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Photonic graphene, a photonic crystal with honeycomb structures, has been intensively 
studied in both theoretical and applied fields. Similar to graphene which admits Dirac 
Fermions and topological edge states, photonic graphene supports novel and subtle 
propagating modes (edge modes) of electromagnetic waves. These modes have wide 
applications in many optical systems. In this paper, we propose a novel gradient recovery 
method based on Bloch theory for the computation of topological edge modes in photonic 
graphene. Compared to standard finite element methods, this method provides higher 
order accuracy with the help of gradient recovery technique. This high order accuracy 
is desired for constructing the propagating electromagnetic modes in applications. We 
analyze the accuracy and prove the superconvergence of this method. Numerical examples 
are presented to show the efficiency by computing the edge mode for the P-symmetry 
and C-symmetry breaking cases in honeycomb structures.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Graphene has been one of the popular research topics in different theoretical and applied fields in the past two decades 
[14]. Its success inspires a lot of analogs (referred to as “artificial graphene”) which are two-dimensional systems with simi-
lar properties to graphene [21,26,32,33,36,37]. Among those analogs, photonic graphene, a photonic crystal with honeycomb 
structures, has attracted great interest recently [2,31,32]. Similar to graphene which admits Dirac fermions and topologi-
cal edge states, photonic graphene supports novel and subtle propagating localized modes of electromagnetic waves. These 
modes are the main research objects in topological photonics and have large applications in many optical systems [24,25], 
and thus it is crucial to understand such interesting propagating modes. This brings opportunities and challenges to both 
applied and computational mathematics.

The propagation of electromagnetic waves in media is governed by the Maxwell equations in three spatial dimensions. 
Thanks to the symmetries of photonic crystals, the in-plane propagating electromagnetic modes can be described by the 
following eigenvalue problem in L2(R2) [22],

LW � ≡ −∇ · W (x)∇� = E�, x ∈ R
2. (1.1)
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Physically, �(x) represents the propagating mode of electromagnetic waves, the eigenvalue E is related to the frequency of 
the wave, and the positive definite Hermitian matrix function W (x) corresponds to the material weight of the media; see 
[20,22] for details.

If the medium is a perfect photonic crystal, the material weight W (x) is periodic. To obtain novel propagation modes, 
a bulk photonic crystal is often modulated by different types of defects which break the periodicity of the medium. For 
instance, in this work, we will consider a photonic graphene modulated by a domain wall defect. In this setup, there exist 
the so-called topological edge states. In some proper asymptotic regimes, the existence and dynamics can be explicitly 
analyzed with a rigorous asymptotic analysis, see for instance in [1,3,22]. However, in a generic parameter regime, one 
needs to resort to numerical computation to investigate the existence and study the properties of electromagnetic modes.

The numerical challenge of the eigenvalue problem (1.1) in photonic lattice lies in the lattice structure. For bulk geome-
try, W (x) is periodic and the eigenfunction � is quasi-periodic (periodic up to a phase) in each lattice, the spectral method 
is usually used after applying the Bloch theory [8] when the material weight is smooth. However, when one introduces the 
domain-wall modulated defect to break the symmetry of geometry which leads to the appearance of edge modes, the spec-
tral method is no longer a good option due to the loss of symmetry and quasi-periodic boundary conditions in the lattice. 
Since LW has a divergence form, finite element method comes to be a natural choice. A standard finite element method 
lead to that the numerical eigenfuntions and their gradients have different accuracy. In applications, the eigenfunction of 
(1.1) usually represents the longitudinal electric/magnetic components and the transverse components are the gradients of 
the eigenfunctions. It is very important to accurately compute the mode �(x) and its gradient in order to construct the full 
electromagnetic fields under propagation [22], and therefore a finite element method with high order accuracy in gradient 
is desired for the computation of (1.1).

Gradient recovery methods are one of the major postprocessing techniques based on finite element methods, which are 
able to provide superconvergent gradient and asymptotically exact a posteriori error estimators [4,7,9,27,39–41], anisotropic 
mesh adaption [12,13,19], and enhancement of eigenvalue approximation [16,30,35]. Recently, recovery techniques are used 
to construct new finite element methods for higher order partial differential equations [10,17,18]. A famous example of 
gradient recovery methods is the Superconvergent Patch Recovery (SPR) proposed by Zienkiewicz and Zhu [40], also known 
as ZZ estimator, which has become a standard tool in many commercial Finite Element software such as ANSYS, Abaqus, 
and LS-DYNA. An important alternative is the polynomial preserving recovery (PPR) proposed by Zhang and Naga [38], 
which improved the performance of SPR on chevron pattern uniform mesh. It has also been implemented by commercial 
Finite Element software COMSOL Multiphysics as a superconvergence tool. However, direct application of gradient recovery 
methods to (1.1) leads to huge computational cost due to the existence of lattice structure.

