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ABSTRACT: Discussed herein is the synthesis of partially protected carbohydrates by manipulating only one type of a protecting group
for a given substrate. The first focus of this review is the uniform protection of the unprotected starting material in the way that only one (or
two) hydroxyl groups remain unprotected. The second focus involves regioselective partial deprotection of uniformly protected compounds
in the way that only one (or two) hydroxyl groups become liberated..
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1. Introduction and basic considerations

Carbohydrates are the most abundant molecules among the four es-
sential classes of biomolecules that also include nucleic acids, li-
pids, and proteins. Unlike proteins and nucleic acids, which follow
template-driven synthetic pathways, there is no general route to the
synthesis of carbohydrates. Monosaccharides are polyhydroxylated
molecules, and regioselective protection and deprotection of spe-
cific hydroxyl groups over others represents one of the major chal-
lenges in carbohydrate chemistry.!* During sequencing of simple
monosaccharides into larger oligomeric networks, most of the func-
tional groups need to be temporarily blocked by protecting groups.
On the other hand, functional groups involved in the coupling

process need to be left unprotected or regioselectively liberated.
Therefore, it is significant to develop regioselective methods to
simplify the preparation of partially or differentially substituted
synthetic intermediates.* As a consequence, regioselective protec-
tion and deprotection of carbohydrates has been a vibrant area of
research. Orthogonal or selectively removable protecting group
manipulations have been extensively employed in oligosaccharide
synthesis.>® However, these strategies require a specialized
knowledge of various protecting groups, reaction conditions for
their installation and removal, and application strategies to differ-
ent sugar series.

Despite a significant progress in this area, and the availability of
streamlining one-pot processes,’"1? in a majority of the applications
a large number of protecting group manipulation steps are required
to obtain the desired regioselectively substituted product. While or-
thogonal, semi-orthogonal, or selectively removable protecting
groups represent a very important direction of carbohydrate synthe-
sis, discussed herein in the synthesis of partially protected carbo-
hydrates by manipulating only one type of a protecting group for a
given derivative. While some overlap with orthogonal protecting
group strategies is inevitable, a more comprehensive coverage of
the topic is available in a number of excellent recent reviews.>1%13
16 Two major focuses of this review article are depicted in Scheme
1. The first focus is the protection of the unprotected starting mate-
rial in the way that only one (or two) hydroxyl groups remain un-
protected. The second focus leads to the formation of the same type
of derivatives, but it rather involves regioselective partial deprotec-
tion of uniformly protected compounds. At times, we chose to dis-
cuss these two major focus areas in application to differentially



protected carbohydrates. These examples include some new reac-
tions that have only been applied to such molecules, but in our opin-
ion could also be generally relevant to the uniformly protected sys-
tems.

Scheme 1. The overview of protecting group strategies de-
scribed herein
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The application of partially protected building blocks is fundamen-
tal to oligosaccharide synthesis. Mono-hydroxylated building
blocks can be directly utilized as glycosyl acceptors in glycosyla-
tion reactions. Di-hydroxylated building blocks can also be utilized
as glycosyl acceptors, for example, for the synthesis of branched
glycan sequences. Alternatively, the diols are useful synthetic in-
termediates for further transformations because the differentiation
between two hydroxyls is typically much simpler than that of fully
unprotected sugars containing four or more hydroxyls.

Inherent difference in reactivity of various hydroxyl groups in car-
bohydrates have been investigated to achieve selective protection.
Primary hydroxyl groups are sterically less hindered than their sec-
ondary counterparts, which offers an opportunity for their regiose-
lective protection.!” The best-known examples is the use of bulky
(trityl, silyl) protecting groups to selectively protect primary hy-
droxyl groups in the presence of secondary ones. Steric hindrance,
as well as the electronic effects, can also be utilized to some extent
to discriminate between certain secondary hydroxyl groups.'® In
addition, hydrogen bond networks were also proposed as a possible
driving force for the regioselective protection.

Early studies by Williams and co-workers revealed general reactiv-
ity trends of various hydroxyls.'® These studies also gave an appre-
ciation that even similarly positioned hydroxyls of different sugar
series may have different reactivities towards regioselective protec-
tion. Thus, the order of reactivity towards benzoylation was deter-
mined to be: 2-OH > 3-OH > 4-OH for D-gluco, 3-OH > 2-OH >
4-OH for D-manno, and 2-OH, 3-OH > 4-OH for the D-galacto se-
ries. In 1990, Hanessian attempted partial acetylation of methyl a-
D-glucopyranoside 1 with and without the use of zinc chloride ad-
ditive.?® Compared with the control experiment, the addition 1
equiv of zinc(Il) chloride enhanced the selectivity of the formation
of the 3,4-diol product (Scheme 2). However, the regioselectivity
and the product distribution was below preparative value for main-
stream application in carbohydrate synthesis. This example clearly
illustrates the challenge that synthetic chemists dealing with regi-
oselective protection of carbohydrates face.

Scheme 2. Partial acetylation of methyl a-D-glucopyranoside
1 provides a mixture of products
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2. Synthesis of partially substituted building blocks by
uniform regioselective protection

This section is focused on discussing those methods wherein the
unprotected (or polyol) starting material is regioselectively pro-
tected in the way that only one (or two) hydroxyl groups remain
unprotected.

