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Quantum simulation of Unruh radiation

Jiazhong Hu

The exploration of quantum phenomena in a curved spacetime
is an emerging interdisciplinary area at the interface between
general relativity"*, thermodynamics*® and quantum
information”®. One famous prediction in this field is Unruh
thermal radiation®*—the manifestation of thermal radiation
from a Minkowski vacuum when viewed in an accelerating
reference frame. Here, we report the experimental observa-
tion of a matter field with thermal fluctuations that agree
with Unruh's predictions. The matter field is generated within
a framework for the simulation of quantum physics in a
non-inertial frame, based on Bose-Einstein condensates that
areparametricallymodulated’tomaketheirevolutionreplicate
the frame transformation. We further observe long-range
phase coherence and temporal reversal of the matter-wave
radiation, hallmarks that distinguish Unruh radiation from its
classical counterpart. Our demonstration offers a new avenue
for the investigation of the dynamics of quantum many-body
systems in a curved spacetime.

Applying quantum mechanics to gravitational systems or curved
spacetimes is one exciting area in the exploration of the not-yet-
understood physics of quantum gravity. Ideas such as Hawking
radiation?, gauge-gravity duality’® and the black hole information
paradox''""’ improve our understanding of quantum mechanics in
gravitational fields, and are essential steps toward a new approach to
the foundations of physics.

Here we propose a new method to study quantum systems in
curved spacetimes on the basis of simulation of quantum systems
in an accelerating frame; the notion originates from the equiva-
lence principle that physics in a gravitational field cannot be dis-
tinguished from that in an accelerating frame on the basis of local
measurements. Specifically, we demonstrate the Rindler frame
transformation ﬁA (refs. *'*) with acceleration A by evolving the
system with the pair-creation Hamiltonian . Given a quantum
state ¥y, our method can be understood as the equivalence of the
time evolution U(r) = exp(—iHrz /h) and the Rindler transforma-
tion R 4> Namely

U(r)¥,=R,Y¥, (1)

where 2n/ is the Planck constant and 7 is the evolution time. With
this method, we can simulate physics in a highly accelerating frame
based on a bench-top experiment without physically accelerating
the sample.

When the quantum system is a vacuum in the Minkowski space,
it is predicted that an accelerating observer will detect a thermal
radiation from the system (Unruh effect)’. The thermal radiation is
characterized by the Unruh temperature

T,= 4 @)

- 2ncky
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where k; is the Boltzmann constant and ¢ is the speed of light.
Because of the equivalence principle, this surprising phenom-
enon shares the same root as Hawking radiation®*. It is, however,
extremely challenging to observe the Unruh effect experimentally;
an enormous acceleration of A=2.5x10"*ms™ is required to gen-
erate Unruh radiation of merely T;;=1pK.

To generate the frame boost for any quantum state y,, we find
that the required Hamiltonian H =i# Y, ‘ gk(a; al —axa_;) describes
the pair creation of excitations with opposite momenta. Here a, and
a, are the annihilation and creation operators with wavenumber k
and g, is the coupling constant. The acceleration of the frame trans-
formation is given by (Methods)

nE;c

" 2hiln coth(g, 7) ®

where E, is the energy of the excitation. Combining equations (2)
and (3), we see that the Unruh temperature scale is given by the
excitation energy as k; T, = E,/[41n coth(g,7)].

In this paper, we demonstrate the above idea and simulate the
Unruh effect by only considering the momentum modes with the
same amplitude |k| = k; (see Fig. 1). By modulating the interactions
of a Bose condensate with frequency w, we prepare the pair-creation
Hamiltonian. Under the Bogoliubov and the rotating wave approxi-
mations (Methods), the Hamiltonian reduces to

H=ihg ) (aja’,~aa_) 4)
ik

where k;= /mw/# and m is the atomic mass. Given the modula-
tion, the condensate in our experiment radiates atoms into about
300 momentum modes, sufficient to test the predicted thermal fluc-
tuations P(n) e /%7 where 7 is the atom number and E = hw/2
is the energy of an emitted atom. We observe excellent agreement
with thermal models and Unruh’s predictions. We further show the
non-local spatial coherence and reversibility of the matter-wave
generation, which clearly distinguish the Unruh radiation from its
classical counterpart (black-body radiation), and confirm the quan-
tum nature of matter-wave generation.

