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Abstract.

Solar system observations have traditionally allowed for very stringent tests of
Einstein’s theory of general relativity. We here revisit the possibility of using
these observations to constrain gravitational parity violation as encapsulated in
dynamical Chern-Simons gravity. Working in the small-coupling and post-Newtonian
approximations, we calculate analytically the scalar field and the gravitomagnetic
sector of the gravitational field in the interior and the exterior of an isolated, weakly-
gravitating object with uniform rotation and a quadrupolar mass deformation. We find
that the asymptotic peeling-off behavior of the exterior fields is consistent with that
found for black holes and neutron stars, as well as for non-relativistic objects, with
overall coefficients that are different and dependent on the structure of the weak-field
source. We then use these fields to explicitly calculate the dynamical Chern-Simons
correction to the spin precession of gyroscopes in orbit around Earth, which we find to
be in the same direction as the Lense-Thirring effect of General Relativity. We then
compare this correction to the spin precession prediction of General Relativity to the
results of the Gravity Probe B experiment to place a constraint on dynamical Chern-
Simons theory that is consistent with previous approximate estimates. Although we
focus primarily on a single body, our methods can be straightforwardly extended to
binary systems or N-bodies.
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1. Introduction

Is Einstein still right? Solar System observations [1, 2] and binary pulsar observations [3]
have confirmed that General Relativity (GR) is correct to extreme precision in the weak
field regime, where the gravitational interaction is feeble and non-dynamical. The recent
gravitational wave observations by the advanced Laser Interferometer Gravitational
Wave Observatory [4, 5, 6, 7] and the advanced Virgo detector [8, 9, 10, 11] have
confirmed that GR seems to still be on a firm footing, even in the extreme gravity
regime, where the gravitational interaction is not only strong, but also non-linear and
highly dynamical [12, 13].

Given these observations, one may then wonder whether further tests of GR are
still necessary. The main arguments for continued testing are both observational and
theoretical. On the observational side, the rotation curves of galaxies [14], the late-
time acceleration of the universe as inferred through supernova [15], and many other
observations [16, 17, 18, 19, 20| point to anomalies that can either be resolved by invoking
the existence of dark matter [21] and dark energy [22], or alternatively, by modifying GR
on large scales [23]. On the theoretical side, the intrinsic incompatibility of GR with
quantum mechanics have prompted the emergence of modifies theories that attempt
a reconciliation [24, 25]. Regardless of the motivation, further testing may provide
additional hints that may help in resolving some of these anomalies.

One particular modification to GR that has attracted some attention recently
is gravitational parity-violation as encapsulated in dynamical Chern-Simons (dCS)
gravity [26, 27]. This theory modifies Einstein’s through a dynamical (pseudo) scalar
field that couples non-minimally to curvature through the Pontryagin density. The
magnitude of any dCS deformation from GR is controlled by the size of its dimensional
coupling parameter £. Today, we understand this theory as an effective model, valid
only at sufficiently low-energies/small-curvatures relative to some cut-off scale, or
equivalently, for small coupling €. This is because the theory is motivated from heterotic
string theory upon 4-dimensional compactification and a low-curvature expansion [28],
from loop quantum gravity upon the promotion of the Barbero-Immirzi parameter to a
field in the presence of matter [29, 30], and from effective field theories of inflation [31].

Gravitational parity violation arises in this theory in the sense that GR deviations
activate only for systems that violate parity through the presence of a preferred axis, like
that represented by angular momentum in a dynamical system [32, 33, 34, 35, 36]. An
example is an isolated spinning black hole, with dCS solutions known to fifth order in
a slow-rotation expansion [37, 38, 39], and in the near-extremal limit [40, 41]. Another
example is a spinning star or planet, whose dynamics in the Solar System have been
studied and observed for almost a century. One may thus expect that any dCS deviation
from the GR predictions in the spin dynamics of the Solar System could be used to
constrain the theory.

Previous work has focused on this idea. In the context of an older version of
this theory, the so-called non-dynamical version, Alexander and Yunes [35] showed
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that the gravitomagnetic sector of the metric (the temporal-spatial components) is
modified in the Solar System, leading to a new parameterized post-Newtonian parameter
and to a modification to Lense-Thirring precession [33]. In a similar study, Smith,
et. al. [34] calculated this correction to spin-precession for a uniform density object
rotating uniformly; they then compared the result to observations by the Gravity Probe
B (GPB) experiment [42] and the LAGEOS satellites to place a stringent constraint
on the non-dynamical theory. Shortly after, Ali-Haimoud and Chen [43] studied the
dynamical theory, and among other calculations, they repeated parts of the study of
Smith, et. al. [34]; in particular, they computed the correction to the gravitomagnetic
sector of the metric for a uniform density object rotating uniformly to all orders in the
coupling, and then used this metric correction to place an approximate constraint on
the theory of 5(13/84 < O(108 km). The possibility of a comparable constraint by quantum
and/or Sagnac interferometry has also been discussed in [44, 45, 46]. In the future, the
observation of gravitational waves emitted by spinning black holes will lead to an eight-
order of magnitude improvement on these constraints [47], once detections are made
that are sufficiently strong to break degeneracies between the spins of the objects and
the dCS deformation.

In this paper, we revisit the study of observables in the dynamical theory
analytically through the use of two approximations that are valid in the Solar System.
First, we treat dCS gravity as an effective theory, thereby expanding all expressions
in small coupling to guarantee the theory has a well-posed initial value problem [48].
Second, we work in the post-Newtonian (PN) approximation, expanding all quantities
assuming weak-fields and slow characteristic velocities [49, 50]. These approximations
are sufficient to describe weakly-gravitating and slowly-rotating objects in dCS gravity
in general.

We then use these approximations to find analytic solutions for the scalar field and
the gravitomagnetic components of the metric deformation in dCS gravity, both in the
interior and the exterior of a weakly-gravitating body. We study both the case of a
uniform density object, as well as the case of an object with a quadrupolar deformation,
explicitly showing that the latter are greatly subdominant in the Solar System. In the
case of uniform density, our solutions are similar to those that describe black holes
and neutron stars in dCS gravity in the far-field [37, 38, 36], although of course our
solutions depend on constants of integration that are specific to the matter distribution
inside the gravitating object. Our uniform density solutions are also similar to those
found for weakly-gravitating objects in [43], after expanding the latter in small coupling.
Therefore, the solutions presented here are the first to self-consistently describe a weakly-
gravitating and rotating object in post-Newtonian theory within the small-coupling
approximation, and with or without a uniform density.

With these solutions at hand, we then explicitly compute how gyroscopes would
precess around Earth due to the spin angular momentum of our planet in dCS gravity.
Unlike in the non-dynamical theory, we find that the dCS corrections to spin-precession
are in the same direction as the effects that arise due to Lense-Thirring precession in
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GR. With these results at hand, we then compare the spin-precession rate of GPB to
the dCS prediction, placing a constraint on the latter of 5(13/84 < 1.3 x 10® km. This
constraint is consistent with the order of magnitude estimate derived by Ali-Haimoud
and Chen by looking at the dCS metric perturbation [43].

