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Gravitational waves can probe fundamental physics, leading to new constraints on the mass of
the graviton. Previous tests, however, have neglected the effect of screening, which is typically
present in modified theories that predict a non-zero graviton mass. We here study whether future
gravitational wave observations can constrain the graviton mass when screening effects are taken
into account. We first consider model-independent corrections to the propagation of gravitational
waves due to screened massive graviton effects. We find that future observation can place constraints
on the screening radius and the graviton mass of O(102)–O(104) Mpc and O(10−22)–O(10−26) eV
respectively. We also consider screening effects in two specific theories, ghost-free massive gravity
and bigravity, that might not realize these types of propagation modifications, but that do provide
analytic expressions for screening parameters relevant to our analysis allowing for more concrete
results. However, the constraints we are able to place are small. The reason for this is that second-
and third-generation detectors are sensitive to graviton masses that lead to very small screening radii
in these particular models. The effect of screening, however, can become important as constraints
on the graviton mass are improved through the stacking of multiple observations in the near future.

I. INTRODUCTION

The onset of gravitational wave (GW) astrophysics
has allowed new constraints of modifications to General
Relativity (GR), including new bounds on the graviton
mass [1]. The latter is a particularly important quan-
tity in a variety of fields, from quantum extensions of
GR [2–5] to cosmological modified theories of gravity [6–
12]. Because of this widespread interest, the graviton
mass has been constrained through a host of different ex-
periments [13–20], from weak field Solar System bounds
resulting in mg < 10−24eV [21], to strong field, stacked
GW bounds resulting in mg < 10−23eV [1]. While Solar
System constraints are currently more competitive than
their GW counterparts, the former probe fifth-force type
forces, while the latter constrains the propagating sector
of such theories [22, 23].

In the context of GW observations, estimated bounds
on the graviton mass have used the work of Will [24] and
extensions [25]. Working in the post-Newtonian (PN)
framework [26], one first postulates a modified dispersion
relation during the propagation of GWs that is based on
the special-relativistic dispersion relation of massive par-
ticles. One then studies how these modifications trickle
down into the observed GW phase through the stationary
phase approximation [27]. The end result is a correction
that enters at 1PN order in the GW phase relative to the
leading-order GR term and that scales with the distance
traveled.

Previous GW work on the graviton mass, however, has
neglected a mechanism that is typically present in cosmo-
logical modified gravity theories: screening [28–31]. This
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mechanism suppresses modifications to GR inside of some
screening radius through nonlinear self-interactions of an
auxiliary field, thus allowing these theories to pass So-
lar System tests with ease. GWs, however, typically exit
this radius during their travel from the source to Earth,
thus possibly acquiring modifications in their propaga-
tion only outside the screening radius. Intuitively, one
would therefore expect screening to soften constraints on
the graviton mass, as its modifications to the GW phase
need not always be active. Because of this softening, one
should consider the effect of screening in future bounds,
like those estimated in [25, 32–35], to ensure modified
theories are not prematurely ruled out.

Whether screening is present in modifications to the
dispersion relation of GWs depends strongly on the par-
ticular theory considered. For example, in quartic and
quintic Galileon theories [36], screening is present in the
dynamics of the Galileon scalar field, but this does not
percolate into the GW dispersion relation [37]. As such,
it is not expected that this effect be present in theories
like ghost-free massive gravity (dRGT) [38] or bigrav-
ity [39], which are generalizations of the Galileon family
of theories [22, 40]. In other theories, however, these
propagation effects may be present, provided the propa-
gation equations for the helicity-2 mode couple directly
to the scalar field.

Given this, we here take on an agnostic approach
to study whether GWs can probe the graviton mass if
screening is present. We first derive the correction to the
GW Fourier phase when screening is present within the
PN framework and using the stationary phase approxi-
mation. We find that the correction to the phase takes
the same exact functional form as in the unscreened case,
except that the distance parameter that enters the cor-
rection is not the usual luminosity distance, but rather
a new effective quantity. This new effective distance is
smaller than the luminosity distance, yielding a measure
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of the distance through which massive graviton modifi-
cations are active.

We then study how well such a screened massive gravi-
ton modification could be constrained with second- and
third-generation GW detectors, like aLIGO [41], the Ein-
stein Telescope (ET) [42], and LISA [43]. We first modify
the quasi-circular IMRPhenomD model [44, 45] to con-
struct screened massive graviton waveforms that span the
whole frequency range, from inspiral to merger and ring-
down. We then assume second- and third-generation de-
tectors have detected a signal consistent with GR and
predict the constraints one could place on screened mod-
ified gravity effects through a Fisher analysis [27], which
should be accurate at the large signal-to-noise ratios we
consider.

FIG. 1. (Color Online) Projected constraints on the graviton
mass as a function of the screening radius, assuming the de-
tection of three expected GW sources with aLIGO at design
sensitivity, ET, and LISA. As the sensitivity to these screen-
ing effects varies widely for each detector, the y-axis is re-
scaled appropriately through a factor A presented in Table I.
The effectiveness of screening becomes very apparent when
the screening radius is about DL/2, since then the constraint
on mg rapidly falls to zero.