Our experiment starts with a Bose-Einstein condensate of
60,000 caesium atoms confined in a disc-shaped optical dipole trap.
By modulating the magnetic field at a frequency near a Feshbach
resonance'', a two-dimensional, jet-like emission of atoms with
momentum |k| =k is observed on the basis of in situ imaging after a
few milliseconds (see Methods for experimental details). This emis-
sion forms a fluctuating bosonic field, also called ‘Bose fireworks, and
is a result of stimulated amplification of quantum fluctuations™". Its
evolution can be well described by the Hamiltonian in equation (4).
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Fig. 1| Quantum simulation of Unruh radiation. a, To an observer in an
accelerating frame, a vacuum state in the inertial frame appears identical
to a thermal state with the Unruh temperature T,,. b, We simulate the
Unruh radiation by parametrically modulating the interactions of an atomic
condensate, whose evolution is equivalent to a coordinate transformation
to an accelerating frame without actually accelerating the system. The
matter-wave field shares the same characteristics as the Unruh radiation:
it is locally indistinguishable from a Boltzmann distribution, but is long-
range coherent and temporally reversible.

In typical experiments, the emission carries as many as 276 angu-
lar modes and each mode acquires a width of 1.30° (Methods). To
study the distribution of the mode population, we divide the emis-
sion pattern evenly into 180 angular slices. For each slice, we extract
n and evaluate the probability distribution of the mode population
P(n) (see Fig. 2a).

The measured mode population distributions strongly resem-
ble that from thermal radiation (see Fig. 2a). We extract the
effective temperature T on the basis of a thermal model, which
incorporates both the Boltzmann distribution and the measure-
ment uncertainty (Methods). The model fits the data excellently,
and the extracted temperature shows a linear dependence on
the mean atomic population per mode 77=(1/¢) fnP(n) dn with
£=2°/1.30°=1.5 the average number of modes within a 2° slice
(Fig. 2b). Such linear mapping between temperature and mean
population is consistent with the thermodynamic calculation,
which yields ky T~ Efi (Methods).
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Fig. 2 | Thermal behaviour of the matter-wave emission. a, The measured
probability P(n) of n atoms within a 2° slice of the emission pattern after
evolution time z=0, 3.36, 4.8 and 6.24 ms (black, green, red and blue
circles). The solid lines are fits based on a thermal model (Methods).

The inset shows the data in a log scale. b, Temperature T and entropy S
versus the mean population per mode n. The derived acceleration A is
shown at the top. The red solid line is a fit of T=«kA/c. The blue solid line
is the prediction that includes the detection noise and the purple line is
the prediction excluding the noise. The inset shows the evolution of T and
S. The dashed lines are guides to the eye. Here the condensate’s radius is
13pm. The scattering length is modulated at frequency w/2x=2.1kHz with
a small offset of a;.=4a, and an amplitude of a,.=50a,, where a, is the
Bohr radius. All error bars correspond to 1s.d. of the mean values.

The thermal distribution of the mode population can be under-
stood in terms of the Unruh effect. The matter-wave field measured
in our system simulates the vacuum state observed in an accelerat-
ing frame. We evaluate A (Fig. 2b), from which we observe a linear
relation between the temperature and the acceleration, T=kA/c. By
fitting the data, we obtain the ratio k =1.17(7) pKs. Our result agrees
well with the Unruh prediction x = fi/2nk; ~ 1.22 pK's (equation (2)).

In addition to the temperature, we further evaluate the mean
entropy of a single momentum mode S=—ky }’ P(n)ln P(n)-S,,
an important observable to characterize the matter-wave radiation
(Methods). For short <3 ms, the measured entropy is dominated
by the detection noise Sy=3.8k;. For long modulations, the mea-
surement faithfully reflects the entropy of the matter-wave radiation.
The entropy increases logarithmically with A (Fig. 2b), and agrees
with the calculation S = kg In(e7r) (Methods). The entropy measure-
ment again confirms that the emission forms a thermal field.

While local measurements in our system seem to reveal a thermal
distribution, unlike incoherent black-body radiation, Unruh
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Fig. 3 | Long-range phase correlation of matter-wave radiation. Here the condensates are confined in a disc-shaped trap with radius 7 pm. a, Application
of two pulses of scattering length modulation with frequencies w,/2r=3 and w,/2n=5.63kHz, and a,.=56 and 72 a,. The relative phase of the pulses is 6.
b, The matter-wave jet created by the latter pulse propagates at a greater speed v, > v, and interferes with atoms from the first pulse when they overlap.
Here the matter-wave speeds are v;=,/hw,;/m for the ith pulse. The interference is characterized by the wavenumber difference Ak=k, -k, relative phase ¢
and radial distance r. ¢, An example interference pattern of the two radiation fields. The phase of the interference fringes ¢, is recorded as a function of 6.
d, A radial cut of the interference pattern, from which we determine the phase of the fringes on the basis of Fourier transformation (Methods). Dotted lines
are guides to the eye. e f, The concurrence of the extracted phases in the opposite directions, ¢, and ¢,,,, for all @ from a collection of 200 images.

