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The exploration of quantum phenomena in a curved spacetime 
is an emerging interdisciplinary area at the interface between 
general relativity1–4, thermodynamics4–6 and quantum  
information7,8. One famous prediction in this field is Unruh 
thermal radiation3—the manifestation of thermal radiation 
from a Minkowski vacuum when viewed in an accelerating 
reference frame. Here, we report the experimental observa-
tion of a matter field with thermal fluctuations that agree 
with Unruh’s predictions. The matter field is generated within 
a framework for the simulation of quantum physics in a  
non-inertial frame, based on Bose–Einstein condensates that 
are parametrically modulated9 to make their evolution replicate  
the frame transformation. We further observe long-range 
phase coherence and temporal reversal of the matter-wave 
radiation, hallmarks that distinguish Unruh radiation from its 
classical counterpart. Our demonstration offers a new avenue 
for the investigation of the dynamics of quantum many-body 
systems in a curved spacetime.

Applying quantum mechanics to gravitational systems or curved 
spacetimes is one exciting area in the exploration of the not-yet-
understood physics of quantum gravity. Ideas such as Hawking 
radiation1,2, gauge–gravity duality10 and the black hole information 
paradox11–13 improve our understanding of quantum mechanics in 
gravitational fields, and are essential steps toward a new approach to 
the foundations of physics.

Here we propose a new method to study quantum systems in 
curved spacetimes on the basis of simulation of quantum systems 
in an accelerating frame; the notion originates from the equiva-
lence principle that physics in a gravitational field cannot be dis-
tinguished from that in an accelerating frame on the basis of local 
measurements. Specifically, we demonstrate the Rindler frame 
transformation R̂A (refs. 4,14) with acceleration A by evolving the 
system with the pair-creation Hamiltonian Ĥ. Given a quantum 
state Ψ0, our method can be understood as the equivalence of the 
time evolution Hτ τ= − ̂ ∕ℏÛ( ) exp( i ) and the Rindler transforma-
tion R̂A, namely

τ Ψ = ̂ ΨÛ R( ) (1)A0 0

where 2πħ is the Planck constant and τ is the evolution time. With 
this method, we can simulate physics in a highly accelerating frame 
based on a bench-top experiment without physically accelerating 
the sample.

When the quantum system is a vacuum in the Minkowski space, 
it is predicted that an accelerating observer will detect a thermal 
radiation from the system (Unruh effect)3. The thermal radiation is 
characterized by the Unruh temperature

= ℏ
π

T A
ck2

(2)U
B

where kB is the Boltzmann constant and c is the speed of light. 
Because of the equivalence principle, this surprising phenom-
enon shares the same root as Hawking radiation2,3. It is, however, 
extremely challenging to observe the Unruh effect experimentally; 
an enormous acceleration of A = 2.5 × 1014 m s−2 is required to gen-
erate Unruh radiation of merely TU = 1 μK.

To generate the frame boost for any quantum state ψ0, we find 
that the required Hamiltonian H= ℏ∑ −†

−
†

−g a a a ai ( )k k k k k k  describes 
the pair creation of excitations with opposite momenta. Here ak and 
†ak  are the annihilation and creation operators with wavenumber k 

and gk is the coupling constant. The acceleration of the frame trans-
formation is given by (Methods)

τ
=

π
ℏ

A
E c

g2 ln coth( ) (3)
k
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where Ek is the energy of the excitation. Combining equations (2) 
and (3), we see that the Unruh temperature scale is given by the 
excitation energy as kBTU = Ek/[4 ln coth(gkτ)].

In this paper, we demonstrate the above idea and simulate the 
Unruh effect by only considering the momentum modes with the 
same amplitude ∣ ∣ = kk f (see Fig. 1). By modulating the interactions 
of a Bose condensate with frequency ω, we prepare the pair-creation 
Hamiltonian. Under the Bogoliubov and the rotating wave approxi-
mations (Methods), the Hamiltonian reduces to

∑= ℏ −
∣ ∣=

†
−
†

−H g a a a ai ( ) (4)
k

k k k k
k f

where ω= ∕ℏk mf  and m is the atomic mass. Given the modula-
tion, the condensate in our experiment radiates atoms into about 
300 momentum modes, sufficient to test the predicted thermal fluc-
tuations ∝ − ∕P n( ) e nE k TB , where n is the atom number and E = ħω/2 
is the energy of an emitted atom. We observe excellent agreement 
with thermal models and Unruh’s predictions. We further show the 
non-local spatial coherence and reversibility of the matter-wave 
generation, which clearly distinguish the Unruh radiation from its 
classical counterpart (black-body radiation), and confirm the quan-
tum nature of matter-wave generation.