2.1. Ester groups

Ester protecting groups are ubiquitous in carbohydrate chemistry
because acylation of hydroxyl groups is typically an efficient and
high-yielding process. Common methods of esterification utilize an
acid chloride or an acid anhydride as the acylating reagent in the
presence of pyridine. Sometimes, more reactive nucleophilic cata-
lysts such as DMAP are also employed. In 1975, Williams and co-
workers observed that benzoylation of a-D-glucose with benzoyl
chloride (4.2 equiv) in anhydrous pyridine at -35 °C provided
1,2,3,6-tetrabenzoate (4-OH derivative) 2 in 37% yield (Scheme 3).
When similar conditions were applied to a-D-mannose, the respec-
tive 4-OH derivative 3 was obtained in 51% yield.?! The synthesis
of 1,2,3,6-tetrabenzoate 4 from o-D-galactose using benzoyl chlo-
ride in pyridine at low temperature was achieved in 38% yield.?>23
These results clearly demonstrate that 4-OH is typically the least
reactive hydroxyl access these sugar series. In contrast, a very re-
cent report describes selective benzoylations of various a-D-galac-
topyranosides 5 with benzoyl cyanide to produce 3-OH compound
6 in good yields of 61-67%.2* The regioselectivity achieved was
rationalized by the existence of the “cyanide effect” that favors 4-
O-benzoylation and “the alkoxy group mediated diol effect” that
favors 2-O-benzoylation with BzCN in the presence of DMAP.

An efficient method for regioselective benzoylation of diols and
polyols was developed by Dong and co-workers.? This regioselec-
tive method does not rely on any amine bases or metal-based cata-
lysts. Thus, benzoylation of methyl glycosides of the D-gluco, D-
galacto, and D-manno series with benzoic anhydride catalyzed by
tetrabutylammonium benzoate led to 2,4-diols in 70-91% yield.

Tin-mediated acylation was initially developed and used for mon-
oacylations of polyhydroxylated compounds.?®2” The tin-mediated
reactions of carbohydrates with acylating reagents has been an
effective way to acheive differentiation between 1,2- and 1,3-diol
pairs.?® More recently, Zhang and Wong performed regioselective
polyacylation reactions of various sugars using an excess of BzCl
and Bu2SnO at higher temperatures (70-100 °C).2° The stannylene
acetal was proposed as an intermediate of the reaction of methyl a-
D-glucopyranoside 1 with O-2 coordinating with the anomeric
methoxy and O-6 coordinating with the ring oxygen. This reaction
produced 4-OH glucoside 7 with high regioselectivity in 91% yield
(Scheme 3). Interestingly, while a comparable outcome was
achieved with the D-manno substrate, the D-galacto counterpart
gave much lower regioselectivity.? Tosylation and benzylation can
also be achieved regioselectively using a similar approach.® The
principles and applications of tin-mediated reactions have been ex-
tensively reviewed.3!-34

Scheme 3. Regioselective benzoylation
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Regioselective acetylation can be achieved by using iodine with
ether-protected sugar derivatives.?* Upon the treatment of 3-O-ben-
zyl glucose 8 with acetic anhydride containing iodine at rt, 1,6-di-
O-acetate 9 was obtained in 90% yield (Scheme 4). The reaction
rate was improved at higher temperatures, but the regioselectivity
was not affected. Many methods have been known to perform se-
lective acetylation. Joseph et al. developed a regioselective one-pot
silylation and acetylation method to form a partially acetylated
sugar.’® After TMSOTf-catalyzed silylation of D-glucose with
HMDS, followed by acetylation, 6-O-acetyl glucopyranose 10 was
formed as the major product via per-O-trimethylsilylated interme-
diate (Scheme 4). When per-O-TMS protected sugar in a mixture
of pyridine and acetic anhydride is treated with acetic acid, regiose-
lective exchange of TMS for acetate protecting groups occurs.’’
This process was termed as Regioselective Silyl Exchange Tech-
nology (ReSET). This method has been applied to glucose,® galac-
tose, mannose, lactose,®” and sialic acids.’® Regiocontrol is
achieved by limiting the equivalents of acetic acid, varying thermal
conditions and using microwave assistance.

Besides the ReSET approach, many catalysts such as 1-acetylimid-
azole,** Cr-symmetric chiral 4-pyrrolidinopyridine,*' copper(II),*
tetrabutylammonium acetate,*> Mitsunobu conditions,* borinic ac-
ids,*% and cyanides*’ can help to achieve regioselective acylation.
However, very few of them can protect free sugars in one step and
leave only one hydroxyl group free. MoCls has been used as an
effective catalyst for selective 3-acetylation of methyl 6-deoxyhex-
oses.®® Acetylation with Ac2O in the presence of catalytic MoCls
produced 3-O-acetyl derivative 12 regioselectively in 91% yield
from methyl a-L-rhamnopyranoside 11 (Scheme 4). Kulkarni and
co-worker also studied acylation of rhamnosides.* In particular,
acetylation of phenylthio B-L-rhamnopyranoside with acetyl or
benzoyl chloride (1.1 equiv) in the presence of catalytic Me2SnCl12
at rt afforded the corresponding 3-O-acylated derivatives in 95-
98% yield. When the same starting material was benzoylated with
2.1 equiv of BzCl in pyridine at -30 °C, 2,3-di-O-benzoylated rham-
noside was produced in 71% yield.*