A strong correlation of the two phases is described by ¢+ ¢y, = @, where ¢,=0.79(3) is obtained from fitting the data; ¢, — ¢, appears to be random.

g, Phase correlations g, and g_ between fringes separated by an angular distance ¢ (equation (5)). Points represent experimental data while dashed
curves are guides to the eye (Methods).
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Fig. 4 | Time reversal of the matter-wave radiation field. a, The scattering length is modulated at w/2x=2.1kHz with a,.=50 ag, for time z=4.75ms
before a phase jump a is introduced to the modulation. b, Emitted atom number N versus time 7. The blue, purple and red data correspond to =0, 2r/3
and &, respectively. The dashed lines are guides to the eye. The inset shows suppression ratio 5 versus phase jump a evaluated at r=r.. A sinusoidal fit
gives the maximum reversal at a=0.98(3)x, where 5 reaches 51(3)%. ¢, Entropy S and temperature T without (=0, blue circles) and with the phase jump
(a=m, red circles). The lines here are guides to the eye. The inset compares P(n) at 7. with a=0 (blue) and = (red). The solid lines are the fits from our
thermal model. d, The average of 15 images of the matter-wave radiation at different times (indicated by arrows in €) with a=0 or . Here the condensates
are confined in a disc-shaped trap with radius 13 pm. All error bars correspond to 1s.d. of the mean value.

radiation should exhibit both spatial and temporal coherence, We first show the spatial coherence of the matter-wave field by
reflecting its quantum origin. In the following we investigate the  probing the phase correlation between jets. To do this, we perform a
coherence properties of the matter-wave radiation. matter-wave interference experiment by applying two independent
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pulses of modulation on the scattering length; the first pulse has a
lower frequency than the second one (Fig. 3a). The two frequencies
are incommensurate to avoid influence from high-harmonic gen-
eration'’. The pulses are arranged such that the atoms created by the
second pulse leave the condensate later, but with a greater velocity
than the atoms from the first pulse. When the two emitted waves
overlap, they interfere and produce fringes (Fig. 3b). The phase of
the fringes ¢ is given by the relative phase of the interfering matter
waves, and varies with emission angle 6 (Fig. 3¢).

We observe the phase correlation of fringes along counter-
propagating directions. In Fig. 3e, we present the occurrence distri-
bution of the fringe phases in opposite directions, namely, ¢, and
¢y.x The two phases correlate in such a way that they sum to a con-
stant, ¢+ ¢y, = @, (Fig. 3e,f) as a result of phase matching in a five-
mixing process (Methods and ref. ).

To be more quantitative, we evaluate the phase correlation func-
tion g, (¢) for all angular spans ¢ (ref. '), defined as (Fig. 3g)

g, (@)= [ (e | (5)

here the angle brackets correspond to angular averaging over 6 and
ensemble averaging. The peak of g, at ¢ == confirms that fringe
phases are only anticorrelated in opposite directions. The lone peak
of g_at ¢ =0 shows the phase coherence within a single jet.

Since jets with different energies are generated independently,
the correlations of the fringes indicate the phase correlations of
counter-propagating jets with the same momentum. Such phase
correlation results from the coherent generation of atom pairs,
which are phase locked to the modulation; the correlation is also
expected for Unruh radiation’, and resembles the phase coherence
in the parametric down-conversion process in quantum optics'.

Next we show the temporal coherence of the matter-wave radia-
tion by reversing the time evolution. Similar experiments to reverse
parametric amplification are realized based on photonic and atomic
fields with two well-defined outgoing modes and low atom num-
bers?*-*, whereas the condensate in our system simultaneously cou-
ples to about 300 momentum modes and involves about 10° atoms.

Here we perform the experiment as follows: after modulating
the scattering length, we jump the phase of the modulation by «
(Fig. 4a). We monitor the evolution of the radiation patterns, from
which we determine the total emitted atom number N (Fig. 4b).
A clear suppression of atom number is shown for large phase jumps.
We evaluate the suppression ratio 7(a)=N,(r.)/N,(r.) at time
7.,=5.76 ms when the maximal reversal occurs (Fig. 4b). In particu-
lar, when a ==, N reduces by as much as 51(3)% of that without the
phase jump (a=0). At a=m, a reversal of 26(3)% (or 2,200 atoms) of
the matter-wave excitations back to the condensate is observed. Our
results are consistent with the theoretical simulation (Methods).

We evaluate entropy S and temperature T from the distribu-
tion of emitted atom number, which remains thermal before and
after the phase jump (Fig. 4c). Here we compare them for the two
cases with phase jump a =0 and 7. In the former case entropy S and
temperature T continuously increase, while in the latter case both
of them decrease first but eventually increase again. The reversal
can be clearly seen from the strength of the emission pattern in the
averaged images (Fig. 4d). The limited amount of reversal we can
achieve is due to off-resonant coupling to the momentum modes
close to |k| = k; (Methods).