Our experiment starts with a Bose–Einstein condensate of 
60,000 caesium atoms confined in a disc-shaped optical dipole trap. 
By modulating the magnetic field at a frequency near a Feshbach 
resonance15,16, a two-dimensional, jet-like emission of atoms with 
momentum |k| = kf is observed on the basis of in situ imaging after a 
few milliseconds (see Methods for experimental details). This emis-
sion forms a fluctuating bosonic field, also called ‘Bose fireworks’, and 
is a result of stimulated amplification of quantum fluctuations9,17. Its 
evolution can be well described by the Hamiltonian in equation (4).
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In typical experiments, the emission carries as many as 276 angu-
lar modes and each mode acquires a width of 1.30° (Methods). To 
study the distribution of the mode population, we divide the emis-
sion pattern evenly into 180 angular slices. For each slice, we extract 
n and evaluate the probability distribution of the mode population 
P(n) (see Fig. 2a).

The measured mode population distributions strongly resem-
ble that from thermal radiation (see Fig. 2a). We extract the 
effective temperature T on the basis of a thermal model, which 
incorporates both the Boltzmann distribution and the measure-
ment uncertainty (Methods). The model fits the data excellently, 
and the extracted temperature shows a linear dependence on 
the mean atomic population per mode ∫ξ= ∕n nP n n(1 ) ( ) d  with 
ξ = 2°/1.30° = 1.5 the average number of modes within a 2° slice 
(Fig. 2b). Such linear mapping between temperature and mean 
population is consistent with the thermodynamic calculation, 
which yields ≈k T EnB  (Methods).

The thermal distribution of the mode population can be under-
stood in terms of the Unruh effect. The matter-wave field measured 
in our system simulates the vacuum state observed in an accelerat-
ing frame. We evaluate A (Fig. 2b), from which we observe a linear 
relation between the temperature and the acceleration, T = κA/c. By 
fitting the data, we obtain the ratio κ = 1.17(7) pK s. Our result agrees 
well with the Unruh prediction κ = ħ/2πkB ≈ 1.22 pK s (equation (2)).

In addition to the temperature, we further evaluate the mean 
entropy of a single momentum mode =− ∑ −S k P n P n S( )ln ( )nB 0, 
an important observable to characterize the matter-wave radiation 
(Methods). For short τ < 3 ms, the measured entropy is dominated 
by the detection noise Sb = 3.8 kB. For long modulations, the mea-
surement faithfully reflects the entropy of the matter-wave radiation. 
The entropy increases logarithmically with A (Fig. 2b), and agrees 
with the calculation ≈S k enln( )B  (Methods). The entropy measure-
ment again confirms that the emission forms a thermal field.

While local measurements in our system seem to reveal a thermal  
distribution, unlike incoherent black-body radiation, Unruh  

a

b

Fig. 1 | Quantum simulation of Unruh radiation. a, To an observer in an 
accelerating frame, a vacuum state in the inertial frame appears identical 
to a thermal state with the Unruh temperature TU. b, We simulate the 
Unruh radiation by parametrically modulating the interactions of an atomic 
condensate, whose evolution is equivalent to a coordinate transformation 
to an accelerating frame without actually accelerating the system. The 
matter-wave field shares the same characteristics as the Unruh radiation:  
it is locally indistinguishable from a Boltzmann distribution, but is long-
range coherent and temporally reversible.
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Fig. 2 | thermal behaviour of the matter-wave emission. a, The measured 
probability P(n) of n atoms within a 2° slice of the emission pattern after 
evolution time τ = 0, 3.36, 4.8 and 6.24 ms (black, green, red and blue 
circles). The solid lines are fits based on a thermal model (Methods). 
The inset shows the data in a log scale. b, Temperature T and entropy S 
versus the mean population per mode n. The derived acceleration A is 
shown at the top. The red solid line is a fit of T = κA/c. The blue solid line 
is the prediction that includes the detection noise and the purple line is 
the prediction excluding the noise. The inset shows the evolution of T and 
S. The dashed lines are guides to the eye. Here the condensate’s radius is 
13 μm. The scattering length is modulated at frequency ω/2π = 2.1 kHz with 
a small offset of adc = 4 a0 and an amplitude of aac = 50 a0, where a0 is the 
Bohr radius. All error bars correspond to 1 s.d. of the mean values.
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radiation should exhibit both spatial and temporal coherence, 
reflecting its quantum origin. In the following we investigate the 
coherence properties of the matter-wave radiation.

