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The observation of low-frequency gravitational waves with the Laser Interferometer Space Antenna
will allow the study of new sources of gravitational radiation that are not accessible by ground-
based instruments. Gravitational wave sources provide invaluable information both about their
astrophysics, as well as the nature of the gravitational interaction in their neighborhoods. One low
frequency source that has not received much attention regarding the latter are galactic binaries
composed of two white dwarves or a white dwarf and a neutron star. We here show that, contrary
to the common lore, such gravitational wave sources can indeed be used to constrain an important
feature of the gravitational interaction: the absence of pre-Newtonian, dipolar dissipation. We
propose a model-independent framework to carry out a null test for the presence of this feature
in the data that is very much analogous to tests of General Relativity with radio-observations of
binary pulsars. We then go one step further and specialize this test to scalar-tensor theories to
derive projected constraints on spontaneous scalarization. We find that these constraints can be
comparable to current bounds with binary pulsars, and in some optimistic cases, they can be even
stronger.

I. INTRODUCTION

Sooner than all but the most hard-line optimists would
have dared to imagine, gravitational waves (GWs) were
observed by the advanced LIGO detectors in August
2015 [1–4], forever changing physics and astronomy. That
momentous discovery single-handedly confirmed the re-
ality of GWs and their direct interaction with matter, an
issue that although taken for granted by the relativity
community, was still contentious in some astrophysical
circles. And at that point, the flood gates opened. Dis-
covery after discovery was heralded with great enthusi-
asm, leading to the first triple-coincident discovery when
the advanced Virgo detector joined the network [5–9],
and later the first coincident discovery when light from
across the electromagnetic spectrum, from gamma ray
telescopes in orbit to radio telescopes on the ground,
was detected in an unprecedented, coordinated observ-
ing campaign [10–12].

The era of GW astronomy has thus begun, and with
it, great discoveries and some surprises have trickled in
from the interpretation of the observations made. These
discoveries can be grossly classified into two separate cat-
egories: astrophysics and fundamental physics. On the
astrophysics side, we have learned that the most com-
mon sources of GWs are the coalescence of black holes in
quasi-circular inspirals, and perhaps the biggest surprise
is the black hole masses detected. Before the GW era,
the heaviest stellar-mass black holes observed were less
than ∼16M� [13], but several of the GW observations
are consistent with relatively heavy, stellar-mass black
holes merging into objects of above 40M� [1, 14]. Nat-
urally, this surprise had important implications on the
astrophysics of black hole formation, restricting certain
models and supporting others [15].

On the fundamental physics side, the GW era has done

much more than simply confirm the existence of GWs:
it has allowed us to explore, for the first time, the ex-
treme gravity regime, where the gravitational interac-
tion is phenomenally large and dynamically changing,
matter transcends into new forms not found on Earth,
and physics is intrinsically non-linear and dynamical [16].
The latest GW observation of merging NSs has allowed
for the first stringent constraints on the mass and radius
of NSs, and thus on the equation of state of supranu-
clear matter [17–23]. These constraints, in turn, have
important implications on the theory of nuclear interac-
tions at high densities, providing support for certain ap-
proximate methods to solve the many body Schrödinger
equation [24]. Moreover, this same observation, together
with electromagnetic counterparts, has allowed for the
first constraints on the speed of GWs, and thus, the speed
of gravity [10, 11, 25]. These constraints, in turn, have
dramatic implications on theories that modify General
Relativity (GR) to explain late-time cosmological obser-
vations or to unify GR with quantum mechanics [25].

These first advanced LIGO/Virgo discoveries, however,
are only the tip of the iceberg. Current ground-based de-
tectors are expected to be upgraded to third-generation
designs, allowing for detections from effectively every-
where in the universe where stellar-mass or intermediate-
mass black hole collisions occur. But even with this tech-
nology, such detectors will be limited to observing GWs
with frequencies above a few Hz due to inescapable New-
tonian noise. The observation of low frequency GWs will
therefore require different measurement techniques. Ac-
cess to the low-frequency band between ∼0.1 and ∼ 10
mHz, where the richest population of sources is expected,
requires a space-based GW observatory: enter the Laser
Interferometer Space Antenna [26, 27], or LISA for short.

By opening up the low-frequency band, LISA will
allow for a plethora of new astrophysical and funda-
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mental physics discoveries because it will give us ac-
cess to entirely different classes of sources: supermas-
sive black hole coalescences, extreme mass-ratio inspirals,
and ultra compact binaries, typically comprised of white-
dwarf/white-dwarf or neutron-star/white-dwarf pairs, in
our galaxy. The observation of supermassive black holes
will reveal invaluable information about structure forma-
tion in the Universe, including how galaxies collide and
form, as well as how black hole remnants relax to a sta-
tionary configuration after a major collision with another
black hole [28]. GWs produced as a small compact ob-
ject zooms and whirls into a supermassive black hole,
a so-called extreme mass-ratio inspiral, will allow for a
geodesic mapping of the spacetime created by the super-
massive object, allowing for tests of the Kerr hypothe-
sis [28–30].

But what about GWs emitted by galactic binaries?
Binaries composed of two white dwarves (WDs) or a
WD and a NS in the Milky Way are known to exist
because they are observed electromagnetically. Several
of these known sources are guaranteed to be detectable
for LISA, and are thus referred to as verification bina-
ries [31–33]. Moreover, given such observations and us-
ing population synthesis simulations, it is predicted that
tens of millions of such binaries are emitting GWs in the
LISA band. Tens of thousands of these will be individ-
ually detectable by LISA, while the rest blend together
to form a confusion-limited foreground that is the domi-
nant source of noise in the LISA band between 0.4 mHz
and 2 mHz [34, 35]. The catalog of resolvable binaries, as
well as the spectral shape of the confusion noise, will con-
tain a trove of new information about the formation and
evolution of compact binaries in the galaxy, and the com-
plicated physical interactions between binaries including
mass transfer, common envelop interaction, and the in-
ternal physics of compact stellar remnants [34–45].

But could such sources also be used to learn something
new about gravity itself? The expected answer to this
question is a rotund no and the lore is cemented on (at
least) the following three arguments.

Theoretical Physics Argument : GW-emitting galactic
binaries detectable by LISA will be well-separated, with
distances of roughly 105 km for typical WD masses at
GW frequencies of (10−2, 10−3) Hz. Such large separa-
tions imply orbital velocities smaller than 10−2c, which
is certainly in the regime of velocities accurately probed
by binary pulsar observations. Because binary pulsars
have verified GR to amazing accuracy, modifications to
gravity are expected to only be important (if they arise
at all) at much higher velocities or smaller orbital sep-
arations. If so, then there is no point in using galactic
binary signals to test GR since these will be probing a
regime of gravity that has already been tested to a great
degree by binary pulsar observations.

Data Analysis Argument : Such small separations im-
ply orbital periods of tens of minutes, which in turn im-
ply an extremely slow chirping rate of ḟ < 10−15 Hz2.
This is why galactic binaries are sometimes said to be

monochromatic sources of GWs, emitting mostly at a sin-
gle frequency during the observation period. Thus, such
GW signals contain less accessible information than the
familiar merger signals from ground-based observatories,
since the former cannot be used to measure higher fre-
quency derivatives, which encode information about the
mass ratio and the spin of the binary components. The
limited information contained in galactic binary signals
implies that they would lead to suboptimal tests of GR.

Astrophysical Argument : Consider the effect of astro-
physical processes on the orbital evolution of galactic bi-
naries. WDs are considerably more deformable than NSs
due to their weaker gravitational compactness. As such,
WDs in a binary can easily be deformed if the orbital
separation is small enough. What is worse, if the sepa-
ration is even smaller, a WD in a binary will transfer its
mass to a more compact companion, once its Roche Lobe
is filled, or there could be mass transfer through winds.
All of these astrophysical effects can contaminate or even
control the orbital motion, and thus, the GW emission.