Constraints on the modifications to the GW phase
lead to degenerate constraints on the graviton mass and
the screening radius, when these parameters are treated
as independent. Figure I shows these degenerate con-
straints, where the shaded regions would be disallowed,
given GW observations consistent with GR and produced
by the systems in Table I. When the screening radius is
small, then constraints on the graviton mass reduce to
previous estimates [25, 32–35]. When the screening ra-
dius is large, the projected constraints deteriorate, until
for sufficiently large radii no constraints on the graviton
mass are possible any longer. The latter occurs when
the screening radius is roughly half the luminosity dis-
tance to the source, as then the graviton mass effects are
completely screened.

We conclude with a study of projected constraints on
screening and the graviton mass in specific cosmologi-
cal modified gravity theories. In particular, we consider
two massive gravity theories, dRGT and bigravity, in
which the screening radius is a function of the graviton

Detector m1 (M�) m2 (M�) DL (Mpc) A

aLIGO 20 15 700 1
ET 35 10 103 10
LISA 106 105 1.5× 103 104

TABLE I. Properties of the binary systems considered in
Fig. I to estimate projected bounds on the graviton mass and
the screening radius. The parameter A is a factor used to
re-scale the y-axis of the figure.

mass [29, 40]. The effect of screening on the scalar field in
these theories does not appear to affect the propagation
of the tensor modes [22, 40], but these models give ex-
plicit functional forms for the screening radius as a func-
tion of the graviton mass. This allows for a more tangible
result that might be indicative of what one may expect
in other more general theories that do include screening
of the tensor modes. In these theories, however, the scal-
ing of the screening radius is such that the graviton mass
that second- and third-generation detectors are sensitive
to lead to tiny screening effects. Only once constraints
on the graviton mass become of O(H0) do screening ef-
fects begin to become important in these theories. Such
graviton mass constraints, however, could be achievable
through the stacking of multiple observations with third-
generation detectors [46].
The remainder of this paper deals with the details of

the calculations that led to the results summarized above.
Section II presents the basics of screening and its im-
pact on the GW response function. Section III describes
the Fisher analysis methodology that we employ to es-
timate constraints. Section IV presents the projected
constraints we obtained. Section V concludes and points
to future research. Henceforth, we follow mostly the con-
ventions of [47], where Greek letters represent spacetime
indices, Latin letters represent parameter indices, and
for the most part we employ geometric units in which
G = 1 = c.

II. GRAVITATIONAL WAVE PROPAGATION
IN SCREENED THEORIES

In this section, we calculate how the propagation of
GWs is affected by a screening radius in theories with
a massive graviton. We begin by describing the basics
of Vainshtein screening, therefore setting notation. We
then continue with the calculation of the modifications to
the propagation speed of GWs, and how this percolates
to the Fourier transform of the response function in the
stationary phase approximation.

A. Vainshtein Screening

Vainshtein screening is the process by which nonlinear
interaction in the field equations suppress modifications
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to GR in a certain regime of spacetime. Let us here out-
line the basic foundation behind Vainshtein screening; a
more in depth description can be found in several reviews
on the topic, e.g. [29, 40, 48, 49] or in works like [50–54].

First discovered in 1972 by Vainshtein [28], the idea of
screening has seen waves of interest, with a renewed pop-
ularity recently due to recent work on theories like dRGT
and bigravity. Originally, the mechanism was introduced
as the solution to the van Dam-Veltman-Zakharov dis-
continuity [55], a problem that had plagued massive grav-
ity in the 1970’s. This discontinuity arises as an inability
of massive gravity to match (at linear order) GR solutions
in the limit of a vanishing graviton mass, resulting in eas-
ily measured discrepancies between predictions and ob-
servations in the Solar System and gravitational lensing
experiments. However, Vainshtein noticed that these de-
viations came at linear order in the metric perturbation,
and that by including higher order terms, these mod-
ifications could be suppressed around massive sources,
reviving the viability of massive gravity theories [28, 56].

Later on, a different issue, the so-called Boulware-
Deser ghost [57], began to haunt massive gravity theo-
ries. This unbounded-from-below sixth degree of free-
dom again muted interest for a number of years until de
Rham, Gabadaze, and Tolley formulated dRGT to specif-
ically eradicate this unphysical degree of freedom [38].
This gave rise to renewed interest in massive gravity the-
ories and spawned bigravity as an extension, which also
exhibits Vainshtein screening effects [30]. Since then, the
Vainshtein mechanism has been crucial in keeping theo-
ries viable in the wake of highly accurate Solar System
tests, as it has been shown to be effective at suppress-
ing “fifth force” modifications to the Newtonian poten-
tial [40].

Screening, however, is usually analyzed in the static,
spherically symmetric case. It remains a bit of an open
topic of research whether the screening persists within
dynamical systems for massive gravity, and how effective
the screening actually is. Recently, the mechanism has
been examined in the context of the cubic Galileon theo-
ries (a simpler, but related theory to dRGT) numerically
and it has been shown that the energy loss of binary sys-
tems through scalar radiation is indeed suppressed (albeit
not to the full extent of the suppression of the fifth force
in static scenarios) [58].