Scheme 4. Examples of regioselective acetylation
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When Kurahashi et al. treated octyl a- and B-glucopyranosides with
a sub-stoichiometric amount of acetic anhydride in the presence of
a catalytic amount of DMAP, 3-, 4- and 6-nonoacetylated gluco-
sides were obtained in a 2/2/1 ratio.’® Recently, Ren et al. described
a method for selective acetylation of glycosides using tetrabu-
tylammonium acetate as catalyst.*> However, all these investiga-
tions of inherent reactivity differences and partial protections of
glycoside hydroxyl groups did not provide products with exclusive
regioselectivity. More recently, mono-hydroxyl building blocks
were synthesized by reagent-dependent regioselectively controlled
poly-acetylation.’! For methyl B-D-galactopyranoside 13, the use
of Ac20 or AcCl as acetylating reagents lead to the formation of 2-
OH compound 14 or 4-OH compound 15, respectively (Scheme 5).
For methyl B-D-glucopyranoside 16, either acetylating reagent
gave 4-OH compound 17 as the major product. When treated with
3.3 equiv. of Ac2O in acetonitrile solvent, both methyl a-D-
glucopyranoside 1 and methyl a-D-mannopyranoside 19 gave the
corresponding 4-OH products 18 and 20 in 90% yield. To explain
the regioselectivity obtained, reagent-dependent thermodynamic
and kinetic control and dynamic assistance mechanisms were pro-
posed.’! Thus, when acetyl chloride was used as the acylating a
monodentate chlorostannane complex was generated, whereas ac-
ylation with acetic anhydride proceeded via a less reactive biden-
tate acetoxystannane.



Scheme S. Reagent-dependent tin-mediated acetylation
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The introduction of bulky ester groups was proven to be a much
more promising venue. Becker and Galili prepared partially
pivaloylated saccharides by using pivaloyl chloride in the presence
of pyridine.* 1,3,4,6-Tetra-O-pivaloyl derivative 22 was formed in
59% yield as the major product resulting from the reaction of D-
mannose 21 with pivaloyl chloride in the presence of pyridine in
chloroform at 35 °C (Scheme 6). Alternatively, a similar reaction
performed at -10 °C produced a tetra-pivaloylated product with the
free 4-OH group.>® Regioselective pivaloylation of trichloroethyl
galactoside 23 using pivaloyl chloride in the presence of pyridine
in dichloromethane gave 4-OH product 24 in 64% yield (Scheme
6). A selective and high yielding double pivaloylation of different
sugar substrates using pivaloyl chloride has also been described.
See, for example, the synthesis of diols 25 and 26 depicted in
Scheme 6.%* Equatorial hydroxyl groups adjacent to axial substitu-
ents were observed have higher reactivity as they were more acces-
sible than equatorial ones flanked by other equatorial substituents.
For compound 27, which does not have any axial hydroxyl groups,
selective protection occurred at the C6 and C3 positions to afford
product 28.

2.2. Alkyl and silyl groups

Alkyl group protection is widely used in carbohydrate chemistry
due to its stability. Simple alkyl ethers such as methyl ethers are
less preferred in complex carbohydrate synthesis because they are
too stable to be removed.?® Of the numerous alkyl protecting groups
known, the most important are the benzyl (Bn) and allyl (All)
groups and their derivatives. Direct regioselective benzylation of
polyols is fairly rare. One such example was described by Koto et
al >>example wherein 3-OH derivative 29 was obtained in 61%
from methyl glucoside 1 by controlled heating with excess BnCl in
the presence of NaH added potrionwise to 3.3 equiv total (Scheme
7).

Scheme 6. Regioselective protection with pivaloyl groups
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In a majority of applications regioselective alkylations require
metal chelating reagents and additives. Alkylations proceeding via
tin intermediates is arguably the most common method to achieve
regioselective protection.3!335¢60 Other metal catalysts such as
copper(I),! nickel(IT),%? and iron(I11)®* have also been used for re-
gioselective alkylation. These methods are primarily used for se-
lective mono- and di-alkylation, the formation of monohydrox-
ylated products commonly used substrates containing other pro-
tecting groups, such as benzylidene acetals.

Recently, Vishwakarma and co-workers improved the tin-mediated
alkylation method by using catalytic amount of Me2SnCl> and
Ag20 as additives, which gave excellent selectivity at rt. Thus, 2,3-
diol 30 was regioselectively alkylated producing 3-O-allyl and 3-
O-p-methoxylbenzyl derivatives 31 and 32 in excellent yields.
(Scheme 7).%* Oshima et al. developed an alkylation method spe-
cific for the C-3 position using cyclic phenylboronate in the pres-
ence of an amine.® Taylor devised C-3 alkylation reaction using a
diarylborinic acid derivative.® Iadonisi developed another method
for selective benzylation that is applicable to primary hydroxyl
group using stoichiometric amount of DIPEA and BnBr and cata-
lytic amount of TBAL®” Some tin-mediated alkylations allow for
multiple protections. Representative examples include the synthe-
sis of 3,6-di-Bn derivative 33 from methyl galactoside 5,% and 2,6-
di-Bn derivative 34 from methyl glucoside 1 (Scheme 7).°® Ben-
zylation of per-TMS-protected sugars via reductive etherification
of benzaldehyde® has also received notable attention, most promi-
nently as a part of the multi-step one-pot sequences.’!!

