
Fast algorithms for large dense matrices with applications to

biofluids?

Minghao W. Rostami1

Department of Mathematics, Syracuse University, 215 Carnegie Bldg., Syracuse, NY 13244.

Sarah D. Olson2

Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609,

USA.

Abstract

Numerical simulation of biofluids entails solving equations of fluid-structure interactions. At

zero Reynolds number, solvers such as the Method of Regularized Stokeslets (MRS) give rise to

large and dense matrices in practical applications where the number of structures immersed in

the fluid is large. Building on previous work for an unbounded fluid domain, we first extend

the Kernel-Independent Fast Multipole Method (KIFMM) for MRS to compute the matrix-vector

products for the fluid flow induced by point forces above a stationary wall. In this case, the use of a

regularized image system introduces additional terms to the solution which cause the matrix-vector

multiplication to be quite challenging. In addition, we study the case where a linear system needs

to be solved for the unknown forces that structures with known velocities exert on the fluid. Our

main contribution is proposing several preconditioning techniques for the matrices associated with

a few variants of MRS, including the case where a force-free, torque-free condition is imposed. They

take advantage of the data-sparsity of FMM matrices as well as properties of Krylov subspaces.

Our approach is memory efficient, capable of handling non-uniformly distributed structures and

applicable to all FMM matrices. It enables efficient computation of the flow field surrounding a

large group of dynamic micro-structures; in particular, we study the effects of fluid mixing caused
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by the periodic beating of a dense carpet of lung cilia.
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1. Introduction1

At high enough density, dynamic micro-structures such as bacteria [1–4], cilia, sperm [5, 6],2

algae, and microtubules [7, 8] exhibit remarkable collective motions which bear significant biological3

implications. For example, sperm swim both competitively and collaboratively to reach the egg,4

and cilia in the airways beat collectively to propel mucus and foreign particles out of the lung.5

These phenomena can be modeled by several methods, such as the immersed boundary method [9],6

the boundary integral equation method [10], Stokesian dynamics [11–13] the Method of Regularized7

Stokeslets (MRS) [14, 15] and through the use of the Rotne-Prager-Yamakawa (RPY) tensor [16, 17].8

At zero Reynolds number, the fluid flow is linearly related to the force via a mobility tensor; the9

MRS utilizes a tensor based on the Stokeslet or single layer potential whereas the RPY tensor is10

based on both the Stokeslet and Stresslet. Both MRS and RPY are regularized methods for solving11

the incompressible Stokes equations; they have the advantage of not requiring an Eulerian grid for12

the entire fluid domain but the computations required by both methods entail the use of dense13

matrices. The size of the linear system grows and becomes progressively more difficult to work14

with as the number of point forces associated with the micro-structures increases. The main goal15

of this paper is to develop efficient methods for solving large-scale linear systems that involve the16

aforementioned coefficient matrices, which are large and dense, and are generally determined by17

particular kernel functions.18

Two “ingredients” are essential in the efficient solution of the linear systems of interest. One is a19

fast algorithm for matrix-vector multiplications to determine the resulting fluid flow when the forces20

are known. The second ingredient is an effective preconditioner when solving for the forces in the21

case of known velocities. The Fast Multipole Method (FMM) involves an analytic factorization and22

can be utilized for fast matrix-vector products [18–22]; this method has been extended to matrices23

arising from the RPY tensor and the MRS, reducing the cost of computing a matrix-vector product24

from O(N2) to O(N) for N ×N matrices. The standard Barnes-Hut treecode also breaks up the25

calculations into a near and far field calculation, resulting in a method that is O(N logN) [23–25],26

where Taylor series or Lagrange barycentric interpolation could be used to represent the kernels27

[26, 27]. In particular, due to the difficulties with factorizing certain kernel functions, we have28

implemented the Kernel-Independent FMM (KIFMM) [28, 29] in [30] for the MRS. One limitation29

of [30] is that only unbounded fluid domains were considered.30

It is well-known that surface interactions play an important role in the swimming motion of31
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micro-organisms [31]. The interactions between a small number of sperm and solid or elastic walls32

have been studied in [6, 32–38]. The collective behavior of micro-organisms in geometric confinement33

has been investigated by many papers such as [4–6, 39–44]. Most models that account for the flow34

above a stationary, planar wall have utilized an image system that cleverly places image points35

below the wall to enforce the no-slip condition at the wall [45]. Recently, the KIFMM has been36

extended for the case of flow above a no-slip wall in both non-periodic and periodic domains [46, 47].37

However, the image system used different kernel functions [48] than the ones commonly used in38

MRS and the study did not focus on the case of solving for the unknown forces. Therefore, in39

this paper, we further extend the KIFMM to domains with a stationary, planar wall within the40

framework of MRS using the common image system of Blake [45] and then focus on solving the41

linear systems involving KIFMM matrices.42

We emphasize that mathematically, FMM is equivalent to approximating the original matrix43

with a hierarchical matrix (or an H-matrix) with nested bases, known as the H2-matrix (see [49,44

Section 2.11], [50, Chapter 8], and [51–56]). A hierarchical matrix is, roughly speaking, a matrix45

that can be partitioned into a hierarchy of smaller blocks, the vast majority of which are low-rank46

(see [50, Section 6.1]). It is therefore “data-sparse” and allows for efficient storage and matrix-47

vector multiplication with linear or almost linear complexity (see [50, Chapter 6] and [57–59]). In48

addition, fast direct solvers have been developed for various categories of H-matrices including the49

Hierarchically Off-Diagonal Low-Rank (HODLR) matrices [60, 61], the Hierarchically SemiSepara-50

ble (HSS) matrices [62–67], and the H2-matrices [68, 69]. Direct solvers enjoy many advantages51

such as linear or almost linear complexity; they are often more efficient when used as precondi-52

tioners for an iterative solver. However, constructing these preconditioners can be expensive both53

computationally and storage-wise. Alternatively, many papers [70–75] use the sparse approximate54

inverse preconditioner [76, Section 10.5], which refers to a sparse approximation to the inverse of the55

coefficient matrix. As the user can specify the sparsity pattern of the preconditioner, storing it is56

easy; however, computing it requires the solution of N least-squares problems for an N ×N matrix57

and can still be costly. The overhead incurred by both veins of methods is mitigated in applica-58

tions where a sequence of linear systems with the same coefficient matrix and multiple right-hand59

sides need to be solved. Unfortunately, in many models for biofluids, we wish to understand the60

movement of dynamic micro-structures in time. This results in a sequence of linear systems with61

different coefficient matrices, making the cost for these methods prohibitive.62
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The preconditioner that we propose to use is the matrix associated with a version of KIFMM63

that is less accurate than the version applied to compute the matrix-vector products. This idea is64

not new; for example, it has been used in [73] for FMM matrices. It gives rise to a sequence of65

challenging subsidiary linear systems. By exploiting properties of Krylov subspaces, we propose a66

few techniques that both expedite each individual solve and reduce the number of solves needed.67

Compared to the inverse FMM preconditioner [68, 69], our approach is highly economical in terms68

of memory as there is no need to explicitly form the preconditioner; its implementation is also69

insensitive to whether the distribution of the swimmers is uniform.70

Although our focus is on dense matrices, for completeness, we point out that FMM-based precon-71

ditioners have recently been developed for the sparse matrices arising from spatial discretization of72

elliptic partial differential equations [77, 78]. They are competitive alternatives to the conventional73

preconditioners for these matrices such as multigrid.74

The rest of the paper is organized as follows. In Section 2, we describe the structure of the75

matrices arising from the MRS in various settings and provide a brief review of KIFMM. In Section76

3, we explain in detail how we plan to solve the linear systems involving large-scale MRS matrices.77

Numerical results of the proposed methods are presented in Section 4, where several types of78

dynamic micro-structures are considered. We conclude the paper with a few remarks in Section 5.79
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2. Matrix-vector multiplication80

In Section 2.1, we first review the Method of Regularized Stokeslets (MRS) with emphasis on81

the structure of the matrices associated with it. As we shall see, they are dense and will grow in82

size as the number of point forces increases. In Section 2.2, we summarize the Kernel-Independent83

Fast Multipole Method (KIFMM) for performing the matrix-vector multiplication efficiently.84

Throughout the rest of the paper, the fluid domain is three-dimensional and either unbounded85

or half-bounded by a stationary, planar wall; and ‖ · ‖ denotes the standard Euclidean norm (286

norm).87

2.1. The Method of Regularized Stokeslets (MRS)88

The MRS is a widely applicable method to simulate zero Reynolds number flows driven by89

forces from active or moving structures. Micro-swimmers are often represented in a space dimension90

one lower than the fluid, which generally leads to singular or nearly singular kernel fluid velocity91

evaluations when using fundamental solutions. Integrable kernels and finite velocity fields on the92

structures are obtained in the MRS by first regularizing the forces [14, 15]. Forces can be regularized93

with support regions mainly corresponding to the width or size of the structure, which has been94

shown to match well with experiments [79–81] and capture dynamics as well (or better) than95

resistive force theory and slender body theory [80, 82]. Additionally, the MRS can handle structures96

of different sizes and shapes via the choice of different regularization functions, discretizations, and97

force models to capture flexible (elastic) structures.98

Let a group of micro-swimmers or structures be represented by N points located at {xj}
N
j=1.99

