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1. Introduction

Graphene has been one of the popular research topics in different theoretical and applied fields in the past two decades
[14]. Its success inspires a lot of analogs (referred to as “artificial graphene”) which are two-dimensional systems with simi-
lar properties to graphene [21,26,32,33,36,37]. Among those analogs, photonic graphene, a photonic crystal with honeycomb
structures, has attracted great interest recently [2,31,32]. Similar to graphene which admits Dirac fermions and topologi-
cal edge states, photonic graphene supports novel and subtle propagating localized modes of electromagnetic waves. These
modes are the main research objects in topological photonics and have large applications in many optical systems [24,25],
and thus it is crucial to understand such interesting propagating modes. This brings opportunities and challenges to both
applied and computational mathematics.

The propagation of electromagnetic waves in media is governed by the Maxwell equations in three spatial dimensions.
Thanks to the symmetries of photonic crystals, the in-plane propagating electromagnetic modes can be described by the
following eigenvalue problem in LZ(R2) [22],

YU=-V.WX)VY=EV, xecR2 (11)
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Physically, W(x) represents the propagating mode of electromagnetic waves, the eigenvalue E is related to the frequency of
the wave, and the positive definite Hermitian matrix function W (x) corresponds to the material weight of the media; see
[20,22] for details.

If the medium is a perfect photonic crystal, the material weight W (x) is periodic. To obtain novel propagation modes,
a bulk photonic crystal is often modulated by different types of defects which break the periodicity of the medium. For
instance, in this work, we will consider a photonic graphene modulated by a domain wall defect. In this setup, there exist
the so-called topological edge states. In some proper asymptotic regimes, the existence and dynamics can be explicitly
analyzed with a rigorous asymptotic analysis, see for instance in [1,3,22]. However, in a generic parameter regime, one
needs to resort to numerical computation to investigate the existence and study the properties of electromagnetic modes.

The numerical challenge of the eigenvalue problem (1.1) in photonic lattice lies in the lattice structure. For bulk geome-
try, W (x) is periodic and the eigenfunction W is quasi-periodic (periodic up to a phase) in each lattice, the spectral method
is usually used after applying the Bloch theory [8] when the material weight is smooth. However, when one introduces the
domain-wall modulated defect to break the symmetry of geometry which leads to the appearance of edge modes, the spec-
tral method is no longer a good option due to the loss of symmetry and quasi-periodic boundary conditions in the lattice.
Since £ has a divergence form, finite element method comes to be a natural choice. A standard finite element method
lead to that the numerical eigenfuntions and their gradients have different accuracy. In applications, the eigenfunction of
(1.1) usually represents the longitudinal electric/magnetic components and the transverse components are the gradients of
the eigenfunctions. It is very important to accurately compute the mode W(x) and its gradient in order to construct the full
electromagnetic fields under propagation [22], and therefore a finite element method with high order accuracy in gradient
is desired for the computation of (1.1).

Gradient recovery methods are one of the major postprocessing techniques based on finite element methods, which are
able to provide superconvergent gradient and asymptotically exact a posteriori error estimators [4,7,9,27,39-41], anisotropic
mesh adaption [12,13,19], and enhancement of eigenvalue approximation [16,30,35]. Recently, recovery techniques are used
to construct new finite element methods for higher order partial differential equations [10,17,18]. A famous example of
gradient recovery methods is the Superconvergent Patch Recovery (SPR) proposed by Zienkiewicz and Zhu [40], also known
as ZZ estimator, which has become a standard tool in many commercial Finite Element software such as ANSYS, Abaqus,
and LS-DYNA. An important alternative is the polynomial preserving recovery (PPR) proposed by Zhang and Naga [38],
which improved the performance of SPR on chevron pattern uniform mesh. It has also been implemented by commercial
Finite Element software COMSOL Multiphysics as a superconvergence tool. However, direct application of gradient recovery
methods to (1.1) leads to huge computational cost due to the existence of lattice structure.

In this paper, we consider the honeycomb lattice structure and develop a gradient recovery method based on Bloch
theory. We apply the Bloch theory in the direction that has no domain-wall modulated defect, and then use the gradient
recovery method to solve the eigenvalue problem for each wave number. Compared to standard finite element methods, this
method provides higher order accuracy with the help of gradient recovery technique. We analyze the accuracy and prove
the superconvergence of this method. We also compute the edge modes for the P-symmetry and C-symmetry breaking
cases in honeycomb structures to show the efficiency of the method. Our results are consistent with the analytical results
given in [22].