Putting these three arguments together (theoretical,
data analysis and astrophysical) has led the field to con-
clude that galactic binaries would not be good labora-
tories for extreme gravity experiments, but is this really
the case? Let us show through a simple two-fold argu-
ment that there is important information contained in
the GWs emitted by galactic binaries that could be used
to gain new knowledge about gravity.

Our first counter-argument is related to astrophysics.
It is definitely true that WDs can be deformed, and their
orbital evolution can be contaminated by mass transfer
and/or tidal effects, as presented in the astrophysical ar-
gument above. However, higher mass WD binaries are
more compact, and they can reach smaller orbital separa-
tions before interactions between the binary components
become dominant in the evolution. High mass binaries
are also among the loudest LISA sources anywhere in the
galaxy, making them excellent candidates for detailed pa-
rameter estimation studies. While a small subset of the
total number of detectable binaries in the galaxy, the
sheer volume of sources suggests that there will be a few
exceptional systems in the high mass tail of the popula-
tion that can be exploited as laboratories to test gravity.

Our second counter-argument is related to theoretical
physics. Again, it is definitely true that extreme grav-
ity modifications to GR are expected to be dominant in
the late inspiral, and thus, be suppressed in the low ve-
locity regime, as presented in the theoretical physics ar-
gument above. However, there are some (very popular)
modifications to GR that do exactly the opposite: they
are dominant at low velocities. Such modifications are
sometimes called “pre-Newtonian,” because they enter
as negative powers of the velocity relative to the leading-
order GR expression. A popular example is dipole radia-
tion through the activation of a scalar or vector field, as
in the case of scalar-tensor theories [46, 47], quadratic
gravities theories, like dynamical Chern-Simons grav-
ity [48–56] or Einstein-dilaton-Gauss-Bonnet gravity [56–
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63], and Lorentz-violating theories, like Einstein-Æther
theory [64–68] and Horava gravity [67–70].

The emission of dipole radiation through the activation
of new degrees of freedom forces the binary to decay, and
therefore the GWs to chirp, faster than in GR. For exam-
ple, the rate of change of the GW frequency in GR scales
as v−11μ/m3, where v is the orbital velocity, and μ and
m are the reduced and total masses of the binary. But in
theories with dipole radiation, the chirping rate acquires
a correction that scales as v−13μ/m3, which is thus dom-
inant when v � 1 and invalidates the theoretical physics
argument above. The observational implication for galac-
tic binaries is thus clear: if pre-Newtonian dissipation is
present, the GW chirping rate will be at least four orders
of magnitude larger than the GR prediction, leading to
non-monochromatic galactic binary signals in the LISA
band. The absence of such an effect should thus allow
us to place stringent constraints on the existence of pre-
Newtonian modifications to GR.

With the theoretical physics and the astrophysical ar-
guments counter-acted, we are then left only with the
data analysis argument, which we recall states that there
is simply not enough information in a galactic binary GW
signal to carry out a test of GR. Whether this is true or
not requires a data analysis study, as it is hard to assess
otherwise. We will here show through such a study that,
in fact, the data analysis argument is unfounded and tests
of GR are indeed possible. Such a study allows us to de-
velop both a model-independent and a model-dependent
framework to test GR.

The model-independent framework is a null test of GR
and, in fact, it is very much analogous to complementary
tests that have been carried out with radio-observations
of binary pulsars. The main idea is to extract the GW
signal with a model parameterized only by its overall am-
plitude, frequency, first and second frequency derivatives,
while remaining agnostic about the particular source that
produced it. In particular, this means we impose no prior
between the frequency derivatives and the mass of the
system or frequency of the signal when we do parame-
ter estimation. The best fit model parameters can then
be used to draw curves in the mass-frequency plane as-
suming GR is correct, and the test is passed if all curves
intersect at the same location.

For such a model-independent test to work, one must
first detect at least one galactic binary that is sufficiently
bound so that its second derivative is measurable, while
at the same time not so bound that its evolution is con-
trolled by mass transfer. From a galaxy simulation con-
sistent with those used for past LISA performance studies
and mock data challenges [71], we select the ten high-
est frequency detached (i.e. non-interacting) binaries to
study the LISA measurement of orbital evolution, and
how those results can be used to study gravity theories.

Figure 1 presents an example of this null test in the
chirp mass–frequency plane, where the former is a partic-
ular combination of the component masses of the system.
The measured GW frequency is a vertical curve in this

FIG. 1. (Color online) Null test of GR with WD binaries.
Each extracted parameter (the frequency (black), the first
(orange) and the second frequency derivatives (green)) are
curves in the chirp mass-frequency plane. If GR is correct,
as in the example shown here for a 5 year (light shade) and
10 year (dark shade) observation, all curves intersect in the
same region. Note that differences in the 5 and 10 year curves
inferred from the first frequency derivative are not noticeable
in this figure.

plane (black in the figure), whose thickness represents
its 90% credible interval. Assuming the null hypothesis
that GR is correct, the inferred value of the first fre-
quency derivative can be used to draw another curve in
this plane (orange in the figure), where again its thick-
ness is its 90% credible region. The intersection of these
two curves gives the inferred chirp mass of the system as-
suming the null hypothesis. Any additional information
is thus redundant and can be used to test the null hy-
pothesis. For example, the measured value of the second
frequency derivative can be used to draw another curve in
this plane (green in the figure), and if the null hypothesis
is correct, then all curves intersect in the same region.
In addition to GR consistency tests, galactic binaries

can also be used to test specific models that predict the
existence of pre-Newtonian dissipation. One such model
is massless scalar-tensor theory, perhaps one of the sim-
plest modifications to GR [46, 47, 72–74]. In this theory,
a massless scalar field couples to the metric tensor, thus
affecting the structure of massive objects and their mo-
tion in strong gravitational fields. In one sub-class of
such models [46, 47, 73, 74], Solar System observations
can be easily passed because the scalar field is shielded
and does not activate in weak gravitational fields. In
strong gravitational fields, such as those produced by NSs
and WDs, the scalar field does activate, producing pre-
Newtonian dissipation effects [74, 75]. Therefore, con-
straints on pre-Newtonian dissipation could be used to
place bounds on the two coupling constants of this class
of theories (α0, β0).
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We here study the strength of such bounds using GWs
emitted by galactic binaries of the mixed WD-NS type.
The pre-Newtonian dissipation in scalar-tensor theories
does not only depend on (α0, β0), but also on the response
of the star to the presence of a scalar field, quantified in
terms of certain sensitivities, which in turn depend on
the compactness of the stars. Such tests, therefore, re-
quire first the independent measurement of the masses
of the stars, which could be obtained electromagneti-
cally if the binaries are eclipsing [76]. These masses can
then be used to infer the radius of the stars, and thus
their compactness, using knowledge of the stellar equa-
tion of state, which for neutron stars we assume will be
known by the time LISA flies through a combination of
advanced LIGO/Virgo observations [17–23], X-ray obser-
vations [77, 78] and nuclear physics efforts [79–81].

With these assumptions, a GW measurement of
(f0, ḟ , f̈) implies a constraint of an open region in the
(α0, β0) plane. Such constraints would be very much
analogous to those placed with radio-observations of bi-
nary pulsars [82, 83]. We indeed find that the constraints
LISA could place in the future will be complementary,
comparable and sometimes better than what binary pul-
sars can do today. Figure 2 shows the constraints that
LISA could place assuming different accuracies for the
measurement of the masses and radii of the component
stars. Observe that the (f0, ḟ , f̈) constraints are compa-
rable to those that can be placed with radio-observations
of binary pulsars, and they could be better by as much
as an order of magnitude if the masses and radii were
known sufficiently accurately.

