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Abstract 

 

New species arise from pre-existing species and inherit similar genomes and 

environments. This predicts greater similarity of the tempo of molecular evolution between 

direct ancestors and descendants, resulting in autocorrelation of evolutionary rates in the 

tree of life. Surprisingly, molecular sequence data have not confirmed this expectation, 

possibly because available methods lack the power to detect autocorrelated rates. Here 

we present a machine learning method, CorrTest, to detect the presence of rate 

autocorrelation in large phylogenies. CorrTest is computationally efficient and performs 

better than the available state-of-the-art methods. Application of CorrTest reveals 

extensive rate autocorrelation in DNA and amino acid sequence evolution of mammals, 

birds, insects, metazoans, plants, fungi, parasitic protozoans, and prokaryotes. 

Therefore, rate autocorrelation is a common phenomenon throughout the tree of life. 

These findings suggest concordance between molecular and non-molecular evolutionary 

patterns, and they will foster unbiased and precise dating of the tree of life.  
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Introduction  

Rates of molecular sequence evolution vary extensively among species (Ho and Duchêne 

2014; Kumar and Hedges 2016; dos Reis et al. 2016). The causes and consequences of 

evolutionary rate variation among species are of fundamental importance in molecular 

phylogenetics and systematics (Kimura 1983; Lanfear et al. 2010; Lynch 2010). They 

inform about the relationship among molecular, biological, and life history traits, and are 

a prerequisite for reliable estimation of divergence times among species and genes (Ho 

and Duchêne 2014; Kumar and Hedges 2016).  

Three decades ago, Gillespie (1984) proposed that molecular evolutionary rates 

within a phylogeny will be autocorrelated due to similarities in genomes, biology and 

environments between ancestral species and their immediate progeny. This idea led to 

statistical modelling of the variability of evolutionary rates among branches and formed 

the basis of the earliest relaxed clock methods for estimating divergence times without 

assuming a strict molecular clock (Sanderson 1997; Thorne et al. 1998; Kumar 2005; Ho 

and Duchêne 2014; Kumar and Hedges 2016). However, the independent branch rate 

(IBR) model has emerged as a strong alternative to the autocorrelated branch rate (ABR) 

model. The IBR model posits that rates vary randomly throughout the tree, such that the 

evolutionary rate similarity between an ancestor and its descendant is, on average, no 

more than that between more distantly-related branches in a phylogeny (Drummond et 

al. 2006; Ho and Duchêne 2014). 

The IBR model is now widely used in estimating divergence times from molecular 

data for diverse groups of species. It has been assumed for mammals (Drummond et al. 

2006), birds (Brown et al. 2008; Claramunt and Cracraft 2015; Prum et al. 2015), 

amphibians (Feng et al. 2017), plants (Moore and Donoghue 2007; Bell et al. 2010; Smith 

et al. 2010; Linder et al. 2011; Lu et al. 2014; Barreda et al. 2015; Barba-Montoya et al. 

2018), and viruses (Drummond et al. 2006; Buck et al. 2016; Metsky et al. 2017). If the 

IBR model best explains the variability of evolutionary rates, then we must infer a 

decoupling of molecular and biological evolution. This is because morphology, behavior, 

and other life history traits are more similar between closely-related species (Sargis and 

Dagosto 2008; Lanfear et al. 2010; Cox and Hautier 2015) and are correlated with 

taxonomic or geographic distance (Wyles et al. 1983; Shao et al. 2016).   
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Alternatively, the widespread use of the IBR model (Drummond et al. 2006; Moore 

and Donoghue 2007; Brown et al. 2008; Bell et al. 2010; Smith et al. 2010; Linder et al. 

2011; Lu et al. 2014; Claramunt and Cracraft 2015; Prum et al. 2015; Buck et al. 2016; 

Feng et al. 2017; Metsky et al. 2017) may be due to the fact that the currently available 

statistical tests lack sufficient power to reject the IBR model (Ho et al. 2015). In fact, some 

studies report extensive branch rate autocorrelation (e.g., Lepage et al. 2007), but others 

do not agree (e.g., Linder et al. 2011).  

Consequently, many researchers use both ABR and IBR models when applying 

Bayesian methods to date divergences (Wikstrӧm et al. 2001; Drummond et al. 2006; Bell 

et al. 2010; Erwin et al. 2011; Meredith et al. 2011; dos Reis et al. 2012; Magallón et al. 

2013; Jarvis et al. 2014; Hertweck et al. 2015; dos Reis et al. 2015; Foster et al. 2016; 

Liu et al. 2017; Pacheco et al. 2018; dos Reis et al. 2018; Takezaki 2018). This practice 

can result in widely differing time estimates under ABR and IBR models, which makes 

biological interpretation challenging (Battistuzzi et al. 2010; Christin et al. 2014; dos Reis 

et al. 2014; dos Reis et al. 2015; Foster et al. 2016; Liu et al. 2017; Pacheco et al. 2018; 

Takezaki 2018). For example, as compared to the ABR model, the use of IBR model has 

been reported to produce 66% older estimates of divergence times for two major groups 

of grasses (Christin et al. 2014), 30% older divergence estimate for the origin of a major 

group of mammal (Erinaceidea) (Meredith et al. 2011), and 50% younger estimates for 

two clades of parasitic protozoans in birds (Pacheco et al. 2018). The choice of branch 

rate model also strongly influences posterior credibility intervals, because these intervals 

are often wider under the ABR model (Battistuzzi et al. 2010). 

Therefore, we need a powerful method to accurately test whether evolutionary 

rates are autocorrelated in a phylogeny. Application of this method to molecular datasets 

representing taxonomic diversity across the tree of life will enable an assessment of the 

preponderance of autocorrelated rates in nature. Here, we introduce a new machine 

learning approach (CorrTest) that shows high power to detect autocorrelation between 

molecular branch rates. CorrTest is computationally efficient, and its application to a large 

number of datasets establishes the pervasiveness of rate autocorrelation in the tree of 

life. 
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New Method 

Machine learning (McL) is widely used to solve problems in many fields, including ecology 

(Christin et al. 2018; Willcock et al. 2018) and population genetics (Saminadin-Peter et 

al. 2012; Schrider and Kern 2016; Schrider and Kern 2018). We present a supervised 

McL framework (Bzdok et al. 2018) used to build a predictive model that distinguishes 

between ABR and IBR models, a major challenge in molecular phylogenetics and 

phylogenomics. In our McL approach, the input is a molecular phylogeny with branch 

lengths and the output is a classification that corresponds to whether or not the 

evolutionary rates in the phylogeny are autocorrelated among branches (ABR or IBR, 

respectively). An overview of our McL approach is presented in figure 1. 

To build a predictive model, McL needs measurable properties (features) that can 

be derived from the input data (phylogeny with branch lengths). The selection of 

informative and discriminating features (Fig. 1g and h) is critical to the success of McL. 

We derive relative lineage rates using a given molecular phylogeny with branch (“edge”) 

lengths (Fig. 1e and f) by using Tamura et al.'s (2018) method, and use these relative 

rates to generate informative features. The use of the relative rate framework (RRF) is 

necessary because we cannot derive branch rates without knowing node times in the 

phylogeny. For example, we need to know node times ti’s in figure 2 to convert branch 

lengths into branch rates, but these node times are what investigators wish to estimate 

by using a Bayesian approach that requires selection of a branch rate model. In contrast, 

the estimation of relative lineage rates does not require knowledge of divergence times. 

This is because an evolutionary lineage includes all the branches in the descendant 

subtree (e.g., lineage a contains branches with lengths b1, b2, and b5 in Fig. 2) and the 

relative rate between sister lineages is simply the ratio of the evolutionary depths of the 

two lineages (Tamura et al. 2018). In figure 2, Ra and Rb are two lineage rates whose 

relative value can be estimated by the ratio of lineage lengths La and Lb, where the lineage 

length is a function of lengths of all branches in the subtree. Tamura et al. (2018) 

presented RRF to estimate these relative lineage rates analytically by using branch 

lengths only. Furthermore, Tamura et al.'s (2018) method generates relative lineage rates 

such that all the lineage rates in a phylogeny are relative to the rate of the ingroup root 
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lineage (R0, Fig. 2). Use of RRF enabled us to develop a number of features for building 

a McL predictive model. 

We considered the correlation between ancestral and descendant lineage rates 

(ρad), the correlation between the sister lineage rates (ρs), and the decay in ρad when one 

or two intervening branches are skipped (d1 and d2, respectively) as features (see 

Materials and Methods). ρad was considered as a feature because our analyses of 

simulated data showed that ρad was much higher for phylogenetic trees in which 

molecular sequences evolved under an ABR model (0.96) than an IBR model (0.54, Fig. 