We first show the spatial coherence of the matter-wave field by 
probing the phase correlation between jets. To do this, we perform a 
matter-wave interference experiment by applying two independent 
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Fig. 3 | Long-range phase correlation of matter-wave radiation. Here the condensates are confined in a disc-shaped trap with radius 7 μm. a, Application 
of two pulses of scattering length modulation with frequencies ω1/2π = 3 and ω2/2π = 5.63 kHz, and aac = 56 and 72 a0. The relative phase of the pulses is δ.  
b, The matter-wave jet created by the latter pulse propagates at a greater speed v2 > v1 and interferes with atoms from the first pulse when they overlap. 
Here the matter-wave speeds are �ω= ∕v mi i  for the ith pulse. The interference is characterized by the wavenumber difference Δk = k2 − k1, relative phase ϕ  
and radial distance r. c, An example interference pattern of the two radiation fields. The phase of the interference fringes ϕθ is recorded as a function of θ. 
d, A radial cut of the interference pattern, from which we determine the phase of the fringes on the basis of Fourier transformation (Methods). Dotted lines 
are guides to the eye. e,f, The concurrence of the extracted phases in the opposite directions, ϕθ and ϕθ+π, for all θ from a collection of 200 images.  
A strong correlation of the two phases is described by ϕθ + ϕθ+π = ϕs, where ϕs = 0.79(3) is obtained from fitting the data; ϕθ − ϕθ+π appears to be random.  
g, Phase correlations g+ and g− between fringes separated by an angular distance φ (equation (5)). Points represent experimental data while dashed 
curves are guides to the eye (Methods).
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pulses of modulation on the scattering length; the first pulse has a 
lower frequency than the second one (Fig. 3a). The two frequencies 
are incommensurate to avoid influence from high-harmonic gen-
eration17. The pulses are arranged such that the atoms created by the 
second pulse leave the condensate later, but with a greater velocity 
than the atoms from the first pulse. When the two emitted waves 
overlap, they interfere and produce fringes (Fig. 3b). The phase of 
the fringes ϕ is given by the relative phase of the interfering matter 
waves, and varies with emission angle θ (Fig. 3c).

We observe the phase correlation of fringes along counter- 
propagating directions. In Fig. 3e, we present the occurrence distri-
bution of the fringe phases in opposite directions, namely, ϕθ and 
ϕθ+π. The two phases correlate in such a way that they sum to a con-
stant, ϕθ + ϕθ+π = ϕs (Fig. 3e,f) as a result of phase matching in a five-
mixing process (Methods and ref. 17).

To be more quantitative, we evaluate the phase correlation func-
tion g±(φ) for all angular spans φ (ref. 18), defined as (Fig. 3g)

φ = ∣⟨ ⟩∣ϕ ϕ
±

±θ θ φ+g ( ) e (5)i i

here the angle brackets correspond to angular averaging over θ and 
ensemble averaging. The peak of g+ at φ = π confirms that fringe 
phases are only anticorrelated in opposite directions. The lone peak 
of g− at φ = 0 shows the phase coherence within a single jet.

Since jets with different energies are generated independently, 
the correlations of the fringes indicate the phase correlations of 
counter-propagating jets with the same momentum. Such phase 
correlation results from the coherent generation of atom pairs, 
which are phase locked to the modulation; the correlation is also 
expected for Unruh radiation4, and resembles the phase coherence 
in the parametric down-conversion process in quantum optics19.

Next we show the temporal coherence of the matter-wave radia-
tion by reversing the time evolution. Similar experiments to reverse 
parametric amplification are realized based on photonic and atomic 
fields with two well-defined outgoing modes and low atom num-
bers20–22, whereas the condensate in our system simultaneously cou-
ples to about 300 momentum modes and involves about 105 atoms.

Here we perform the experiment as follows: after modulating 
the scattering length, we jump the phase of the modulation by α 
(Fig. 4a). We monitor the evolution of the radiation patterns, from 
which we determine the total emitted atom number N (Fig. 4b).  
A clear suppression of atom number is shown for large phase jumps. 
We evaluate the suppression ratio η(α) = Nα(τc)/N0(τc) at time 
τc = 5.76 ms when the maximal reversal occurs (Fig. 4b). In particu-
lar, when α = π, N reduces by as much as 51(3)% of that without the 
phase jump (α = 0). At α = π, a reversal of 26(3)% (or 2,200 atoms) of 
the matter-wave excitations back to the condensate is observed. Our 
results are consistent with the theoretical simulation (Methods).

We evaluate entropy S and temperature T from the distribu-
tion of emitted atom number, which remains thermal before and 
after the phase jump (Fig. 4c). Here we compare them for the two 
cases with phase jump α = 0 and π. In the former case entropy S and 
temperature T continuously increase, while in the latter case both 
of them decrease first but eventually increase again. The reversal 
can be clearly seen from the strength of the emission pattern in the 
averaged images (Fig. 4d). The limited amount of reversal we can 
achieve is due to off-resonant coupling to the momentum modes 
close to ∣ ∣ = kk f (Methods).

Remarkably the reversibility of the matter-wave emission sug-
gests that the system undergoes a unitary evolution. The revers-
ible entropy, together with the long-range coherence shown in 
Fig. 3, indicates that the matter-wave field remains a pure state 
after all, and the entropy extracted from local measurements 
potentially results from quantum entanglement between different 
momentum modes.

In conclusion, we have demonstrated a new type of quantum 
simulation to investigate quantum phenomena in a non-inertial 
frame. By simulating the Rindler frame transformation on the vac-
uum state, we observe the appearance of thermal radiation of matter 
waves that resembles Unruh radiation. Such matter-wave radiation, 
albeit thermal from local measurements, possesses long-range spa-
tial and temporal coherence, which distinguishes it from classical 
thermal radiation.

