Experience-driven Congestion Control: When
Multi-Path TCP Meets Deep Reinforcement
Learning

Zhiyuan Xu, Student Member, IEEE, Jian Tang, Fellow, IEEE, Chengxiang Yin, Student Member, IEEE,
Yanzhi Wang, Member, IEEE, and Guoliang Xue, Fellow, IEEE,

Abstract—In this paper, we aim to study networking problems
from a whole new perspective by leveraging emerging deep
learning, to develop an experience-driven approach, which en-
ables a network or a protocol to learn the best way to control
itself from its own experience (e.g, runtime statistics data), just
as a human learns a skill. We present design, implementation
and evaluation of a Deep Reinforcement Learning (DRL) based
control framework, DRL-CC (DRL for Congestion Control),
which realizes our experience-driven design philosophy on Multi-
Path TCP (MPTCP) congestion control. DRL-CC utilizes a
single (instead of multiple independent) agent to dynamically
and jointly perform congestion control for all active MPTCP
flows on an end host with the objective of maximizing the
overall utility. The novelty of our design is to utilize a flex-
ible Recurrent Neural Network (RNN), LSTM, under a DRL
framework for learning a representation for all active flows and
dealing with their dynamics. Moreover, we, for the first time,
integrate the above LSTM-based representation network into
an actor-critic framework for continuous (congestion) control,
which leverages the emerging deterministic policy gradient to
train critic, actor and LSTM networks in an end-to-end manner.
We implemented DRL-CC based on the MPTCP implementation
in the Linux kernel. The experimental results show that 1) DRL-
CC consistently and significantly outperforms a few well-known
MPTCP congestion control algorithms in terms of goodput
without sacrificing fairness; 2) it is flexible and robust to highly-
dynamic network environments with time-varying flows; and 3)
it is friendly to regular TCP.

Index Terms—Al, Deep Learning, Experience-driven Control,
Congestion Control, TCP, Multi-Path TCP

I. INTRODUCTION

Many algorithms and protocols have been proposed to
operate computer and communication networks and utilize
its resources efficiently and effectively. Traditional methods
for network control and resource allocation can be divided
into two categories: state-oblivious and optimization-based. A
state-oblivious method usually follows a pre-defined (fixed)
policy for control and resource allocation. Typical examples
include shortest-path routing that uses the hop-count as the
routing metric and load-balancing routing (e.g., VLB [30])

Zhiyuan Xu, Jian Tang (Corresponding Author), Chengxiang Yin are
with Department of Electrical Engineering and Computer Science, Syra-
cuse University, Syracuse, NY 13244, USA (e-mail: zxul05@syr.edu,
jtang02 @syr.edu, cyin02@syr.edu).

Yanzhi Wang is with Department of Electrical and Computer En-
gineering, Northeastern University, Boston, MA 02115, USA (e-mail:
yanz.wang @northeastern.edu).

Guoliang Xue is with Ira A. Fulton Schools of Engineering, Arizona State
University, Tempe, AZ 85287, USA (e-mail: xue@asu.edu).

This research was supported in part by NSF grants 1704662 and 1704092.
The information reported here does not reflect the position of the government.

that always splits traffic load evenly over all the candidate
paths. An optimization-based method usually consists of two
steps: 1) formulating a resource allocation problem into a
mathematical programming problem based on certain mathe-
matical models (such as queueing model [31] and interference
model [9]); and 2) designing an algorithm to solve it according
to its mathematical properties (such as convex programming).
Typical examples include those well-known Network Utility
Maximization (NUM) algorithms [19], [25]. We argue that
neither of these two approaches will work well for modern or
future networks (such as 5G network and Software Defined
Network (SDN)), which have become or are expected to
be very complicated and highly-dynamic. A state-oblivious
method usually leads to a simple algorithm or protocol, which,
however, may suffer from very poor performance (such as
throughput and delay) in a highly time-variant network due to
its lack of careful consideration for runtime states and subopti-
mal solutions. An optimization-based method, however, needs
to have an accurate prediction for future values of some key
parameters (such as user demands, link usages, etc) as input;
and accurate mathematical models to estimate/characterize
network behavior (after applying a given resource allocation
solution). Both of them are very challenging, especially in
complex networks. Hence, we aim to study networking prob-
lems from a whole new perspective by leveraging emerging
Artificial Intelligence (AI) techniques, especially deep learn-
ing, to develop an experience-driven approach, which enables
a network or a protocol to learn the best way to control itself
from its own experience (e.g, runtime statistics data), just as a
human learns a skill (such as swimming and driving). Unlike
state-oblivious or optimization-based methods, the experience-
driven approach does not rely on any mathematical model
but is expected to make wise decisions on online control
with full consideration for real-time runtime states. Even
though the term, “data-driven”, has been used in some related
works, we argue that the term “experience-driven” is more
accurate than “data-driven”. There are three kinds of data in a
communication network: user data (i.e., payload), control data
(i.e., data in control messages and packet headers), and runtime
statistics. If we use the term ‘“data-driven”, it is not clear
what kind of data we refer to. As mentioned above, runtime
statistics actually represent the past experience of a network.
So “experience-driven” basically means that a network learns
the best control policy from its runtime statistics collected in
the past.