The study presented here is by no means intended as
a final word on tests of GR with LISA observations of
GWs emitted by galactic binaries; rather, it hopefully
opens the door to future studies of the extraction of
theoretical physics from a guaranteed LISA source that
has not received much attention in the GW experimen-
tal relativity community. Both the model-independent
and the model-dependent frameworks ought to be more
thoroughly investigated to account for systematics that
could arise from astrophysical effects, like mass transfer
and winds. The latter should also be extended to other
modified theories of gravity that also predict the exis-
tence of pre-Newtonian dissipation effects. Nonetheless,
the work presented here will hopefully act as a igniter
that will stimulate such future studies.

The remainder of this paper presents the details of the
calculations that lead to the results described above. Sec-
tion II describes how to model WD binaries outside of
GR. Section III discusses the data analysis techniques
we will use to determine the magnitude of projected con-
straints with LISA. Section IV presents the projected
constraints we can place on model-independent deforma-
tions of the GR model prediction. Section V focuses on
scalar-tensor theories and presents model-dependent con-
straints. Section VI briefly discusses caveats that could
modify the conclusions presented earlier quantitatively
but not qualitatively. Section VII summarizes the main

FIG. 2. (Color online) Constraints on the (α0, β0) coupling
parameters of scalar-tensor theories with LISA observations
of GWs emitted by WD-NS-star binaries, assuming differ-
ent accuracies in the electromagnetic determination of the NS
mass. For comparison, we also show constraints from radio-
observations with a couple of binary pulsars [84, 85], as well
as Solar System constraints from the tracking of the Cassini
spacecraft [86]. Observe that LISA constraints are compara-
ble to those set by binary pulsars when the component masses
can be measured with high precision.

results of this work and concludes by discussing possible
future work. Throughout this paper, we use the follow-
ing conventions: G = c = 1, (µ, ν, ρ, ...) are spacetime
indices.

II. GALACTIC BINARY MODELING WITH
PRE-NEWTONIAN DISSIPATION

This section describes how to model GWs emitted by
galactic binaries appropriate for LISA science. We then
conclude with a discussion of astrophysical populations
of galactic binaries

A. Modeling Individual Sources

We model the LISA response to GWs from galactic bi-
naries using the fast-slow decomposition described in [87].
The waveform model is extended to include the second
time derivative of the frequency, modifying the GW phase
Ψ(t) = 2πf0t + πḟt2 + 1

2πf̈
3 + ϕ0 where f0 and ϕ0 are

the GW frequency and phase measured at some fiducial
time, such as when observations begin, and the over dots
denote time derivatives evaluated at the fiducial time.

In the waveform model, the parameters ~λ =
{f0, ḟ , f̈ , . . .} are independent, but in any given theory
of gravity, there are inter-relations between them. For
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WD-WD Parameters

Source f0 (s−1) ḟ (s−2) f̈ (s−3) A cos θ φ (rad) cos ι ψGW (rad) ϕ0 (rad) M (M�) S/N (1 yr)
0 0.015248 2.5834e-14 1.6049e-25 7.7243e-23 -0.0708 4.6600 -0.2016 0.0430 4.2766 0.39 61
1 0.008994 1.7922e-14 1.3094e-25 1.4888e-22 0.2779 4.8717 0.5001 1.2662 6.1245 0.99 186
2 0.012124 1.6886e-14 8.6230e-26 7.8345e-23 -0.5828 4.3243 0.5973 0.1514 3.1676 0.50 108
3 0.012163 1.5602e-14 7.3380e-26 1.0910e-22 0.0909 4.7667 0.2371 1.9003 2.5800 0.47 97
4 0.018509 4.4578e-14 3.9367e-25 6.4157e-23 -0.5394 4.3525 0.7049 0.4413 2.2722 0.35 95
5 0.007984 7.9289e-15 2.8873e-26 4.7292e-22 -0.7201 4.0816 -0.4880 0.8372 2.2434 0.79 560
6 0.015234 1.3389e-14 4.3146e-26 8.3676e-23 0.0719 4.6291 0.2790 2.1810 4.3866 0.26 77
7 0.015144 2.0886e-14 1.0562e-25 1.0816e-22 -0.7246 3.8508 0.4231 2.0689 3.1987 0.35 113
8 0.017695 1.9882e-13 8.1911e-24 3.6914e-22 0.7288 5.4111 -0.3325 1.9704 3.6658 0.95 329
9 0.012800 1.5497e-14 6.8793e-26 7.5127e-23 -0.3924 4.4753 0.4679 1.3264 0.4712 0.42 89

WD-NS Parameters

Source f0 (s−1) ḟ (s−2) f̈ (s−3) A cos θ φ (rad) cos ι ψGW (rad) ϕ0 (rad) M (M�) S/N (1 yr)
1.4 + 0.3M� 0.003000 1.1422e-16 1.5945e-29 5.4222e-23 -0.1494 4.600 0 0 0 0.53 36

– 0.005000 7.4332e-16 4.0519e-28 7.6221e-23 – – – – – – 88
– 0.010000 9.4396e-15 3.2672e-26 1.2099e-22 – – – – – – 91
– 0.020000 1.1988e-13 2.6345e-24 1.9207e-22 – – – – – – 214

1.4 + 1.3M� 0.010000 3.5059e-14 4.5069e-25 4.4938e-22 – – – – – 1.17 753

TABLE I. Parameters of the ten WD-WD systems and the five WD-NS systems considered in our analysis. The parameters
(f0, ḟ , f̈) describe the orbital evolution, while A is the dimensionless gravitational wave amplitude. The sky location is encoded
in (cos θ, φ) where θ is the co-latitude and φ is the longitude in ecliptic coordinates. The angular parameters that encode the
binary’s orientation are (cos ι, ψGW, ϕ0) where ι is the inclination angle, ψGW is the polarization angle, and ϕ0 is the orbital
phase at t = 0. Quantities derived from the source parameters are M and the signal to noise ratio S/N of the binary after one

year of observing (which will grow roughly as
√
T ). Dashees indicate the parameter value is identical to the row above. All

sources are simulated to be consistent with GR, so f̈ can be derived from f0 and ḟ . The WDWD systems are drawn from a
spatial distribution consistent with the Milky Way galaxy, with random orientations uniform on a sphere. The WDNS systems
are chosen to be edge-on (therefore eclipsing, to maximize what can be learned from EM observations) simulated with A to be
consistent with the source at a distance of 8 kpc.

example, in GR, we have that

ḟGR =
96

5π
M−2 (πMf0)

11/3
, (1)

f̈GR =
33792

25π
M−3 (πMf0)

19/3
, (2)

to leading order in an expansion about Mf � 1, where
M = η3/5m is the chirp mass, η = m1m2/m

2 is the sym-
metric mass ratio and m = m1 + m2 is the total mass.
Therefore, assuming the system dynamics are dominated
by GW emission, and assuming the null hypothesis that
GR is correct, a measurement of (f0, ḟ) suffices to ex-
tract the chirp massM. The measurement of any higher
derivative can then serve as a consistency check of the
null hypothesis.

When pre-Newtonian dissipation effects are present,

the relation between the components of ~λ changes.
Generically, one can show that the chirping rate now be-
comes [88]

ḟ = ḟGR

[
1 + βppE (πMf)

bppE
]
, (3)

which then implies that

f̈ = f̈GR

[
1 +

20

11
βppE (πMf)

bppE +O
(
β2

ppE(πMf)2bppE
)]
,

(4)

where βppE ∈ < and bppE ∈ < are parameter-
ized post-Einsteinian amplitude and exponent param-
eters [88]. We have here neglected terms propor-
tional to β2

ppE(πMf)2bppE since we assume that βppE �
(πMf)−bppE . The amplitude parameter βppE can in prin-
ciple depend on other dimensionless system parameters,
like the symmetric mass ratio. The exponent coefficient
bppE < 0 in order for the effect to be pre-Newtonian, with
bppE = −2/3 representing the dipole effect we will focus
on in this paper.