3a). Importantly, ρad is not expected to be zero under the IBR model because ρad is a 

correlation between ancestral and descendant lineages, not independent branches. An 

ancestral lineage includes all the lineages in the descendant subtree, therefore, the 

evolutionary rate of an ancestral lineage naturally depends on the evolutionary rates of 

its descendant lineages in RRF (Tamura et al. 2018). Therefore, ancestral and 

descendant lineage rates will be correlated. While ρad is greater than zero, it showed 

distinct patterns for ABR and IBR models and is, thus, a good candidate feature for McL 

(Fig. 3a).  

As our second feature, we considered the correlation between the sister lineages 

(ρs), because ρs was higher for the ABR model (0.89) than the IBR model (0.00, Fig. 3b). 

Two additional features considered were the decay in ρad when one or two intervening 

branches are skipped (d1 and d2, respectively). We expect that ρad will decay more slowly 

under ABR than IBR, which was confirmed (Fig. 3c). The selected set of candidate 

features (ρs, ρad, d1, and d2) can be measured for any phylogeny with branch lengths, 

e.g., derived from molecular data using the maximum likelihood method. They are then 

used to train the McL classifier (Fig. 1i and j). For this purpose, we need a large set of 

phylogenies in which branch rates are autocorrelated for which the numerical state 1 is 

assigned as true positive case (Fig. 1d) and phylogenies in which the branch rates are 

independent for which the numerical state 0 is assigned as true negative case (Fig. 1c). 

However, there is a paucity of empirical data for which ABR and IBR are firmly 

established. We, therefore, trained our McL model on a simulated dataset, a common 

practice in McL applications when reliable real world training datasets are few in number 

(Saminadin-Peter et al. 2012; Schrider and Kern 2016; Ekbatani et al. 2017; Le et al. 



7 

2017). We used computer simulations to generate 1,000 molecular datasets that evolved 

with ABR models and 1,000 molecular datasets that evolved with IBR models (Fig. 1a 

and b). To ensure the general utility of our model for analyses of diverse data, we 

simulated molecular sequences with varying numbers of species, degrees of rate 

autocorrelation, diversity of evolutionary rates and substitution pattern parameters (see 

Materials and Methods). Candidate features (ρs, ρad, d1, and d2) were computed for all 

2,000 training datasets (Fig. 1g and h), each of which was associated with a numerical 

output state (0 and 1 for IBR and ABR, respectively; Fig. 1c and d). These features were 

used to build a predictive model by employing a logistic regression (Fig. 1j). This 

predictive model was then used to generate a correlation score (CorrScore) for any 

phylogeny with branch lengths. 

We also developed a conventional statistical test (CorrTest), based on CorrScore 

(0 - 1), to provide a P-value to decide whether the IBR model should be rejected. A high 

CorrScore indicates a high probability that the branch rates are autocorrelated. At a 

CorrScore greater than 0.5, Type I error (rejecting IBR when it was true) was less than 

5%. Type I error of 1% (P-value of 0.01) was achieved with a CorrScore greater than 0.83 

(Fig. 3e). CorrTest is available at Github (https://github.com/cathyqqtao/CorrTest) and in 

the MEGA X software (Kumar et al. 2018). 

RESULTS 

We evaluated the sensitivity and specificity of our predictive model using receiver 

operating characteristic (ROC) curves. They measured the sensitivity of our method to 

detect rate autocorrelation when it was present (true positive rate, TPR) and when it was 

not present (false positive rate, FPR) at different CorrScore thresholds. TPR = TP/(TP 

+FN) and FRP = FP/(TN + FP), where TP, FN, FP, and TN stand for true positives, false 

negatives, false positives, and true negatives, respectively. The ROC curve for McL using 

all four features was the best, which led to the inclusion of all four features in the predictive 

model (Fig. 3d; Material and Methods). The area under the ROC (AUROC) was 99%, with 

a 95% TPR (i.e., ABR detection) achieved at the expense of only 5% FPR (Fig. 3d, black 

line). The area under the precision recall (AUPR) curve was also extremely high (0.99; 

Fig. 3d inset), where precision and recall were defined as TP/(TP+FP) and TP/(TP + FN) 
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(=TPR), respectively. It suggested that CorrTest detects the presence of rate 

autocorrelation with very high accuracy (= (TP+TN)/(TP + FP + FN + TN)) and precision. 

We also performed standard cross-validation tests (Fig. 1k) using the simulated 

data to evaluate the accuracy of the predictive models when only a subset of data are 

used for training. In the 10-fold cross-validation, the predictive model was developed 

using 90% of the simulated training datasets, and then its performance was tested on the 

remaining 10% of the datasets. The AUROC was greater than 0.99 and the accuracy was 

high (>94%). Even in the 2-fold cross-validation, where only half of the datasets (500 ABR 

and 500 IBR datasets) were used for training the model, leaving the remaining half for 

testing, the AUROC was greater than 0.99 and the classification accuracy was greater 

than 92%. This suggested that the predictive model is robust to the size of the training 

set used. 

We tested the performance of CorrTest on a large collection of simulated datasets 

where the correct rate model is known (Fig. 1l). In these datasets (Tamura et al. 2012), 

different software and simulation schemes were used to generate sequences with a wide 

range of empirically derived G+C contents, transversion/transition ratios, and evolutionary 

rates under both ABR and IBR models (see Materials and Methods). CorrTest accuracy 

was greater than 94% in detecting ABR and IBR correctly for datasets that were simulated 

with low and high G+C contents (Fig. 4a), small and large transition/transversion ratios  

(Fig. 4b), and different rates of evolution (Fig. 4c). As expected, CorrTest performed best 

on datasets that contained more and longer sequences (Fig. 4d). 

In the above analyses, we used the correct tree topology and nucleotide 

substitution model (Hasegawa-Kishino-Yano (HKY) model (Hasegawa et al. 1985) with 5 

discrete gamma categories). We relaxed this requirement and evaluated CorrTest by 

inferring the tree topology and branch lengths using the neighbor-joining method (Saitou 

and Nei 1987) with an oversimplified Kimura's (1980) two-parameter substitution model. 

Therefore, the estimation of the total number of substitutions between sequences were 

biased because inequality of nucleotide frequencies and variation of evolutionary rate 

across sites were not considered. Naturally, many inferred phylogenies contained 

topological errors, but we found the accuracy of CorrTest to be high as long as the dataset 

contained >100 sequences of length >1,000 base pairs (Fig. 4e). CorrTest also performed 
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well even when 20% of the non-trivial tree bi-partitions were incorrect in the inferred 

phylogeny (Fig. 4f, see Materials and Methods). Therefore, CorrTest will be most reliable 

for large datasets, and is relatively robust to errors in phylogenetic inference.  

CorrTest versus Bayes factor analysis 

We compared the performance of CorrTest with that of the Bayes factor approach. 

Because the Bayes factor method is computationally demanding, we limited our 

comparison to 100 datasets containing 100 sequences each (see Material and Methods). 

We computed Bayes factors (BF) by using the stepping-stone sampling (SS) method (see 

Materials and Methods). BF-SS analysis detected autocorrelation (P < 0.05) for 33% of 

the ABR datasets (Fig. 5a, red curve in the ABR zone). Marginal log-likelihoods under the 

ABR model were very similar to or lower than those for the IBR model, which led to the 

failure to detect autocorrelation for 67% of ABR datasets. Therefore, BF-SS was 

conservative in rejecting the IBR model, as has been reported (Ho et al. 2015). CorrTest 

correctly detected the ABR model for 88% of the datasets (P < 0.05; Fig. 5b, red curve in 

ABR zone). For IBR datasets, BF-SS correctly detected the IBR model for 89% (Fig. 5a, 

blue curve in the IBR zone), whereas CorrTest correctly detected IBR model for 86% (Fig. 