To demonstrate the feasibility and superiority of this design



philosophy, we focus on a fundamental networking problem,
congestion control, in this paper. Specifically, we consider
congestion control in Multi-Path TCP (MPTCP) [6], which
was designed to make use of multiple network interfaces (e.g.,
Ethernet, WiFi and 4G/LTE) to improve end-to-end bandwidth
and robustness, and has already become a widely-used stan-
dard protocol. MPTCP allows to split a single TCP flow into
multiple sub-flows across multiple paths. It has attracted lots of
attention from both industry and academia due to its potential
on significant throughput improvements, which are highly
desired for some emerging applications that demand high end-
to-end bandwidth. Current TCP’s congestion control does not
perform well on lossy and high Round Trip Time (RTT) links,
especially on MPTCP [4]. Moreover, most congestion control
algorithms, including those designed particularly for MPTCP,
pre-define some packet-level events as response signals, and
specify a fixed control policy with one or multiple rules for
different cases. For example, halving the congestion window
when a packet loss is detected [13]; adjusting the congestion
window by a certain amount based on the changing rate of
RTTs [2]. Such congestion control algorithms may not work
well in a complex and highly-dynamic network, in which
many factors (such as random loss, a large range of RTTs,
lossy links, rate reshaping at gateways or middleboxes, etc.)
may affect its performance since it looks impossible to pre-
define the best or even a good rule for each possible case that
may occur at runtime. Note that traditional congestion control
algorithms can be considered as heuristic algorithms for the
corresponding optimization problems, which likely lead to
suboptimal (instead of optimal) solutions. Hence, they can be
categorized as optimization-based methods described above.

In this paper, we present design, implementation and evalu-
ation of a Deep Reinforcement Learning (DRL) based control
framework, DRL-CC (DRL for Congestion Control), which
realizes our experience-driven design philosophy on MPTCP
congestion control. We choose DRL as the basis for our
design because DRL is a very promising technique for network
control due to its support for model-free control, and its
capability of handling dynamic and sophisticated state spaces,
which have been discussed and analyzed in a recent work [43].
DRL-CC utilizes DRL to learn to take best actions according
to runtime states without relying on any accurate mathematical
model or any pre-defined control policy.

However, designing a DRL-based framework for MPTCP
congestion control is not straightforward but quite challenging.
First, a straightforward solution is to use a DRL agent to
perform congestion control for each MPTCP flow indepen-
dently. However, this solution may not work well since it
lacks necessary and effective cooperations among these agents,
while concurrent flows may interfere with each other due
to their competition for common resources, which, however,
cannot be well addressed by independent agents. DRL-CC
leverages a single (instead of multiple independent) agent to
dynamically and jointly perform congestion control for all
active MPTCP flows on an end host with the objective of
maximizing the overall utility (defined by a utility function).
Note that according to TCP/MPTCP, congestion control is only
done on sending hosts. Hence, here “all active MPTCP flows”

only refer to those whose sending host is the one where the
DRL agent is running. It is quite challenging to use DRL to
dynamically handle multiple flows that may come and go at
any time since a DRL agent usually uses a deep feed-forward
neural network or a deep Convolutional Neural Network
(CNN) as the function approximator for action inference,
which has a fixed input size. The novelty of our design is to
utilize a Recurrent Neural Network (RNN), Long Short-Term
Memory (LSTM [12]), under a DRL framework for learning
a representation for all active flows and dealing with their
dynamics. Moreover, basic Deep Q-Network (DQN) based
DRL (proposed in the seminal work [21]), does not work
for the congestion control problem since it is only able to
deal with discrete control with a limited action space. We, for
the first time, integrate the above LSTM-based representation
learning network into an actor-critic framework called DDPG
(Deep Deterministic Policy Gradient [18]) for continuous
(congestion) control, and leverages the emerging deterministic
policy gradient [32] to train critic, actor and LSTM networks
in an end-to-end manner.