B. Astrophysical Population

Of the tens of thousands of galactic binaries expected
to be detectable in the LISA band, population synthe-
sis simulations suggest that several such systems will
be exceptionally strong sources. These binaries will be
detectable within the first few weeks of mission opera-
tions, and over years of observing will accumulate signal
to noise ratios (S/N) in the hundreds. For testing GR
with galactic binaries, many of the loudest LISA sources
are the best laboratories not only because of their high
S/N, but also because these tend to be higher-mass WD
binaries (with M ∼ 0.4 M�, corresponding to compo-
nent masses of ∼ 0.5 M� for equal-mass binaries). As
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a consequence, the individual stars will be more com-
pact, suppressing contributions to the orbital evolution
of the binary through gravitational interactions between
the stars (e.g., tidal interactions or mass transfer).

For our investigations we will select “loud,” non-
interacting binaries from a galaxy realization consistent
with those used for the LISA Data Challenges1 con-
structed from simulations by [89]. The simulated galax-
ies are in agreement with the (admittedly small) sample
of observed double white dwarfs (e.g. [33]). From the
galaxy simulation, binaries are ranked by S/N and the 10
loudest systems with f0 > 4 mHz are selected for study.
There are high S/N binaries at lower frequencies, but
they will more likely be contending with overlapping sig-
nals, time-varying galactic confusion noise, and, for lower
mass systems, dynamical influences other than gravity
due to mass transfer, tidal interactions, etc. In general,
exploiting galactic binaries for testing orbital dynamics
will be most straightforward using isolated systems at
high frequency. The binary parameters for the systems
we will study are presented in Table I.

In addition to the astrophysical population of WD bi-
naries, we will also investigate what can be achieved with
LISA should we observe systems composed of a WD and
a NS. In our simulations, the NS-WD binaries are placed
near the galactic center (where the source density of
galactic binaries is likely the highest), and we study five
canonical systems, varying the observing time, masses,
and the orbital frequencies of the binary. The binary pa-
rameters for these systems are also included in Table I.

III. DATA ANALYSIS

A. LISA

LISA will be a constellation of three free-flying space-
craft, each on independent heliocentric orbits approxi-
mately one AU from the Sun. Each satellite is equipped
with an optical metrology system to precisely monitor the
distances between free-falling test masses housed within
the spacecraft. From the inter-spacecraft ranging mea-
surements, two Michelson-like interferometry signals are
synthesized digitally to simultaneously measure the two
GW polarizations, while a third Sagnac channel is insen-
sitive to GWs (at low frequencies) and will be used for
detector characterization. The simulated detector per-
formance used in this study is consistent with the instru-
ment noise levels quoted in the LISA L3 Mission Pro-
posal [27]. This analysis takes advantage of the noise-
orthogonal A and E data streams constructed from linear
combinations of the Michelson-like time delay interferom-
etry channels [90]. The A and E data streams assume
identical noise in each of the six interferometer links of

1 https://gitlab.in2p3.fr/stas/MLDC

the spacecraft, and so are an idealized case that will not
be realized during mission operations, but are suitable
for this proof-of-concept study.

B. Methodology (Bayes/MCMC)

The simulated galactic binary sources are analyzed
using a parallel tempered Markov Chain Monte Carlo
(MCMC) pipeline adapted from [45] specifically designed
for galactic binary searches in LISA data. The MCMC
pipeline has been modified to include the second time
derivative of the frequency as a parameter. We assume
uniform priors on the frequency parameters. Mapping
the gravitational-wave observables to the modified the-
ory parameters is done through post-processing of the
posterior samples from the Markov chain, the specifics of
which will be described in later sections.

C. Example Parameter Estimation Results

In this work we will be mapping the parameters used
by the MCMC sampler to some other physical quanti-
ties and evaluating the posterior distribution function
at arbitrary parameter values. The latter is generally
a challenging problem as the MCMC yields a discrete set
of samples drawn from the distribution, rather than the
continuous distribution itself. Here we are spared much
of this difficulty because our investigations involve only
extraordinarily high S/N sources, and the high S/N limit
is where the errors are well approximated by Gaussians
distributions.

To demonstrate this, we show 1D histograms and 2D
scatter plots of the samples from the MCMC for a stan-
dard analysis of Source 0 (i.e., not including f̈ as a pa-
rameter), assuming a three year observation time. The
parameters shown in Fig. 3 are the GW amplitude A,
the GW frequency f0, and its first time derivative ḟ .

The posterior distribution function p(~λ|d) is then approx-
imated by a multivariate Gaussian

p(~λ|d) ≈ 1

(2πΣ)1/2
e−

1
2 (
~λ−~µ)T Σ−1(λ̃−µ̃) (5)

centered at the mean of the parameters ~µ with covari-
ance matrix Σ calculated directly from the chain sam-
ples, Σij = 〈λiλj〉. The green curves in Fig. 3 show
the Gaussian representation of the 1D posteriors and the
2σ contours of the covariance matrix computed from the
MCMC samples.

Figure 4 shows an example of how the MCMC sam-
ples can be mapped to different physical quantities. In
particular, we here show the canonical example of map-
ping (A, f0, ḟ) to the luminosity distance and chirp mass

(DL,M). At every value of (A, f0, ḟ) sampled by the
chains, we compute the corresponding (DL,M), and



7

FIG. 3. (Color online) Corner plot showing binned marginal-
ized posteriors (gray histograms) of model parameters along
the diagonal, and scatter plot (gray dots) of MCMC samples
for the different two-dimensional combinations in the off diag-
onal cells. Parameters, from top left to bottom right along the
diagonal, are the initial GW frequency f0, first time deriva-
tive of the frequency ḟ , and GW amplitude A. We approx-
imate the joint posteriors by a multivariate Gaussian, with
covariance matrix computed from the MCMC samples. Col-
ored curves along the diagonals show the Gaussian fit from
the approximation, and the 2σ contours are shown in the off-
diagonal plots. These results validate our approximation of
the continuous posterior distribution function using a mul-
tivariate Gaussian fit to the MCMC samples. Dashed lines
indicate the true source parameters of the simulation.

then construct a histogram of the result (gray in the fig-
ure). We then use the Gaussian approximation to ap-
proximate the posterior distributions for (DL,M) using
the covariance matrix of the reparameterized samples (or-
ange in the figure). Once more, observe how the Gaussian
estimate is an excellent approximation to the sampled
posteriors. Beyond confirming by eye the agreement, we
test that the p-values of the MCMC samples evaluated
with the approximate posterior are consistent with being
uniformly distributed between [0, 1].

The most important parameter for our study is the
second time derivative of the frequency, f̈ , as later in
this work it will either be used to place an independent
constraint on the chirp mass, or to break degeneracies
with the pre-Newtonian dipole term. The f̈ parameter
is often neglected in GW studies of WD binaries because
it is seldom measurable. Moreover, this parameter pro-
vides redundant (though less constraining) information
about M and DL, which are the two parameters typi-
cally most sought after when thinking about exploiting
the astrophsical predictions of the frequency evolution in
galactic binaries.

