Fast algorithms for large dense matrices with applications to
biofluids*

Minghao W. Rostami®

Department of Mathematics, Syracuse University, 215 Carnegie Bldg., Syracuse, NY 13244.

Sarah D. Olson?

Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609,
USA.

Abstract

Numerical simulation of biofluids entails solving equations of fluid-structure interactions. At
zero Reynolds number, solvers such as the Method of Regularized Stokeslets (MRS) give rise to
large and dense matrices in practical applications where the number of structures immersed in
the fluid is large. Building on previous work for an unbounded fluid domain, we first extend
the Kernel-Independent Fast Multipole Method (KIFMM) for MRS to compute the matrix-vector
products for the fluid flow induced by point forces above a stationary wall. In this case, the use of a
regularized image system introduces additional terms to the solution which cause the matrix-vector
multiplication to be quite challenging. In addition, we study the case where a linear system needs
to be solved for the unknown forces that structures with known velocities exert on the fluid. Our
main contribution is proposing several preconditioning techniques for the matrices associated with
a few variants of MRS, including the case where a force-free, torque-free condition is imposed. They
take advantage of the data-sparsity of FMM matrices as well as properties of Krylov subspaces.
Our approach is memory efficient, capable of handling non-uniformly distributed structures and
applicable to all FMM matrices. It enables efficient computation of the flow field surrounding a

large group of dynamic micro-structures; in particular, we study the effects of fluid mixing caused

*May 26th, 2019.

LCorresponding author. The work of M. W. Rostami (mwrostam@syr.edu) was supported in part by the Simons
Foundation under award 527247, the Oak Ridge Associated Universities under a Ralph E. Powe Junior Faculty
Enhancement Award, and the National Science Foundation under grant DMS-1818833.

2The work of S. D. Olson (sdolson@wpi.edu) was supported in part by the National Science Foundation under
grant DMS-1455270 and the Fulbright Research Scholar Program.

Preprint submitted to Journal of Computational Physics May 26, 2019

by the periodic beating of a dense carpet of lung cilia.
Keywords: preconditioner, GMRES, Krylov subspace recycling, kernel-independent fast multipole

method, regularized Stokeslets, cilia

1

20

21

22

23

24

25

26

27

28

29

30

31

1. Introduction

At high enough density, dynamic micro-structures such as bacteria [1-4], cilia, sperm [5, 6],
algae, and microtubules [7, 8] exhibit remarkable collective motions which bear significant biological
implications. For example, sperm swim both competitively and collaboratively to reach the egg,
and cilia in the airways beat collectively to propel mucus and foreign particles out of the lung.
These phenomena can be modeled by several methods, such as the immersed boundary method [9],
the boundary integral equation method [10], Stokesian dynamics [11-13] the Method of Regularized
Stokeslets (MRS) [14, 15] and through the use of the Rotne-Prager-Yamakawa (RPY) tensor [16, 17].
At zero Reynolds number, the fluid flow is linearly related to the force via a mobility tensor; the
MRS utilizes a tensor based on the Stokeslet or single layer potential whereas the RPY tensor is
based on both the Stokeslet and Stresslet. Both MRS and RPY are regularized methods for solving
the incompressible Stokes equations; they have the advantage of not requiring an Eulerian grid for
the entire fluid domain but the computations required by both methods entail the use of dense
matrices. The size of the linear system grows and becomes progressively more difficult to work
with as the number of point forces associated with the micro-structures increases. The main goal
of this paper is to develop efficient methods for solving large-scale linear systems that involve the
aforementioned coefficient matrices, which are large and dense, and are generally determined by
particular kernel functions.

Two “ingredients” are essential in the efficient solution of the linear systems of interest. One is a
fast algorithm for matrix-vector multiplications to determine the resulting fluid low when the forces
are known. The second ingredient is an effective preconditioner when solving for the forces in the
case of known velocities. The Fast Multipole Method (FMM) involves an analytic factorization and
can be utilized for fast matrix-vector products [18-22]; this method has been extended to matrices
arising from the RPY tensor and the MRS, reducing the cost of computing a matrix-vector product
from O(N?) to O(N) for N x N matrices. The standard Barnes-Hut treecode also breaks up the
calculations into a near and far field calculation, resulting in a method that is O(N log N) [23-25],
where Taylor series or Lagrange barycentric interpolation could be used to represent the kernels
[26, 27]. In particular, due to the difficulties with factorizing certain kernel functions, we have
implemented the Kernel-Independent FMM (KIFMM) [28, 29] in [30] for the MRS. One limitation
of [30] is that only unbounded fluid domains were considered.

It is well-known that surface interactions play an important role in the swimming motion of

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

micro-organisms [31]. The interactions between a small number of sperm and solid or elastic walls
have been studied in [6, 32-38]. The collective behavior of micro-organisms in geometric confinement
has been investigated by many papers such as [4-6, 39-44]. Most models that account for the flow
above a stationary, planar wall have utilized an image system that cleverly places image points
below the wall to enforce the no-slip condition at the wall [45]. Recently, the KIFMM has been
extended for the case of flow above a no-slip wall in both non-periodic and periodic domains [46, 47].
However, the image system used different kernel functions [48] than the ones commonly used in
MRS and the study did not focus on the case of solving for the unknown forces. Therefore, in
this paper, we further extend the KIFMM to domains with a stationary, planar wall within the
framework of MRS using the common image system of Blake [45] and then focus on solving the
linear systems involving KIFMM matrices.

We emphasize that mathematically, FMM is equivalent to approximating the original matrix
with a hierarchical matrix (or an H-matrix) with nested bases, known as the H2-matrix (see [49,
Section 2.11], [50, Chapter 8], and [51-56]). A hierarchical matrix is, roughly speaking, a matrix
that can be partitioned into a hierarchy of smaller blocks, the vast majority of which are low-rank
(see [50, Section 6.1]). It is therefore “data-sparse” and allows for efficient storage and matrix-
vector multiplication with linear or almost linear complexity (see [50, Chapter 6] and [57-59]). In
addition, fast direct solvers have been developed for various categories of H-matrices including the
Hierarchically Off-Diagonal Low-Rank (HODLR) matrices [60, 61], the Hierarchically SemiSepara-
ble (HSS) matrices [62-67], and the H2-matrices [68, 69]. Direct solvers enjoy many advantages
such as linear or almost linear complexity; they are often more efficient when used as precondi-
tioners for an iterative solver. However, constructing these preconditioners can be expensive both
computationally and storage-wise. Alternatively, many papers [70-75] use the sparse approximate
inverse preconditioner [76, Section 10.5], which refers to a sparse approximation to the inverse of the
coefficient matrix. As the user can specify the sparsity pattern of the preconditioner, storing it is
easy; however, computing it requires the solution of N least-squares problems for an N x N matrix
and can still be costly. The overhead incurred by both veins of methods is mitigated in applica-
tions where a sequence of linear systems with the same coefficient matrix and multiple right-hand
sides need to be solved. Unfortunately, in many models for biofluids, we wish to understand the
movement of dynamic micro-structures in time. This results in a sequence of linear systems with

different coefficient matrices, making the cost for these methods prohibitive.

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

The preconditioner that we propose to use is the matrix associated with a version of KIFMM
that is less accurate than the version applied to compute the matrix-vector products. This idea is
not new; for example, it has been used in [73] for FMM matrices. It gives rise to a sequence of
challenging subsidiary linear systems. By exploiting properties of Krylov subspaces, we propose a
few techniques that both expedite each individual solve and reduce the number of solves needed.
Compared to the inverse FMM preconditioner [68, 69], our approach is highly economical in terms
of memory as there is no need to explicitly form the preconditioner; its implementation is also
insensitive to whether the distribution of the swimmers is uniform.

Although our focus is on dense matrices, for completeness, we point out that FMM-based precon-
ditioners have recently been developed for the sparse matrices arising from spatial discretization of
elliptic partial differential equations [77, 78]. They are competitive alternatives to the conventional
preconditioners for these matrices such as multigrid.

The rest of the paper is organized as follows. In Section 2, we describe the structure of the
matrices arising from the MRS in various settings and provide a brief review of KIFMM. In Section
3, we explain in detail how we plan to solve the linear systems involving large-scale MRS matrices.
Numerical results of the proposed methods are presented in Section 4, where several types of

dynamic micro-structures are considered. We conclude the paper with a few remarks in Section 5.

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2. Matrix-vector multiplication

In Section 2.1, we first review the Method of Regularized Stokeslets (MRS) with emphasis on
the structure of the matrices associated with it. As we shall see, they are dense and will grow in
size as the number of point forces increases. In Section 2.2, we summarize the Kernel-Independent
Fast Multipole Method (KIFMM) for performing the matrix-vector multiplication efficiently.

Throughout the rest of the paper, the fluid domain is three-dimensional and either unbounded
or half-bounded by a stationary, planar wall; and || - | denotes the standard Euclidean norm (2

norm).

2.1. The Method of Regularized Stokeslets (MRS)

The MRS is a widely applicable method to simulate zero Reynolds number flows driven by
forces from active or moving structures. Micro-swimmers are often represented in a space dimension
one lower than the fluid, which generally leads to singular or nearly singular kernel fluid velocity
evaluations when using fundamental solutions. Integrable kernels and finite velocity fields on the
structures are obtained in the MRS by first regularizing the forces [14, 15]. Forces can be regularized
with support regions mainly corresponding to the width or size of the structure, which has been
shown to match well with experiments [79-81] and capture dynamics as well (or better) than
resistive force theory and slender body theory [80, 82]. Additionally, the MRS can handle structures
of different sizes and shapes via the choice of different regularization functions, discretizations, and
force models to capture flexible (elastic) structures.

Let a group of micro-swimmers or structures be represented by N points located at {x; }5\’:1
For instance, they can be grid points corresponding to a Lagrangian discretization of the structures
or can each be an individual swimmer. Suppose that these points exert forces {fj}?{:1 on the
surrounding fluid and move at the local fluid velocities (no-slip condition). Since the swimmers are
at the scale of zero Reynolds number where inertia is negligible and viscous effects dominate, the

fluid dynamics can be modeled by the incompressible Stokes equations:

N
—/,I,Au +Vp= ijé(’l“j),
=1 (1)
V-u=0,

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

122

123

124

125

126

127

where 7; = ||r;|| = ||x — x,||, 6(r) is the Dirac delta distribution, x is the viscosity, p = p(x) is the

pressure and u = u(x) is the velocity at x = [z,y,2]7. In free-space, the solution u(x) to (1) can
N

be written as Z S(x,x;)f;, where S(x,x;) : R® = R3*3 (j =1,..., N) is defined at every x ezcept
j=1
for x;. In order to evaluate the velocities of the micro-organisms, which is necessary for updating

their locations in a time-dependent simulation, MRS [14, 15] replaces (r) in (1) with a smooth,
radially symmetric “blob” function . (r), where € > 0 is a parameter that controls the spreading

of every point force f;. An example of such a function is

15¢4

Vo) = Sy

(2)
Although (2) has an infinite support, it spreads the majority of f; within the ball centered at x;
with radius . Thus, in our applications, the parameter € can be viewed as the radius or thickness

of the micro-organisms. The solution to (1) with the regularized forcing terms {fng(rj)}évzl is

N
u(x) = ZSE(X, x;)f;, where the regularized Stokeslet S.(x,x;) : R® — R3¥*3 (j = 1,...,N) is
j=1

defined at every x including x;. As an alternative to (2), we can also use a compactly supported
blob function [83].
Two additional cases of MRS will be considered as well. In the free-space case, we can also

account for point torques, capturing the twisting or rotation of micro-organisms. Hence, in addition

N

to the point forces {f;};L;, we also need to include the torques {nj}éyzl at {xj}évzl in the right
N

hand side of (1) as Z V x n;i.(r;) for the regularized case [84-87]. As shown in [87], the solution
j=1
to (1) with both the regularized forces and torques incorporated is

N
]S |2,

where w(x) is the angular velocity at x and K. (x,x;) : R® — R®*6 is defined at every x.