5b, blue curve in the IBR zone). Therefore, BF-SS performs well in correctly classifying 

phylogenies that evolve under an IBR model, but not an ABR model. The power of 

CorrTest to correctly inferring the ABR model is responsible for its higher overall accuracy 

(87% vs. 61% for BF-SS). Such a difference in accuracy was observed at different levels 

of statistical significance (Fig. 5c) for datasets that evolved with high (v < 0.1), moderate 

(0.1 ≤ v < 0.2) and low (v ≥ 0.2) degree of rate autocorrelation (Fig. 5d), where v is the 

parameter controlling the degree of rate autocorrelation (Kishino et al. 2001). However, 

the accuracy of CorrTest and BF-SS was similar in detecting IBR (Fig. 5e). The accuracy 

was slightly higher for CorrTest than BF-SS for phylogenies with high (standard deviation 

≥ 0.3) and low (standard deviation < 0.2) degree of independent rate variation, but the 

reverse was true for phylogenies with moderate (0.2 ≤ standard deviation < 0.3) degree 

of independent rate variation. These comparisons suggest that the McL method enables 

highly accurate detection of rate autocorrelation in a given phylogeny and presents an 

alternative to Bayes factor analyses for large datasets. 
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Autocorrelation of rates is common in molecular evolution  

The high accuracy and fast computational speed of CorrTest enabled us to test the 

presence of autocorrelation in 17 large datasets from 11 published studies of eukaryotic 

species and 2 published studies of prokaryotic species encompassing diverse groups 

across the tree life. This included nuclear, mitochondrial and plastid DNA, and protein 

sequences from mammals, birds, insects, metazoans, plants, fungi, parasitic protozoans 

and prokaryotes (Table 1). CorrTest rejected the IBR model for all datasets (P < 0.05). In 

these analyses, a time-reversible process was assumed for substitutions of nucleotides 

and amino acids in the original studies (Table 1). However, the violation of this assumption 

may produce biased results in phylogenetic analysis (Jayaswal et al. 2014). We therefore 

applied an unrestricted substitution model (Yang 1994) for analyzing all the nucleotide 

datasets and found that CorrTest rejected the IBR model in every case (P < 0.05). This 

robustness stems from the fact that the branch lengths estimated under the time-

reversible and the unrestricted model are highly correlated for these data (r2 > 0.99). This 

could be the reason why CorrTest produced reliable results even when an oversimplified 

model (Kimura 1980) was used for analyzing computer simulated data (Fig. 4e and f). 

These results suggest that the autocorrelation of rates among lineages is very 

common in molecular phylogenies. This pattern contrasts starkly with those reported in 

many previous studies (Drummond et al. 2006; Moore and Donoghue 2007; Brown et al. 

2008; Bell et al. 2010; Smith et al. 2010; Linder et al. 2011; Jarvis et al. 2014; Lu et al. 

2014; Barreda et al. 2015; Claramunt and Cracraft 2015; Prum et al. 2015; Feng et al. 

2017; Barba-Montoya et al. 2018). In fact, all but three datasets (Battistuzzi and Hedges 

2009; Erwin et al. 2011; Calteau et al. 2014) received very high CorrScores, resulting in 

extremely significant P-values (P < 0.01). The IBR model was also rejected for the three 

datasets (P < 0.05), but their CorrScores were not as high, likely because of limited or 

biased sampling of the evolutionary diversity. For example, the metazoan dataset (Erwin 

et al. 2011) contains sequences primarily from highly divergent species that share 

common ancestors hundreds of millions of years ago. In this case, tip branches in the 

phylogeny are long and their evolutionary rates are influenced by many un-sampled 

lineages. Such sampling effects weaken the rate autocorrelation signal. We verified this 

behavior via an analysis of simulated data and found that CorrScores decreased when 
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density of taxon sampling was lower (Fig. 6). Overall, CorrTest detected rate 

autocorrelation in all the empirical datasets.  

Magnitude of rate autocorrelation in molecular data 

CorrScore is influenced by the size of the dataset in addition to the degree of 

autocorrelation, so it is not a direct measure of the degree of rate autocorrelation (effect 

size) in a phylogeny. Instead, one should use a Bayesian approach to estimate the degree 

of rate autocorrelation, for example, under Kishino et al.'s (2001) autocorrelated rate 

model. In this model, a single parameter (ν) captures the degree of autocorrelation among 

branches in a phylogenetic tree. A low value of ν indicates high autocorrelation, so, we 

use the inverse of v to represent the degree of rate autocorrelation. MCMCTree (Yang 

2007) analyses of 100 simulated datasets (see Materials and Methods) confirmed that 

the estimated v is related linearly with the true value (Fig. 7). Based on the results from 

the analysis of empirical datasets, we suggest that 1/v greater than 3 be considered high 

autocorrelation, 1/v between 1 and 3 be considered moderate autocorrelation, and 1/v 

below 1 be considered weak autocorrelation. Based on this ad hoc criterion, we may 

conclude that rate autocorrelation is moderate to high for empirical datasets examined for 

species across the tree of life.  

Other interesting patterns emerge from this analysis. First, rate autocorrelation is 

highly significant for mutational rates (= substitution rate at neutral positions), which are 

expected to be similar in sister species because they inherit cellular machinery from a 

common ancestor (Table 1). The substitution rates at the third codon positions and the 

four-fold degenerate sites are considered to be a good proxy of synonymous substitution 

rate, because they are largely neutral and are the best reflection of mutation rates (Kumar 

and Subramanian 2002). For example, the mammalian datasets A and B, which consisted 

of the four-fold degenerate sites and the third codon positions, received high CorrScores 

of 0.99 and 0.98, respectively (P < 0.001). Second, our model detected a strong signal of 

autocorrelation among amino acid substitution rates, which are dictated by natural 

selection (Table 1).  For example, mammalian dataset C received a high CorrScore of 

0.99 in the proteins encoded in the same genes in the datasets of third codon positions 

(mammalian dataset B) and four-fold degenerate sites (mammalian dataset A). Bayesian 

analyses also showed that the degree of rate autocorrelation is similar: inverse of v was 
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3.21 in four-fold degenerate sites and 3.11 in amino acid sequences for mammalian 

datasets. Third, mutational and substitution rates in nuclear genomes and substitution 

rates in mitochondrial genomes are highly autocorrelated (P < 0.05, Table 1) 

(synonymous substitution rate was not used for mitochondrial data). These results 

establish that molecular and non-molecular evolutionary patterns are concordant, 

because morphological characteristics are correlated with taxonomic or geographic 

distance (Wyles et al. 1983; Sargis and Dagosto 2008; Lanfear et al. 2010; Cox and 

Hautier 2015; Shao et al. 2016). 

DISCUSSION  

Our results demonstrate that a McL framework is useful to develop a method to detect 

the presence of rate autocorrelation among branches in a phylogeny. This method yields 

CorrScore estimates that enabled development of a conventional statistical test 

(CorrTest) to detect autocorrelation. This method can be used for datasets with small (50 

- 100) and large numbers of sequences, as supported by high accuracy achieved by 

CorrTest in the analysis of simulated datasets (Fig. 4). We also evaluated if higher 

accuracy could be achieved by building specific predictive models that were trained 

separately using data with different ranges of the number of sequences (n): M100 (n ≤ 

100), M200 (100 < n ≤ 200), M300 (200 < n ≤ 300), and M400 (n > 300). A specific 

threshold for CorrScore that corresponded to certain P-value was determined for each 

training subset and then tested using Tamura et al.'s (2012) simulated data with the 

corresponding number of sequences. For example, we used the threshold determined for 

the model trained with small data (M100) on the test data that contain less than 100 

sequences, and used the threshold determined for the model trained with large data 

(M400) on the large test data (400 sequences). We found that the accuracy obtained by 

using the specific thresholds determined for datasets with different numbers of sequences 

(M100 - M400) (Fig. 8) was similar to the accuracy obtained by using a global threshold 

(Fig. 4d - f). This is because the McL algorithm automatically incorporated the impact of 

the number of sequences when determining the relationship of four selected features (ρad, 

ρs, d1 and d2). This justifies the usage of the globally trained CorrTest that we used in all 

the empirical analyses reported here. 
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No single branch rate model may be adequate for Bayesian dating analyses, and 

one may need to use a mixture of models because different groups of species and genes 

in a large phylogeny may have evolved with different levels of autocorrelation (e.g., 

Lartillot et al. 2016 and Tamura et al. 2018). In this sense, results produced by CorrTest 

(and by Bayes factor) analyses primarily detect the presence of rate autocorrelation, but 

they do not tell us if the rate autocorrelation exists in every clade of a phylogeny or if the 

degree of autocorrelation is the same in all the clades. One may apply CorrTest to 

individual clades (subtrees) to evaluate these patterns. For example, we divided a few 

large empirical phylogenies (Meredith et al. 2011; dos Reis et al. 2012; Misof et al. 2014; 

Prum et al. 2015) into subtrees with at least 50 sequences, and applied CorrTest on 

subtrees to detect the existence of clade-specific rate autocorrelation. These analyses 

showed a wide range of 1/v values, which was consistent with the large range of the 

autocorrelation parameter values observed for different datasets we analyzed (1.2 < 1/v 

< 40, Table 1). That is, the degree of autocorrelation likely varies among different types 

of genes, different types of substitutions, and in different taxonomic groups. In the future, 

it will be useful to identify such patterns at micro- and macro-evolutionary scales and to 

elucidate mechanistic underpinnings of the differences observed. 