For this work, the story of how well WD binaries can
be used to test gravity is the story of how well f̈ can
be measured. To that end, we focus on golden galactic

FIG. 4. (Color online) Same as Fig. 3, but now showing the
chirp mass M and luminosity distance DL derived from the
frequency and amplitude parameters of the model, assuming
no detectable contribution to the orbital evolution from as-
trophysical or non-GR effects. Dashed lines indicate the true
source parameters of the simulation.

binaries, the best-of-the-best in a simulated galactic pop-
ulation: high mass, short orbital period, systems which
will undergo the most significant frequency evolution dur-
ing the LISA observations, and will be easily detectable
anywhere in the galaxy. Even with these extraordinary
sources, long integration times are needed for the obser-
vations to constrain f̈ . Figure 5 shows the 2σ contours in
the ḟ–f̈ plane from posterior distribution functions rep-
resented by the MCMCs covariance matrix. On display
here is the same source as shown in Figs. 3 and 4, now
including f̈ as one of the model parameters. This figure
demonstrates how f̈ improves with observing time. Dur-
ing the first 3 years of observing the second derivative of
f0 is basically unmeasured. After 5 years there are hints
of a detection, as the parameter is constrained to be non-
zero. For this simulated source, a 10 year observation is
required to unambiguously measure a non-zero f̈ .

IV. PROJECTED MODEL-INDEPENDENT
CONSTRAINTS

In this section we present the details of the model-
independent test. We begin by describing the injection
and the template that we used. We then proceed with
the details of the test and present results from our data
analysis studies.

A. GR injection and dipole template

As a first demonstration of using WD binaries to test
GR we take a model-agnostic approach, instead con-
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FIG. 5. (Color online) 2σ contours from a multivariate Gaus-
sian approximation using the covariance matrix of the MCMC
samples marginalized to the ḟ–f̈ plane. Different ellipses show
how the measurement of the frequency evolution improves
over the observing time. For this source, a 5 year observation
was needed to detect a non-zero f̈ , and a 10 year observa-
tion is required for a precise constraint. This conclusion is
representative of the f̈ measurement for the other simulated
WD-WD binaries we studied.

straining the magnitude of the dipole effect on the wave-
forms. To do so, we analyze the ten binaries selected from
the simulated galaxy as the most promising sources for
these tests using the MCMC pipeline with f̈ included as a
parameter. The binaries are simulated with βppE = 0, i.e.

consistent with GR, and are then recovered using f0, ḟ
and f̈ as independent parameters, instead of being con-
strained to follow the GR relationship. For the remainder
of this section, we will drop the ppE subscript on β for
convenience. The marginalized posterior p(f0, ḟ , f̈ |d) is
then mapped to p(M, β|d) by inverting Eqs. (3) and (4).

Figure 6 shows cumulative distribution functions of the
marginalized posterior on β, p(β|d) for each source as a
function of observation length. Horizontal dashed lines
denote the 5% and 95% percentiles, enclosing the 90%
credible interval of the measurement. Recall that the
β parameter can in principle depend on the symmetric
mass ratio η, and therefore, if it does, then β is not the
same for all binaries in our study. As a result, we are
not combining results to establish a joint posterior on
β, instead treating the β measurement of each source
independently. The gray shaded region at β & 10−5 is
roughly where the approximation in Eqs. (3) and (4)
breaks down, with β(πMf0)−2/3 & 1. The exact place
where the β correction becomes too large depends on the
system’s mass and orbital period, which is comparable
for all of the binaries we consider here, but not identical.

From these results we see that uncertainties in the mea-
surement of β are typically of order 10−4 for observation
times of a few years, improving to .10−5 after moni-

toring the sources for ten years. For the binaries to be
measured well enough to definitively constrain β within
the region where the ppE formalism is valid, ∼decade
long monitoring campaigns are needed.

B. Redundancy Test and Fundamental Bias

Let us now consider the effect on WD binary parameter
estimation if we assume GR is correct in the analysis, but
include the possibility of non-zero dipole radiation in the
injected source simulations. Treating each marginalized
posterior of the orbit parameters p(f0|d), p(ḟ |d), p(f̈ |d)
independently, we can compute three independent con-
straints on the frequency-dependent chirp mass function
M(f0), derived from the inversion of Eq. (1), or Eqs. (3)
and (4). Doing so ignores the covariances between the
different frequency parameters, which are shown to be
non-negligible in Figs. 3 and 5, leading to a conservative
estimate.

If the sources’ frequency evolution are consistent with
GR, the three constraints will intersect inM− f0 space.
Figs. 1 and 7 show 90% credible intervals forM(f) from
two of the detached WD binaries used in this study. The
vertical line is the constraint from p(f0|d), which spans
the prior range onM. The bands sweeping from top left
to bottom right are the constraints from p(ḟ |d) (thin) and

p(f̈ |d) (thick). The horizontal dashed line indicates the
true value of the chirp mass from the simulated signal.

Similar to Fig. 1, Fig. 7 shows constraints for different
injected sources with a five year (left panel) and ten year
(right panel) observing time. When the injected source is
simulated with a GR frequency evolution (green bands),
one obtains a redundancy test like the one shown also
in Fig. 1. Observe again that as the observing time in-
creases, the redundancy test becomes stronger. When
the injected source is simulated with a non-GR frequency
evolution (orange and purple bands), one sees how the
failure of the redundancy test could indicate a departure
from GR.

The non-GR detections were simulated as follows. We
used the frequency evolution in Eqs. (3) and (4) with
β 6= 0, but still within the regime where β(πMf0)−2/3 �
1. We use Source 4 as the test candidate, as it yielded
some of the best constraints on β. The non-zero β’s were
selected to be at the 0.99 and 0.999 percentile of the
p(β|d) from the 10 year observation in Fig. 6. The orange
bands show results for the injection with p-value of 10−2,
while the purple bands are for the source with non-zero
β at p-value of 10−3.

This demonstration leads to two notable conclusions.
First, the left panel of Fig. 7, coming from a simulated
5 year observation, shows that the uncertainties in the
f̈ measurement are such that signals whose underlying
evolution is not consistent with GR can still pass the
M consistency tests insofar as the three different con-
straints intersect in the same region of M − f space.
However, the altered dynamics lead to a systematic or
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FIG. 6. (Color online) Cumulative distribution function of the marginalized posterior distribution function for β from WD-WD
binaries in our study as a function of observing time. The binaries are simulated to be consistent with GR (β = 0). The gray
shaded region is where our approximation that dipole radiation is a small perturbation to the GW emission breaks down. The
measurements of β are dominated by uncertainty in the determination of f̈ . Long observing times are required to put tight
constraints on β.

stealth bias [88, 91] in the inferred chirp mass that is
larger than the statistical error (roughly the width of the

intersection between the p(f0|d) and p(ḟ |d) constraints).
In other words, beyond-relativistic frequency evolution
can meaningfully affect our inferences about the source
before it is large enough to be directly detected. Without
an accurate, independent measurement of M from EM
follow-up observations, this effect would go unnoticed.

The right panel of Fig. 7 panel shows how this stealth
bias is exposed by continued monitoring of the source,
showing the extreme case of a 10 year observation. Here
the constraints on the frequency evolution are tight
enough that the bands are clearly not intersecting, prov-
ing that the assumption of only GR-driven evolution is
not supported by the data.

The notion of non-zero β fundamentally biasing
chirp mass measurements is further illustrated in

Fig. 8, now showing the 2D marginalized posterior
p(M(f0, ḟ),M(f0, f̈)|d) (and therefore taking advantage
of the information encoded in the parameter correla-
tions). Here the covariance matrix of the MCMC samples
has been used to approximate the posterior as a mul-
tivariate Gaussian, and we are plotting the 1, 2, and
3σ contours in green. The line y = x (purple, dashed)
denotes where the two chirp mass constraints are self-
consistent, i.e. M(f0, ḟ) and M(f0, f̈) return the same
value. The solid orange lines mark the true value of the
simulated source. The left panel is from a 5 year ob-
servation of a source with β = 0, and we find that the
posterior encompasses y = x and encloses the true value.