The remainder of this paper is organized as follows. Section 2 briefly reviews the
basics of dCS gravity. Section 3 presents the weak-field expansions we use to obtain
solutions in dCS gravity. Sections 4 and 5 obtain analytic solutions for the interior and
exterior scalar field and gravitomagnetic sector of the metric deformation for a weakly-
gravitating and slowly-rotating body with uniform density and with a quadrupolar
deformation respectively. Section 6 computes the dCS corrections to spin-precession for
a gyroscope in orbit around Earth and compares these predictions with the observations
of the GPB experiment. Section 7 concludes and points to future research. We adopt
the conventions of [51], in particular for the signature of the metric, Riemann, and
Einstein tensors. Greek letters represent spacetime indices, while Latin letters stand for
spatial indices only. A semicolon and the V, symbol denote the covariant derivatives
compatible with the metric tensor g,,, while a comma and the 9, symbol stand for
partial derivatives. Throughout this paper we use geometric units in which G =1 = c.

2. Basics of dynamical Chern-Simons modified gravity

In this section, we describe the basics of dCS gravity. The action is given by [27]

Sz/ﬁ%wqﬁ@3+%ﬁm3—ngVW+£mt, (1)
where k, = (16m)"!, g denotes the determinant of the metric g,,, R is the Ricci scalar,
L.t denotes the matter Lagrangian density, and a and § are coupling constants. The
Pontryagin density *RR is given by [27]

ePooB prv

‘RR ="R"" R i (2)

Jiipo KRIVPT — %
where €77 is the Levi-Civita tensor. If the (pseudo) scalar field ) is constant, dCS
gravity reduces identically to GR, because the Pontryagin density term in the action
becomes the total divergence of a topological current [26], and therefore it does not
contribute to the field equation. We take ¥ and S to be dimensionless, which forces «
to have a dimension of (length)?.

The field equations of dCS gravity are obtained by varying the action [Eq. (1)] with
respect to the metric g, and the scalar field 9 [27]:

o 1

Gu +—C = — (T™at 1. 77 3

u"’%u 2119(“1/—’_‘“') ()
(0%

0y = ——
4p

“‘RR, (4)
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where G, is the Einstein tensor and T, /f,‘jat is the stress-energy tensor for the matter
field. The d’Alembertian operator is here denoted by O = V,V*. The C-tensor and
the stress-energy tensor for the scalar field are defined by

CH = (V1) UV RV s + (V,Vs0) ‘RO (5)
T, =B (Vu0) (V,0) — gnggww, (6)

where the parenthesis in subscripts stand for symmetrization of indices. The equation of
motion for the scalar field, Eq. (4), may have a homogeneous solution, but this solution
will render dCS gravity very similar to the non-dynamical theory, and thus, severely
constrained by cosmological observations [52]. For the rest of this paper, we will ignore
the homogeneous solution for 1, and instead, concentrate on dynamically generated
scalar fields.
[terative solutions of Egs. (3) and (4) in a PN expansion are most easily achieved
by recasting the field equations in trace-reversed form, namely
Ry, = —%CW o (Tmat 7)), (7)
where we have used that the trace of C-tensor vanishes identically. The trace-reversed
tensors T2 and T79, are simply
T;rll/at = T;;at o %g/meat, (8)

T = B(Vu0) (V.9), (9)

where 7™Mt = g“”T:;at is the trace of the matter stress-energy tensor.

DCS gravity ought to be thought as an effective field theory, valid only as an
expansion about weak curvatures and low energies. As such, one should really treat the
theory as a deformation of GR, thus requiring a small-coupling expansion of solutions
of the form [35]

G = Gy + Sy, (10)
9 = (P90, (11)

where g7 is a GR solution, dh,, = O(() is a deformation to this solution and ¥°* is
the scalar field solution sourced by a GR solution, with ( < 1 a small dimensionless
coupling parameter. The structure of the field equations reveals that

2
CE %a €CS = l::_ﬁ’ (12)
where §é/s4 = a'/?/(k,B)"* is the characteristic length scale of the theory, while £ is
the characteristic length scale of the curvature of the system under consideration. For
example, when dealing with a bound matter source, this length scale could correspond
to the curvature length of the object. The small-coupling treatment of dCS gravity
suggests one should think of the C-tensor C,, in Eq. (7) as a source for the metric

tensor, because it is determined by ¥“®, which in turn is sourced by the GR solution

GR
v



Weakly-Grav. Objects in dCS gravity and constraints from GPB 6

3. Weak Field Expansions in dCS Gravity

In this section, we explain the expansions we will employ to iteratively solve Eqs. (4)
and (7) for a weakly-gravitating and slowly-rotating object. We use both the small-
coupling and the PN approximations, which then require that we expand all fields in
Egs. (10) and (11) in ¢ < 1, where ¢ ~ M/R is the PN expansion parameter. In
addition, we assume the slow rotation of the object, i.e., y < 1, where y = J/M? is the
dimensionless spin parameter and the spin angular momentum is |J| = J. Hereafter, we
use o and €’ as book-keeping parameters to label the order kept in the small-coupling
and the PN expansions of the solution, where for example any term linear in ¢ o o?
and/or linear in € will be said to be of O(&’, a'?).

We assume the matter field can be described by a perfect fluid, whose stress-energy
tensor is given by

mat __ v v
0" = (p+ pll + p)u"u” + pg"”, (13)

where p, p, and II are its mass, pressure, and specific energy density, while u* = da*/dr
is the four-velocity of the fluid element [49]. Such a stress-energy tensor suffices to
describe the metric tensor exterior to planets, such as Earth, and stars, such as the Sun,
in the PN approximation. We further decompose the GR background around Minkowski
spacetime 7,,,, turning Eq. (10) into

Guv = N + huu + 5huu7 (14)

where h,, is the PN metric perturbation in GR. Hereafter, we work in Cartesian
coordinates in which the Minkowski metric takes the simple form 7, = diag(—1,1,1,1),
and we raise and lower indices with 7, as we work to leading order in the small-coupling
and PN approximations.