In this paper, we consider the honeycomb lattice structure and develop a gradient recovery method based on Bloch 
theory. We apply the Bloch theory in the direction that has no domain-wall modulated defect, and then use the gradient 
recovery method to solve the eigenvalue problem for each wave number. Compared to standard finite element methods, this 
method provides higher order accuracy with the help of gradient recovery technique. We analyze the accuracy and prove 
the superconvergence of this method. We also compute the edge modes for the P-symmetry and C-symmetry breaking 
cases in honeycomb structures to show the efficiency of the method. Our results are consistent with the analytical results 
given in [22].

The rest of the paper is organized as follows. In Section 2, we introduce the problem background on photonic graphene, 
Dirac points and edge modes and the Bloch–Floquet theory; In Section 3, we propose the gradient recovery method based 
on Bloch theory, analyze the accuracy and prove the superconvergence of the method; numerical examples of computing 
P-symmetry and C-symmetry breaking cases in honeycomb structures are presented in Section 4 to show the efficiency, 
and we give conclusive remarks in Section 5.

2. Preliminary

In this section, we summarize basic properties of the photonic graphene, Dirac points and edge states as a description of 
problem background, and refer interested readers to [22] and references therein for more details.

2.1. Honeycomb-structured material weight

A perfect photonic graphene has a honeycomb structured material weight, i.e., W (x) = A(x), with the honeycomb struc-
tured material weight A(x) mathematically satisfies

1. A(x) is Hermitian, positive definite, uniform elliptic;
2. A(x + v) = A(x) for all x ∈R

2 and v ∈ �h;
3. A(−x) = A(x); (PC-invariance)
4. A(R∗x) = R∗ A(x)R; (R-invariance)
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Here, the honeycomb lattice �h is a hexagonal lattice generated by, e.g.,
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R is a 2 × 2 matrix that rotates a vector in R2 clockwise by 2π/3 about x = 0:

R =
⎛⎝ − 1

2

√
3

2

−
√

3
2 − 1

2

⎞⎠ . (2.1)

We have also used the conventions: P stands for the parity inversion operator, i.e., P[ f ](x) = f (−x); C stands for the 
complex conjugate operator, i.e., C[ f ](x) = f (x); R stands for the rotation operator, i.e., R[ f ](x) = f (R∗x).

Remark 2.1. Condition 1 states the basic requirements for a loss-free material weight, which ensue that the second order 
differential operator LA associated with the material weight A(x) is self-adjoint and elliptic. Condition 2 implies that the 
Bloch theory applies and Conditions 3, 4 imply the commutators between LA and the symmetry operators vanish, i.e., 
[PC, LA] = 0 and [R, LA] = 0.

Simply speaking, photonic graphene is just an optic media with a hexagonally periodic, PC- and R-invariant mate-
rial weight. A honeycomb structured material weight A(x) defined above is generically anisotropic and complex. The full 
characterization of its Fourier series is given in Section 3.4 of [22]. The simplest nonconstant honeycomb structured media 
containing the lowest Fourier components is of the form

A(x) = a0 I + C eik1·x + RC R∗ eik2·x + R∗C R ei(−k1−k2)·x

+ C T e−ik1·x + RC T R∗ e−ik2·x + R∗C T Rei(k1+k2)·x,
(2.2)

where C could be any real 2 ×2 matrix and a0 is a positive constant ensuring that A(x) is positive definite. If C is symmetric, 
then A(x) is real. For most natural materials, the material weight is real. However, for meta-materials, the effective material 
weight can be complex, see for instance [21]. If C = aI2×2, then A(x) represents an isotropic material.

2.2. Bloch–Floquet theory and Dirac points

According to the Bloch–Floquet theory on the elliptic operator with periodic coefficients, the Bloch modes propagating 
in a perfect photonic graphene satisfy

LA�(x) = E�(x),

�(x + v) = eik·v�(x), v ∈ �h

(2.3)

Here the quasi-momentum k takes the value in the Brillouin Zone Bh . For each k, the above eigenvalue problem has discrete 
spectrum E1(k) ≤ E2(k) ≤ E3(k) ≤ · · · and the corresponding eigenfunctions, referred to as Bloch modes, are of the form 
� j(x) = eik·x p j(x), j = 1, 2, · · · with p j(x) are �h periodic.

Let K = 1
3 (k1 − k2) and K′ = −K. It is shown in [22] that if A(x) is a honeycomb structured material weight, there exist 

two dispersion bands Eb(k) and Eb+1(k) intersecting each other at K and K′ and the dispersion relations are conical nearby. 
These degenerate points at the dispersion bands, (Eb(K�), K�), K� = K, K′ , are referred to as the Dirac points. Dirac points 
are unstable under PC-symmetry breaking perturbations. Namely, if LA has a Dirac point at K� with the Dirac energy E D , 
then LA+δB ≡ −∇ · (A(x) + δB(x))∇ has no Dirac points at K� near the energy E D provided B(x) is NOT PC-invariant. 
Specifically, the two intersecting bands at K� separate and a local spectrum gap opens. There are two simple ways to break 
the PC-symmetry:

(1) B(x) preserves C-symmetry but break the P-symmetry. In other words, B(x) is real and odd. A simple example is

B(x) = [sin(k1 · x) + sin(k2 · x) + sin(k3 · x)]I2×2 (2.4)
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(2) B(x) preserves P-symmetry but break the C-symmetry. In other words, B(x) is purely imaginary and even. A simple 
example is

B(x) = [cos(k1 · x) + cos(k2 · x) + cos(k3 · x)]σ2 (2.5)

where σ2 is the second Pauli matrix, i.e., σ2 =
(

0 −i
i 0

)
.