The right hand panel shows results from the same du-
ration observation and same source, but with β injected
at the p-value of 10−2 of the 10 year constraint. Note
that the posterior includes the line y = x so, without
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FIG. 7. (Color online) Left: Consistency plots for GR injection like in Fig. 1 for a 5 year observing time. The WD-WD systems
are simulated to be consistent with GR (green), and with increasingly large β, injected at the 0.99 (orange) and 0.999 (purple)
quantiles of the 10 year CDF from Fig. 6. Note that for each source the frequency parameters yield a self-consistent value of
the chirp mass, but only the β = 0 source recovers the true value (horizontal, dashed line). Right: Same as the left figure,
but after a 10 year observing time. Now the frequency parameters are measured precisely enough that the assumption of only
GR-driven evolution is not supported by the data.

FIG. 8. (Color online) Left: 1,2, and 3σ contours of the multivariate gaussian approximation to the marginalized posterior

of the chirp mass using M(f0, ḟ) (horizontal axis) and M(f0, ḟ) (vertical axis) for a GR injection (β = 0). The orange solid
lines denote the true value of M for the simulated source, the purple dashed line denotes the line y = x where the two M
measurements are self-consistent. Right: Same figure but now the true source has a non-zero β, chosen to be at the 0.99 quantile
of the 10 year CDF from Fig. 6. The posterior intersects the line y = x and therefore supports a self-consistent measurement of
the M, but confidently excludes the true value by assuming zero dipole radiation. Both results are for 5 year observing times.

independent information about the true M, this source
would appear to be consistent with GR-only frequency
evolution. However, the true value (orange line) is sev-
eral σ away from the median of the distribution, resulting
in a ∼15% bias in the inferredM (and closer to 30% for
the p ∼ 10−3 case, not shown here).

V. PROJECTED MODEL-DEPENDENT
CONSTRAINTS

In this section we specialize the model-independent
test of the previous section to scalar-tensor theories. We
begin by describing the basics of this theory and estab-
lishing some notation. We proceed by presenting pro-
jected constraints assuming GW observations can be used
to extract (f0, ḟ , f̈) in connection with electromagnetic
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observations of the same source, which can provide the
masses and radii of the binary components. Through-
out this section, we mostly follow the notation of [74] for
scalar-tensor theories.

A. Basics of Scalar-Tensor Theories and the
Modeling of Individual Sources

The class of scalar-tensor theories we will consider can
be defined by the Einstein-frame action

S =
1

2κ∗

∫
d4x
√
−g∗ (R∗ − 2gµν∗ ∂µψ∂νψ) (6)

+ SM
[
χM , A

2(ψ)g∗µν
]
, (7)

where κ∗ = 8πG∗, with G∗ the bare gravitational con-
stant in the Einstein frame, ψ is a massless scalar field
in the Einstein frame (not to be confused with the grav-
itational wave polarization angle ψGW from above), R∗
is the Ricci scalar in the Einstein frame associated with
the Einstein frame metric g∗µν , with g∗ its determinant,
χM are additional matter degrees of freedom and A(ψ)
is a coupling function.

The action above describes a theory in which matter
follows geodesics of the physical (Jordan-frame) metric

gµν = A2(ψ)g∗µν . (8)

We are here interested in a particular subclass of scalar-
tensor theories defined by the conformal coupling

A(ψ) = exp

[
α0 (ψ − ψ0) +

1

2
β0 (ψ − ψ0)

2

]
, (9)

where ψ0 is the “vacuum-expectation value” of the field
at spatial infinity. One could conformally transform the
Einstein-frame action to the Jordan frame, but the re-
sulting action is more difficult to work with, and so, we
here choose to present equations in the Einstein frame
only. The physical world in which experiments are per-
formed, however, exists in the Jordan frame, so one must
always remember to re-cast any Einstein frame results to
the Jordan frame before comparing against experiments.

The field equations in the Einstein frame take the form

G∗
µν = κ∗T

M
∗µν + Tψ∗µν , (10)

�∗ψ = −κ∗
2

[α0 + β0 (ψ − ψ0)] TM∗ , (11)

where G∗
µν is the Einstein tensor in the Einstein frame,

TM∗µν is the matter stress-energy tensor in the Einstein
frame, and the stress-energy tensor for the Einstein-frame
scalar field is

Tψ∗µν = 2∂µψ∂νψ − g∗µν
(
gαβ∗ ∂αψ∂βψ

)
, (12)

and TM∗ is the Einstein-frame trace of the matter stress-
energy tensor TM∗µν in the Einstein frame. Taking the
divergence of the field equations for the metric, one finds

an additional compatibility condition, which guarantees
the physical metric satisfies the weak-equivalence princi-
ple.

In the Solar System, this theory can reduce closely to
GR. To show this, let us say the Einstein frame field ψ →
ψ0 in the Solar System. Then, at 1 PN order in the Solar
System, Damour and Esposito-Farése have shown that
the parametrized post-Newtonian (ppN) parameters [92,
93] take the form [46, 47, 73, 74]

|γppN − 1| = 2
α2
0

1 + α2
0

, (13)

|βppN − 1| = 1

2

β0α
2
0

(1 + α2
0)2

. (14)

The observation of the Shapiro time delay through track-
ing of the Cassini spacecraft can be satisfied by requir-
ing that α2

0 . 10−3, without imposing any condition on
β0 [86, 94].

Even with a small value of α0, large modifications to
GR can still occur in systems that are strongly gravitat-
ing. Damour and Esposito-Farése have shown that an
effect akin to ferromagnetism occurs in the vicinity of
sufficiently compact and massive stars, which leads to a
non-linear activation of the scalar field, an effect called
spontaneous scalarization [46, 47, 73, 74]. In numerical
simulations, such scalarization has also been seen to oc-
cur dynamically in NS binaries when the binary’s binding
energy exceeds a certain threshold [95, 96]. Scalarization
can only occur when β0 < 0, and in fact, Damour and
Nordtvedt have shown that GR is an attractor in theory
phase space when β0 > 0. Recently, Anderson et al have
shown that when β0 < 0, GR is a repeller in theory phase
space, leading to a maximal violation of Solar System
experiments, unless one fine-tunes the field’s initial con-
ditions at the time of Big Bang nucleosynthesis [97–99].
We will here ignore such problems, as done cavalierly in
the literature.

The degree of scalarization for isolated compact object
A is controlled by its scalar charge αA, which in gen-
eral is a complicated function of α0, β0 and the object’s
compactness. For WDs, one can approximate the scalar
charge via

αWD

A = α0

[
1− 2CA +O(C2

A)
]
, (15)

where CA is the star’s compactness. The scalar charge is
here independent of β0 because these objects cannot be-
come compact without collapsing into a black hole for the
non-linear effects associated with β0 to become relevant.
For NSs, the scalar charge can only be calculated numeri-
cally by solving the equations of structure in scalar-tensor
theories; we here use the tabulated expression of [100].

Although Solar System observations cannot constrain
β0 since weakly gravitating objects have tiny scalar
charges, the radio observation of binary pulsars can [82,
83]. These observations have accurately measured the
rate at which the orbital period of certain binary pul-
sars decays, finding it to be in perfect agreement with
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GR. But when β0 is sufficiently negative, then not only
do NSs scalarize, but this activation of the scalar field
also sources dipole radiation, which in turn forces the or-
bital period to decay more rapidly than in GR. This is
precisely an example of the pre-Newtonian dissipation we
have discussed previously. Given that such rapid decay is
not observed, radio observations have placed constraints
in the (α0, β0) plane. Due to degeneracies between these
parameters in the timing model, only a certain combina-
tion of (α0, β0) can be bounded for any given observation.
Constraints on the (α0, β0) plane from radio observations
have already been presented in Fig. 2.

