the expensive MCMC in
the CD algorithm and inference stage. Inspired by the dynamics-based sampling algorithms, e.g.,

∗indicates equal contributions.

Third workshop on Bayesian Deep Learning (NeurIPS 2018), Montréal, Canada.

Hamiltonian Monte-Carlo (HMC) [Neal et al., 2011], we introduce a new technique, called dynamics
embedding, to parametrize the sampler in Section 2.2, that exhibits both flexibility and computation
efficiency. In Section 2.3, we provide a novel algorithm for exponential family estimation, which
learns the model and the sampler jointly through back-propagate. Finally, we test the proposed
algorithm and demonstrate its superior performance on several synthetic benchmarks in Section 3.

2 MLE Estimation via Learning to Sample

In this section, we introduce two key components of the framework, i.e., the primal-dual view of the
MLE and dynamics embedding sampler, which play vital roles in deriving the novel algorithm.

2.1 The Primal-Dual View of MLE

First, observe that the log-partition function A (f) can be rewritten as follows via Fenchel duality.

Theorem 1 (Fenchel duality of log-partition) Let H (q) := −
∫
Ω
q (x) log q (x)dx, we have:

A (f) = max
q∈P

〈q(x), f (x)〉+H (q) , (3)

pf (x) = argmax
q∈P

〈q(x), f(x)〉+H (q) , (4)

where P denotes the space of distributions, 〈f, g〉 =
∫
Ω
f (x) g (x) dx.

Therefore, plugging the Fenchel dual of A (f) into the MLE, we achieve a saddle-point optimization:

max
f∈F

L (f) ⇔ max
f∈F

min
q∈P

`(f, q) := ÊD [f(x)]− Eq(x) [f(x)]−H (q) . (5)

The saddle-point reformulation of MLE in (5) bypasses the explicit computation of the partition
function, which is often intractable. To solve the saddle-point problem, it is essential to introduce an
appropriate parametrization to the dual distribution q (x). In the next section, we will introduce a new
parametrization technique, called “dynamics embedding”, for parametrizing the dual distribution.
Before that, we first discuss the relationships between the primal-dual view and existing algorithms.

Remark (connection to Contrastive Divergence): By Theorem 1, the optimal solution to the
inner optimization is pf (x). By Danskin’s theorem [Bertsekas, 1995], the gradient w.r.t. L (f)

is exactly
∂L(f)
∂f

= ÊD [∇ff(x)] − Epf (x) [∇ff(x)]. To estimate the integral Epf
[∇ff (x)], the

CD algorithm uses MCMC samples from pf (x) to estimate the gradient, which is computationally
expensive. In practice, one may use finite step MCMC to approximate pf (x), but this will induce
large bias. Instead, the primal-dual view allows us to learn a sampler rather than using MCMC.

Remark (connection to energy-based GAN): When F is convex and compact, then strong duality
holds, i.e., maxf∈F minq∈P ` (f, q) = minq∈P maxf∈F ` (f, q) . In particular, if F is chosen to
be the set of all 1-Lipschitz functions, the saddle point problem in (5) is equivalent to WGAN [Dai
et al., 2017] with entropy regularization. This implies that the entropy-regularized WGAN provides
an estimation to the exponential family. Although [Dai et al., 2017] also exploits such a dual
representation, their algorithm requires either a heuristic approximation or a lower bound of the
entropy, due to their naive parametrization of the q(x). To avoid the entropy term, [Kim and Bengio,
2016] estimates q by minimizing reverse KL-divergence and parametrizing the distribution via a deep
directed graphical model, whose approximation ability is limited to known distributions [Kingma
and Welling, 2013, Mnih and Gregor, 2014]. Hence, both of these two algorithms suffer from large
approximation errors and may lead to sub-optimal solutions.