The rest of the paper is organized as follows. In Section 2, we introduce the problem background on photonic graphene,
Dirac points and edge modes and the Bloch-Floquet theory; In Section 3, we propose the gradient recovery method based
on Bloch theory, analyze the accuracy and prove the superconvergence of the method; numerical examples of computing
P-symmetry and C-symmetry breaking cases in honeycomb structures are presented in Section 4 to show the efficiency,
and we give conclusive remarks in Section 5.

2. Preliminary

In this section, we summarize basic properties of the photonic graphene, Dirac points and edge states as a description of
problem background, and refer interested readers to [22] and references therein for more details.

2.1. Honeycomb-structured material weight

A perfect photonic graphene has a honeycomb structured material weight, i.e., W (x) = A(x), with the honeycomb struc-
tured material weight A(x) mathematically satisfies

1. A(x) is Hermitian, positive definite, uniform elliptic;
2. AXx+Vv)=A(®X) for all xe R? and v € Ay;

3. A(—x) = A(x); (PC-invariance)

4. A(R*X) = R*AX)R; (R-invariance)
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Here, the honeycomb lattice Ay is a hexagonal lattice generated by, e.g.,
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R is a 2 x 2 matrix that rotates a vector in R? clockwise by 2 /3 about x = 0:
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We have also used the conventions: P stands for the parity inversion operator, i.e., P[f](X) = f(—x); C stands for the
complex conjugate operator, i.e., C[ f](X) = f(x); R stands for the rotation operator, i.e., R[f](X) = f(R*X).

Remark 2.1. Condition 1 states the basic requirements for a loss-free material weight, which ensue that the second order
differential operator £# associated with the material weight A(x) is self-adjoint and elliptic. Condition 2 implies that the
Bloch theory applies and Conditions 3, 4 imply the commutators between £ and the symmetry operators vanish, i.e.,
[PC, £LA]=0 and [R, LA]=0.

Simply speaking, photonic graphene is just an optic media with a hexagonally periodic, PC- and R-invariant mate-
rial weight. A honeycomb structured material weight A(Xx) defined above is generically anisotropic and complex. The full
characterization of its Fourier series is given in Section 3.4 of [22]. The simplest nonconstant honeycomb structured media
containing the lowest Fourier components is of the form

A(X) = aol + C e 4 RCR* elk2X 4 R*CR el ki —k2) X

4T elkix | geTR* gmikex | pr T pitki+ha)x. (2.2)

where C could be any real 2 x 2 matrix and ag is a positive constant ensuring that A(x) is positive definite. If C is symmetric,
then A(x) is real. For most natural materials, the material weight is real. However, for meta-materials, the effective material
weight can be complex, see for instance [21]. If C =al,«;, then A(X) represents an isotropic material.

2.2. Bloch-Floquet theory and Dirac points

According to the Bloch-Floquet theory on the elliptic operator with periodic coefficients, the Bloch modes propagating
in a perfect photonic graphene satisfy

Lo x) = ED(x),

” (2.3)
dx+Vv)=e"Vd(X), ve Ay

Here the quasi-momentum k takes the value in the Brillouin Zone Bj,. For each Kk, the above eigenvalue problem has discrete
spectrum Eq(k) < E>(k) < E3(k) <--- and the corresponding eigenfunctions, referred to as Bloch modes, are of the form
D;(x) :e“‘"‘pj(x), j=1,2,--- with p;j(x) are Ap periodic.

Let K= %(lq —ky) and K' = —K. It is shown in [22] that if A(X) is a honeycomb structured material weight, there exist
two dispersion bands Ej (k) and Ep,q (k) intersecting each other at K and K’ and the dispersion relations are conical nearby.
These degenerate points at the dispersion bands, (Ep(K,), K,), K, =K, K/, are referred to as the Dirac points. Dirac points
are unstable under PC-symmetry breaking perturbations. Namely, if £4 has a Dirac point at K, with the Dirac energy Ep,
then £A1%8 = _V . (A(X) + §B(X))V has no Dirac points at K, near the energy Ep provided B(x) is NOT PC-invariant.
Specifically, the two intersecting bands at K, separate and a local spectrum gap opens. There are two simple ways to break
the PC-symmetry:

(1) B(x) preserves C-symmetry but break the P-symmetry. In other words, B(x) is real and odd. A simple example is

B(x) = [sin(k1 - X) + sin(k; - X) + sin(Ks3 - X)]I2x2 (2.4)
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(2) B(x) preserves P-symmetry but break the C-symmetry. In other words, B(x) is purely imaginary and even. A simple

example is
B(x) = [cos(K - X) + cos(ky - X) + cos(k3 - X)]oa (2.5)
where o3 is the second Pauli matrix, i.e., o3 = (? Bl>