We will also consider the case of only point forces above a stationary, planar wall satisfying a
N

no-slip boundary condition. The solution to the regularized version of (1) with Z f1:(r;) on the
j=1

right hand side in a domain Dy half bounded by a wall was derived in [88] using the method of

images of Blake [45]; it can be written as

N
u(x) = Z We (X, Xj)fj7 (3)

Jj=1

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

where W, (x,x;) : R® — R3*3 is defined at every x € Dy .

In each of the three cases, the point forces (and torques) and the velocities at the N points due
to their pairwise hydrodynamic interactions satisfy a linear system U = AG. Here, A is determined
by a particular kernel function (S., We or K.) and is a dN x dN matrix consisting of d x d blocks
(S=(xi,%x;), Wa(x4,%;) or K.(x;,%;)), where d = 3 if only forces are considered or d = 6 if torques

are included as well. Let G denote the dN X 1 vector obtained by concatenating {f; };V:1 or
N
£

l’lj)
j=1
For u; (w;) denoting the linear (angular) velocity at x;, we can define the dN x 1 vector U in
a similar way by replacing f; (and n;) in G with u; (and w;, respectively). When G is known,
computing the velocity U is equivalent to evaluating a matrix-vector product. On the other hand,
when U is known and G is wanted, we have to solve the linear system AG = U instead.
We now take a closer look at the d x d kernel functions S.(x,y), We(x,y) and K.(x,y). For

any x, y in the domain, let r = x —y, r = ||r||, I,, denote the n x n identity matrix, and

0 —Vs3 V2
[V] X = V3 0 —U1 (4)
—V2 (%1 0

where vi, (k =1, 2 or 3) is the kth component of a vector v in R?. (For any u € R3, the matrix-
vector product [v]x - u is equivalent to the cross product v x u.) Then, we can write the kernel

functions for the free-space case of forces only or forces and torques as

5.(x,y) = i (Hy(r) L + Ha(r)rr?), (5)

Se(.) £Q()IL
HQWIKL 4 (D)l + D (")

respectively, where Hy(r), Ha(r), Q(r), D1(r) and Dy(r) are smooth, radially symmetric functions.

Ke(x,y) = (6)

We note that the terms involving Hy, Hy correspond to the regularized Stokeslet and account for
the contributions of the point forces on the fluid flow, the terms involving Q) are regularized rotlets
due to the point forces and torques, and the terms involving D1, Dy are regularized dipoles due to
the point torques. If a wall is located at z = 0 and the fluid domain is Dy = {[z,y,2]" | z > 0},
then

149

150

151

152

153

154

155

156

157

Al

W.(x,y) = S:(x,y) — S: (X, yi“‘) — . DJ{(rim)Ig — D% (rim) rim (rim)T} (2e3e'3T — I3)

2 . ' .] HI im .
£ 20y () e () (97 e) By 4 e ()
. (7)
H/ m . . .
+ % (r'™ - e3) r™ (r“n)T} (2ese; —I3)
2h Hl im . .
o (ﬁ) + H, (Tlm)> "]« [es]x

where y'™ is the image of y with respect to the wall, h > 0 is the distance between y (or y'™) and
the wall, r'™ = x — yi™ 7 = ||pim || e3 = [0,0,1]7, prime denotes a derivative with respect to r,
and all of the functions of r and 7™ are again smooth, radially symmetric functions. The terms in
(7) are similar to those in (5), (6) except that many are now with respect to the image points and
are included to cancel the flow at the wall.

We note that the precise expressions for the functions Hy(r), Ha(r), Q(r), D1(r), Da(r), DI (r)
and D; (r) in (5)-(7) are dictated by the blob function(s) used. In the free-space case, only one blob
function ¢, (r) is needed and the choice (2) leads to the following:

2e? 4 12 1
Hr) = 8 (r? +¢2)3/2” Ha(r) = 8m(r? 4 2)3/2’ ®)
5e2 + 212 _ 10e* — 7252 — 24 212 + 612

D1 (’I’) =

Q(r) = W» ; Da(r)

812 + <2)772 " Bn(r?)

For the case of flow bounded above a stationary, planar wall, the use of a second or companion
blob function is necessary to impose the no-slip condition at the wall [88, 89]. Utilizing ¢.(r) =
32 /(4 (r? + £2))%/2, we obtain the expressions for DI and D; as:

3
An(r? + e2)5/2

—2e2 472

Tir) =
Dl(T) - 47('(7”2-’-52)5/2,

Di(r) = (9)

We conclude our review of MRS with a summary of the three kernel functions.

(i) Se(x,y), We(x,y) € R3*3 arise from the inclusion of regularized forces in (1) for different
domains, whereas K_(x,y) € R6%6 also accounts for regularized torques.
(ii) Se(x,y), Kc(x,y) correspond to an unbounded domain and W,(x,y) to a half-bounded one.
(i) S:(x,y) = S:(y,x), whereas in general, K.(x,y) # K:(y,x), We(x,y) # W.(y,x). Addi-
tionally, K.(x,y) = (K.(y,x))" and W.(x,y) = (W(y,x))".

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

(iv) Sc(x,y) and K.(x,y) are completely determined by x —y, i.e., they are translation invariant;
however, this is not true for W.(x,y).
(v) For a fixed y, the entries of S.(x,y), W.(x,y) and K.(x,y) approach zero as the distance

between x and y goes to infinity.

2.2. The Kernel-Independent Fast Multipole Method (KIFMM)

The naive or direct computation of the matrix-vector product AG to determine U entails O(N?)
operations. In [30], by using KIFMM [28, 29], we are able to reduce this complexity to O(N) for
the matrices generated by S. and K.. In order to study collective motion of micro-structures near
a surface, we extend KIFMM to the matrices generated by W, in the current work. An outline of
KIFMM is provided below where S, is the underlying kernel; due to its kernel-independent nature,
the algorithm is similar for other kernels such as K. and W-,.

FMM [18-22] is an O(N) method for calculating the interactions among N particles. In our
applications, the N particles represent a group of hydrodynamically interacting micro-structures
that are actively generating forces. A critical assumption of FMM is that the strength of the
interaction between two particles decays as the distance between them grows. In this method, the
particles are grouped into clusters based on their physical proximity; the interactions between a
cluster and the “nearby” clusters are strong and calculated directly, whereas its interactions with
the clusters in the “far field” are weak and thus only approximated.

Hierarchical partition of the computational domain. Suppose that all the particles {x; }j\;l are
contained in a box ® and s is a positive integer that does not vary with N. By uniformly subdividing
each existing box into eight “child boxes”, FMM creates an octant tree of boxes where ® is the
root, the boxes on each level of the tree constitute a uniform partition of ©, and each leaf box
(i.e., the smallest box) contains no more than s particles. For each box B, the neighborhood of 2B,
denoted by 91(B), is the union of all the boxes on the same level in the tree as 9B that share at least
one boundary point with 9; the far field of 9, denoted by F(B), is the complement of D(B) in D.

Multipole and local expansions. In KIFMM, a multipole expansion associated with a box B has

the form

ijss(x7q1')gj; (10)
j=1

10

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

for any x in F(B), it estimates the part of u(x) induced by the particles in 8. In (10), {q; };-21 are
quadrature points serving as proxies of the particles in B, {w, };Lil are the weights in an underlying
quadrature rule, and {gj}?il are properly chosen, fictitious (non-physical) forces at {Qj}?il- A

local expansion associated with 28 admits a similar form, i.e.,

> 5;8.(x,d;)8;: (11)
j=1

for any x in B, it estimates the part of u(x) induced by the particles in §(B). In (11), {q;};%,
are quadrature points serving as proxies of the particles in F(B), {&; }?;1 are again the weights in

a quadrature rule, and {g; };q , are fictitious forces at {ﬁj}?il. (For the locations of both sets of

quadrature points relative to B, see Fig. 10 in the Appendix.) We first compute {g; }?11 for each
box while traversing the octant tree from the leaves to the root; utilizing the multipole expansions,
we then find {g; }?il for each box while traversing the tree in the reverse order. The main cost of
computing {g; };-lil or {g; }?il for a box is the numerical solution of an integral equation, which
boils down to solving a linear system of 3n, equations and 3n, unknowns.

Evaluation. For every x in ®, we first identify the leaf box B containing x. Then we directly
calculate the part of u(x) induced by the particles in 91(8) and estimate the other part of u(x)
which is induced by the particles in F(B) using (11) instead.

We note that the main difference between the original FMM and KIFMM lies in how the mul-
tipole and local expansions are obtained. In the original FMM, they rely on an analytic expansion
of the kernel function; KIFMM, on the other hand, does not require any analytic expansion and
computes (10), (11) numerically. Due to the complexity of the three kernel functions shown in
(5)-(8), how to implement the original FMM remains an open question.

A more algebraic interpretation of FMM is that it finds low-rank approximations to the sub-
matrices in A corresponding to long-range interactions. The resulting approximation to A is an
‘H-matrix, which is “data-sparse” and allows for efficient storage and matrix-vector multiplication
with linear or almost linear complexity (see [50, Chapter 6] and [57-59]). More specifically, the
estimate to the matrix-vector product AG produced by FMM is A3 G, where Ay is an H-matrix
with nested bases known as the H2-matrix (see [49, Section 2.11], [50, Chapter 8], and [51-56]).
Note that Ay is not explicitly formed in FMM.

The accuracy and runtimes of the KIFMM corresponding to various choices of quadrature points

11

218

are reported in the Appendix for S, W, and K..

12

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

3. Preconditioners

It is often hard to have a good understanding of the forces or torques exerted by the micro-
swimmers, as direct measurements are extremely difficult to achieve. Instead, flow visualization
techniques such as Particle Image Velocimetry (PIV) [90, 91] can be used to estimate velocities,
based on which the forces (and torques) can be recovered. This requires solving the linear system
AG = U for G, whose computational complexity is O(N3) if a direct method such as Gaussian
elimination is applied. Once the forces (and torques) are found, the linear velocity (and angular
velocity) at any point in the fluid can be calculated by MRS (see Section 2.1).

We will solve AG = U using the preconditioned Generalized Minimal RESidual (GMRES)
method [92]. This method first finds an “optimal” solution X to AP~'X = U in a Krylov subspace

Km(AP™YU) = span{Ud, AP7'U, (AP 1)U, --- ,(AP"H™ U} (12)

where P € R¥V*4N ig 3 preconditioner; and then it recovers an approximate solution to AG = U
as G = P71X. Ideally, the eigenvalues of AP~! are highly clustered and the linear system PG = U
can be solved efficiently. In this work, the matrix-vector products involving A are estimated by
KIFMM; consequently, the effective Krylov subspace is K,,, (A% P~1,U), where Az is the H2-matrix
associated with KIFMM (see Section 2.2).

