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Abstract— This paper presents a detection method of
remotely identifying a potential active shooter with a concealed
rifle/shotgun based on radar micro-Doppler and range-Doppler
signature analysis. By studying and comparing the micro-Doppler
and range-Doppler information of human subjects carrying a
concealed rifle versus other similar activities, special features
are extracted and applied for detecting people with suspicious
behaviors. An artificial neural network is adopted in this work
to complete the activity classification, and the classification result
shows a 99.21% accuracy of differentiating human subjects
carrying a concealed rifle from other similar activities. Due to
the properties of radar sensor, the proposed method does not
involve sensitive information such as visual images, and thus can
better protect the privacy while being able to see-through the
clothing for reliable detection.

Index Terms— Active shooter detection, micro-Doppler,
range-Doppler, radar sensors, artificial neural network.

I. INTRODUCTION

THE number of active shooting incidents rises year by
year in many countries over the world. The latest Federal

Bureau of Investigation (FBI) report shows that the num-
ber of active shooting incidents in the 2014-2015 period is
six times as high as the number of incidents during the
2000-2001 period. Among the incidents that occurred dur-
ing the 2014-2015 period, 40% of the incidents had shot-
guns or rifles involved and caused 57% of total killed
casualties [1]. Current technologies on market for shooter
detection include acoustic gunshot identification and infrared
camera gunfire flash detection [2]. However, both technologies
only trigger an alarm after a weapon is fired. Although current
systems could speed up the police’s response time, they do not
prevent those incidents from happening. Thus, an effective
shooter detection system, especially for detecting shooters
armed with concealed rifle/shotgun before the shooter draws
the weapon, is highly demanded to prevent such tragedies.
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In the meantime, radar-measured micro-Doppler signature
provides useful information related to moving objects and
has been widely studied for targets and activities recognition
and classification. Many works have shown the possibility
to use micro-Doppler signature analysis into activity classi-
fication [3], [4], target recognition [5]–[7], healthcare applic-
ations [8]–[10] and smart home applications [11], [12].

Quite a few works showed the feasibility of applying micro-
Doppler signature processing in security applications. For
example, [5] used micro-Doppler to characterize and differ-
entiate humans, animals and vehicles. Reference [13] pointed
out the potential to estimate human motion and determine if
the human subject is carrying a weapon based on the micro-
Doppler signature caused by arm motion. Fioranelli et al. [14]
used a multistatic radar system to distinguish unarmed and
potentially armed personnel. Both [13] and [14] focused on
the analysis of micro-Doppler caused by arm motion and a
metallic pole representing a rifle was used in [14] for their
experiments.

Other than micro-Doppler signature, range-Doppler signa-
ture is another type of radar signature. It tracks the range
profile of a walking person by measuring the distance between
the person and the device. It also provides velocity infor-
mation of a moving target. Thus, range-Doppler signature
is very useful for tracking and locating a moving target
and could serve as a great supplement to the conventional
micro-Doppler analysis for gait and gesture classification.
References [15]–[17] studied combining multiple domain
analysis for fall detection. Integrated slow-time range-Doppler
map [15] and range-map [15]–[17] were utilized in the
research. The classification results from [15]–[17] showed the
classification rate can be improved by combining information
from multiple domains.

Various methods of feature extraction and recognition for
activity classification were presented in different works. The
key purpose of feature extraction is to obtain the most dis-
tinguishable features of different activities. Principal compo-
nent analysis (PCA) was adopted in [12], [18], and [19].
Singular value decomposition (SVD) was employed in [20].
For activity recognition, References [3] and [4] used support
vector machine (SVM) and artificial neural network (ANN),
respectively, to realize human activity classification. Refer-
ence [11] adopted convolutional neural network (CNN) as the
classifier.
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Fig. 1. Application scenario of the proposed active shooter detection system.

The proposed work investigates the potential of using
portable radar sensors for active shooter detection by analyzing
both micro-Doppler and range-Doppler signatures. It aims to
recognize a shooter with a concealed rifle/shotgun before the
weapon is drawn. The proposed method realizes the detection
by identifying special gaits and gesture characteristics of a
person walking with a concealed rifle. The patterns produced
by a human body and a concealed weapon on radar signatures
are analyzed. To the best of authors’ knowledge, using con-
current micro-Doppler and range-Doppler signature analyses
for potential active shooter detection has never been studied.
Furthermore, radar signatures of seven other activities in the
same application scenario are studied and compared with
signatures corresponding to a person walking with a concealed
rifle. Thirteen human subjects are used in the experiments to
collect over 4000 samples. An ANN is adopted for activity
classification based on five features extracted. The capability
of the proposed method for recognizing movements from
different angles and under different noise levels is studied.