In addition, a unique and desirable feature of our design is
that we use a DRL agent to control all (instead of a single)
active MPTCP flows. In this way, we can hopefully obtain
a global optimal solution for MPTCP flows; while all the
traditional congestion control algorithms perform control for
individual MPTCP flows independently, thus can only achieve
local optimal or suboptimal solutions. So a traditional algo-
rithm usually behaves conservatively because if it tries to be
aggressive and selfish, one of flows may abuse all the available
resources and starve other flows. However, our DRL agent
has a global view over all the available resources and MPTCP
flows. Due to the training and working mechanisms (e.g., back
propagation) of the Reinforcement Learning (RL) framework,
it is instructed to make full use of all available resources to
maximize the reward function (defined in Section III), which
is a widely-used utility function and is known to be able to
achieve a good tradeoff between goodput and fairness [33].

We implemented DRL-CC based on the MPTCP imple-
mentation in the Linux kernel. We conducted extensive real
experiments to evaluate its performance. Specifically, we com-
pared DRL-CC with the well-known congestion control algo-
rithms proposed particularly for MPTCP, including LIA [27],
BALIA [26], OLIA [17] and wVegas [42], which have all
been implemented in the Linux Kernel [24]. Second, we
tested our method under different settings and cases, such
as different link bandwidths, link delays, packet loss ratios,
etc. In addition, we conducted our performance evaluation in
terms of goodput, fairness, robustness and TCP-friendliness.
The experimental results well justify the effectiveness and
superiority of DRL-CC.

To the best of our knowledge, we are the first to address con-
gestion control in MPTCP using emerging DRL. In addition,
the end-to-end trainable model integrating LSTM, actor and
critic networks is novel and has not been used in the context
of DRL. Moreover, it can handle a variable input size. We
believe such a design may have a significant impact on future
research along this line since it can be applied to many other
system control problems with a time-varying input size, e.g.,



for routing in mobile ad-hoc networks, connection requests
may come and go at any time as well.

II. DEEP REINFORCEMENT LEARNING (DRL)

In this section, we give a brief introduction to DRL. Under
a regular Reinforcement Learning (RL) framework, an agent
interacts with an environment (e.g., system) in discrete deci-
sion epochs. At each epoch ¢, the agent makes an observation
of the state s, of the environment, takes an action a; according
to its policy, and receives a reward r;. The agent aims to find
a policy 7(s) to map its state to a deterministic action or to a
probability distribution over actions such that the discounted
cumulative reward Ry = ZtT=o y'r(st, a;) is maximized,
where r(-) is the reward function and ~ € [0, 1] is the factor
that discounts future rewards.

The deep version of RL was introduced in a well-known
work [21] by Mnih ef al. from DeepMind, which extends
the traditional Q-learning to bridge the gap between high-
dimensional sensory inputs (e.g. raw images) and actions.
A unique feature of the DRL agent in [21] is to use a
Deep Neural Network (DNN) called DQN as the function
approximator. A DQN takes a state-action pair (s;, a;) as input
and outputs the corresponding Q value Q(s;, a;), which is the
expected discounted cumulative reward:

Q(s¢,a;) = E[Rt‘staat}y (D

where R, = Zz:t 77 (s¢,a;). The action can be derived by
applying a commonly-used greedy policy:

m(st) = argmax Q(s, ar). 2)

According to Q-learning, the training target value for each
state-action pair can be derived using the Bellman equation:

yr = (st a¢) + YQ(Se11, m(s¢41)|09), 3

where 9 is the parameters of the DQN. Based on the target
value, the DQN can be trained by minimizing the following
loss:

L(69) = E[yt — Q(st, 3t|9Q)] “4)