We consider two preconditioners: a sparse, crude preconditioner and a dense yet data-sparse,
much more accurate preconditioner. Applying the second preconditioner gives rise to challenging
subsidiary linear systems; in Section 3.2, we propose two techniques for expediting their solution.
We emphasize that neither preconditioner needs to be formed explicitly. In Section 3.3, we also
develop a preconditioner for the matrices formed by appending extra rows and columns to A. They

emerge from problems where the swimmers exert zero net force and zero net torque.

3.1. The block-diagonal preconditioner

A sparse approximation to A can be obtained if we cut off most of the particle interactions.

In particular, by allowing a particle to interact only with those contained in the same leaf box in

13

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

KIFMM, we get a block-diagonal approximation, denoted by Pp, to A.> For example, let A be
the 30000 x 30000 matrix that is generated by the kernel function S. and represents the pairwise
interactions among 10000 random particles uniformly distributed in a cube ®. Suppose that © is
uniformly partitioned twice in KIFMM. We display the sparsity pattern of Pp in the left panel of
Fig. 1, where every small, dense block represents the interactions among the particles within one

of the 64 leaf boxes.

Figure 1: The sparsity patterns of Pp (left) and Py (right), accounting for only interactions in the leaf cube and

accounting for interactions in the leaf cube and its neighbors, respectively.

The block-diagonal matrix Pp is appealing as a preconditioner for the following two reasons: it
captures some of the strongest interactions among the particles; and solving PpG = U boils down
to solving a small linear system for each leaf box, which is easy. If we also allow the interactions
between a leaf cube and its neighbors, a more accurate sparse approximation to A, denoted by
Py, can be obtained. The sparsity pattern of Pys is shown in the right panel of Fig. 1 for the
same example considered earlier. However, due to the off-diagonal non-zero blocks in Pps, the linear
system PnG = U is significantly more difficult to solve than PpG = U. We note that block-diagonal
preconditioners have also been used in [69, 93] for the large-scale, dense matrices generated by the

RPY tensor and in [94] for those arising from a boundary integral formulation.

3Technically speaking, the particles in each leaf box must be assigned consecutive subscripts for this approximation
to be block-diagonal. That is, if {x;,}7 ; are all the particles in the jth leaf box and j1 < j2 < -+ < jn, then
Ji+1 = Ji + 1 needs to be imposed for all 1 < ¢ < n — 1. In practice, we do not form Pp, so we assign subscripts
to points on the structures in a way that makes sense for the modeling problem at hand, which may or may not

correspond to consecutive subscripts in leaf boxes.

14

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

3.2. The data-sparser preconditioner

If the underlying quadrature rule remains fixed, the more quadrature points we use in the
multipole expansion (10) and local expansion (11), the more accurate and computationally expensive
KIFMM becomes. Let Ay correspond to the KIFMM when n, quadrature points are used. The
second preconditioner that we consider, denoted by Py, is the #H2-matrix associated with the
KIFMM when nfl < ng quadrature points are used. Due to the smaller number of quadrature
points, the blocks in Py corresponding to long-range interactions have a lower rank, i.e., Py is
data-sparser than A. Unlike the block-diagonal preconditioner Pp, this preconditioner accounts
for all the particle interactions and is thus a much more accurate preconditioner.

However, it is still challenging to solve the subsidiary linear systems whose coefficient matrix is
P3,. We propose to apply the GMRES preconditioned by Pp to them. This leads to a solver for
AG = U that has the following hierarchy: the outer iteration is the GMRES preconditioned by Py,
and the inner iteration is the GMRES preconditioned by Pp. It is not necessary to form Py: it

can be multiplied to vectors efficiently using KIFMM. We propose the following two techniques for

accelerating the solution of the subsidiary linear systems.

3.2.1. Recycling the Krylov subspaces

We need to solve a sequence of linear systems that share the same coefficient matrix Py using
GMRES. This is an ideal scenario where Krylov subspace recycling [95] can be applied to reduce
computational cost. The basic idea is the following: instead of building a Krylov subspace from
scratch for each linear system in the sequence, we retain some vectors from an existing Krylov
subspace and construct a new Krylov subspace based on them.

Assume that we have already solved the kth subsidiary linear system Py Gy = U, using GMRES
preconditioned by Pp. If GMRES converges in ¢ steps, then we have at our disposal an Arnoldi

decomposition
-1 T Hy
PyPr V= VeHp + he1 gveri€; = [Vi Vi) o= Vi1 Hy, (13)
het1,0€;
where H, € R*** is an upper Hessenberg matrix, e, = [0,---,0,1]7 € R®*! and the columns

of Vi constitute an orthonormal basis for the Krylov subspace K¢(PyPp 1,Mk). Since the next
linear system Py Gr11 = U1 shares the same coefficient matrix, it is reasonable to further exploit

ICg(PHPp_l,L{k). For example, we can retain the 1 < ‘ < ¢ harmonic Ritz vectors of PHPgl

15

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

associated with its ¢ dominant harmonic Ritz values, which tend to approximate the eigenvectors
of Py Py ! corresponding to its ¢ largest eigenvalues. Recall that a harmonic Ritz pair (0, V,z) is an

approximate eigenpair, which satisfies the following Galerkin condition:
(PuPy'Vy)" (Py Py Viz — 0Viz) = 0. (14)

By (13) and (14), the harmonic Ritz vectors of PyPp' in K;(PyPp',Uy) can be computed by

solving an ¢ x ¢ generalized eigenvalue problem, namely,
(1" H) 2 = 0 (HVE V) o

When solving Py Gri+1 = Uk11, we keep extending the subspace spanned by the ‘ recycled vectors

until a sufficiently accurate solution is found.

8.2.2. Estimating the upper Hessenberg matriz

Krylov subspace recycling described in Section 3.2.1 aims to reduce the computational cost
of each subsidiary solve after the first one has been performed. The technique proposed in this
subsection reduces the number of such solves. Assume that solving AG = U entails m iterations of

GMRES preconditioned by Pj. Then at the end of the solve, the Arnoldi decomposition

H
Ay Py Vo = Vi Hoy + gt mVing1€ = [Vin Vi) " =V H, (15)

herl,meg
similar to (13) is available, and the approximate solution found is am = BP, ! (Vinym) where
B = ||U|| and y,, is the least-squares solution to H,,y = [1,0,---,0]T.

In fact, thanks to the “nested” nature of the upper Hessenberg matrix, H,, can be written as

Hiy = [Hyo1 b]. (16)

As a result, after m — 1 GMRES iterations, the only “ingredients” that are missing for am is the
vector b in (16) and the number /41, in (15). If we can somehow obtain good estimates to b
and Ay,41,m, then we can compute an approximate solution close to @m in only m — 1 GMRES
iterations. A trivial yet crucial observation is that if Py = Ay, then H,, = VI APy 1y, is simply
the m x m identity matrix, in which case b = [0,---,0,1]7 and h,, 1., = 0. Unlike the block-
diagonal preconditioner, Py is a fairly good approximation to Ay. We therefore propose to skip the

mth GMRES iteration and approximate b, /1,41 ,,, with [0,--- ,0, 1], 0, respectively. The number

16

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

of iterations, m, is small to begin with again because Py approximates Ay well; thus, using one
fewer iteration saves a large percentage of runtime.

We note that the closer Py is to Ay, the fewer outer iterations will be required, the better we
can estimate the upper Hessenberg matrix, yet the more expensive the inner iteration (i.e., solving
PyG = U) will become. A good choice for Py strikes a balance between the number of outer
iterations and the cost of the inner iteration.

Both techniques described above are widely applicable. The coefficient matrix can be sparse or
dense and does not need to be an FMM matrix. Krylov subspace recycling (section 3.2.1) can be
applied whenever multiplying the inverse of the preconditioner and a vector also entails an iterative
solve. The upper Hessenberg matrix estimation (section 3.2.2) can be performed whenever the

preconditioner is a good approximation to the coefficient matrix.

3.8. The block-upper triangular preconditioner for augmented matrices

Free swimmers exert zero net force, zero net torque and undergo rigid translation and rotation.

Assume that n free micro-swimmers are discretized by a total of N grid points located at {x; }j\r:l =

n n
U{xik}k]\il, where {Xik}kNi1 are on the ith swimmer and ZNZ- = N. Also assume that all the
i=1 i=1
grid points on a swimmer are assigned consecutive subscripts. The forces {f; };Vzl that they exert

to the fluid must satisfy the following constraints:

force-free: Z f;, =0, torque-free: Z(xz,c —x\)xf;, =0,
k=1 k=1

where x’ is the center of mass of the ith swimmer.
Suppose that the emergent or total velocity u;, at a grid point x;, on the ith swimmer can be

decomposed as
u;, =v; + II, + Q; x (Xik - Xi)7

where v;, is a prescribed velocity corresponding to the body deformations of the swimmer and IT;,
Q; are its translational and rotational velocities induced by {v; }jvzl We can compute {II;}* ,,

{9}, and {f; é\’:l by solving a linear system MG* = U*, where

17

331

332

333

334

335

336

337

338

339

340

341

342

343

344

A BT 3N+6 3N+6 g 3N+6 u 3N+6
M = € RGNHO)XBN+6n) gx — | 11 | e R3NHOn 1 = | o | e R3NHO,
B 06n><6n
Q 0

(17)
In (17), the (1,1)-block A € R3N*3N in M is generated by the kernel function S. or W, depending
on whether the fluid domain is bounded by a wall, O,, x, denotes the m xn zero matrix, G, U € R3V,
IT, Q € R3" are formed by concatenating {f; }f;l, {v; }é\]:l» {IL;}?_, and {Q;}7, respectively. In
addition, the (2,1)-block B € R6"*3N in M is of the form
B
By

where
I3 ... I3 ... I

BT R R
|: Xiy Xe i|>< |: iy Xe :|>< |: XzNi Xe i|><

corresponds to the ith swimmer and the 3 x 3 matrix [-]x has been defined in (4).

B = € R6X3Ni
=

Assume that A is nonsingular. Then M has the following block LU decomposition:

A BT 1. 0] n A BT
M = _ 3N 3N x6 _ LU,
B 06n><6n BA_l Iﬁn 06n><3N —BA_lBT

which implies that all the eigenvalues of MU ! equal 1. Consequently, the GMRES preconditioned
by U would converge after only one iteration when applied to MG* = U*. However, using U
as a preconditioner is impractical as it entails solving linear systems whose coefficient matrix is
BA~'BT, which is too costly to form.

We propose the following block-upper triangular preconditioner for M:

Py BT
Py = (19)
Oenxsn Ps

where Py is a preconditioner for A and Pg is a preconditioner for —BA~'BT. Assume that both

P4 and Pg are nonsingular. Then the inverse of Py is

18

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

pot p;t —pP'BTRS!
O6nx3n pgt

and applying it to a vector entails solving two linear systems whose coefficient matrix is P4 and

one linear system whose coefficient matrix is Pg.

We can choose P4 in (19) to be the block-diagonal preconditioner Pp (Section 3.1) or the
data-sparser preconditioner Py (Section 3.2). Again, Pp and Py do not need to be formed.