This paper is organized as follows. The micro-Doppler
and range-Doppler signatures obtained by radar sensor are
illustrated in Section II. Radar hardware, experiments and
results for different activities are described in Section III.
In Section IV, feature extraction and activity classification are
presented. A conclusion is drawn in Section V.

II. MICRO-DOPPLER AND RANGE-DOPPLER

Micro-Doppler and range-Doppler are two special fea-
tures obtained from radar output when radar operates under
the Doppler mode and the frequency-modulated continues-
wave (FMCW) mode, respectively. Fig. 1 shows one of the
application scenarios of the proposed potential active shooter
detection system. A radar sensor is mounted at the entrance of
a building or a monitored area inside a building. A potential
active shooter carrying a rifle is walking toward the door
at distance R. The radar transmitted signal is reflected by
the moving target and the reflected signal is received and
processed by the radar receiver (Rx) end. Two radar output
channels are sampled and collected as the I and Q channel
radar outputs BI (t) and BQ(t) when the radar works under
Doppler mode. One output channel is grounded and the
other output channel is sampled and collected as the beat
signal BB(t) while the radar operates under FMCW mode.

Fig. 2. Process to obtain micro-Doppler signature from radar output.

Fig. 3. Process to obtain range-Doppler signature from radar output.

Micro-Doppler and range-Doppler signatures are created by
processing those radar outputs. Figs. 2 and 3 illustrate the
process of deriving those two signatures from the radar output.

A. Micro-Doppler Signature

As shown in Fig. 1, when the radar sensor operates under
the Doppler mode, radar output signals BI (t) and BQ(t) are
collected. Those two signals can be expressed as:

BI (t) = AI · cos(2π · fD · t + �φ) (1)

BQ (t) = AQ · sin(2π · fD · t + �φ) (2)

where AI and AQ are the amplitudes of the I and Q channel,
respectively, �φ is related to the phase shift of propagation
and phase noise of the system. fD is the term representing
Doppler frequency shift. Furthermore, due to the relationship
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between the Doppler frequency shift and actual movement
velocity, the speed of the moving target can be calculated as:

vobject = c × fD

2 × fT
(3)

where fT is the radar carrier frequency, and c is the speed of
light.

Micro-Doppler signature is created by applying Short-Time
Fourier Transform (STFT) to radar output. Fig. 2 shows
the process of obtaining micro-Doppler signature from the
radar output. The sampled radar output is a series of volt-
age readings that form a one-dimensional array along time.
As shown in Fig. 2, to perform STFT, the radar output is
divided into short segments with equal length. Fast Fourier
Transform (FFT) is taken for each segment and the Doppler
shift due to the movement of the target is revealed for each
short period. Usually, STFT result is derived by combining
each FFT result and showing the spectra changes over time.
The bottom plot in Fig. 2 is an example of micro-Doppler
signature obtained from the radar output.

Micro-Doppler signature provides useful velocity informa-
tion related to different parts of a human body. For example,
the bottom part of Fig. 2 shows the micro-Doppler signature
for a human subject walking toward the radar sensor. The
y-axis of this plot is the velocity converted from Doppler
frequency shift based on (3). As labeled in the figure, the high
power density area in region 1 represents arms swinging
toward the radar sensor. Region 2 represents the torso moving
toward the radar. Region 3 with a negative velocity corre-
sponds to the moment when arms swing away from the radar.

B. Range-Doppler Signature

Range-Doppler contains range and velocity information of
a moving target. As shown in Fig. 1, range-Doppler signature
is derived from the beat signal BB(t) output from radar
sensor when the radar works in the FMCW mode. The beat
signal received from a stationary target can be expressed
as [21], [22]:

BB (t) = ST x(t) ∗ SRx (t) = Ab · ex p( j · 2π · fR · t) (4)

where BB(t) is the beat signal output from the radar configured
in FMCW mode, ST x (t) is the radar transmitted signal and
SRx (t) is the received signal. Complex amplitude Ab contains
all the phase information. The fR is the frequency difference
between the received signal and a local copy of the transmitted
signal and is linearly proportional to the target range R. Thus,
the range information can be derived by applying FFT to the
beat signal in (4).

When using FMCW radar to detect a moving target, the fre-
quency of the received signal not only contains a frequency
shift related to range information, but also has a frequency
component corresponding to the Doppler shift. The beat signal
in this case can be expressed as [21]:

BB (t, ti ) = Ab · ex p( j · (2π · fR · t + 2π · fD · ti )) (5)

where fD is the term related to the target’s velocity and
can be obtained by applying another FFT of the beat signal.

Fig. 4. Flow chart of the proposed potential active shooter detection method.

Thus, by applying 2-D FFT to the beat signal described in (5),
both range and velocity information of a moving target can be
revealed.