Halmos et al. investigated the regioselective silylation of galacto-
pyranosides using TBDMSCI and imidazole in the presence of
DMF.”° For both the a- and B-anomers 5 and 13, the corresponding
2,6-di-O-silylated compounds were formed predominantly. Much
higher regioselectivity was observed for f-anomer 13 (Scheme 7).
Schlaf and co-worker devised a silane alcoholysis method for se-
lective trisilylation using homogeneous metal catalysts.”! High se-
lectivity for silylation of galactoside 5 was achieved in the presence
of Ir(I) catalyst. As a result, 2,3,6-tri-O-tert-butyldimethylsilyl ga-
lactoside 35 was obtained in 89% yield.

Scheme 7. Regioselective alkylation and silylation
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2.3. Cyclic groups

Cyclic acetals and ketals have been widely used for the protection
of various diol systems in synthetic carbohydrate chemistry.’>7
The installation of multiple acetal/ketal groups in a single mono-
saccharide unit is commonly used for polyols or alditols.”® Alt-
hough the double protection using cyclic acetals/ketals would have
been a very effective method to obtain building blocks containing
only one hydroxyl group in hexoses it remains fairly rare beyond
diacetone glucofuranose (3-OH) and galactopyranose (6-OH).
Thus, Rokade and Bhate devised a simple and convenient large-
scale method for the synthesis of di-O-isopropylidene protected
sugars by using deep eutectic solvent (DES) prepared from choline
chloride and malonic acid.”” D-Glucose can be directly converted
to 1,2:5,6-di-O-isopropylidene-a-D-glucofuranose 36 in 90% yield
whereas D-galactose can be converted into 1,2:3,4-di-O-isopropy-
lidene-a-D-galactopyranose 37 in 92% yield (Scheme 8). D-Fruc-
tose can also be protected as 2,3:4,5-di-O-isopropylidene-p-D-fruc-
topyranose 38 using this method in 89% yield. In case of D-man-
nose, 2,3:5,6-di-O-isopropylidene-a/B-D-mannofuranose with the
unprotected anomeric hemiacetal was formed. All these building
blocks represent regioselectively protected compounds that have
only one hydroxyl group. Hence, these can be used as glycosyl ac-
ceptors or intermediates for the further protection directly. In addi-
tion, one ketal is typically less stable than another, which offers a
convenient opportunity for further diversification.”® The double
protection using benzylidene acetal is much less explored. In one
such application, 1,2:3,4-di-O-benzylidene-D-galactopyranose
could be synthesized from D-galactose using benzaldehyde and
ZnCl2.”® Wood et al. improved the preparation of 4,6-O-benzyli-
dene-D-glucopyranose, which lead to the formation of 1,2:4,6-di-
O-benzylidene-a-D-glucopyranose as an by-product.®

Scheme 8. Double ketal protection of hexoses
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3. Synthesis of partially substituted building blocks by

regioselective deprotection of uniformly protected substrates

In addition to protection strategies, partially substituted derivatives
can be obtained by regioselective deprotection of fully substituted
precursors. This approach also extends to the uniformly protected
precursors.

3.1. Ester group removal and migration

In general, esters are moderately stable under acidic conditions in
the absence of water and other hydroxylated solvents. However,
many esters are labile in the presence of nucleophiles, particularly
alkoxides, amines, organometallics, and hydride transfer agents. It
has been observed that essentially the same ester groups may have
different stability at different positions of the ring. Thus, Haines et
al. reported that a primary amine can be used for selective deacety-
lation of sucrose.3! Fully acetylated sucrose 39 was treated with
propylamine at rt for 50 min to give diol 40 in 22% yield (Scheme
9).

Isopropylamine was also investigated but gave even lower yields.
Ren and co-workers were able to carry out regioselective deprotec-
tions of primary acetyl esters in the presence of iodine.®? As de-
picted in Scheme 9, when various S-tolyl (Tol) glycosides 41, 43
and 45 were treated with 1% iodine—methanol solution at 70 °C for
5.5 h, 6-OH products 42, 44 and 46 were obtained in 38-43% yields.
It was presumed that the electrophilic attack of iodine on the oxy-
gen atom of the primary acetate is more favorable than that of the
more hindered acetates at secondary positions. Very recently,
Lecourt and co-workers achieved a similar outcome by using a
combination of DIBAL-H and Cp2ZrCl: to promote the regioselec-
tive cleavage of primary acetates on a variety of substrates.®?

Scheme 9. Examples of regioselective deacetylation
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Some acyl groups may undergo migration through a neighboring
group effect via the formation of the respective orthoester as an in-
termediate. Acyl group migration has been proven to be a useful
approach to obtain partially substituted building blocks for oligo-
saccharide synthesis.?*%¢ In 1962, Helferich and Zirner®” synthe-
sized 1,3,4,6-tetra-O-acetyl-a-D-glucopyranose 47 from D-glucose
via a three-step in-situ procedure. This synthesis requires strict con-
trol of the reaction temperature and reactant addition and still gives
only 27% yield overall (Scheme 10).

A few years later, Chittenden reported a simplified method for the
synthesis of 1,3,4,6-tetra-O-acetyl-a-D-galactopyranose using tri-
fluoroacetic acid-water solution.®® 1,2,3,4,6-penta-O-acetyl-B-D-
galactopyranose 48 was treated with aqueous trifluoroacetic acid at
rt for 5 h to give 1,3,4,6-tetra-O-acetyl-a-D-galactopyranose 49 in
72% yield (Scheme 10). The a-anomer of D-galactopyranose/glu-
copyranose pentaacetate is unreactive under these reaction condi-
tions. When 1,2,3,4,6-penta-O-acetyl-p-D-glucopyranose was
treated under the same reaction conditions, only 2,3,4,6-tetra-O-ac-
etyl-D-glucopyranose was produced as the major product.