Before continuing, let us briefly summarize the PN expansion of the GR solution A,
following [49], so as to establish some useful notation for future sections. Substituting
Eq. (14) into Eq. (7) in the GR limit (i.e. @ — 0, which implies dh,, — 0 and ¥ — 0),
and imposing the standard PN gauge conditions

1
hj’ik — 5h,j =0, (15)

1
h’Ok,k - §hkk,o = 0(5/5)> (16)

where h = n**h,,, and h';, = §'h;;, the PN expansion of the GR solution is
hoo = 2U — 2U% + 4®; + 4Py + 205 + 60, + O(<'6),
7 1
ho: = ——Vi — ZW- /5
0¢ 2‘/1 2Wz + 0(5 )7

hi]’ = 2U5U + 0(5/4). (17)
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The PN potentials U, &1, ®y, O3, Dy, V;, W; are defined by

_ [ p&) 5,
U= iz — ] x,
B pCATICI
|z — /|
b [ @) @ = =
1 — |a3 . m/|3 Y
o= [ PEEE)
|z — |
0= [ BN g
|z — |
o= [ B 5
|z — |

o, E/Md%’, (18)
|z — /|

where the three-vector & denotes position of the field point and v* = u’/u®. These PN
potentials satisfy the following Poisson equations

V23U = —47p,

VQVz' = —47pv;,

V20, = —4mrp?,

V2, = —dnpU,

V20y = —dnpll,

V20, = —dmp, (19)

where V? = n”9,0; is the Laplacian operator in flat space. The Poisson equations
presented above can be solved once the properties of the matter distribution are chosen;
in what follows, we will solve these equations, together with their dCS deformations, for
a constant density star, as well as a quadrupolarly deformed star.

4. Weak Field Solution in dCS Gravity: Constant Density

In this section, we iteratively solve Eqgs. (4) and (7) for a weakly-gravitating and slowly-
rotating object of constant density. We begin by solving the Poisson equations of the
previous section for such an object, and then, using these solutions as the source for the
PN expanded evolution equation for the scalar field. After solving for the evolution of
this field, we then solve for the dCS metric deformation in the gravitomagnetic sector,
which is sufficient to calculate the dCS modification to the GPB experiment.
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4.1. PN Solution for the Scalar Field

Let us now consider the evolution equation for the scalar field [Eq. (4)]. Since the scalar
field is linear in « in the small-coupling approximation, we must evaluate the Pontryagin
density to zeroth-order in . This density at leading PN order is given by

‘RR = 4&%* [hoo,ﬁhﬂlmk + 1,0 (homs — hm,m]o)] + 0% a)
= 328 (9,0,U) (8'9,V) + O('%, &), (20)

0123 — —€0123 = 1, and the

where €979 is the Levi-Civita symbol with convention &
square brackets in subscripts stand for anti-symmetrization. In the last equality, we
have substituted Eq. (17) and used the fact é*9%9,V, = €%k, . Substituting this

expression into Eq. (4), we obtain
V2 — %O‘gow‘k (B:0U) (B'0,Vi) + O, o) (21)

where we have neglected the time derivatives of the scalar field on the left-hand side
because they are of higher PN order; these expressions agree with Eq. (52) in [36].

Let us assume that the object of interest has a uniform mass density p = const.
and a constant angular velocity along the z-axis w’ = (0,0,w). The PN potentials U
and Vj, then become

M
U 7 (7" > R), (22)
= 2
27p (R2 - %) (r <R),
1 -
MR, wa—g (r > R),
= 2 23 a0 i (29)
3P R — ) Cipw x (r<R),

where r denotes the distance from the center of the object to the field point, M is the
mass of the object and R is its radius. Substituting these expressions into Eq. (20), we
obtain

3

MX 16
RR — 288 = cosf+ O('% o) (r>R),

O, o) (r<R),

(24)

where 6 is the polar angle in polar coordinates, related to the z coordinate via the
standard relation z = r cosf, while y = Iw/M? with I the moment of inertia, and we
have used that I = 2M R?/5 for a solid sphere of constant density.

The evolution equation for the scalar field then becomes

N M3y
V3 = gt
O(e'%,a'?) (r <R),

cosf + O('% a’?) (r> R),
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where again we have neglected time derivatives on the left-hand side. Equation (25)
implies that ¥ ~ &°¢/, and thus, dCS modifications to the metric tensor will be
necessarily small. We should here also note that Eq. (25) is source-free in the interior
region r < R, because we have focused on a constant mass density object. For a general
mass density distribution, this will not be the case and the interior source term will
not vanish at this order [43]. While such a term affects the exterior solution through
the matching of interior and exterior solutions at the surface of the object, this effect
is small, as we will show in the next section. For now, let us continue to consider a
constant density object.

In order to solve Eq. (25), we decompose ¥(r,0) in terms of the Legendre

polynomials as

9(r,0) = 0o(r) Py(cosb). (26)
=0
The source term in Eq. (25) vanishes at leading PN order for all £ # 1 modes. Similar
results have been reported for black holes [37, 38] and neutron stars [36], as well as for
non-relativistic objects [43]. Therefore, we focus on the £ = 1 mode only, for which
Eq. (25) becomes

1 ) o= + O /6’ /2 > R ,
i () = O
rar . O(E'5, a'?) (r < R).
The general interior and exterior solutions are
Ay da M3 6 19
ﬁext = (Aﬂ“ + ﬁ - F r5 cos ¢ + 0(8/ 70/ )7 (28)
B2 16 12
Vit = | Byr + ey cosf + O, a'?), (29)

where A; and B; (i = 1,2) are constants of integration.

These constants of integration can be determined by requiring regularity and
smoothness of the solution at its boundaries. Requiring that 9 be finite as » — 0
and r — oo forces A; = 0 and By = 0. The remaining two constants are determined by
requiring continuity and differentiability at the surface of the object, namely,

Hm [Vexs (R + A) — Oine (R — A)] =0, (30)
A—0t
lim |:aﬁext N a'&in‘c :| _ O, (31)
A=0+ | Or | _piy or |,_p_»
The latter condition can be derived by integrating Eq. (27):
. 8790)(1; aﬂint . R d279
lim — = lim —dr
A0t [ O | i or |._r_ A=0t Jpoy dr?

R+ 3
— _92 Iim [d<ﬁ)+?’6—O‘MX}dr:0,

A=0t Jp_y |dr \r
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at leading PN order.

Imposing the above matching conditions, we obtain the axisymmetric dCS scalar
field for a weakly-gravitating and slowly-rotating object in the small-coupling and in
the PN approximations:

= (i) (5) () G =2 ()

Ot = 4 (5;42) (%)6 (%) X+ O(ES a'?). (34)

Notice that both 9. and ¥, are proportional to z, and thus to cos 6, which is consistent
with field being a pseudo scalar. The exterior solution ¥ behaves as 1/r? as r — oo,

+ 0%, a'?), (33)

which agrees with the weak-field expansion for black hole [37, 38] and neutron star
solutions [36].