2.3. Domain wall modulated photonic graphene

An interesting phenomenon of the perfect photonic graphene is the conical diffraction, i.e., the wave packets associated 
with the Dirac points propagate conically in the media [11,22]. Due to the potential applications, localized and chiral prop-
agations of electromagnetic waves is one of the main research topics related to the so-called topological materials. This can 
be achieved in the photonic graphene modulated by a domain wall. Specifically, we have the following setup:

1. Perfect photonic graphene: Let A(x) be a honeycomb structured material weight. Let K� = K or K′ , and assume that 
(K�, E D) is a Dirac point of the operator LA = −∇ · A∇ .

2. Two perturbed bulk mediums with opposite topological phases: Let B(x) be a �h-periodic, 2 × 2 Hermitian matrix such that 
B(−x) = −B(x). The perturbed operator LA±δη∞ B ≡ −∇ · [A(x) ± δη∞B(x)]∇ has no Dirac points near (K�, E D) and a 
local spectrum gap opens.

3. Connecting two mediums with a domain wall: Let η(ζ ) be a real bounded function with η(±∞) = ±η∞ , for instance, 
η(ζ ) = η∞ tanh(ζ ). The two perturbed bulk mediums are connected by the domain wall η(ζ ) along one direction 
(referred as the edge), for example, the normal direction of the edge is k2. In other words, the material weight under 
consideration becomes W (x) = A(x) + δη(δk2 · x)B(x).

Our model of a honeycomb structure with an edge is the domain-wall modulated operator:

LW ≡ −∇ · [A(x) + δη(δk2 · x)B(x)]∇. (2.6)

The operator LW breaks translation invariance with respect to arbitrary elements of the lattice, �h , but is invariant with 
respect to translation by v1, parallel to the edge (because k2 · v1 = 0 in (2.6)). Associated with this translation invariance is 
a parallel quasi-momentum, which we denote by k‖ . Note that k‖ takes that value in [0, 2π ].

Edge states are solutions of the eigenvalue problem

LW �(x;k‖) = E(k‖)�(x;k‖), (2.7)

�(x + v1;k‖) = eik‖�(x;k‖), (2.8)

�(x;k‖) → 0 as |x · k2| → ∞. (2.9)

We refer to a solution pair (E(k‖), �(x; k‖)) of (2.7)–(2.9) as an edge state or edge mode.
In [22], the existence of the edge states at k‖ = K� ·v1 in the parameter regime δ � 1 is proved and the asymptotic forms 

of the edge states are given. However, in applications, δ is not small and all edge states (not just near K� · v1) are useful. 
Analytical techniques can not achieve this object, and thus numerical methods are required.

3. Gradient recovery method

In this section, we introduce the Bloch-theory based gradient recovery method to solve (2.7)–(2.9).

3.1. Simplified model problem

Let � = R
2/Zv1 be a cylinder. The fundamental domain for � is �� ≡ {τ1v1 + τ2v2 : 0 ≤ τ1 ≤ 1, τ2 ∈ R}. Let �(x; k‖) =

ei
k‖
2π k1·x p(x; k‖). Then (2.7)–(2.9) is equivalent to the following eigenvalue problem

LW (k‖)p(x;k‖) = E(k‖)p(x;k‖), (3.1)

p(x + v1;k‖) = p(x;k‖), (3.2)

p(x;k‖) → 0 as |x · k2| → ∞, (3.3)

where

LW (k‖) = −(∇ + i
k‖
2π

k1) · W (∇ + i
k‖
2π

k1). (3.4)

It is easy to see that LW (k‖) is a self-adjoint operator.
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To compute the edge mode, it suffices to consider the spectrum of the operator LW (k‖) on the truncated domain

��,L ≡ {τ1v1 + τ2v2 : 0 ≤ τ1 ≤ 1,−L ≤ τ2 ≤ L} . (3.5)

Let W k,p(��,L) be the Sobolev spaces of functions defined on ��,L with norm ‖ · ‖k,p and seminorm | · |k,p . To incorporate 
the boundary conditions, we define

W k,p
per ≡ {� : � ∈ W k,p(��,L) and �(x + v1) = �(x)} (3.6)

and

W k,p
per,0 ≡ {� : � ∈ W k,p

per and �(±Lv2) = 0}. (3.7)

When p = 2, it is simply denoted as Hk
per or Hk

per,0.