Recently, Demchenko et al. reinvestigated the synthesis of 2-OH
glucose.® When acetobromoglucose 50 was treated with ce-
rium(IV) ammonium nitrate (CAN) 2-OH glucose 47 was obtained
in 51% yield (Scheme 10). This procedure was recently further im-
proved by using AgNO3 as the additive and glycosyl nitrates were
found to be intermediates in this reaction.”® AgNOQ3 is able to con-
vert glycosyl bromide 50 to glycosyl nitrate 51 in 77% yield within
5 min. Subsequently, 2-OH glucose 47 formed by re-dissolving
compound 51 in wet MeCN (Scheme 10). The isolation of glycosyl
nitrate 51 suppressed the formation of by-product 2,3,4,6-tetra-O-
acetyl-D-glucopyranose. Hanessian and Kagotani found that lith-
ium hydroperoxide could be used to remove the 2-O-acetyl group
regioselectively from methyl 2,3,4,6-tetra-O-acetyl-a-D-glycoside
52 to afford 2-OH product 53 in 50% yield (Scheme 10).2° For
penta-O-acetyl-D-glucose, lithium hydroperoxide removed the ac-
etyl group at C-2 position as well as at the anomeric position.

Scheme 10. The synthesis of 2-OH derivatives
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Hydrazine hydrate can also be used for selective deacetylation at
C-2 position.’! On the treatment of various glycosides 52, a-54 and
B-54 the corresponding 2-OH products 53, a-55 and B-55 was ob-
tained in moderate yields of 46-49% (Scheme 10). When a bis-
muth(III) salt was used to promote glycosylation of allyl alcohol
with glucosyl iodide 57, obtained from glucose pentaacetate 56, the
corresponding 2-OH allyl glucoside 55 was formed as the major
product in 57% yield instead of the anticipated tetra-O-acetylated
product (Scheme 10).”2 An allyl orthoester intermediate was sug-
gested to form during the bismuth(III) activation step.

3.2. Ether group removal

Benzyl groups are commonly used as protecting groups in carbo-
hydrate chemistry. Due to their general stability, these groups are
considered to be “permanent” protecting groups that are only re-
moved at the end of the target synthesis. However, it was observed
that some benzyl groups may have different stability at different
positions of the ring. In particular, regioselective acetolysis of 6-O-
benzyl group in the presence of secondary benzyl groups is argua-
bly the best known and most commonly applied approach.?*-%3 For
example, freshly fused ZnClz in Ac2O/AcOH has been used for the



acetolysis of 6-O-benzyl groups in mono- and disaccharide deriva-
tives at room temperature.”® Per-benzylated mannoside 58 was
treated with ZnClz in Ac2O/AcOH for 2 h to produce 6-O-acetyl
product 59 in 85% yield (Scheme 11). The same type of a transfor-
mation can be achieved by regioselective acetolysis with tol-
uenesulfonic acid®” or isopropenyl acetate (IPA) in the presence of
iodine or iodine/silane.” Thus, when a premixed solution of iodine
and polymethylhydrosiloxane (PMHS) in dichloromethane was
used followed by the addition of IPA as the acetylating reagent, 6-
O-acetyl compound 59 was formed from per-O-benzylated manno-
side 58 in 80% yield. More recently, Li and co-workers developed
a highly efficient and mild method for regioselective de-O-benzyla-
tion by transforming primary benzyl ethers to silyl ethers using
Co02(CO)s-Et3SiH under 1 atm of CO.% Per-O-benzylated manno-
side 58 was treated with Co2(CO)s/Et3SiH/CO conditions to give 6-
O-triethylsilyl compound 60 in 92% yield (Scheme 11). This
method was also successfully applied to various monosaccharide
substrates with different anomeric protecting groups, as well as nat-
ural disaccharides and trisaccharides including sucrose, raffinose
and others. A similar protocol was applied to the regioselective re-
moval of methyl ether protecting groups.”® For per-O-methylated
thioglucoside, primary methyl group was removed selectively and
the respective 6-O-acetyl product was formed in 52% yield along
with 3,6-di-O-acetyl compound was also formed as a minor side-
product.

Scheme 11. Examples of regioselective primary debenzylation
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The earlier examples of regioselective de-0-benzylation include
that of perbenzylated methyl lyxoside by Grignard reagent,'% and
perbenzylated methyl ribofuranoside with tin tetrachloride.'®! The
selective heterogeneous catalytic transfer hydrogenolysis per-
benzylated 1,6-anhydrohexoses catalyzed by palladium on char-
coal was developed by Martin-Lomas.'? 1,6-Anhydro-2,3,4-tri-O-
benzyl-B-D-mannopyranose 61 was treated with 10% Pd/C in re-
fluxing 2-propanol for 4 h, to produce 1,6-anhydro-3-O-benzoyl-f3-
D-mannopyranose 62 in 40% yield (Scheme 12). The regioselective
removal of one secondary benzyl substituent in per-benzylated 1,6-
anhydrohexoses by Lewis acids SnCls and TiCls was developed by
Meguro and co-workers.'® 1,6-Anhydro-2,3,4-tri-O-benzyl-B-D-
mannopyranose 61 was treated with SnCl4 to produce 2-OH deriv-
ative 63 in 92% along with its 3-OH regioisomers (5%). A similar
result albeit lower yield of 62 due to relaxed regioselectivity were
obtained with TiCla. Spectral studies showed the evidence of the
formation of the metal-sugar complexes, thus requiring three ap-
propriately situated alkoxyl groups for the selective de-O-benzyla-
tion.