Our construction of Pg in (19) is inspired by the so called “least-squares commutator” precondi-
tioner [96, Chap. 9] developed for the sparse matrix arising from mixed finite element discretization
of the incompressible Navier-Stokes equations. This matrix has a block structure very similar to that
of M. The matrix C that minimizes || ABT — BTC|| over all C' € R"*6" is C = (BBT)~}(BABT).
Therefore, loosely speaking, ABT =~ BT(NZ', which implies A~ BT ~ BTC~1 and in turn leads to

the following approximation:

BA™'BT ~ (BBT)C~! = (BB")(BAB™)"(BB™). (20)

Eq. (20) suggests Ps = —(BBT)(BABT)~Y(BBY). Since Pg' = —(BBY)"Y(BABT)(BBT)™1,
the main cost of solving a linear system whose coefficient matrix is Pg is solving two subsidiary
linear systems whose coefficient matrix is BB” and multiplying A to a vector, the latter of which
can again be accomplished by KIFMM. Constructing BB” or applying its inverse is trivial: thanks
to (18), BBT € R6"*6n ig block-diagonal with the 6 x 6 blocks {B; BI }™_; on its main diagonal.

19

360

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

4. Numerical experiments

We test the preconditioners described in Section 3 on the following three examples where the
micro-structures are scattered particles, cilia, and free swimmers, respectively. The computing

environment for all of the large-scale simulations is the same as specified in the Appendix.

4.1. A large group of uniformly random particles

We compare the performance of the following three versions of GMRES at solving AG = U:
GMRES with no preconditioner, GMRES preconditioned by the block-diagonal preconditioner Pp
and GMRES preconditioned by the data-sparser preconditioner Py. We again consider three exam-
ples of A, namely, S240k, W240k and K480k, corresponding to the kernel functions S, W and K.
and 80000 random particles uniformly distributed in [0, 20] x [0, 20] x [0.01,20.01] (see Appendix).
The right-hand side U is a random vector of unit norm, and the stopping criterion of GMRES is

| 4G —ul| /lul <2077, (21)

where Ay appears instead of A since the matrix-vector products involving A are approximated by

KIFMM. In light of the triangle inequality

i

406 —ua]| - |46 - 48] | < 46 1] < 46 ~ta] + | 4G — 10

the accuracy of G is limited by that of KIFMM; therefore, it is unnecessary to impose too stringent
a stopping criterion on GMRES. In addition, when GMRES preconditioned by Py is applied, the
subsidiary linear systems in the form of Py G = U are solved using GMRES preconditioned by Pp

and its stopping criterion is

HPHa - uH /Ul < 1072

We first compare the iteration counts of the three versions of GMRES. The two techniques
described in Section 3.2 for enhancing the performance of Py have not been implemented yet and
will be considered later. Fig. 2 displays the decay of the residual norm HAHa - UH /Ul as each
version of GMRES progresses when A is S240k (left panel) or K480k (left panel). (The three
curves obtained for W240k are highly similar to the ones corresponding to S240k.) For each of the
three matrices, the numbers of iterations required by GMRES with no preconditioner and GMRES

preconditioned by Pp as well as the numbers of quadrature points ng, nﬁl that Ay, Py correspond

20

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

to can be found in Table 1. We use fewer quadrature points for K480k since KIFMM produces much
more accurate results for this matrix than for the other two when the same number of quadrature
points are used (see Appendix). As illustrated in Fig. 2, the reduction in iteration count is dramatic
when either preconditioner is used; in particular, GMRES preconditioned by Py converges in only
two iterations. If no preconditioner is used, GMRES converges in about 57 iterations when applied
to S240k and W240k, yet it requires as many as 209 iterations to converge when applied to K480k.
Based on the study of the condition numbers of the three types of MRS matrices, details in the
Appendix, we do expect K480k to be much more challenging than the other two matrices for an
iterative solver. Interestingly, for all three matrices, GMRES preconditioned by Pp converges in
about 28 iterations. Further experiments that are not shown here also seem to support the same
hypothesis: the number of iterations of GMRES preconditioned by Pp only depends on the quantity

and distribution of the particles and does not depend on the kernel.

——no preconditioner
+FD (block-diagonal) | |
i PH (data-sparser)

——no preconditioner
5 PD (block-diagonal)

—+—P,, (data-sparser) 3

residual norm
>
S
residual norm

.
0 10 20 30 40 50 60 0 50 100 150 200 250
GMRES iteration GMRES iteration

(a) S240k (b) K480k

Figure 2: Decay of the residual norm HAH@ — UH /|lU|| associated with the three versions of GMRES (no
preconditioning, preconditioned by Pp, and preconditioned by Pj;). S240k in (a) corresponds to the free-space,

force-only case and K480k in (b) to the free-space case where torque is also accounted for (see Appendix).

Next, we re-run GMRES preconditioned by Py with both Krylov subspace recycling and upper
Hessenberg matrix estimation incorporated, and we compare the runtimes of the three versions of
GMRES. Details of the two acceleration techniques are as follows. At the end of each subsidiary
solve Py G = U, we retain the harmonic Ritz vectors associated with the largest ¢/2 or (¢ + 1)/2
(whichever one is an integer) harmonic Ritz values, where £ is the dimension of an existing Krylov

subspace. Recall that GMRES preconditioned by Py takes two iterations to converge. We now run

21

402

403

406

407

408

409

410

416

417

418

419

only one iteration and approximate, using the estimated 2 x 2 upper Hessenberg matrix, the solution
that we would obtain if the second iteration were executed. This approach reduces the number of
subsidiary solves from three to two; we also verify that it indeed produces a solution of essentially
the same accuracy as before. As can be seen from Table 1, the runtime of GMRES preconditioned
by Py, with acceleration ranges from 36% to 59% of that required by GMRES preconditioned by Pp;
we note that the efficiency of Py is ultimately achieved by avoiding the matrix-vector multiplication

involving A, which is much more costly than that involving Py or Pp L

Table 1: Comparison of the three versions of GMRES applied to S240k, W240k and K480k (W240k corresponds to
the half-bounded, force-only case). GMRES preconditioned by Py is accelerated by Krylov subspace recycling and
upper Hessenberg matrix estimation. Number of processors: 16. “MVPs” = matrix-vector products, “iters.” =

iterations, and “sec.” = second. ng, n.:

q¢ numbers of quadrature points associated with Ay, Py .

no preconditioner Pp Py
of |run- |# # of run- |# # of run-
of MVPs |time |of MVPs time |of MVPs time

matrix | ng |iters.|(Aay) |(sec.) |iters.|(As/Pp")|(sec.) |iters.|(An/Ppt/Px) | (s€C.) |70
S240k 208 |56 56 2332 | 28 28/29 1168 | 1 1/50/48 483 |64
W240k |208 |58 58 5893 | 29 29/30 2923 | 1 1/54/52 1038 |64
K480k [124 {209 |209 [11209 | 28 28/29 1589 | 1 1/50/48 943 |26

4.2. A dense mat of cilia

The respiratory tracts are lined with a dense mat of cilia which beat back and forth rhythmically
to propel mucus out of the lung; this muco-ciliary clearance serves as a defense system against air-
borne infection. Cilia are also responsible for ovum transport in the oviduct of the female as well as
sperm transport in the efferent ducts of the male. These motile cilia are elastic, flexible structures
that are actively generating forces and will interact with each other due to their close proximity.
When modeling cilia, viscoelastic effects might be important due to the relaxation time of the elastic
flagellum as well as the surrounding fluid.

To illustrate the utility of our methods for a dense mat of cilia, we are ignoring viscoelastic effects
and we do not account for feedback from the surrounding fluid on the beat cycle of the cilia. That

is, we will only explore the resulting flow fields due to cilia with a prescribed, time-dependent beat

22

420

421

423

424

425

426

427

428

429

430

431

432

433

434

435

436

cycle. To achieve this, we utilize an accurate representation of the lung cilia beat cycle developed
in [97]. In this model, a cilium is characterized by a 2D parametric curve: at time ¢, the location

of any point on the cilium is given by the truncated Fourier series
No
1 .
x(s,t) = iao(s) + Z a,(s) cos(not) + by, (s) sin(not) (22)
n=1

in R2, where s is the arclength of the point measured from the base of the cilium and o is the

angular beat frequency. The constant vectors {an}gio, {b,, 711\721 C R? are computed by applying
Fourier analysis and the least-squares method to a series of cilia profiles traced using high speed

cine-photography.

5 4 0 1 2 3 4 5 6 7 8

Figure 3: Left: 13 snapshots of a simulated cilium in one beat cycle. Right: The bases of a perturbed grid of cilia

(cilia spacing is he = 0.3 and the level of perturbation is 20% at most in either the x or y direction).

Using the Fourier coefficients computed in [98] based on the experimental data of [99], we
simulate the motion of a planar cilium in one beat cycle and display 13 snapshots of it in the left
panel of Fig. 3. (The larger its numerical label is, the later a profile appears in the cycle.) The
elapsed time between two consecutive snapshots is the same. Snapshots 1 to 4 depict the power
(effective) stroke whereas snapshots 5 to 13 capture the recovery stroke. In [88], the flow field
induced by a single cilium attached to a stationary, planar wall has been studied using MRS: first,
the velocities at the grid points on the cilium are found by differentiating Eq. (22) with respect to
time; then the forces that induce the velocities of the grid points at each of the thirteen instants are
recovered by solving a linear system. With the forces at our disposal, the velocity at any location
in the fluid and at any one of the thirteen instants can be calculated by (3). The approach of [88]
has been applied to compute the flow field induced by an array of cilia in [100-103]. When the

number of cilia is large, however, it gives rise to a sequence of linear systems { A(MG (n) — 1/{(")},113:1

23

40 whose coefficient matrices are large, dense and varying.

(a) Snapshot 1 (b) Snapshot 3

(c) Snapshot 5 (d) Snapshot 7

(e) Snapshot 9 (f) Snapshot 11

Figure 4: Snapshots 1, 3, 5, 7, 9 and 11 of the cilia carpet (h. = 0.3).

24

440

441

444

445

446

247

448

449

450

451

452

455

456

457

458

459

460

461

462

463

We consider a dense carpet of cilia attached to a stationary, planar wall at z = 0. The bases of
the cilia are the perturbed grid points of a 25 x 25 uniform grid on the wall (see the right panel of
Fig. 3). To be more precise, if h. denotes the grid spacing of the uniform grid, the base point of each
cilium is located at (z¢ + &he, yo + Che, 0) where (zg,yo,0) is a grid point on the uniform grid and
¢, ¢ are uniformly random between —20% and 20%. Thus, h. is roughly the average grid spacing
in the perturbed grid. Two values of h., 0.3 and 0.6, are considered in the numerical experiments.
Although the cilia carpet is three-dimensional, every cilium is restricted to be two-dimensional: it
is initially placed and will remain in the plane y = y;, where y, is the y coordinate of its base
point. The x, z coordinates of the points on the cilium are determined by (22) as well as the z, z
coordinates of the base point* and their y coordinates all equal g;,. Each cilium is of length 6 and
uniformly discretized by 101 grid points. Note that (22) does not preserve the length of the cilium;
for it to have constant length, we rescale the z, z coordinates of the grid points accordingly. Since
the base points of the cilia are “tethered” to the wall, there are a total of 100 x 252 = 62500 particles
in our calculation, resulting in coefficient matrices of dimension 187500 x 187500. In addition, we
specify that the carpet of cilia beat in synchrony in these simulations, that is, their profiles are
identical at each time point. In Fig. 4, six snapshots of the cilia carpet in one beat cycle are
displayed. Unlike in Section 4.1 where the particles are uniformly random, the distribution of the
grid points on the cilia can be far from uniform, as can be seen from Fig. 4. The beat frequency
f of the cilia is 15Hz (or 15 beat cycles per second) and their angular beat frequency o in (22) is
2nf = 307 accordingly. The regularization parameter ¢ in MRS is chosen to be 0.1 to match the
radius of the cilia. The length and radius of the cilia as well as their beat frequency used in our
study are the same as those in [98].