The variational formulation of is (3.1)–(3.3) to find the eigenpair (E(k‖), �(x; k‖)) ∈ R × H1
per,0 such that

a(p,q) = E(k‖)(p,q), ∀q ∈ H1
per,0, (3.8)

where the bilinear form a(·, ·) is defined as

a(p,q) =
∫

��,L

W (x)(∇ + i
k‖
2π

k1)p(x) · (∇ + i
k‖
2π

k1)q(x)dx, (3.9)

and the inner product is defined as

(p,q) =
∫

��,L

p(x)q(x)dx. (3.10)

It is easy to see that the bilinear a(·, ·) is symmetric and elliptic. According to the spectral theory of linear operator, we 
know that (3.8) has a countable sequence of real eigenvalues 0 < E1(k‖) ≤ E2(k‖) ≤ E3(k‖) ≤ · · · → ∞ and the corresponding 
eigenfunctions p1(x; k‖), p2(x; k‖), p3(x; k‖), · · · are assumed to satisfy

a
(

pi(x;k‖), p j(x;k‖)
) = Ei(k‖)

(
pi(x;k‖), p j(x;k‖)

) = δi j Ei(k‖).

3.2. Finite element approximation

To simplify the imposing of the periodic boundary, we shall consider the uniform triangulation of ��,L . To generate a 
uniform triangulation Th with mesh size h = ‖v1‖

N of ��,L , we firstly divide ��,L into 2LN2 sub-rhombuses with mesh size 
h = ‖v1‖

N and divide each sub-rhombus into two triangles. We define the standard linear finite element space with periodic 
boundary condition in v1 as

Vh = {
v ∈ C(��,L) : q|T ∈ P1(T ),∀T ∈ Th and q(x + v1) = q(x)

}
, (3.11)

with Pk being the space consisting of polynomials of degree up to k and the corresponding finite element space with 
homogeneous boundary condition in v2 as

Vh,0 = Vh ∩ H1
per,0. (3.12)

The finite element discretization of the eigenvalue problem (3.8) is to find the eigenpair (Eh(k‖), ph(x; k‖)) ∈ R × Vh,0

such that

a(ph,qh) = Eh(k‖)(ph,qh), ∀qh ∈ Vh,0. (3.13)

Similar as (3.8), (3.13) has a finite sequence of eigenvalues 0 < E1,h(k‖) ≤ E2,h(k‖) ≤ · · · ≤ Enh,h(k‖) and the corresponding 
eigenfunctions are assumed to satisfy

a
(

pi,h(x;k‖), p j,h(x;k‖)
) = Ei,h(k‖)

(
pi,h(x;k‖), p j,h(x;k‖)

) = δi j Ei,h(k‖).

For the finite element approximation, the following error estimates is well established in [6,34].
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Theorem 3.1. Suppose pi(x; k‖) ∈ H2
per,0 . Then we have

Ei(k‖) ≤ Ei,h(k‖) ≤ Ei(k‖) + Ch2; (3.14)

‖pi − pi,h‖1 ≤ Ch; (3.15)

‖pi − pi,h‖0 ≤ Ch2. (3.16)

The following property of the eigenvalue and eigenfunction approximation will be used in the analysis.

Lemma 3.2. Let (E(k‖), p(x; k‖)) be the solution of the eigenvalue problem (3.8). Then for any q ∈ H1
per,0 , we have

a(p,q)

‖q‖2
0

− E(k‖) = a(p − q, p − q)

‖q‖2
0

− E(k‖)
‖p − q‖2

0

‖q‖2
0

. (3.17)

3.3. Superconvergent post-processing

To identify edge modes, we need to compute a series of eigenvalue problems with higher accuracy for k‖ ∈ [0, 2π ]. To 
achieve higher accuracy, we can use higher-order elements. But it will involve higher computational complexity. To avoid 
the computational complexity, we use the linear element and then adopt a recovery procedure to increase the eigenpair 
approximation accuracy [30].

Let Gh : Vh → Vh × Vh denote the polynomial preserving recovery operator introduced in [28,38]. For any function 
qh ∈ Vh , Ghqh is a function in Vh × Vh . To define Ghqh , it suffices to define the value of Ghqh at every nodal point. Let Nh

denote the set of all nodal points of Th . Note that Nh is the set of all vertices of Th . For any z ∈Nh , construct a local patch 
of the element Kz which contains at least six nodal points. The key idea of PPR is to fit a quadratic polynomial pz ∈Pz(Kz)

in the following least-squares sense

pz = arg min
p∈P2(Kz)

∑
z̃∈Nh∩Kz

(qh − p)2(z̃) (3.18)

Then the recovered gradient at z is defined as

(Ghqh)(z) = ∇pz(z). (3.19)

The global recovered gradient is Ghqh = (Ghqh)(z)φz(x) where {φz} is set of nodal basis of Vh .
To improve the accuracy of eigenvalue approximation, we set q = ph in (3.17) which implies

Eh(k‖) − E(k‖) = a(p − ph, p − ph) − E(k‖)‖p − ph‖2
0 (3.20)

It is obvious that the first term dominates in the eigenvalue approximation error. The idea of [30] for Laplace eigenvalue 
problem is to subtract a good approximation of the first term from both sides by replacing the exact gradient by recovered 
gradient. In our case, it is much more complicated since the energy error contains both ∇p and p. Our idea is to only 
consider the leading part in the energy error. Thus, we define the recovered eigenvalue as follows

Êh(k‖) = Eh(k‖) − ‖W 1/2(∇ph − Gh ph)‖2
0. (3.21)

To show the superconvergence of the recovered eigenvalue, the following supercloseness result is needed which can be 
found in [23].