For instance, they can be grid points corresponding to a Lagrangian discretization of the structures100

or can each be an individual swimmer. Suppose that these points exert forces {fj}
N
j=1 on the101

surrounding fluid and move at the local fluid velocities (no-slip condition). Since the swimmers are102

at the scale of zero Reynolds number where inertia is negligible and viscous effects dominate, the103

fluid dynamics can be modeled by the incompressible Stokes equations:104

−µ∆u+∇p =

N∑

j=1

fjδ(rj),

∇ · u = 0,

(1)
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where rj = ‖rj‖ = ‖x− xj‖, δ(r) is the Dirac delta distribution, µ is the viscosity, p = p(x) is the105

pressure and u = u(x) is the velocity at x = [x, y, z]T . In free-space, the solution u(x) to (1) can106

be written as
N∑

j=1

S(x,xj)fj , where S(x,xj) : R
3 → R

3×3 (j = 1, . . . , N) is defined at every x except107

for xj . In order to evaluate the velocities of the micro-organisms, which is necessary for updating108

their locations in a time-dependent simulation, MRS [14, 15] replaces δ(r) in (1) with a smooth,109

radially symmetric “blob” function ψε(r), where ε > 0 is a parameter that controls the spreading110

of every point force fj . An example of such a function is111

ψε(r) =
15ε4

8π(ε2 + r2)7/2
. (2)

Although (2) has an infinite support, it spreads the majority of fj within the ball centered at xj112

with radius ε. Thus, in our applications, the parameter ε can be viewed as the radius or thickness113

of the micro-organisms. The solution to (1) with the regularized forcing terms {fjψε(rj)}
N
j=1 is114

u(x) =

N∑

j=1

Sε(x,xj)fj , where the regularized Stokeslet Sε(x,xj) : R3 → R
3×3 (j = 1, . . . , N) is115

defined at every x including xj . As an alternative to (2), we can also use a compactly supported116

blob function [83].117

Two additional cases of MRS will be considered as well. In the free-space case, we can also118

account for point torques, capturing the twisting or rotation of micro-organisms. Hence, in addition119

to the point forces {fj}
N
j=1, we also need to include the torques {nj}

N
j=1 at {xj}

N
j=1 in the right120

hand side of (1) as

N∑

j=1

∇×njψε(rj) for the regularized case [84–87]. As shown in [87], the solution121

to (1) with both the regularized forces and torques incorporated is122


u(x)
w(x)


 =

N∑

j=1

Kε(x,xj)


 fj
nj


 ,

where w(x) is the angular velocity at x and Kε(x,xj) : R
3 → R

6×6 is defined at every x.123

We will also consider the case of only point forces above a stationary, planar wall satisfying a124

no-slip boundary condition. The solution to the regularized version of (1) with
N∑

j=1

fjψε(rj) on the125

right hand side in a domain DW half bounded by a wall was derived in [88] using the method of126

images of Blake [45]; it can be written as127

u(x) =

N∑

j=1

Wε(x,xj)fj , (3)
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where Wε(x,xj) : R
3 → R

3×3 is defined at every x ∈ DW .128

In each of the three cases, the point forces (and torques) and the velocities at the N points due129

to their pairwise hydrodynamic interactions satisfy a linear system U = AG. Here, A is determined130

by a particular kernel function (Sε, Wε or Kε) and is a dN × dN matrix consisting of d× d blocks131

(Sε(xi,xj), Wε(xi,xj) or Kε(xi,xj)), where d = 3 if only forces are considered or d = 6 if torques132

are included as well. Let G denote the dN × 1 vector obtained by concatenating {fj}
N
j=1 or133






 fj
nj







N

j=1

.

For uj (wj) denoting the linear (angular) velocity at xj , we can define the dN × 1 vector U in134

a similar way by replacing fj (and nj) in G with uj (and wj , respectively). When G is known,135

computing the velocity U is equivalent to evaluating a matrix-vector product. On the other hand,136

when U is known and G is wanted, we have to solve the linear system AG = U instead.137

We now take a closer look at the d × d kernel functions Sε(x,y), Wε(x,y) and Kε(x,y). For138

any x, y in the domain, let r = x− y, r = ‖r‖, In denote the n× n identity matrix, and139

[v]× =




0 −v3 v2

v3 0 −v1

−v2 v1 0


 (4)

where vk (k = 1, 2 or 3) is the kth component of a vector v in R
3. (For any u ∈ R

3, the matrix-140

vector product [v]× · u is equivalent to the cross product v × u.) Then, we can write the kernel141

functions for the free-space case of forces only or forces and torques as142

Sε(x,y) =
1

µ

(
H1(r)I3 +H2(r)rr

T
)
, (5)

Kε(x,y) =


 Sε(x,y)

1
2µQ(r)[r]T×

1
2µQ(r)[r]T×

1
4µ

(
D1(r)I3 +

1
4D2(r)rr

T
)


 , (6)

respectively, where H1(r), H2(r), Q(r), D1(r) and D2(r) are smooth, radially symmetric functions.143

We note that the terms involving H1, H2 correspond to the regularized Stokeslet and account for144

the contributions of the point forces on the fluid flow, the terms involving Q are regularized rotlets145

due to the point forces and torques, and the terms involving D1, D2 are regularized dipoles due to146

the point torques. If a wall is located at z = 0 and the fluid domain is DW = {[x, y, z]T
∣∣ z ≥ 0},147

then148
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Wε(x,y) = Sε(x,y)− Sε

(
x,yim

)
−
h2

µ

[
D†

1(r
im)I3 −D†

2

(
rim
)
rim
(
rim
)T ] (

2e3e
T
3 − I3

)

+
2h

µ

[
H2

(
rim
)
rimeT3 +H2

(
rim
) (

rim · e3
)
I3 +

H ′
1

(
rim
)

rim
e3
(
rim
)T

+
H ′

2

(
rim
)

rim
(
rim · e3

)
rim
(
rim
)T
]
(
2e3e

T
3 − I3

)

+
2h

µ

(
H ′

1

(
rim
)

rim
+H2

(
rim
)
)
[yim]×[e3]×,

(7)

where yim is the image of y with respect to the wall, h > 0 is the distance between y (or yim) and149

the wall, rim = x − yim, rim = ‖rim‖, e3 = [0, 0, 1]T , prime denotes a derivative with respect to r,150

and all of the functions of r and rim are again smooth, radially symmetric functions. The terms in151

(7) are similar to those in (5), (6) except that many are now with respect to the image points and152

are included to cancel the flow at the wall.153

We note that the precise expressions for the functions H1(r), H2(r), Q(r), D1(r), D2(r), D
†
1(r)154

and D†
2(r) in (5)-(7) are dictated by the blob function(s) used. In the free-space case, only one blob155

function ψε(r) is needed and the choice (2) leads to the following:156

H1(r) =
2ε2 + r2

8π(r2 + ε2)3/2
, H2(r) =

1

8π(r2 + ε2)3/2
,

Q(r) =
5ε2 + 2r2

8π(r2 + ε2)5/2
, D1(r) =

10ε4 − 7ε2r2 − 2r4

8π(r2 + ε2)7/2
, D2(r) =

21ε2 + 6r2

8π(r2 + ε2)7/2
.

(8)

For the case of flow bounded above a stationary, planar wall, the use of a second or companion

blob function is necessary to impose the no-slip condition at the wall [88, 89]. Utilizing φε(r) =

3ε2/(4π(r2 + ε2))5/2, we obtain the expressions for D†
1 and D†

2 as:

D†
1(r) =

−2ε2 + r2

4π(r2 + ε2)5/2
, D†

2(r) = −
3

4π(r2 + ε2)5/2
. (9)

We conclude our review of MRS with a summary of the three kernel functions.157

(i) Sε(x,y), Wε(x,y) ∈ R
3×3 arise from the inclusion of regularized forces in (1) for different158

domains, whereas Kε(x,y) ∈ R
6×6 also accounts for regularized torques.159

(ii) Sε(x,y), Kε(x,y) correspond to an unbounded domain and Wε(x,y) to a half-bounded one.160

(iii) Sε(x,y) = Sε(y,x), whereas in general, Kε(x,y) 6= Kε(y,x), Wε(x,y) 6= Wε(y,x). Addi-161

tionally, Kε(x,y) = (Kε(y,x))
T
and Wε(x,y) = (Wε(y,x))

T
.162
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(iv) Sε(x,y) and Kε(x,y) are completely determined by x−y, i.e., they are translation invariant;163

however, this is not true for Wε(x,y).164

(v) For a fixed y, the entries of Sε(x,y), Wε(x,y) and Kε(x,y) approach zero as the distance165

between x and y goes to infinity.166

2.2. The Kernel-Independent Fast Multipole Method (KIFMM)167

The näıve or direct computation of the matrix-vector product AG to determine U entails O(N2)168

operations. In [30], by using KIFMM [28, 29], we are able to reduce this complexity to O(N) for169

the matrices generated by Sε and Kε. In order to study collective motion of micro-structures near170

a surface, we extend KIFMM to the matrices generated by Wε in the current work. An outline of171