2.2 Dynamics Embedding for Sampler Parametrization

A wide spectrum of techniques for distribution parametrization are developed in the context of
variational inference and generative models, such as the reparametrization trick [Kingma and Welling,
2013, Rezende et al., 2014], transport mapping [Goodfellow et al., 2014], dynamic flows [Rezende
and Mohamed, 2015, Kingma et al., 2016, Tomczak and Welling, 2016, Dinh et al., 2016], op-
timization embedding [Dai et al., 2018], and etc. However, for exponential family estimation,
careful parametrization of dual distribution is critical in two-fold: i) the parametrization family
needs to be flexible enough to diminish the error from solving the inner minimization problem; ii)
the parametrized representation should be able to provide density values in order to compute the
entropy function H (q) in (2). Neither the reparametrization trick nor the transport mapping would

2

Algorithm 1 MLE via Learning to Sample

1: Initialize Θ1 =
(
θ1, η1,M

−1
1

)
randomly, set length of steps T .

2: for iteration k = 1, . . . ,K do

3: Sample mini-batch {xi}
m
i=1 from dataset D and

{
x0
i , v

0
i

}m

i=1
from q0θ (x, v).

4: for iteration t = 1, . . . , T do

5: Compute (xt, vt) = Lf,M

(
xt−1, vt−1

)
for each pair of

{
x0
i , v

0
i

}m

i=1
.

6: end for
7: [Learning the sampler] Θk+1 = Θk − γk∇̂Θ` (fk; Θk)

8: [Estimating the exponential family] fk+1 = fk − γk∇̂f ` (fk; Θk).
9: end for

be sufficient here. To achieve both aspects, we propose to treat the dual distributions with flow-based
parametrization.

Inspired by the dynamic-based sampling algorithms, we propose dynamic embedding for parametriz-
ing the dual distributions that achieves both aspects. To begin with, we employ the Hamiltonian
dynamics [Caterini et al., 2018] for dual distribution parametrization. This technique can be extended
to other dynamics, e.g., generalized Hamiltonian dynamics, deterministic Langevin dynamics, and
continuous-time Langevin dynamics, each with its own advantages. We provide these extensions in
Appendix B.1, B.2, B.3, respectively.

Define the Hamiltonian function as H (x, v) = −f (x) + k (v), where k (v) = 1
2v

>Mv is the

kinetic energy. The Hamiltonian dynamics generate (x, v) over time t, following
[
dx
dt
, dv
dt

]
=

[∂vH (x, v) ,−∂xH (x, v)] =
[
M−1v,∇xf (x)

]
. The vanilla HMC is derived by discretizing the

Hamiltonian dynamics with leapfrog integrator, with a single time step:

v
1

2 = v +
η

2
∇xf (x) ; x′ = x+ ηM−1v

1

2 ; v′ = v +
η

2
∇xf (x) , (6)

where η is defined as the leapfrog stepsize. Denote the one-step leapfrog as (x′, v′) = Lf,M (x, v)
and assume the

(
x0, v0

)
∼ q0θ (x) p (v). After T iterations, we obtain

(
xT , vT

)
= Lf,M ◦Lf,M ◦. . .◦

Lf,M

(
x0, v0

)
as a neural network, which we term the dynamics embedding. It can be verified that

the transformations from (x, v) to
(
x, v−

1

2

)
and from

(
x, v−

1

2

)
to (x′, v′) are all shear mappings

whose determinant of the Jacobian is 1. Therefore, we have qTf,M
(
xT , vT

)
= q0θ

(
x0, v0

)
, with no

need for calculating the determinant of the Jacobian.

2.3 Coupled Model and Sampler Learning

Combing the saddle-point reformulation (5) with the dynamics embedding parametrization for the
dual distribution, we arrive at the objective

max
f∈F

min
Θ:=[θ,M−1,η]

` (f ; Θ) := ÊD [f]− E(x0,v0)∼q0
θ
(x,v)

[
f
(
xT

)
− log q0θ (x, v)

]
. (7)

We can now use stochastic gradient descent to jointly estimate f for the exponential families as well

as the initialization q0 and the HMC updates M and η. Note that the generated sample
(
xT
f , v

T
f

)
is a

function of f . Thus the gradient w.r.t. f should take these variables into account as back-propagation
through time (BPTT), i.e.,

∇f ` (f ; Θ) = ÊD [∇ff (x)]− E(x0,v0)∼q0
θ
(x,v)

[
∇ff

(
xT

)
+∇xf

(
xT

)
∇fx

T
]
. (8)

We illustrate the algorithm with Hamiltonian embedding in Algorithm 1. Extensions to other dynamics
embedding are provided in Appendix B, where they differ only in L in Step 5.