Catalytic transfer hydrogenation (CTH) can be performed using
HCO:NH4 and Pd/C catalyst to selectively remove 2-O-benzyl
groups in derivatives of D-glucose, D-mannose, and D-galac-
tose.!% Sinay, Sollogoub and their co-workers developed a method

for regioselective de-O-benzylation of polybenzylated sugars using
an excess of triisobutylaluminium (TIBAL) or diisobutylalumin-
ium hydride (DIBAL-H).'% Treatment of per-benzylated glucoside
64 with 5 equiv. of TIBAL in toluene at 50 °C led to 2-O-deben-
zylated product 65 in 98% yield (Scheme 12). For the reaction to
occur, a 1,2-cis arrangement of adjacent oxygen atoms is required
to form a chelation complex with the first mole of the aluminum
reagent. The second mole of the reagent then induces the regiose-
lectivity of the de-alkylation by coordinating preferentially to one
of the oxygen atoms of the selected pair. The same transformation,
albeit much slower rate, can be performed in the presence of
AlMe;3.106

Tadonisi and co-workers developed another method for regioselec-
tive O-debenzylation using Io/Et3SiH at low temperature.!?’ The re-
gioselectivity is dependent on the nature of the precursor and the
most sterically hindered position is often deprotected. Methyl ga-
lactoside 66 was treated with 1.25 equiv. of I» and 1.25 equiv. of
Et3SiH at low temperature for 15 min to afford 4-OH derivative 67.
In case of disaccharide 68, the 3-O-benzyl group was removed with
excellent regioselectivity to produce compound 69 in 96% yield
(Scheme 12).

Scheme 12. Examples of regioselective secondary debenzyla-
tion
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An interesting reaction proceeding via a xanthate-mediated intra-
molecular 1,7-hydrogen atom transfer of a benzylic hydrogen atom
to an O-silylmethylene radical was found capable of initiating the
regioselective mono-de-O-benzylation of benzylated saccha-
rides.!%® This method can be applied to a variety of substrates and
gave moderate to good yields (Scheme 12). Xanthate 70 was treated
with dilauroyl peroxide, followed by acid and TBAF in refluxing
1,2-dichloroethane to give diol 71 in 75% yield. The reaction ter-
minates by an ionic mechanism and is general for benzylated sub-
strates having a variety of functional groups. Intramolecular acti-
vation of per-benzylated C-glycosides to affect regioselective
deprotection at C-2 can be carried out in the presence of io-
dine.!%110 Boron trichloride (BCl3) has also been investigated as a
reagent to achieve regioselective deprotection of 1,2- or 1,3-cis



oriented secondary benzyl ethers of poly-benzylated C-glycosyl de-
rivatives.!"! Another method for regioselective de-O-benzylation
of poly-benzylated sugars is to use CrCl/Lil in moist EtOAc.!!?
The regioselectivity is dependent on the three-point coordination
between the carbohydrate and Cr.

p-Methoxylbenzyl (PMB) ethers are less stable than unsubstituted
benzyls. Kartha and co-workers explored a possibility for regiose-
lective PMB removal using SnCls at low temperature.!'> When di-
O-PMB derivative 72 was treated with SnCls (0.25 mmol) in
CH2Cl; at -20 °C for 8 min, 2-O-PMB group was removed and
mono-O-PMB ether 73 was obtained in 70% yield (Scheme 13).
The initial preferential removal of the 2-O-PMB group in 72 was
rationalized by the formation of a tin complex as an intermediate.
Regioselective removal of p-methoxybenzyl (PMB) group at the C-
5 position for hexafuranose and pentafuranose derivatives was
achieved using a catalytic amount of tin chloride dihydrate (SnClz-
2H20) or 0.5-10% solution of trifluoroacetic acid (TFA) in di-
chloromethane in good yields.!'* For tri-O-PMB protected gluco-
furanose 74, the 5-O-PMB group could be removed selectively us-
ing a 0.5% solution of TFA in CH2Cl2 to form the 5-OH product 75
in 80% yield (Scheme 13).

Scheme 13. Regioselective removal of PMB groups

O _oPmMB O _oPmB
>( 0 SnCl,, CH,Cly >( o
(0] OMe  -20°C, 8 min 0 OMe
HO
73

PMBO 70%
72
OPMB OPMB
PMBQ" A\ -0 TFA (0.5%) PMBOM
0 CH20</3|2 o
e o+ 80% 5 O

The regioselective deprotection of a primary fert-butyldimethylsi-
lyl (TBDMS) group of fully O-TBDMS protected monosaccha-
rides by using boron trichloride (BCls) was devised.'"® Fully O-
TBDMS protected benzyl mannoside 76 was treated with BCl; at
257 for 2.8 h and gave 81% of the 6-OH product 77 (Scheme 14).
The TBDMS group was also observed to migrate from the C-6 to
C-4 position of glucosides under typical basic benzylation condi-
tions.!'® Cui ef al. developed a method to selectively remove a pri-
mary trimethylsilyl (TMS) group of per-O-TMS protected carbo-
hydrates using ammonium acetate (NH4OAc).!'7 On the treatment
of the per-O-TMS protected glucoside 78 with 2 equiv. of NH4OAc
the corresponding 6-OH product 79 was obtained in 91% yield
(Scheme 14). Various monosaccharides and disaccharides were in-
vestigated under these reaction conditions giving the desired prod-
ucts in excellent yields. When the precursor had no primary TMS
group, no reaction occurred under these reaction conditions.