KIFMM is provided below where Sε is the underlying kernel; due to its kernel-independent nature,172

the algorithm is similar for other kernels such as Kε and Wε.173

FMM [18–22] is an O(N) method for calculating the interactions among N particles. In our174

applications, the N particles represent a group of hydrodynamically interacting micro-structures175

that are actively generating forces. A critical assumption of FMM is that the strength of the176

interaction between two particles decays as the distance between them grows. In this method, the177

particles are grouped into clusters based on their physical proximity; the interactions between a178

cluster and the “nearby” clusters are strong and calculated directly, whereas its interactions with179

the clusters in the “far field” are weak and thus only approximated.180

Hierarchical partition of the computational domain. Suppose that all the particles {xj}
N
j=1 are181

contained in a boxD and s is a positive integer that does not vary withN . By uniformly subdividing182

each existing box into eight “child boxes”, FMM creates an octant tree of boxes where D is the183

root, the boxes on each level of the tree constitute a uniform partition of D, and each leaf box184

(i.e., the smallest box) contains no more than s particles. For each box B, the neighborhood of B,185

denoted by N(B), is the union of all the boxes on the same level in the tree as B that share at least186

one boundary point with B; the far field of B, denoted by F(B), is the complement of N(B) in D.187

Multipole and local expansions. In KIFMM, a multipole expansion associated with a box B has188

the form189

nq∑

j=1

ωjSε(x,qj)gj ; (10)
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for any x in F(B), it estimates the part of u(x) induced by the particles in B. In (10), {qj}
nq

j=1 are190

quadrature points serving as proxies of the particles in B, {ωj}
nq

j=1 are the weights in an underlying191

quadrature rule, and {gj}
nq

j=1 are properly chosen, fictitious (non-physical) forces at {qj}
nq

j=1. A192

local expansion associated with B admits a similar form, i.e.,193

nq∑

j=1

ω̃jSε(x, q̃j)g̃j ; (11)

for any x in B, it estimates the part of u(x) induced by the particles in F(B). In (11), {q̃j}
nq

j=1194

are quadrature points serving as proxies of the particles in F(B), {ω̃j}
nq

j=1 are again the weights in195

a quadrature rule, and {g̃j}
nq

j=1 are fictitious forces at {q̃j}
nq

j=1. (For the locations of both sets of196

quadrature points relative to B, see Fig. 10 in the Appendix.) We first compute {gj}
nq

j=1 for each197

box while traversing the octant tree from the leaves to the root; utilizing the multipole expansions,198

we then find {g̃j}
nq

j=1 for each box while traversing the tree in the reverse order. The main cost of199

computing {gj}
nq

j=1 or {g̃j}
nq

j=1 for a box is the numerical solution of an integral equation, which200

boils down to solving a linear system of 3nq equations and 3nq unknowns.201

Evaluation. For every x in D, we first identify the leaf box B containing x. Then we directly202

calculate the part of u(x) induced by the particles in N(B) and estimate the other part of u(x)203

which is induced by the particles in F(B) using (11) instead.204

We note that the main difference between the original FMM and KIFMM lies in how the mul-205

tipole and local expansions are obtained. In the original FMM, they rely on an analytic expansion206

of the kernel function; KIFMM, on the other hand, does not require any analytic expansion and207

computes (10), (11) numerically. Due to the complexity of the three kernel functions shown in208

(5)-(8), how to implement the original FMM remains an open question.209

A more algebraic interpretation of FMM is that it finds low-rank approximations to the sub-210

matrices in A corresponding to long-range interactions. The resulting approximation to A is an211

H-matrix, which is “data-sparse” and allows for efficient storage and matrix-vector multiplication212

with linear or almost linear complexity (see [50, Chapter 6] and [57–59]). More specifically, the213

estimate to the matrix-vector product AG produced by FMM is AHG, where AH is an H-matrix214

with nested bases known as the H2-matrix (see [49, Section 2.11], [50, Chapter 8], and [51–56]).215

Note that AH is not explicitly formed in FMM.216

The accuracy and runtimes of the KIFMM corresponding to various choices of quadrature points217

11



are reported in the Appendix for Sε, Wε and Kε.218
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3. Preconditioners219

It is often hard to have a good understanding of the forces or torques exerted by the micro-220

swimmers, as direct measurements are extremely difficult to achieve. Instead, flow visualization221

techniques such as Particle Image Velocimetry (PIV) [90, 91] can be used to estimate velocities,222

based on which the forces (and torques) can be recovered. This requires solving the linear system223

AG = U for G, whose computational complexity is O(N3) if a direct method such as Gaussian224

elimination is applied. Once the forces (and torques) are found, the linear velocity (and angular225

velocity) at any point in the fluid can be calculated by MRS (see Section 2.1).226

We will solve AG = U using the preconditioned Generalized Minimal RESidual (GMRES)227

method [92]. This method first finds an “optimal” solution X̂ to AP−1X̂ = U in a Krylov subspace228

Km(AP−1,U) = span{U , AP−1
U , (AP−1)2U , · · · , (AP−1)m−1

U} (12)

where P ∈ R
dN×dN is a preconditioner; and then it recovers an approximate solution to AG = U229

as Ĝ = P−1X̂ . Ideally, the eigenvalues of AP−1 are highly clustered and the linear system PG = U230

can be solved efficiently. In this work, the matrix-vector products involving A are estimated by231

KIFMM; consequently, the effective Krylov subspace is Km(AHP
−1,U), where AH is the H2-matrix232

associated with KIFMM (see Section 2.2).233

We consider two preconditioners: a sparse, crude preconditioner and a dense yet data-sparse,234

much more accurate preconditioner. Applying the second preconditioner gives rise to challenging235

subsidiary linear systems; in Section 3.2, we propose two techniques for expediting their solution.236

We emphasize that neither preconditioner needs to be formed explicitly. In Section 3.3, we also237

develop a preconditioner for the matrices formed by appending extra rows and columns to A. They238

emerge from problems where the swimmers exert zero net force and zero net torque.239

3.1. The block-diagonal preconditioner240

A sparse approximation to A can be obtained if we cut off most of the particle interactions.241

In particular, by allowing a particle to interact only with those contained in the same leaf box in242
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KIFMM, we get a block-diagonal approximation, denoted by PD, to A.
3 For example, let A be243

the 30000 × 30000 matrix that is generated by the kernel function Sε and represents the pairwise244

interactions among 10000 random particles uniformly distributed in a cube D. Suppose that D is245

uniformly partitioned twice in KIFMM. We display the sparsity pattern of PD in the left panel of246

Fig. 1, where every small, dense block represents the interactions among the particles within one247

of the 64 leaf boxes.248

Figure 1: The sparsity patterns of PD (left) and PN (right), accounting for only interactions in the leaf cube and

accounting for interactions in the leaf cube and its neighbors, respectively.

The block-diagonal matrix PD is appealing as a preconditioner for the following two reasons: it249

captures some of the strongest interactions among the particles; and solving PDG = U boils down250

to solving a small linear system for each leaf box, which is easy. If we also allow the interactions251

between a leaf cube and its neighbors, a more accurate sparse approximation to A, denoted by252

PN , can be obtained. The sparsity pattern of PN is shown in the right panel of Fig. 1 for the253

same example considered earlier. However, due to the off-diagonal non-zero blocks in PN , the linear254

system PNG = U is significantly more difficult to solve than PDG = U . We note that block-diagonal255

preconditioners have also been used in [69, 93] for the large-scale, dense matrices generated by the256

RPY tensor and in [94] for those arising from a boundary integral formulation.257

3Technically speaking, the particles in each leaf box must be assigned consecutive subscripts for this approximation

to be block-diagonal. That is, if {xji}
n
i=1

are all the particles in the jth leaf box and j1 < j2 < · · · < jn, then

ji+1 = ji + 1 needs to be imposed for all 1 ≤ i ≤ n − 1. In practice, we do not form PD, so we assign subscripts

to points on the structures in a way that makes sense for the modeling problem at hand, which may or may not

correspond to consecutive subscripts in leaf boxes.
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3.2. The data-sparser preconditioner258

If the underlying quadrature rule remains fixed, the more quadrature points we use in the259

multipole expansion (10) and local expansion (11), the more accurate and computationally expensive260

KIFMM becomes. Let AH correspond to the KIFMM when nq quadrature points are used. The261

second preconditioner that we consider, denoted by PH, is the H2-matrix associated with the262

KIFMM when n′
q < nq quadrature points are used. Due to the smaller number of quadrature263

points, the blocks in PH corresponding to long-range interactions have a lower rank, i.e., PH is264

data-sparser than AH. Unlike the block-diagonal preconditioner PD, this preconditioner accounts265

for all the particle interactions and is thus a much more accurate preconditioner.266

However, it is still challenging to solve the subsidiary linear systems whose coefficient matrix is267

PH. We propose to apply the GMRES preconditioned by PD to them. This leads to a solver for268