Even though neural network or DNN has been used as the
function approximator for RL before, it is known that such a
non-linear function approximator is not stable and may even
lead to divergence. To improve the stability of learning, Mnih
et al. [21] introduced two effective techniques: experience
replay and target network. With experience relay, a DRL
agent collects and stores state transition samples into a relay
buffer, and then updates the DNN using a mini-batch sampled
from the replay buffer instead of the immediately collected
transition sample (used in traditional Q-learning). By doing
so, the DRL agent could break correlations in the observation
sequence, and learn from a more independently and identically
distributed past experience, which is required by most of
the training algorithms, such as Stochastic Gradient Descent
(SGD). They proposed to use a separate target network to
estimate target values < y; >, which shares the same network
structure as the original DQN. But its parameters are slowly

Congestion Control Action

DRL Agent

Policy Gradient

Actor Network Critic Network MPTCP
Reward

Flows

R

Q
~f S8
O ©)
Representation

Representation
Network

L)

End Host

—
[ Fowswe] -
ending Rate

Fig. 1: The architecture of DRL-CC

updated every C' > 1 epochs and are held fixed in between.
These two techniques can smooth out the learning processing
and avoid oscillations or divergence.

As mentioned above, DQN-based DRL is restricted to
discrete control with a limited action space and there is no
trivial extension to continuous control, which, however, is
quite common in computer and communication networks (e.g.,
congestion control). A commonly-used approach to continu-
ous control is policy gradient [35]. In a recent work [18],
Lillicrap et al. introduced an actor-critic approach called
Deep Deterministic Policy Gradient (DDPG) for DRL, which
leverages both DNNs and the emerging deterministic policy
gradient [32] for continuous control. The key idea behind
DDPG is to simultaneously maintain two functions: one is
the parameterized actor function 7 (s;|6@™) used for deriv-
ing actions; and another is the parameterized critic function
Q(s¢,a;/09) used for evaluating actions. The critic function
is implemented using the DQN mentioned above, which takes
a given state-action pair as input and outputs the corresponding
Q-value. It can be trained as a regular DQN, which has been
introduced above. The actor function can be implemented by
another DNN, which takes a state as input and outputs the
best action (that could be continuous). As shown in [18], to
update the actor network, the chain rule can be applied to the
the expected cumulative reward J with respect to the actor
parameters 07:

VorJ = E {VGWQ(S; a|0Q)‘S:Sg,a:T((St‘6")

= E|VaQ(s,8l0?) =g, ar(s) - Vor (5107 o=, |-
4)
Note that both experience replay and target network can also
be used together with DDPG to ensure the learning stability.
ITII. DRL-BASED CONGESTION CONTROL FOR MPTCP

In this section, we present the proposed DRL-based frame-
work for congestion control in MPTCP, DRL-CC.

A. Overview

First of all, we give an overview for DRL-CC, which is
illustrated in Fig. 1. The key idea behind our design is to



utilize a single (rather than multiple independent) DRL agent
to perform congestion control for all active MPTCP flows
on an end host to maximize the overall utility (defined by a
utility function). As mentioned above, “all the active MPTCP
flows” only refer to those whose sending host is the one
where DRL-CC is running. To realize this idea, we design
the architecture of DRL-CC (we will use DRL-CC and DRL-
CC agent interchangeably in the following), which consists of
the following components:

o Representation Network (Section III-B): It leverages
LSTM to learn a representation of current states of all
active MPTCP and TCP flows in a sequence learning
manner.

e Actor-Critic (Section III-C): It trains an actor network
and a critic network along with the LSTM-based repre-
sentation network in an end-to-end manner and derives
an action for congestion control of a MPTCP flow based
on the learned representation and the state of the target
flow.

Next, we describe the state, action and reward of DRL-CC:
STATE: The state of a flow ¢ at epoch t s,

1,1 ik N,K; _ ik ik ik ik ik
[St 7"'_;6515 7"'7St ]9andst_[bt agt 7dt 7vt_k’wt_ll’
where sy is the state of subflow & of flow 7 at ¢; by™", g;",

di’k , vi’k and wzk are the corresponding sending rate, goodput,
average RTT, the mean deviation of RTTs and the congestion
window size respectively; and NN is the total number of both
TCP and MPTCP flows, and K; is the number subflows of
flow ¢. If flow ¢ is a TCP flow, then K; = 1; and if flow
i is a MPTCP flow, then K; > 1. Then the state at epoch
t, 8¢ = [st, -+ ,si,--- ,sN]. Here goodput can be considered
as effective throughput, which only counts those successfully
received packets. We select these key parameters into the state
because they may have a significant impact on the end-to-
end performance and have been considered in the design of
some related works [41]. During our testing, we found that
adding more parameters into the state does not necessarily
result in noticeable performance improvement, which, how-
ever, undoubtfully increases data collection overhead. Note
that the values of these parameters are all measured during the
past epoch (¢t — 1). In order to well address interference and
fairness on an end host, we consider all the flows (including
both regular TCP and MPTPC) when designing the state space.
Certainly, if the flow is a (regular) TCP flow, then there is only
one subflow (i.e., K; = 1).