4.2. PN Solution for the dCS Metric Deformation: Gravitomagnetic Sector

Let us now consider the field equations for the dCS metric deformation. Since the stress-
energy tensor for the matter field T° ;;at is balanced by the GR solution, this does not
source the dCS correction dh,, at the leading order. The field equations to first order
in the small-coupling approximation and to leading-order in the PN approximation are
then

SR, [0h) = —%Cw[h, 9] + T (35)
g

B

where R, is the linearized Ricci tensor evaluated on the dCS metric deformation 05, .
The different pieces of the modified field equations can be easily calculated in the
PN approximation. The C-tensor in the right-hand side of Eq. (35) can be expanded as

1 g

Coo = _51971' N hogj + 0 L @ by + O, '), (36)
1 [ 1y,

Coi = 5 Louk(ﬁ,lhk[m,ﬂj)’ B §€Oijk(79,jhoo,kz)’l} +0(%,a"), (37)

1
Cij = ™ [ﬁ,m (Vth[j),OJ + o g’ — Qhoo,j)nt)) + 9, (Anpiyo = hopyan) | + O, %),
(38)

where we assume that the scalar field is stationary for the last equation, although this
is not relevant below. The stress-energy tensor of the scalar field T ;fy = 0", o/?),
which is higher order in the PN approximation than what we consider here, so it can
be safely neglected. The linearized Ricci tensor is simply

1

dRoo = _§V2(5h00 +0("?,a’?), (39)
1

SRy; = —§V25h0i + 08, %), (40)

1
(SRij = —§V2(5h” — 6h0(i,j)0 + 0(8/9, 0/3), (41)
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where we have imposed the standard PN gauge conditions on the dCS metric
perturbation, namely

J

1

Sht ), — §5h,j =07, a'?), (42)
1

5h0k7k — §5hkk.,o — 0(8/8, 05/3). (43)

Let us now focus on the gravitomagnetic part of Eq. (35), namely

20(~ ; / /
V265ho = — Eoijk (97 VU +9 U F) + O, a'?). (44)

g

Substituting Eqs. (17), (22), (33), and (34) into Eq. (44), we obtain

M2R? , .
ooy ) 14— X (1 . R—g) sinfe= + O('5, /%) (r > R), 45)
O(e'8,a’3) (r <R),

where we have defined H = dhg, + tdho, with i = +/—1 and ¢ the azimuth in spherical
polar coordinates. Henceforth, the dCS deformation parameter

¢ = &es <%)27 (46)

since the curvature scale of interest to our problem is £ = M2/ R3/2,

We can exploit the axisymmetry of our problem to immediately write down the
solution along the rotation axis. The gravitomagnetic component dhy, must satisfy
V26ho, = 0 over the entire spacetime because the rotation axis of the object is along
the z-direction. The general solution to this equation is

Sho- = Y _ (Cir*™ + D;R™") Py(cos®), (47)

=0

where C7 and Dj are constants of integration. By assuming regularity at the center of
the object and asymptotic flatness at spatial infinity, we again find that C; = 0 = Dj}
for all ¢, and hence, dho, = 0. As in the case of the scalar field, while Eq. (45) in the
interior region r < R is again source-free for a constant mass density distribution, a
more general distribution would not be; the differences induced in the general solution
will be small for the purpose of constraining the theory with weak-field, Solar System
experiments, as we will show in the next section.
Decomposing H into spherical harmonics Y,™(6, ¢),

H(r,0,¢) = > Hp(r)Y;"(0,¢), (48)

one finds that Eq. (45) is a homogeneous equation for all /~-modes except for the ¢ =1
and m = —1 mode. Once more, this is in agreement with what one finds for black hole
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and neutron star solutions [37, 38, 36], as well as for non-relativistic objects [43]. Since
H}" vanishes when ¢ # 1 or m # —1 by imposing asymptotic flatness and regularity at

the center of the object, we focus on the £ = 1 and m = —1 mode, which must satisfy
1 d <7’2dH1 ) 2H1 144 ?CX 7 ( — 'r_3> + 0(5/ ,Oé/ ) (7" > R),
- 277 ) — r
2 2
r?dr dr r O(e'®, %) (r < R).

The general exterior and interior solutions are then

02 8’/T M2R3 1R3 -1 /8 13

Hoo = [Cor+ 53 8y 0 (12355 ) v,y + 0650, (0
D2 -1 18 13

Hint = (D1T+ r2 ) le (07¢) +O(€ , & )7 (51)

where C; and D; (i = 1,2) are integration constants.

As before these constants can be determined by requiring regularity and smoothness
at all boundaries. Asymptotic flatness and regularity at the center imply that C; = 0
and Dy = 0, respectively, and thus, we need two more boundary conditions at the
surface to determine the remaining constants. Requiring continuity at the surface, we
have

lim [Hoq(R + \) — Hi(R — N)] = 0, (52)

A—0t

while requiring differentiability at the surface, we find

. dHext . AN d2H
lim = lim ——dr
A0+ dr PR

A—0T R—)\ dT2

_ dHint
dr

r=R+\
R+
Ly [ L0,
Kg A0+ Jp_y T dr 00

M2X

R3

at leading PN order. This is different from what we found in the scalar field case, since

= —24( sin e, (53)

the condition above is a jump condition induced because Eq. (44) depends on a spatial
derivative of the matter density.

With these boundary conditions at hand, we can now solve for the gravitomagnetic
components of the dCS metric deformation. Imposing the boundary conditions in
Egs. (52)-(53), one finds

M 2 3 1 R3 .
Hext - SC <_> <§> X (1 - _R_3> Sing@_w + 0(5/870/3>7 (54)

r T 3r

16 . (M\* /r .
L : —i¢p 18 13
Hin 3 ¢ (R) <R>Xsm06 + O, a’), (55)
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and using the definition of H we then find

ShEY = —8C x (%)2 (%)3 (%) ( - ég) + O o', (56)
=T () () ()
s (2 (2 0
2
-5 (3 () G)
The asymptotic peeling-off behavior of the exterior solutions agrees with the results

of [37, 38, 36, 43] in the weak-field limit as r — oo, while the overall coefficients are
different and dependent on the structure of the weak-field source. This is reasonable in

) O3, '), (57)
(1 - 153) + O3, %), (58)
+

O3, a'?). (59)

the small-coupling approximation because the scalar field should be determined by the
background GR spacetime.

5. Weak Field Solution in dCS Gravity: Quadrupolar Deformation

In this section, we repeat the calculation of Sec. 4 but for a weakly-gravitating source
with a quadrupolar deformation, induced for example due to perturbations from an
exterior body. As before, we begin by solving for the dCS scalar field and we then back-
react this field onto the modified field equations to find the dCS metric deformation.
We present the main skeleton of the calculation in this section, and defer details to
Appendix Appendix B. We focus once more on the gravitomagnetic sector of the metric,
as this leads to the dominant dCS modification to the GPB experiment.

5.1. PN Solution for the Scalar Field

Consider a weakly-gravitating body with a non-constant mass density p and a constant
angular velocity along the Z-axis w' = (0,0,w). We decompose p in terms of Legendre
polynomials as

oo

20+ 1
p=> 1 Pebilcost), (60)
=0

and retain up to the ¢ = 2 mode of p, such that

Po )
= —— + 1/ —paPs(cosb), 61
p \/E A P2 2( ) ( )
with pp and ps constant. Hereafter, we consider axisymmetric deformations of a sphere
with constant density, such as a rotating ellipsoid, for which reflection symmetry with
respect to the equatorial plane still exists. This reflection symmetry forces p, = 0 for
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odd /. The quantity pg represents the spherically symmetric component of the density
distribution, while p, represents a quadrupolar deformation, for example induced by a
second body.