CONCLUSION 

We have presented a fast, scalable, and accurate method (CorrTest) to detect the 

presence of branch rate autocorrelation in a phylogeny. In addition to molecular data, 

CorrTest may be used for testing autocorrelation of rates in non-molecular data, e.g., 

morphological characteristics, because the features required for CorrTest can be 

calculated for any phylogeny with branch lengths. The application of CorrTest to a large 

number of datasets addressed an enduring question in evolutionary biology: are the 

molecular rates of change between species correlated or independent? We find that the 

rate autocorrelation is the rule, rather than the exception. So, it will be best to employ an 

autocorrelated branch rate model in molecular dating analyses in studies of biodiversity, 

phylogeography, development, and genome evolution. However, when in doubt, one may 

conduct CorrTest, which is particularly effective for analyzing large datasets. We also 

expect CorrTest to be useful in analyzing many other large datasets, revealing both the 

extent of autocorrelated evolutionary rates in the tree of life and the exceptions to this 
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rule. Discovery of genes, gene families, and species groups in which branch rates are 

evolving without significant autocorrelation will be precursors to elucidating mechanistic 

underpinnings of new biological phenomena.  

Materials and Methods 

Machine learning (McL) model 

Training data for McL. We simulated nucleotide alignments using independent branch 

rate (IBR) and autocorrelated branch rate (ABR) models using the NELSI package (Ho et 

al. 2015) with a variety of empirically-derived parameter values and parameters used in 

previous studies (Rosenberg and Kumar 2003; Ho et al. 2015). In IBR cases, branch-

specific rates were drawn from a lognormal distribution with a mean gene-by-gene 

substitution rate and a standard deviation (in log-scale) that varied from 0.1 to 0.4, 

previously used in a study simulating independent rates with different levels of variation 

(Ho et al. 2015). In ABR cases, branch-specific rates were simulated under an 

autocorrelated process (Kishino et al. 2001), using  equation 10.9 in Yang (2014). The 

initial rate was set as the mean rate derived from an empirical gene and an autocorrelated 

parameter, ν, that was randomly chosen from a uniform distribution ranging from 0.01 to 

0.3, following a previous simulation of low, moderate and high degree of rate 

autocorrelation (Ho et al. 2015). We used SeqGen (Grassly et al. 1997) to generate 

alignments under the Hasegawa-Kishino-Yano (HKY) model (Hasegawa et al. 1985) with 

4 discrete gamma categories. This process used a master phylogeny, consisting of 60-

400 ingroup taxa randomly sampled from the bony-vertebrate clade in the Timetree of 

Life (Hedges and Kumar 2009). Mean evolutionary rates, G+C contents, 

transition/transversion ratios and numbers of sites for simulation were derived from 

empirical distributions (Rosenberg and Kumar 2003). 1,000 molecular datasets were 

generated under ABR and IBR models separately and these 2,000 simulated datasets 

were used as training data in building the McL model.  

Calculation of features for McL. Lineage-specific rate estimates (Ri’s) were obtained using 

equations [28] - [31] and [34] - [39] in Tamura et al. (2018). For any given node in the 

phylogeny (e.g., node 5 in Fig. 2), we extracted the relative rates of its ancestral lineage 

(e.g., Ra in Fig. 2) and two direct descendant lineages (e.g., R1 and R2 in Fig. 2). Then, 
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we calculated correlation between the ancestral lineage and its direct descendant lineage 

rate to obtain estimates of ancestor-descendant rate correlation (ρad). We also calculated 

correlation between sister lineage rates (ρs). We need to assign labels to lineage rates of 

each sister pair to determine which lineage is the 1st sister lineage and which lineage is 

the 2nd sister lineage, e.g., (R1 and R2) or (R2 and R1) in Fig. 2. If rates of the 1st sister 

lineages are always higher than rates of the 2nd sister lineages, an artificial correlation will 

be generated between sister lineage rates. To avoid this possibility, we randomly labeled 

sister lineages. The labeling of sister pairs have negligible impact (<2%) on ρs when the 

number of sequences in the phylogeny is not too small (>50). For smaller datasets, we 

found that it is best to generate multiple ρs estimates, each using randomly labelled sister 

pairs, to eliminate bias that may result from the arbitrary designation of sister pairs. In this 

case, we recommend using the mean ρs from multiple replicates in the CorrTest analysis. 

To avoid the assumption of linear correlation between lineages, we used Spearman rank 

correlation because it can detect both linear and non-linear correlation between two 

vectors. Two additional features were included in McL model: d1 and d2, which are the 

decay of ρad when one or two intervening branches are skipped. We first estimated 

ρad_skip1 as the correlation between rates where the ancestor and descendant were 

separated by one intervening branch, and ρad_skip2 as the correlation between rates where 

the ancestor and descendant were separated by two intervening branches. This skipping 

reduces ancestor-descendant correlation, which we then used to derive the decay of 

correlation values by using equations d1 = (ρad - ρad_skip1)/ρad and d2 = (ρad - ρad_skip2)/ρad. 

These two features improved the accuracy of our model slightly. In the analyses of 

empirical datasets, we found that a large amount of missing data (>50%) can result in 

unreliable estimates of branch lengths and other phylogenetic errors (Wiens and Moen 

2008; Lemmon et al. 2009; Filipski et al. 2014; Xi et al. 2015; Marin and Hedges 2018). 

In this case, we recommend computing selected features (ρs, ρad, d1 and d2) using only 

those lineage pairs for which >50% of the positions contain valid data, or removing 

sequences with a large amount of missing data. 

Building the McL predictive model. We trained a predictive model with only ρad, only ρs or 

all four features (ρs, ρad, d1 and d2) using 2,000 simulated training datasets (1,000 with 

ABR model and 1,000 with IBR model). For each set of training data, we inferred the 



16 

branch lengths from the molecular sequences with a fixed topology first and used these 

inferred branch lengths to estimate relative lineage rates for computing selected features. 

A numerical state of 1 was given to true positive cases (autocorrelated rates) and 0 was 

assigned to true negative cases (independent rates). Then, a predictive model was 

generated via logistic regression in the skit-learn model (Pedregosa et al. 2011), which is 

a python toolbox for data mining and data analysis using machine learning algorithms. 

This model contains the relationship between the numerical state and the selected 

features. Therefore, for any phylogeny with branch lengths, we can calculate features and 

apply the predictive model to generate a numerical output value between 0 and 1. The 

resulting value is referred as the correlation score (CorrScore). A high CorrScore 

suggests that the rates are more likely to be autocorrelated. Every CorrScore associates 

with a Type I error (P-value), which is the percentage of IBR cases that are incorrectly 

predicted as ABR. We found that Type I error of 5% (P-value of 0.05) was achieved with 

a CorrScore greater than 0.5, and Type I error of 1% was achieved with a CorrScore 

greater than 0.83. Therefore, we developed a conventional statistical test (CorrTest) 

based on CorrScore. CorrScores of 0.5 and 0.83 were used as the global thresholds at 

5% and 1% significant levels. Using the same procedure, we also trained specific 

predictive models using training data with different numbers of sequences (n): M100 (n ≤ 

100), M200 (100 < n ≤ 200), M300 (200 < n ≤ 300), and M400 (n > 300) and determined 

specific threshold for CorrScore for each model. CorrScores of 0.69, 0.61, 0.57 and 0.31 

were thresholds for M100, M200, M300 and M400 at 5% significant level, respectively. 

CorrScores of 0.84, 0.86, 0.88 and 0.73 were thresholds for M100, M200, M300 and M400 

at 1% significant level, respectively.   

Test datasets  

Tamura et al.'s (2012) simulated datasets were used to evaluate CorrTest’s performance. 

This allowed us to test the performance of our method on ABR and IBR datasets with 

different G + C contents (range 39 - 82%), transition/transversion ratios (range 1.9 - 6.0), 

and evolutionary rates (range 1.35 - 2.60 substitution per site per billion years). In IBR 

simulations, Tamura et al. (2012) used a uniform distribution in which  branch rates were 

sampled from a uniform density in the interval [(1-x).r – (1+x).r], where r is the mean 

evolutionary rate and the x is the degree of rate variation (0.5 or 1.0 for 50% and 100% 
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rate variation). For ABR simulations, Tamura et al. (2012) used Kishino et al.'s (2001) 

model with ν = 1. In both scenarios, sequences were simulated on a master phylogeny of 

400 ingroup taxa using the HKY substitution model with 5 discrete gamma categories. 