Remarkably the reversibility of the matter-wave emission sug-
gests that the system undergoes a unitary evolution. The revers-
ible entropy, together with the long-range coherence shown in
Fig. 3, indicates that the matter-wave field remains a pure state
after all, and the entropy extracted from local measurements
potentially results from quantum entanglement between different
momentum modes.

NATURE PHYSICS

In conclusion, we have demonstrated a new type of quantum
simulation to investigate quantum phenomena in a non-inertial
frame. By simulating the Rindler frame transformation on the vac-
uum state, we observe the appearance of thermal radiation of matter
waves that resembles Unruh radiation. Such matter-wave radiation,
albeit thermal from local measurements, possesses long-range spa-
tial and temporal coherence, which distinguishes it from classical
thermal radiation.

Our method is readily applicable to generic quantum states,
such as Fock states, superposition and entangled states, and can be
extended to other frame transformations by spatially or temporally
controlling the interaction modulation. As an example, the curved
spacetime near a black hole could be simulated with an inhomoge-
neous acceleration that matches the gravitational pull near the black
hole. Abundant intriguing topics exist at the interface of quantum
mechanics and general relativity, such as Hawking radiation, black
hole thermodynamics and the information paradox, which can be
simulated in a bench-top experiment®-*.
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Methods

Experimental methods. Condensate preparation. We start with Bose-Einstein
condensates of 6 X 10* caesium atoms loaded into a disc-shaped trap with a radius of
7pum (in Fig. 3) or 13 pm (in Figs. 2 and 4). The horizontal confinement is provided
by a blue-detuned laser at 780 nm. The laser intensity profile is shaped by a digital
micromirror device and projected to the atom plane through a high-resolution
objective lens. The dipole trap provides a barrier height of 1 x 300 Hz beyond the
radius of the trap. Atoms are tightly confined in the vertical direction to a root-
mean-square radius of 0.5 pm with a harmonic trapping frequency of 220 Hz.

Scattering length modulation. After loading atoms into the dipole trap, we
modulate the magnetic field near a Feshbach resonance, which causes

the s-wave scattering length a of the atoms to oscillate as a(r) = a4 +a,. sinwz.
We maintain a small positive mean scattering length ay. =4 g, throughout

the experiment. In Fig. 2, the modulation frequency is w =2n x 2.1 kHz with
amplitude a,.= 50 a,. Different 7 ranging from 0 to 7.68 ms are applied to
monitor the evolution of the matter-wave emission. In Fig. 3, two pulses with
@=2nX3 and 2n X 5.63 kHz, a,.=56 4, and 72 g, and a relative phase & are
applied to generate two sets of jets with different propagation speeds. In Fig. 4,
two pulses with the same @ =2nx 2.1 kHz and amplitude a,.=50 g, are applied.
A tunable phase jump between the two pulses serves to optimize the reversal of
the matter-wave radiation.

Detection technique. For the experiment in Fig. 4, we perform time-of-flight
measurements in a weak radial harmonic trap to focus emitted atoms with the
same momentum, and thus determine the atom number with a higher signal-to-
noise ratio”. At the end of the modulation, we wait for 0.5 ms and then turn on the
harmonic confinement from a dipole trap while maintaining the disc-shaped trap.
Atoms with the same momentum are focused to the same location after a quarter
harmonic trap period (the trap period is 80 ms), when the imaging is performed to
extract the atom number.

To measure the thermal distribution of atoms in a jet and the phase from
the jet interference pattern, we perform in situ imaging in free space without
the harmonic trap to preserve the jet structure. For the thermal distribution
measurement, we image the atoms 30 ms after the beginning of the magnetic field
modulation. We evaluate the atom number in every 2° slice of typically 15 images
taken under the same conditions, from which we build the histogram of the atomic
distribution. To extract the phases from jet interferences, atoms are imaged 13.5ms
after the beginning of the magnetic field modulation. A 15° bin is chosen and the
radial atomic density interference curve is obtained by integrating and fitting the
atomic density over the angle within each slide. A collection of 200 images is used
for the data presented in Fig. 3.