To illustrate the effect of screening in a simple scenario,
let us focus on a static, spherically-symmetric scenario in
the context of the cubic Galileon theories. Following [40],
the cubic Galileon action in geometric units is

SCG =

∫
d4x
√
−g
[
R

16π
− 1

2
∂µφ∂

µφ

− 1

Λ3
∂µφ∂

µφ2φ+
√

8πφT

]
+ Sm[g] , (1)

where Λ = [m2
g/(~2

√
8π)]1/3, the Ricci scalar R is associ-

ated with the metric tensor gµν , the scalar field φ couples
to the trace of the matter stress-energy tensor T and the
metric tensor couples to matter through Sm.

Varying Eq. (1) in a static and spherically sym-
metric system with a stress energy tensor trace T =
−Mδ(r)/4πr2 results in the equation of motion of the
scalar field

1

r2

d

dr

[
r2 dφ

dr
+

r

Λ3

(
dφ

dr

)2
]

=
M√
2π

δ(r)

r2
, (2)

which, after direct integration of the first derivative, gives

1

r

dφ

dr
+

1

r2Λ3

(
dφ

dr

)2

=
M√
2π

1

r3
. (3)

The importance of Vainshtein screening is illustrated
in Eq. (3). With the definition

rV =
1

Λ

(
M√
2π

)1/3

, (4)

the separation of scales is apparent, and allows us to
approximate the gradient of the scalar field from Eq. (3)
via

dφ

dr
≈

{
M√
2π

1
r2 r � rV ,

M√
2π

1
r2 ( r

rV
)3/2 r � rV .

(5)

For regimes of spacetime r � rV, the evolution of the
scalar field is suppressed by the (r/rV)3/2 factor, which
then suppresses the “fifth force” modifications this scalar
field would introduce.

For dynamical systems, the situation is slightly more
complicated. Let us leave cubic Galileon theories and
consider instead the generic action

S =

∫
d4x

√
−g

8π

[
R

2
− 1

2
∂µφ∂

µφ

−U(g, φ, ∂φ) + Lmatter(g, φ)] , (6)

where U is a kinetic self-interaction term that depends
on the metric, as well as derivatives of the auxiliary
field. The field equations associated with this action are
schematically

Gµν ∝ Tµν − ∂µφ∂νφ−
δU
δgµν

, (7a)

2φ+
δU
δφ
∝ δLmatter

δφ
. (7b)

The equation of motion for the scalar field resembles that
in Eq. (2), with the identification of the variation of U in
Eq. (7b) with the non-linear term in φ in Eq. (2).

The analysis of the evolution of the scalar field now
follows closely the analysis of Eq. (2). If the kinetic,
self-interaction term of Eq. (7b) dominates through the
Vainshtein mechanism, (a) the scalar mode is not excited
because of a suppression of its coupling to matter (veri-
fied numerically in [58]), and (b) the impact of the scalar
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field on the metric perturbation in the radiation regime,
but still in the Vainshtein region, is also suppressed. This
implies that GR is recovered within the Vainshtein ra-
dius, even in terms of propagation effects. Outside the
Vainshtein radius, the self-interaction term in Eq. (7b)
becomes much smaller than δLmatter/δφ − 2φ, and φ is
allowed to grow, in turn allowing δU/δgµν to affect the
propagation of the GW tensor modes.

Before proceeding, let us define the screening radius
for massive objects that we will use later. This quantity
differs from theory to theory, but as an example, the
screening radius for a galaxy with Schwarzschild radius
rs in dRGT and bigravity takes the form [40] s

rV = r1/3
s λ2/3

g , (8)

whereas the screening radius in non-linear Fierz-Pauli
gravity with a general potential is [29]

rV = r1/5
s λ4/5

g , (9)

with the reduced Compton wavelength λg = ~/mg.
To remain agnostic throughout most of the rest of the

paper, the Vainshtein radius will be kept as an indepen-
dent variable rV, only studying specific models close to
the end.

B. Modifications to GW Propagation Speed

Let us focus on the modifications to the GW observable
introduced by a massive dispersion relation with screen-
ing effects. The modifications without screening were
originally derived by Will [24], and then extended in [25]
to consider more generic dispersion relations. We begin
by reviewing Will’s original derivation and then incorpo-
rating screening effects.