We analyzed 100 datasets simulated using the ABR model and 100 datasets simulated 

using the IBR model (50% rate variation).  We also randomly sampled 50, 100, 200, and 

300 sequences from the full set of 400 ingroup sequences, and conducted CorrTest using 

the correct topology and error-prone topology inferred by the neighbor-joining method 

(Saitou and Nei 1987) with an oversimplified substitution model of Kimura (1980) with 

both global and specific CorrScore thresholds. The percentage of incorrect inferred tree 

bi-partitions (clades) was calculated by d/(2(m-3)) where d was the Robinson and 

Foulds's (1981) topological distance between inferred and true topologies and m was the 

number of sequences. In addition, we also tested CorrTest’s performance on 100 

datasets simulated by Tamura et al. (2012) under an IBR model with 100% rate variation. 

CorrTest worked perfectly (100% accuracy) for these datasets (results not shown).  

In addition to above analyses, we conducted another set of simulations to generate 

100 datasets using IBR (independent lognormal distribution) and ABR (autocorrelated 

lognormal distribution) (Kishino et al. 2001) models, each using the same strategy as in 

training data simulation (described above) on a master phylogeny of 100 taxa randomly 

sampled from the bony-vertebrate clade in the Timetree of Life (Hedges and Kumar 

2009). These 200 datasets were used to conduct CorrTest and Bayes factor analyses 

and to obtain the autocorrelation parameter (v) in MCMCTree (Yang 2007).  

CorrTest analyses 

All CorrTest analyses were conducted using customized R code (available at 

https://github.com/cathyqqtao/CorrTest). We first estimated branch lengths of a 

phylogeny for sequence alignments using the maximum likelihood method with the 

correct substitution model and the correct topology in MEGA 7 command line version 

(Kumar et al. 2012; Kumar et al. 2016). We used neighbor-joining method to estimate 

topology and branch lengths with Kimura's (1980) two-parameter substitution model and 

without the assumption of rate variation across sites under the gamma distribution in 

MEGA 7 command line version, when we tested the robustness of our model to 

topological error. We then used the estimated branch lengths to compute relative lineage 
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rates using RRF (Tamura et al. 2012; Tamura et al. 2018) and calculated the value of 

selected features (ρs, ρad, d1 and d2) to obtain the CorrScore. We conducted CorrTest on 

the CorrScore to estimate the P-value of detecting rate autocorrealtion. No calibration 

was needed for CorrTest analyses. CorrTest is also available in the MEGA X software 

(Kumar et al. 2018). 

Bayes factor analyses 

We computed the Bayes factor via stepping-stone sampling (BF-SS) (Xie et al. 2011) with 

n = 20 and a = 5 using mcmc3r (dos Reis et al. 2018). BF-SS estimates the marginal 

likelihoods using the idea from importance sampling, a common practice in statistics, to 

construct a path between prior and posterior distributions of a model (Xie et al. 2011; 

Baele et al. 2013). We chose BF-SS because the harmonic mean estimator has many 

statistical shortcomings (Lepage et al. 2007; Xie et al. 2011; Baele et al. 2013) and 

thermodynamic integration (Lartillot and Philippe 2006) is less efficient than BF-SS (Baele 

et al. 2012). For each dataset, we computed the log-likelihoods (lnK) under the IBR and 

ABR models. The Bayes factor posterior probability for ABR was calculated as shown in 

dos Reis et al. (2018). We used only one calibration point at the root (true age with a 

narrow uniform distribution) in all the Bayesian analyses, as it is the minimum number of 

calibrations required by MCMCTree (Yang 2007). For other priors, we used diffused 

distributions of “rgene_gamma = 1 1”, “sigma2_gamma=1 1” and “BDparas = 1 1 0”. In 

all Bayesian analyses, two independent runs of 5,000,000 generations each were 

conducted, and results were checked in Tracer (Rambaut et al. 2014) for convergence. 

ESS values were higher than 200 after removing 10% burn-in samples for each run. 

Analysis of empirical datasets  

We used 17 datasets from 11 published studies of eukaryotes and 2 published studies of 

prokaryotes that cover the major groups in the tree of life (Table 1). These data were 

selected for relative completeness (missing data <50%) and sample size (>80 

sequences). As we know, a large amount of missing data (>50%) can result in unreliable 

estimates of branch lengths and other phylogenetic errors (Wiens and Moen 2008; 

Lemmon et al. 2009; Filipski et al. 2014; Xi et al. 2015; Marin and Hedges 2018) and 

potentially bias CorrTest results. When a phylogeny with branch lengths was available 
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from the original study, we estimated relative rates directly from the branch lengths via 

RRF (Tamura et al. 2018) and computed selected features (ρs, ρad, d1 and d2) to conduct 

CorrTest. Otherwise, maximum likelihood estimates of branch lengths were obtained in 

MEGA 7 command line version (Kumar et al. 2012; Kumar et al. 2016) using the published 

topology, sequence alignments, and the substitution model specified in the original article. 

To examine the impact of the specification of a time-reversible substitution model on 

CorrTest, we estimated branch lengths under an unrestricted substitution model (Yang 

1994) for all the nucleotide datasets in PAML (Yang 2007) and conducted CorrTest. 

To obtain the autocorrelation parameter (v), we used MCMCTree (Yang 2007) with 

the same input priors as the original study, but omitting calibration priors to avoid the 

influence of calibration uncertainty densities on the estimate of v. We did, however, 

provide a root calibration because MCMCTree required it. For this purpose, we specified 

the root calibration as the one used in the original article or as the median age of the root 

node in the TimeTree database (Hedges et al. 2006; Kumar et al. 2017) ± 50My (uniform 

distribution with 2.5% relaxation on minimum and maximum bounds). Bayesian analyses 

required long computational times, so we used the original alignments in MCMCTree to 

infer v if alignments were shorter than 20,000 sites. If the alignments were longer than 

20,000 sites, we randomly selected 20,000 sites from the original alignments. However, 

one dataset (Ruhfel et al. 2014) contained more than 300 ingroup species, such that even 

alignments of 20,000 sites required prohibitive amounts of memory. In this case, we 

randomly selected 2,000 sites from the original alignments to use in MCMCTree for v 

inference (similar results were obtained with a different site subset). Two independent 

runs of 5,000,000 generations each were conducted, and results were checked in Tracer 

(Rambaut et al. 2014) for convergence. ESS values were higher than 200 after removing 

10% burn-in samples for each run. All empirical datasets are available at 

https://github.com/cathyqqtao/CorrTest.  

Acknowledgements 

We thank Xi Hang Cao for assisting on building the machine learning model, and Drs. Bui 

Quang Minh, Beatriz Mello, Heather Rowe, Ananias Escalante, Maria Pacheco, Jose 

Barba Montoya, Antonia Chroni, and S. Blair Hedges for critical comments and editorial 



20 

suggestions. This research was supported by grants from National Aeronautics and 

Space Administration (NASA NNX16AJ30G), National Institutes of Health (GM0126567-

01; LM012487-03), National Science Foundation (NSF 1661218), and Tokyo 

Metropolitan University (DB105). 

  



21 

References 

 Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV. 2012. Improving 

the accuracy of demographic and molecular clock model comparison while accommodating 

phylogenetic uncertainty. Mol. Biol. Evol. 29:2157–2167. 

 

Baele G, Lemey P, Vansteelandt S. 2013. Make the most of your samples: Bayes factor 

estimators for high-dimensional models of sequence evolution. BMC Bioinformatics 14:85. 

 

Baele G, Li WLS, Drummond AJ, Suchard MA, Lemey P. 2013. Accurate model selection of 

relaxed molecular clocks in bayesian phylogenetics. Mol. Biol. Evol. 30:239–243. 

 

Barba-Montoya J, Dos Reis M, Schneider H, Donoghue PCJ, Yang Z. 2018. Constraining 

uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous 

Terrestrial Revolution. New Phytol. 218:819–834. 

 

Barreda VD, Palazzesi L, Tellería MC, Olivero EB, Raine JI, Forest F. 2015. Early evolution of 

the angiosperm clade Asteraceae in the Cretaceous of Antarctica. Proc. Natl. Acad. Sci. 

U.S.A. 112:10989–10994. 

 

Battistuzzi FU, Filipski A, Hedges SB, Kumar S. 2010. Performance of relaxed-clock methods in 

estimating evolutionary divergence times and their credibility intervals. Mol. Biol. Evol. 

27:1289–1300. 

 

Battistuzzi FU, Hedges SB. 2009. A major clade of prokaryotes with ancient adaptations to life 

on land. Mol. Biol. Evol. 26:335–343. 

 

Beaulieu JM, O’Meara BC, Crane P, Donoghue MJ. 2015. Heterogeneous rates of molecular 

evolution and diversification could explain the Triassic age estimate for angiosperms. Syst. 