Equivalence of time evolution and Rindler frame transformation. The time

evolution under the Hamiltonian H=i2 ¥, ¢ (aka «—axa_;) is governed by the
equation of state, which is given in the Heise; ’Berg picture as

i
“k=;[H’ a] =gk“ik (6)

i
a_ = E[H’a_k] =gka,j (@)

The solution is

ﬂk(o)
ajk(o)

llk(‘[)

aik(T)

cosh(g,7) sinh(g,7)

- sinh(g,z) cosh(g,7) ®

On the other hand, let us consider a different problem of describing a scalar
quantum field in an accelerating reference frame. The frame transformation, called
the Rindler transformation, is given by

l;kR _ cosh(r,) sinh(r) G ©
l;“‘ - sinh(r,) cosh(r)|(| 4
k

where I;kR and bt are the annihilation operators of ‘Rindler modes’ with energy E,
in the accelerating frame, L and R refer to the two Rindler wedges and ¢, and ak are
the annihilation operators of ‘Unruh modes’ in the inertial frame. The parameter r,
is related to the acceleration as tanh r, = e ™™/,

Remarkably, equations (8) and (9) share the same mathematical expression. We
can thus simulate a quantum system in an accelerating frame by engineering the
evolution operator shown in equation (8) to match the Rindler transformation in
equation (9). Given the same transformation for all the relevant operators, what a
generic wave function would look like in an accelerating frame can be simulated
by the engineered time evolution of the system, shown in equation (1). Here g; is
linked to A by
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8= Llncoth[%] (10)

Evolution and observables of condensates with modulated interactions. We start
with the second-quantization form of the Hamiltonian

2
H= [ dr \P%(r,r)pf‘l’(r,r)
~ f 2m -
+¥ f & ¥ )Y (6 1) W(E ) ¥, 1)

where §(z) = 4nh’a(z) /m s the coupling constant and is proportional to the
scattering length. In our experiment, the scattering length is modulated as
a(t) =ay.+ a,.sin wz. By applying the Fourier transformation of the field operator

1 ik-r
— e“'a (12)
NV ; .

Y(r,7)=

where V is the volume of the condensate, we obtain the Hamiltonian in the
momentum space as

H= z €kakak+M

¥ F
v Z A+ 8k, - AP 1 Pk, (13)

Ky ky, Ak

In the interaction picture, we eliminate the kinetic energy term Hy= PINCT NN
by transferring the operators for atoms into a rotating frame with a, — akei"”/ h
and ignore the fast-varying terms. We further simplify the Hamiltonian under
the Bogoliubov approximation a,~ \/— (Ny>1), and apply energy-momentum
conservation 71w = A’k /m. The resulting Hamiltonian reduces to

H=ihg Z (aja’,—aa_y) (14)
[k|=k¢

where g=nhNya,/mV is the coupling constant.
According to equation (8), we can write the equation of motion as

a(7) _ o8ty ,(0) (15)
uik(T) ujk(o)
where o, is the x-component of the Pauli matrices. The evolution matches the
Rindler transformation equation (9) with the simulated acceleration
_ e
21In coth(gr) (16)

To simulate the Unruh radiation, we initialize the condensate in the ground
state with negligible excitations N, ~ 0 for |k| > 0. After the modulation begins, the
mean population in a mode increases as 7 = (a] (z)a,(r)) = sinh*(gz). Thus we can
also relate A to the mean population as

2ncE 2ncE _
= 7l
nln(1+1/7) a»1 A

(17)

where E=Tw/2 is the kinetic energy of each excited atom.

Next let us consider the evolution of the wave function. Since the modulation
generates pairs of counter-propagating atoms with momenta k and —k, we can
rewrite the Hamiltonian as H= Y}, _ h;, where b= ing(ajal,—aza_y). In the
following we only consider the evolution of one k. To simplify the notation
without loss of generality, we use / to replace ;. The solution of the wave
function is*

—iht/h 0y =

lw(z)) =e Z tanh(g7) |, n) (18)

cosh(g )

where |0) is the vacuum state at 7=0, and the ket |n, n) indicates that there are n
and 7 particles in the modes with momentum k and —k, respectively.

The above wave function is the same as a Minkovski vacuum state expressed in
the basis of the Rindler coordinate’. The reduced density matrix of one single mode
such as k can be determined by tracing out the other mode —k, which yields

PO=Tr_ @) @)=Y p, In), (nl, (19)

n=0

where p =tanh™/(gr)/cosh’(gr) is the probability of n particles in the mode. By
comparing with a thermal distribution of bosons in a quantum state
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_nho. __ho_
Pth(”):e 2kpT (1—e 2kgT) (20)

we see that p(7) describes a thermal state with temperature given by

E
= 2k, In coth(gr) @D
. B E, »
kgln(1+1/7) a1 ky (22)
and the mean population
n= i np = ; 23
- n oE/keT_q (23)

follows the Bose-Einstein distribution.
We also evaluate the entropy of atoms in a mode. The von Neumann entropy
S=—kgTr(p(r)lnp(z)) can be directly calculated as

S =2kg[In cosh(gr) + sinh*(gz)In coth(gr)] (24)
—kfln(+ 1) +aln "Lk In(en) (25)
A a1

where e=2.718... is Euler’s number.
Using equation (16), we can relate the temperature to the simulated
acceleration as

_ hA
2ncky

(26)

which is identical to the Unruh prediction shown in equation (2).