The values of various dimensional parameters for the cilia carpet, are summarized in Table 2.
We first compare the performance of the block-diagonal preconditioner Pp and the data-sparser
preconditioner Py. The cilia grid spacing h. is set to 0.3, also matching with the value used in
[98]. The x, z components of the velocity at each grid point are again found by differentiating (22)

with respect to time, whereas the y component is set to 0 thus forcing the cilia to stay in their

4To be more precise, at time t, the x coordinate of the point with arclength s is given by the first component of x
in (22) plus the z coordinate of the base point, and the z coordinate of the same point equals the second component

of x plus the z coordinate of the base point, which is 0 in our simulations.

25

469

470

471

472

473

476

477

478

479

480

481

Table 2: Summary of parameter values used for the cilia carpet simulations.

Parameter Value

Fluid viscosity 1gpums™?
Number of cilia 25 x 25 = 625
Number of grid points on each cilium 101

Number of grid points in the fluid (N)

625 x 100 = 62500

Length of cilium

6 pum

Radius of cilium and e

0.1 pm

Average cilia spacing (h.)

0.3 or 0.6 um

Beat frequency (f)

15 Hz

Angular beat frequency (o)

307

No, {a,}2°, and {b,}2°, in (22) see Table 2(B), Eq. (2) in [97]

initial specified planes. Due to the higher particle density and larger ¢, the linear systems arising
from the cilia carpet are significantly more challenging to solve than the ones in Section 4.1 (see the
Appendix for a summary of how the condition number varies with particle density and ¢); therefore,

we use the following milder stopping criteria for the preconditioned GMRES instead:

"

_u(’ﬂ) / Hu(’ﬂ) < 10—3’ HP;(_ZL)agL) . ugn) <]_0_37 n=1,2,....13.

e

As in Section 4.1, we apply one iteration of the GMRES preconditioned by Py that is accelerated
by Krylov subspace recycling and upper Hessenberg matrix estimation. This approach outperforms
GMRES preconditioned Pp in every case and requires 30% less runtime to solve all thirteen linear
systems. The computational results for six linear systems are reported in Table 3. We observe
that the advantage of Py is the most pronounced when applied to the third linear system, which
corresponds to the most uniformly distributed grid points (see Fig. 4). Although the less stringent
stopping criteria (4.2) are used and the matrices are smaller than W240k considered in Section 4.1,
the iteration counts and runtimes shown in Table 3 are still considerably higher than those reported
for W240k in Table 1, indicating the difficulty of these problems.

As a carpet of cilia is simply a collection of points to KIFMM, whether they are synchronous

or asynchronous, planar or three-dimensional does not affect how we solve the linear systems.

26

482

483

486

487

488

489

490

491

492

493

494

496

497

498

Table 3: Comparison of Pp and Py in the case of a cilia carpet (he = 0.3) beating with a prescribed velocity.
The snapshot numbers correspond to the cilia locations given in Fig. 4. Krylov subspace recycling and upper
Hessenberg matrix estimation are applied in conjunction with Py;. Number of quadrature points: ngy = 208 for Ay

and ng = 64 for Py. Number of processors: 16.

Pp Py
of | # of MVPs | runtime | # of | # of MVPs | runtime
snapshot | iters. | (44 /P5") (sec.) iters. | (An/P5'/Py) | (sec.)
1 74 74/75 5714 1 1/132/130 3199
3 52 52/53 5679 1 1/94/92 1642
5 74 74/75 6814 1 1/148/146 3964
7 69 69/70 4028 1 1/136/134 3449
9 93 93/94 5633 1 1/95/93 4862
11 70 70/71 3962 1 1/127/125 2803

Next, we study the effect of the cilia spacing h. on fluid mixing. We track the locations of
3375 particles immersed in the fluid for three beat cycles. They are initially placed on the grid
points of a 15 x 15 x 15 uniform grid over the region [0, 7.2] x [0, 7.2] x [0.1,6.1] (when h, = 0.3) or
[0,14.4] x [0,14.4] x [0.1,6.1] (when h. = 0.6) directly above the bases of the cilia; and they move
with the flow passively without exerting any force on the fluid. The initial positions of the particles
when h, = 0.3 are plotted in the left panel of Fig. 5. Furthermore, each beat cycle is divided into
thirteen equal time intervals such that the beginning of the ith interval coincides with the time
at which the ith snapshot in the left panel of Fig. 3 is taken. The length of the time intervals
is thus At = Flf where f is the cilia beat frequency. We find the forces exerted by the cilia at
the beginning of the ith time interval by solving the ith linear system, compute the velocities of
the passive particles at the same instant by (3) and calculate their locations at the end of the ith
interval using forward Euler’s method, assuming that the particles satisfy a no-slip condition and
move with the local fluid flow. (Since we choose = 1 when solving for the forces earlier, we use
the same p when computing the velocities of the particles.) The 3375 particles after three beat
cycles are plotted in the right panel of Fig. 5 again for the h, = 0.3 case.

As a means of visualizing the mixing, in Fig. 6 to Fig. 8, we illustrate the projections of the

passive particles onto either the xz-plane or zy-plane at four instants. In each figure, the first row

27

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

Time: Os Time: 0.2s

Figure 5: The cilia carpet and particles at the beginnings of the first (left) and fourth (right) beat cycles (he = 0.3).

of subplots correspond to h. = 0.3 and the second row to h. = 0.6, whereas each column of subplots
correspond to a different instant. In the first column of each figure, the projections of the particles
at the initial time are shown; they are evenly divided into three horizontal or vertical “stripes”
and represented by three different markers accordingly. How the stripe patterns evolve during the
simulation provides insights into the fluid mixing along each axis. From Fig. 6 and Fig. 7, both of
which display the projections of the particles onto the xz-plane, we observe that the original stripe
patterns get distorted and can even become unrecognizable as time proceeds. This indicates strong
mixing in both the x and z directions. On the other hand, in Fig. 8 where the projections of the
particles onto the zy-plane are shown instead, the original stripe patterns are clearly identifiable
throughout the simulation, suggesting that the mixing in the y direction is much weaker. This
makes sense since the cilia are specified to move in their initial planes only, which are parallel to the
xz plane. Moreover, by comparing the two rows of subplots in each figure, we can see that mixing
is stronger along all three axes when the cilia spacing is smaller.

The numerical results also suggest that a smaller cilia spacing promotes the effectiveness of the
power stroke: when h. = 0.3, the average signed distance traveled by the 3375 particles along the
z-axis is 1.78 and 73% of them move in the positive x direction; when h. = 0.6, these two numbers

decrease to 0.82 and 63%, respectively.

28

..;"“ Lty
RS REar ke
foas‘-o‘{-i"o-- .
o s o

Figure 6: The projections of the particles onto the zz-plane. (They are divided into horizontal stripes initially.)
Top row: h. = 0.3. Bottom row: h. = 0.6. First to fourth columns: the beginnings of the first to fourth cycles.

Figure 7: The projections of the particles onto the zz-plane. (They are divided into vertical stripes initially.) Top
row: h. = 0.3. Bottom row: h. = 0.6. First to fourth columns: the beginnings of the first to fourth cycles.

sis 4.3. A large group of free swimmers above a planar wall

517 The setting here is quite similar to that of Section 4.1: there are 80000 random particles uni-

sis formly distributed in [0,20] x [0,20] x [0.01,20.01] and a stationary, planar wall located at z = 0.

29

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

Time: 08 “ Time: 0.0666675 Time: 0.13333 ” Time: 023

Time: 08 Time: 00660678
R Shias

. Spie
RY

hrom £ ‘!}‘ m:. 2
X Pt renti N -
R v 1

CRRSAS AP
WIASLE d$ D B, N

Figure 8: The projections of the particles onto the zy-plane. Top row: h. = 0.3. Bottom row: h. = 0.6. First to

fourth columns: the beginnings of the first to fourth cycles.

The difference is that instead of being independent, unconstrained swimmers, the particles are
now grouped into n multi-particle, force-free and torque-free swimmers. To be more precise, for
1 < i < n, we let the [(i —1)p+1]st to the (ip)th particles represent the ith swimmer, where p is the
number of particles per swimmer and thus np = 80000. The augmented coefficient matrix M is of
size (240000 + 6n) x (240000 + 6n) and its (2, 1)-block, B, is of size 6n x 240000; regardless of what
n, p are, the (1,1)-block of M, A, is of size 240000 x 240000 and identical to the matrix W240k
considered in Section 4.1. Multiplying M and a vector entails one matrix-vector product involving
A, which is again approximated using KIFMM; the actual coefficient matrix in our computations is
thus M4 whose (1, 1)-block is Ay instead of A. In the block-upper triangular preconditioner Py in
(19), we choose Py = Pp and Ps = —(BBT)(BPyBT)~Y(BBT), where Py is again the H2-matrix
associated with a version of KIFMM of lower accuracy. Note that Py is used instead of Ay to
further reduce the computational cost of applying Pg ! The matrix BB is 6n x 6n, block-diagonal
and we pre-compute it before running GMRES; it is cheap to compute and store BB as well as
to apply its inverse to vectors. We refer to Py, as the least-squares commutator preconditioner. To
sum up, each iteration of GMRES preconditioned by Pj; mainly requires solving two linear systems
whose coefficient matrix is Pp, two linear systems whose coefficient matrix is BB” and computing

one matrix-vector product involving A4, one matrix-vector product involving Py. As both Pp and

30

536

537

538

539

540

542

543

544

545

546

BBT are block-diagonal, the four linear solves all boil down to solving a number of much smaller
linear systems; and the two matrix-vector products are computed using KIFMM. The U component

in U (see (17)) is a random vector of unit norm.

— o preconditioner ——no preconditioner
—v— least-squares commutator —v— least-squares commutator

residual norm
residual norm

100 150 200 250 0 50 100 150 200 250 300 80 400 450
GMRES iteration GMRES iteration

(a) 800 free swimmers (b) 8000 free swimmers

/ |l4*|| associated with two versions of GMRES (no

Figure 9: Decay of the residual norms HMH& —-ux

preconditioner and least-squares commutator preconditioner Pyy).

Table 4: Comparison of no preconditioner and the least-squares commutator preconditioner in the free swimmer

case. Number of quadrature points: ng = 208 for Ay, and nfl = 64 for Py. Number of processors: 16.

no preconditioner least-squares commutator
of # of | # of MVPs | runtime | # of | # of MVPs | runtime
swimmers | iter. (An) (sec.) iter. | (Aw/Ppt/Py) | (sec.)
800 226 226 21944 31 31/64/32 3560
8000 429 429 42773 33 33/68/34 3740

We apply GMRES with no preconditioner and GMRES preconditioned by Pj; to two augmented
linear systems: one corresponding to 800 swimmers with 100 particles per swimmer and the other
to 8000 swimmers with 10 particles per swimmer. The center of each swimmer is simply taken to
be the mean of the coordinate vectors of its member particles. We emphasize that both problems
correspond to the same 80000 particles; the only difference is how these particles are “lumped”
to form the multi-particle swimmers. Such swimmers are fictitious as they are each represented
by a collection of random particles uniformly distributed in the cube [0, 20] x [0,20] x [0.01,20.01]

3

which can be far away from one another. Nonetheless, they serve as “model swimmers” that allow

31

547

548

549

550

552

553

554

555

556

557

558

559

560

561

562

563

564

us to investigate how the number of appended rows and columns and the number of swimmers
affect the performance of the solvers while the quantity and distribution of the particles remain

fized. We use the stopping criterion HMH& —U*||/[U*]| < 1075 and summarize in Table 4 the

computational results of the two versions of GMRES applied to the two augmented systems. In
Fig. 9, the history of HMHE* -Uur
displayed. First, we compare the performance of GMRES at solving MG* = U* and AG = U.