AG = U that has the following hierarchy: the outer iteration is the GMRES preconditioned by PH,269

and the inner iteration is the GMRES preconditioned by PD. It is not necessary to form PH: it270

can be multiplied to vectors efficiently using KIFMM. We propose the following two techniques for271

accelerating the solution of the subsidiary linear systems.272

3.2.1. Recycling the Krylov subspaces273

We need to solve a sequence of linear systems that share the same coefficient matrix PH using274

GMRES. This is an ideal scenario where Krylov subspace recycling [95] can be applied to reduce275

computational cost. The basic idea is the following: instead of building a Krylov subspace from276

scratch for each linear system in the sequence, we retain some vectors from an existing Krylov277

subspace and construct a new Krylov subspace based on them.278

Assume that we have already solved the kth subsidiary linear system PHGk = Uk using GMRES279

preconditioned by PD. If GMRES converges in ` steps, then we have at our disposal an Arnoldi280

decomposition281

PHP
−1
D V` = V`H` + h`+1,`v`+1e

T
` = [V` v`+1]


 H`

h`+1,`e
T
`


 = V`+1H`, (13)

where H` ∈ R
`×` is an upper Hessenberg matrix, e` = [0, · · · , 0, 1]T ∈ R

`×1, and the columns282

of V` constitute an orthonormal basis for the Krylov subspace K`(PHP
−1
D ,Uk). Since the next283

linear system PHGk+1 = Uk+1 shares the same coefficient matrix, it is reasonable to further exploit284

K`(PHP
−1
D ,Uk). For example, we can retain the 1 ≤ ˜̀ ≤ ` harmonic Ritz vectors of PHP

−1
D285
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associated with its ˜̀ dominant harmonic Ritz values, which tend to approximate the eigenvectors286

of PHP
−1
D corresponding to its ˜̀ largest eigenvalues. Recall that a harmonic Ritz pair (θ, V`z) is an287

approximate eigenpair, which satisfies the following Galerkin condition:288

(
PHP

−1
D V`

)T (
PHP

−1
D V`z− θV`z

)
= 0. (14)

By (13) and (14), the harmonic Ritz vectors of PHP
−1
D in K`(PHP

−1
D ,Uk) can be computed by289

solving an `× ` generalized eigenvalue problem, namely,290

(
H`

TH`

)
z = θ

(
H`

TV T
`+1V`

)
z.

When solving PHGk+1 = Uk+1, we keep extending the subspace spanned by the ˜̀ recycled vectors291

until a sufficiently accurate solution is found.292

3.2.2. Estimating the upper Hessenberg matrix293

Krylov subspace recycling described in Section 3.2.1 aims to reduce the computational cost294

of each subsidiary solve after the first one has been performed. The technique proposed in this295

subsection reduces the number of such solves. Assume that solving AG = U entails m iterations of296

GMRES preconditioned by PH. Then at the end of the solve, the Arnoldi decomposition297

AHP
−1
H Vm = VmHm + hm+1,mvm+1e

T
m = [Vm vm+1]


 Hm

hm+1,meTm


 = Vm+1Hm (15)

similar to (13) is available, and the approximate solution found is Ĝm = βP−1
H (Vmym) where298

β = ‖U‖ and ym is the least-squares solution to Hmy = [1, 0, · · · , 0]T .299

In fact, thanks to the “nested” nature of the upper Hessenberg matrix, Hm can be written as300

Hm =
[
Hm−1 b

]
. (16)

As a result, after m − 1 GMRES iterations, the only “ingredients” that are missing for Ĝm is the301

vector b in (16) and the number hm+1,m in (15). If we can somehow obtain good estimates to b302

and hm+1,m, then we can compute an approximate solution close to Ĝm in only m − 1 GMRES303

iterations. A trivial yet crucial observation is that if PH = AH, then Hm = V T
mAHP

−1
H Vm is simply304

the m × m identity matrix, in which case b = [0, · · · , 0, 1]T and hm+1,m = 0. Unlike the block-305

diagonal preconditioner, PH is a fairly good approximation to AH. We therefore propose to skip the306

mth GMRES iteration and approximate b, hm+1,m with [0, · · · , 0, 1]T , 0, respectively. The number307
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of iterations, m, is small to begin with again because PH approximates AH well; thus, using one308

fewer iteration saves a large percentage of runtime.309

We note that the closer PH is to AH, the fewer outer iterations will be required, the better we310

can estimate the upper Hessenberg matrix, yet the more expensive the inner iteration (i.e., solving311

PHG = U) will become. A good choice for PH strikes a balance between the number of outer312

iterations and the cost of the inner iteration.313

Both techniques described above are widely applicable. The coefficient matrix can be sparse or314

dense and does not need to be an FMM matrix. Krylov subspace recycling (section 3.2.1) can be315

applied whenever multiplying the inverse of the preconditioner and a vector also entails an iterative316

solve. The upper Hessenberg matrix estimation (section 3.2.2) can be performed whenever the317

preconditioner is a good approximation to the coefficient matrix.318

3.3. The block-upper triangular preconditioner for augmented matrices319

Free swimmers exert zero net force, zero net torque and undergo rigid translation and rotation.320

Assume that n free micro-swimmers are discretized by a total of N grid points located at {xj}
N
j=1 =321

n⋃

i=1

{xik}
Ni

k=1, where {xik}
Ni

k=1 are on the ith swimmer and

n∑

i=1

Ni = N . Also assume that all the322

grid points on a swimmer are assigned consecutive subscripts. The forces {fj}
N
j=1 that they exert323

to the fluid must satisfy the following constraints:324

force-free:

Ni∑

k=1

fik = 0, torque-free:

Ni∑

k=1

(xik − xi
c)× fik = 0,

where xi
c is the center of mass of the ith swimmer.325

Suppose that the emergent or total velocity uik at a grid point xik on the ith swimmer can be326

decomposed as327

uik = vik +Πi +Ωi × (xik − xi
c),

where vik is a prescribed velocity corresponding to the body deformations of the swimmer and Πi,328

Ωi are its translational and rotational velocities induced by {vj}
N
j=1. We can compute {Πi}

n
i=1,329

{Ωi}
n
i=1 and {fj}

N
j=1 by solving a linear system MG

? = U
?, where330
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M =


 A BT

B O6n×6n


 ∈ R

(3N+6n)×(3N+6n), G? =




G

Π

Ω


 ∈ R

3N+6n, U? =




U

0

0


 ∈ R

3N+6n.

(17)

In (17), the (1, 1)-block A ∈ R
3N×3N in M is generated by the kernel function Sε or Wε depending331

on whether the fluid domain is bounded by a wall, Om×n denotes them×n zero matrix, G, U ∈ R
3N ,332

Π, Ω ∈ R
3n are formed by concatenating {fj}

N
j=1, {vj}

N
j=1, {Πi}

n
i=1 and {Ωi}

n
i=1, respectively. In333

addition, the (2, 1)-block B ∈ R
6n×3N in M is of the form334

B =




B1

B2

. . .

Bn




(18)

where335

Bi =


 I3 · · · I3 · · · I3[

xi1 − xi
c

]
×
· · ·

[
xik − xi

c

]
×
· · ·

[
xiNi

− xi
c

]
×


 ∈ R

6×3Ni

corresponds to the ith swimmer and the 3× 3 matrix [·]× has been defined in (4).336

Assume that A is nonsingular. Then M has the following block LU decomposition:337

M =


 A BT

B O6n×6n


 =


 I3N O3N×6n

BA−1 I6n




 A BT

O6n×3N −BA−1BT


 = LU,

which implies that all the eigenvalues of MU−1 equal 1. Consequently, the GMRES preconditioned338

by U would converge after only one iteration when applied to MG
? = U

?. However, using U339

as a preconditioner is impractical as it entails solving linear systems whose coefficient matrix is340

BA−1BT , which is too costly to form.341

We propose the following block-upper triangular preconditioner for M :342

PM =


 PA BT

O6n×3N PS


 (19)

where PA is a preconditioner for A and PS is a preconditioner for −BA−1BT . Assume that both343

PA and PS are nonsingular. Then the inverse of PM is344
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P−1
M =


 P−1

A −P−1
A BTP−1

S

O6n×3N P−1
S




and applying it to a vector entails solving two linear systems whose coefficient matrix is PA and345

one linear system whose coefficient matrix is PS .346

We can choose PA in (19) to be the block-diagonal preconditioner PD (Section 3.1) or the347

data-sparser preconditioner PH (Section 3.2). Again, PD and PH do not need to be formed.348

Our construction of PS in (19) is inspired by the so called “least-squares commutator” precondi-349

tioner [96, Chap. 9] developed for the sparse matrix arising from mixed finite element discretization350

of the incompressible Navier-Stokes equations. This matrix has a block structure very similar to that351

of M . The matrix C̃ that minimizes ‖ABT −BTC‖ over all C ∈ R
6n×6n is C̃ = (BBT )−1(BABT ).352

Therefore, loosely speaking, ABT ≈ BT C̃, which implies A−1BT ≈ BT C̃−1 and in turn leads to353

the following approximation:354

BA−1BT ≈ (BBT )C̃−1 = (BBT )(BABT )−1(BBT ). (20)

