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Abstract

New species arise from pre-existing species and inherit similar genomes and
environments. This predicts greater similarity of the tempo of molecular evolution between
direct ancestors and descendants, resulting in autocorrelation of evolutionary rates in the
tree of life. Surprisingly, molecular sequence data have not confirmed this expectation,
possibly because available methods lack the power to detect autocorrelated rates. Here
we present a machine learning method, CorrTest, to detect the presence of rate
autocorrelation in large phylogenies. CorrTest is computationally efficient and performs
better than the available state-of-the-art methods. Application of CorrTest reveals
extensive rate autocorrelation in DNA and amino acid sequence evolution of mammals,
birds, insects, metazoans, plants, fungi, parasitic protozoans, and prokaryotes.
Therefore, rate autocorrelation is a common phenomenon throughout the tree of life.
These findings suggest concordance between molecular and non-molecular evolutionary

patterns, and they will foster unbiased and precise dating of the tree of life.



Introduction

Rates of molecular sequence evolution vary extensively among species (Ho and Duchéne
2014; Kumar and Hedges 2016; dos Reis et al. 2016). The causes and consequences of
evolutionary rate variation among species are of fundamental importance in molecular
phylogenetics and systematics (Kimura 1983; Lanfear et al. 2010; Lynch 2010). They
inform about the relationship among molecular, biological, and life history traits, and are
a prerequisite for reliable estimation of divergence times among species and genes (Ho
and Duchéne 2014; Kumar and Hedges 2016).

Three decades ago, Gillespie (1984) proposed that molecular evolutionary rates
within a phylogeny will be autocorrelated due to similarities in genomes, biology and
environments between ancestral species and their immediate progeny. This idea led to
statistical modelling of the variability of evolutionary rates among branches and formed
the basis of the earliest relaxed clock methods for estimating divergence times without
assuming a strict molecular clock (Sanderson 1997; Thorne et al. 1998; Kumar 2005; Ho
and Duchéne 2014; Kumar and Hedges 2016). However, the independent branch rate
(IBR) model has emerged as a strong alternative to the autocorrelated branch rate (ABR)
model. The IBR model posits that rates vary randomly throughout the tree, such that the
evolutionary rate similarity between an ancestor and its descendant is, on average, no
more than that between more distantly-related branches in a phylogeny (Drummond et
al. 2006; Ho and Duchéne 2014).

The IBR model is now widely used in estimating divergence times from molecular
data for diverse groups of species. It has been assumed for mammals (Drummond et al.
2006), birds (Brown et al. 2008; Claramunt and Cracraft 2015; Prum et al. 2015),
amphibians (Feng et al. 2017), plants (Moore and Donoghue 2007; Bell et al. 2010; Smith
et al. 2010; Linder et al. 2011; Lu et al. 2014; Barreda et al. 2015; Barba-Montoya et al.
2018), and viruses (Drummond et al. 2006; Buck et al. 2016; Metsky et al. 2017). If the
IBR model best explains the variability of evolutionary rates, then we must infer a
decoupling of molecular and biological evolution. This is because morphology, behavior,
and other life history traits are more similar between closely-related species (Sargis and
Dagosto 2008; Lanfear et al. 2010; Cox and Hautier 2015) and are correlated with
taxonomic or geographic distance (Wyles et al. 1983; Shao et al. 2016).



Alternatively, the widespread use of the IBR model (Drummond et al. 2006; Moore
and Donoghue 2007; Brown et al. 2008; Bell et al. 2010; Smith et al. 2010; Linder et al.
2011; Lu et al. 2014; Claramunt and Cracraft 2015; Prum et al. 2015; Buck et al. 2016;
Feng et al. 2017; Metsky et al. 2017) may be due to the fact that the currently available
statistical tests lack sufficient power to reject the IBR model (Ho et al. 2015). In fact, some
studies report extensive branch rate autocorrelation (e.g., Lepage et al. 2007), but others
do not agree (e.g., Linder et al. 2011).

Consequently, many researchers use both ABR and IBR models when applying
Bayesian methods to date divergences (Wikstrom et al. 2001; Drummond et al. 2006; Bell
et al. 2010; Erwin et al. 2011; Meredith et al. 2011; dos Reis et al. 2012; Magallon et al.
2013; Jarvis et al. 2014; Hertweck et al. 2015; dos Reis et al. 2015; Foster et al. 2016;
Liu et al. 2017; Pacheco et al. 2018; dos Reis et al. 2018; Takezaki 2018). This practice
can result in widely differing time estimates under ABR and IBR models, which makes
biological interpretation challenging (Battistuzzi et al. 2010; Christin et al. 2014; dos Reis
et al. 2014; dos Reis et al. 2015; Foster et al. 2016; Liu et al. 2017; Pacheco et al. 2018;
Takezaki 2018). For example, as compared to the ABR model, the use of IBR model has
been reported to produce 66% older estimates of divergence times for two major groups
of grasses (Christin et al. 2014), 30% older divergence estimate for the origin of a major
group of mammal (Erinaceidea) (Meredith et al. 2011), and 50% younger estimates for
two clades of parasitic protozoans in birds (Pacheco et al. 2018). The choice of branch
rate model also strongly influences posterior credibility intervals, because these intervals
are often wider under the ABR model (Battistuzzi et al. 2010).

Therefore, we need a powerful method to accurately test whether evolutionary
rates are autocorrelated in a phylogeny. Application of this method to molecular datasets
representing taxonomic diversity across the tree of life will enable an assessment of the
preponderance of autocorrelated rates in nature. Here, we introduce a new machine
learning approach (CorrTest) that shows high power to detect autocorrelation between
molecular branch rates. CorrTest is computationally efficient, and its application to a large
number of datasets establishes the pervasiveness of rate autocorrelation in the tree of
life.



New Method

Machine learning (McL) is widely used to solve problems in many fields, including ecology
(Christin et al. 2018; Willcock et al. 2018) and population genetics (Saminadin-Peter et
al. 2012; Schrider and Kern 2016; Schrider and Kern 2018). We present a supervised
McL framework (Bzdok et al. 2018) used to build a predictive model that distinguishes
between ABR and IBR models, a major challenge in molecular phylogenetics and
phylogenomics. In our McL approach, the input is a molecular phylogeny with branch
lengths and the output is a classification that corresponds to whether or not the
evolutionary rates in the phylogeny are autocorrelated among branches (ABR or IBR,
respectively). An overview of our McL approach is presented in figure 1.