Figure 3 depicts the process of obtaining a range-Doppler
image from the beat signal [21]. As shown in the top plot
in Fig. 3, the sampled beat signal BB(t, ti ) is arranged as
a two-dimensional array. Each column of the array is the
sampled time-domain beat signal corresponding to one FMCW
radar frequency ramp. In this array, the column-wise axis is
related to the FMCW radar chirp repetition time and usually
referred as “slow-time” while the row-wise axis is related to
the sampling rate of beat signal and referred as “fast-time”.
Both the “slow-time” and “fast-time” directions are labeled in
the top plot of Fig. 3.

As shown in the middle plot of Fig. 3, the range
profile is revealed by taking FFT along the
“fast-time” direction. Then, another FFT is taken along
the “slow-time” direction to obtain the velocity information.
The 2-D FFT operation result in a range-Doppler graph
for the given time duration as shown at the bottom of Fig. 3.
Similar to the micro-Doppler plot, the range-Doppler plot is a
2-D intensity image. The moving target forms a high energy
echo on the range-Doppler plot. A few echoes produced by
the moving target are labeled on the image at the bottom of
Fig. 3. Both the range and velocity information of the moving
target are simultaneously revealed. Thus, this type of radar
signature can be adopted in potential active shooter detection
to track the target of interest.

III. EXPERIMENT AND RESULTS

Figure 4 shows the flow chart of the proposed potential
active shooter detection system. As shown in the flow chart,
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Fig. 5. Block diagram of the 5.8GHz hybrid-mode radar sensor.

a hybrid-mode FMCW-Doppler radar sensor is adopted.
Micro-Doppler and range-Doppler signatures are obtained
from radar output using the method introduced in section II.
Feature extraction is performed after creating those radar sig-
natures. A step recognition process is needed before extracting
features from micro-Doppler signature. Activity is classified
based on the extracted features. The output is an activity
recognized by the proposed system. In this section, radar
hardware and radar signatures obtained from experiments are
described and discussed. Step recognition, feature extraction,
and activity classification are introduced in the next section.

The custom-designed 5.8-GHz hybrid-mode FMCW-
Doppler radar sensor proposed in [24] is adopted in this work.
Experiments are conducted, and different human subjects are
used to perform several activities. Micro-Doppler and range-
Doppler are created from radar output. In this section, radar
hardware, experiment setup, and radar signatures for different
activities are depicted in detail.

It is necessary to mention that some preliminary experiment
results and discussion present in this section were published in
the authors’ previous work [25]. However, there are significant
differences between [25] and this work. In [25], only one
human subject was used and the conclusion was made based
on the observations from micro-Doppler and range-Doppler
of different activities. In this work, more human subjects are
used, and a lot of samples are collected. The authors focus on
feature extraction and activity classification based on micro-
Doppler and range-Doppler signature analysis in this study.

A. Radar Hardware

The micro-Doppler and range-Doppler signatures used in
this work are obtained from the output of a hybrid-mode
FMCW-Doppler radar sensor [24]. Fig. 5 shows the block
diagram of this radar. Switching between different modes is
realized by analog switches configured by a microcontroller.
In Fig. 5, the solid line shows the signal path of Doppler
mode while the dashed line indicates the signal path of FMCW
mode.

When the radar works under the Doppler mode, a free-
running voltage controlled oscillator (VCO) is adopted to
generate a 5.8-GHz transmit signal and drive the mixer in
the receiver chain. A low-noise amplifier (LNA), a gain block,
a mixer and a baseband amplifier form the receiver chain. Two
capacitors (CDI and CDQ) are used to realize ac-coupling and
block dc component of the I/Q signal. The I and Q signals
are collected under this mode.

When the radar works under the FMCW mode, a sawtooth
and reference generator is employed to produce a “sawtooth”
voltage to control the VCO. In order to achieve coherent
detection, the beat signal and the synchronization signal, which
is locked to the “sawtooth” voltage signal, are collected and
sampled simultaneously.

The radar sensor has a transmit power of 8 dBm with a
center frequency at 5.8 GHz. The bandwidth of the transmit
signal is 320 MHz and the frequency of the sawtooth ramp
is 82 Hz when the radar sensor works under FMCW mode.
This corresponds to a range resolution of 0.47 m and chirp
repetition rate of 82 Hz. All the radar outputs are sampled by
the audio card on computer.

It should be noted that based on the common range (20 Hz
to 20000 Hz) of human hearing, the audio card cuts all
information at low frequency and only process signal above
20 Hz. Fortunately, the frequency range of interest in this work
is within the audio card process range.