Let us then postulate that a graviton with a non-zero
mass obeys the generic dispersion relation of a massive
particle

E2 = p2 +m2
g . (10)

Recasting the energy and momentum of the graviton as
E = ~ω and p = ~k, the classical or particle speed of
propagation is the same as the group velocity for the
graviton, namely(

dω

dk

)2

= v2
g = 1−

m2
g

E2
. (11)

Equation (11) is where we incorporate additional mod-
ifications induced by screening. More specifically, let us
consider a modified theory of gravity that excites extra
degrees of freedom beyond the two of GR. When these
extra degrees of freedom are suppressed, the modified
theory reduces essentially to GR, while when they are ex-
cited modifications are present. Moreover, let us assume
that the extra degrees of freedom are non-linearly cou-
pled, such that they are suppressed inside some screening

radius, but not suppressed at larger radii in intergalac-
tic space. The speed of propagation of gravitons is then
modified from Eq. (11) into

v2
g = 1−

m2
g

E2
Θ(r − rV,h)Θ(DV,MW − r) , (12a)

DV,MW = DL − rV,MW , (12b)

where rV,h and rV,MW are the screening radii of the host
galaxy and the Milky Way respectively, DL is the lumi-
nosity distance, and the coordinate r is measured from
the center of mass of the source. Although Eq. (12) is
purely phenomenological, it is still interesting to consider
what such screening effects would do to constraints on the
graviton mass.

A bound for the Compton wavelength of the graviton
purely from the difference in travel time between a pho-
ton and graviton can quickly be derived. Noting that the
Compton wavelength λg = h/mg, we have that

∆t = ∆ta−(1 + z)∆te ≈ D (1− vg) ,

⇒ λg =

√
D

2f2∆t
,

(13)

with D some distance measure of unscreened space be-
tween the source and the detector and f being the gravi-
ton’s frequency.

A more rigorous calculation is required to figure out
exactly what this unscreened distance is. Let us then
compute the coordinate distance traveled by a massive
graviton in a FLRW universe with metric

ds2 = −dt2 + a(t)2
[
dχ2 + Σ(χ)2dΩ2

]
. (14)

The radial momentum pχ = a(te)(E
2
e − m2

g)
1/2 is con-

served because it is normalized via pµp
µ = −m2

g, where
te is the emission time. Since the classical or particle ve-
locity of the graviton dχ/dt = pχ/pt, we then have that

dχ

dt
=

1

a

(
1 +

a2mg(r)
2

p2
χ

)−1/2

, (15)

where mg(r)
2 = m2

gΘ(r−rV,h)Θ(DV,MW−r). This differ-
ential equation can be expanded in the small parameter
mg(r)/Ee � 1, and then solved to find the coordinate
distance at emission χe, namely

χe ≈
∫ ta

te

dt

a(t)
− 1

2

m2
g

a2(te)E2
e

×
∫ ta

te

a(t)Θ(r − rV,h)Θ(DV,MW − r)dt

= ta − (1 + z)te −
1 + z

2

m2
g

E2
e

D , (16)
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where we have used that ∆te << H−1, 1 + z = a0/ae
and D is a new cosmological distance measure defined by

D
1 + z

=

∫ ta

te

a(t)Θ(r − rV,h)Θ(DV,MW − r)dt

=

∫ zs

0

1

H(z′)

dz′

(1 + z′)2
−
∫ zMW

0

1

H(z′)

dz′

(1 + z′)2
,

(17)

where zs and zMW represent the redshift of the edge
of the screening effects for the source galaxy and the
Milky Way respectively, while H is the Hubble param-
eter, which for a ΛCDM universe at late times is H ≈
H0

√
Ωm(1 + z)3 + ΩΛ, with H0 = 67.31 km/s/Mpc the

Hubble constant, Ωm = 0.315 the matter density and
ΩΛ = 0.685 the dark energy density [59]. Figure 2 shows
a schematic view of the system with the quantities la-
beled for clarity. When screening is absent, zs → z and
zMW → 0, rending Eq. (17) identical to Eq. (2.5) in [24].
The effect of the screening corrections is to “soften” the
effect of a massive graviton, hiding the mass for stretches
of the propagation distance.

We can now compare the coordinate distances traveled
by a massive graviton and a massless photon between
Earth and the source. The coordinates describe the same
location, so the difference gives

χg − χnull = 0 = ∆t− (1 + z)

2

m2
g

E2
e

D . (18)

Given a observed time delay ∆t between an imping-
ing gravitational wave and an impinging electromagnetic
wave, one could then place the constraint

λg ≥

√
(1 + z)D
2∆tf2

, (19)

where D is defined in Eq. (17). This expression for the
constraint on λg is equivalent to the one obtained using
Eq. (13), where we now see that the unscreened distance
D appearing in that equation is really (1 + z)D.

C. Phase Modifications from Finite λg

While the above calculations illustrate the effectiveness
of constraining the mass of the graviton through direct
comparison of GW and photon travel times, more strin-
gent constraints can be derived by examining the phase
modifications of a gravitational signal coming from co-
alescing binaries. This phase modification has already
been investigated using the GW150914 signal, which has
led to the constraint λg & 1013 km at 90% confidence
through matched filtering [60, 61] and later a bound of
λg > 1.6× 1013km by combining several observations [1]
(assuming no screening effects are present). For different
constraints on the graviton mass using the GW150914
observation, see [62]. In that work, the authors were

concerned with constraints on the screening of the New-
tonian potential, as opposed to the screening of modifi-
cations to GR analyzed in this work.