2.3. Domain wall modulated photonic graphene

An interesting phenomenon of the perfect photonic graphene is the conical diffraction, i.e., the wave packets associated
with the Dirac points propagate conically in the media [11,22]. Due to the potential applications, localized and chiral prop-
agations of electromagnetic waves is one of the main research topics related to the so-called topological materials. This can
be achieved in the photonic graphene modulated by a domain wall. Specifically, we have the following setup:

1. Perfect photonic graphene: Let A(X) be a honeycomb structured material weight. Let K, = K or K/, and assume that
(K., Ep) is a Dirac point of the operator £L4 = —V - AV.

2. Two perturbed bulk mediums with opposite topological phases: Let B(X) be a Ap-periodic, 2 x 2 Hermitian matrix such that
B(—X) = —B(x). The perturbed operator £A%%"=~B = _V . [A(X) & 870, B(X)]V has no Dirac points near (K,, Ep) and a
local spectrum gap opens.

3. Connecting two mediums with a domain wall: Let n(¢) be a real bounded function with n(+oc) = £n, for instance,
N(¢) = Nootanh(¢). The two perturbed bulk mediums are connected by the domain wall 7(¢) along one direction
(referred as the edge), for example, the normal direction of the edge is ky. In other words, the material weight under
consideration becomes W (x) = A(X) + 61 (8kz - X) B(X).

Our model of a honeycomb structure with an edge is the domain-wall modulated operator:

LY = V. [AX) + 5n(Sky - X)B(X)] V. (2.6)

The operator £" breaks translation invariance with respect to arbitrary elements of the lattice, Ay, but is invariant with
respect to translation by vq, parallel to the edge (because k; - vi =0 in (2.6)). Associated with this translation invariance is
a parallel quasi-momentum, which we denote by k. Note that k| takes that value in [0, 27].

Edge states are solutions of the eigenvalue problem

LY w(x; k) = E(k))W(x; k), (2.7)
WX+ vi; k) =ekiw(x; k), (2.8)
W(x; k) — 0 as |x-Kkz| — oo. (2.9)

We refer to a solution pair (E(kj), W(x; kj)) of (2.7)-(2.9) as an edge state or edge mode.

In [22], the existence of the edge states at k; =K, -v; in the parameter regime 6§ < 1 is proved and the asymptotic forms
of the edge states are given. However, in applications, § is not small and all edge states (not just near K, - v;) are useful.
Analytical techniques can not achieve this object, and thus numerical methods are required.

3. Gradient recovery method
In this section, we introduce the Bloch-theory based gradient recovery method to solve (2.7)-(2.9).

3.1. Simplified model problem

Let ¥ = Rz/Zw be a cylinder. The fundamental domain for ¥ is Qx = {T1vi + 1a2v2: 0 <71 <1, 72 € R}. Let ¥(X; k) =

Lk
e'%kl‘xp(x; k). Then (2.7)-(2.9) is equivalent to the following eigenvalue problem

LY (k) px; k) = E(kp(x; k), (31)
p(x+vy;ky) =px;ky), (32)
pX; k) — Oas |x-ka| — oo, (3.3)
where
LW(k“):—(V+ik—”k1)~W(V+ik—”k1). (34)
2 2

It is easy to see that £ (k) is a self-adjoint operator.
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To compute the edge mode, it suffices to consider the spectrum of the operator £" (k) on the truncated domain

Qrr={tivi+v2:0<17 <1,-L <1 <L}. (3.5)

Let W"'p(Qg,L) be the Sobolev spaces of functions defined on Qx| with norm || - ||y, and seminorm |- | ,. To incorporate
the boundary conditions, we define

WED = (W: W e WhP(Qs ;) and W(x + vi) = (%)) (3.6)
and
k.p _ k,p
Wiero={W:We Wper and W(xLvy) = 0}. (3.7)

When p =2, it is simply denoted as Hp,, or H, .