To build a predictive model, McL needs measurable properties (features) that can
be derived from the input data (phylogeny with branch lengths). The selection of
informative and discriminating features (Fig. 1g and h) is critical to the success of McL.
We derive relative lineage rates using a given molecular phylogeny with branch (“edge”)
lengths (Fig. 1e and f) by using Tamura et al.'s (2018) method, and use these relative
rates to generate informative features. The use of the relative rate framework (RRF) is
necessary because we cannot derive branch rates without knowing node times in the
phylogeny. For example, we need to know node times t’s in figure 2 to convert branch
lengths into branch rates, but these node times are what investigators wish to estimate
by using a Bayesian approach that requires selection of a branch rate model. In contrast,
the estimation of relative lineage rates does not require knowledge of divergence times.
This is because an evolutionary lineage includes all the branches in the descendant
subtree (e.g., lineage a contains branches with lengths b1, b2, and bs in Fig. 2) and the
relative rate between sister lineages is simply the ratio of the evolutionary depths of the
two lineages (Tamura et al. 2018). In figure 2, Ra and Rp are two lineage rates whose
relative value can be estimated by the ratio of lineage lengths La and Lv, where the lineage
length is a function of lengths of all branches in the subtree. Tamura et al. (2018)
presented RRF to estimate these relative lineage rates analytically by using branch
lengths only. Furthermore, Tamura et al.'s (2018) method generates relative lineage rates
such that all the lineage rates in a phylogeny are relative to the rate of the ingroup root



lineage (Ro, Fig. 2). Use of RRF enabled us to develop a number of features for building
a McL predictive model.

We considered the correlation between ancestral and descendant lineage rates
(pad), the correlation between the sister lineage rates (ps), and the decay in pas when one
or two intervening branches are skipped (d1 and d2, respectively) as features (see
Materials and Methods). pad was considered as a feature because our analyses of
simulated data showed that pas was much higher for phylogenetic trees in which
molecular sequences evolved under an ABR model (0.96) than an IBR model (0.54, Fig.
3a). Importantly, pad is not expected to be zero under the IBR model because pad is a
correlation between ancestral and descendant lineages, not independent branches. An
ancestral lineage includes all the lineages in the descendant subtree, therefore, the
evolutionary rate of an ancestral lineage naturally depends on the evolutionary rates of
its descendant lineages in RRF (Tamura et al. 2018). Therefore, ancestral and
descendant lineage rates will be correlated. While pad is greater than zero, it showed
distinct patterns for ABR and IBR models and is, thus, a good candidate feature for McL
(Fig. 3a).

As our second feature, we considered the correlation between the sister lineages
(ps), because ps was higher for the ABR model (0.89) than the IBR model (0.00, Fig. 3b).
Two additional features considered were the decay in pad when one or two intervening
branches are skipped (d1 and d2, respectively). We expect that pas will decay more slowly
under ABR than IBR, which was confirmed (Fig. 3c). The selected set of candidate
features (ps, pad, d1, and d2) can be measured for any phylogeny with branch lengths,
e.g., derived from molecular data using the maximum likelihood method. They are then
used to train the McL classifier (Fig. 1i and j). For this purpose, we need a large set of
phylogenies in which branch rates are autocorrelated for which the numerical state 1 is
assigned as true positive case (Fig. 1d) and phylogenies in which the branch rates are
independent for which the numerical state 0 is assigned as true negative case (Fig. 1c).

However, there is a paucity of empirical data for which ABR and IBR are firmly
established. We, therefore, trained our McL model on a simulated dataset, a common
practice in McL applications when reliable real world training datasets are few in number
(Saminadin-Peter et al. 2012; Schrider and Kern 2016; Ekbatani et al. 2017; Le et al.



2017). We used computer simulations to generate 1,000 molecular datasets that evolved
with ABR models and 1,000 molecular datasets that evolved with IBR models (Fig. 1a
and b). To ensure the general utility of our model for analyses of diverse data, we
simulated molecular sequences with varying numbers of species, degrees of rate
autocorrelation, diversity of evolutionary rates and substitution pattern parameters (see
Materials and Methods). Candidate features (ps, pad, d1, and dz2) were computed for all
2,000 training datasets (Fig. 1g and h), each of which was associated with a numerical
output state (0 and 1 for IBR and ABR, respectively; Fig. 1c and d). These features were
used to build a predictive model by employing a logistic regression (Fig. 1j). This
predictive model was then used to generate a correlation score (CorrScore) for any
phylogeny with branch lengths.

We also developed a conventional statistical test (CorrTest), based on CorrScore
(0 - 1), to provide a P-value to decide whether the IBR model should be rejected. A high
CorrScore indicates a high probability that the branch rates are autocorrelated. At a
CorrScore greater than 0.5, Type | error (rejecting IBR when it was true) was less than
5%. Type | error of 1% (P-value of 0.01) was achieved with a CorrScore greater than 0.83
(Fig. 3e). CorrTest is available at Github (https://github.com/cathyqqtao/CorrTest) and in
the MEGA X software (Kumar et al. 2018).

RESULTS

We evaluated the sensitivity and specificity of our predictive model using receiver
operating characteristic (ROC) curves. They measured the sensitivity of our method to
detect rate autocorrelation when it was present (true positive rate, TPR) and when it was
not present (false positive rate, FPR) at different CorrScore thresholds. TPR = TP/(TP
+FN) and FRP = FP/(TN + FP), where TP, FN, FP, and TN stand for true positives, false
negatives, false positives, and true negatives, respectively. The ROC curve for McL using
all four features was the best, which led to the inclusion of all four features in the predictive
model (Fig. 3d; Material and Methods). The area under the ROC (AUROC) was 99%, with
a 95% TPR (i.e., ABR detection) achieved at the expense of only 5% FPR (Fig. 3d, black
line). The area under the precision recall (AUPR) curve was also extremely high (0.99;
Fig. 3d inset), where precision and recall were defined as TP/(TP+FP) and TP/(TP + FN)



(=TPR), respectively. It suggested that CorrTest detects the presence of rate
autocorrelation with very high accuracy (= (TP+TN)/(TP + FP + FN + TN)) and precision.