Lemma 3.3. Let Ih p be the interpolation of p into the finite element space Vh. If p ∈ H3
per,0 , then we have

a(p − Ih p,qh) ≤ Ch2‖p‖3‖qh‖1, ∀qh ∈ Vh,0. (3.22)

Proof. Using the similar idea in [23], we can prove the above lemma. �
Based on the above lemma, we can show the superconvergence of recovered gradient of eigenfunctions as follows:

Theorem 3.4. Let Gh be the polynomial preserving recovery operator defined in the above. Then for any eigenfunction pi,h correspond-
ing to the eigenvalue Ei,h(k‖), there exists an eigenfunction pi corresponding to Ei(k‖) such that

‖W 1/2(∇pi − Gh pi,h)‖0 ≤ Ch2‖pi‖3. (3.23)
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Proof. By (3.8) and (3.13), we have

a(pi,h − pi,qh)

= Ei,h(k‖)(pi,h,qh) − Ei(k‖)(pi,qh)

= Ei,h(k‖)(pi,h − pi,qh) + (Ei,h(k‖) − Ei(k‖))(pi,qh).

(3.24)

It implies that

a(pi,h − Ih pi,qh)

=a(pi − Ih pi,qh) + Ei,h(k‖)(pi,h,qh) − Ei(k‖)(pi,qh)

=a(pi − Ih pi,qh) + Ei,h(k‖)(pi,h − pi,qh) + (Ei,h(k‖) − Ei(k‖))(pi,qh)

≤ Ch2‖pi‖3‖qh‖1,

(3.25)

where we have used the Theorem 3.1 and Lemma 3.3. Taking qh = pi,h − Ih pi implies that

‖pi,h − Ih pi‖1 ≤ Ch2‖pi‖3. (3.26)

Thus, we have

‖W 1/2(∇pi − Gh pi,h)‖0

≤‖W 1/2(∇pi − Gh Ih pi)‖0 + ‖W 1/2(Gh Ih pi − Gh pi,h)‖0

≤‖(∇pi − Gh Ih pi)‖0 + ‖(Gh Ih pi − Gh pi,h)‖0

≤‖(∇pi − Gh Ih pi)‖0 + ‖∇(Ih pi − pi,h)‖0

≤ Ch2‖pi‖3,

(3.27)

where we have use Lemma 4.3 in [15] and (3.26). �
Using the above theorem, we can prove the following superconvergence result for recovered eigenvalues.

Theorem 3.5. Let ̂Ei,h(k‖) be the approximate eigenvalue of Ei(k‖) given in (3.21). Then we have

|̂Ei,h(k‖) − Ei(k‖)| ≤ Ch3‖pi‖2
3. (3.28)

Proof. By the Lemma 3.2 and (3.21), we have

Ê i,h(k‖) − Ei(k‖)
=a(pi − pi,h, pi − pi,h) − ‖W 1/2(∇pi,h − Gh pi,h)‖2

0 − Ei(k‖)‖pi − pi,h‖2
0

= (W (∇ + ik‖
2π

k1)(pi − pi,h), (∇ + ik‖
2π

k1)(pi − pi,h))−
‖W 1/2(∇ph − Gh ph)‖2

0 − Ei(k‖)‖pi − pi,h‖2
0

= (
W (∇pi − ∇pi,h),∇pi − ∇pi,h

) − ik‖
2π

(
W ∇(pi − pi,h),k1(pi − pi,h)

)
+ ik‖

2π

(
k1(pi − pi,h), W ∇(pi − pi,h)

) + k2‖
4π2

(
W k1(pi − pi,h),k1(pi − pi,h)

)+
‖W 1/2(∇ph − Gh ph)‖2

0 − Ei(k‖)‖pi − pi,h‖2
0

= (
W (∇pi − Gh pi,h),∇pi − Gh pi,h

) − ik‖
2π

(
W ∇(pi − pi,h),k1(pi − pi,h)

)+
ik‖
2π

(
k1(pi − pi,h), W ∇(pi − pi,h)

) + k2‖
4π2

(
W k1(pi − pi,h),k1(pi − pi,h)

)+
2 Re

(
W (∇pi − Gh pi,h), Gh pi,h − ∇pi,h

) − Ei(k‖)‖pi − pi,h‖2
0

≤ C
(
‖∇pi − Gh pi,h‖2

0 + ‖pi − pi,h‖0‖∇(pi − pi,h)‖0

+ ‖pi − pi,h‖2
0 + ‖∇pi − Gh pi,h‖0‖∇pi,h − Gh pi,h‖0 + ‖pi − pi,h‖2

0)
)

≤ Ch3‖pi‖2
3. �
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Remark 3.1. One will see in Section 4 that the real error bound of eigenvalues is O(h4) instead of the theoretical estimate 
O(h3), which has been pointed out in the pioneer work [27]. To the best of our knowledge, the real sharp error estimate 
of gradient recovery procedure has not been rigorously obtained. An alternative method, referred to the function recovery 
procedure [29], can be applied to achieve a theoretical proof of O (h4) error bound. Both the gradient recovery method and 
the function recovery method share the same superconvergence results. But in contrast to the function recovery method, the 
gradient recovery procedure is more computationally efficient and it admits a fast sparse matrix representation as shown in 
the next subsection. Those properties are desired when we need to solve a series of eigenvalue problems.