Eq. (20) suggests PS = −(BBT )(BABT )−1(BBT ). Since P−1
S = −(BBT )−1(BABT )(BBT )−1,355

the main cost of solving a linear system whose coefficient matrix is PS is solving two subsidiary356

linear systems whose coefficient matrix is BBT and multiplying A to a vector, the latter of which357

can again be accomplished by KIFMM. Constructing BBT or applying its inverse is trivial: thanks358

to (18), BBT ∈ R
6n×6n is block-diagonal with the 6× 6 blocks {BiB

T
i }

n
i=1 on its main diagonal.359
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4. Numerical experiments360

We test the preconditioners described in Section 3 on the following three examples where the361

micro-structures are scattered particles, cilia, and free swimmers, respectively. The computing362

environment for all of the large-scale simulations is the same as specified in the Appendix.363

4.1. A large group of uniformly random particles364

We compare the performance of the following three versions of GMRES at solving AG = U :365

GMRES with no preconditioner, GMRES preconditioned by the block-diagonal preconditioner PD366

and GMRES preconditioned by the data-sparser preconditioner PH. We again consider three exam-367

ples of A, namely, S240k, W240k and K480k, corresponding to the kernel functions Sε, Wε and Kε368

and 80000 random particles uniformly distributed in [0, 20]× [0, 20]× [0.01, 20.01] (see Appendix).369

The right-hand side U is a random vector of unit norm, and the stopping criterion of GMRES is370

∥∥∥AHĜ − U

∥∥∥ /‖U‖ < 10−5, (21)

where AH appears instead of A since the matrix-vector products involving A are approximated by371

KIFMM. In light of the triangle inequality372

∣∣∣∣
∥∥∥AHĜ − U

∥∥∥−
∥∥∥AĜ −AHĜ

∥∥∥
∣∣∣∣ ≤

∥∥∥AĜ − U

∥∥∥ ≤
∥∥∥AHĜ − U

∥∥∥+
∥∥∥AĜ −AHĜ

∥∥∥ ,

the accuracy of Ĝ is limited by that of KIFMM; therefore, it is unnecessary to impose too stringent373

a stopping criterion on GMRES. In addition, when GMRES preconditioned by PH is applied, the374

subsidiary linear systems in the form of PHG = U are solved using GMRES preconditioned by PD375

and its stopping criterion is376

∥∥∥PHĜ − U

∥∥∥ /‖U‖ < 10−5.

We first compare the iteration counts of the three versions of GMRES. The two techniques377

described in Section 3.2 for enhancing the performance of PH have not been implemented yet and378

will be considered later. Fig. 2 displays the decay of the residual norm
∥∥∥AHĜ − U

∥∥∥ /‖U‖ as each379

version of GMRES progresses when A is S240k (left panel) or K480k (left panel). (The three380

curves obtained for W240k are highly similar to the ones corresponding to S240k.) For each of the381

three matrices, the numbers of iterations required by GMRES with no preconditioner and GMRES382

preconditioned by PD as well as the numbers of quadrature points nq, n
′
q that AH, PH correspond383
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to can be found in Table 1. We use fewer quadrature points for K480k since KIFMM produces much384

more accurate results for this matrix than for the other two when the same number of quadrature385

points are used (see Appendix). As illustrated in Fig. 2, the reduction in iteration count is dramatic386

when either preconditioner is used; in particular, GMRES preconditioned by PH converges in only387

two iterations. If no preconditioner is used, GMRES converges in about 57 iterations when applied388

to S240k and W240k, yet it requires as many as 209 iterations to converge when applied to K480k.389

Based on the study of the condition numbers of the three types of MRS matrices, details in the390

Appendix, we do expect K480k to be much more challenging than the other two matrices for an391

iterative solver. Interestingly, for all three matrices, GMRES preconditioned by PD converges in392

about 28 iterations. Further experiments that are not shown here also seem to support the same393

hypothesis: the number of iterations of GMRES preconditioned by PD only depends on the quantity394

and distribution of the particles and does not depend on the kernel.395
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Figure 2: Decay of the residual norm
∥∥∥AHĜ − U

∥∥∥ /‖U‖ associated with the three versions of GMRES (no

preconditioning, preconditioned by PD, and preconditioned by PH). S240k in (a) corresponds to the free-space,

force-only case and K480k in (b) to the free-space case where torque is also accounted for (see Appendix).

Next, we re-run GMRES preconditioned by PH with both Krylov subspace recycling and upper396

Hessenberg matrix estimation incorporated, and we compare the runtimes of the three versions of397

GMRES. Details of the two acceleration techniques are as follows. At the end of each subsidiary398

solve PHG = U , we retain the harmonic Ritz vectors associated with the largest `/2 or (` + 1)/2399

(whichever one is an integer) harmonic Ritz values, where ` is the dimension of an existing Krylov400

subspace. Recall that GMRES preconditioned by PH takes two iterations to converge. We now run401
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only one iteration and approximate, using the estimated 2×2 upper Hessenberg matrix, the solution402

that we would obtain if the second iteration were executed. This approach reduces the number of403

subsidiary solves from three to two; we also verify that it indeed produces a solution of essentially404

the same accuracy as before. As can be seen from Table 1, the runtime of GMRES preconditioned405

by PH with acceleration ranges from 36% to 59% of that required by GMRES preconditioned by PD;406

we note that the efficiency of PH is ultimately achieved by avoiding the matrix-vector multiplication407

involving AH, which is much more costly than that involving PH or P−1
D .408

Table 1: Comparison of the three versions of GMRES applied to S240k, W240k and K480k (W240k corresponds to

the half-bounded, force-only case). GMRES preconditioned by PH is accelerated by Krylov subspace recycling and

upper Hessenberg matrix estimation. Number of processors: 16. “MVPs” = matrix-vector products, “iters.” =

iterations, and “sec.” = second. nq , n′
q : numbers of quadrature points associated with AH, PH.

no preconditioner PD PH

# # of run- # # of run- # # of run-

of MVPs time of MVPs time of MVPs time

matrix nq iters. (AH) (sec.) iters. (AH/P−1

D
) (sec.) iters. (AH/P−1

D
/PH) (sec.) n′

q

S240k 208 56 56 2332 28 28/29 1168 1 1/50/48 483 64

W240k 208 58 58 5893 29 29/30 2923 1 1/54/52 1038 64

K480k 124 209 209 11209 28 28/29 1589 1 1/50/48 943 26

4.2. A dense mat of cilia409

The respiratory tracts are lined with a dense mat of cilia which beat back and forth rhythmically410

to propel mucus out of the lung; this muco-ciliary clearance serves as a defense system against air-411

borne infection. Cilia are also responsible for ovum transport in the oviduct of the female as well as412

sperm transport in the efferent ducts of the male. These motile cilia are elastic, flexible structures413

that are actively generating forces and will interact with each other due to their close proximity.414

When modeling cilia, viscoelastic effects might be important due to the relaxation time of the elastic415

flagellum as well as the surrounding fluid.416

To illustrate the utility of our methods for a dense mat of cilia, we are ignoring viscoelastic effects417

and we do not account for feedback from the surrounding fluid on the beat cycle of the cilia. That418

is, we will only explore the resulting flow fields due to cilia with a prescribed, time-dependent beat419

22



cycle. To achieve this, we utilize an accurate representation of the lung cilia beat cycle developed420

in [97]. In this model, a cilium is characterized by a 2D parametric curve: at time t, the location421

of any point on the cilium is given by the truncated Fourier series422

x(s, t) =
1

2
a0(s) +

N0∑

n=1

an(s) cos(nσt) + bn(s) sin(nσt) (22)

in R
2, where s is the arclength of the point measured from the base of the cilium and σ is the423

angular beat frequency. The constant vectors {an}
N0

n=0, {bn}
N0

n=1 ⊂ R
2 are computed by applying424

Fourier analysis and the least-squares method to a series of cilia profiles traced using high speed425

cine-photography.426
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Figure 3: Left: 13 snapshots of a simulated cilium in one beat cycle. Right: The bases of a perturbed grid of cilia

(cilia spacing is hc = 0.3 and the level of perturbation is 20% at most in either the x or y direction).