We also performed standard cross-validation tests (Fig. 1k) using the simulated
data to evaluate the accuracy of the predictive models when only a subset of data are
used for training. In the 10-fold cross-validation, the predictive model was developed
using 90% of the simulated training datasets, and then its performance was tested on the
remaining 10% of the datasets. The AUROC was greater than 0.99 and the accuracy was
high (>94%). Even in the 2-fold cross-validation, where only half of the datasets (500 ABR
and 500 IBR datasets) were used for training the model, leaving the remaining half for
testing, the AUROC was greater than 0.99 and the classification accuracy was greater
than 92%. This suggested that the predictive model is robust to the size of the training
set used.

We tested the performance of CorrTest on a large collection of simulated datasets
where the correct rate model is known (Fig. 11). In these datasets (Tamura et al. 2012),
different software and simulation schemes were used to generate sequences with a wide
range of empirically derived G+C contents, transversion/transition ratios, and evolutionary
rates under both ABR and IBR models (see Materials and Methods). CorrTest accuracy
was greater than 94% in detecting ABR and IBR correctly for datasets that were simulated
with low and high G+C contents (Fig. 4a), small and large transition/transversion ratios
(Fig. 4b), and different rates of evolution (Fig. 4c). As expected, CorrTest performed best
on datasets that contained more and longer sequences (Fig. 4d).

In the above analyses, we used the correct tree topology and nucleotide
substitution model (Hasegawa-Kishino-Yano (HKY) model (Hasegawa et al. 1985) with 5
discrete gamma categories). We relaxed this requirement and evaluated CorrTest by
inferring the tree topology and branch lengths using the neighbor-joining method (Saitou
and Nei 1987) with an oversimplified Kimura's (1980) two-parameter substitution model.
Therefore, the estimation of the total number of substitutions between sequences were
biased because inequality of nucleotide frequencies and variation of evolutionary rate
across sites were not considered. Naturally, many inferred phylogenies contained
topological errors, but we found the accuracy of CorrTest to be high as long as the dataset

contained >100 sequences of length >1,000 base pairs (Fig. 4e). CorrTest also performed



well even when 20% of the non-trivial tree bi-partitions were incorrect in the inferred
phylogeny (Fig. 4f, see Materials and Methods). Therefore, CorrTest will be most reliable

for large datasets, and is relatively robust to errors in phylogenetic inference.

CorrTest versus Bayes factor analysis

We compared the performance of CorrTest with that of the Bayes factor approach.
Because the Bayes factor method is computationally demanding, we limited our
comparison to 100 datasets containing 100 sequences each (see Material and Methods).
We computed Bayes factors (BF) by using the stepping-stone sampling (SS) method (see
Materials and Methods). BF-SS analysis detected autocorrelation (P < 0.05) for 33% of
the ABR datasets (Fig. 5a, red curve in the ABR zone). Marginal log-likelihoods under the
ABR model were very similar to or lower than those for the IBR model, which led to the
failure to detect autocorrelation for 67% of ABR datasets. Therefore, BF-SS was
conservative in rejecting the IBR model, as has been reported (Ho et al. 2015). CorrTest
correctly detected the ABR model for 88% of the datasets (P < 0.05; Fig. 5b, red curve in
ABR zone). For IBR datasets, BF-SS correctly detected the IBR model for 89% (Fig. 5a,
blue curve in the IBR zone), whereas CorrTest correctly detected IBR model for 86% (Fig.
5b, blue curve in the IBR zone). Therefore, BF-SS performs well in correctly classifying
phylogenies that evolve under an IBR model, but not an ABR model. The power of
CorrTest to correctly inferring the ABR model is responsible for its higher overall accuracy
(87% vs. 61% for BF-SS). Such a difference in accuracy was observed at different levels
of statistical significance (Fig. 5c) for datasets that evolved with high (v < 0.1), moderate
(0.1 £ v<0.2)and low (v 2 0.2) degree of rate autocorrelation (Fig. 5d), where v is the
parameter controlling the degree of rate autocorrelation (Kishino et al. 2001). However,
the accuracy of CorrTest and BF-SS was similar in detecting IBR (Fig. 5e). The accuracy
was slightly higher for CorrTest than BF-SS for phylogenies with high (standard deviation
2 0.3) and low (standard deviation < 0.2) degree of independent rate variation, but the
reverse was true for phylogenies with moderate (0.2 < standard deviation < 0.3) degree
of independent rate variation. These comparisons suggest that the McL method enables
highly accurate detection of rate autocorrelation in a given phylogeny and presents an

alternative to Bayes factor analyses for large datasets.



Autocorrelation of rates is common in molecular evolution
The high accuracy and fast computational speed of CorrTest enabled us to test the
presence of autocorrelation in 17 large datasets from 11 published studies of eukaryotic
species and 2 published studies of prokaryotic species encompassing diverse groups
across the tree life. This included nuclear, mitochondrial and plastid DNA, and protein
sequences from mammals, birds, insects, metazoans, plants, fungi, parasitic protozoans
and prokaryotes (Table 1). CorrTest rejected the IBR model for all datasets (P < 0.05). In
these analyses, a time-reversible process was assumed for substitutions of nucleotides
and amino acids in the original studies (Table 1). However, the violation of this assumption
may produce biased results in phylogenetic analysis (Jayaswal et al. 2014). We therefore
applied an unrestricted substitution model (Yang 1994) for analyzing all the nucleotide
datasets and found that CorrTest rejected the IBR model in every case (P < 0.05). This
robustness stems from the fact that the branch lengths estimated under the time-
reversible and the unrestricted model are highly correlated for these data (r? > 0.99). This
could be the reason why CorrTest produced reliable results even when an oversimplified
model (Kimura 1980) was used for analyzing computer simulated data (Fig. 4e and f).
These results suggest that the autocorrelation of rates among lineages is very
common in molecular phylogenies. This pattern contrasts starkly with those reported in
many previous studies (Drummond et al. 2006; Moore and Donoghue 2007; Brown et al.
2008; Bell et al. 2010; Smith et al. 2010; Linder et al. 2011; Jarvis et al. 2014, Lu et al.
2014; Barreda et al. 2015; Claramunt and Cracraft 2015; Prum et al. 2015; Feng et al.
2017; Barba-Montoya et al. 2018). In fact, all but three datasets (Battistuzzi and Hedges
2009; Erwin et al. 2011; Calteau et al. 2014) received very high CorrScores, resulting in
extremely significant P-values (P < 0.01). The IBR model was also rejected for the three
datasets (P < 0.05), but their CorrScores were not as high, likely because of limited or
biased sampling of the evolutionary diversity. For example, the metazoan dataset (Erwin
et al. 2011) contains sequences primarily from highly divergent species that share
common ancestors hundreds of millions of years ago. In this case, tip branches in the
phylogeny are long and their evolutionary rates are influenced by many un-sampled
lineages. Such sampling effects weaken the rate autocorrelation signal. We verified this