B. Experiment Setup and Results

Experiments were conducted to demonstrate the feasibility
of using micro-Doppler and range-Doppler signatures to iden-
tify a person walking with a concealed rifle/shotgun. In order
to test the proposed method’s capability to differentiate similar
activities, eight activities were performed by human subjects.
Those activities include: (a) walking with a concealed rifle
under trench coat, (b) walking without holding anything,
(c) walking with a cane for the blind, (d) walking with
a gym bag, (e) walking with a laptop, (f) walking with a
walker, (g) moving in a wheelchair, and (h) walking with a
rolling suitcase. To make the experiments close to real case,
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Fig. 6. Experiment setup.

activities selected in this study were chosen based on the
author’s observation from locations that the proposed technol-
ogy could be applied to. Those locations include the entrances
of a school, an airport, and a hospital.

The experiment setup is shown in Fig. 6. The tests were
conducted outside and the radar sensor was fixed on a tripod
at 1 meter above ground. A battery pack was mounted on
the tripod to provide power to the radar system. A human
subject was asked to start from point A in Fig. 6 and walk
straight toward the radar. The start point A was seven meters
away from the sensor. This movement had an angle of 0° to
the radar antenna’s main lobe. In this study, thirteen human
subjects (ten males and three females) were used. Each human
subject was asked to repeat every activity for four times.
Furthermore, in order to test the recognition capability of the
proposed method under different movement angles, two other
start points (B and C) were adopted and the movements from
those two points were 15° and 35° to the radar, respectively.
Three human subjects were asked to perform each activity for
4 times starting from those two points.

Figure 7 shows an example of micro-Doppler (a) and
range-Doppler (b) signatures obtained by the radar sensor
working under different modes. A human subject was asked
to walk toward the sensor without holding anything in this
example. As mentioned in section II, micro-Doppler signatures
are created by applying STFT to the radar output. In this
work, a sliding window size of 1.024 second is used and
the Hamming window is adopted. The velocity information
regarding different body parts can be revealed on micro-
Doppler signature. In Fig. 7(a), the subject walked eight steps
toward the sensor, with one of the steps labeled in the figure.
For each step, besides the torso movement, large positive and
negative frequency shifts are generated by natural arm swings.
The velocity can be derived from frequency shift based on (3).
The velocity is labeled on the y-axis in Fig. 7(a) and the
negative sign means the part of the target receded from the
radar.

Fig. 7(b) is an example of a range-Doppler signature
obtained at the moment when a human subject walked toward
the radar without holding anything. The range and velocity

Fig. 7. An example of micro-Doppler (a) and range-Doppler (b) signatures
obtained when a test subject walks naturally toward the radar sensor.

Fig. 8. Micro-Doppler signature of a human subject walks naturally toward
the radar sensor (a) before and (b) after noise removal.

information can be read from the signature. Comparing the
range-Doppler signature with the micro-Doppler signature
in Fig. 7(a), the torso and limbs movement can be identified on
the range-Doppler graph. For example, in the micro-Doppler
signature, the torso movement has an average speed around
2 m/s. Thus, the human signature at around 2 m/s in range-
Doppler signature corresponds to the torso movement of the
subject. In addition, the range-Doppler provides the absolute
distance between the radar sensor and the moving object,
which is helpful for locating a potential shooter. It should be
noticed that only positive Doppler frequency shift is plotted on
this range-Doppler graph. This is because the human subject
was always asked to walk toward the radar and the high
intensity torso radar echo always shows up with positive
Doppler frequency shift.

In order to effectively process radar signatures, a noise
removal algorithm is applied after obtaining the micro-Doppler
signature. Fig. 8 shows an example of micro-Doppler signa-
tures before (a) and after (b) noise removal when a human
subject walked toward radar sensor without holding anything.
Fig. 8(a) is the original micro-Doppler derived from the
radar output. A power density threshold is set and any value
below the threshold is set to a very small value (−60 in this
work). Fig. 8(b) is the micro-Doppler after noise removal. The
information of the human subject movement is well preserved
while the noise at undesired frequency is filtered out. It should
be noted that the main sources of the noise in the experiments
is small vibrations from the testing environment (e.g. radar
device vibration due to the wind). In the real applications,
the device will be firmly mounted at an indoor area or the
area connecting indoor and outdoor. Thus, the noise from the
environment would be less severe than that in the experiments.
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Fig. 9. Micro-Doppler and range-Doppler for different activities: (a) walking with a concealed rifle, (b) walking with natural arm swings, (c) walking with
a cane for a blind person, (d) walking while holding a gym bag, (e) walking while carrying a laptop, (f) walking with a walker, (g) moving in a wheelchair,
and (h) walking with a rolling suitcase.

Figure 9 shows the experiment results. Each sub-figure
corresponds to one type of activities. In each sub-figure,
a picture with a human subject presenting the activity is
shown on the left. On the right, the micro-Doppler signature
after noise removal is shown on top and two range-Doppler
signatures obtained at two different moments (T1 and T2 as
marked in the spectrogram) are placed on the bottom.