Let us then derive the modifications to the phase
when screening is present. Emulating the derivation of
Will [24], the coordinate difference calculation of Sec. II B
can be applied to two gravitons with different energies E
and E′, instead of a photon and a graviton. The differ-
ence in travel time between two gravitons is then useful
for deriving the phase modifications to a gravitational
wave signal. The resulting difference in travel time is
then given by

∆ta = (1 + z)

[
∆te +

D
2λ2

g

(
1

f2
e

− 1

f ′2e

)]
. (20)

We see that this equation is identical to that derived
in [24] except that here the quantity D contains screening
modifications.

The later observation then allows us to immediately
write down the modification to the GW Fourier phase.
Using the restricted PN approximation, the Fourier
transform of the response function for a GW emitted by
a compact binary is simply

h̃(f) = A(f)eiΨ(f) , (21a)

where the Fourier amplitude is

A(f) =

√
π

30

M2
z

DL
u−7/6 , (21b)

and the Fourier phase is

Ψ(f) = 2πftc − φc − π/4 +
3

128
u−5/3 − βu−1

+
5

96

(
743

336
+

11

4
η

)
η−2/5u−1 − 3π

8
η−3/5u−2/3 ,

(21c)

with u = πMz f̃ and Mz = (1 + z)η3/5m is the red-
shifted chirp mass. The Fourier phase is presented here
to 1.5PN order, but it is straightforward to include the
higher PN order terms that have already been calculated
(see e.g. the references in [44, 45]).

The Fourier phase clearly depends on quantities re-
lated to the binary itself, like the redshifted chirp mass
Mz, with η = m1m2/m

2 the symmetric mass ratio and
m = m1 + m2 the total mass, as well as the time and
phase of coalescence tc and φc. But this phase also de-
pends on massive graviton modifications, encoded in the
parameter β, which is given by

β =
π2DMz

λ2
g(1 + z)

, (22)

where D is defined as in Eq. (17). Clearly then, the
modifications to the Fourier phase are identical to those
of a massive graviton, except that the quantity D is an
effective luminosity distance that accounts for screening
effects.
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z
rV,h rV,MW

zs

zMW

Source Earth

Screened Space Screened SpaceUnscreened Space

DV,MW

FIG. 2. Schematic of the binary/detector system with various distances labeled for clarity. z is the redshift to the source, and
zs and zMW are the redshifts to the edges of the screening effects for the host galaxy and the Milky Way, respectively. rV,h

(rV,MW) is the Vainshtein radius for the host galaxy (Milky Way). DV,MW is the distance from the source to the edge of the
Milky Way Vainshtein regime, equal to the luminosity distance to the source minus the Vainshtein radius of the Milky Way
(DL − rV,MW)

III. FISHER ANALYSIS AND
COMPUTATIONAL FRAMEWORK

In the next section, we outline the details behind our
model creation and statistical analysis. We briefly in-
troduce the basic foundations of a Fisher analysis and
define the calculations used to find the estimated bounds
on our model parameters. We then go on to describe the
algorithm chosen to model our sample waveforms, and
finally, we present the parameters of the models we used
in this study.

A. Fisher Information Matrix

The accuracy to which parameters λa in a model (the
waveform template in this case) can be estimated from
a data set (the GW signal in this case) can be approx-
imated through the Fisher information matrix [23] (re-
ferred to as the Fisher matrix) in the high signal-to-noise
ratio (SNR) limit [63, 64]. The Fisher matrix is defined
via

Γab = (∂ah|∂bh) , (23)

where the inner product is

(h1|h2) = 2

∫
h1h

∗
2 + h2h

∗
1

S(f)
df , (24)

with S(f) the sensitivity noise density of the detector and
the star representing complex conjugation. The inner
product also leads to the definition of the SNR via

ρ2 = (h|h) . (25)

For computing the Fisher elements, we use the pro-
jected noise density curves of two ground-based detec-
tors, advanced LIGO at design sensitivity [41] and the ET

(or specifically ET-D) [42], a proposed third-generation
detector. ET is projected to improve drastically upon
aLIGO (by a factor of 10 to 100, especially at low fre-
quencies) and is expected to come online in the 2030s.
For space-based detectors, we will use the final LISA de-
sign submitted by the ESA [43]. This design will consist
of six-links with 2.5 Gm arms and low acceleration noise
demonstrated possible with LISA Pathfinder [65].

The calculation of the Fisher matrix requires the eval-
uation of derivatives of the waveform model and then the
integration of these derivatives normalized by the spec-
tral noise density [see e.g. Eq. (24)]. The integration for
each element of the Fisher matrix is here truncated at
the frequency for which the signal is about a tenth of
the noise spectrum. If the model was based on a sys-
tem that contained a neutron star, the cut off frequency
was instead set to an approximation of the frequency at
contact fcontact = (Mc3/π2(24 km)3)1/2. This cutoff was
chosen to ensure the accuracy of the model, as this fre-
quency is a conservative estimate of the point at which
the faithfulness of our waveforms breakdown.