behavior via an analysis of simulated data and found that CorrScores decreased when
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density of taxon sampling was lower (Fig. 6). Overall, CorrTest detected rate

autocorrelation in all the empirical datasets.

Magnitude of rate autocorrelation in molecular data

CorrScore is influenced by the size of the dataset in addition to the degree of
autocorrelation, so it is not a direct measure of the degree of rate autocorrelation (effect
size) in a phylogeny. Instead, one should use a Bayesian approach to estimate the degree
of rate autocorrelation, for example, under Kishino et al.'s (2001) autocorrelated rate
model. In this model, a single parameter (v) captures the degree of autocorrelation among
branches in a phylogenetic tree. A low value of v indicates high autocorrelation, so, we
use the inverse of v to represent the degree of rate autocorrelation. MCMCTree (Yang
2007) analyses of 100 simulated datasets (see Materials and Methods) confirmed that
the estimated v is related linearly with the true value (Fig. 7). Based on the results from
the analysis of empirical datasets, we suggest that 1/v greater than 3 be considered high
autocorrelation, 1/v between 1 and 3 be considered moderate autocorrelation, and 1/v
below 1 be considered weak autocorrelation. Based on this ad hoc criterion, we may
conclude that rate autocorrelation is moderate to high for empirical datasets examined for
species across the tree of life.

Other interesting patterns emerge from this analysis. First, rate autocorrelation is
highly significant for mutational rates (= substitution rate at neutral positions), which are
expected to be similar in sister species because they inherit cellular machinery from a
common ancestor (Table 1). The substitution rates at the third codon positions and the
four-fold degenerate sites are considered to be a good proxy of synonymous substitution
rate, because they are largely neutral and are the best reflection of mutation rates (Kumar
and Subramanian 2002). For example, the mammalian datasets A and B, which consisted
of the four-fold degenerate sites and the third codon positions, received high CorrScores
of 0.99 and 0.98, respectively (P < 0.001). Second, our model detected a strong signal of
autocorrelation among amino acid substitution rates, which are dictated by natural
selection (Table 1). For example, mammalian dataset C received a high CorrScore of
0.99 in the proteins encoded in the same genes in the datasets of third codon positions
(mammalian dataset B) and four-fold degenerate sites (mammalian dataset A). Bayesian
analyses also showed that the degree of rate autocorrelation is similar: inverse of v was
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3.21 in four-fold degenerate sites and 3.11 in amino acid sequences for mammalian
datasets. Third, mutational and substitution rates in nuclear genomes and substitution
rates in mitochondrial genomes are highly autocorrelated (P < 0.05, Table 1)
(synonymous substitution rate was not used for mitochondrial data). These results
establish that molecular and non-molecular evolutionary patterns are concordant,
because morphological characteristics are correlated with taxonomic or geographic
distance (Wyles et al. 1983; Sargis and Dagosto 2008; Lanfear et al. 2010; Cox and
Hautier 2015; Shao et al. 2016).

DISCUSSION

Our results demonstrate that a McL framework is useful to develop a method to detect
the presence of rate autocorrelation among branches in a phylogeny. This method yields
CorrScore estimates that enabled development of a conventional statistical test
(CorrTest) to detect autocorrelation. This method can be used for datasets with small (50
- 100) and large numbers of sequences, as supported by high accuracy achieved by
CorrTest in the analysis of simulated datasets (Fig. 4). We also evaluated if higher
accuracy could be achieved by building specific predictive models that were trained
separately using data with different ranges of the number of sequences (n): M100 (n <
100), M200 (100 < n < 200), M300 (200 < n < 300), and M400 (n > 300). A specific
threshold for CorrScore that corresponded to certain P-value was determined for each
training subset and then tested using Tamura et al.'s (2012) simulated data with the
corresponding number of sequences. For example, we used the threshold determined for
the model trained with small data (M100) on the test data that contain less than 100
sequences, and used the threshold determined for the model trained with large data
(M400) on the large test data (400 sequences). We found that the accuracy obtained by
using the specific thresholds determined for datasets with different numbers of sequences
(M100 - M400) (Fig. 8) was similar to the accuracy obtained by using a global threshold
(Fig. 4d - f). This is because the McL algorithm automatically incorporated the impact of
the number of sequences when determining the relationship of four selected features (pad,
ps, d1 and d2). This justifies the usage of the globally trained CorrTest that we used in all
the empirical analyses reported here.
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No single branch rate model may be adequate for Bayesian dating analyses, and
one may need to use a mixture of models because different groups of species and genes
in a large phylogeny may have evolved with different levels of autocorrelation (e.g.,
Lartillot et al. 2016 and Tamura et al. 2018). In this sense, results produced by CorrTest
(and by Bayes factor) analyses primarily detect the presence of rate autocorrelation, but
they do not tell us if the rate autocorrelation exists in every clade of a phylogeny or if the
degree of autocorrelation is the same in all the clades. One may apply CorrTest to
individual clades (subtrees) to evaluate these patterns. For example, we divided a few
large empirical phylogenies (Meredith et al. 2011; dos Reis et al. 2012; Misof et al. 2014;
Prum et al. 2015) into subtrees with at least 50 sequences, and applied CorrTest on
subtrees to detect the existence of clade-specific rate autocorrelation. These analyses
showed a wide range of 1/v values, which was consistent with the large range of the
autocorrelation parameter values observed for different datasets we analyzed (1.2 < 1/v
< 40, Table 1). That is, the degree of autocorrelation likely varies among different types
of genes, different types of substitutions, and in different taxonomic groups. In the future,
it will be useful to identify such patterns at micro- and macro-evolutionary scales and to

elucidate mechanistic underpinnings of the differences observed.