3.4. Efficient implementation

In this section, we present an efficient implementation of the proposed method. One of our key observation is that the 
gradient recovery procedure is just two multiplications of a sparse matrix and a vector, which can be done within O(N)

operations. For a sake of clarity, we rewrite Gh as

Gh p =
(

Gx
h p

G y
h p

)
. (3.29)

Notice that gradient recovery operator Gh is a linear bounded operator from Vh to Vh × Vh . In other words, Gx
h and G y

h are 
both linear bounded operators from Vh to Vh . It is well known that every linear operator (linear transform) from one finite 
dimension vector space to itself can be rephrased as a matrix linear transform [5]. Suppose {φi}N

i=1 is the standard nodal 
basis function for Vh . Let b be the vector of basis functions, i.e. b = (φ1, · · · , φN )T . Then for every function vh ∈ Vh , it can 
be rewritten in the following form

vh =
N∑
1

viφi = vT b, (3.30)

where v = (v1, · · · , v N )T and vi is the value of vh at nodal point zi . Similarly, the recovered gradient Gh vh can also be 
rephrased as

Gh vh = [Gx
h vh, G y

h vh] = [vx
T b,vy

T b] (3.31)

where vx and vy are the vectors of recovered gradient at nodal points. Since Gx
h and G y

h are two linear bounded operators 
from Vh to Vh , there exist two matrices Gx

h ∈R
N×N and Gy

h ∈R
N×N such that

vx = Gx
hv and vy = Gy

hv. (3.32)

Here Gx
h and Gy

h are called the first order differential matrices. From the definition of polynomial preserving recovery, it is 
obvious Gx

h and Gy
h are both sparse matrices.

To efficiently implement the algorithm, we rewrite the bilinear form a(·, ·) as

a(p,q) =
∫

��,L

W (x)(∇ + i
k‖
2π

k1)p(x) · (∇ + i
k‖
2π

k1)q(x)dx

=
∫

��,L

W (x)∇p(x) · ∇q(x)dx−

i
k‖
2π

∫
��,L

W (x)∇p(x) · k1q(x)dx+

i
k‖
2π

∫
��,L

W (x)k1q(x) · ∇p(x)dx+

k2‖
4π2

∫
��,L

W (x)k1q(x) · k1q(x)dx.

(3.33)

Let A, B, and C be the sparse matrices of the bilinear form 
∫
��,L

W (x)∇p(x) · ∇q(x)dx, 
∫
��,L

W (x)∇p(x) · k1q(x)dx, and ∫
W (x)k1 p(x) · k1q(x)dx, respectively. Then the total sparse matrix can be represented as
��,L
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S = A − i
k‖
2π

B + i
k‖
2π

BT + k2‖
4π2

C. (3.34)

In addition, we use M to denote the mass matrix.
The above algorithm can be summarized in Algorithm 1.

Algorithm 1: Superconvergent post-processing algorithm for computing edge mode.

1 Generate a uniform mesh Th;
2 Construct sparse matrices A, B, C, M, Gx , and Gy;
3 Let k = linspace(0, 2π, K );
4 for j = 1:K do
5 Let k‖ = k( j);

6 Form the big stiffness matrix S = A − i k‖
2π B + i k‖

2π BT + k2‖
4π2 C;

7 Solve the generalized eigenvalue problem Sv = Eh(k‖)Mv;

8 Compute the recovered gradient by doing two sparse matrix–vector multiplications vx = Gx
hv and vy = Gy

hv;
9 Update the eigenvalue

Êh(k‖) = Eh(k‖) − ‖W 1/2(∇ph − Gh ph)‖2
0,��,L

.

10 end

From Algorithm 1, the cost of gradient recovery is about O(N) and the most expansive part is the computation of the 
generalized eigenvalue.

4. Numerical examples

In this section, we present several numerical examples to show the efficiency of the proposed Bloch theory-based gradi-
ent recovery method. Our method and analysis apply for any honeycomb structured media with a domain wall modulation 
given in Section 2. The material weight is always of the form

W (x) = A(x) + δη(δk2 · x)B(x). (4.1)

In the numerical examples, A(x) is given in (2.2), B(x) is given in (2.4) or (2.5) and η(ζ ) = tanh(ζ ). These simple choices 
of material weights are sufficient enough to demonstrate our method and analysis. The first example is to numerically 
verify the superconvergence of the method, and the other examples are devoted to the computation of edge modes for the 
P-symmetry and C-symmetry breaking cases in honeycomb structures.