Equations (22) and (25), plotted in Fig. 2b, are in excellent agreement with
the experimental measurement. In the next section, we will show that they are
also identical to the thermodynamic expectation. The agreements support the
description of the matter-wave radiation as a thermal field with Unruh
temperature Ty.

Finally, together with equation (25), we obtain the thermodynamic relation

between S and T as
E/ksT | | K ln[ ekyT ] @)
a1 E

(1= E/RT)

S=—kp|In (e 1)~

Determination of mode width and effective temperature. In this section,
we first determine the mode width experimentally. In ref.’, measurement
of the second-order correlation function g?(6) of Bose fireworks was
reported. We have g?(0) =2, indicating that in one mode there is a relation of
Ank=[g®(0)—1](n,,)* where (n,)) and An2 are the mean and variance of the
atom number.

Experimentally we slice our emission patterns into 180 slices and count
the atom number in each slice. On the basis of the histogram of atom counting
from the measurements, we build P(n) and calculate (n) = / nP(n)dn and
An* = (n*)—(n)>=An? . Here An . is the variance contributed from the
detection noise whlch is statistically independent of the signal from atom counting.
From this, we find a linear dependence between the mean atom number squared
and the variance from the experiment as (Supplementary Fig. 1)

<n>z =¢£ An? (28)

Here £= A0,/ AO,=1.49(7) is determined from the fit and is insensitive to the
atom number calibration. This ratio also characterizes the ratio between the mode
width Af, and the width of the slice A@;=2°. Therefore, we obtain Af,=1.30°.
Alternatively, we can calculate A6, independently. Using the formula A6, =1.62/
(Rk) in ref.’, which arises from the half width at half maximum of the peak at ¢ =0
in the g¢® function, we obtain a consistent result of A9,=1.33°.

To test and verify that the emitted atom number in each mode follows a
thermal distribution, we derive a more general formula for the probability
distribution p(n, &) in a slice with any width Af;=£A0,. Because the mean
population per mode (n,,) is always larger than 1 in our measurements, we
treat the distribution p(n, £) as a continuous function where the summation
Zn o P(n, &) = 1is replaced by an integral / dn p(n,§)=1

Here we would like to list a few propert1es of the function p(n, &). First, p(n, &)
must be equal to 0 when # is a negative number. Second, if the angular slice
only contains one momentum mode (that is, £=1), p(n, 1) should be a thermal
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distribution, where p(n, 1) = e with f=E/k,T. Third, the p(n, £) have to
satisfy the addition rule that combining two slices of £, and &, will create a
new slice of £, 4+¢&,. We can write the third requirement more explicitly as a
mathematical equation

pong+&)= [ pon Epin—n'.&)dn 29)

From all the above conditions, we solve the probability distribution p(#, £)
analytically as

o 8)= [ﬁgng’le(;/’”/r(g) "ig 30)
n

where I'(€) is the gamma function.

In addition to the signals from the atoms, the detection noise contributes
to the measured probability distribution of the atom number. Experimentally
we characterize this noise distribution G(n, ) by inspecting the images without
any radiation. Once we obtain G(n, £), we convolve it with p(n, &) to give a full
distribution function

Pon&)= [ dn'p(n, G-, ) G1)

Then we use this function to fit our data extracting T under the condition é=1.5
(Supplementary Fig. 1b).

Characterization of entropy from population distribution. We define the

entropy in one slice with width £ A@, as S(&). First we use the probability
distribution p(#n, £) derived in the previous section to evaluate S(¢), which gives

s@/k=- [ " dn p(n, Olnp(n, &)
=—Inf+&+In 1@ -(E-DI'E/T(E)

(32)

In our data analysis, we divide the radiation pattern into 180 slices and
determine the probability distribution P(n). Thus, the entropy directly measured
by the experiment is

8(1.5)=—kg Y P(n)In P(n) (33)

We show that the entropy in a single mode S(1) is given by

S(1)=S(1.5)=Sy=—ky Y. P(n)ln P(n)=S, (4)

n

on the basis of equation (32), where
Sy=ky[E = 1+InT(§) — (€= DI(E/T(E)]] ooy 5= 0.37k

For the theoretical curve with noise plotted in Fig. 2b (blue solid line), we
characterize the detection noise per mode G(n, 1) and then evaluate the theoretical
distribution by convolving G(n, 1) with p(n, 1) as

Bn, 1)=f°°dn'p(n',1)c(n—n',1) (35)
and we calculate the entropy as
S=—ky / dn B(n, DInB(n, 1) (36)

which matches our experimental data (see the blue solid line in Fig. 2b). The purple
line shows the calculation in the absence of detection noise.