Given the Fisher matrix, the variance of any estimated

model parameter λ̂a can then be approximated from the
Cramer-Rao bound

σλa ≥
√
Σaa , (26)

where Σab = (Γab)
−1 is the variance-covariance matrix,

and no sum over the index a is here implied. In this pa-
per, we will assume a GW signal consistent with GR at a
sufficiently high SNR has been detected; we will synthe-
size this injection through a waveform model evaluated
at β = 0. We will then estimate the accuracy to which
the parameters of a waveform model, including β, can be
estimated using a Fisher matrix approach.

Given an estimated bound on β, we can then calcu-
late a projected bound on the physical constants that β
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depends on. Simple propagation of error gives

σ2
m̄2

g
=

(
∂m̄2

g

∂β

)2

σ2
β +

(
∂m̄2

g

∂M

)2

σ2
M +

(
∂m̄2

g

∂DL

)2

σ2
DL

+
∑

i6=j∈{β,Mz,DL}

2
∂m̄2

g

∂λi

∂m̄2
g

∂λj
σiσj (27)

where we have defined m̄g ≡ mgD1/2/h. The depen-
dence on the luminosity distance DL comes in implicitly
as z = z(A0) = z(Mz, DL). Since the derivatives with re-
spect to the model parameters are proportional to β and
evaluated at the injected parameters (β = 0), Eq. (27)
reduces to

σm̄2
g

=
1 + z

π2Mz
σβ , (28)

where we have used Eq. (22) to evaluate the derivative.
From this expression, we can derive similar expressions
for the variance of the Compton wavelength of the gravi-
ton, divided by the effective distance. Clearly, D (or
equivalently rV) and λg (or equivalently mg) cannot be
independently constrained due to the way they enter the
β parameter in Eq. (22).

B. Waveform Model

To produce the waveforms needed to compute the
Fisher elements, we use the IMRPhenomD model by
Khan, et. al. [44, 45]. The model combines analytic,
PN inspiral waveforms with phenomenological functions
calibrated with numerical relativity simulations for the
merger-ringdown phase. The fitting data spanned χ ∈
[−.95, .95] and q = m1/m2 ≤ 18 and is designed to emu-
late spin-aligned or anti-aligned systems. The functional
form of the waveform is

h̃GR(f) = AGR(f)eiϕGR(f) , (29)

where A(f) and ϕ(f) are piece-wise functions defined as

ϕGR(f) =


φins f < 0.018/M ,

φint 0.018/M < f < 0.5fRD ,

φmr 0.5fRD < f ,

(30)

AGR(f) =


A0Ains f < 0.014/M ,

A0Aint 0.014/M < f < fpeak ,

A0Amr fpeak < f ,

(31)

with

A0 =

√
π

30

M2
z

DL
(πMzf)−7/6 . (32)

where fRD and fpeak are the ringdown and peak frequen-
cies, respectively. The specific functional forms for each
piece of the waveform can be found in [44, 45].

This model only reproduces GR waveforms, and to ex-
tend it to non-GR modifications, specifically to include
β [Eq. (22)] in the phase, we modify the model via

h̃(f) = h̃GR(f)eiβu
−1

= AGR(f)ei(ϕGR(f)+βu−1) . (33)

Note that this modification enters in all phases of co-
alescence, because it is sourced by a correction to the
dispersion relation, which is a propagation effect and not
a modification in the generation of the GWs. The mod-
ified waveform model depends on the eight parameters
λa = [lnA,Φc, tc, lnMz, lnη, χs, χa, β].

As modifications to GR can come in through both gen-
eration and propagation effects generally, the veracity of
our model might be questionable. However, it was shown
in [66] that the effects of modifications to the propaga-
tion of GWs overwhelm the effects due to the generation
of GWs in general massive theories of gravity. This dif-
ference comes about because the propagation effect accu-
mulates over the entire distance traveled, while the gen-
eration effects only develop while the system is producing
GWs in band. Furthermore, confining our study to the-
ories that exhibit Vainshtein screening should generally
suppress any modification to the generation of gravita-
tional waves. This is due to the fact that the scalar field
is suppressed around the source, as was numerically ver-
ified in cubic Galileon by [58, 67]. These reasons lead
us to believe that GW events in the modified theories
we are examining are sufficiently similar to correspond-
ing events in GR that calibration of our waveforms using
GR numerical simulations is justified.

IV. PROJECTED CONSTRAINTS ON
SCREENED MASSIVE GRAVITY

In this section, we describe the projected constraints
we find using a Fisher analysis for a variety of astro-
physical parameters that are expected sources for the
various ground-based and space-based detectors, as well
as for the previously announced LIGO/VIRGO observa-
tions. The parameters of the chosen injections that we
will study are shown in Table II. We begin by presenting
theory-agnostic, projected constraints, and then special-
ize to constraints on particular theories.