ACTION: An action at epoch t a; = [x},- -+ ,aF ... 2K],
where xj, specifies how much change needs to be made to the
congestion window of subflow £ of the target MPTCP flow.
The positive, negative and O values lead to increasing, reducing
and staying at the same congestion window size respectively.
Note that at each epoch ¢, DRL-CC only takes an action on
one (target) MPTCP flow.

REWARD: the reward at epoch ¢, r, = Ziv U(i,t), where
U(i,t) gives the utility of active MPTCP/TCP flow i . Note
that the proposed framework is not restricted to any particular
utility function. Many different functions (such as throughput,
delay, a-fairness [33]) can be used here to calculate the net-
work utility. This reward should be designed according to real

needs from upper-layer applications. In our implementation,
we chose a widely-used utility function U (i,t) = log gi [41],
where g is the average goodput of MPTCP flow i during the
past epoch. It is known that maximizing this utility function
leads to proportional fairness, which is considered to achieve
a good tradeoff between goodput and fairness. Moreover, the
reward takes into account both TCP and MPTCP flows for the
sake of TCP-friendliness.

In short, DRL-CC works as follows. The DRL-CC agent
interacts with the end host by collecting the above runtime
state information s; at each epoch ¢. The agent is periodically
queried by each MPTCP flow and there is only one querying
flow at each epoch ¢ (i.e., target flow). At each epoch ¢, the
agent derives an action using the actor and critic networks
according to the representation learned by the LSTM-based
network and the state of the target flow. Then it deploys the
action via the MPTCP implementation (in the OS kernel) to
the target flow.

B. Representation Network

The representation network takes as input the states of
all active TCP and MPTCP flows (i.e., s;) at each decision
epoch t and generates a representation (i.e., a vector with a
smaller size), which is then used by the actor-critic method
(Section III-C) for deriving actions. As mentioned above, the
main difficulty is to deal with the situation in which the
number of flows may change over time. Most DNN (such as a
feed-forward neural network) need to have a fixed input size.
A straightforward way to use a feed-forward neural network
here is to zero-pad the input if the actual number of flows is
smaller its input size. We tested this solution via experiments
and found that it is ineffective, especially for the cases where
the number of flows is much smaller. Similarly, if the number
of flows is larger, then we have to exclude some flows, which
obviously lead to poor representation learning too. We decide
to choose LSTM [12] to serve this purpose, which can have
a variable input size (length).

As illustrated in Fig. 2, the states of flows are fed into LSTM
one by one (one at each step) and the representation is learned
in a sequence learning manner [34] such that the last hidden
state h,fv is returned as the representation. For simplicity, we
denote this representation for epoch ¢ by h; (rather than hi\' ).
It is worth mentioning that this LSTM-based representation
network can be trained together with the actor and critic
networks using back propagation in an end-to-end manner,
which is discussed in the next section. This is very important
since end-to-end training likely leads to better performance
than training each part of a model separately.

C. Actor-Critic Method

At each decision epoch ¢, the representation h; (learned by
the LSTM-based network described above) is concatenated
with the state of the target MPTCP flow and fed into the
actor-critic method as input. Then the actor-critic method
leverages the actor and critic networks to derive an action,
which specifies how to adjust the congestion window size for
each subflow of the target MPTCP flow. As mentioned above,



| h) | | K’ | Hiddenstate
LSTM |~ LSTM —>..— LSTM

1 1

0

Fig. 2: The representation network

the network utility will be calculated used as a reward signal
to optimize the decision policy.