We use the same LISA response function as described
in Sec. II A. In principle, there is an additional scalar GW
mode that ought to be included, but this is suppressed by
the scalar charges, and we will thus ignore it here. The
mapping between components of the model parameter

vector ~λ is still given by Eq. (3) and second-order version
of Eq. (4), namely

f̈ = f̈GR

[
1 +

20

11
βppE (πMf)

bppE +
9

11
β2

ppE (πMf)
2bppE

]
,

(16)

with M→M∗ and the particular choices

bppE = −2/3 , (17)

βppE =
5

96
η2/5κ−3/5 (1 + α1α2) (α1 − α2)

2
, (18)

where α1,2 are the scalar charges of the objects, while

κ = 1 +
1

6

(
α1
m2

m
+ α2

m1

m

)2
+

1

6
(α1 − α2)

(
α1
m1

m
+ α2

m2

m

)(m1

m
− m2

m

)
+

5

48

α1 − α2

1 + α1α2

(
β2α1

m1

m
− β1α2

m2

m

)
+ d2 (α1 − α2)

2
.

(19)

The quantity β1,2 are the derivatives of the scalar charges,
which we will ignore in this work for simplicity. The
quantity d2 is a numerical factor that has not yet been
calculated, but that can be ignored because it is subdom-
inant. Notice that the quantityM∗ in these equations is
not quite the chirp mass, but rather it is the tensor chirp
mass, namely

M∗ =
κ3/5

(1 + α1α2)
2/5
M , (20)

where we have set G∗ = 1.

B. Constraints on Spontaneous Scalarization with
(ḟ , f̈) Measurements

Consider a NS-WD system in the galaxy with GW fre-
quency in the LISA band. While much rarer than the

WD-WD systems, a NS-WD binary is a clearly identifi-
able source in the LISA data stream due to its high mass,
and will therefore be well localized (dΩ� 1 sq. deg. af-
ter several years of observing) in the galaxy and yield
a precise determination of the frequency evolution pa-
rameters [35]. If electromagnetic follow-up observations
constrain the masses and radii of the binary constituents,
they would be used to predict the orbital evolution of the
binary in scalar-tensor theories of gravity. Those predic-
tions, compared to the frequency parameters observed by
LISA, then serve as a test of the theory.

Exploring to what extent such a test yields novel in-
sight into our understanding of gravity, we simulate a
binary comprised of a 1.4 M� NS and a 0.3 M� WD
with a GW frequency f0 = 10 mHz near the galactic cen-
ter, at a distance of 8 kpc (see also Table I). Using the
MCMC pipeline, we characterize how well the source pa-
rameters are measured. For electromagnetic follow up we
would likely require the source be closer to Earth, and not
towards the galactic center where EM observations will
have to contend with extinction and source confusion.
However, placing the sources near the galactic center is
a conservative choice for the GW analysis: anything fur-
ther away is difficult to observe electromagnetically, and
anything closer results in better GW parameter estima-
tion due to the increased S/N.

The marginalized posteriors from the MCMC analy-
sis are approximated as multivariate Gaussians, as in

Eq. (5) with parameters ~λ = (f0, ḟ , f̈). It is important
to consider the full covariance matrix, rather than just
the variance of the 1D marginalized posteriors for ḟ and
f̈ , because the two parameters are strongly correlated
(see Fig. 5). While the perils of blindly assuming Gaus-
sian distributions for posteriors in GW astronomy are
well documented, the sources we are analyzing have high
S/N ratios where this approximation is sufficient for proof
of concept studies. Furthermore, we again confirm that
the Gaussian approximation is adequate by testing that
the distribution of p-values for the Markov chain samples
evaluated using the Gaussian approximation to the pos-
terior are uniformly distributed between 0 and 1, as we
did in Sec. III C.

As a stand in for the electromagnetic observations, we
compute the WD and NS radii using mass-radius rela-
tions appropriate for the different compact objects. For
the WD we use a simple Newtonian relation, and for
the NS we test two different equations of state, shown
in Fig. 9. Although currently the NS equation of state
is not known accurately, by the 2030s when LISA flies,
additional LIGO/Virgo observations like the recent [10],
combined with observations of the X-ray pulse profile of
bursting NSs by NICER [78], will have measured it much
more accurately. We then assume Gaussian errors for the
masses of the objects and the radius, centered at the true
value, testing assumed standard deviations of 10%, 1%,
0.1%, and 0.01% of the true value. The NS radius is de-
termined from the mass using the assumed equation of
state.
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FIG. 9. (Color online) Mass radius relationships used in this
paper for the WD (left) and NS (right) models. The WD
mass-radius relationship is a simple Newtonian approxima-
tion, which is adequate in the mass range we consider which
is well below the maximum mass where relativistic effects be-
come important. The NS relationships come from numerical
simulations assuming two equations of state: AP3 [101] and
SLy4 [102]. All results involving NSs in this work use the AP3
equation of state unless otherwise noted.

In lieu of a closed-form expression for mapping the EM
and GW parameters to scalar-tensor theory parameters,
we test whether a set of discrete values for α0 and β0
are jointly consistent with p(ḟ , f̈ |d) approximated from
the MCMC, marginalizing over the inferred f0 measure-
ment from the GW data and the assumed mass and ra-
dius uncertainties from EM observations. We begin by
randomly drawing 106 combinations of f0, masses, and
radii for the NS and WD consistent with p(f0|d) and
the assumed EM measurement capabilities, respectively.
For each set of masses and radii, we compute the scalar
charge of the WD using Eq. (15). The NS scalar charge
is obtained from a look up table of numerical simulations
on a discretized grid of mass, α0, and β0 [100]. Then,
using Eqs. (17)-(20), and substituting into Eqs. (3) and

(16), we calculate the predicted ḟ∗ and f̈∗ for that com-
bination of parameters. If the p-value of the marginalized
posterior p(ḟ , f̈ |d) evaluated at the predicted ḟ∗ and f̈∗

is greater than 0.1 the scalar tensor parameters are con-
sidered consistent with the GW and EM measurements,
from which upper limits are placed on α0 as a function
of β0.

The bound that can be set using joint EM+GW ob-
servations is heavily dependent on how well the masses
and radii of the binary components can be independently
measured by EM observations. Upper bounds at 90%
confidence for a ten year observation of our canonical
NS-WD binary system, assuming mass and radius errors
ranging from 10% to (an admittedly optimistic) 0.01%,
are compared to existing bounds in Fig. 2. For LISA ob-

servations to improve on existing bounds of scalar-tensor
theories, long observing times and independent precision
measurement of the mass and radii of the binary are nec-
essary.

To see if this conclusion is generically true, or if it de-
pends on properties of the source, we repeat the analysis
for different observing times, orbital periods of the bi-
nary, WD mass, mass ratio, and NS equation of state.
Below, we present the 1% and 0.01% accuracy cases for
EM-derived mass and radius constraints as representa-
tive of plausible and best case outcomes, respectively.

Figure 10 shows how the LISA constraints improve
over the mission lifetime. For systems with mass and
radius constraints in the 1% range (left panel), the un-
certainty in the properties of the binary constituents
dominates the constraint on α0, and we see minimal im-
provements even as the orbital evolution parameters be-
come increasingly well measured with longer observing
times. Adopting the optimistic mass and radius con-
straints (right panel), the bounds become competitive,
and ultimately exceed, existing bounds from Cassini and
observations of binary pulsars. Because we are assuming
joint electromagnetic observations, these systems could
be monitored well beyond the LISA mission lifetime, per-
haps with follow-on GW observatories, to further im-
prove the bounds.

We also investigate how the orbital period of the binary
affects the bounds that can be inferred, which presents
an interesting trade space to explore. Dipole radiation
plays a more prominent role in the orbital evolution at
lower orbital velocities, i.e. low GW frequency. However,
LISA will have less sensitivity at lower frequencies due
to the presumed levels of confusion noise from unresolved
binaries in the galaxy. Furthermore, measuring frequency
derivatives is more difficult at low frequency because the
overall change to the GW phase during the observing
time is smaller.