Using the Fourier coefficients computed in [98] based on the experimental data of [99], we427

simulate the motion of a planar cilium in one beat cycle and display 13 snapshots of it in the left428

panel of Fig. 3. (The larger its numerical label is, the later a profile appears in the cycle.) The429

elapsed time between two consecutive snapshots is the same. Snapshots 1 to 4 depict the power430

(effective) stroke whereas snapshots 5 to 13 capture the recovery stroke. In [88], the flow field431

induced by a single cilium attached to a stationary, planar wall has been studied using MRS: first,432

the velocities at the grid points on the cilium are found by differentiating Eq. (22) with respect to433

time; then the forces that induce the velocities of the grid points at each of the thirteen instants are434

recovered by solving a linear system. With the forces at our disposal, the velocity at any location435

in the fluid and at any one of the thirteen instants can be calculated by (3). The approach of [88]436

has been applied to compute the flow field induced by an array of cilia in [100–103]. When the437

number of cilia is large, however, it gives rise to a sequence of linear systems {A(n)G
(n) = U

(n)}13n=1438
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whose coefficient matrices are large, dense and varying.439

(a) Snapshot 1 (b) Snapshot 3

(c) Snapshot 5 (d) Snapshot 7

(e) Snapshot 9 (f) Snapshot 11

Figure 4: Snapshots 1, 3, 5, 7, 9 and 11 of the cilia carpet (hc = 0.3).
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We consider a dense carpet of cilia attached to a stationary, planar wall at z = 0. The bases of440

the cilia are the perturbed grid points of a 25× 25 uniform grid on the wall (see the right panel of441

Fig. 3). To be more precise, if hc denotes the grid spacing of the uniform grid, the base point of each442

cilium is located at (x0 + ξhc, y0 + ζhc, 0) where (x0, y0, 0) is a grid point on the uniform grid and443

ξ, ζ are uniformly random between −20% and 20%. Thus, hc is roughly the average grid spacing444

in the perturbed grid. Two values of hc, 0.3 and 0.6, are considered in the numerical experiments.445

Although the cilia carpet is three-dimensional, every cilium is restricted to be two-dimensional: it446

is initially placed and will remain in the plane y = yb, where yb is the y coordinate of its base447

point. The x, z coordinates of the points on the cilium are determined by (22) as well as the x, z448

coordinates of the base point4 and their y coordinates all equal yb. Each cilium is of length 6 and449

uniformly discretized by 101 grid points. Note that (22) does not preserve the length of the cilium;450

for it to have constant length, we rescale the x, z coordinates of the grid points accordingly. Since451

the base points of the cilia are “tethered” to the wall, there are a total of 100×252 = 62500 particles452

in our calculation, resulting in coefficient matrices of dimension 187500 × 187500. In addition, we453

specify that the carpet of cilia beat in synchrony in these simulations, that is, their profiles are454

identical at each time point. In Fig. 4, six snapshots of the cilia carpet in one beat cycle are455

displayed. Unlike in Section 4.1 where the particles are uniformly random, the distribution of the456

grid points on the cilia can be far from uniform, as can be seen from Fig. 4. The beat frequency457

f of the cilia is 15Hz (or 15 beat cycles per second) and their angular beat frequency σ in (22) is458

2πf = 30π accordingly. The regularization parameter ε in MRS is chosen to be 0.1 to match the459

radius of the cilia. The length and radius of the cilia as well as their beat frequency used in our460

study are the same as those in [98].461

The values of various dimensional parameters for the cilia carpet, are summarized in Table 2.462

We first compare the performance of the block-diagonal preconditioner PD and the data-sparser463

preconditioner PH. The cilia grid spacing hc is set to 0.3, also matching with the value used in464

[98]. The x, z components of the velocity at each grid point are again found by differentiating (22)465

with respect to time, whereas the y component is set to 0 thus forcing the cilia to stay in their466

4To be more precise, at time t, the x coordinate of the point with arclength s is given by the first component of x

in (22) plus the x coordinate of the base point, and the z coordinate of the same point equals the second component

of x plus the z coordinate of the base point, which is 0 in our simulations.
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Table 2: Summary of parameter values used for the cilia carpet simulations.

Parameter Value

Fluid viscosity 1 g µm s−1

Number of cilia 25× 25 = 625

Number of grid points on each cilium 101

Number of grid points in the fluid (N) 625× 100 = 62500

Length of cilium 6 µm

Radius of cilium and ε 0.1 µm

Average cilia spacing (hc) 0.3 or 0.6 µm

Beat frequency (f) 15 Hz

Angular beat frequency (σ) 30π

N0, {an}
N0

n=0 and {bn}
N0

n=1 in (22) see Table 2(B), Eq. (2) in [97]

initial specified planes. Due to the higher particle density and larger ε, the linear systems arising467

from the cilia carpet are significantly more challenging to solve than the ones in Section 4.1 (see the468

Appendix for a summary of how the condition number varies with particle density and ε); therefore,469

we use the following milder stopping criteria for the preconditioned GMRES instead:470

∥∥∥∥A
(n)
H Ĝ

(n)
− U

(n)

∥∥∥∥ /
∥∥∥U (n)

∥∥∥ < 10−3,

∥∥∥∥P
(n)
H Ĝ

(n)

k − U
(n)
k

∥∥∥∥ /
∥∥∥U (n)

k

∥∥∥ < 10−3, n = 1, 2, . . . , 13.

As in Section 4.1, we apply one iteration of the GMRES preconditioned by PH that is accelerated471

by Krylov subspace recycling and upper Hessenberg matrix estimation. This approach outperforms472

GMRES preconditioned PD in every case and requires 30% less runtime to solve all thirteen linear473

systems. The computational results for six linear systems are reported in Table 3. We observe474

that the advantage of PH is the most pronounced when applied to the third linear system, which475

corresponds to the most uniformly distributed grid points (see Fig. 4). Although the less stringent476

stopping criteria (4.2) are used and the matrices are smaller than W240k considered in Section 4.1,477

the iteration counts and runtimes shown in Table 3 are still considerably higher than those reported478

for W240k in Table 1, indicating the difficulty of these problems.479

As a carpet of cilia is simply a collection of points to KIFMM, whether they are synchronous480

or asynchronous, planar or three-dimensional does not affect how we solve the linear systems.481
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Table 3: Comparison of PD and PH in the case of a cilia carpet (hc = 0.3) beating with a prescribed velocity.

The snapshot numbers correspond to the cilia locations given in Fig. 4. Krylov subspace recycling and upper

Hessenberg matrix estimation are applied in conjunction with PH. Number of quadrature points: nq = 208 for AH

and n′
q = 64 for PH. Number of processors: 16.

PD PH

# of # of MVPs runtime # of # of MVPs runtime

snapshot iters. (AH/P−1

D
) (sec.) iters. (AH/P−1

D
/PH) (sec.)

1 74 74/75 5714 1 1/132/130 3199

3 52 52/53 5679 1 1/94/92 1642

5 74 74/75 6814 1 1/148/146 3964

7 69 69/70 4028 1 1/136/134 3449

9 93 93/94 5633 1 1/95/93 4862

11 70 70/71 3962 1 1/127/125 2803

Next, we study the effect of the cilia spacing hc on fluid mixing. We track the locations of482

3375 particles immersed in the fluid for three beat cycles. They are initially placed on the grid483

points of a 15× 15× 15 uniform grid over the region [0, 7.2]× [0, 7.2]× [0.1, 6.1] (when hc = 0.3) or484

[0, 14.4] × [0, 14.4]× [0.1, 6.1] (when hc = 0.6) directly above the bases of the cilia; and they move485

with the flow passively without exerting any force on the fluid. The initial positions of the particles486

when hc = 0.3 are plotted in the left panel of Fig. 5. Furthermore, each beat cycle is divided into487

thirteen equal time intervals such that the beginning of the ith interval coincides with the time488

at which the ith snapshot in the left panel of Fig. 3 is taken. The length of the time intervals489

is thus ∆t = 1
13f where f is the cilia beat frequency. We find the forces exerted by the cilia at490

the beginning of the ith time interval by solving the ith linear system, compute the velocities of491

the passive particles at the same instant by (3) and calculate their locations at the end of the ith492

interval using forward Euler’s method, assuming that the particles satisfy a no-slip condition and493

move with the local fluid flow. (Since we choose µ = 1 when solving for the forces earlier, we use494

the same µ when computing the velocities of the particles.) The 3375 particles after three beat495

cycles are plotted in the right panel of Fig. 5 again for the hc = 0.3 case.496

As a means of visualizing the mixing, in Fig. 6 to Fig. 8, we illustrate the projections of the497

passive particles onto either the xz-plane or xy-plane at four instants. In each figure, the first row498
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Figure 5: The cilia carpet and particles at the beginnings of the first (left) and fourth (right) beat cycles (hc = 0.3).

of subplots correspond to hc = 0.3 and the second row to hc = 0.6, whereas each column of subplots499

correspond to a different instant. In the first column of each figure, the projections of the particles500

at the initial time are shown; they are evenly divided into three horizontal or vertical “stripes”501

and represented by three different markers accordingly. How the stripe patterns evolve during the502

simulation provides insights into the fluid mixing along each axis. From Fig. 6 and Fig. 7, both of503

which display the projections of the particles onto the xz-plane, we observe that the original stripe504

patterns get distorted and can even become unrecognizable as time proceeds. This indicates strong505

mixing in both the x and z directions. On the other hand, in Fig. 8 where the projections of the506

particles onto the xy-plane are shown instead, the original stripe patterns are clearly identifiable507

throughout the simulation, suggesting that the mixing in the y direction is much weaker. This508

makes sense since the cilia are specified to move in their initial planes only, which are parallel to the509

xz plane. Moreover, by comparing the two rows of subplots in each figure, we can see that mixing510

is stronger along all three axes when the cilia spacing is smaller.511

The numerical results also suggest that a smaller cilia spacing promotes the effectiveness of the512

power stroke: when hc = 0.3, the average signed distance traveled by the 3375 particles along the513

x-axis is 1.78 and 73% of them move in the positive x direction; when hc = 0.6, these two numbers514

decrease to 0.82 and 63%, respectively.515
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Figure 6: The projections of the particles onto the xz-plane. (They are divided into horizontal stripes initially.)