The variational formulation of is (3.1)-(3.3) to find the eigenpair (E(k)), ¥(x; k)) € R x H;er,o such that

a(p.q) =Ek)(p.q). Yq€H} . (3.8)

where the bilinear form a(-, -) is defined as

k I
alp,q) = / W) (V+ iz—”kl)p(X) (V+ iﬂk])q(X)dx, (3.9)
T 2T
Qy L

and the inner product is defined as

(p.q) = / p(X)q(x)dx. (3.10)

QyL

It is easy to see that the bilinear a(-,-) is symmetric and elliptic. According to the spectral theory of linear operator, we
know that (3.8) has a countable sequence of real eigenvalues 0 < E1(kj) < Ea(k) < E3(k) <--- — oo and the corresponding
eigenfunctions p1(X; k), p2(X; k), p3(X; k), - - - are assumed to satisfy

a(pi; k), pjx: k) = Ei(ky) (pix: ky), pjx: k) = 8 Ei(ky).
3.2. Finite element approximation

To simplify the imposing of the periodic boundary, we shall consider the uniform triangulation of Qy ;. To generate a
uniform triangulation 7, with mesh size h = w of Qx 1, we firstly divide Q5 into 2LN? sub-rhombuses with mesh size

h= W and divide each sub-rhombus into two triangles. We define the standard linear finite element space with periodic
boundary condition in vq as

Vi={veC(Qxgr):qlr €P1(T),¥T € Ty and g(X +v1) = q(X)}, (3.11)

with P, being the space consisting of polynomials of degree up to k and the corresponding finite element space with
homogeneous boundary condition in v, as

Vho=VaNHpe o (3.12)

The finite element discretization of the eigenvalue problem (3.8) is to find the eigenpair (Ep(ky), pr(X; k) € R x Vj o
such that

a(pn,qn) = En(k))(Pr.qn),  Yqn € Vio. (3.13)

Similar as (3.8), (3.13) has a finite sequence of eigenvalues 0 < Eq (k) < Ex p(ky) <--- < Ey, n(k)) and the corresponding
eigenfunctions are assumed to satisfy

a(pin; k), pjn: k) = Einky) (pin®: k), pja; k) = 8ijEin(ky).

For the finite element approximation, the following error estimates is well established in [6,34].



408 H. Guo et al. / Journal of Computational Physics 379 (2019) 403-420

2

Theorem 3.1. Suppose p;(X; k) € H Then we have

per,0°
Ei(ky) < Ein(ky) < Ei(k)) + Ch?; (3.14)
Ipi — pinllh < Ch; (3.15)
Ipi — pinllo < Ch?. (3.16)

The following property of the eigenvalue and eigenfunction approximation will be used in the analysis.

Lemma 3.2. Let (E(k)), p(x; k|)) be the solution of the eigenvalue problem (3.8). Then for any q € H;laer,()' we have
a(p. q) a(p—q.p—q) Ilp —qll§
5 — Ekp = — = E(ku)iz0 (317)
llqllg llqlliy llqlliy

3.3. Superconvergent post-processing

To identify edge modes, we need to compute a series of eigenvalue problems with higher accuracy for k| € [0, 27]. To
achieve higher accuracy, we can use higher-order elements. But it will involve higher computational complexity. To avoid
the computational complexity, we use the linear element and then adopt a recovery procedure to increase the eigenpair
approximation accuracy [30].

Let G, : Vp — Vi, x Vi, denote the polynomial preserving recovery operator introduced in [28,38]. For any function
qn € Vi, Gpqp is a function in Vy, x Vj. To define Gypqp, it suffices to define the value of Gpqy at every nodal point. Let Nj
denote the set of all nodal points of 7. Note that }, is the set of all vertices of 7. For any z € N}, construct a local patch
of the element X, which contains at least six nodal points. The key idea of PPR is to fit a quadratic polynomial p; € P,(K;)
in the following least-squares sense

p=arg min > @n—-p’@ (318)
peta ZfENhﬂ}CZ

Then the recovered gradient at z is defined as

(Ghqn)(2) = Vpz(2). (3.19)

The global recovered gradient is Gnqn = (Gpqr)(2)¢;(X) where {¢,} is set of nodal basis of V.
To improve the accuracy of eigenvalue approximation, we set ¢ = p,, in (3.17) which implies

En(ky) — E(ky) =a(p — pn, p — pn) — Ekp)lIp — pnll3 (3.20)

It is obvious that the first term dominates in the eigenvalue approximation error. The idea of [30] for Laplace eigenvalue
problem is to subtract a good approximation of the first term from both sides by replacing the exact gradient by recovered
gradient. In our case, it is much more complicated since the energy error contains both Vp and p. Our idea is to only
consider the leading part in the energy error. Thus, we define the recovered eigenvalue as follows

En(ky) = En(ky) — IW2(Vpp — Ghpn) 13 (3.21)

To show the superconvergence of the recovered eigenvalue, the following supercloseness result is needed which can be
found in [23].