With this density profile at hand, we can then solve the Poisson equations for the
PN potentials in Eq. (19). Doing so, U and V}, become [50]

M M ?
— = — (E Py(cos0), (r > R),
U= 3TM ; r? ' M /r\2 r (62)
(1) - e (= —5ln— <
5 R (1 3R2) Jo I (R> (1 51n R> Py(cosb), (r <R),
L s
B e (63)
k =
gﬁo (R2 - 27”2> Eoijkwixj (r < R),

V4 .
M = /pd?’x = 7TpORS, (64)

and we use the dimensionless quadrupole moment J, instead of ps, where the former is

defined by
1 /47 R®
=5\ 5 (65)

The cautious reader will notice that we have not included the J, corrections to the
gravitomagnetic potential Vj, above. These corrections are generated by p, when solving
Eq. (19). To be mathematically rigorous, such corrections would have to be included
when computing the Pontryagin density because they enter at the same order as the J,
corrections to the potential U. This can be seen from Eq. (20), using the ¢ = 0 part of
U and the ¢ = 2 part of Vj, which when included in Eq. (44) lead to effects of the same
order-of-magnitude as those computed below. In the next section, however, we show
that the Jy correction is negligible in the analysis of the GPB experiment, and thus,
henceforth we do not include the J5 correction to V.

With the PN potentials at hand, we can now compute the evolution equation for
the scalar field. Substituting these expressions into Eq. (20), the source term becomes

M3 7 R? ) 6
288 - |:1_§ﬁ;]2 <1—|—?COS2¢9):| cosf + O('°, ) (r > R),

‘RR = (66)

M3 60 15
1032 R7X%J2 (1 + Eln% ~ 43 °08 29) cosf + 05 ) (r <R),
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and the evolution equation [Eq. (4)] becomes
Cky M?R3 7 R? 5 619
=724/ 2 X|1—5—5Ja |1+ 5cos20 || cost+O@E", %) (r>R),
) g 2r 7
ViU M2 60 15
—258 % R5TXJ2 <1 + 3 ln}—_]Z — ECOSQG) cosf+ O a’?)  (r <R).
(67)

The integration constants can be determined by requiring finiteness of ¥ at » = 0 and
r — 00, as well as continuity and differentiability of the scalar field at the surface of
the object. Imposing the above conditions, we obtain an axisymmetric scalar field for
a weakly-gravitating and slowly-rotating object that is quadrupolarly deformed in the
small-coupling and the PN approximations:

Chg (MN> 72N\ [, 1R 153 B2 255 R2 22 49 R3
ﬁex =8 S \ I 1l—=——J l1——— —_—— ] - ——
‘ 3 \r (M) YT 98 12 08 1212 85 1’
+O(%,a'?), (63)
Chy (M 1 159 72 420 1\ 216 22
O =4[220 (22} () l1==hpd1— 20 (1o
‘ 5 \R (M) X|t=357% 49 R? 53 "R) 49 R2
O, a?). (69)

Clearly, this solution reduces to that in Eqgs. (33) and (34) in the J; — 0 limit, upon
conversion of ¢ to a via Eq. (46). Notice also that in the exterior the Jy contribution
introduces new terms that fall off differently than in the spherically symmetric case.
All of these contributions, however, are suppressed by Js, which for most quadrupolar
deformations is a small number. For example, the measured value of the non dimensional
Jo of the Earth is of O(1073) [53]. We will see below that the slower decay rate of the
Jo part of the scalar field does not compensate for the smallness of J, because the
experiments we are interested in here are conducted very close to the surface of Earth,

for r ~ R.
5.2. PN Solution for the dCS Metric Deformation: Gravitomagnetic Sector

Let us now use the scalar field obtained in the previous section to source a metric
deformation. The gravitomagnetic sector of the field equations was already presented

in Eq. (44). Substituting Egs. (17), (62), (68), and (69) into Eq. (44), we obtain
M2R3 R? 83 R? 931 R?
(144 IRy A [ (i
¢X [ 3 JQ{ 08 72 < 166r3>
V2H — 515 R? 49 R3

2

TR

<1+

KGOOCX@JQ cos? 0 sinfe™ + O(e'8, a

206 r3

/13

) Cos QQH sinfe @ + O(e'®

 (J2)%)

a/37 ((]2)2)

(1-5ur))]

(r > R),

(r < R),
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where, as before, we have defined H = §hg, + i0hg, with i = /1.

The gravitomagnetic field equations can now be solved in the same way as in
the case of a spherically symmetric density profile. First, the z-component the metric
deformation, dhg,, must satisfy V2dhg, = 0, and by imposing regularity at the center
of the object and asymptotic flatness at spatial infinity, we must require that dhgy, = 0.
The integration constants can be determined by asymptotic flatness, regularity at the
center and the matching condition at the surface. This time, however, the matching
conditions are not trivial, but instead

lim [Hext(R+A) — Hn(R— M) =0, (70)
A—0t

dHex dHin M2 1 1 . ;
lim [ i — ! } = —24()( [ 595 Jo (1 _ 2619 cos? 8)} sin fe
A=0t | dr | gy dr |,_p_\ 294 1555

(71)

at leading PN order. Imposing these boundary conditions, we finally obtain

He—scy (M CORNT[R (( LR ST f TSR (150 R 201 R
ot = OLX T P 37 ) T 17157 87 1 19 72 286 15

21 R®* 1715 RS ;
-5 (1 + 72_9% + 77545 R ) cos? 0}} sinfe ™ + 0(6/8, 0/37 (J2)2)> (72)

C 2(7") 1_}_4@(} 1_ 356407“_2_'_@111(1)

Hine = 50X R 520”2 26317 R 163 \R

895 216 2\ 5\ 0 P

163 (1 — —4459ﬁ> COos QH sinfe™” 4+ O, a7, (J2)7), (73)

and using the definition of H we then find

M\? /R\*[R 1R3 87 1715 R 150 B2 201 RS
Shet — 8 il S T e g, dq o e iy 0RO
o CX(T) (r) {r( 3r3)+17152{ 87 7“( 49 r2+286r5>
721 B3 1715 RS
—_ 1 - 3 3 /8 /3 2 4
5( + 50 73 + — 17 >cos HH sinf sing + O, a'°, (Jo)7), (74)

M\? /R\°[R 1R3 87 1715 R 150 B2 201 RS
Shext — = Skl I B - —2 (- =2 =0
O SCX(r) (7’) {r( 3r3>+17152{ 87 7’( 19 r2+286r5)
721 R® 1715 RS .
-5 (1+2—9F+ e 716>cos 9}] sinf cos ¢ + O(e'%, a3, (Jy)?), (75)

. 16 M\? /r 489 35640 r2 550 r
Shint — _ il I () AP S — (=
0z 3 CX(R) (R) { * 220 2{ 726817 R 163 n(R)

2 216 12
_% ( - —44569%> cos GH sin @ sin ¢ + (’)( /37 (J2)2), (76)
i 489 35640 2 550 r
hlnt - 1 ~ 1 r
ooy gx( ) { * 520 { 726317 B2 163 n(R)
825 216
~ 163 ( _ —4459%) CoS GH sin @ cos ¢ + (9( /3’ (J2)2)7 (77)
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As in the case of the scalar field, note that these solutions agree exactly with the
spherically symmetric ones of the previous section in the J, — 0 limit. Observe also
that the J, deformation introduces corrections that are parametrically small in J5, but
also introduce different fall-off rates in the exterior of the star.