Scheme 14. Regioselective desilylation
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3.3. Cyclic group removal and opening

In di-O-isopropylidene protected derivative, sometimes one ketal
can be removed regioselectively over another. The regioselective
removal of the acetal groups of di-O-isopropylidene-protected py-
ranoses was barely studied. The few known examples include the

removal of 3,4-O-isopropyliden in the presence of 1,2-O-isopropy-
lidene ketal in diacetone galactose with dilute hydrochloric acid in
acetone,'!® and with concentrated nitric acid in ethyl acetate.>* Re-
cently, Zhang et al. developed the removal of 1,2-O-isopropylidene
in the presence of 3,4-O-isopropylidene ketal in diacetone galac-
tose. Di-O-acetate 81 was obtained in 78% yield from the di-O-
isopropylidene protected pyranose 80 in the presence of TFA and
acetic anhydride (Scheme 15).7® The same conditions were also
successfully applied to the regioselective 4,5-O-acetolysis of
2,3:4,5-di-O-isopropylidene-p-D-fructopyranose 82 to produce
compound 83 in 76% yield. The corresponding 1,2-O-isopropy-
lidene derivatives were obtained selectively by UV irradiation of
1,2:5,6-di-O-isopropylidene-a-D-glucofuranose and 1,2:3,5-di-O-
isopropylidene-o-D-xylofuranose, respectively.'?

Scheme 15. Regioselective deprotection of isopropylidene
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In 1994, Luh and co-workers reported that di-acetonide glucose de-
rivative 84 can be reductively opened to produce mono-hydroxyl
derivatives with high regioselectivity using MeMgl.'?° When diac-
etone glucose 84 was treated with 4 equiv. of MeMgl in benzene at
60 °C for 1 h, the corresponding 2-OH derivative 85 was formed in
95% yield (Scheme 15). In a similar fashion, treatment of com-
pound 86 with MeMgl afforded 87 exclusively in 68% yield
(Scheme 15). Presumably, the chelation of the Grignard reagent
with the methoxy group at C-6 controls the regioselectivity.

Cyclic acetals are important protecting groups in carbohydrate
chemistry and many can be opened regioselectively to form mono
hydroxyl products. Many methods have been developed to dedi-
cated to this topic,'?! and a very recent review by Janssens et al.
offers the most up to date coverage of the topic.'?> Discussed herein
are only some representative examples relevant to the topic of this
review. In 1969, Bhattacharjee and Gorin applied the mixed
hydrides in the reduction of carbohydrate series for the first time.'?
One molar equivalent of LiAlHs-AlICIs (1/1) was used for the re-
duction of hexafuranose and hexapyranose acetals. After 40 h, a
uniformly protected 6-OH derivative 89 was obtained in 64% yield
from methyl 2,3-di-O-benzyl-4,6-O-benzylidene-f3-D-glucopyra-
noside 88 (Scheme 16). The 2-OH derivative 91 was obtained in
56% yield from methyl 2,3:4,6-di-O-benzylidene-o-mannopyra-
noside 90 in 3.5 h when 2 equivalents of LiAIH4-AICl3 (1/1) mix-
ture was used. The formation of trace amounts of the 3-OH side
product was also noted (Scheme 16). The study of the factors that
orient the cleavage of a 4,6-O-benzylidene group undertaken by



Liptak and co-workers showed that the direction of the cleavage of
the benzylidene ring is affected by the bulkiness of the protecting
group at C-3124123 and exo/endo stereochemistry of benzylidene ac-
etal.!?%127 This was investigated on a series of 2,3-O-benzylidene
protected L-rhamnopyranosides wherein 2-OH products were fa-
vored from exo-isomers whereas 3-OH products were obtained
from exo-benzylidene precursors.'?”12° It was also demonstrated
that the direction of cleavage is independent on the anomeric con-
figuration or the character of the aglycone moiety.!3

Garegg et al. discovered that reductive opening of 4,6-O-benzyli-
dene acetals of hexapyranosides using NaBH3CN-HCIl gave differ-
ent regioselectivity than LiAlH4-AlCls, yielding 6-O-benzyl prod-
uct 4,6-O-benzylidene acetals.'3132 6-O-Benzyl derivatives 93, 95
and 97 were obtained from the reductive cleavage of the starting
materials 92, 94 and 96 in 60-95% yield (Scheme 16). This may be
explained by steric factors. When a reducing agent with a greater
steric demand like LiAlH4-AICl; is used, the reductive opening re-
action tends to for 60H products. When NaBH3CN-HCI is used,
the steric requirement of the electrophile is much smaller and the
direction of the equilibrium is governed mainly by the relative ba-
sicities of O-4 and O-6, and the formation of the secondary 4-OH
product typically prevails. The direction of regioselective opening
of'4,6-O-benzylidene acetals of hexapyranosides using BH3*MesN-
AICI; in different solvents were investigated by Ek et al.'3? For the
reaction of 4,6-O-benzylidene derivative 92 in toluene 60H prod-
uct 98 was obtained. When THF was used as the reaction solvent,
40H product 93 was obtained (Scheme 16). A pronounced solvent
effect was also reported by Oikawa et al. who wused
BH3*Me2NH/BF3+OEt: to perform a regioselective reductive open-
ing of the 4,6-O-benzylidene acetals.'3* When the reaction was car-
ried out in CH2Clz, the 6-OH product was regioselectively ob-
tained. Conversely, when the reaction was performed in CH3CN,
4-OH product was predominantly formed.