By studying and comparing the micro-Doppler and range-
Doppler images obtained from each test, some special features
were discovered and could be used to identify a potential
shooter. The analysis for each case is discussed below [25]:

1) Walking With a Concealed Rifle Under Trench Coat :
As shown in the micro-Doppler signature of Fig. 9(a), the
person walked nine steps toward the radar. The power density
of signal due to torso movement is high. However, since the
rifle is usually long and heavy and the subject tried to hide it
close to his/her body, the arm movement was very limited [25].
Thus, there is no large frequency shift for limbs shown on the

signature. However, the metal parts on the gun, especially the
tip of the gun (i.e., the muzzle) that traveled with the longest
distance in each step, creates strong reflection and led to a
high power density on the signature [25]. The move of the
muzzle for one step is labeled in the figure.

The two range-Doppler signatures in Fig. 9(a) reveal the
range information of the moving subject at moments T1 and T2.
In each frame, the high density radar echo area at around 2 m/s
corresponds to the torso movement. The radar echo around
1 m/s in the first frame and the echo around 2.5 m/s in the
second frame represent the movement of the muzzle on the
rifle.

2) Walking Without Holding Anything: The micro-Doppler
signature shown in Fig. 9(b) for this case is very differ-
ent from the signature of walking with a concealed rifle.
As shown in the micro-Doppler signature, arm swings produce
large positive and negative frequency shifts during free walk.
This is the most significant feature to distinguish if the test
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subject is holding any objects, especially heavy things, during
walking [25]. Another observation based on the micro-Doppler
signature is that the frequency shifts caused by limb motion
are symmetric on different direction if arms swing naturally.
This could serve as another feature to differentiate walking
without holding anything versus other activities.

The echoes with highest power density on range-Doppler
signatures correspond to torso moves while the weaker echoes
correspond to limb moves.

3) Walking With a Cane for the Blind: In this experiment,
subjects mimicked blind people walking toward the radar
sensor with a cane. The corresponding experiment result is
shown in Fig. 9(c). In this experiment, arm swings were
limited due to the use of the cane for direction guidance. The
highest frequency shifts on the micro-Doppler signature are
produced by tapping the metal tip of the cane on the ground.
Base on the observation, micro-Doppler signature for this case
is very similar to the signature for walking with a concealed
rifle in case (a), except that the moving speed is lower.
Thus, only using micro-Doppler analysis is not sufficient for
detecting a potential active shooter under this situation.

Fortunately, the range-Doppler signature provides useful
information for reliable classification in this case. First, since
a blind person tends to walk slowly, the radar echoes have a
very low speed as shown in Fig. 9(c). Furthermore, even if
a blind person walks fast or a potential shooter intentionally
walks slowly, the range-Doppler echoes are still significantly
different, as the echoes in Fig. 9(c) occupies much longer
range than other cases. This is because the cane always reaches
out from the walking person to probe the ground ahead. And
the radar sensor detects the walking person and the cane as a
whole moving target with a much longer range [25]. On the
other hand, a person with a concealed weapon usually occupies
a shorter range on range-Doppler signature.

4) Walking With a Gym Bag: The experiment result for this
case is shown in Fig. 9(d). In this case, some of the arm swings
were limited due to the weight of the gym bag. However, since
the subject did not try to keep the gym bag as close as possible
to his/her body, there were still some arm swings during the
walk. Thus, the micro-Doppler signature of this case is similar
to the signature of subject walking without holding anything.
Although the frequency shifts caused by arm swing in this case
is smaller, the difference between walking with a gym bag
and walking with a concealed rifle could be easily identified
on the micro-Doppler signatures, as there is no gap between
frequency shifts similar to that shown on the micro-Doppler
signature of Fig. 9(a) for the rifle’s muzzle.

On the other hand, the radar echoes representing the walking
person are shown on the range-Doppler frames. They present
useful range information to localize the walking person.

5) Walking With a Laptop: In this experiment, the subjects
were asked to carry a laptop under his/her arm when he/she
walked toward the radar. The purpose of this experiment is to
see if the radar is able to differentiate rifle from other large
metal objects. A laptop was chosen for this experiment since
it is one of the most popular objects carried in our daily life
and it has metal parts. The experiment results for this case are
shown in Fig. 9(e). The micro-Doppler for this case is similar

to the micro-Doppler signature for walking with a gym bag
case. This is because the arm swing patterns are similar. Thus,
the difference between walking with a laptop and walking with
a concealed rifle also could be easily identified on the micro-
Doppler signatures.

Similar to other cases, the radar echoes representing the
walking person on the range-Doppler frames provide useful
range information to localize the walking person.