Our method is readily applicable to generic quantum states, 
such as Fock states, superposition and entangled states, and can be 
extended to other frame transformations by spatially or temporally 
controlling the interaction modulation. As an example, the curved 
spacetime near a black hole could be simulated with an inhomoge-
neous acceleration that matches the gravitational pull near the black 
hole. Abundant intriguing topics exist at the interface of quantum 
mechanics and general relativity, such as Hawking radiation, black 
hole thermodynamics and the information paradox, which can be 
simulated in a bench-top experiment23–28.
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Methods
Experimental methods. Condensate preparation. We start with Bose–Einstein 
condensates of 6 × 104 caesium atoms loaded into a disc-shaped trap with a radius of 
7 μm (in Fig. 3) or 13 μm (in Figs. 2 and 4). The horizontal confinement is provided 
by a blue-detuned laser at 780 nm. The laser intensity profile is shaped by a digital 
micromirror device and projected to the atom plane through a high-resolution 
objective lens. The dipole trap provides a barrier height of h × 300 Hz beyond the 
radius of the trap. Atoms are tightly confined in the vertical direction to a root-
mean-square radius of 0.5 μm with a harmonic trapping frequency of 220 Hz.

Scattering length modulation. After loading atoms into the dipole trap, we 
modulate the magnetic field near a Feshbach resonance, which causes  
the s-wave scattering length a of the atoms to oscillate as a(τ) = adc + aac sin ωτ. 
We maintain a small positive mean scattering length adc = 4 a0 throughout 
the experiment. In Fig. 2, the modulation frequency is ω = 2π × 2.1 kHz with 
amplitude aac = 50 a0. Different τ ranging from 0 to 7.68 ms are applied to 
monitor the evolution of the matter-wave emission. In Fig. 3, two pulses with 
ω = 2π × 3 and 2π × 5.63 kHz, aac = 56 a0 and 72 a0 and a relative phase δ are 
applied to generate two sets of jets with different propagation speeds. In Fig. 4, 
two pulses with the same ω = 2π × 2.1 kHz and amplitude aac = 50 a0 are applied. 
A tunable phase jump between the two pulses serves to optimize the reversal of 
the matter-wave radiation.

Detection technique. For the experiment in Fig. 4, we perform time-of-flight 
measurements in a weak radial harmonic trap to focus emitted atoms with the 
same momentum, and thus determine the atom number with a higher signal-to-
noise ratio29. At the end of the modulation, we wait for 0.5 ms and then turn on the 
harmonic confinement from a dipole trap while maintaining the disc-shaped trap. 
Atoms with the same momentum are focused to the same location after a quarter 
harmonic trap period (the trap period is 80 ms), when the imaging is performed to 
extract the atom number.

To measure the thermal distribution of atoms in a jet and the phase from 
the jet interference pattern, we perform in situ imaging in free space without 
the harmonic trap to preserve the jet structure. For the thermal distribution 
measurement, we image the atoms 30 ms after the beginning of the magnetic field 
modulation. We evaluate the atom number in every 2° slice of typically 15 images 
taken under the same conditions, from which we build the histogram of the atomic 
distribution. To extract the phases from jet interferences, atoms are imaged 13.5 ms 
after the beginning of the magnetic field modulation. A 15° bin is chosen and the 
radial atomic density interference curve is obtained by integrating and fitting the 
atomic density over the angle within each slide. A collection of 200 images is used 
for the data presented in Fig. 3.

Equivalence of time evolution and Rindler frame transformation. The time 
evolution under the Hamiltonian H= ℏ∑ −†

−
†

−g a a a ai ( )k k k k k k  is governed by the 
equation of state, which is given in the Heisenberg picture as

̇ =
ℏ

= −
†a H a g ai [ , ] (6)k k k k

̇ =
ℏ

=− −
†a H a g ai [ , ] (7)k k k k

The solution is
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cosh( ) sinh( )
sinh( ) cosh( )

(0)

(0)
(8)k

k

k k
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k

k

On the other hand, let us consider a different problem of describing a scalar 
quantum field in an accelerating reference frame. The frame transformation, called 
the Rindler transformation, is given by14
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(9)k

k

k k

k k

k

k

R

L

where ̂bk
R
 and ̂bk

L
 are the annihilation operators of ‘Rindler modes’ with energy Ek 

in the accelerating frame, L and R refer to the two Rindler wedges and ĉk and ̂dk are 
the annihilation operators of ‘Unruh modes’ in the inertial frame. The parameter rk 
is related to the acceleration as = −π ∕ℏrtanh ek

E c Ak .
Remarkably, equations (8) and (9) share the same mathematical expression. We 

can thus simulate a quantum system in an accelerating frame by engineering the 
evolution operator shown in equation (8) to match the Rindler transformation in 
equation (9). Given the same transformation for all the relevant operators, what a 
generic wave function would look like in an accelerating frame can be simulated 
by the engineered time evolution of the system, shown in equation (1). Here gk is 
linked to A by