Top row: hc = 0.3. Bottom row: hc = 0.6. First to fourth columns: the beginnings of the first to fourth cycles.

Figure 7: The projections of the particles onto the xz-plane. (They are divided into vertical stripes initially.) Top

row: hc = 0.3. Bottom row: hc = 0.6. First to fourth columns: the beginnings of the first to fourth cycles.

4.3. A large group of free swimmers above a planar wall516

The setting here is quite similar to that of Section 4.1: there are 80000 random particles uni-517

formly distributed in [0, 20] × [0, 20] × [0.01, 20.01] and a stationary, planar wall located at z = 0.518
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Figure 8: The projections of the particles onto the xy-plane. Top row: hc = 0.3. Bottom row: hc = 0.6. First to

fourth columns: the beginnings of the first to fourth cycles.

The difference is that instead of being independent, unconstrained swimmers, the particles are519

now grouped into n multi-particle, force-free and torque-free swimmers. To be more precise, for520

1 ≤ i ≤ n, we let the [(i−1)p+1]st to the (ip)th particles represent the ith swimmer, where p is the521

number of particles per swimmer and thus np = 80000. The augmented coefficient matrix M is of522

size (240000 + 6n)× (240000 + 6n) and its (2, 1)-block, B, is of size 6n× 240000; regardless of what523

n, p are, the (1, 1)-block of M , A, is of size 240000× 240000 and identical to the matrix W240k524

considered in Section 4.1. Multiplying M and a vector entails one matrix-vector product involving525

A, which is again approximated using KIFMM; the actual coefficient matrix in our computations is526

thusMH whose (1, 1)-block is AH instead of A. In the block-upper triangular preconditioner PM in527

(19), we choose PA = PD and PS = −(BBT )(BPHB
T )−1(BBT ), where PH is again the H2-matrix528

associated with a version of KIFMM of lower accuracy. Note that PH is used instead of AH to529

further reduce the computational cost of applying P−1
S . The matrix BBT is 6n×6n, block-diagonal530

and we pre-compute it before running GMRES; it is cheap to compute and store BBT as well as531

to apply its inverse to vectors. We refer to PM as the least-squares commutator preconditioner. To532

sum up, each iteration of GMRES preconditioned by PM mainly requires solving two linear systems533

whose coefficient matrix is PD, two linear systems whose coefficient matrix is BBT and computing534

one matrix-vector product involving AH, one matrix-vector product involving PH. As both PD and535
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BBT are block-diagonal, the four linear solves all boil down to solving a number of much smaller536

linear systems; and the two matrix-vector products are computed using KIFMM. The U component537

in U
? (see (17)) is a random vector of unit norm.538
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Figure 9: Decay of the residual norms
∥∥∥MHĜ? − U?

∥∥∥ / ‖U?‖ associated with two versions of GMRES (no

preconditioner and least-squares commutator preconditioner PM ).

Table 4: Comparison of no preconditioner and the least-squares commutator preconditioner in the free swimmer

case. Number of quadrature points: nq = 208 for AH and n′
q = 64 for PH. Number of processors: 16.

no preconditioner least-squares commutator

# of # of # of MVPs runtime # of # of MVPs runtime

swimmers iter. (AH) (sec.) iter. (AH/P−1

D
/PH) (sec.)

800 226 226 21944 31 31/64/32 3560

8000 429 429 42773 33 33/68/34 3740

We apply GMRES with no preconditioner and GMRES preconditioned by PM to two augmented539

linear systems: one corresponding to 800 swimmers with 100 particles per swimmer and the other540

to 8000 swimmers with 10 particles per swimmer. The center of each swimmer is simply taken to541

be the mean of the coordinate vectors of its member particles. We emphasize that both problems542

correspond to the same 80000 particles; the only difference is how these particles are “lumped”543

to form the multi-particle swimmers. Such swimmers are fictitious as they are each represented544

by a collection of random particles uniformly distributed in the cube [0, 20]× [0, 20]× [0.01, 20.01]545

which can be far away from one another. Nonetheless, they serve as “model swimmers” that allow546
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us to investigate how the number of appended rows and columns and the number of swimmers547

affect the performance of the solvers while the quantity and distribution of the particles remain548

fixed. We use the stopping criterion
∥∥∥MHĜ

? − U
?
∥∥∥ / ‖U?‖ < 10−5 and summarize in Table 4 the549

computational results of the two versions of GMRES applied to the two augmented systems. In550

Fig. 9, the history of
∥∥∥MHĜ

? − U
?
∥∥∥ / ‖U?‖ associated with each application of GMRES is also551

displayed. First, we compare the performance of GMRES at solving MG
? = U

? and AG = U .552

Since the (1, 1)-block in M is the same as W240k and is preconditioned by PD in the least-squares553

commutator preconditioner PM , we compare the results of GMRES preconditioned by PM in Table554

4 with those corresponding to W240k and PD in Table 1. When no preconditioner is applied,555

the augmented linear system MG
? = U

? is significantly more challenging: it requires about three556

(n = 800) or six (n = 8000) times more GMRES iterations than AG = U . The preconditioned557

GMRES, on the other hand, incurs more or less the same number of iterations when applied to558

either MG
? = U

? or AG = U . Next, we examine how the number of swimmers influence the559

performance of both versions of GMRES at solving MG
? = U

?. Without a preconditioner, the560

case with 8000 swimmers entails almost twice as many GMRES iterations as those required by the561

case with 800 swimmers; in contrast, the two cases require almost the same number of iterations562

when GMRES preconditioned by PM is applied. In other words, the least-squares commutator563

preconditioner is insensitive to the number of extra rows and columns appended to A in M .564
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5. Conclusion565

Large, dense matrices arise from modeling the hydrodynamic interactions among a large group566

of micro-structures at zero Reynolds number. Matrix-vector multiplications and linear solves in-567

volving these matrices are highly challenging, especially in a time-dependent simulation. Under568

the framework of the Method of Regularized Stokeslets, we extend the Kernel-Independent Fast569

Multipole Method to calculate the matrix-vector product that gives the flow induced by a large570

number of point forces above a stationary, planar wall satisfying a no-slip condition. Additionally,571

we also explore the use of different memory efficient preconditioners to solve the linear system for572

the unknown forces that the structures are exerting on the fluid when their movement is known.573

These preconditioners are data-sparse, retaining and representing either a portion or all of the in-574

teractions, and they do not need to be constructed explicitly. We demonstrate their effectiveness575

through a variety of cases including point forces in free space, point forces and torques in free space,576

and point forces above a wall. The preconditioners, as well as the techniques that we propose to577

enhance their performance, are applicable to an entire family of matrices, with those obtained from578

the Rotne-Prager-Yamakawa tensor included. Extending our approach to the case of free swimmers579

turns out to be rather tricky due to the extra equations for imposing the torque-free, force-free580

condition. We develop a preconditioner for the augmented linear system by minimizing the entries581

of a commutator-like matrix in the least squares sense.582

We will continue to optimize our KIFMM code. For example, the dual tree traversal [104–583

106] considered in [77] seems very promising and has not been implemented in the current code.584

We emphasize that the kernel Wε (see (7)) is not translation invariant and thus, some optimization585

techniques are not applicable. The numerical experiments in this work demonstrate the effectiveness586

of the proposed preconditioning techniques in the biological applications of interest. A careful587

comparison of our approach with existing methods such as the inverse FMM [68, 69] still needs to588

be performed in a modern high performance computing environment on problems of larger scales.589

There has been a large amount of work in related systems, which could potentially be used to590

further enhance computational efficiency and/or model additional examples with the regularized591

Stokeslets framework. For example, we have focused on free-space solutions, but some applications592

may necessitate a spatially-periodic domain or it may be easier to model periodic copies of cilia or593

swimmers when dealing with a large number. In the case of regularized forces, regularized greens594

functions for doubly and triply periodic stokes flow have been developed and fast summations have595
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been achieved via Ewald methods [83, 107, 108]. We believe that these methods for the regularized596

KIFMM for periodic flows should be feasible using a near and far field splitting scheme similar to597

[46], where the case of singular point forces were studied. One future direction will be to extend the598

KIFMM methodology developed in this work for the regularized image system for periodic Stokes599

flow [109–111]. Recently, a force-neutral image system was developed to capture a no-slip wall in600

non-periodic and periodic geometries [47], which is conceivable to also be utilized in the case of601

regularized point forces.602

In this manuscript, we have focused on modeling biological structures that are represented as603

regularized point forces. The regularization is necessary to ensure finite velocity fields at the loca-604

tions coinciding with the structures so that a no-slip condition can be utilized to move the structure605

in time. Previous studies have shown that a smeared or spread force is a good representation for606

slender or filamentous structures, where a space curve in 2D or 3D is spread mainly to a region607

governed by the regularization parameter [15, 80]. We note that other applications that are not608

biological structures could potentially utilize this framework where forces are regularized to ensure609

integrable kernels. However, one must always ensure that the physics of the system are being610

maintained, and careful choice of blob functions and desired error accuracy must be considered611