CONCLUSION

We have presented a fast, scalable, and accurate method (CorrTest) to detect the
presence of branch rate autocorrelation in a phylogeny. In addition to molecular data,
CorrTest may be used for testing autocorrelation of rates in non-molecular data, e.g.,
morphological characteristics, because the features required for CorrTest can be
calculated for any phylogeny with branch lengths. The application of CorrTest to a large
number of datasets addressed an enduring question in evolutionary biology: are the
molecular rates of change between species correlated or independent? We find that the
rate autocorrelation is the rule, rather than the exception. So, it will be best to employ an
autocorrelated branch rate model in molecular dating analyses in studies of biodiversity,
phylogeography, development, and genome evolution. However, when in doubt, one may
conduct CorrTest, which is particularly effective for analyzing large datasets. We also
expect CorrTest to be useful in analyzing many other large datasets, revealing both the

extent of autocorrelated evolutionary rates in the tree of life and the exceptions to this
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rule. Discovery of genes, gene families, and species groups in which branch rates are
evolving without significant autocorrelation will be precursors to elucidating mechanistic
underpinnings of new biological phenomena.

Materials and Methods

Machine learning (McL) model

Training data for McL. We simulated nucleotide alignments using independent branch

rate (IBR) and autocorrelated branch rate (ABR) models using the NELSI package (Ho et
al. 2015) with a variety of empirically-derived parameter values and parameters used in
previous studies (Rosenberg and Kumar 2003; Ho et al. 2015). In IBR cases, branch-
specific rates were drawn from a lognormal distribution with a mean gene-by-gene
substitution rate and a standard deviation (in log-scale) that varied from 0.1 to 0.4,
previously used in a study simulating independent rates with different levels of variation
(Ho et al. 2015). In ABR cases, branch-specific rates were simulated under an
autocorrelated process (Kishino et al. 2001), using equation 10.9 in Yang (2014). The
initial rate was set as the mean rate derived from an empirical gene and an autocorrelated
parameter, v, that was randomly chosen from a uniform distribution ranging from 0.01 to
0.3, following a previous simulation of low, moderate and high degree of rate
autocorrelation (Ho et al. 2015). We used SeqGen (Grassly et al. 1997) to generate
alignments under the Hasegawa-Kishino-Yano (HKY) model (Hasegawa et al. 1985) with
4 discrete gamma categories. This process used a master phylogeny, consisting of 60-
400 ingroup taxa randomly sampled from the bony-vertebrate clade in the Timetree of
Life (Hedges and Kumar 2009). Mean evolutionary rates, G+C contents,
transition/transversion ratios and numbers of sites for simulation were derived from
empirical distributions (Rosenberg and Kumar 2003). 1,000 molecular datasets were
generated under ABR and IBR models separately and these 2,000 simulated datasets
were used as training data in building the McL model.

Calculation of features for McL. Lineage-specific rate estimates (Ri’s) were obtained using
equations [28] - [31] and [34] - [39] in Tamura et al. (2018). For any given node in the

phylogeny (e.g., node 5 in Fig. 2), we extracted the relative rates of its ancestral lineage

(e.g., Rain Fig. 2) and two direct descendant lineages (e.g., R1 and Rzin Fig. 2). Then,
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we calculated correlation between the ancestral lineage and its direct descendant lineage
rate to obtain estimates of ancestor-descendant rate correlation (pad). We also calculated
correlation between sister lineage rates (ps). We need to assign labels to lineage rates of
each sister pair to determine which lineage is the 15! sister lineage and which lineage is
the 2"d sister lineage, e.g., (R1 and R2) or (R2 and R1) in Fig. 2. If rates of the 15t sister
lineages are always higher than rates of the 2" sister lineages, an artificial correlation will
be generated between sister lineage rates. To avoid this possibility, we randomly labeled
sister lineages. The labeling of sister pairs have negligible impact (<2%) on ps when the
number of sequences in the phylogeny is not too small (>50). For smaller datasets, we
found that it is best to generate multiple ps estimates, each using randomly labelled sister
pairs, to eliminate bias that may result from the arbitrary designation of sister pairs. In this
case, we recommend using the mean ps from multiple replicates in the CorrTest analysis.
To avoid the assumption of linear correlation between lineages, we used Spearman rank
correlation because it can detect both linear and non-linear correlation between two
vectors. Two additional features were included in McL model: d1 and d2, which are the
decay of pas when one or two intervening branches are skipped. We first estimated
Pad_skipt as the correlation between rates where the ancestor and descendant were
separated by one intervening branch, and pad_skip2 as the correlation between rates where
the ancestor and descendant were separated by two intervening branches. This skipping
reduces ancestor-descendant correlation, which we then used to derive the decay of
correlation values by using equations d1 = (pad - Pad_skip1)/Pad and d2 = (Pad - Pad_skip2)/Pad.
These two features improved the accuracy of our model slightly. In the analyses of
empirical datasets, we found that a large amount of missing data (>50%) can result in
unreliable estimates of branch lengths and other phylogenetic errors (Wiens and Moen
2008; Lemmon et al. 2009; Filipski et al. 2014; Xi et al. 2015; Marin and Hedges 2018).
In this case, we recommend computing selected features (ps, pad, d1 and d2) using only
those lineage pairs for which >50% of the positions contain valid data, or removing

sequences with a large amount of missing data.