τ

=
π
ℏ

g
E c
A

1
2

ln coth
2

(10)k
k

Evolution and observables of condensates with modulated interactions. We start 
with the second-quantization form of the Hamiltonian

∼
∫

∫

τ τ

τ
τ τ τ τ

= Ψ Ψ

+ Ψ Ψ Ψ Ψ

†

† †

H
p
m

g

r r r

r r r r r

d ( , )
2

( , )

( )
2

d ( , ) ( , ) ( , ) ( , )
(11)

3
2

3

where ∼ τ τ= πℏ ∕g a m( ) 4 ( )2  is the coupling constant and is proportional to the 
scattering length. In our experiment, the scattering length is modulated as 
a(τ) = adc + aac sin ωτ. By applying the Fourier transformation of the field operator

∑τΨ = ⋅

V
ar( , ) 1 e (12)

k

k r
k

i

where V is the volume of the condensate, we obtain the Hamiltonian in the 
momentum space as

∼
∑ ∑ϵ

τ= +†

Δ
+Δ

†
−Δ

†H a a
g
V

a a a a
( )
2 (13)k

k
k k

k k k
k k k k k k

, ,1 2
1 2 1 2

In the interaction picture, we eliminate the kinetic energy term ϵ=∑ †H a akk k k0  
by transferring the operators for atoms into a rotating frame with → ϵ τ∕ℏa a ek k

i k  
and ignore the fast-varying terms. We further simplify the Hamiltonian under 
the Bogoliubov approximation ≈a N0 0  (N0 ≫ 1), and apply energy–momentum 
conservation ωℏ =ℏ ∕k m2

f
2 . The resulting Hamiltonian reduces to

∑= ℏ −
∣ ∣=

†
−
†

−H g a a a ai ( ) (14)
k

k k k k
k f

where g = πħN0aac/mV is the coupling constant.
According to equation (8), we can write the equation of motion as
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(15)k
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where σx is the x-component of the Pauli matrices. The evolution matches the 
Rindler transformation equation (9) with the simulated acceleration

ω
τ

= πA c
g2 ln coth( ) (16)

To simulate the Unruh radiation, we initialize the condensate in the ground 
state with negligible excitations Nk ≈ 0 for |k| > 0. After the modulation begins, the 
mean population in a mode increases as τ τ τ= =†n a a g( ) ( ) sinh ( )k k

2 . Thus we can 
also relate A to the mean population as

= π
ℏ + ∕

⎯ →⎯⎯⎯ π
ℏ≫

A cE
n

cE n2
ln(1 1 )

2
(17)

n 1

where E = ħω/2 is the kinetic energy of each excited atom.
Next let us consider the evolution of the wave function. Since the modulation 

generates pairs of counter-propagating atoms with momenta k and −k, we can 
rewrite the Hamiltonian as =∑ >H hk k0 , where = ℏ −†

−
†

−h g a a a ai ( )k k k k k . In the 
following we only consider the evolution of one hk. To simplify the notation 
without loss of generality, we use h to replace hk. The solution of the wave  
function is30

∑ψ τ
τ

τ∣ ⟩ = ∣ ⟩ = ∣ ⟩τ− ∕ℏ

=

∞

g
g n n( ) e 0 1

cosh( )
tanh ( ) , (18)h

n

ni

0

where |0〉 is the vacuum state at τ = 0, and the ket |n, n〉 indicates that there are n 
and n particles in the modes with momentum k and −k, respectively.

The above wave function is the same as a Minkovski vacuum state expressed in 
the basis of the Rindler coordinate4. The reduced density matrix of one single mode 
such as k can be determined by tracing out the other mode −k, which yields

∑ρ τ ψ τ ψ τ̂ = ∣ ⟩ ⟨ ∣ = ∣ ⟩ ⟨ ∣−
=

∞

p n n( ) Tr ( ) ( ) (19)k
n

n k k
0

where τ τ= ∕p g gtanh ( ) cosh ( )n
n2 2  is the probability of n particles in the mode. By 

comparing with a thermal distribution of bosons in a quantum state
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= −
ω ω− ℏ − ℏ

p n( ) e (1 e ) (20)
n
k T k T

th
2 2B B

we see that ρ τ̂( ) describes a thermal state with temperature given by

τ
=T E

k g2 ln coth( ) (21)
B

=
+ ∕

⎯ →⎯⎯⎯
≫

E
k n

E
k

n
ln(1 1 ) (22)

nB 1 B

and the mean population

∑= =
−=

∞

∕n np 1
e 1

(23)
n

n E k T
0

B

follows the Bose–Einstein distribution.
We also evaluate the entropy of atoms in a mode. The von Neumann entropy 

ρ τ ρ τ=− ̂ ̂S k Tr( ( )ln ( ))B  can be directly calculated as

τ τ τ= +S k g g g2 [ln cosh( ) sinh ( )ln coth( )] (24)B
2
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


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

= + + + ⎯ →⎯⎯⎯
≫

k n n n
n

k enln( 1) ln 1 ln( ) (25)
nB 1 B

where e = 2.718... is Euler’s number.
Using equation (16), we can relate the temperature to the simulated 

acceleration as

= ℏ
π

T A
ck2 (26)

B

which is identical to the Unruh prediction shown in equation (2).
Equations (22) and (25), plotted in Fig. 2b, are in excellent agreement with 

the experimental measurement. In the next section, we will show that they are 
also identical to the thermodynamic expectation. The agreements support the 
description of the matter-wave radiation as a thermal field with Unruh  
temperature TU.