Let us now study the magnitude of the J, corrections derived above. Consider the
deviation from the spherically symmetric case,

Ohgy — (Oh§:) 5,0 _ NGy — (ORG)) 1, o

5(r,0) = o S (78)

Note that the deviation ¢ is independent of ¢ since Eqs. (74) and (75) depend on ¢
through the same overall factors, i.e. sin ¢ and cos ¢. Let us plot this quantity for the
case of a satellite orbiting around Earth in Fig. 1. We have here used that Earth’s
Jo ~ 1.083 x 1073, that the GPB gyroscope is at a radius of r ~ R + 650 km, and
we have set ¢ = 0. Observe that regardless of the polar angle, the J, corrections are
smaller than the spherical term by three orders of magnitude for GPB. Therefore, the
Jo corrections can be safely neglected in the GPB experiment.

0.002F

0 L

§ -0.002+
=
o

—0.004 -

—0.006 ¢

0 T

SEISIERS

Figure 1. Deviation 6 due to Earth’s Jy for the GPB gyroscopes as a function
of latitude (polar) angle . Observe that § is very small, which implies that the J;
corrections are three orders of magnitude smaller than the spherically symmetric terms.

6. Gyroscope Precession in the Gravity Probe B Experiment

In this section, we discuss the spin precession of a gyroscope loaded on a satellite which
orbits a weakly-gravitating and slowly-rotating object, namely the GPB experiment.
To leading order in the PN approximation, the precession of a spin three-vector S is
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expressed as [49]

ds
Z_Q
p x S, (79)

where €2 is the precession rate, which again to leading PN order can be obtained from
the flat-space curl of the gravitomagnetic sector of the metric. The dominant effect
of the dCS correction on the precession rate is thus produced by the gravitomagnetic
components dhg; via

1 8R? 7 R 1R
=59 xio =g 2 (1) T3 (155 ) U mei e
(80)

gyro gyro

where 0g = dhg;e; with e; a unit basis vector, the x operator is the outer product in
flat space, J = (0,0, J) is the spin angular momentum vector of the gravitating object,
and 7gyro and Mgy, are the distance of the gyroscope from the center of the object and
the unit vector from the object to the gyroscope, respectively. This expression neglects
the corrections to the precession rate induced by a quadrupolar deformation of the
gravitating object, since as we saw in the previous section, these are negligibly small.
Since the characteristic time-scale of spin precession is much larger than the
satellite’s orbital period Ty, let us average Eq. (79) over the latter. Introducing the
normalized spin vector § = S/|S|, the precession rate of the spin vector can be written

1 Tgyro N 1 Tgyro R
(P)p = / dt(2 x S) = </ th> x S, (81)
gyro T 0 T 0

gyro gyro

as

Substituting Eq. (80) into Eq. (81), we obtain the dCS correction to the averaged rate
of spin precession:

4R3 5 R3 1 R3 -
P, = (1= 225 ) 743 (1= 1 ) (0 B | <8, 2

3 3
gyro 6 Tgyro Tgyro

where Ry, is the unit vector of the satellite’s orbital angular momentum. Equation (82)
shows that, even in the case of a single star, the leading-order dCS correction appears
in the same direction as the Lense-Thirring effect in GR [49], i.e. in the so-called West-
East (WE) direction (see Appendix C). This is in stark contrast to the prediction of
non-dynamical Chern-Simons gravity [35].

Let us now focus on the GPB experiment. For the parameters associated with that
experiment, the dCS correction to the spin precession rate in the WE direction becomes

<<5Pr)Tgym> ~ 26 (&) [mas /yeat]. (83)

WE (108 km)*

This expression is plotted in Fig. 2 as a function of the g parameter for the GPB
experiment, where the horizontal, dashed curves correspond to the accuracy to which
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GPB verified the predictions of GR. The region to the right of the intersection of the
solid curve and the dashed curve is then ruled out by the GPB experiment. Numerically,
this corresponds to a bound of

U < 1.3 x 10%km,

which is consistent with the order of magnitude estimate derived in [43] by studying the
dCS metric perturbation. This consistency is reasonable because the gravitomagnetic
components of the dCS corrections in Egs. (56) and (58) correspond to a special case of
the solution discussed in [43], and it is these components that induce a modification to
the GPB precession rate. One should mention, however, that the formalism of [43], the
so-called Hartle-Thorne formulation, is only capable of handling a single body, while our
formulation is more general, being applicable to other scenarios, such as binary systems,
N-body systems, and isolated bodies that are not spherically symmetric.

[“(‘SPr}Tgym Iwg [mas/yr]

10
sk
0: L L L ] é.t:s
- 1 2 B 4 (108 km)*
[ |
s |
st I
s |
—10 -_

Figure 2. DCS correction to the spin precession rate of GPB gyroscopes in the WE
direction as a function of the £¢g parameter. Given that GPB verified the predictions
of GR to an accuracy of about 47.2 mas/yr [42] (horizontal dashed curves), dCS
gravity is constrained to écg < 2.8 x (10% km)?. The shaded regions in this figure are
inconsistent with the GPB experiment.

Let us conclude with an order of magnitude estimate of the contribution of the
temporal-temporal component of the dCS metric deformation to the spin-precession
correction calculated above. The temporal-temporal component of the dCS metric

deformation scales as

M J?
Rby3

Shoo ~ £cs, (84)

and thus the precession rate due to this term can be estimated to be

-1 7&:8 mas/year
08 ~ VgyroOhgo ~ 10 ((108 km)4) [mas/year]. (85)
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One can clearly see that this effect is much smaller than the contribution from the
gravitomagnetic components [Eq. (83)]. One can also easily show that the purely spatial
components also lead to modifications to the precession rate that are of the same order
as those coming from the temporal-temporal deformation. This thus proves that one
can ignore the dhgy and dh;; contributions to spin precession in dCS gravity.