3

Der.0r then we have

Lemma 3.3. Let I, p be the interpolation of p into the finite element space Vy. If p € H
a(p — Inp,qn) < CRIIplislignlli,  Van € Vio. (3.22)
Proof. Using the similar idea in [23], we can prove the above lemma. 0O

Based on the above lemma, we can show the superconvergence of recovered gradient of eigenfunctions as follows:

Theorem 3.4. Let Gy, be the polynomial preserving recovery operator defined in the above. Then for any eigenfunction p; j correspond-
ing to the eigenvalue E; (k)), there exists an eigenfunction p; corresponding to E; (k) such that

IW2(Vpi — Gnpin)llo < Ch?|pill3. (3.23)
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Proof. By (3.8) and (3.13), we have
a(pi,n — Pi> qn)
= Ei n(k))(Pi.n. an) — Ei(k))(pi, qn)
= Ej n(ky)(Pi,n — Pi> qn) + (Ein(ky) — Ei(k)) (i, qn)-
It implies that
a(pin — Inpi, qn)
=a(p; — Inpi, qn) + Ein(ky)(Di.hs qn) — Ei(ky) (Pis qn)
=a(p; — Inpi, qn) + Ein(ky)(pi,n — Pis qn) + (Ein(ky) — Eitky))(Pis qn)
<Ch?|pillslanl,
where we have used the Theorem 3.1 and Lemma 3.3. Taking q, = p; » — Inpi implies that

Ipin — Inpilln < Ch?[|pills.
Thus, we have
IW2(Vpi — Grpin)llo
<IWY2(Vp; = Gulnpi)llo + IW2(Grlnpi — Ghpin)llo
<[I(Vpi — Grlppi)llo + I1(Grlnpi — Ghpin)llo
<I(Vpi = Gulppdllo + IVUrpi — Pi,n)llo
<Ch?|pils.

where we have use Lemma 4.3 in [15] and (3.26). O

Using the above theorem, we can prove the following superconvergence result for recovered eigenvalues.

Theorem 3.5. Let ’I::,-,h (ky) be the approximate eigenvalue of E; (k) given in (3.21). Then we have
|Ein(ky) — Ei(kp)| < Ch®|[pill3.
Proof. By the Lemma 3.2 and (3.21), we have
Ei,h(kl\) — Ei(ky)
=a(pi — Pin, Pi — Pin) — IW'2(Vpin — Grpin) 1§ — Ei(kp) I pi — il
ik ik
= (W(V+ k) (i = pi) (V + - k)(Pi = i) -
T 2
IW'2(Vpp — Gupwllg — Eitky) | pi — pinll

ik
= (W(Vpi — Vpin). VDi — VDin) — % (WV(pi — pin). ki (pi — pin))
ikH kﬁ
+ o= (K1 (pi — pin), WV (pi — pin)) + an? (WK1 (pi — pin). Ki(pi — pin)) +

IW2(Vpy — Ghpw) I3 — EitkIIpi — Pinll3

ik
= (W (Vpi — Gupin). VPi — GrDin) — z—jﬂ (WV(pi — pip). Ki(pi — pin)) +
. 2
ik| ki
o (K1 (pi — pin), WV (pi — pin)) + = (Wki(pi — pin). Ki(pi — pin)) +

2Re (W (Vi — Gppin). Ghpih — Vpin) — EikIIpi — pinl
=<C (IIVPi — Gnpinlg +1Ipi — PinllolV(pi — Pin)llo

+ 1pi = Pinll§ + IVPi = GupinllolVpin — Grpinllo + 1pi = Pinl?))

<Ch3|pil3. O

409

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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Remark 3.1. One will see in Section 4 that the real error bound of eigenvalues is O (h*) instead of the theoretical estimate
O(h?), which has been pointed out in the pioneer work [27]. To the best of our knowledge, the real sharp error estimate
of gradient recovery procedure has not been rigorously obtained. An alternative method, referred to the function recovery
procedure [29], can be applied to achieve a theoretical proof of O(h*) error bound. Both the gradient recovery method and
the function recovery method share the same superconvergence results. But in contrast to the function recovery method, the
gradient recovery procedure is more computationally efficient and it admits a fast sparse matrix representation as shown in
the next subsection. Those properties are desired when we need to solve a series of eigenvalue problems.