6) Walking With a Walker: The subjects were asked to walk
with a walker in this experiment. Fig. 9(f) shows the exper-
iment results for this case. As shown in the micro-Doppler
signature, there is not much negative frequency shift. This is
because the metal walker was always moving forward. The
strong reflection from the metal structure dominates the signal
and produces high power density on the positive Doppler
frequency shift side. Thus, the micro-Doppler signature for
this case shows a significant difference from the walking with
a concealed rifle case.

In the meanwhile, the range-Doppler signatures are able to
track the location of the moving person in real time.

7) Moving in a Wheelchair: The subjects were asked to
move toward the radar in a wheelchair and the experiment
results are shown in Fig. 9(g). The micro-Doppler signature
for this case is similar to the case of walking with a walker.
Most of the high power density signals appear on the positive
Doppler frequency shift side. The reason is also similar to the
last case: the metal structure of the wheelchair moved forward
and dominated the signal. A few negative frequency shifts are
produced with weaker signal strength due to hand movement
of the person in the wheelchair.

The location of the moving target is shown on the range-
Doppler images in Fig. 9(g).

8) Walking With a Rolling Suitcase: In this experiment,
the subjects were asked to walk toward the radar with a rolling
suitcase. The result is shown in Fig. 9(h). The metal structure
of the suitcase has higher reflection than other moving objects.
Thus, the micro-Doppler signature produced in this case has
strong signal strength on the positive frequency shifts side.
This result is similar to those of experiments 6) and 7).

Similarly, the range-Doppler images contain location infor-
mation of the moving target.

IV. FEATURE EXTRACTION AND

ACTIVITY CLASSIFICATION

Feature extraction is very important for getting a high
activity classification accuracy. In this work, based on the
observation and discussion in section III, four features are
extracted from the micro-Doppler signature and one feature
is extracted from the range-Doppler signature for activity
recognition. Those features are computed from the micro-
Doppler and range-Doppler signatures directly. The robustness
of the proposed feature extraction algorithm is evaluated under
different noise levels. An artificial neural network (ANN) is
applied for activity classification. Popular feature selection
methods such as the principal component analysis (PCA) and
the convolutional neural network (CNN) require one image
as one sample to present one activity. In this work, two
images (micro-Doppler and range-Doppler) are generated by
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Fig. 10. Examples of step recognition when (a) a human subject walks
toward radar sensor without holding anything and (b) a human subject walks
toward radar sensor with a concealed rifle.

one activity. Thus, the features used in this work are extracted
based on the differences of radar signatures between each
activity.

In this section, the feature extraction process will be
explained in detail. The activity classification using ANN will
be introduced and the classification under different noise levels
will be studied in this section as well.

A. Features Extracted From Micro-Doppler Signature

Since every single step is treated as one sample during
classification process, counting step numbers and recognizing
each step from each micro-Doppler signature is necessary.
In order to do this, every micro-Doppler signature is processed
as a 2-dimensional array and the element of this array is
the power density value on the signature. Fig. 10 shows two
examples of determining the number of steps and recogniz-
ing each step in a micro-Doppler signature. In Fig. 10(a),
the figure on the left is a micro-Doppler after noise removal
when a human subject walks toward the radar sensor without
holding anything. A sum operation of the power density value
is applied on velocity direction (y-axis) on the signature and
the result is plotted as the middle figure of Fig. 10(a). By doing
this, the shape of each step is identified. Then, the local
minima are found and processed as the boundaries of different
steps. An FFT is applied to the power density sum and the
peak of the FFT result corresponds to the number of steps
for that micro-Doppler. The right plot of Fig. 10(a) shows the
FFT result. It can be seen that this micro-Doppler signature
contains eight steps.

Fig. 10(b) is an example of the step counting and recog-
nizing process of a micro-Doppler signature obtained when a
human subject walks toward the radar with a concealed rifle.
The FFT result shows this micro-Doppler contains nine steps.

It is necessary to mention that the FFT operation is not
necessary if the curve of power density sum is smooth
(i.e. the middle plot of Fig. 10(a)) and the local minima are
easy to identify. However, sometimes, the power density curve
is not that smooth (i.e. the middle plot of Fig. 10(b)) and more
than one local minima are identified in a small area. In those

Fig. 11. Feature extraction from micro-Doppler signature when (a) a human
subject walks toward radar without holding anything and (b) a human subject
walks toward radar with a concealed rifle.

cases, the FFT operation is needed to recognize the boundary
of each step.