/ [associated with each application of GMRES is also

Since the (1,1)-block in M is the same as W240k and is preconditioned by Pp in the least-squares
commutator preconditioner Py;, we compare the results of GMRES preconditioned by P, in Table
4 with those corresponding to W240k and Pp in Table 1. When no preconditioner is applied,
the augmented linear system MG* = U™ is significantly more challenging: it requires about three
(n = 800) or six (n = 8000) times more GMRES iterations than AG = U. The preconditioned
GMRES, on the other hand, incurs more or less the same number of iterations when applied to
either MG* = U* or AG = U. Next, we examine how the number of swimmers influence the
performance of both versions of GMRES at solving MG* = U*. Without a preconditioner, the
case with 8000 swimmers entails almost twice as many GMRES iterations as those required by the
case with 800 swimmers; in contrast, the two cases require almost the same number of iterations
when GMRES preconditioned by Py; is applied. In other words, the least-squares commutator

preconditioner is insensitive to the number of extra rows and columns appended to A in M.

32

565

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

5. Conclusion

Large, dense matrices arise from modeling the hydrodynamic interactions among a large group
of micro-structures at zero Reynolds number. Matrix-vector multiplications and linear solves in-
volving these matrices are highly challenging, especially in a time-dependent simulation. Under
the framework of the Method of Regularized Stokeslets, we extend the Kernel-Independent Fast
Multipole Method to calculate the matrix-vector product that gives the flow induced by a large
number of point forces above a stationary, planar wall satisfying a no-slip condition. Additionally,
we also explore the use of different memory efficient preconditioners to solve the linear system for
the unknown forces that the structures are exerting on the fluid when their movement is known.
These preconditioners are data-sparse, retaining and representing either a portion or all of the in-
teractions, and they do not need to be constructed explicitly. We demonstrate their effectiveness
through a variety of cases including point forces in free space, point forces and torques in free space,
and point forces above a wall. The preconditioners, as well as the techniques that we propose to
enhance their performance, are applicable to an entire family of matrices, with those obtained from
the Rotne-Prager-Yamakawa tensor included. Extending our approach to the case of free swimmers
turns out to be rather tricky due to the extra equations for imposing the torque-free, force-free
condition. We develop a preconditioner for the augmented linear system by minimizing the entries
of a commutator-like matrix in the least squares sense.

We will continue to optimize our KIFMM code. For example, the dual tree traversal [104—
106] considered in [77] seems very promising and has not been implemented in the current code.
We emphasize that the kernel W, (see (7)) is not translation invariant and thus, some optimization
techniques are not applicable. The numerical experiments in this work demonstrate the effectiveness
of the proposed preconditioning techniques in the biological applications of interest. A careful
comparison of our approach with existing methods such as the inverse FMM [68, 69] still needs to
be performed in a modern high performance computing environment on problems of larger scales.

There has been a large amount of work in related systems, which could potentially be used to
further enhance computational efficiency and/or model additional examples with the regularized
Stokeslets framework. For example, we have focused on free-space solutions, but some applications
may necessitate a spatially-periodic domain or it may be easier to model periodic copies of cilia or
swimmers when dealing with a large number. In the case of regularized forces, regularized greens

functions for doubly and triply periodic stokes flow have been developed and fast summations have

33

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

been achieved via Ewald methods [83, 107, 108]. We believe that these methods for the regularized
KIFMM for periodic flows should be feasible using a near and far field splitting scheme similar to
[46], where the case of singular point forces were studied. One future direction will be to extend the
KIFMM methodology developed in this work for the regularized image system for periodic Stokes
flow [109-111]. Recently, a force-neutral image system was developed to capture a no-slip wall in
non-periodic and periodic geometries [47], which is conceivable to also be utilized in the case of
regularized point forces.

In this manuscript, we have focused on modeling biological structures that are represented as
regularized point forces. The regularization is necessary to ensure finite velocity fields at the loca-
tions coinciding with the structures so that a no-slip condition can be utilized to move the structure
in time. Previous studies have shown that a smeared or spread force is a good representation for
slender or filamentous structures, where a space curve in 2D or 3D is spread mainly to a region
governed by the regularization parameter [15, 80]. We note that other applications that are not
biological structures could potentially utilize this framework where forces are regularized to ensure
integrable kernels. However, one must always ensure that the physics of the system are being
maintained, and careful choice of blob functions and desired error accuracy must be considered
[112]. We have used a regularization function with infinite support where the majority of the force
is spread to a region corresponding to the regularization parameter. In the future, we plan to
consider a compactly supported regularization function similar to the one used in [83] and compare
the performance of KIFMM when applied to the two families of kernels corresponding to the two
types of regularization functions. In addition, we will investigate how the error of KIFMM and
the condition number of the KIFMM matrix depend on the regularization parameter €. We also
note that structures represented by a collection of points on a larger temporal and spatial scale are
of interest in the current study. In the case that one is modeling point particles and if Brownian
dynamics are important, Stokesian dynamics or the RPY tensor is a better choice than MRS to
study these micro-structures [12, 113, 114].

Due to the implications that cilia dysfunction has in terms of diseases, there has been great
interest in studying the collective dynamics of cilia with regards to fluid mixing. In the section on
numerical experiments, we highlight how our method is able to handle a large yet finite number of
cilia that are tethered to a planar wall and have a prescribed beat form. For the purposes of this

study, we have focused on the case where all of the cilia in the group are beating in phase and there

34

627

628

629

630

631

632

633

634

635

636

637

are no out of plane motions. However, this method can easily extend to scenarios that include cilia
with phase differences and nonplanar components of the beat form, and can be used to understand
regimes of cilia beating that result in pumping and mixing of the fluid as in [115]. Depending on
the questions of interest related to the ciliary beat and fluid flow, previous studies have looked at a
single cilium or a small group of cilia, whereas others have studied large patches of cilia or even an
infinite array of cilia [100, 116-119]. Our method is a nice alternative in the more realistic case where
the cilia carpet is not of infinite extent. We also note that in our numerical experiments, a very
basic uniform discretization of the cilia and a relatively large yet realistic regularization parameter
are used, which have led to matrices that are difficult to work with. In further applications, other
techniques involving optimal discretization of the cilia and methods to decouple the regularization

parameter from the physical radius of the cilia could be utilized [119].

35

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

Appendix

In this section, the fluid viscosity ;. = 1 and whenever the kernel function W, is considered, it
is implied that there is a stationary, planar wall located at z = 0.

All of the numerical experiments are performed in MATLAB version R2017a. The large-scale
simulations are parallelized using The Parallel Computing Toolbox of MATLAB and run on 16
processors (Intel Xeon CPU E5-2699 v3 @ 2.3 GHz with 32 GB of RAM) on a virtual machine.

The performance of KIFMM applied to the MRS matrices

We present the performance of two versions of KIFMM, namely, the surface version [28] and
the corona version [29], at approximating AG, where A represents the pairwise interactions among
80000 random particles uniformly distributed in [0,20] x [0, 20] x [0.01,20.01] and is generated by
the kernel function S., W, or K. with e = 0.02.° The three matrices are of size 240000 x 240000 (for
Se and WW,) or 480000 x 480000 (for K.) and are denoted by S240k, W240k and K480k, respectively.
In both versions of KIFMM, the above cube is uniformly partitioned three times, which creates 512
leaf boxes with about 160 particles in each on average. The difference between the two versions
is illustrated in Fig. 10 for a 2D box B, where the disks represent the quadrature points {q; };-Zl
in (10) and the squares represent the quadrature points {ﬁ};ﬁl in (11). To obtain the fictitious
forces {g; };lll in (10) (or {g; };Lll in (11)) for 9B, we need to solve an integral equation in which the
domain of integration is the upward (or downward) equivalent surface/corona of 8. We first replace
the integral with the trapezoidal rule over n, quadrature points on the equivalent surface/corona;
the integral equation becomes a possibly ill-conditioned linear system, which we then solve using
Tikhonov regularization with suitably chosen parameters. The runtimes of direct calculation are
122, 249 and 299 seconds for S240k, W240k and K480k, respectively. For all three problems and
both versions of KIFMM, we summarize the computational results corresponding to a few values of
nq in Tables 5 and 6. In both tables, “speedup” refers to the runtime of direct calculation divided by
the runtime of KIFMM; therefore, the larger this number is, the more efficient KIFMM is compared
to direct calculation. The relative error refers to |AxG — AG||/||AG| where A% G is the estimate

to AG computed by KIFMM.

5The z-coordinates of the particles are bounded away from 0 so that the matrix W240k is nonsingular.

36

m----- H----- - - »----m
- --E-E--8--E] | R W----- W----- u]
. " Do P
: : [| []] [|
n b : : : :
1 1] [B 1]
i id N(B) ' ' Z :3 N(B) '
: : u " " u
L] L : : : :
B--®--E-E--E--E n [T ----- ----- " n

[- - - SR

(a) Equivalent surfaces. (b) Equivalent coronas.

Figure 10: The equivalent surfaces and coronas of a box in 2D and the quadrature points on them. Left plot: the
upward equivalent surface (—@—) and the downward equivalent surface (— — B — —). Right plot: the upward
equivalent corona (the region between the two —@— boundaries) and the downward equivalent corona (the region
between the two — — B — — boundaries). A 6 x 6 uniform Cartesian grid is used to discretize each equivalent
surface or corona. The quadrature points on the equivalent surfaces or coronas are marked by @ or B, respectively.

In the figures, B=the box of interest, 9B=boundary of B, and ON(B)=boundary of neighborhood of B.

Table 5: Performance of the surface version [28] of KIFMM applied to S240k, W240k and K480k.

Number of processors: 16.

5240k W240k K480k
speed- | relative speed- | relative speed- | relative
grid ng | up error up error up error

3x3x3[26 |2440 | 1931073 | 24.80 | 5.76 1073 | 21.36 | 6.26 1076
4x4x4 |56 | 1743 | 9.18107° | 16.53 | 1.91 10~* | 14.95 | 2.09 10~7
5x5x5 |98 | 938 5.47 107° | 8.86 6.19 107° | 8.31 1.04 1078
6x6x6 | 152 | 4.88 1.35 1076 | 4.28 5.15 1076 | 4.27 7.11 10710

37

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

Table 6: Performance of the corona version [29] of KIFMM applied to S240k, W240k and K480k.

Number of processors: 16.