Finally, together with equation (25), we obtain the thermodynamic relation 
between S and T as
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Determination of mode width and effective temperature. In this section, 
we first determine the mode width experimentally. In ref. 9, measurement 
of the second-order correlation function g(2)(θ) of Bose fireworks was 
reported. We have g(2)(0) = 2, indicating that in one mode there is a relation of 
Δ = − ⟨ ⟩n g n[ (0) 1]M

2 (2)
M

2 where 〈nM〉 and ΔnM
2  are the mean and variance of the 

atom number.
Experimentally we slice our emission patterns into 180 slices and count 

the atom number in each slice. On the basis of the histogram of atom counting 
from the measurements, we build P(n) and calculate ∫⟨ ⟩ =n nP n n( )d  and 
Δ = −⟨ ⟩ −Δn n n n2 2 2

noise
2 . Here Δnnoise

2  is the variance contributed from the 
detection noise which is statistically independent of the signal from atom counting. 
From this, we find a linear dependence between the mean atom number squared 
and the variance from the experiment as (Supplementary Fig. 1)

ξ= Δn n (28)2 2

Here ξ = ΔθS/ΔθJ = 1.49(7) is determined from the fit and is insensitive to the 
atom number calibration. This ratio also characterizes the ratio between the mode 
width ΔθJ and the width of the slice ΔθS = 2°. Therefore, we obtain ΔθJ = 1.30°. 
Alternatively, we can calculate ΔθJ independently. Using the formula ΔθJ = 1.62/
(Rkf) in ref. 9, which arises from the half width at half maximum of the peak at ϕ = 0 
in the g(2) function, we obtain a consistent result of ΔθJ = 1.33°.

To test and verify that the emitted atom number in each mode follows a 
thermal distribution, we derive a more general formula for the probability 
distribution p(n, ξ) in a slice with any width ΔθS = ξΔθJ. Because the mean 
population per mode 〈nM〉 is always larger than 1 in our measurements, we 
treat the distribution p(n, ξ) as a continuous function where the summation 

ξ∑ ==
∞ p n( , ) 1n 0  is replaced by an integral ∫ ξ =

∞
n p nd ( , ) 1

0
.

Here we would like to list a few properties of the function p(n, ξ). First, p(n, ξ)  
must be equal to 0 when n is a negative number. Second, if the angular slice 
only contains one momentum mode (that is, ξ = 1), p(n, 1) should be a thermal 

distribution, where p(n, 1) = β e−βn with β = E/kBT. Third, the p(n, ξ) have to  
satisfy the addition rule that combining two slices of ξ1 and ξ2 will create a 
new slice of ξ1 + ξ2. We can write the third requirement more explicitly as a 
mathematical equation

∫ξ ξ ξ ξ+ = ′ − ′ ′
−∞

∞
p n p n p n n n( , ) ( , ) ( , )d (29)1 2 1 2

From all the above conditions, we solve the probability distribution p(n, ξ) 
analytically as




ξ β Γ ξ= ∕ ≥

<

ξ ξ β− −
p n n n

n
( , ) e ( ) 0

0 0
(30)

n1

where Γ(ξ) is the gamma function.
In addition to the signals from the atoms, the detection noise contributes 

to the measured probability distribution of the atom number. Experimentally 
we characterize this noise distribution G(n, ξ) by inspecting the images without 
any radiation. Once we obtain G(n, ξ), we convolve it with p(n, ξ) to give a full 
distribution function

∫ξ ξ ξ= ′ ′ − ′
−∞

∞
P n n p n G n n( , ) d ( , ) ( , ) (31)

Then we use this function to fit our data extracting T under the condition ξ = 1.5 
(Supplementary Fig. 1b).

Characterization of entropy from population distribution. We define the 
entropy in one slice with width ξ ΔθJ as S(ξ). First we use the probability 
distribution p(n, ξ) derived in the previous section to evaluate S(ξ), which gives

∫ξ ξ ξ

β ξ Γ ξ ξ Γ ξ Γ ξ

∕ =−

=− + + − − ′ ∕
−∞

∞
S k n p n p n( ) d ( , )ln ( , )

ln ln ( ) ( 1) ( ) ( )
(32)B

In our data analysis, we divide the radiation pattern into 180 slices and 
determine the probability distribution P(n). Thus, the entropy directly measured 
by the experiment is

∑. =−S k P n P n(1 5) ( )ln ( ) (33)
n

B

We show that the entropy in a single mode S(1) is given by

∑= . − =− −S S S k P n P n S(1) (1 5) ( )ln ( ) (34)
n

0 B 0

on the basis of equation (32), where 
S0 = kB[ξ − 1 + ln Γ(ξ) − (ξ − 1)Γ′(ξ)/Γ(ξ)]|ξ=1.5 = 0.37kB.