After step recognition, the micro-Doppler signature of every
single step is treated as one sample. In order to perform feature
extraction, a sum operation of power density is taken on the
time direction (x-axis). Fig. 11 shows two examples of how
features are extracted from the micro-Doppler signature of
each step. In each sub-figure, left plot shows the signature
of one step and the right one shows the result of the sum
operation. Fig. 11(a) corresponds to a step when the human
subject walks toward radar without holding anything and
Fig. 11(b) is an example when the human subject takes
one step toward radar with a concealed rifle. Based on the
observation and comparison made in section III, four features
are extracted from each sample. The features are defined and
calculated as follows:

1) Frequency Gap: As mentioned in section III, when a
human subject walks toward the radar sensor with a concealed
weapon or a cane for blind, the arm movement is limited and
the power density band related to human body movement is
narrowed. At the same time, the muzzle of the gun or the
metal tip of the cane produce high-energy signature with a high
Doppler frequency shift. Thus, a gap is created between the
signature of human body movement and that of muzzle/metal
tip movement on the micro-Doppler graph. This frequency gap
is labeled as FG on the power density sum plot of Fig. 11(b).
Since there is no frequency gap on the signature in Fig. 11(a),
this feature is not labeled in this case.

2) Total Bandwidth: The total bandwidth feature is labeled
as TB in Fig. 11. It is defined as the difference between
the largest positive frequency shift and the lowest negative
frequency shift on micro-Doppler signature [3]. The total
bandwidth contains information related to human subject’s
movement amplitude in each step. When a person walks
without holding anything, the natural arm swings produce a
large total bandwidth. When the human subject walks with
a concealed rifle or a cane for blind, the gun’s muzzle or the
cane’s metal tip also produces relatively large total bandwidth.

On the other hand, when the person carries a gym
bag or similar objects, the total bandwidth is relatively small
due to the limited arm movement.

3) Torso Speed: The torso speed [3] is labeled as TS
in Fig. 11. Based on the observation of micro-Doppler sig-
natures, torso movements produce the highest power density.
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Fig. 12. Feature extraction from range-Doppler signatures when (a) a human
subject walks toward radar with a concealed rifle and (b) a human subject
walks toward radar with a cane for blind person.

Thus, the torso speed is obtained by finding the velocity
corresponding to the highest power density point. As shown
Fig. 11, the torso speeds for these two examples are 1.5 m/s
and 1.4 m/s, respectively.

A person with a cane for blind tends to walk slowly.
Therefore, the value of this feature should be relatively small
for the case of walking with a cane. However, sometimes,
a potential active shooter may have abnormal behavior and
walk slowly. In those cases, the feature extracted from range-
Doppler signature could be the most effective feature to
differentiate person with and without a concealed rifle. This
feature will be introduced in part B of this section.

4) Limb Speed Difference on Different Directions: Since the
subjects were always asked to walk toward the radar, the limb
speed on positive Doppler frequency shift direction is calcu-
lated as the largest positive Doppler frequency shift minus
the torso speed (TS). The limb speed on negative Doppler
frequency shift direction is the lowest negative frequency shift.

The limb speed difference on different directions is defined
as the absolute difference between the limb speed on differ-
ent directions. If a person walks with natural arm swings,
the Doppler frequency shift caused by limb motion on both
directions should be symmetric. This feature helps to identify
if the human subject is carrying anything.

B. Feature Extracted From Micro-Doppler Signature

One feature is extracted from range-Doppler signature and
is defined as echo aspect ratio. Fig. 12 shows two examples
of how to extract the echo aspect ratio from range-Doppler
signatures. In each signature, the area contains the highest
power density will be selected as the echo corresponding to
human subject’s torso. The echo aspect ratio is calculated as
the length of the selected echo on the velocity direction (w)
divide the length of the same echo on the range direction (l).

As mentioned in section III, the radar sensor recognizes
the person with a cane for blind as a single target with a long
range. Thus, as labeled in Fig. 12(b), the length of the selected
echo on the velocity direction (w) is much smaller than the
length along the range direction (l).

C. Activity Classification Using Artificial Neural Network

Table I summarizes the activities studied in this work and
the features extracted from micro-Doppler and range-Doppler

TABLE I

SUMMARY OF ACTIVITIES AND EXTRACTED FEATURES

TABLE II

TYPICAL VALUE OF EACH FEATURE FOR DIFFERENT ACTIVITIES

TABLE III

NUMBER OF SAMPLES COLLECTED FROM EACH SUBJECT
FOR EACH ACTIVITY

signatures. A typical value of each feature for different
activities is shown in Table II. Each value in this table is
obtained by averaging five randomly selected feature values
for each activity. It is shown that some of the feature values
make certain activity distinguishable from other activities. For
example, the walking with a concealed rifle (A-1) and walking
with a cane for blind (A-3) have relatively larger frequency
gaps (F-1) compared with the other two activities. Walking
with a cane for blind (A-3) has a much smaller echo aspect
ratio (F-5) than those of other activities.