Remark (Generalized Hamiltonian Embedding): [Levy et al., 2017] generalizes the leapfrog for
better flexibility by introducing extra learnable components and combining the variable partition
architecture [Dinh et al., 2016], which leads to a new embedded neural network layer L. The
determinant of the Jacobian matrix for the new L is also easy to compute. We can apply the modified
L to neural network and integrate with (7) to learn the sampler as well as the exponential family.
As discussed earlier, solving the inner minimization provides a sampler for pf (x). Comparing to
the algorithm in Levy et al. [2017], our sampler avoids the expensive acceptance-rejection steps,
yet approaches to the target distribution. More importantly, the model learning is coupled with the
sampler learning in a unified framework as we explained. The details are provided in Appendix B.1.

3

Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard Hovy, and Aaron Courville. Calibrating
energy-based generative adversarial networks. arXiv preprint arXiv:1702.01691, 2017.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, pages 2672–2680, 2014.

Will Grathwohl, Ricky TQ Chen, Jesse Betterncourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367, 2018.

Insu Han, Dmitry Malioutov, and Jinwoo Shin. Large-scale log-determinant computation through
stochastic chebyshev expansions. In International Conference on Machine Learning, pages
908–917, 2015.

Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14(8):1771–1800, 2002.

Taesup Kim and Yoshua Bengio. Deep directed generative models with energy-based probability
estimation. arXiv preprint arXiv:1606.03439, 2016.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. In Advances in Neural Information
Processing Systems, pages 4743–4751, 2016.

Daniel Levy, Matthew D Hoffman, and Jascha Sohl-Dickstein. Generalizing hamiltonian monte carlo
with neural networks. arXiv preprint arXiv:1711.09268, 2017.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. arXiv
preprint arXiv:1402.0030, 2014.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte Carlo,
2(11), 2011.

Danilo J Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pages 1278–1286, 2014.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. arXiv
preprint arXiv:1505.05770, 2015.

Dougal J Sutherland, Heiko Strathmann, Michael Arbel, and Arthur Gretton. Efficient and principled
score estimation with nystr\" om kernel exponential families. arXiv preprint arXiv:1705.08360,
2017.

Jakub M Tomczak and Max Welling. Improving variational auto-encoders using householder flow.
arXiv preprint arXiv:1611.09630, 2016.

Linfeng Zhang, Weinan E, and Lei Wang. Monge-amp\ere flow for generative modeling. arXiv
preprint arXiv:1809.10188, 2018.

5

Appendix
A Proof of Theorem 1

Proof Denote l (q) := 〈q(x), f (x)〉 + H (q), which is strongly concave w.r.t. q ∈ P ,
the optimal q∗ can be obtained as log q∗(x) = f (x) + C. Since q∗ ∈ P , we have
q∗(x) = exp (f(x)−A (f)) = pf (x), which is the second conclusion. Plugging the opti-
mal solution to l(q), we obtain the maximum as log

∫
Ω
exp (λf(x)) dx, which is exactly A (f),

leading to the first conclusion.

B Variants of Dynamics Embedding

Besides the Hamiltonian Embedding we introduced in the main text, we can also embed alternative
dynamics.