In summary, the agreement between experiment and theory shows that
the matter-wave radiation from the condensate matches the thermodynamic
expectation from a Bose gas at zero chemical potential =0 and T=T,.

Phase correlations of atomic radiation field. Here we calculate the phase
correlations between interference fringes, which directly relate to those between
emitted jets. We consider two sets of independent jets generated by two pulses of
scattering length modulation with a certain phase. In the interaction picture, the
wave function can be written as [y);= [y"); ® [y?),. Each |y?), follows

j i(p /2)
v,= cosh(y) Z s tanh(y)] In, ”>k & G7)
under the Hamiltonian
W) _ o Pt F —ify
H;' =g;e M)akja_kj+gj e Mjakja_k]_ (38)
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where ¢ s given by the phase of the external driving field, y;=g;;and 7; is the
modulatidn duration of the pulse.

To take the dynamical phase into account, we convert the wave function back
to Schrédinger’s picture, and the wave function is written as

) =" (& ly™®) (39)
where [y ) 5 is given by
yy = e 1y 0y
(40)

i p—wjt—/2)
mz:[ My tnh(y)] [n,n), Gk

Here H(x = hw, (ak ay,+ al Kk )/2is the energy term that was previously
ehmmated in the interaction piture.

The 1nterference operators between the two sets of jets are [, = ay uk and
L=a_y al Zip Which correspond to the forward and backward directions. We
introduce four more interference operators as I =agdy and I =ay al s with

j=1or 2. The mean value for the interference operator I, is evaluated as
(1) = W91 @ga) W)
« /) (41)
i(p,—wit—n
= <nj>(<nj>+1)e M

(1) = w1, @gal) W
=0

(42)

where (n;) is the mean atom number in each set of jets.
Phase correlation between interference fringes can be directly decomposed into
the interference operators in each set of jets. The phase correlation g,(0=m)
is proportional to the correlation between I; and I; together with equation (41)
we obtain

(€t P0+2) o (111,
=" ® Wl (ayalaa’s) ™) @ lw®)
=" @ga ) ") (I @ialy) )Y (43)
PN
:<Il+><12+>

=\/<nl>(<n1)+1) J<”2>(<”2>+1) ei[(¢M1—¢M2)—(w1—wz)t]

Therefore, the sum of the phases of the forward and backward interference fringes
depends only on the phase of the driving and the dynamical phase. Thus we have

the phase constant ¢) = ¢, + ¢, = (q’;M ¢M )—(w,—w,)t and g, (n) =1.
Meanwhile, the phase correlation g_ YO=7) is proportional to the mean value of

Tflb, together with equation (42) we have
(o) < (1)

— D (2)
=@ w7l
(l)l

(aada’yas) ™) (@ )
(2)| (44)

S (ak]aikp |w“’> W (adang) )

W>

=

therefore, we have g (1) =0, indicating that phases in each pair of jets are totally
random although their sum is fixed. The results from equations (43) and (44) are
consistent with our measurement shown in Fig. 3g.

We also derive analytic formulas for the phase correlation functions g,(6) and
g_(6) between two arbitrary angular directions, in addition to that between the
counter-propagating directions in equations (43) and (44), as follows:

¢.(0)= <ak1aizakia.}2> _ (“kﬂki)(‘lljz“lz'z) (45)
* (ayay )a,ay,) (a)ay May,a,)

2 0)= (“klalzzalzi“kﬁ (aklaliﬂ(“lzz“k’z) (46)
- <“E1“k1><“1z2“k2> (aiﬂkl)(aizakz)

Here k, and k, are the momenta of jets created from different modulations and
propagate along the same direction, while k| and k, represent another pair of such
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co-propagating jets along the direction with a relative angle of 6 to that of k, and k,.
In the spirit of ref.” and taking the finite size of the condensate into consideration,
we obtain

it —we—n/2) P (& +K))
<“kj“k}> =) n/z)éij cosh(y}.)sinh(yj) (47)
T

; Pk-k)
akak —2][

where f(k) is defined as the Fourier transformation of a uniform disc-shaped
density p(r):

inh’(y) (48)

_ 1 [ ikry
= [ 49)

and p(r) is the density distribution function of the condensate:

1 |r|<R

PO=10 >R

(50)

with R the condensate radius. Therefore, the analytic formulas for g, () when 7> 1

and [k |R> lare

Pk, +kpp~
4?