Other useful methods to affect the regioselective opening of ben-
zylidene include DIBAL,313  EtSiH-TFA,'*  Et3SiH-
BF3-Et20,'* BH3*THF-Bu2BOTT,'*! BH3*NMes-Me2BBr at -78
°C,'*? BH3 in combination with metal triflates at rt,'*> BH3 or
Me:2EtSiH with Cu(OTf)2,'* BH3*THF and CoClz,'* Et:SiH and
12,46 among others.'?? The development of new methods has been
complemented by a variety of mechanistic investigations.'#7-152 4-
Methoxybenzylidene acetals can also be selectively opened in a
similar fashion and using similar reagents to as benzylidene ace-
tals.!33154 Regioselective opening of other acetals including 4,6-O-
prop-2-enylidene,'3? fluorous benzylidene'> phenylsulfonylethyli-
dene!® has also been explored. Oxidative and photooxidative
methods for opening of benzylidene acetal have also been devel-
oped. N-Bromosuccinimide (NBS) was found to be an effective re-
agent to regioselectively open 4,6-O-benzylidene acetals to afford
6-bromo 4-benzoates.!>’ Regioselective partial deprotection of car-
bohydrates protected as benzylidene acetals can be achieved by ir-
radiation of the protected sugar with NBS in the presence of wa-
ter.!*® Photolysis is an alternative mild and regioselective method
to open an acetal protecting group. Early studies by Tanasescu and
co-workers on light-induced cleavage of o-nitrobenzylidene ace-
tals.!3%19 have been complemented by more recent studies dedi-
cated to photochemical conversion of cyclic acetals to the corre-
sponding esters, 01-164

Scheme 16. Reductive opening of benzylidene acetals
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Orthoesters are other common type of protecting groups in carbo-
hydrate chemistry. Orthoesters can be regioselectively opened to
the corresponding hydroxyacetate derivatives under mild acidic
conditions.'®> The substrate a-D-glucoside 99 was treated with a
mixture of water and chloroform in the presence of TsOH, giving
the corresponding 4-OH derivative 100 as the major compound in
60% yield as well as the minor product 6-OH isomer 101 in 30%
yield (Scheme 17). Among other applications, orthoesters can be
reduced into the corresponding acetals.'®®>'%’ Nicolaou and co-
workers showed that cyclic 1,2-carbonates can be regioselectively
cleaved with organolithium reagents at low temperature to afford
regioselective esters.'% Thus, derivative 102 was treated with PhLi
to afford 4-O-benzoyl derivative 103 in high yield (Scheme 17). A
number of useful ring-opening reactions can be achieved with an-
hydrosugars.!9316%-174 Thuys, Hori and co-workers performed acid-
catalyzed methanolysis of 1,6-anhydro-2,3,4-tri-O-benzyl-p-D-
mannopyranose 61 using 7% HCl MeOH solution (Scheme 17).1%
This reaction produced methyl 2,3,4-tri-O-benzyl-o-D-mannopyra-
noside 104 in 77% yield together with methyl 2,4-di-O-benzyl-a-
D-mannopyranoside 105 that was isolated in 14% yield. An effi-
cient method was developed for selective 5-O-opening of 3,5-O-di-
tert-butylsilylene-D-galactofuranosides to give the corresponding
5-OH derivative.!” Thiogalactofuranoside 106 was treated with 1.1
equiv. of TBAF at -20 °C for 40 h and gave 5-OH derivative 107 in
90% yield (Scheme 17).

Scheme 17. Regioselective ring opening of other cyclic groups.
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4. Conclusions and outlook

The application of partially protected building blocks is fundamen-
tal to carbohydrate chemistry. The Glycoscience community has
been working for many years on developing methods for the syn-
thesis of building blocks. Some efforts to commercialize advanced
synthetic intermediates have been made. Nevertheless, this remains
an underdeveloped area of research. As Seeberger notes "differen-
tially protected monosaccharide building blocks is currently the
bottleneck for chemical synthesis”.'” Indeed, most bench time in
carbohydrate chemistry lab is dedicated to making building blocks.
It is very common that researchers experience significant setbacks
because they have to continue to remake building blocks. The syn-
thesis of even simple compounds may require six, eight, ten or even
more steps. As a result, poor accessibility to regioselectively pro-
tected building blocks hampers development of all methods, both
traditional manual syntheses of glycans in solution and modern au-
tomation platforms.!76-178

This review article summarizes advances in the area made towards
the regioselective protection/partial deprotection with the major fo-
cus on the synthesis of mono- or di-hydroxyl derivatives in one step
form the completely unprotected or uniformly protected precursors
in one step. “Unlike the synthesis of peptides and oligonucleotides,
there are no universal building blocks or methods for the synthesis
of all glycans .\ 1t is also true for methods used for the synthesis
of building blocks. Some excellent methods can only be applied to
the synthesis of sugars of a particular series, whereas attempts to
apply certain conventions to a broader range of substrates may fail
even with one different stereocenter.
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