A. Theory Agnostic

The constraints on β for each of the injections we con-
sidered are listed in the last column of Table II. We can
then map these constraints to bounds on rV and λg (or
mg) through Eq. (28), leaving rV as an independent pa-
rameter. This allows for the results to be interpreted in
the context of any theory that exhibits Vainshtein screen-
ing with a graviton mass. The Vainshtein radius, how-
ever, generally depends on the Schwarzschild radius of
the Milky Way and that of the host galaxy, in princi-
ple creating an asymmetric screening scenario if the host
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TABLE II. Parameters of the models used in this study and the subsequent predicted bounds on β for each model. All quantities
are in the source frame. The bounds on β are a 1σ bound. The sources for aLIGO were picked to emulate previous detections
by aLIGO/VIRGO [1, 68–72]

Model M1 (M�) M2 (M�) χ1 χ2 DL (Mpc) SNR ∆β

aLIGO
GW150914 36.0 29.0 0.32 0.44 410.0 4.57 ×101 6.61 ×10−2

GW151226 14.2 7.5 0.2 0.01 440.0 1.64 ×101 7.75 ×10−2

GW170104 31.2 19.4 0.45 0.47 880.0 1.83 ×101 1.65 ×10−1

GW170814 30.5 25.3 0.01 0.01 540.0 2.88 ×101 7.20 ×10−2

GW170817 1.48 1.26 0.02 0.02 44.7 3.08 ×101 1.23 ×10−1

GW170608 12.0 7.0 0.0 0.0 340.0 1.89 ×101 7.77 ×10−2

Einstein Telescope
1 1.4 1.0 0.03 0.01 50.0 3.55 ×102 2.93 ×10−3

2 500.0 100.0 0.1 0.3 1500.0 5.47 ×102 3.84 ×10−3

3 70.0 50.0 0.7 0.9 400.0 1.22 ×103 7.19 ×10−4

4 50.0 3.0 0.7 0.7 400.0 2.63 ×102 6.80 ×10−4

5 80.0 40.0 0.9 0.2 600.0 7.77 ×102 1.35 ×10−3

6 100.0 40.0 0.4 0.3 2000.0 2.63 ×102 1.02 ×10−2

LISA
7 6 ×106 5 ×106 0.32 0.44 1.00 ×104 3.31 ×103 1.23 ×10−3

8 6 ×106 5 ×106 0.7 0.8 3.00 ×104 9.21 ×102 7.38 ×10−3

9 5 ×106 4 ×105 0.45 0.47 8.80 ×103 1.26 ×103 1.16 ×10−3

10 5 ×105 4 ×104 0.01 0.01 5.40 ×103 1.57 ×103 3.72 ×10−4

11 5 ×104 4 ×103 0.7 0.9 1.60 ×104 1.99 ×102 9.80 ×10−4

12 5 ×106 4 ×106 0.7 0.9 4.80 ×104 5.32 ×102 1.39 ×10−2

galaxy mass differs substantially from the mass of the
Milky Way. To simplify the analysis below, we assume
the host galaxy mass is comparable to that of the Milky
Way, therefore creating a symmetric system.

The projected constraints in the mg–rV (or λg–rV)
plane are shown in Fig. 3 for aLIGO, LISA, and ET.
For aLIGO sources, the projected constraints follow a
uniform pattern. For each source, the effect of screening
increasingly grows more pronounced until reaching the
midpoint between the source and the Milky Way, corre-
sponding to a fully screened graviton mass. Systems with
a higher mass and at closer distances allow for stronger
constraints on β (and therefore on mg and rV), but sys-
tems at much higher redshifts allow for a deeper probing
of the screening mechanism at much larger distances from
screening sources. The low SNR, low chirp mass of NSNS
binaries conspire to inhibit our ability to constrain mg,
and as such, are poor sources to constrain these effects.

The prospects of probing screened massive gravity im-
prove dramatically when incorporating potential LISA
and ET detections, as these detectors will be able to ob-
serve sources much farther out and with a higher SNR.
Due to the nonlinear relation between the cosmological
distance in Eq. (17) and the luminosity distance, not all
distances are equal for this type of test. Sources farther
away are not just rescaled versions of closer sources, but

actually probe more complex domains of the mg–rV re-
lation. The abrupt change in our ability to constrain the
graviton mass gives way to a much softer effect at farther
screening radii where large changes in screening radius
impact our constraints much less. The development of
third generation detectors, like ET and LISA, will also
allow for a large population of observations, which could
also be leveraged to improve constraints via stacking. As
the redshift grows, these constraints become increasingly
sensitive to the cosmological model employed because of
the dependence of D on the Hubble function H(z).

B. dRGT and bigravity

Let us now consider projected constraints on specific
modified gravity models that predict a massive gravi-
ton and screening. In the context of specific theories
like dRGT and bigravity, the screening radius becomes
a function of the graviton mass. Having analytic expres-
sions for the screening radius is useful for exploring the
possible bounds on these parameters, but it should be
noted that the theories themselves do not necessarily re-
alize these types of modifications [22, 40]. Replacing the
parameter rV with the relation shown in Eq. (8) analyti-
cally breaks the degeneracy between rV and mg. To cal-
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FIG. 3. (Color Online) Projected constraint on the mass of
the graviton as a function of the Vainshtein radius for a variety
of systems detected with aLIGO (top), ET (middle) and LISA
(bottom). The shaded regions would be disallowed given in-
jections consistent with GR.

culate the graviton mass constraint, as the relationship
between D and rV is highly nonlinear, we numerically
solve Eq. (22). The results are shown in Table III, along
with the corresponding screening radius for a Milky Way
sized galaxy and the percent change in the graviton mass
bound if screening were not incorporated.