For the theoretical curve with noise plotted in Fig. 2b (blue solid line), we 
characterize the detection noise per mode G(n, 1) and then evaluate the theoretical 
distribution by convolving G(n, 1) with p(n, 1) as

∼ ∫= ′ ′ − ′
−∞

∞
P n n p n G n n( , 1) d ( , 1) ( , 1) (35)

and we calculate the entropy as

∼ ∼∫=−S k n P n P nd ( , 1)ln ( , 1) (36)B

which matches our experimental data (see the blue solid line in Fig. 2b). The purple 
line shows the calculation in the absence of detection noise.

In summary, the agreement between experiment and theory shows that 
the matter-wave radiation from the condensate matches the thermodynamic 
expectation from a Bose gas at zero chemical potential μ = 0 and T = TU.

Phase correlations of atomic radiation field. Here we calculate the phase 
correlations between interference fringes, which directly relate to those between 
emitted jets. We consider two sets of independent jets generated by two pulses of 
scattering length modulation with a certain phase. In the interaction picture, the 
wave function can be written as |ψ〉I = |ψ(1)〉I ⊗ |ψ(2)〉I. Each |ψ(j)〉I follows

∑ψ
γ

γ∣ ⟩ = ∣ ⟩ϕ

=

∞
−π∕

−n n1
cosh( )

[e tanh( )] , (37)
j

j n
j
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k k
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I
0

i( 2)
,

Mj
j j

under the Hamiltonian

= +ϕ ϕ†
−
† −

−H g a a g a ae e (38)i
j k k j k kI

( ) i iMj
j j

Mj
j j
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where ϕMj
 is given by the phase of the external driving field, γj = gjτj and τj is the 

modulation duration of the pulse.
To take the dynamical phase into account, we convert the wave function back 

to Schrödinger’s picture, and the wave function is written as

ψ ψ ψ∣ ⟩ = ∣ ⟩ ⊗ ∣ ⟩ (39)S S S
(1) (2)

where ψ∣ ⟩j S
( )  is given by

∑
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Here ω=ℏ + ∕†
−
†

−H a a a a( ) 2i
i k k k k0

( )
j j j j

 is the energy term that was previously 
eliminated in the interaction picture.

The interference operators between the two sets of jets are = †Î a ak kf 1 2
 and 

= − −
†Î a ak kb 1 2

, which correspond to the forward and backward directions. We 
introduce four more interference operators as =+ −Î a aj k kj j

 and =− −
†Î a aj k kj j

 with 

j = 1 or 2. The mean value for the interference operator ±Îi  is evaluated as
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(42)j
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where 〈nj〉 is the mean atom number in each set of jets.
Phase correlation between interference fringes can be directly decomposed into 

the interference operators in each set of jets. The phase correlation g+(θ = π)  
is proportional to the correlation between Îf  and Îb; together with equation (41)  
we obtain

ψ ψ ψ ψ

ψ ψ ψ ψ

∝

=⟨ ∣ ⊗ ⟨ ∣ ∣ ⟩ ⊗ ∣ ⟩

=⟨ ∣ ∣ ⟩ ⟨ ∣ ∣ ⟩

=

= + +

ϕ ϕ

ϕ ϕ ω ω

+

†
− −

†

−
†

−
†

+ +
†

− − −

θ θ+π Î Î

a a a a

a a a a

Î Î

n n n n

e

( )

( ) ( )

( 1) ( 1) e

(43)
S S S S

S S S S

t

k k k k

k k k k

i( )
f b

(1) (2) (1) (2)

(1) (1) (2) (2)

1 2

1 1 2 2
i[( ) ( ) ]M M

1 2 1 2

1 1 2 2

1 2 1 2

Therefore, the sum of the phases of the forward and backward interference fringes 
depends only on the phase of the driving and the dynamical phase. Thus we have 
the phase constant ϕ ϕ ϕ ϕ ϕ ω ω= + = − − −θ θ+π t( ) ( )M Ms 1 21 2

 and g+(π) = 1.
Meanwhile, the phase correlation g−(θ = π) is proportional to the mean value of 

†Î Îf b ; together with equation (42) we have
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therefore, we have g_(π) = 0, indicating that phases in each pair of jets are totally 
random although their sum is fixed. The results from equations (43) and (44) are 
consistent with our measurement shown in Fig. 3g.