4]1(|k1|R(6—7[))]1(|k2|R(9—J‘E))

Ik |1, | R (0—m)°

g,0)=

(k,+k}) ‘

(51)

and

4 (kK

~4
R

g ()=

(k,—k%) ‘

(52)
_ W‘

Ik k476

where J,(x) is the first-order Bessel function of the first kind.

To experimentally extract the interference fringe phase ¢, for a particular
emission direction 6, we average over an angular span from 6—0.12 to 6+0.12
to obtain the radial density distribution p(r,0) to achieve the best signal-to-
noise ratio (Fig. 3d). We then perform Fourier transformation on the radial
density to obtain the complex density amplitude of the interference fringes in
momentum space p(k, 0). The phase ¢, at k; is then evaluated from this complex
amplitude. Although our jet width is small, that is 2° for @/2n=3kHz and 1.5°
for w/2n=>5.63 kHz, this average results in a significantly broadened phase
correlation, shown in Fig. 3g. To experimentally extract the phase constant ¢,
we fit the histogram of ¢, + ¢, to obtain the peak position. We also calculate
the expected phase shift on the basis of our experimental sequence with a time
of 18.5ms from the start of the modulation to the start of imaging. The first
sinusoidal modulation pulse lasts for 7 periods while the second lasts for 16
periods. Meanwhile we take into account the time delay of the modulation pulse
of 0.041 ms due to the system response. Therefore, the phase constant estimated
from our experimental sequence is 0.9(2), where the uncertainty arises from the
duration of our 20 ps imaging pulse.

Numerical results on reversal of atomic radiation field. In this section, we
use numerical simulation based on a dynamical Gross-Pitaevskii equation to
investigate the partial reversal on radiating matter-wave fields. We find that the
results of this imperfect reversal mostly originate from the off-resonant coupling to
finite momentum modes close to |k| =k;

Here we start with the Gross-Pitaevskii equation

. oy o, 2

h— =|—— V> + V() + U, -

e py () + Uy lw | "—pwr (53)
USOlw > w

where y is the wave function and p =27/ X 19 Hz is the static chemical potential of
the condensate, V(r) is the disc-shaped trapping potential as a function of radius

r, with V(r) =2nh X% 300 Hz for 13.6 pm > r> 13 pm and V(r) =0 for the rest, and

U, =4nh*as/m and U, = 4nh*a,/m are the d.c. and a.c. interaction strengths, with
aq.=4a,and a,,=504,. In add1t1on, we have f(r) =sin(wr) when 7<4.76 ms and
flr) =sin(wr+ a) for 7> 4.76 ms. These parameters are chosen according to our
experimental conditions.
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The results from simulation using a CUDA-based solver’' show excellent
agreement with the experiment. First of all, the total emitted atom number
is suppressed after a phase jump close to 7 (see Supplementary Fig. 2a). The
suppression sensitively depends on the phase of the second pulse. Similarly
to the analysis of our experimental data, we then look at the suppression
ratio as a function of @ at 7.=5.62 ms, when the optimal suppression appears
(Supplementary Fig. 2c). The suppression ratio varies as a function of & in the same
way as in our experiment and the best suppression that can be achieved is #=0.57,
comparable to the experimental result.

The reason for this partial suppression is the off-resonant coupling to modes
with momentum slightly different from the resonant value |k| =k; We examine
carefully the emitted atoms in different momentum modes (Supplementary Fig.
2b), and find that not all the excited atoms have the resonant momentum. Instead,
atoms spread across a range of momentum modes due to the uncertainty principle.
Since the condensate has a finite radius of 13 um, even if we apply a long driving
pulse, the atoms effectively see modulation for a limited time before jets escape
from the condensate. The finite modulation duration gives a finite bandwidth in
the frequency domain centred around the modulation frequency. Thus atom pairs
can be off-resonantly excited with energy that deviates from the energy quantum of
the modulation, which evolves differently from the resonantly excited atom pairs,
and the populations in these off-resonant modes are optimally reversed at different
phase jumps. For any one particular momentum pair, the population reversal can
reach 70% according to our calculation, while the total excited population can be
reversed by no more than 50%, consistent with our measurement.
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In addition to this off-resonant coupling, we anticipate that the reversal
can be limited by other effects such as the fast counter-rotating terms and the
motion of the emitted atoms as well. The counter-rotating terms lead to the quick
population oscillations seen in Supplementary Fig. 2a; they also accumulate phase
and eventually limit the reversal. Furthermore, when atoms move out of the
condensate, they cannot be transferred back to the condensate again. These effects
are included in the simulation but their contributions to the limited reversal are
hard to separate in our numerical model.

Data availability
The data that support the plots within this paper and other findings of this study
are available from the corresponding author on reasonable request.
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