B.1 Generalized Hamiltonian Embedding

As T → ∞, neural network composed by the leapfrog operation can approximate arbitrary smooth
distributions on continuous variables. However, with the finite step, the vanilla HMC may still not
flexible enough. Levy et al. [2017] generalizes the HMC for better flexibility in finite step case by
introducing more learnable components and combining the variable partition architecture [Dinh et al.,
2016], which leads to a new embedded neural network layer, i.e., (x′, v′) = L (x, v) as

v
1

2 = v � exp
(η
2
Sv (ξ1 (x))

)
−

η

2
(−∇xf (x)� exp (ηQv (ξ1 (x))) + T (ξ1 (x))) ,

x
1

2 = xmt
+mt �

[
x� exp (ηSx (ξ2 (mt))) + η

(
v

1

2 � exp (ηQx (ξ2 (mt)))
)]

,

x′ = x
1

2

m̄t
+ m̄t �

[
x

1

2 � exp (ηSx (ξ2 (m̄t))) + η
(
v

1

2 � exp (ηQx (ξ2 (m̄t)))
)]

,

v′ = v � exp
(η
2
Sv (ξ1 (x

′))
)
−

η

2
(−∇xf (x)� exp (ηQv (ξ1 (x

′))) + T (ξ1 (x
′))) ,

where ξ1 (x) = (x,−∇xf (x) , t) and ξ2 (m) = (m� x, v, t). The m ∈ {0, 1}
d

and m̄ =
1 − m. The (Sv, Qv, Tv) and (Sx, Qx, Tx) are the learnable functions. Although the new op-
eration L is no longer shear mapping, the Jacobian matrix is diagonal whose determinant is
easy to be computed. Specifically, we list the determinant of Jacobians of the transformation

as below: i), from (x, v) to
(
x, v

1

2

)
is exp

(
η
21 · Sv (ξ1 (x))

)
, from

(
x, v

1

2

)
to

(
x

1

2 , v
1

2

)
is

exp (ηmt · Sx (ξ2 (mt))), from
(
x

1

2 , v
1

2

)
to

(
x′, v

1

2

)
is exp (ηm̄t · Sx (ξ2 (m̄t))), from

(
x′, v

1

2

)

to (x′, v′) is exp
(
η
21 · Sv (ξ1 (x

′))
)
.

We can use the modified L to neural network and plug into (7) to learn the sampler as well as the
exponential family.

B.2 Deterministic Langevin Embedding

The Hamiltonian dynamics requires an auxiliary variable v with the same size of the x, doubling
the memory cost. We embed the deterministic Langevin dynamics to form x′ = Lf,M (x) as

x′ = x + η∇xf (x) with x0 ∼ q0θ (x). By the change-of-variable rule, we have qTf,M
(
xT

)
=

q0θ (x0)
∏T

t=1

∣∣∣det ∂xt

∂xt−1

∣∣∣. Plug such parametrization of the dual distribution into (5), we achieve the

alternative objective

max
f∈F

min
θ,M,η

` (f ; θ,M, η) := ÊD [f]− Ex0∼q0
θ
(x)

[
f
(
xT

)
− log q0θ (x)−

T∑

t=1

log

∣∣∣∣det
∂xt

∂xt−1

∣∣∣∣

]
.

(9)

For the log-determinant term, log
∣∣∣det ∂xt

∂xt−1

∣∣∣ = log
∣∣det

(
I + ηHf (xt)

)∣∣, where H
f
i,j = ∂2f(x)

∂xi∂xj
.

Then, the gradient
∂ log|det(I+ηHf(xt))|

∂f
= η tr

((
I + ηHf (xt)

)−1 ∂Hf(xt)
∂f

)
. However, the com-

putation of the log-determinant and its derivative w.r.t. f are expensive. We can apply the polynomial
expansion to approximate it.

6

Denoting δ as the bound of the spectrum of Hf (xt) and C := ηδ
1+ηδ

I − 1
1+ηδ

H
f (xt), we have

λ (C) ∈ (−1, 1). Then,

log
∣∣det

(
I + ηHf

(
xt
))∣∣ = d log (1 + ηδ) + tr (log (I − C)) .

We can apply Taylor expansion or Chebyshev expansion to approximate the tr (log (I − C)). Specif-
ically, we have

• Stochastic Taylor Expansion [Boutsidis et al., 2017] Recall log (1− x) = −
∑∞

k=1
xk

k
, we

have the Taylor expansion

tr (log (I − C)) = −

k∑

i=1

tr
(
Ci

)

i
.

To avoid the matri-matrix multiplication, we further approximate the tr (C) = Ez

[
z>Cz

]

with z as Rademacher random variables, i.e., Bernoulli distribution with p = 1
2 .