[112]. We have used a regularization function with infinite support where the majority of the force612

is spread to a region corresponding to the regularization parameter. In the future, we plan to613

consider a compactly supported regularization function similar to the one used in [83] and compare614

the performance of KIFMM when applied to the two families of kernels corresponding to the two615

types of regularization functions. In addition, we will investigate how the error of KIFMM and616

the condition number of the KIFMM matrix depend on the regularization parameter ε. We also617

note that structures represented by a collection of points on a larger temporal and spatial scale are618

of interest in the current study. In the case that one is modeling point particles and if Brownian619

dynamics are important, Stokesian dynamics or the RPY tensor is a better choice than MRS to620

study these micro-structures [12, 113, 114].621

Due to the implications that cilia dysfunction has in terms of diseases, there has been great622

interest in studying the collective dynamics of cilia with regards to fluid mixing. In the section on623

numerical experiments, we highlight how our method is able to handle a large yet finite number of624

cilia that are tethered to a planar wall and have a prescribed beat form. For the purposes of this625

study, we have focused on the case where all of the cilia in the group are beating in phase and there626
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are no out of plane motions. However, this method can easily extend to scenarios that include cilia627

with phase differences and nonplanar components of the beat form, and can be used to understand628

regimes of cilia beating that result in pumping and mixing of the fluid as in [115]. Depending on629

the questions of interest related to the ciliary beat and fluid flow, previous studies have looked at a630

single cilium or a small group of cilia, whereas others have studied large patches of cilia or even an631

infinite array of cilia [100, 116–119]. Our method is a nice alternative in the more realistic case where632

the cilia carpet is not of infinite extent. We also note that in our numerical experiments, a very633

basic uniform discretization of the cilia and a relatively large yet realistic regularization parameter634

are used, which have led to matrices that are difficult to work with. In further applications, other635

techniques involving optimal discretization of the cilia and methods to decouple the regularization636

parameter from the physical radius of the cilia could be utilized [119].637
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Appendix638

In this section, the fluid viscosity µ = 1 and whenever the kernel function Wε is considered, it639

is implied that there is a stationary, planar wall located at z = 0.640

All of the numerical experiments are performed in MATLAB version R2017a. The large-scale641

simulations are parallelized using The Parallel Computing Toolbox of MATLAB and run on 16642

processors (Intel Xeon CPU E5-2699 v3 @ 2.3 GHz with 32 GB of RAM) on a virtual machine.643

The performance of KIFMM applied to the MRS matrices644

We present the performance of two versions of KIFMM, namely, the surface version [28] and645

the corona version [29], at approximating AG, where A represents the pairwise interactions among646

80000 random particles uniformly distributed in [0, 20] × [0, 20] × [0.01, 20.01] and is generated by647

the kernel function Sε,Wε or Kε with ε = 0.02.5 The three matrices are of size 240000×240000 (for648

Sε andWε) or 480000×480000 (for Kε) and are denoted by S240k, W240k and K480k, respectively.649

In both versions of KIFMM, the above cube is uniformly partitioned three times, which creates 512650

leaf boxes with about 160 particles in each on average. The difference between the two versions651

is illustrated in Fig. 10 for a 2D box B, where the disks represent the quadrature points {qj}
nq

j=1652

in (10) and the squares represent the quadrature points {q̃}
nq

j=1 in (11). To obtain the fictitious653

forces {gj}
nq

j=1 in (10) (or {g̃j}
nq

j=1 in (11)) for B, we need to solve an integral equation in which the654

domain of integration is the upward (or downward) equivalent surface/corona of B. We first replace655

the integral with the trapezoidal rule over nq quadrature points on the equivalent surface/corona;656

the integral equation becomes a possibly ill-conditioned linear system, which we then solve using657

Tikhonov regularization with suitably chosen parameters. The runtimes of direct calculation are658

122, 249 and 299 seconds for S240k, W240k and K480k, respectively. For all three problems and659

both versions of KIFMM, we summarize the computational results corresponding to a few values of660

nq in Tables 5 and 6. In both tables, “speedup” refers to the runtime of direct calculation divided by661

the runtime of KIFMM; therefore, the larger this number is, the more efficient KIFMM is compared662

to direct calculation. The relative error refers to ‖AHG − AG‖/‖AG‖ where AHG is the estimate663

to AG computed by KIFMM.664

5The z-coordinates of the particles are bounded away from 0 so that the matrix W240k is nonsingular.
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B ∂ B ∂ N(B)

(a) Equivalent surfaces.

B ∂ B ∂ N(B)

(b) Equivalent coronas.

Figure 10: The equivalent surfaces and coronas of a box in 2D and the quadrature points on them. Left plot: the

upward equivalent surface (— —) and the downward equivalent surface (−− �−−). Right plot: the upward

equivalent corona (the region between the two — — boundaries) and the downward equivalent corona (the region

between the two −− �−− boundaries). A 6× 6 uniform Cartesian grid is used to discretize each equivalent

surface or corona. The quadrature points on the equivalent surfaces or coronas are marked by  or �, respectively.

In the figures, B=the box of interest, ∂B=boundary of B, and ∂N(B)=boundary of neighborhood of B.

Table 5: Performance of the surface version [28] of KIFMM applied to S240k, W240k and K480k.

Number of processors: 16.

S240k W240k K480k

speed- relative speed- relative speed- relative

grid nq up error up error up error

3× 3× 3 26 24.40 1.93 10−3 24.80 5.76 10−3 21.36 6.26 10−6

4× 4× 4 56 17.43 9.18 10−5 16.53 1.91 10−4 14.95 2.09 10−7

5× 5× 5 98 9.38 5.47 10−5 8.86 6.19 10−5 8.31 1.04 10−8

6× 6× 6 152 4.88 1.35 10−6 4.28 5.15 10−6 4.27 7.11 10−10
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Table 6: Performance of the corona version [29] of KIFMM applied to S240k, W240k and K480k.

Number of processors: 16.

S240k W240k K480k

speed- relative speed- relative speed- relative

grid nq up error up error up error

4× 4× 4 64 15.25 3.25 10−6 14.59 8.77 10−5 14.24 2.18 10−8

5× 5× 5 124 6.78 1.19 10−7 6.05 2.03 10−5 5.98 1.19 10−9

6× 6× 6 208 2.77 1.65 10−8 2.36 3.10 10−7 2.43 6.18 10−11

We expect both the speedup and the error of either version of KIFMM to decrease as the665

number of quadrature points increases; this is indeed confirmed by the results shown in Tables 5666

and 6 for all three matrices. KIFMM is substantially more efficient than direct calculation: even667

when 208 quadrature points are used, which is the largest number considered, the runtime required668

by KIFMM is still less than half of that required by direct calculation in all three cases. When669

the same number of quadrature points is used, KIFMM produces the most accurate estimate for670

K480k and the least accurate estimate for W240k; in fact, for most values of nq, the relative error671

associated with the latter is more than 1000 times greater than that associated with the former.672

Furthermore, although W240k and S240k are of the same size, whether KIFMM or direct calculation673

is applied, the runtime required by W240k is always more than twice as long as that required by674

S240k. The two observations above indicate that Wε is a rather challenging kernel.675

The condition numbers of MRS matrices676

We investigate how the condition numbers of MRS matrices change with various factors. For677

each combination of domain, regularization parameter ε and kernel function, we repeat the following678

experiment 10000 times: generate 100 random particles uniformly distributed in the domain, con-679

struct the MRS matrix representing their pairwise interactions, and compute the condition number680

of this matrix. The size of each sample matrix is 300× 300 (for Sε and Wε) or 600× 600 (for Kε).681

The average condition number of each group of 10000 sample matrices is reported in Table 7.682

As expected, when the domain is [0, 1]× [0, 1]× [0, 1], since the particles can get arbitrarily close683

to the wall at z = 0, the matrices generated by Wε are ill-conditioned with an average condition684

number of 5.62× 1012. After we bound the particles away from the wall by changing the domain to685
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Table 7: Average condition number of 10000 sample MRS matrices generated for each combination of domain,

regularization parameter and kernel function

Domain ε kernel avg. cond. #

[0, 1]× [0, 1]× [0.01, 1.01]

0.02

Wε

1.13× 101

[0, 1]× [0, 1]× [0, 1]

5.62× 1012

Kε 1.22× 104

Sε

1.06× 101

0.04 4.85× 101

0.08 3.28× 102

[0, 2]× [0, 2]× [0, 2]
0.02

3.78× 100

[0, 4]× [0, 4]× [0, 4] 2.07× 100

[0, 1]× [0, 1]× [0.01, 1.01], the average condition numbers of the matrices generated byWε and those686

generated by Sε become almost the same (1.13×101 and 1.06×101), and they are both considerably687

smaller than the average condition number of the matrices generated by Kε (1.22×104). Moreover,688

the average condition number grows as the density of the particles or the regularization parameter689

ε increases and is especially sensitive to the latter.690
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