In the context of dRGT- and bigravity-type screen-
ing radii, screening has a minimal effect given the pro-
jected sensitivity of second- and third-generation detec-
tors. This is because saturating the bounds on mg gives
screening radii of O(1pc), since rV is proportional to
1/m2

g. Once detectors become sensitive enough to be-
gin probing the graviton mass at the O(H0) level, the
screening radius for a Milky Way sized galaxy will grow

to O(Mpc). With a screening radius of this magnitude,
the effects might warrant further investigation.
Examining Eq. (22), we see that the ideal candidate

source to place constraints will have a large chirp mass
and a low redshift, as screening effects encompassed by
D are enhanced and degraded by high chirp mass and
high redshift, respectively. As space-based detectors will
target this higher range of chirp masses, sources being
targeted by future LISA-type missions, like the Big Bang
Observer [73], would be the ideal subjects of future stud-
ies on this mechanism. Even though the average redshift
of these millihertz systems will be higher, the average
chirp mass will be many orders of magnitude larger than
targeted sources for current and future ground-based de-
tectors, overwhelming any loss due to higher distance.

Model
Δmg

(Screened)
Percent

Change (%)
rV

aLIGO

GW150914 1.46 ×10−22 0.03 3.76 ×10−8

GW151226 2.72 ×10−22 0.03 2.49 ×10−8

GW170104 1.88 ×10−22 0.06 3.18 ×10−8

GW170814 1.45 ×10−22 0.04 3.78 ×10−8

GW170817 2.82 ×10−21 0.0 5.22 ×10−9

GW170608 3.25 ×10−22 0.02 2.21 ×10−8

ET

1 4.44 ×10−22 0.0 1.79 ×10−8

2 7.79 ×10−24 0.09 2.65 ×10−7

3 1.14 ×10−23 0.03 2.06 ×10−7

4 2.63 ×10−23 0.03 1.18 ×10−7

5 1.33 ×10−23 0.04 1.86 ×10−7

6 2.09 ×10−23 0.1 1.37 ×10−7

LISA

7 1.37 ×10−26 0.24 1.82 ×10−5

8 2.31 ×10−26 0.29 1.29 ×10−5

9 2.92 ×10−26 0.23 1.10 ×10−5

10 6.17 ×10−26 0.19 6.68 ×10−6

11 2.19 ×10−25 0.27 2.87 ×10−6

12 2.97 ×10−26 0.3 1.09 ×10−5

TABLE III. Projected 1σ bounds for mg for dRGT- and
bigravity-type screening radii. The second column shows the
percent change in the constraint on mg between the screened
and unscreened constraints, while the screening radius rV is
measured in Mpc, and the graviton mass in eV.

V. CONCLUSIONS AND FUTURE WORK

We studied the effect of screening on projected, future
constraints on the mass of the graviton from a model-
agnostic viewpoint and then within a model-specific ap-
proach. When studying model-independent constraints,
we found that the effect of screening is to generically de-
teriorate bounds on the graviton mass. The reason for
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this is that screening eliminates the correction to the dis-
persion relation during part of the graviton travel, thus
decreasing the overall correction to the GW phase. When
studying model-dependent constraints, we found that the
effect of screening on graviton mass bounds is actually
quite small for the models considered. The reason for
this is that the relation between the screening radius and
the mass of the graviton is such that, for the range of
graviton masses that second- and third-generation detec-
tors are sensitive to, the screening radius is very small.

Future work could focus on a variety of topics. As
we enter the era of third-generation detectors, or even
second-generation detectors at design sensitivity, the
number of GW observations will greatly increase. Con-
straints on the mass of the graviton, therefore, can be
enhanced by combining multiple observations. Doing so
can have interesting effects on model-agnostic constraints
on the screening radius. In the model-dependent case,
stacked constraints could become enough that the effect
of screening is not negligible and ultimately ought to be
taken into account.

Another possible avenue for future work could involve
the more careful study of screening within known models.
As we described in this paper, Vainshtein screening has
really only been studied in detail within some greatly

simplified physical models, such as in stationarity and
spherical symmetry. The compact binaries that generate
the GWs that we detect, however, are neither stationary,
nor spherically symmetric. The degree of effectiveness of
screening in such cases should be investigated further.

A final possibility for future work could consist on the
study of other cosmological modified theories to deter-
mine whether they also predict screening. Theories such
as bigravity, or Horndeski and beyond Horndeski theories
could be studied further to determine formally whether
the dispersion of GWs is partially screened in regions of
high density or high curvature. It is possible that screen-
ing is not present for GWs in some of these theories, as
is the case in quartic and quintic Galileon theories, but
this ought to be demonstrated with careful calculation.
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