We test which of these effects wins out by comparing
bounds derived for the 1.4 + 0.3M� NS-WD system at
different GW frequencies (f0 = 3, 5, 10 and 20 mHz) in
Fig. 11. Observe how we again find, for 1% uncertainties,
that the mass/radius measurement dominates the bound
on scalar-tensor parameters. If EM constraints could
reach the .01% level, we see separation of the bounds de-
pending on the frequency of the binary, with the higher
frequency systems providing tighter bounds owing to the
better measurement of ḟ and f̈ . Interestingly, the bound
does not monotonically improve with frequency, as the
3 mHz source better constrains α0 than the 5 mHz sys-
tem.

The final result presented here explores how the mass
of the WD companion affects the bounds on the scalar-
tensor parameters. The reason for this study is that a
higher mass WD would be more compact, and therefore
would have larger scalar charge, which, in turn, would be
a stronger source of dipole radiation. Alas, we find little
difference in the bounds derived from the GW measure-
ment comparing 1.4 + 0.3M� and 1.4 + 1.3M� NS-WD
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FIG. 10. (Color online) Constraints on α0 vs. β0 for canonical NS-WD system at different observing times. The left (right)
panel assumes 1% (0.01%) errors on mass and radius measurements. The mass/radius uncertainties dominate the bounds on
scalar-tensor parameters over the GW measurement until they are reduced to the extremely optimistic 0.01% level. At that
point we see the bounds improve with observing time, leading to better than current constraints.

FIG. 11. (Color online) Same as Fig. 10 but for systems at different GW frequencies. The mass/radius uncertainties dominate
the bounds on scalar-tensor parameters over the GW measurement until they are reduced to the extremely optimistic 0.01%
level. With high precision mass radius measurements, we see that the high frequency binaries provide the best constraints,
although that is not monotonically true, as the bound at 3 mHz exceeds that at 5 mHz because the dipole radiation effects are
more prominent at low velocities.

binaries at f0 = 20 mHz, as we can see in Fig. 12. We also
investigated the effect of the NS composition, comparing
bounds using the AP3 [101] and SLy4 [102] equations of
state, and found no measurable difference between the
derived bounds.

VI. CAVEATS

In this section we present several caveats on our anal-
ysis that could be investigated further in the future. We

begin by discussing the dependence of our results on the
galactic binary population. We end with a short discus-
sion of the effects of tidal and/or rotational deformations.

A. Dependence on the Population

For the WD binary sources, we are using a small sam-
ple of the shortest period binaries in a simulated galaxy.
These have shorter periods than any known binaries at
the time of this study, and so there existence is a pre-
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FIG. 12. (Color online) Same as Fig. 10 for canonical NS-WD systems with varying component masses. We see no discernible
difference in the bounds for different mass binaries.

diction of population simulations. From those simula-
tions, there will be a large amount of variance in this
high mass, short period sub-population, and the sam-
ple of such binaries in the observed galaxy may not be
as kind. That being said, current observations of bina-
ries are limited to nearby, bright sources, whereas sources
with these masses and GW frequencies will be observable
throughout the galaxy so, if they exist, they will be excel-
lent LISA sources. A similar argument exists for NS-WD
binaries in the LISA band. Further population synthesis
studies, and electromagnetic surveys searching for short
period binaries, may strengthen or weaken the case for
these extraordinary systems. It may also be the case that
we will just have to wait to see what LISA observations
have in store.

B. Tidal and/or Rotational Deformations

In this work we have intentionally isolated a partic-
ular modification to the binary evolution (dipole radia-
tion) to determine how well it can be constrained using
LISA observations. The effect of dipole radiation will be
competing with other, similarly difficult to measure, pro-
cesses that will modify the phase evolution of the binary
from the point-particle-in-GR case. Mass transfer is an
obvious culprit, though such binaries are expected to be
a subset of the total observed population, particularly at
the high end of theM distribution, where our simulated
sources are found.

Tidal interactions between the stars, however, may
prove to play an important role generically, especially for
the high frequency binaries we consider here. Fortunately
for us, tidal contributions enter at much higher post-
Newtonian order. More specifically, the tidal deformabil-
ity enters at 5 post-Newtonian order, and thus, its effects
would scale as (πMf0)21/3 in Eq. (1) and (πMf0)29/3 in

Eq. (2). These modifications are multiplied by a tidal
deformability parameter that for WDs is very large, as
it scales as C−5 where C is the gravitational compact-
ness, and that is enhanced by non-zero orbital eccentric-
ity [103–106]. However, an order of magnitude estimate
suggests that the 5PN suppression is at least 5 orders of
magnitude stronger than the tidal deformability parame-
ter enhancement, leading to an overall effect that should
be very small. Ultimately, an holistic approach to model-
ing the phase evolution of galactic binaries in LISA data
including these different effects will be needed to avoid
biasing inferences about any one potential source of or-
bital evolution.

VII. CONCLUSIONS

We studied the potential of using galactic binary GW
observations with LISA to carry out tests of GR. In spite
of the current lore, there are a large class of modified
theories of gravity that predict large modifications to the
temporal or spectral evolution of such GWs. We thus de-
veloped a model-independent framework to carry out null
tests of GR with such GWs, which resemble those carried
out with radio observations of binary pulsars. We per-
formed several MCMC studies to determine the strength
of such null tests, and found that long observing times
(of order 5–10 years) would be most probably required.

We then investigated model-dependent test of GR with
future LISA observations of galactic binaries. In partic-
ular, we focused on tests of scalar tensor theories that
predict dipole emission in compact binaries. We per-
formed several MCMC studies to determine the strength
of such model-dependent tests, and found that shorter
observing times (of O(3–5) years) would suffice to place
better than current constraints. The caveats here though
are that such model-dependent tests require an observa-
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tion of a mixed NS-WD galactic binary and knowledge
of the radius of the NS, which could be obtained with
coincident electromagnetic observations if the binary is
eclipsing.

We also investigated whether modifications to GR in
the signal could affect the astrophysical inferences one
would obtain from LISA observations of galactic bina-
ries analyzed with GR templates. We found that indeed
fundamental bias can be present, inducing a systematic
error in the extracted GR parameters of O(10%), even
before a deviation is measurable. Such stealth bias even-
tually disappears as the observing time increases and the
deviations begin to induce a failure of the null tests we
developed. This implies that accurate chirp mass infer-
ences with GR templates may require marginalizing over
these non-GR effects to within existing bounds.

We hope the analysis presented here catalyzes an ex-
plosion of future work. One issue that is particularly
important is the impact of astrophysical systematics on
the model-independent and model-dependent tests con-
sidered here. Perhaps the most important astrophysical
effect are tidal deformations on WDs, which would in-
duce a correction on the waveform template at high post-
Newtonian order. These corrections should be taken into
account to determine whether they can spoil the tests
discussed here.

Another possible avenue for future work is the study
of follow-on missions beyond LISA. Even after LISA flies
and is de-commissioned, electromagnetic observing cam-
paigns of the Milky Way will continue. Long enough ob-
servations could then allow for measurements of the radii
of eclipsing NS-WD galactic binaries, even of these radii

measurements are not available when LISA flies. Once
this is done, one could then go back to the LISA data
to carry out the model-dependent tests described here.
Moreover, follow-on space-based GW missions, like the
Big Bang observer, will observe galactic binaries later in
their orbital evolution, and at much higher S/N, leading
to even stronger constraints. It would be interesting to
investigate the level to which such tests could be carried
out.

The analysis described above, however, requires knowl-
edge of the equation of state. By the time LISA flies
in the 2030s, one expects the equation of state to have
been constrained significantly with future observations
by LIGO/Virgo and NICER. However, still some level
of uncertainty will remain, which would have to be
marginalized over to carry out the model-dependent tests
described here. It would be interesting to carry out such
a marginalization analysis to determine how the strength
of the model-dependent tests would be affected.
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