Particularly, if we set i = 1, recall the tr
(
H

f (x)
)
= ∇2

xf (x), we can directly calculate
without the Hutchinson approximation.

• Stochastic Chebyshev Expansion [Han et al., 2015] We can approximate with Chebyshev
polynomial, i.e.,

tr (log (I − C)) =
k∑

i=1

ci tr (Ri (C)) ,

where R (·) denotes the Chebshev polynomial as Ri (x) = 2xRi−1 (x) − Ri−2 (x) with

R1 (x) = x and R0 (x) = 1. The ci =
2

k+1

∑k
j=0 log (1− sj)Ri (sj) if i > 1, otherwise

c0 = 1
n+1

∑k
j=0 log (1− sj) where sj = cos

(
π(k+ 1

2)
k+1

)
for j = 0, 1, . . . , k.

Similarly, we can use the Hutchinson approximation to avoid matrix-matrix multiplication.

B.3 Continuous-time Langevin Embedding

We discuss several discretized dynamics embedding above. In this section, we take the continuous-

time limit η → 0 in the deterministic Langevin dynamics, i.e., dx
dt

= ∇xf (x). Follow the change-of-
variable rule, we obtain

q (x′) = p (x) det (I + η∇xf (x))

⇒ log q (x′)− log p (x) = − tr log
(
I + ηHf (x)

)
= −η∇2

xf (x) +O
(
η2
)
.

As η → 0, we have

d log q (x, t)

dt
= −∇2

xf (x) . (10)

Remark (connections to Fokker-Planck equation): Consider the dx
dt

= ∇xf (x) as a SDE with
zero diffusion term, by Fokker-Planck equation, we obtain the PDE w.r.t. q (x, t) as

∂q (x, t)

∂t
= −∇ · (∇xf (x) q (x, t)) .

Alternatively, we can also derive the (10) from the Fokker-Planck equation by explicitly writing the
derivative. Specifically,

dq (x, t)

dt
=

∂q (x, t)

∂x

∂x

∂t
+

∂q (x, t)

∂t

=
∂q (x, t)

∂x
∇xf (x)−∇ · (∇xf (x) q (x, t))

=
∂q (x, t)

∂x
∇xf (x)−∇2

xf (x) q (x, t)−∇xf (x)
∂q (x, t)

∂t
= −∇2

xf (x) q (x, t).

Therefore, we have

1

q (x, t)

dq (x, t)

dt
= −∇2

xf (x) ⇒

[
d log q(x,t)

dt
= −∇2

xf (x)
dx
dt

= ∇xf (x)

]
. (11)

7

Based on (10), we can obtain the samples and its density value by
[

xt

log q (xt)− log p0θ
(
x0

)
]
=

∫ t1

t0

[
∇xf (x (t))
−∇2

xf (x(t))

]
dt := Lf,t0,t1 (x) . (12)

We emphasize that this dynamics is different from the continuous-time flow proposed in Grathwohl
et al. [2018], where we have ∇2

xf (x) in the ODE rather than a trace operator, which requires one
more Hutchinson stochastic approximation. We noticed that Zhang et al. [2018] also exploits the
Monge-Ampère equation to design the flow-based model for unsupervised learning. However, their
learning algorithm is totally different from ours. They use the parameterization as a new flow and fit
the model by matching a separate distribution; while in our case, the exponential family and flow
share the same parameters and match each other automatically.

We can approximate the integral using a numerical quadrature methods. One can approximate the
∇(f,t0,t1)` (f ; t0, t1) by the derivative through the numerical quadrature. Alternatively, we denote

g (t) = −∂`(f,t0,t1)
∂x(t) , by the adjoint method, the

`(f,t0,t1)
∂f

is also characterized by ODE

∂` (f, t0, t1)

∂f
=

∫ t1

t0

−g (t)
>
∇f · ∇xf (x) dt, (13)

and can be approximated by numerical quadrature too.

We can combine the discretized and continuous-time Langevin dynamics by simply stacking several
layers of Lf,t0,t1 .

8