Building the McL predictive model. We trained a predictive model with only pad, only ps or

all four features (ps, pad, d1 and dz2) using 2,000 simulated training datasets (1,000 with

ABR model and 1,000 with IBR model). For each set of training data, we inferred the
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branch lengths from the molecular sequences with a fixed topology first and used these
inferred branch lengths to estimate relative lineage rates for computing selected features.
A numerical state of 1 was given to true positive cases (autocorrelated rates) and 0 was
assigned to true negative cases (independent rates). Then, a predictive model was
generated via logistic regression in the skit-learn model (Pedregosa et al. 2011), which is
a python toolbox for data mining and data analysis using machine learning algorithms.
This model contains the relationship between the numerical state and the selected
features. Therefore, for any phylogeny with branch lengths, we can calculate features and
apply the predictive model to generate a numerical output value between 0 and 1. The
resulting value is referred as the correlation score (CorrScore). A high CorrScore
suggests that the rates are more likely to be autocorrelated. Every CorrScore associates
with a Type | error (P-value), which is the percentage of IBR cases that are incorrectly
predicted as ABR. We found that Type | error of 5% (P-value of 0.05) was achieved with
a CorrScore greater than 0.5, and Type | error of 1% was achieved with a CorrScore
greater than 0.83. Therefore, we developed a conventional statistical test (CorrTest)
based on CorrScore. CorrScores of 0.5 and 0.83 were used as the global thresholds at
5% and 1% significant levels. Using the same procedure, we also trained specific
predictive models using training data with different numbers of sequences (n): M100 (n <
100), M200 (100 < n < 200), M300 (200 < n < 300), and M400 (n > 300) and determined
specific threshold for CorrScore for each model. CorrScores of 0.69, 0.61, 0.57 and 0.31
were thresholds for M100, M200, M300 and M400 at 5% significant level, respectively.
CorrScores of 0.84, 0.86, 0.88 and 0.73 were thresholds for M100, M200, M300 and M400

at 1% significant level, respectively.

Test datasets

Tamura et al.'s (2012) simulated datasets were used to evaluate CorrTest’s performance.
This allowed us to test the performance of our method on ABR and IBR datasets with
different G + C contents (range 39 - 82%), transition/transversion ratios (range 1.9 - 6.0),
and evolutionary rates (range 1.35 - 2.60 substitution per site per billion years). In IBR
simulations, Tamura et al. (2012) used a uniform distribution in which branch rates were
sampled from a uniform density in the interval [(1-x).r — (1+x).r], where r is the mean

evolutionary rate and the x is the degree of rate variation (0.5 or 1.0 for 50% and 100%
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rate variation). For ABR simulations, Tamura et al. (2012) used Kishino et al.'s (2001)
model with v = 1. In both scenarios, sequences were simulated on a master phylogeny of
400 ingroup taxa using the HKY substitution model with 5 discrete gamma categories.
We analyzed 100 datasets simulated using the ABR model and 100 datasets simulated
using the IBR model (50% rate variation). We also randomly sampled 50, 100, 200, and
300 sequences from the full set of 400 ingroup sequences, and conducted CorrTest using
the correct topology and error-prone topology inferred by the neighbor-joining method
(Saitou and Nei 1987) with an oversimplified substitution model of Kimura (1980) with
both global and specific CorrScore thresholds. The percentage of incorrect inferred tree
bi-partitions (clades) was calculated by d/(2(m-3)) where d was the Robinson and
Foulds's (1981) topological distance between inferred and true topologies and m was the
number of sequences. In addition, we also tested CorrTest’'s performance on 100
datasets simulated by Tamura et al. (2012) under an IBR model with 100% rate variation.
CorrTest worked perfectly (100% accuracy) for these datasets (results not shown).

In addition to above analyses, we conducted another set of simulations to generate
100 datasets using IBR (independent lognormal distribution) and ABR (autocorrelated
lognormal distribution) (Kishino et al. 2001) models, each using the same strategy as in
training data simulation (described above) on a master phylogeny of 100 taxa randomly
sampled from the bony-vertebrate clade in the Timetree of Life (Hedges and Kumar
2009). These 200 datasets were used to conduct CorrTest and Bayes factor analyses

and to obtain the autocorrelation parameter (v) in MCMCTree (Yang 2007).

CorrTest analyses

All CorrTest analyses were conducted using customized R code (available at
https://github.com/cathyqqtao/CorrTest). We first estimated branch lengths of a
phylogeny for sequence alignments using the maximum likelihood method with the
correct substitution model and the correct topology in MEGA 7 command line version
(Kumar et al. 2012; Kumar et al. 2016). We used neighbor-joining method to estimate
topology and branch lengths with Kimura's (1980) two-parameter substitution model and
without the assumption of rate variation across sites under the gamma distribution in
MEGA 7 command line version, when we tested the robustness of our model to

topological error. We then used the estimated branch lengths to compute relative lineage
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rates using RRF (Tamura et al. 2012; Tamura et al. 2018) and calculated the value of
selected features (ps, pad, d1 and d2) to obtain the CorrScore. We conducted CorrTest on
the CorrScore to estimate the P-value of detecting rate autocorrealtion. No calibration
was needed for CorrTest analyses. CorrTest is also available in the MEGA X software
(Kumar et al. 2018).

Bayes factor analyses

We computed the Bayes factor via stepping-stone sampling (BF-SS) (Xie et al. 2011) with
n =20 and a = 5 using mcmc3r (dos Reis et al. 2018). BF-SS estimates the marginal
likelihoods using the idea from importance sampling, a common practice in statistics, to
construct a path between prior and posterior distributions of a model (Xie et al. 2011;
Baele et al. 2013). We chose BF-SS because the harmonic mean estimator has many
statistical shortcomings (Lepage et al. 2007; Xie et al. 2011; Baele et al. 2013) and
thermodynamic integration (Lartillot and Philippe 2006) is less efficient than BF-SS (Baele
et al. 2012). For each dataset, we computed the log-likelihoods (/InK) under the IBR and
ABR models. The Bayes factor posterior probability for ABR was calculated as shown in
dos Reis et al. (2018). We used only one calibration point at the root (true age with a
narrow uniform distribution) in all the Bayesian analyses, as it is the minimum number of
calibrations required by MCMCTree (Yang 2007). For other priors, we used diffused
distributions of “rgene_gamma = 1 17, “sigma2_gamma=1 1” and “BDparas =1 1 0”. In
all Bayesian analyses, two independent runs of 5,000,000 generations each were
conducted, and results were checked in Tracer (Rambaut et al. 2014) for convergence.