After extracting features from micro-Doppler and range-
Doppler signatures, the artificial neural network (ANN) is
adopted for activity classification. The proposed ANN employs
a multilayer feedforward network structure with one hid-
den layer. The inputs of this ANN are five features and
the outputs are eight identified activities. Based on the
empirical rule-of-thumb, the optimal number of hidden layer
neurons is between the size of the input layer and the size
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TABLE IV

CONFUSION MATRIX OF ACTIVITY CLASSIFICATION USING ANN BASED ON THE EXTRACTED FEATURES

of the output layer. Thus, the number of neurons of the
hidden layer is chosen to be five in this work. The ReLU
activation function is used in this study. Gradient descent is
adopted as the optimizer. It updates weight and bias value
based on an adaptive learning rate. The learning rate in
this work is set to be 0.01. Table III shows the number
of samples collected from different human subjects for each
activity. A total of 4158 samples were collected. Among those
4158 samples, 3085 samples were collected when the move-
ments were parallel (0°) to the antenna’s main lobe. 524 sam-
ples were collected when the movements were 15° to the
radar’s main lobe, while 549 samples were collected when
there was a 35° angle between the antenna’s main lobe and
the movements.

In order to test the ANN’s classification capability,
a training-validating-testing structure is used. 70%, 15%, and
15% of the samples are used for training, validating, and
testing, respectively. Table IV shows the confusion matrix for
this case.

The classification results related to activity A-1 (walking
with a concealed rifle) are highlighted in green in the confusion
matrix. The results show that the overall accuracy for dif-
ferentiating activity A-1 and other similar activities achieved
99.21%. Among those similar activities, 6.3% of the samples
from A-2 (walking without anything) are recognized as A-1.
Other than this, all the other activities are successfully dif-
ferentiated from the case of walking with a concealed rifle
regardless of the angle between the movements and the radar.

It can be seen from the table that activity A-4 (walking
with a gym bag) is confused with activity A-5 (walking with a
laptop). This is because the arm swings are similar in these two
cases and produced similar micro-Doppler and range-Doppler
signatures. The proposed method is not able to recognize
activities among A-6 (walking with a walker), A-7 (moving in
a wheelchair) and A-8 (walking with a rolling suitcase). This
is because large metal objects in those experiments result in
similar signatures. However, the purpose of this work is to
differentiate activity A-1 (walking with concealed rifle) from
other activities and this goal is achieved by the proposed
method.

D. Classification Under Different Noise Levels

To evaluate the robustness of the proposed classification
algorithm under different noise levels, white Gaussian noises
with different signal-to-noise-ratios (SNR) are added to the

Fig. 13. Micro-Doppler signatures for the same experiment with different
levels of additive Gaussian noise: (a) original signal, (b) −10 dB SNR,
(c) −20 dB SNR and (d) −30 dB SNR.

TABLE V

CLASSIFICATION RESULTS UNDER DIFFERENT SNR VALUES

original signals and the corresponding radar signatures are
obtained. Fig. 13 shows an example of the same measured
micro-Doppler with different SNR values.

All the samples from both micro-Doppler and range-
Doppler signatures with different SNR values are tested
by the proposed classification method. Table V shows the
classification results of identifying a subject walking with a
concealed rifle from other tested cases under different SNR
values. As shown in the table, the classification results achieve
accuracies better than 96.7% when the SNR values are above
−20 dB. This is because the proposed feature extraction
algorithm calculates all the feature values based on the number
of pixels. As long as the shape of the movement can be
recognized on the signature, the calculated feature values
would not change too much under different SNR values.

On the other hand, the recognition result drops dramatically
when the SNR value decreases to −30 dB. This is because the
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shape of the movement is getting difficult to be recognized
when the signatures get unclear. Therefore, it is found that the
classification result is reasonable as long as the SNR of the
baseband output is above −20 dB.

V. CONCLUSION

This work investigated the feasibility of using portable radar
for micro-Doppler and range-Doppler identification of a poten-
tial active shooter who carries a concealed weapon. A custom-
designed 5.8-GHz hybrid-mode FMCW-Doppler radar sensor
was adopted in this work to carry out the experiment. Thirteen
human subjects were used to perform eight activities for
multiple times, with different angles to the radar main lobe.

Compared with optical technologies, the proposed solu-
tion can sense through clothing while posing less privacy
concerns. To evaluate the false alarm rate, seven activities
similar to carrying a concealed weapon were also studied. Five
features were extracted from the micro-Doppler and range-
Doppler signatures. The proposed feature extraction algorithm
was examined under different noise levels. An ANN was
trained to classify different activities. The classification results
showed an average accuracy of 99.21% for differentiating a
subject walking with a concealed rifle and other seven similar
activities.

This work focused on the specific case of detecting a person
walking with a concealed rifle hidden under the trench coat.
It should be noted that the main reason for this research was to
show that radar sensor could provide an added layer of security
with a low cost and minimum interference with normal indoor
activities. The radar-based detection method investigated in
this paper could be integrated into current shooter detection
systems to improve the usability, reliability, and robustness.
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