7. Conclusion

We have calculated the interior and exterior profiles of the scalar field and metric
deformation in dCS gravity for a slowly-rotating and weakly-gravitating object of
uniform mass density and for an object with a quadrupolar deformation using the
PN and the small-coupling approximations. We have found that the asymptotic,
peeling behavior of the exterior solutions is consistent with that found in previous
works concerning black holes [37, 38] and neutron stars [36], as well as non-relativistic
objects [43]. We then used these solutions to evaluate the dCS correction to spin
precession, as would be applicable for example to the GPB experiment. The verification
of Lense-Thirring precession by the latter then allows for a constraint on the dCS
coupling parameter, which are comparable to bounds on the non-dynamical theory [43].
We have found that the dCS correction to spin-precession does not vanish, and is in
fact, in the same direction as the Lense-Thirring effect in GR.

Although we focus on isolated objects, our approach is easily applicable to more
complex scenarios, like binary systems and N-body systems of weakly-gravitating
bodies. Future work could concentrate on extending this analysis to binary systems
or to N-bodies. Provided these bodies are weakly-gravitating and slowly-spinning,
then the formalism applied here should be easily extendible. Ultimately, however, this
analysis makes it painfully clear that meaningful constraints on dCS gravity can only
come from observations that sample the extreme gravity regime, where the gravitational
interaction is non-linear, dynamical and strong, which is also where dCS corrections will
be largest. Any Solar System constraint is bound to be restricted by the feebleness of
the gravitational interaction in the Solar neighborhood.
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Appendix A. Linearized Ricci tensor

The Ricci tensor, linearized around a Minkowski background in GR, is

1 (0%
SR, [h] = -5 [Tnhuw = 2k ™ + hoyw ] + O(R?), (A1)

where O, is the d’Alembertian operator in flat spacetime. Since the time derivatives
are higher order than spatial ones in the PN approximation, at leading PN order, and

without imposing any gauge conditions on h,,, the components of the linearized Ricci

nz
tensor in Cartesian coordinates are

1 ‘ .
dRyy = — §(V2h00 —2hi00 + R 00) + O(h?),

- hz,oj' + hj,m') + O(h2)7

0,ij J

1 _
SRy = — §(v2h0i — B}
1
ORy; = — §(V2hij Fhio” = g jo — B — 1% = B8 g 10 4 4+ BE ) + O(R?).

In order to obtain the linearized Ricci tensor evaluated on the dCS metric deformation,
we can use the above expression with the replacement h,, — 0h,,. Imposing the
standard PN gauge conditions on éh,,,, namely Eqs. (42) and (43), one obtains Egs. (39)-
(41). There are other gauge choices that would lead to different expressions for the
linearized Ricci tensor.

Appendix B. Details of the Derivations of the Weak Field Solution with
Quadrupolar Deformation

In this appendix, we provide details of the derivation and expressions for the scalar
field and gravitomagnetic sector of the metric, which are decomposed by Legendre
polynomials Py(cos @) and spherical harmonics Y, (0, ¢), respectively. We solve Eq. (67)
through a decomposition of J(r, ) in terms of Legendre polynomials, as in Eq. (26).
The source term in Eq. (67) vanishes at leading PN order when ¢ # 1 and ¢ # 3, and
thus, we focus on the ¢ = 1 and ¢ = 3 modes only, for which this equation becomes

kg M2 R3 R?
) P 9 -T2 % e X (1 — 43:]2) + O<€/6,Oé,2) (T > R),
2
- — == =
{7“2 dr (T 0r) 7“2} ' Ckyg M?r 3.7
—240 ? 28 XJa (1—|— 5111 E) +O(5/67a/2) (r <R),
(B.1)
and
(kg MPRP 6 12
144,/ = xJo + O, a'?)  (r > R),

9
Ld (L0 121, o (B.2)
r2dr or 72 Crg M?r

72 79 75 xJ2 + O, a/?) (r <R),
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The general solutions to these equations are straightforward and we find

M?R3 9J, R? ,
A1T+i22—4 Sh = X(l——2—2>+0(8l6,0z'2) (r > R),
9 r g r 5 1 (B.3)
1 — .
By 6 [Cky M*r
I 37} — — <
Bir+ g+ 5\ Tk (130 5) + 0@ ) (r< B),
for the £ = 1 mode, and
Ay 24 M?R®
Asr® + 4+€ ng XJ2 + O(E'5, a/?) (r> R),
793 = 9 3 (B4)
B4 CKgM

Bgr3+———

_ r 6 12 <
9\ B R (1 7lnR>+O(€ @) (rsR),

for the ¢ = 3 mode, where A; and B; (i = 1,2, 3,4) are integration constants.

Just as in the spherically symmetric case, we determine these integration constants
by requiring regularity and smoothness of the solution. By requiring that 9 be finite as
r — 0and r — oo, Ay, Az, By and B, must all vanish. The remaining four constants can
be determined by requiring continuity and differentiability at the surface of the object,

namely,
Hm [Vext (R + A) — Oine (R — A)] =0, (B.5)
A—0t
lim {aﬁe"t _ it } =0. (B.6)
A=0+ | Or | _piy or |,_p_x

One can verify that the latter condition holds by integrating Eq. (B.1) and Eq. (B.2).
Imposing the above conditions, we obtain

. 2
S onn o
’191 -
/ ( ) %X[ +ER_22(1_§%2_301D}_3)] +0(E5 %) (r<R),
(B.7)
( 405“/?(%) ( )XJ2(1_8_§R_3>+(’)(5/6’@/2) (r > R),
R st a (B:8)
K T
| 245 g<§> ( ) {1_5111}%1 TOERAT) < R)
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The gravitomagnetic sector of the field equation can be written as
( M?R? R3 83R* 19R° 515 R? 5 R°
144()( 7 1_F_J2{1_%E+ZF+§T_2COS26+Z_COS29

5
19J, R? 5 21675 R? 105 R> 2295 R? 120 RS
+ 427"_2 1+ —cos20 — ——— — —— — ——-—-cos 20

_ U 0520
19 TAA8 12 19 15 1862 12 19 75
255 R?2 15 R®

— ~ 1064 72 cos 46 — 9 5 O 49> H sinfe™ + O(e'%, /%) (r > R),

M? 1931 72 297 12 144 72 2
300¢x {1+C0829—£(1+393 v 30T, r <1n1)

pyRe 5 1295 2 400 R 7T m\ "R

360 r2 171 r r -
1 o 2 ___1 o 4 . —’L¢ /8 /3 <
\+—7 Tz [0 5 cos 0 1 72 B cos 6)}811196 + O, o) (r < R),

(B.9)

up to O(J3). Decomposing H into spherical harmonics Y;*(0, ¢) as in Eq. (48), we
note that the only non-vanishing modes are (¢,m) = (1,—1), (¢{,m) = (3,—1), and
(¢,m) = (5,—1). These modes must satisfy

( M*R3 R? R? R®
96\/67TCX 7 1——3—J2 1—4—2+4—5
r r r r

R? 255 R? 15 R°®
4], — [1 - /=~ =~ /8 /3
L < ) I EX G C e )
M? Jo 943 2 738 7r%2 1
80V 6 —Je1——=11 ——In—
TOX a2 2<+35R2+ TR R