3.4. Efficient implementation

In this section, we present an efficient implementation of the proposed method. One of our key observation is that the
gradient recovery procedure is just two multiplications of a sparse matrix and a vector, which can be done within O(N)
operations. For a sake of clarity, we rewrite G, as

G¥p
Grp=| 1. (3.29)
Gyp

Notice that gradient recovery operator Gy is a linear bounded operator from Vj, to V4 x Vj. In other words, Gy and G,{ are
both linear bounded operators from Vj to Vp. It is well known that every linear operator (linear transform) from one finite
dimension vector space to itself can be rephrased as a matrix linear transform [5]. Suppose {¢;};_; is the standard nodal
basis function for Vj. Let b be the vector of basis functions, i.e. b= (¢1,---, ¢n)T. Then for every function v, € Vy, it can
be rewritten in the following form

N
vp=Y vigi=V'b, (3.30)
1

where v= (vq,---,vy)T and v; is the value of vj, at nodal point z;. Similarly, the recovered gradient G,vj can also be
rephrased as

Gnvh = [Gjvh. Gy vi] = [vx" b, vy b] (331)

where vx and vy are the vectors of recovered gradient at nodal points. Since G and Gf,’ are two linear bounded operators
from Vj, to Vj, there exist two matrices G € RNV and G} € RV*N such that

Vx=Gpv and vy=Gjv. (3.32)

Here G} and G}'l are called the first order differential matrices. From the definition of polynomial preserving recovery, it is
obvious G} and G{l are both sparse matrices.
To efficiently implement the algorithm, we rewrite the bilinear form a(-, -) as

Kk Kk
ap,q) = / W(X)(V+12—k1)p(X)-(V+1—k1)q(X)dx
T 2w
QxL

= WX)VpX) - Vgx)dx —

Qx 1

Kk o
15 / WX)Vpx) - kig(X)dx + (3.33)
Qx 1

iﬂ / WX)k1q(X) - Vp(X)dx +
2w
Qz 1

kZ
4—”2 / Wkiq(x) - kig(x)dx.
JT
Qy L

Let A, B, and C be the sparse matrices of the bilinear form fQ“ WX)VpXx) - Vgx)dx, IQEL WX)Vpx) - kig(x)dx, and

sz ; W (x)k1 p(x) - k1q(x)dx, respectively. Then the total sparse matrix can be represented as
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S=A—iﬂB+ik—”BT+ﬁC (3.34)
27 27 42 ’
In addition, we use M to denote the mass matrix.
The above algorithm can be summarized in Algorithm 1.

Algorithm 1: Superconvergent post-processing algorithm for computing edge mode.

1 Generate a uniform mesh 7y;

2 Construct sparse matrices A, B, C, M, Gy, and Gy;
3 Let k =linspace(0, 27, K);

4 for j=1:K do

5 Let ky =k(j);
k2

6 Form the big stiffness matrix S=A — i;—‘j‘rB + i;—‘,‘rBT + M—‘ZC:
7 Solve the generalized eigenvalue problem Sv = Ej, (kj)Mv;
8 Compute the recovered gradient by doing two sparse matrix-vector multiplications vx = G;‘lv and vy = G{v;
9 Update the eigenvalue

En(ky) = En(kp) — IWY2(Vpp — Gap) 3 oy, -

10 end

From Algorithm 1, the cost of gradient recovery is about O(N) and the most expansive part is the computation of the
generalized eigenvalue.

4. Numerical examples

In this section, we present several numerical examples to show the efficiency of the proposed Bloch theory-based gradi-
ent recovery method. Our method and analysis apply for any honeycomb structured media with a domain wall modulation
given in Section 2. The material weight is always of the form

W (X) = AX) + 6n(5Kz - X) B(X). (4.1)

In the numerical examples, A(X) is given in (2.2), B(X) is given in (2.4) or (2.5) and 1(¢) = tanh(¢). These simple choices
of material weights are sufficient enough to demonstrate our method and analysis. The first example is to numerically
verify the superconvergence of the method, and the other examples are devoted to the computation of edge modes for the
P-symmetry and C-symmetry breaking cases in honeycomb structures.

4.1. Verification of superconvergence

In this example, we present a comparison of eigenvalues in (2.7)-(2.9) computed by the standard finite element method
and gradient recovery method, respectively. In this test, we take N =20, 40, 80, 160, 320, 640 and L = 10. A(x) is given in

1
(2.2) with ag =23, C = (_07 01 ) B(x) is given in (2.4), § = 2. Namely,
2
A(X) =[23 —cos(x-kq) —cos(x- k) — cos(x-Kk3)]I2x2, (4.2)

B(x) = [sin(x - k1) + sin(x - k) + sin(X - k3)] I2x2.