4.1. Verification of superconvergence

In this example, we present a comparison of eigenvalues in (2.7)–(2.9) computed by the standard finite element method 
and gradient recovery method, respectively. In this test, we take N = 20, 40, 80, 160, 320, 640 and L = 10. A(x) is given in 

(2.2) with a0 = 23, C =
(− 1

2 0
0 − 1

2

)
, B(x) is given in (2.4), δ = 2. Namely,

A(x) = [23 − cos(x · k1) − cos(x · k2) − cos(x · k3)] I2×2, (4.2)

B(x) = [sin(x · k1) + sin(x · k2) + sin(x · k3)] I2×2. (4.3)

To compute the error of eigenvalues, we consider the following relative errors

Erri = |Ei,h j − Ei,h j+1 |
Ei,h j+1

,

and

Êrri = |̂Ei,h j − Ê i,h j+1 |
Ê i,h j+1

.

We also use the following error

Dei = ‖Gh(pi,h j ) − Gh(pi,h j+1)‖0,�

to measure the superconvergence of the recovered gradient of the eigenfunctions.
In this test, we take k = 0.28k1 and focus on the computation of the first six eigenvalues. In Fig. 1, we plot the con-

vergence rates for the relative error of eigenvalues computed by the standard finite element method. It indicates that the 
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Fig. 1. Convergence rates of the eigenvalues for the case (4.2)–(4.3) computed by the standard finite element method.

Fig. 2. Convergence rates of the eigenvalues for the case (4.2)–(4.3) computed by the Bloch-theory based gradient recovery method.

convergence rate is O(h2), which is consistent with the theoretical result in Theorem 3.1. In Fig. 2, we plot the convergence 
rates for the relative error of the eigenvalues computed by the Bloch theory-based gradient recovery method. It converges 
at the superconvergent rate of O(h4). As explained in Remark 3.1, it is better than the result predicted by Theorem 3.5. The 
comparison shows that the gradient recovery method outperforms the standard finite element method in the several digits 
magnitude. In the following examples, we shall only show the eigenvalues computed by the gradient recovery method. In 
Fig. 3, we show the error curves of eigenfunctions. The recovered gradient is observed to superconvergent at rate of O(h2), 
which consist with the theoretical result in Theorem 3.4.

4.2. Computational of edge modes for P-symmetry breaking

Here we test the P-symmetry breaking case, i.e., B(x) is given in (2.4). In all the following tests, we take the N = 64 and 
the mesh size is h = 1 .
64
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Fig. 3. Convergence rates of recovered gradient of the eigenfunctions for the case (4.2)–(4.3).

Fig. 4. Eigenvalues computed by gradient recovery methods for the P-symmetry breaking case (4.4)–(4.5) with L = 10. The edge mode is corresponding to 
the line marked by ‘X’.

Test Case 1: In this test, we consider the case that

A(x) = [23 − cos(x · k1) − cos(x · k2) − cos(x · k3)] I2×2, (4.4)

B(x) = [sin(x · k1) + sin(x · k2) + sin(x · k3)] I2×2, (4.5)

with the parameter δ = 6.
We firstly run our test with L = 10. We graph the first twenty-five eigenvalues for k‖ ∈ [0, 2π ] in Fig. 4, from which one 

can see that the red line corresponding to the 20th eigenvalue is isolated from other lines. Based on the analysis in [22], this 
curve corresponds to the edge mode, and all other eigenvalues belong to the continuous spectrum. In Fig. 5, we show the 
contour graph of the modulus of the 19th, 20th, and 21st eigenvalues when k‖ = 2π

3 . In this graph and all the other contour 
graphs in this paper, we select v2 as x-axis and v1 as y-axis. From Fig. 5b, we clearly obverse the 20th eigenfunction (edge 
mode) is periodic in v1 and localized at the center along v2.
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Fig. 5. Contour of the module of the eigenfunctions computed by gradient recovery method with L = 10 for the P-symmetry breaking case (4.4)–(4.5)
when k‖ = 2π

3 . We choose v2 as x-axis and v1 as y-axis. The 20th eigenfunction is the edge mode, which is periodic in v1 and localized at the center 
along v2.

Fig. 6. Eigenvalues computed by gradient recovery methods for the P-symmetry breaking case (4.4)–(4.5) with L = 15. The edge mode is corresponding to 
the line marked by ‘X’.

To make a comparison, we repeat our test for L = 15. In Fig. 6, we show the plot of the first thirty-five recovered 
eigenvalues. The edge mode corresponds to the 30th eigenvalue. From Fig. 7b, we see more clearly that the eigenvalue is 
localized at the center along v2.

Test Case 2: In this test, we consider the case that

A(x) = [4 − cos(x · k1) − cos(x · k2) − cos(x · k3)] I2×2, (4.6)

B(x) = [sin(x · k1) + sin(x · k2) + sin(x · k3)] I2×2, (4.7)

with the parameter δ = 1.
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Fig. 7. Contour of the module of the eigenfunctions computed by gradient recovery method with L = 15 for the P-symmetry breaking case (4.4)–(4.5) when 
k‖ = 2π

3 . We choose v2 as x-axis and v1 as y-axis. The 30th eigenfunction is the edge mode, which is periodic in v1 and localized at the center along v2.