We also derive analytic formulas for the phase correlation functions g+(θ) and 
g−(θ) between two arbitrary angular directions, in addition to that between the 
counter-propagating directions in equations (43) and (44), as follows:
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Here k1 and k2 are the momenta of jets created from different modulations and 
propagate along the same direction, while ′k1 and ′k 2 represent another pair of such 

co-propagating jets along the direction with a relative angle of θ to that of k1 and k2. 
In the spirit of ref. 9 and taking the finite size of the condensate into consideration, 
we obtain
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where ∼ρ k( ) is defined as the Fourier transformation of a uniform disc-shaped 
density ρ(r):

∼∫ρ ρ=
π

⋅r k k( ) 1
2

d e ( ) (49)k r2 i

and ρ(r) is the density distribution function of the condensate:
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with R the condensate radius. Therefore, the analytic formulas for g±(θ) when γ ≫1j
 

and ∣ ∣ ≫Rk 1i  are
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where J1(x) is the first-order Bessel function of the first kind.
To experimentally extract the interference fringe phase ϕθ for a particular 

emission direction θ, we average over an angular span from θ − 0.12 to θ + 0.12 
to obtain the radial density distribution ρ(r,θ) to achieve the best signal-to-
noise ratio (Fig. 3d). We then perform Fourier transformation on the radial 
density to obtain the complex density amplitude of the interference fringes in 
momentum space ρ(k, θ). The phase ϕθ at kf is then evaluated from this complex 
amplitude. Although our jet width is small, that is 2° for ω/2π = 3 kHz and 1.5° 
for ω/2π = 5.63 kHz, this average results in a significantly broadened phase 
correlation, shown in Fig. 3g. To experimentally extract the phase constant ϕs, 
we fit the histogram of ϕθ + ϕθ+π to obtain the peak position. We also calculate 
the expected phase shift on the basis of our experimental sequence with a time 
of 18.5 ms from the start of the modulation to the start of imaging. The first 
sinusoidal modulation pulse lasts for 7 periods while the second lasts for 16 
periods. Meanwhile we take into account the time delay of the modulation pulse 
of 0.041 ms due to the system response. Therefore, the phase constant estimated 
from our experimental sequence is 0.9(2), where the uncertainty arises from the 
duration of our 20 μs imaging pulse.

Numerical results on reversal of atomic radiation field. In this section, we 
use numerical simulation based on a dynamical Gross–Pitaevskii equation to 
investigate the partial reversal on radiating matter-wave fields. We find that the 
results of this imperfect reversal mostly originate from the off-resonant coupling to 
finite momentum modes close to |k| = kf.

Here we start with the Gross–Pitaevskii equation
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where ψ is the wave function and μ = 2πħ × 19 Hz is the static chemical potential of 
the condensate, V(r) is the disc-shaped trapping potential as a function of radius 
r, with V(r) = 2πħ × 300 Hz for 13.6 μm ≥ r ≥ 13 μm and V(r) = 0 for the rest, and 
Udc = 4πħ2adc/m and Uac = 4πħ2aac/m are the d.c. and a.c. interaction strengths, with 
adc = 4 a0 and aac = 50 a0. In addition, we have f(τ) = sin(ωτ) when τ ≤ 4.76 ms and 
f(τ) = sin(ωτ + α) for τ > 4.76 ms. These parameters are chosen according to our 
experimental conditions.
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The results from simulation using a CUDA-based solver31 show excellent 
agreement with the experiment. First of all, the total emitted atom number 
is suppressed after a phase jump close to π (see Supplementary Fig. 2a). The 
suppression sensitively depends on the phase of the second pulse. Similarly 
to the analysis of our experimental data, we then look at the suppression 
ratio as a function of α at τc = 5.62 ms, when the optimal suppression appears 
(Supplementary Fig. 2c). The suppression ratio varies as a function of α in the same 
way as in our experiment and the best suppression that can be achieved is η = 0.57, 
comparable to the experimental result.

The reason for this partial suppression is the off-resonant coupling to modes 
with momentum slightly different from the resonant value |k| = kf. We examine 
carefully the emitted atoms in different momentum modes (Supplementary Fig. 
2b), and find that not all the excited atoms have the resonant momentum. Instead, 
atoms spread across a range of momentum modes due to the uncertainty principle. 
Since the condensate has a finite radius of 13 μm, even if we apply a long driving 
pulse, the atoms effectively see modulation for a limited time before jets escape 
from the condensate. The finite modulation duration gives a finite bandwidth in 
the frequency domain centred around the modulation frequency. Thus atom pairs 
can be off-resonantly excited with energy that deviates from the energy quantum of 
the modulation, which evolves differently from the resonantly excited atom pairs, 
and the populations in these off-resonant modes are optimally reversed at different 
phase jumps. For any one particular momentum pair, the population reversal can 
reach 70% according to our calculation, while the total excited population can be 
reversed by no more than 50%, consistent with our measurement.

In addition to this off-resonant coupling, we anticipate that the reversal 
can be limited by other effects such as the fast counter-rotating terms and the 
motion of the emitted atoms as well. The counter-rotating terms lead to the quick 
population oscillations seen in Supplementary Fig. 2a; they also accumulate phase 
and eventually limit the reversal. Furthermore, when atoms move out of the 
condensate, they cannot be transferred back to the condensate again. These effects 
are included in the simulation but their contributions to the limited reversal are 
hard to separate in our numerical model.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author on reasonable request.
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