360 12 12 <
o _ / / <
\+7R2<IHR))}+O(8 ,al?) (r <R),

39552 [ MRS 49 R
19 7 SX T 206 13
49.], 170R> RS

— — 7"— J—

r2 dr dr r2 390 %ngk{l—%(l‘f'%%
\+%%ln %) } + O, o) (r<R),
(B.11)
P L R
r2 dr r r —1236\/?CX]\25T(‘]2)2 (1 _ %ln %) +0(%,a%) (r<R),

(B.12)
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up to O(J3). The general exterior and interior solutions are then

(r > R),

(r > R),

( Co or . (M\® [ R\’ 1 R3
22 1164/ 22 - i 1— -
Cir + 2 + 16 3 (x . . 373
9R2 9 R® 9J, R 510 R 60 R
- 1—- - — 4+ - 4+ = (- — 18 13
H-! — T2 5 r? +11 7P 5 r? ( 343 2 91 7’5)}} + O, a”)
1 2
D, 80 [2r. [M\?/r
D1T+r—2—§ ?(X R <}—%> Jz{l—Slnr
Jo 1062 r? 1053 r? r 324 r? T 2
) (1 T T w7 m () ) o)
(B.13)
( C, 6592 [3x_ (M\?[R\’ 245 RS
Card 4 4 202 O (25 (2) il 222
3r+r4 245 7CX<7”> (7’) ? +2678r3
49.J, 85R? _R°
H*l + 206 (1 B 4_97‘_2 —9 7"5> } + 0(6/870/3) (7” > R)7
3 = 2 9
D, 3m (M\%/r J 7446 r
Dy + 2 30, [ Doy (2 (—)J -2 (14 820
T 7<X(R) R 2£ 2( T 201 B2
12186 12 4740 ¥ r 2370 r 7\ 2
- _ 1 _ /8 /3 <
i3 B2 T3 R R 4 R2<DR>)}+O(€ ) (r< R),
(B.14)
( Co 544 [30m . (M\* [(R\’ 392 R3
5 6 2 /8 13
Sa (=) (2 14+ 22—
o Cr®+ %+ e\ T Cx<r> <T> (J2) ( + 555 T3) O, 0%
5 2
Ds 18976 [10m . (M\? /713 1710, r
Do+ 5~ \ (E) (}_z) (o)’ (H 593 ln_R) + O 0%) (< R),

(B.15)

up to O(JZ2), where C; and D; (i = 1,2,3,4,5,6) are integration constants.

Let us now determine these constants of integration. Asymptotic flatness and
regularity at the center imply that Cy, C3, Cs, Dy, Dy and Dg must all vanish, and
thus, we need two more boundary conditions at the surface to determine the remaining
constants. Requiring the matching condition at the surface, we have

lim [How(R + \) — Hing(R — )] =0, (B.16)
A—0+
dH gy dH;, M? 2509J. 5619
lim { : — ! ] = — 2U(y— {1 — 2 {1 cos 20
A0t |dr | gy dr |,_p_» R3 588 2509

2509 20 350

24 A
_ 87504, (1 + 69 cos 260 + 243 cos 40) }} sin fe %,

(B.17)

up to O(J3).
With this, we finally obtain

]\/[)2(1%)3[ 1 R3 {1 261 r 9 R?2 567 R°
2

1—-= —J e L T et
373 T3R8 T s

Hext :8CX (7 ?
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n 87 r 1+ 721 R3 L s 1715 RG 5 _153Jy 7 1 25165 R?
686 IR 29 r3 4 r 4802 R

1836 12
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up to O(J2). By using the definition of H, we then find the gravitomagnetic sector for
dCS metric deformation up to O(J3)
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Appendix C. The gyroscope coordinate system

In the GPB experiment, the spin vector is along the direction of IM Pegasi [42]. For such
a Solar System experiment with a satellite orbiting around Earth, it is convenient to use
inertial coordinates defined by the spin vector S and the spin-angular momentum vector
of Earth Jg. We choose the 2'-axis, 1/-axis, and z’-axis as the directions of S x Jg, S,
and (S x Jg) x S, respectively. Therefore, from Eq. (79), precession in the y/'-direction
always vanishes, and thus, we only investigate precession in the 2’- and z’-directions. Let
us call such a set of coordinates (2/,y/, 2) the gyroscope coordinate system. The z'-axis
and the z’-axis correspond to the west-east (WE) and the north-south (NS) directions
in [42], respectively.
In this coordinate system, the components of Jg and S are

0 0
JE = JE sin [S y S = 1 y (Cl)
cos g 0

where Ig is the declination of the guide star (e.g. the IM Pegasi in the GPB experiment).
For simplicity, let us also assume the satellite is in circular motion around Earth. In
this case, the components of the unit vectors ngy., and hgy, can be expressed in the
gyroscope coordinate system as

Ngyro = SIN(Weyrot + Peyro) NG+ c08(Weyrot + Payro) Mo (C.2)

sin Jgyro €OS(0s — Qgyro)
hgyro = | sin Ig cos Igyo — €0S Ig 8in Iy Sin(ps — Qgyro) | (C.3)
08 Ig c0os Igyro + Sin g Sin Igyro sin(@s — Qgyro)
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where we have defined

— €08 Igyro COS(Ps — Qgyro)
Mg = | [8i0 L5 8in [gyro + €08 I €08 Tgyro Sin(ps — Qgyro)] | (C4)
[cos Ig sin Igyro — sin Ig €OS Lgyro SIN(ps — Qgyro)]

sin(ws — Qgyro)
Ny = | coslscos(ps — Qayro) |, (C.5)

gyro

—sin Ig cos(ps — Qgyro)

Weyro 1 the orbital angular velocity of the satellite around Earth, Izyro, Qgyro, and gy
are the inclination, initial direction, and right ascension of the ascending node of the
satellite, respectively, and ¢g is the right ascension of the guide star.

Assuming the rotating object is Earth, the precession rate [Eq. (81)] for the Lense-
Thirring effect in GR becomes

w1 :
<PT>T:W0 = 57,3 [JE - 3<JE h yro)hgyro] x S. (C6)

gyro
Comparing this with the effect from a dCS metric deformation, as given in Eq. (82), one
can see that both effects contribute in the same direction. If the satellite is launched in
a polar orbit, i.e. Iz, = 7/2, then we obtain the following WE and North-South (NS)

components for the Lense-Thirring precession rate

LT _ 1 G|Jg|

(P = 5, 051 (C.7)
LT .

[(PT>Tgym]NS ~ 0. (C.8)

Therefore, especially in the case of the GPB experiment, where the spin vector is along
the direction of the IM Pegasi, we recover the well-known result

[(0uadp,, | = =39 fmas/yr]. (C.9)
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