Fig. 8. Eigenvalues computed by gradient recovery methods for the P-symmetry breaking case (4.6)–(4.7) with L = 10. The edge mode is corresponding to 
the line marked by ‘X’. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

We compute the edge mode with L = 10. The first twenty-five eigenvalues are shown in Fig. 8. Similarly, we find that 
the 20th eigenvalue is isolated from other eigenvalues, which is marked by ‘X’ and plotted in red. In Fig. 9, we show the 
contour of the module of the some eigenfunctions with k‖ = 2π

3 , which confirms that the 20th eigenvalue is associated with 
the edge mode.
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Fig. 9. Contour of the module of the eigenfunctions computed by gradient recovery method with L = 10 for the P-symmetry breaking case (4.6)–(4.7)
when k‖ = 2π

3 . We choose v2 as x-axis and v1 as y-axis. The 20th eigenfunction is the edge mode, which is periodic in v1 and localized at the center 
along v2.

Fig. 10. Eigenvalues computed by gradient recovery methods for the C-symmetry breaking case (4.8)–(4.9) with L = 10. The edge mode is corresponding to 
the line marked by ‘X’.

4.3. Computation of edge modes for C-symmetry breaking

We consider the C-symmetry breaking case. Specifically,

A(x) = [4 − cos(x · k1) − cos(x · k2) − cos(x · k3)]I2×2, (4.8)

B(x) = [cos(x · k1) + cos(x · k2) + cos(x · k3)]σ2, (4.9)

and the parameter δ = 1. In Fig. 10, we plot the first twenty-five eigenvalues Ê i,h in terms of k‖ . At the point k‖ = 2π
3 , we 

observe that the 19th, 20th, and 21st eigenvalues are isolated from other eigenvalues. It looks like there are three edge 
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Fig. 11. Contour of the module of the eigenfunctions computed by gradient recovery method with L = 10 for the C-symmetry breaking case (4.8)–(4.9)
when k‖ = 2π

3 . We choose v2 as x-axis and v1 as y-axis. The 21st eigenfunction is the edge mode, which is periodic in v1 and localized at the center along 
v2.

modes. To investigate the situation, we graph the contour of the module of the those eigenfunctions in Fig. 11. From Fig. 11, 
the 19th and 20th eigenfunctions are localized at the boundary but the 21st eigenfunction is localized at the center. Based 
on the analysis in [22], the 19th and 20th eigenfunctions are the pseudo edge modes and the only edge mode is the 21st
eigenfunction.

4.4. Computation of the edge mode in the anisotropic case with C-symmetry breaking

In this subsection, we consider the numerical results with anisotropic coefficients. Specifically, A(x) is given in (2.2) with

a0 = 10, C =
(−1 2

0 −2

)
, (4.10)

B(x) = [cos(x · k1) + cos(x · k2) + cos(x · k3)]σ2, (4.11)

and the parameter δ = 1. In Fig. 12, we plot the first twenty-five eigenvalues Ê i,h in terms of k‖ . Similar to the numerical 
results in previous section, we observe that 19th, 20th, and 21st eigenvalues are isolated from other eigenvalues at k‖ = 2π

3 .
The red curve is the curve corresponding to the 21st eigenvalue. In Fig. 13, we draw the contour plot of the corresponding 

eigenfunctions when k‖ = 2π
3 . We can see that the eigenfunctions corresponding to the 19th and 20th eigenvalues are 

localized at the boundary, while the eigenfunction corresponding to the 21st eigenvalue is localized at the center which is 
the edge mode.

5. Conclusion

Photonic graphene is an “artificial graphene” which admits subtle propagating modes of electromagnetic waves. It is also 
an important topological material which supports topological edge states. These states propagates along the edge without 
any back scattering when passing through a defect. So they have wide applications in many optical systems. Unfortunately, 
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Fig. 12. Eigenvalues computed by gradient recovery methods for the anisotropic C-symmetry breaking case (4.10)–(4.11) with L = 10. The edge mode is 
corresponding to the line marked by ‘X’.

Fig. 13. Contour of the module of the eigenfunctions computed by gradient recovery method with L = 10 for the anisotropic C-symmetry breaking case 
(4.10)–(4.11) when k‖ = 2π

3 . We choose v2 as x-axis and v1 as y-axis. The 21st eigenfunction is the edge mode, which is periodic in v1 and localized at 
the center along v2.
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only few analytical results which work in a very narrow parameter regime can be obtained, see for example [22]. How to 
numerically compute these modes and associated gradients accurately to construct the whole electromagnetic fields under 
propagation is a very important question in applications. To solve this problem, we propose a novel superconvergent finite 
element method based on Bloch theory and gradient recovery techniques for the computation of such states in photonic 
graphene with a domain wall modulation. We analyze the accuracy of this method and show its efficiency by computing 
the P-symmetry and C-symmetry breaking cases in honeycomb structures. Our numerical results are consistent with the 
analysis in [22]. At present, this work only focuses on the static modes. In the future, we shall study the dynamics of such 
modes. This requires us to (1) recover the full electromagnetic fields from these modes computed by the superconvergent 
finite element method; (2) compute the time evolution equation (Maxwell equation). How to utilize the high accurate edge 
states to perform their dynamics will be further investigated.
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