ESS values were higher than 200 after removing 10% burn-in samples for each run.

Analysis of empirical datasets

We used 17 datasets from 11 published studies of eukaryotes and 2 published studies of
prokaryotes that cover the major groups in the tree of life (Table 1). These data were
selected for relative completeness (missing data <50%) and sample size (>80
sequences). As we know, a large amount of missing data (>50%) can result in unreliable
estimates of branch lengths and other phylogenetic errors (Wiens and Moen 2008;
Lemmon et al. 2009; Filipski et al. 2014; Xi et al. 2015; Marin and Hedges 2018) and
potentially bias CorrTest results. When a phylogeny with branch lengths was available
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from the original study, we estimated relative rates directly from the branch lengths via
RRF (Tamura et al. 2018) and computed selected features (ps, pad, d1 and d2) to conduct
CorrTest. Otherwise, maximum likelihood estimates of branch lengths were obtained in
MEGA 7 command line version (Kumar et al. 2012; Kumar et al. 2016) using the published
topology, sequence alignments, and the substitution model specified in the original article.
To examine the impact of the specification of a time-reversible substitution model on
CorrTest, we estimated branch lengths under an unrestricted substitution model (Yang
1994) for all the nucleotide datasets in PAML (Yang 2007) and conducted CorrTest.

To obtain the autocorrelation parameter (v), we used MCMCTree (Yang 2007) with
the same input priors as the original study, but omitting calibration priors to avoid the
influence of calibration uncertainty densities on the estimate of v. We did, however,
provide a root calibration because MCMCTree required it. For this purpose, we specified
the root calibration as the one used in the original article or as the median age of the root
node in the TimeTree database (Hedges et al. 2006; Kumar et al. 2017) £ 50My (uniform
distribution with 2.5% relaxation on minimum and maximum bounds). Bayesian analyses
required long computational times, so we used the original alignments in MCMCTree to
infer v if alignments were shorter than 20,000 sites. If the alignments were longer than
20,000 sites, we randomly selected 20,000 sites from the original alignments. However,
one dataset (Ruhfel et al. 2014) contained more than 300 ingroup species, such that even
alignments of 20,000 sites required prohibitive amounts of memory. In this case, we
randomly selected 2,000 sites from the original alignments to use in MCMCTree for v
inference (similar results were obtained with a different site subset). Two independent
runs of 5,000,000 generations each were conducted, and results were checked in Tracer
(Rambaut et al. 2014) for convergence. ESS values were higher than 200 after removing
10% burn-in samples for each run. All empirical datasets are available at

https://github.com/cathyqqtao/CorrTest.
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Table 1. Patterns of rate autocorrelation inferred using the CorrTest approach.

Taxonomic Sequence Sequence Substitution Rate
Group Data type count? length model model® CorrScore P-value 1/ve Reference
Nuclear
Mammals (A) Y ) 138 1,671 GTR+T ABR & IBR 0.98 <0.001 3.21 Meredith et al. (2011)
4-fold degenerate sites
Nuclear .
Mammals (B) - 138 11,010 GTR+T ABR & IBR 0.99 <0.001 4.42¢9 Meredith et al. (2011)
3rd codon positions
Mammals (C) Nuclear proteins 138 11,010 JTIT+T ABR & IBR 0.99 <0.001 3.11 Meredith et al. (2011)
Mammals (D) Mitochondrial DNA 271 7,370 HKY + T ABR 0.98 <0.001 3.77¢ dosReisetal.(2012)
Birds (A) Nuclear DNA 198 101,781 GTR+T IBR 1.00 <0.001 2.07f  Prum et al. (2015)
Birds (B) Nuclear 3™ codon positions 222 1,364 GTR+T IBR 1.00 <0.001 2.11  Claramunt and Cracraft (2015)
. Nuclear
Birds (C) . 222 2,728 GTR+T IBR 1.00 <0.001 2.53 Claramunt and Cracraft (2015)
1st and 2" codon positions
Insects Nuclear proteins 143 220,091 LG+ T IBR 1.00 <0.001 8.68 Misof et al. (2014)
Mitochondrial & nuclear .
Metazoans . 113 2,049 LG+T ABR 0.65 <0.05 40.0 Erwinetal. (2011)
proteins
Plants (A) Plastid 3" codon positions 335 19,449 GTR+T NA 1.00 <0.001 2.28 Ruhfel et al. (2014)
Plants (B) Plastid proteins 335 19,449 JTT+T NA 1.00 <0.001 2.46  Ruhfel et al. (2014)
Nuclear .
Plants (C) . 99 290,718 GTR+T NA 1.00 <0.001 5.50 Wickett et al. (2014)
1st and 2" codon positions
Plants (D) Chloroplast and nuclear DNA 124 5,992 GTR+T IBR 1.00 <0.001 2.64  Beaulieu et al. (2015)
Fungi Nuclear proteins 85 609,772 LG+T NA 0.97 <0.001 3.78 Shenetal.(2016)
Parasitic . .
Mitochondrial DNA 91 6,863 HKY + T ABR & IBR 0.87 <0.01 2.41  Pacheco et al. (2018)
protozoans
Prokaryotes (A) Nuclear proteins 197 6,884 JTT+T ABR 0.79 <0.05 2.54  Battistuzzi and Hedges (2009)
Prokaryotes (B) Nuclear proteins 126 3,145 JTT+T NA 0.83 <0.05 1.23  Calteau et al. (2014)

aCounts exclude outgroup taxa. PThe branch rate model used in the original study. ABR: autocorrelated branch rate
model; IBR: independent branch rate model; NA: no rate model information available. ¢1/v is the inverse of the

autocorrelation parameter that is estimated by MCMCTree using the ABR model in the time unit of 100My. 491/v were
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2.13 and 2.09 for each subtree in Mammals (B); 3.73, 1.04, and 2.47 for each subtree in Mammals (D); 1.60 and 2.07 for

each subtree in Birds (A); 17.24 and 9.62 for each subtree in Insects.
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Figure Legends