Biol. 64:869–878. 

 

Bell CD, Soltis DE, Soltis PS. 2010. The age and diversification of the angiosperms re-revisited. 

Am. J. Bot. 97:1296–1303. 

 

Brown JW, Rest JS, García-Moreno J, Sorenson MD, Mindell DP. 2008. Strong mitochondrial 

DNA support for a Cretaceous origin of modern avian lineages. BMC Biol. 6:6. 

 

Buck CB, Van Doorslaer K, Peretti A, Geoghegan EM, Tisza MJ, An P, Katz JP, Pipas JM, 

McBride AA, Camus AC, et al. 2016. The Ancient Evolutionary History of Polyomaviruses. 

PLoS Pathog. 12:e1005574. 

 

Bzdok D, Krzywinski M, Altman N. 2018. Machine learning: supervised methods. Nat. Methods 

15:5–6. 

 

Calteau A, Fewer DP, Latifi A, Coursin T, Laurent T, Jokela J, Kerfeld CA, Sivonen K, Piel J, 

Gugger M. 2014. Phylum-wide comparative genomics unravel the diversity of secondary 



22 

metabolism in Cyanobacteria. BMC Genomics 15:977. 

 

Christin P-A, Spriggs E, Osborne CP, Strӧmberg CA, Salamin N, Edwards EJ. 2014. Molecular 

dating, evolutionary rates, and the age of the grasses. Syst. Biol. 63:153–165. 

 

Christin S, Hervet E, Lecomte N. 2018. Applications for deep learning in ecology. 

bioRxiv:334854. 

 

Claramunt S, Cracraft J. 2015. A new time tree reveals Earth history’s imprint on the evolution 

of modern birds. Sci. Adv. 1:e1501005. 

 

Cox PG, Hautier L. 2015. Evolution of the Rodents: Volume 5: Advances in Phylogeny, 

Functional Morphology and Development. (Cox, P.G. and Hautier, L., editor.). Cambridge: 

Cambridge University Press. 

 

Dos Reis M, Donoghue PC, Yang Z. 2016. Bayesian molecular clock dating of species 

divergences in the genomics era. Nat. Rev. Genet. 17:71–80. 

 

Dos Reis M, Gunnell GF, Barba-Montoya J, Wilkins A, Yang Z, Yoder AD. 2018. Using 

phylogenomic data to explore the effects of relaxed clocks and calibration strategies on 

divergence time estimation: primates as a test case. Syst. Biol. 67:594–615. 

 

Dos Reis M, Inoue J, Hasegawa M, Asher RJ, Donoghue PC, Yang Z. 2012. Phylogenomic 

datasets provide both precision and accuracy in estimating the timescale of placental mammal 

phylogeny. Proc. R. Soc. B 279:3491–3500. 

 

Dos Reis M, Thawornwattana Y, Angelis K, Telford MJ, Donoghue PC, Yang Z. 2015. 

Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular 

Timescales. Curr. Biol. 25:1–12. 

 

Dos Reis M, Zhu T, Yang Z. 2014. The impact of the rate prior on Bayesian estimation of 

divergence times with multiple loci. Syst. Biol. 64:555–565. 

 

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with 

confidence. PLoS Biol. 4:88–99. 

 

Ekbatani HK, Pujol O, Segui S. 2017. Synthetic Data Generation for Deep Learning in Counting 

Pedestrians. In Pattern Recognition Applications and Methods (ICPRAM), 2017 The 

International Conference on. p. 318–323. 

 

Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. 2011. The Cambrian 

conundrum: early divergence and later ecological success in the early history of animals. 

Science 334:1091–1097. 

 

Feng Y-J, Blackburn DC, Liang D, Hillis DM, Wake DB, Cannatella DC, Zhang P. 2017. 

Phylogenomics reveals rapid, simultaneous diversification of three major clades of 



23 

Gondwanan frogs at the Cretaceous-Paleogene boundary. Proc. Natl. Acad. Sci. U.S.A. 

114:E5864–E5870. 

 

Filipski A, Murillo O, Freydenzon A, Tamura K, Kumar S. 2014. Prospects for building large 

timetrees using molecular data with incomplete gene coverage among species. Mol. Biol. 

Evol. 31:2542–2550. 

 

Foster CS, Sauquet H, Van der Merwe M, McPherson H, Rossetto M, Ho SY. 2016. Evaluating 

the impact of genomic data and priors on Bayesian estimates of the angiosperm evolutionary 

timescale. Syst. Biol. 66:338–351. 

 

Gillespie JH. 1984. The molecular clock may be an episodic clock. Proc. Natl. Acad. Sci. U.S.A. 

81:8009–8013. 

 

Grassly NC, Adachi J, Rambaut A. 1997. Seq-Gen: an application for the Monte Carlo 

simulation of protein sequence evolution along phylogenetic trees. Comput. Appl. Biosci. 

13:235–238. 

 

Hasegawa M, Kishino H, Yano T. 1985. Dating of the human-ape splitting by a molecular clock 

of mitochondrial DNA. J. Mol. Evol. 22:160–174. 

 

Hedges SB, Dudley J, Kumar S. 2006. TimeTree: a public knowledge-base of divergence times 

among organisms. Bioinformatics 22:2971–2972. 

 

Hedges SB, Kumar S. 2009. The Timetree of Life. New York: Oxford University Press. 

 

Hertweck KL, Kinney MS, Stuart SA, Maurin O, Mathews S, Chase MW, Gandolfo MA, Pires 

JC. 2015. Phylogenetics, divergence times and diversification from three genomic partitions in 

monocots. Bot. J. Linn. Soc. 178:375–393. 

 

Ho SY, Duchêne S, Duchêne D. 2015. Simulating and detecting autocorrelation of molecular 

evolutionary rates among lineages. Mol. Ecol. Resour. 15:688–696. 

 

Ho SY, Duchêne S. 2014. Molecular-clock methods for estimating evolutionary rates and 

timescales. Mol. Ecol. 23:5947–5965. 

 

Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SY, Faircloth BC, Nabholz B, 

Howard JT, et al. 2014. Whole-genome analyses resolve early branches in the tree of life of 

modern birds. Science 346:1320–1331. 

 

Jayaswal V, Wong TK, Robinson J, Poladian L, Jermiin LS. 2014. Mixture models of nucleotide 

sequence evolution that account for heterogeneity in the substitution process across sites and 

across lineages. Syst. Biol. 63:726–742. 

 



24 

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions 

through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120. 

 

Kimura M. 1983. The neutral theory of molecular evolution. Cambridge: Cambridge University 

Press. 

 

Kishino H, Thorne JL, Bruno WJ. 2001. Performance of a divergence time estimation method 

under a probabilistic model of rate evolution. Mol. Biol. Evol. 18:352–361. 

 

Kumar S. 2005. Molecular clocks: four decades of evolution. Nat. Rev. Genet. 6:654–662. 

 

Kumar S, Hedges SB. 2016. Advances in time estimation methods for molecular data. Mol. Biol. 

Evol. 33:863–869. 

 

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary 

Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 35:1547–1549. 

 

Kumar S, Stecher G, Peterson D, Tamura K. 2012. MEGA-CC: computing core of molecular 

evolutionary genetics analysis program for automated and iterative data analysis. 

Bioinformatics 28:2685–2686. 

 

Kumar S, Stecher G, Suleski M, Hedges SB. 2017. TimeTree: A Resource for Timelines, 

Timetrees, and Divergence Times. Mol. Biol. Evol. 34:1812–1819. 

 

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis 

version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870–1874. 

 

Kumar S, Subramanian S. 2002. Mutation rates in mammalian genomes. Proc. Natl. Acad. Sci. 

U.S.A. 99:803–808. 

 

Lanfear R, Welch JJ, Bromham L. 2010. Watching the clock: studying variation in rates of 

molecular evolution between species. Trends Ecol. Evol. 25:495–503. 

 

Lartillot N, Philippe H. 2006. Computing Bayes factors using thermodynamic integration. Syst. 

Biol. 55:195–207. 

 

Lartillot N, Phillips MJ, Ronquist F. 2016. A mixed relaxed clock model. Phil. Trans. R. Soc. B 

371:20150132. 

 

Le TA, Baydin AG, Zinkov R, Wood F. 2017. Using synthetic data to train neural networks is 

model-based reasoning. In Neural Networks (IJCNN), 2017 International Joint Conference on. 

p. 3514–3521. 

 

Lemmon AR, Brown JM, Stanger-Hall K, Lemmon EM. 2009. The effect of ambiguous data on 

phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Syst. Biol. 



25 

58:130–145. 