To compute the error of eigenvalues, we consider the following relative errors

Err |Ein; — Einj4
11— ’
Eihji
and
G [Ein = Eing
i= = .
Ein;,,

We also use the following error

De; = Gn(pin;) — Gr(Pihjq)llo.e

to measure the superconvergence of the recovered gradient of the eigenfunctions.
In this test, we take k = 0.28k; and focus on the computation of the first six eigenvalues. In Fig. 1, we plot the con-
vergence rates for the relative error of eigenvalues computed by the standard finite element method. It indicates that the
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Fig. 1. Convergence rates of the eigenvalues for the case (4.2)-(4.3) computed by the standard finite element method.
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Fig. 2. Convergence rates of the eigenvalues for the case (4.2)-(4.3) computed by the Bloch-theory based gradient recovery method.

convergence rate is @(h?), which is consistent with the theoretical result in Theorem 3.1. In Fig. 2, we plot the convergence
rates for the relative error of the eigenvalues computed by the Bloch theory-based gradient recovery method. It converges
at the superconvergent rate of O(h*). As explained in Remark 3.1, it is better than the result predicted by Theorem 3.5. The
comparison shows that the gradient recovery method outperforms the standard finite element method in the several digits
magnitude. In the following examples, we shall only show the eigenvalues computed by the gradient recovery method. In
Fig. 3, we show the error curves of eigenfunctions. The recovered gradient is observed to superconvergent at rate of O(h?),
which consist with the theoretical result in Theorem 3.4.

4.2. Computational of edge modes for P-symmetry breaking

Here we test the P-symmetry breaking case, i.e., B(X) is given in (2.4). In all the following tests, we take the N = 64 and
the mesh size is h = &;.
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Fig. 3. Convergence rates of recovered gradient of the eigenfunctions for the case (4.2)-(4.3).
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Fig. 4. Eigenvalues computed by gradient recovery methods for the P-symmetry breaking case (4.4)-(4.5) with L =10. The edge mode is corresponding to
the line marked by ‘X'.

Test Case 1: In this test, we consider the case that

A(X) =[23 — cos(x- k1) — cos(x - k) — cos(x - K3)]| I2x2, (44)
B(x) = [sin(x - k1) + sin(x - ky) + sin(x - k3)] I2x2, (4.5)

with the parameter § = 6.

We firstly run our test with L = 10. We graph the first twenty-five eigenvalues for k| € [0, 27] in Fig. 4, from which one
can see that the red line corresponding to the 20th eigenvalue is isolated from other lines. Based on the analysis in [22], this
curve corresponds to the edge mode, and all other eigenvalues belong to the continuous spectrum. In Fig. 5, we show the
contour graph of the modulus of the 19th, 20th, and 21st eigenvalues when k| = 2Z In this graph and all the other contour
graphs in this paper, we select v, as x-axis and v; as y-axis. From Fig. 5b, we clearly obverse the 20th eigenfunction (edge
mode) is periodic in v; and localized at the center along v,.
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Fig. 5. Contour of the module of the eigenfunctions computed by gradient recovery method with L =10 for the 7P-symmetry breaking case (4.4)-(4.5)
when kj = ZT” We choose v, as x-axis and v; as y-axis. The 20th eigenfunction is the edge mode, which is periodic in v; and localized at the center
along v;.
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Fig. 6. Eigenvalues computed by gradient recovery methods for the P-symmetry breaking case (4.4)-(4.5) with L = 15. The edge mode is corresponding to
the line marked by ‘X'

To make a comparison, we repeat our test for L = 15. In Fig. 6, we show the plot of the first thirty-five recovered
eigenvalues. The edge mode corresponds to the 30th eigenvalue. From Fig. 7b, we see more clearly that the eigenvalue is
localized at the center along v;.

Test Case 2: In this test, we consider the case that

A(X) =[4 — cos(x - ki) — cos(x - kp) — cos(x - k3)] I2x2, (4.6)
B(x) = [sin(x - k1) + sin(x - k) + sin(X - k3)] [2x2, (4.7)

with the parameter § = 1.
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Fig. 7. Contour of the module of the eigenfunctions computed by gradient recovery method with L =15 for the 7P-symmetry breaking case (4.4)-(4.5) when
k= %” We choose v, as x-axis and v; as y-axis. The 30th eigenfunction is the edge mode, which is periodic in v; and localized at the center along vy.
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Fig. 8. Eigenvalues computed by gradient recovery methods for the P-symmetry breaking case (4.6)-(4.7) with L = 10. The edge mode is corresponding to
the line marked by ‘X'. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