Figure 1. A flowchart showing an overview of the machine learning (McL) approach
applied to develop the predictive model (CorrTest). We generated (a) 1,000 training
datasets that were simulated using independent branch rate (IBR) models and (b) 1,000
training datasets that were simulated using autocorrelated branch rate (ABR) models.
The numerical state (c) for all IBR datasets was 0 and (d) for all ABR datasets was 1. For
each dataset, we estimated a molecular phylogeny with branch lengths (e and f) and
computed ps, pad, d1, and dz (g and h) that served as features during the supervised McL.
(i) Supervised McL was used to develop a predictive relationship between the input
features and numerical states. (j) The predictive model produces a CorrScore for an input
phylogeny with branch lengths. The predictive model was (k) validated with 10-fold and
2-fold cross-validation tests, (l) tested using external simulated data, and then (m) applied

to empirical data to examine the prevalence of rate autocorrelation in the tree of life.

Figure 2. An evolutionary tree showing branch lengths (b), lineage lengths (L), lineage
rates (R), and node times (). L, = bs ++/b1b, and L, = by + \/b3b,. Relative lineage
rates are computed from branch lengths using equations [28] - [31] and [34] - [39] in

Tamura et al. (2018). Node times and branch rates are not required for estimating relative

lineage rates.

Figure 3. The relationship of (a) ancestral and direct deOscendant lineage rates and (b)
sister lineage rates when the simulated evolutionary rates were autocorrelated with each
other (red) or varied independently (blue). The correlation coefficients are shown. (c) The
decay of correlation between ancestral and descendant lineages when we skip one
intervening branch (d1) and when we skip two intervening branches (dz2). Percent decay
values are shown. (d) Receiver Operator Characteristic (ROC) and Precision Recall (PR)
curves (inset) of CorrTest for detecting branch rate model by using only the feature of
ancestor-descendant lineage rates correlation (pad, green), only the feature of sister
lineage rates correlation (ps, orange), and all four features (all, black). The area under the
curve is provided. (e) The relationship between the CorrScore produced by the machine
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learning model and the P-value. Independent branch rate model can be rejected when
the CorrScore is greater than 0.83 at a significant level of P <0.01, or when the CorrScore
is greater than 0.5 at P < 0.05.

Figure 4. The performance of CorrTest in detecting autocorrelated and independent
branch rate models in the analysis of datasets (Tamura et al. 2012) that were simulated
with different (a) G+C contents, (b) transition/transversion ratios, and (c) average
molecular evolutionary rates. The evolutionary rates are in the units of 10-® substitutions
per site per million years. (d — f) Patterns of CorrTest accuracy for data subsets containing
50, 100, 200, 300 and 400 ingroup sequences. The accuracy of CorrTest for different
sequence lengths is shown when (d) the correct topology was assumed and (e) the
topology was inferred. (f) The accuracy of CorrTest for datasets in which the inferred
topology contained small and large number of topological errors. Darker color indicates

higher accuracy.

Figure 5. Comparisons of the performance of CorrTest and Bayes factor analyses. (a)
Distributions of 2 times the differences of marginal log-likelihood (2/nK) estimated under
independent branch rate (IBR) and autocorrelated branch rate (ABR) models via
stepping-stone sampling method for datasets that were simulated under ABR (red)
models and IBR (blue) models. ABR model is preferred (P < 0.05) when 2/nK is greater
than 3.841 (ABR zone), and IBR model is preferred when 2InK is less than -3.841 (IBR
zone). When 2/nK is between -3.841 and 3.841, the fit of the two rate models is not
significantly different (gray shade). (b) The distributions of CorrScores in analyses of ABR
(red) and IBR (blue) datasets. Rates are predicted to be autocorrelated if the CorrScore
is greater than 0.5 (P < 0.05, ABR zone) and vary independently if the CorrScore is less
than 0.5 (IBR zone). (c) The rate of detecting ABR model correctly (true positive rate) at
different levels of statistical significance in Bayes factor (BF-SS) and CorrTest analyses.
Posterior probabilities for ABR in BF-SS analysis are derived using the log-likelihood
patterns in panel a. CorrTest P-values are derived using the CorrScore pattern in panel
b. (d) The accuracy of identifying ABR model for datasets simulated with low (v 2 0.2),

moderate (0.1 < v < 0.2), and high (v <0.1) levels of rate autocorrelation in Kishino et al.'s
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(2001) model. (e) The accuracy of identifying IBR model for datasets simulated at different
degrees of rate variation in Drummond et al. (2006): low (standard deviation < 0.2),
moderate (0.2 < standard deviation < 0.3), and high (standard deviation 2 0.3).

Figure 6. The distribution of CorrScore for datasets (Tamura et al. 2012) with different
taxon sampling densities. The CorrScore decreases when the density of taxon sampling
is lower, as there is much less information to discriminate between ABR and IBR models.
Red dashed lines mark two statistical significance levels of 5% and 1%. Results are

summarized from 100 simulated datasets for each taxon sampling category.

Figure 7. The relationship between the inferred autocorrelation parameter (v) from
MCMCTree and the true value for datasets simulated under autocorrelated branch rate
models with the true v ranging from 0.01 to 0.3. The gray line represents the best-fit

regression line, which has a slope of 1.09.

Figure 8. Patterns of CorrTest accuracy using the specific thresholds determined by
predictive models trained with different ranges of the number of sequences (n): M100 (n
< 100), M200 (100 < n < 200), M300 (200 < n = 300), and M400 (n > 300) for the
corresponding test datasets (Tamura et al. 2012). Accuracies are shown for 50, 100, 200,
300, and 400 ingroup sequences. The accuracy of CorrTest for different sequence
lengths is shown when (a) the correct topology was assumed and (b) the topology was
inferred. (¢) The accuracy of CorrTest for datasets in which the inferred topology
contained small and large number of topological errors. Darker color indicates higher

accuracy.
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