 

Lepage T, Bryant D, Philippe H, Lartillot N. 2007. A general comparison of relaxed molecular 

clock models. Mol. Biol. Evol. 24:2669–2680. 

 

Linder M, Britton T, Sennblad B. 2011. Evaluation of Bayesian models of substitution rate 

evolution-parental guidance versus mutual independence. Syst. Biol. 60:329–342. 

 

Liu L, Zhang J, Rheindt FE, Lei F, Qu Y, Wang Y, Zhang Y, Sullivan C, Nie W, Wang J, et al. 

2017. Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg 

boundary. Proc. Natl. Acad. Sci. U.S.A. 114:E7282–E7290. 

 

Lu Y, Ran J-H, Guo D-M, Yang Z-Y, Wang X-Q. 2014. Phylogeny and divergence times of 

gymnosperms inferred from single-copy nuclear genes. PLoS One 9:e107679. 

 

Lynch M. 2010. Evolution of the mutation rate. Trends Genet. 26:345–352. 

 

Magallón S, Hilu KW, Quandt D. 2013. Land plant evolutionary timeline: gene effects are 

secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am. J. 

Bot. 100:556–573. 

 

Marin J, Hedges SB. 2018. Undersampling genomes has biased time and rate estimates 

throughout the tree of life. Mol. Biol. Evol. 35:2077–2084. 

 

Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, 

Simão TL, Stadler T, et al. 2011. Impacts of the Cretaceous Terrestrial Revolution and KPg 

extinction on mammal diversification. Science 334:521–524. 

 

Metsky HC, Matranga CB, Wohl S, Schaffner SF, Freije CA, Winnicki SM, West K, Qu J, 

Baniecki ML, Gladden-Young A, et al. 2017. Zika virus evolution and spread in the Americas. 

Nature 546:411–415. 

 

Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, 

Beutel RG, et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. 

Science 346:763–767. 

 

Moore BR, Donoghue MJ. 2007. Correlates of diversification in the plant clade Dipsacales: 

geographic movement and evolutionary innovations. Am. Nat. 170 Suppl 2:S28–55. 

 

Pacheco MA, Matta NE, Valkiunas G, Parker PG, Mello B, Stanley CE, Lentino M, Garcia-

Amado MA, Cranfield M, Kosakovsky Pond SL, et al. 2018. Mode and Rate of Evolution of 

Haemosporidian Mitochondrial Genomes: Timing the Radiation of Avian Parasites. Mol. Biol. 

Evol. 35:383–403. 

 

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer 

P, Weiss R, Dubourg V, et al. 2011. Scikit-learn: Machine learning in Python. J. Mach. Learn. 



26 

Res. 12:2825–2830. 

 

Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR. 2015. A 

comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. 

Nature 526:569–578. 

 

Rambaut A, Suchard M, Xie D, Drummond A. 2014. Tracer v1.6. Available from: 

http://beast.bio.ed.ac.uk/Tracer. 

 

Robinson DF, Foulds LR. 1981. Comparison of phylogenetic trees. Math. Biosci. 53:131–147. 

 

Rosenberg MS, Kumar S. 2003. Heterogeneity of nucleotide frequencies among evolutionary 

lineages and phylogenetic inference. Mol. Biol. Evol. 20:610–621. 

 

Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG. 2014. From algae to 

angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid 

genomes. BMC Evol. Biol. 14:23. 

 

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing 

phylogenetic trees. Mol. Biol. Evol. 4:406–425. 

 

Saminadin-Peter SS, Kemkemer C, Pavlidis P, Parsch J. 2012. Selective sweep of a cis-

regulatory sequence in a non-African population of Drosophila melanogaster. Mol. Biol. Evol. 

29:1167–1174. 

 

Sanderson MJ. 1997. A nonparametric approach to estimating divergence times in the absence of 

rate constancy. Mol. Biol. Evol. 14:1218–1231. 

 

Sargis EJ, Dagosto M. 2008. Mammalian evolutionary morphology: a tribute to Frederick S. 

Szalay. (Sargis, Eric J. and Dagosto, Marian, editor.). Netherlands: Springer 

 

Schrider DR, Kern AD. 2016. S/HIC: Robust Identification of Soft and Hard Sweeps Using 

Machine Learning. PLoS Genet. 12:e1005928. 

 

Schrider DR, Kern AD. 2018. Supervised Machine Learning for Population Genetics: A New 

Paradigm. Trends Genet. 34:301–312. 

 

Shao S, Quan Q, Cai T, Song G, Qu Y, Lei F. 2016. Evolution of body morphology and beak 

shape revealed by a morphometric analysis of 14 Paridae species. Front. Zool. 13:30. 

 

Shen X-X, Zhou X, Kominek J, Kurtzman CP, Hittinger CT, Rokas A. 2016. Reconstructing the 

Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data. G3 6:3927–

3939. 

 



27 

Smith SA, Beaulieu JM, Donoghue MJ. 2010. An uncorrelated relaxed-clock analysis suggests 

an earlier origin for flowering plants. Proc. Natl. Acad. Sci. U.S.A. 107:5897–5902. 

 

Takezaki N. 2018. Global Rate Variation in Bony Vertebrates. Genome Biol. Evol. 10:1803–

1815. 

 

Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S. 2012. Estimating 

divergence times in large molecular phylogenies. Proc. Natl. Acad. Sci. U.S.A. 109:19333–

19338. 

 

Tamura K, Tao Q, Kumar S. 2018. Theoretical foundation of the RelTime method for estimating 

divergence times from variable evolutionary rates. Mol. Biol. Evol. 35:1170–1782. 

 

Thorne JL, Kishino H, Painter IS. 1998. Estimating the rate of evolution of the rate of molecular 

evolution. Mol. Biol. Evol. 15:1647–1657. 

 

Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, 

Barker MS, Burleigh JG, Gitzendanner MA, et al. 2014. Phylotranscriptomic analysis of the 

origin and early diversification of land plants. Proc. Natl. Acad. Sci. U.S.A. 111:E4859–4868. 

 

Wiens JJ, Moen DS. 2008. Missing data and the accuracy of Bayesian phylogenetics. J. Syst. 

Evol. 46:307–314. 

 

Wikstrӧm N, Savolainen V, Chase MW. 2001. Evolution of the angiosperms: calibrating the 

family tree. Proc. R. Soc. B 268:2211–2220. 

 

Willcock S, Martínez-López J, Hooftman DA, Bagstad KJ, Balbi S, Marzo A, Prato C, 

Sciandrello S, Signorello G, Voigt B, et al. 2018. Machine learning for ecosystem services. 

Ecosyst. Serv. 33:165-174.  

 

Wyles JS, Kunkel JG, Wilson AC. 1983. Birds, behavior, and anatomical evolution. Proc. Natl. 

Acad. Sci. U.S.A. 80:4394–4397. 

 

Xi Z, Liu L, Davis CC. 2015. The impact of missing data on species tree estimation. Mol. Biol. 

Evol. 33:838–860. 

 

Xie W, Lewis PO, Fan Y, Kuo L, Chen M-H. 2011. Improving marginal likelihood estimation 

for Bayesian phylogenetic model selection. Syst. Biol. 60:150–160. 

 

Yang Z. 1994. Estimating the pattern of nucleotide substitution. J. Mol. Evol. 39:105–111. 

 

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 

24:1586–1591. 

 

Yang Z. 2014. Molecular Evolution: A Statistical Approach. Oxford: Oxford University Press. 

   



28 

Table 1. Patterns of rate autocorrelation inferred using the CorrTest approach. 