We compute the edge mode with L = 10. The first twenty-five eigenvalues are shown in Fig. 8. Similarly, we find that
the 20th eigenvalue is isolated from other eigenvalues, which is marked by ‘X’ and plotted in red. In Fig. 9, we show the
contour of the module of the some eigenfunctions with kj = £F, which confirms that the 20th eigenvalue is associated with
the edge mode.
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Fig. 9. Contour of the module of the eigenfunctions computed by gradient recovery method with L =10 for the 7P-symmetry breaking case (4.6)-(4.7)
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Fig. 10. Eigenvalues computed by gradient recovery methods for the C-symmetry breaking case (4.8)—(4.9) with L = 10. The edge mode is corresponding to
the line marked by ‘X'.

4.3. Computation of edge modes for C-symmetry breaking

We consider the C-symmetry breaking case. Specifically,

AX) =[4 — cos(x-Kky) — cos(x-Ky) — cos(Xx - K3)]I2x2, (4.8)
B(x) = [cos(x - k1) + cos(x - k2) + cos(x - k3)]o2, (4.9)
and the parameter § = 1. In Fig. 10, we plot the first twenty-five eigenvalues E, p in terms of kj. At the point k| = -, we

observe that the 19th, 20th, and 21st eigenvalues are isolated from other eigenvalues. It looks like there are three edge
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Fig. 11. Contour of the module of the eigenfunctions computed by gradient recovery method with L = 10 for the C-symmetry breaking case (4.8)-(4.9)
when k| = ZT” We choose v; as x-axis and vq as y-axis. The 21st eigenfunction is the edge mode, which is periodic in vy and localized at the center along
vy.

modes. To investigate the situation, we graph the contour of the module of the those eigenfunctions in Fig. 11. From Fig. 11,
the 19th and 20th eigenfunctions are localized at the boundary but the 21st eigenfunction is localized at the center. Based
on the analysis in [22], the 19th and 20th eigenfunctions are the pseudo edge modes and the only edge mode is the 21st
eigenfunction.

4.4. Computation of the edge mode in the anisotropic case with C-symmetry breaking

In this subsection, we consider the numerical results with anisotropic coefficients. Specifically, A(x) is given in (2.2) with

ap =10, cz(_ol _22) (4.10)
B(x) = [cos(x - K1) + cos(Xx - ky) + cos(Xx - K3)]oo, (411)

and the parameter § = 1. In Fig. 12, we plot the first twenty-five eigenvalues Ei,h in terms of k. Similar to the numerical
results in previous section, we observe that 19th, 20th, and 21st eigenvalues are isolated from other eigenvalues at k| = ZT”

The red curve is the curve corresponding to the 21st eigenvalue. In Fig. 13, we draw the contour plot of the corresponding
eigenfunctions when k| = ZT” We can see that the eigenfunctions corresponding to the 19th and 20th eigenvalues are
localized at the boundary, while the eigenfunction corresponding to the 21st eigenvalue is localized at the center which is
the edge mode.

5. Conclusion
Photonic graphene is an “artificial graphene” which admits subtle propagating modes of electromagnetic waves. It is also

an important topological material which supports topological edge states. These states propagates along the edge without
any back scattering when passing through a defect. So they have wide applications in many optical systems. Unfortunately,
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Fig. 13. Contour of the module of the eigenfunctions computed by gradient recovery method with L =10 for the anisotropic C-symmetry breaking case
(4.10)=(4.11) when k| = ZT” We choose v; as x-axis and v; as y-axis. The 21st eigenfunction is the edge mode, which is periodic in v; and localized at
the center along v.
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only few analytical results which work in a very narrow parameter regime can be obtained, see for example [22]. How to
numerically compute these modes and associated gradients accurately to construct the whole electromagnetic fields under
propagation is a very important question in applications. To solve this problem, we propose a novel superconvergent finite
element method based on Bloch theory and gradient recovery techniques for the computation of such states in photonic
graphene with a domain wall modulation. We analyze the accuracy of this method and show its efficiency by computing
the P-symmetry and C-symmetry breaking cases in honeycomb structures. Our numerical results are consistent with the
analysis in [22]. At present, this work only focuses on the static modes. In the future, we shall study the dynamics of such
modes. This requires us to (1) recover the full electromagnetic fields from these modes computed by the superconvergent
finite element method; (2) compute the time evolution equation (Maxwell equation). How to utilize the high accurate edge
states to perform their dynamics will be further investigated.
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