5240k W240k K480k
speed- | relative speed- | relative speed- | relative
grid Ng up error up error up error

4x4x4|64 | 1525 | 3251076 | 14.59 | 8771075 | 14.24 | 2.18 108
5x5x5 | 124 | 6.78 1.19 1077 | 6.05 2.03 1075 | 5.98 1.19 107°
6x6x6 | 208 | 2.77 1.65 10~8% | 2.36 3.10 1077 | 2.43 6.18 10~ 11

We expect both the speedup and the error of either version of KIFMM to decrease as the
number of quadrature points increases; this is indeed confirmed by the results shown in Tables 5
and 6 for all three matrices. KIFMM is substantially more efficient than direct calculation: even
when 208 quadrature points are used, which is the largest number considered, the runtime required
by KIFMM is still less than half of that required by direct calculation in all three cases. When
the same number of quadrature points is used, KIFMM produces the most accurate estimate for
K480k and the least accurate estimate for W240k; in fact, for most values of n,, the relative error
associated with the latter is more than 1000 times greater than that associated with the former.
Furthermore, although W240k and S240k are of the same size, whether KIFMM or direct calculation
is applied, the runtime required by W240k is always more than twice as long as that required by
S240k. The two observations above indicate that W, is a rather challenging kernel.

The condition numbers of MRS matrices

We investigate how the condition numbers of MRS matrices change with various factors. For
each combination of domain, regularization parameter € and kernel function, we repeat the following
experiment 10000 times: generate 100 random particles uniformly distributed in the domain, con-
struct the MRS matrix representing their pairwise interactions, and compute the condition number
of this matrix. The size of each sample matrix is 300 x 300 (for S and W¢) or 600 x 600 (for K.).
The average condition number of each group of 10000 sample matrices is reported in Table 7.

As expected, when the domain is [0, 1] x [0, 1] x [0, 1], since the particles can get arbitrarily close
to the wall at z = 0, the matrices generated by W, are ill-conditioned with an average condition

number of 5.62 x 10'2. After we bound the particles away from the wall by changing the domain to

38

686

687

688

689

690

Table 7: Average condition number of 10000 sample MRS matrices generated for each combination of domain,

regularization parameter and kernel function

Domain € kernel | avg. cond. #

[0,1] x [0,1] x [0.01,1.01] - 1.13 x 10!

T | 562 x 1012
0.02

K. 1.22 x 10*

[0,1] x [0,1] x [0,1] 1.06 x 10!

0.04 4.85 x 10!

0.08 | S. 3.28 x 102

[0,2] x [0,2] x [0, 2] 3.78 x 10°
0.02

[0,4] x [0,4] x [0,4] 2.07 x 10°

[0,1] x [0,1] x [0.01, 1.01], the average condition numbers of the matrices generated by W, and those
generated by S. become almost the same (1.13x 10! and 1.06 x 10!), and they are both considerably
smaller than the average condition number of the matrices generated by K. (1.22 x 10%). Moreover,
the average condition number grows as the density of the particles or the regularization parameter

¢ increases and is especially sensitive to the latter.

39

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

References

[1]

[11]

[12]

[13]

L. Cisneros, J. Kessler, S. Ganguly, R. Goldstein, Dynamics of swimming bacteria: transition

to directional order at high concentration, Phys Rev E 83 (2011) 061907.

N. Mendelson, A. Bourque, K. Wilkening, K. Anderson, J. Watkins, Organized cell swimming
motions in bacillus subtilis colonies: patterns of short-lived whirls and jets, J Bacteriol 181

(1999) 600-609.

R. Thar, M. Kuhl, Conspicuous veils formed by vibrioid bacteria on sulfidic marine sediment,

Appl Environ Microbiol 68 (2002) 6310-6320.

H. Wioland, F. Woodhouse, J. Dunkel, J. Kessler, R. Goldstein, Confinement stabilizes a
bacterial suspension into a spiral vortex, Phys Rev Lett 110 (2013) 268102.

H. Moore, K. Dvorakova, N. Jenkins, W. Breed, Exceptional sperm cooperation in the wood

mouse, Nature 418 (2002) 174-177.

I. Riedel, K. Kruse, J. Howard, A self-organized vortex array of hydrodynamically entrained

sperm cells, Science 309 (2005) 300-303.

T. Sanchez, D. Chen, S. DeCamp, M. Heymann, Z. Dogic, Spontaneous motion in hierarchi-
cally assembled active matter, Nature 491 (2012) 431-435.

T. Surrey, F. Nedelec, S. Leibler, E. Karsenti, Physical properties determining self-
organization of motors and microtubules, Science 292 (2001) 1167-1171.

C. Peskin, The immersed boundary method, Acta Numerica 11 (2002) 459-517.

C. Porzrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cam-
bridge University Press, 1992.

J. Brady, Stokesian dynamics, Ann Rev Fluid Mech 20 (1988) 111-156.

A. Banchio, J. Brady, Accelerated Stokesian dynamics: Brownian motion, J Chem Phys 118
(2003) 10323-10332.

A. Sierou, J. Brady, Accelerated Stokesian dynamics simulations, J Fluid Mech 448 (2001)
115-146.

40

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

[14]

[15]

[16]

[17]

R. Cortez, The method of regularized Stokeslets, SIAM J Sci Comput 23 (2001) 1204-1225.

R. Cortez, L. Fauci, A. Medovikov, The method of regularized Stokeslets in three dimensions:

Analysis, validation, and application to helical swimming, Phys Fluids 17 (2005) 031504.

J. Rotne, S. Prager, Variational treatment of hydrodynamic interaction in polymers, J Chem

Phys 50 (1969) 4831-4837.

H. Yamakawa, Transport properties of polymer chains in dilute solution: hydrodynamic

interaction, J Chem Phys 53 (1970) 436-443.

H. Cheng, L. Greengard, V. Rokhlin, A fast adaptive multipole algorithm in three-dimensions,
J Comput Phys 155 (1999) 468-498.

L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J Comput Phys 73
(1987) 325-348.

L. Greengard, V. Rokhlin, A new version of the fast multipole method for the Laplace
equation in three dimensions, Acta Numer 6 (1997) 838-853.

V. Rokhlin, Rapid solution of integral equations of classical potential theory, J Comput Phys
60 (1985) 187-207.

A. Tornberg, L. Greengard, A fast multipole method for the three-dimensional stokes equa-
tions, J Comput Phys 227 (2008) 1613-1619.

J. Barnes, P. Hut, A hierarchical O(N log N) force-calculation algorithm, Nature 324 (1986)
446-449.

J. Barnes, A modified tree code: Don’t laugh; it runs, J Comp Phys 87 (1990) 161-170.

S. Pfalzner, P. Gibbon, Many Body Tree Methods in Physics, Cambridge University Press,
Cambridge, UK, 1996.

L. Wang, S. Tlupova, R. Krasny, A treecode algorithm for 3D Stokeslets and Stresslets, 2018.
In Review, arXiv:1811.12498.

L. Wang, R. Krasny, S. Tlupova, A kernel-independent treecode based on barycentric La-
grange interpolation, 2019. In Review, arXiv:1902.02250.

41

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

[28]

[29]

[31]

[32]

[33]

L. Ying, G. Biros, D. Zorin, A kernel-independent adaptive fast multipole algorithm in two
and three dimensions, J Comput Phys 196 (2004) 591-626.

L. Ying, A kernel independent fast multipole algorithm for radial basis functions, J Comput

Phys 213 (2006) 451-457.

M. Rostami, S. Olson, Kernel-independent fast multipole method within the framework of

regularized Stokeslets, J Fluid Struct 67 (2016) 60-84.

E. Lauga, T. Powers, The hydrodynamics of swimming microorganisms, Rep Prog Phys 72

(2009) 096601.

L. Fauci, A. McDonald, Sperm motility in the presene of boundaries, Bull Math Biol 57
(1995) 679-699.

J. Huang, L. Carichino, S. Olson, Hydrodynamic interactions of actuated elastic filaments
near a planar wall with applications to sperm motility, J Coupled Syst Multiscale Dyn 6
(2018) 163-175.

D. Woolley, Motility of spermatozoa at surfaces, Reproduction 126 (2003) 259-270.

D. Smith, J. Blake, Surface accumulation of spermatozoa: A fluid dynamic phenomenon,

Math Scientist 34 (2009) 74-87.

L. Rothschild, Non-random distribution of bull spermatozoa in a drop of sperm suspension,

Nature 198 (1963) 1221-1222.

C. Tung, F. Ardon, A. Fiore, S. Suarez, M. Wu, Cooperative roles of biological flow and
surface topography in guiding sperm migration revealed by a microfluidic model, Lab Chip

14 (2014) 1348-1356.

S. Suarez, Mammalian sperm interactions with the female reproductive tract, Cell Tissue

Res 363 (2016) 185-194.

J. Hernandez-Ortiz, C. Stoltz, M. Graham, Transport and collective dynamics in suspensions

of confined self-propelled particles, Phys Rev Lett 95 (2005) 204501.

42

768

769

770

771

772

773

774

775

776

77

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

[40]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

A. Costanzo, R. Di Leonardo, G. Ruocco, L. Angelani, Transport of self-propelling bacteria
in micro-channel flow, J Phys Condens Matter 24 (2012) 065101.

E. Lushi, H. Willard, R. Goldstein, Fluid flows created by swimming bacteria drive self-
organization in confined suspensions, Proc Natl Acad Sci USA 111 (2014) 9733-9738.

A. Tsang, E. Kanso, Flagella-induced trasitions in the collective behavior of confined mi-

croswimmers, Phys Rev E 90 (2014) 021001(R).

A. Tsang, E. Kanso, Circularly confined microswimmers exhibit multiple global patterns,

Phys Rev E 91 (2015) 043008.

A. Tsang, E. Kanso, Density shock waves in confined microswimmers, Phys Rev Lett 116

(2016) 048101.

J. Blake, A note on the image system for a stokeslet in a no-slip boundary, Mathematical

Proceedings of the Cambridge Philosophical Society 70 (1971) 303—-310.

W. Yan, M. Shelley, Flexibly imposing periodicity in kernel independent FMM: A multipole-
to-local operator approach, J Comp Phys 355 (2018) 214-232.

W. Yan, M. Shelley, Universal image systems for non-periodic and periodic stokes flows above

a no-slip wall, J Comp Phys 375 (2018) 263-270.

Z. Gimbutas, L. Greengard, S. Veerapaneni, Simple and efficient representations for the

fundamental solutions of stokes flow in a half-space, J Fluid Mech 776 (2015) R1.

M. Bebendorf, Hierarchical matrices: A Means to Efficiently Solve Elliptic Boundary Value
Problems, Springer-Verlag, Berlin, Germany, 2008.

W. Hackbusch, Hierarchical matrices: Algorithms and Analysis, Springer-Verlag, Berlin, Ger-
many, 2015.

S. Borm, H2-matrix arithmetics in linear complexity, Computing 77 (2006) 1-28.

S. Bérm, Data-sparse approximation of non-local operators by H2-matrices, Linear Algebra

Appl 422 (2007) 380-403.

43

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

[53]

[54]

[59]

[60]

S. Borm, K. Reimer, Efficient arithmetic operations for rank-structured matrices based on

hierarchical low-rank updates, Comput Vis Sci 16 (2013) 247-258.

W. Hackbusch, S. Bérm, Data-sparse approximation by adaptive H2-matrices, Computing

69 (2002) 1-35.

W. Hackbusch, S. Bérm, #H2-matrix approximation of integral operators by interpolation,

Appl Numer Math 43 (2002) 129-143.

W. Hackbusch, B. Khoromskij, S. Sauter, On H?-matrices, in: H. Bungartz, R. Hoppe, Z. Ch

(Eds.), Lectures on Applied Mathematics, Springer-Verlag, Berlin, Germany, 2000, pp. 9-29.