Taxonomic 

Group Data type 

Sequence 

counta 

Sequence 

length 

Substitution 

model 

Rate 

modelb CorrScore P-value 1/νc Reference 

Mammals (A) 
Nuclear  

4-fold degenerate sites 
138 1,671 GTR + Γ ABR & IBR 0.98 < 0.001 3.21 Meredith et al. (2011) 

Mammals (B) 
Nuclear  

3rd codon positions 
138 11,010 GTR + Γ ABR & IBR 0.99 < 0.001 4.42d Meredith et al. (2011) 

Mammals (C) Nuclear proteins 138 11,010 JTT + Γ ABR & IBR 0.99 < 0.001 3.11 Meredith et al. (2011) 

Mammals (D) Mitochondrial DNA 271 7,370 HKY + Γ ABR 0.98 < 0.001 3.77e dos Reis et al. (2012) 

Birds (A) Nuclear DNA 198 101,781 GTR + Γ IBR 1.00 < 0.001 2.07f Prum et al. (2015) 

Birds (B) Nuclear 3rd codon positions 222 1,364 GTR + Γ IBR 1.00 < 0.001 2.11 Claramunt and Cracraft (2015) 

Birds (C) 
Nuclear  

1st and 2nd codon positions 
222 2,728 GTR + Γ IBR 1.00 < 0.001 2.53 Claramunt and Cracraft (2015) 

Insects Nuclear proteins 143 220,091 LG +  Γ IBR 1.00 < 0.001 8.68g Misof et al. (2014) 

Metazoans 
Mitochondrial & nuclear 

proteins 
113 2,049 LG + Γ ABR 0.65 < 0.05 40.0 Erwin et al. (2011) 

Plants (A) Plastid 3rd codon positions 335 19,449 GTR + Γ NA 1.00 < 0.001 2.28 Ruhfel et al. (2014) 

Plants (B) Plastid proteins 335 19,449 JTT + Γ NA 1.00 < 0.001 2.46 Ruhfel et al. (2014)  

Plants (C) 
Nuclear  

1st and 2nd codon positions 
99 290,718 GTR + Γ NA 1.00 < 0.001 5.50 Wickett et al. (2014) 

Plants (D) Chloroplast and nuclear DNA 124 5,992 GTR + Γ IBR 1.00 < 0.001 2.64 Beaulieu et al. (2015) 

Fungi Nuclear proteins 85 609,772 LG + Γ NA 0.97 < 0.001 3.78 Shen et al. (2016) 

Parasitic 

protozoans 
Mitochondrial DNA 91 6,863 HKY + Γ ABR & IBR 0.87 < 0.01 2.41 Pacheco et al. (2018) 

Prokaryotes (A) Nuclear proteins 197 6,884 JTT + Γ ABR 0.79 < 0.05 2.54 Battistuzzi and Hedges (2009) 

Prokaryotes (B) Nuclear proteins 126 3,145 JTT + Γ NA 0.83 < 0.05 1.23 Calteau et al. (2014) 

aCounts exclude outgroup taxa. bThe branch rate model used in the original study. ABR: autocorrelated branch rate 

model; IBR: independent branch rate model; NA: no rate model information available. c1/ν is the inverse of the 

autocorrelation parameter that is estimated by MCMCTree using the ABR model in the time unit of 100My. d-g1/v were 
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2.13 and 2.09 for each subtree in Mammals (B); 3.73, 1.04, and 2.47 for each subtree in Mammals (D); 1.60 and 2.07 for 

each subtree in Birds (A); 17.24 and 9.62 for each subtree in Insects.  



30 

Figure Legends 

 

Figure 1. A flowchart showing an overview of the machine learning (McL) approach 

applied to develop the predictive model (CorrTest). We generated (a) 1,000 training 

datasets that were simulated using independent branch rate (IBR) models and (b) 1,000 

training datasets that were simulated using autocorrelated branch rate (ABR) models. 

The numerical state (c) for all IBR datasets was 0 and (d) for all ABR datasets was 1. For 

each dataset, we estimated a molecular phylogeny with branch lengths (e and f) and 

computed ρs, ρad, d1, and d2 (g and h) that served as features during the supervised McL. 

(i) Supervised McL was used to develop a predictive relationship between the input 

features and numerical states. (j) The predictive model produces a CorrScore for an input 

phylogeny with branch lengths. The predictive model was (k) validated with 10-fold and 

2-fold cross-validation tests, (l) tested using external simulated data, and then (m) applied 

to empirical data to examine the prevalence of rate autocorrelation in the tree of life.  

 

Figure 2. An evolutionary tree showing branch lengths (b), lineage lengths (L), lineage 

rates (R), and node times (t). 𝐿𝑎 =  𝑏5 + √𝑏1𝑏2 and 𝐿𝑏 =  𝑏6 + √𝑏3𝑏4. Relative lineage 

rates are computed from branch lengths using equations [28] - [31] and [34] - [39] in 

Tamura et al. (2018).  Node times and branch rates are not required for estimating relative 

lineage rates.   

 

Figure 3. The relationship of (a) ancestral and direct de0scendant lineage rates and (b) 

sister lineage rates when the simulated evolutionary rates were autocorrelated with each 

other (red) or varied independently (blue). The correlation coefficients are shown. (c) The 

decay of correlation between ancestral and descendant lineages when we skip one 

intervening branch (d1) and when we skip two intervening branches (d2). Percent decay 

values are shown. (d) Receiver Operator Characteristic (ROC) and Precision Recall (PR) 

curves (inset) of CorrTest for detecting branch rate model by using only the feature of 

ancestor-descendant lineage rates correlation (ρad, green), only the feature of sister 

lineage rates correlation (ρs, orange), and all four features (all, black). The area under the 

curve is provided. (e) The relationship between the CorrScore produced by the machine 
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learning model and the P-value. Independent branch rate model can be rejected when 

the CorrScore is greater than 0.83 at a significant level of P < 0.01, or when the CorrScore 

is greater than 0.5 at P < 0.05.  

 

Figure 4. The performance of CorrTest in detecting autocorrelated and independent 

branch rate models in the analysis of datasets (Tamura et al. 2012) that were simulated 

with different (a) G+C contents, (b) transition/transversion ratios, and (c) average 

molecular evolutionary rates. The evolutionary rates are in the units of 10-3 substitutions 

per site per million years. (d – f) Patterns of CorrTest accuracy for data subsets containing 

50, 100, 200, 300 and 400 ingroup sequences. The accuracy of CorrTest for different 

sequence lengths is shown when (d) the correct topology was assumed and (e) the 

topology was inferred. (f) The accuracy of CorrTest for datasets in which the inferred 

topology contained small and large number of topological errors. Darker color indicates 

higher accuracy. 

 

Figure 5. Comparisons of the performance of CorrTest and Bayes factor analyses. (a) 

Distributions of 2 times the differences of marginal log-likelihood (2lnK) estimated under 

independent branch rate (IBR) and autocorrelated branch rate (ABR) models via 

stepping-stone sampling method for datasets that were simulated under ABR (red) 

models and IBR (blue) models. ABR model is preferred (P < 0.05) when 2lnK is greater 

than 3.841 (ABR zone), and IBR model is preferred when 2lnK is less than -3.841 (IBR 

zone). When 2lnK is between -3.841 and 3.841, the fit of the two rate models is not 

significantly different (gray shade). (b) The distributions of CorrScores in analyses of ABR 

(red) and IBR (blue) datasets. Rates are predicted to be autocorrelated if the CorrScore 

is greater than 0.5 (P < 0.05, ABR zone) and vary independently if the CorrScore is less 

than 0.5 (IBR zone). (c) The rate of detecting ABR model correctly (true positive rate) at 

different levels of statistical significance in Bayes factor (BF-SS) and CorrTest analyses. 

Posterior probabilities for ABR in BF-SS analysis are derived using the log-likelihood 

patterns in panel a. CorrTest P-values are derived using the CorrScore pattern in panel 

b. (d) The accuracy of identifying ABR model for datasets simulated with low (v ≥ 0.2), 

moderate (0.1 ≤ v < 0.2), and high (v < 0.1) levels of rate autocorrelation in Kishino et al.'s 
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(2001) model. (e) The accuracy of identifying IBR model for datasets simulated at different 

degrees of rate variation in Drummond et al. (2006): low (standard deviation < 0.2), 

moderate (0.2 ≤ standard deviation < 0.3), and high (standard deviation ≥ 0.3). 

 

Figure 6. The distribution of CorrScore for datasets (Tamura et al. 2012) with different 

taxon sampling densities. The CorrScore decreases when the density of taxon sampling 

is lower, as there is much less information to discriminate between ABR and IBR models. 

Red dashed lines mark two statistical significance levels of 5% and 1%. Results are 

summarized from 100 simulated datasets for each taxon sampling category.  

 

Figure 7. The relationship between the inferred autocorrelation parameter (v) from 

MCMCTree and the true value for datasets simulated under autocorrelated branch rate 

models with the true v ranging from 0.01 to 0.3. The gray line represents the best-fit 

regression line, which has a slope of 1.09. 

 

Figure 8. Patterns of CorrTest accuracy using the specific thresholds determined by 

predictive models trained with different ranges of the number of sequences (n): M100 (n 

≤ 100), M200 (100 < n ≤ 200), M300 (200 < n ≤ 300), and M400 (n > 300) for the 

corresponding test datasets (Tamura et al. 2012). Accuracies are shown for 50, 100, 200, 

300, and 400 ingroup sequences. The accuracy of CorrTest for different sequence 

lengths is shown when (a) the correct topology was assumed and (b) the topology was 

inferred. (c) The accuracy of CorrTest for datasets in which the inferred topology 

contained small and large number of topological errors. Darker color indicates higher 

accuracy. 
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