S. Borm, L. Grasedyck, W. Hackbusch, Introduction to hierarchical matrices with applica-

tions, Eng Anal Bound Elem 27 (2003) 405-422.

W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: introduction to

H-matrices, Computing 62 (1999) 89-108.

W. Hackbusch, B. Khoromskij, A sparse H-matrix arithmetic: General complexity estimates,

J Comput Appl Math 125 (2000) 479-501.

A. Aminfar, S. Ambikasaran, E. Darve, A fast block low-rank dense solver with applications

to finite-element matrices, J Comput Phys 304 (2016) 170-188.

W. Kong, J. Bremer, V. Rokhlin, An adaptive fast direct solver for boundary integral equa-
tions in two dimensions, Appl Comput Harmon Anal 31 (2011) 346-369.

M. Chandrasekaran, S. Gu, T. Pals, A fast ULV decomposition solver for hierarchically
semiseparable representations, STAM J Matrix Anal Appl 28 (2006) 603-622.

E. Corona, P. Martinsson, D. Zorin, An O(N) direct solver for integral equations on the

plane, Appl Comput Harmon Anal 38 (2015) 284-317.

A. Gillman, P. Martinsson, An O(N) algorithm for constructing the solution operator to 2D
elliptic boundary value problems in the absence of body loads, Adv Compt Math 40 (2014)
773-796.

44

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

[65]

[66]

[67]

[68]

[72]

P. Martinsson, V. Rokhlin, A fast direct solver for boundary integral equations in two dimen-

sions, J Comput Phys 205 (2005) 1-23.

J. Xia, M. Chandrasekaran, M. Gu, X. S. Li, Fast algorithms for hierarchically semiseparable
matrices, Numer Linear Algebra Appl 17 (2010) 953-976.

J. Xia, M. Chandrasekaran, M. Gu, X. S. Li, Superfast multifrontal method for large struc-
tured linear systems of equations, STAM J Matrix Anal Appl 31 (2010) 1382-1411.

S. Ambikasaran, E. Darve, The inverse fast multipole method, arXiv:1407.1572v1 [math.NA],
2014.

P. Coulier, H. Pouransari, E. Darve, The inverse fast multipole method: using a fast ap-
proximate direct solver as a preconditioner for dense linear systems, SIAM J Sci Comput 39

(2017) A761-A796.

G. Alléon, M. Benzi, L. Giraud, Sparse approximate inverse preconditioning for dense linear

systems arising in computational electromagnetics, Numer Algorithms 16 (1997) 1-15.

B. Carpentieri, Algebraic preconditioners for the Fast Multipole Method in electromagnetic
scattering analysis from large structures: Trends and problems, Electronic Journal of Bound-

ary Elements 7 (2009) 13-49.

B. Carpentieri, I. Duff, L. Giraud, Sparse pattern selection strategies for robust frobenius-
norm minimization preconditioners in electromagnetism, Numer Linear Algebra Appl 7 (2000)

667-685.

B. Carpentieri, 1. Duff, L. Giraud, G. Sylvand, Combining fast multipole techniques and
an approximate inverse preconditioner for large electromagnetism calculations, STAM J Sci

Comput 27 (2005) 774-792.

K. Chen, On a class of preconditioning methods for dense linear systems from boundary

elements, STAM J Sci Comput 20 (1998) 684-698.

J. Lee, J. Zhang, C.-C. Lu, Sparse inverse preconditioning of multilevel fast multipole al-
gorithm for hybrid integral equations in electromagnetics, IEEE Trans Antennas Propag 52

(2004) 2277-2287.

45

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

[76]

[77]

[78]

[79]

[80]

[81]

[82]

Y. Saad, Iterative Methods for Sparse Linear Systems, STAM, Philadelphia, USA, 2003.

H. Ibeid, R. Yokota, J. Pestana, D. Keyes, Fast multipole preconditioners for sparse matrices

arising from elliptic equations, Comput Vis Sci 18 (2018) 213-229.

R. Yokota, H. Ibeid, D. Keyes, Fast multipole method as a matrix-free hierarchical low-rank
approximation, in: Eigenvalue Problems: Algorithms, Software and Applications in Petascale

Computing, Springer International, Switzerland, 2017, pp. 267—286.

S. Jung, K. Mareck, L. Fauci, M. Shelley, Rotational dynamics of a superhelix towed in a
stokes fluid, Phys Fluids 19 (2007) 103105-1-6.

B. Rodenborn, C. Chen, H. Swinney, B. Liu, H. Zhang, Propulsion of microorganisms by a
helical flagellum, Proc Natl Acad Sci USA 110 (2013) 338-347.

E. L. Bouzarth, M. L. Minion, Modeling slender bodies with the method of regularized
Stokeslets, Journal of Computational Physics 230 (2011) 3929-3947.

H. Nguyen, R. Ortiz, R. Cortez, L. Fauci, The action of waving cylindrical rings in a viscous

fluid, J Fluid Mech 671 (2011) 574-586.

K. Leiderman, E. Bouzarth, R. Cortez, A. Layton, A regularization method for the numerical

solution of periodic stokes flow, J Comp Phys 236 (2013) 187-202.

H. Flores, E. Lobaton, S. Mendez-Diez, S. Tlupova, R. Cortez, A study of bacterial flagellar
bundling, Bull Math Bio 65 (2005) 137-168.

S. Lim, Dynamics of an open elastic rod with intrinsic curvature and twist in a viscous fluid,

Phys Fluids 22 (2010) 024104.

S. Lim, A. Ferent, X. Wang, C. Peskin, Dynamics of a closed rod with twist and bend in
fluid, STAM J Sci Comput 31 (2008) 273-302.

S. Olson, S. Lim, R. Cortez, Modeling the dynamics of an elastic rod with intrinsic curvature

and twist using a regularized stokes formulation, J Comput Phys 283 (2013) 169-187.

J. Ainley, S. Durkin, R. Embid, P. Boindala, R. Cortez, The method of images for regularized
Stokeslets, J Comput Phys 227 (2008) 4600-4616.

46

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

[89]

[90]

[91]

[92]

[100]

[101]

R. Cortez, D. Varela, A general system of images for regularized stokeslets and other elements

near a plane wall, J Comput Phys 285 (2015) 41 — 54.

R. Adrian, J. Westerweel, Particle image velocimetry, Cambridge University Press, Cam-

bridge, UK, 2011.

A. Schroeder, C. Willert, Particle image velocimetry : new developments and recent applica-

tions, Springer, Berlin, Germany, 2008.

Y. Saad, M. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsym-
metric linear systems, STAM J Sci Stat Comput 7 (1986) 856-869.

F. Balboa Usabiaga, B. Kallemov, B. Delmotte, A. Bhalla, B. Griffith, A. Donev, Hydrody-
namics of suspensions of passive and active rigid particles: a rigid multiblob approach, Comm

App Math Comp Sci 11 (2016) 217-296.

E. Nazockdast, A. Rahimian, D. Zorin, M. Shelley, A fast platform for simulating semi-flexible
fiber suspensions applied to cell mechanics, J Comp Phys 329 (2017) 173-209.

M. Parks, E. De Sturler, G. Mackey, D. Johnson, S. Maiti, Recycling Krylov subspaces for
sequences of linear systems, STAM J Sci Comput 28 (2006) 1651-1674.

H. Elman, D. Silvester, A. Wathen, Finite Elements and Fast Iterative Solvers with Applica-

tions in Incompressible Fluid Dynamics, Oxford University Press, Oxford, 2014.
J. Blake, A model for the micro-structure in ciliated organisms, J Fluid Mech 55 (1972) 1-23.
G. Fulford, J. Blake, Muco-ciliary transport in the lung, J Theor Biol 121 (1986) 381-402.

M. Sanderson, M. Sleigh, Ciliary activity of cultured rabbit tracheal epithelium, J Cell Sci
47 (1981) 331-347.

Y. Ding, J. Nawroth, M. McFall-Ngai, E. Kanso, Mixing and transport by ciliary carpets: a
numerical study, J Fluid Mech 743 (2014) 124-140.

H. Guo, J. Nawroth, Y. Ding, E. Kanso, Cilia beating patterns are not hydrodynamically
optimal, Phys Fluids 26 (2014) 091901.

47

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

[102]

[103)]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Y. Ding, E. Kanso, Selective particle capture by asynchronously beating cilia, Phys Fluids
27 (2015) 121902.

J. Nawroth, H. Guo, E. Koch, E. Heath-Heckman, J. Hermanson, E. Ruby, J. Dabiri,
E. Kanso, M. McFall-Ngai, Motile cilia create fluid-mechanical microhabitats for the active

recruitment of the host microbiome, PNAS 114 (2017) 9510-9516.

J. Carrier, L. Greengard, V. Rokhlin, A fast adaptive multipole algorithm for particle simu-
lations, STAM J Sci Stat Comput 9 (1988) 669-686.

M. Warren, J. Salmon, A portable parallel particle program, Comput Phys Commum 87
(1995) 266-290.

W. Dehnen, A hierarchical O(N) force calculation algorithm, J Comput Phys 179 (2002)
27-42.

R. Cortez, F. Hoffmann, A fast numerical method for computing doubly-periodic regularized

stokes flow in 3d, J Comp Phys 258 (2014) 1-14.

K. Leiderman, E. Bouzarth, H.-N. Nguyen, A regularization method for the numerical solution

of doubly-periodic stokes flow, AMS proceeding (2014).

F. Hoffmann, R. Cortez, Numerical computation of doubly-periodic Stokes flow bounded by
a plane with applications to nodal cilia, Comm Comp Phys 22 (2017) 620-642.

H. Nguyen, Leiderman, Computation of the singular and regularized image systems for

doubly-periodic stokes flow in the presence of a wall, J Comput Phys 297 (2015) 442-461.

F. Mannan, R. Cortez, An explicit formula for two-dimensional singly-periodic regularized

stokeslets flow bounded by a plane wall, Comm Comput Phys 23 (2018) 142-167.

P. Martin, On the use of approximate fundamental solutions: connections with the method
of fundamental solutions and the method of regularized stokeslets, Eng Anal Bound Elem 99

(2019) 23-28.

Z. Liang, Z. Gimbutas, L. Greengard, J. Huang, S. Jiang, A fast multipole method for the
Rotne-Prager-Yamakawa tensor and its applications, J Comput Phys 234 (2013) 133-139.

48

922

923

924

925

926

927

928

929

930

931

932

933

[114] J. Swan, J. Brady, Simulation of hydrodynamically interacting particles near a no-slip bound-

ary, Phys Fluids 19 (2007) 113306.

[115] A. Shields, B. Fiser, B. Evans, M. Falvo, S. Washburn, R. Superfine, Biomimetic cilia arrays
generate simultaneous pumping and mixing regimes, PNAS 107 (2010) 15670 — 15675.

[116] R. Dillon, L. Fauci, An integrative model of internal axoneme mechanics and external fluid

dynamics in ciliary beating, J Theor Biol 207 (2000) 415-430.

[117] H. Guo, J. Nawroth, Y. Ding, E. Kanso, Cilia beating patterns are not hydrodynamically
optimal, Phys Fluids 26 (2014) 091901.

[118] S. Mitran, Metachronal wave formation in a model of pulmonary cilia, Comput Struct 85

(2007) 763-774.

[119] D. Smith, A boundary element regularized stokeslet method applied to cilia- and flagella-
driven flow, Proc R Soc A 465 (2009) 3605-3626.

49