We formally present the DRL-MPTCP framework in Algo-
rithm 1. First the algorithm randomly initialize all parameters
OF of representation network R(-); 8™ of actor network m(-);
and @9 of critic network Q(-). The target networks are used
here to improve the learning stability. Target networks R’(-),
7'(-) and Q'(-) clone the structures of their counterparts,
whose parameters are initialized using their counterparts (line
2) and slowly updated using a control parameter 7 (line
19). 7 is usually set to a very small value such that these
target networks are only slightly updated in this step. In our
implementation, we set 7 = 0.001. This DRL agent will run as
a daemon process, waiting for queries from MPTCP flows. So
the main body of this algorithm includes a dead loop, where
e; is the state of the querying (i.e., target) MPTCP flow.

Since all the parameters of the DNNs are randomly initial-
ized, in the early stage of training, the DRL agent cannot
totally rely on the action derived from the actor network.
An inexperienced DRL agent needs to explore sufficiently
with random transition samples to gain necessary good and
bad experience, and eventually learns a good (hopefully the
best) control policy. Similar as in [18], we apply an Ornstein-
Uhlenbeck process to add some random noise to a derived
action for efficient and effective exploration in this continuous
control task.

The representation of all active flows h, is derived from
the representation network R(-) (line 6), and the action for
the target MPTCP flow is derived from the actor network
m(-) (line 7). Experience relay has also been utilized here to
improve learning stability. Transition samples are first stored
into a replay buffer B (line 10), and then randomly sampled
to a mini-batch of H samples (line 11) for training the
representation, critic and actor networks. As introduced above,
the critic network is basically a DQN. Hence, the parameters
of the critic network % are updated by minimizing the
commonly-used squared error loss (line 14), where the target
value y; is evaluated by applying the Bellman equation (line
13). The parameters of the representation and actor networks
0% and O™ are updated together with the sampled (i.e., an
average over the H samples) policy gradients using the chain
rule defined in Equation (5) (lines 15-18). From this training
process, we can see that the proposed neural network model
(including the representation, critic and actor networks) is end-
to-end trainable.

In our implementation, the representation network is a
single-layer LSTM wunit. The actor network is a fully-

connected feed-forward neural network with 2 hidden layers,
which includes 128 neurons in both layers. The Rectified
Linear function is used for activation in hidden layers and
the hyperbolic tangent function is used for activation in the
output layer. The critic network has the same structure as
the actor network except the output layer, which has only
one linear neuron. In our implementation, the actor and critic
networks are trained by the Adam optimizer [15], whose
learning rates are set to 0.0001 and 0.001 respectively. The
discount factor is set to v = 0.90. To simplify the neural
network implementation, we leveraged TFLearn [37], which
provides a higher-level API to TensorFlow, to construct the
above three neural networks.

Algorithm 1: DRL-CC

1: Randomly initialize representation network R(-), actor
network () and critic network Q(-), with parameters
07, 6™ and 69 respectively;

2: Initialize target networks R'(-), 7’(-) and Q’(-) with

parameters oF — or, o™ = o, 99 — 09:

Initialize replay buffer B;

Initialize Ornstein-Uhlenbeck process O for exploration;

while (TRUE) do
Derive hidden state h; from the representation
network R(s¢);

7:  Derive an action a; from the actor network m(e;, h;);

8:  Apply the random process O to generate an action a;
based on a;;

9:  Execute action a; and observe the reward 7¢;

10:  Store transition sample (s, ¢, a;, 74, S¢11,€.41) into
replay buffer B;
/**Training the three networks**/

11:  Sample H transitions (s;,e;,a;,7;,5;4+1,€;41) from B;

12:  Obtain representation h;; from R'(s;41);

13:  Compute target value for the critic network Q(-):

yj =15 +7 Q' (€41, hjp1, 7 (€541, hyp1));

14:  Update the parameters of the critic network by

minimizing the loss: - Zle (y; — Q(ej,hj,a;))%;

15:  Compute the policy gradient from the critic network:

an(ev h, a) |a:7r(ej ,h;),h=R(s;),e=e;>
16:  Update the parameters of the actor network using the
sampled policy gradients:
% Zszl an(e7 h, a) -Vor(e, h)le:ej,h:R(s_j)§

17:  Compute the policy gradient from the actor network:
V(e h) ‘e:ej Jh=R(s;)>

18:  Update the parameters of the representation network
using the sampled policy gradient:
#3°0 VaQ(e, h,a) - Vym(e, h) - VorR(S)|s—s;
/**Updating the target networks**/

19:  Update the parameters of the corresponding target
networks:
0% == 710% + (1 —1)0%;
09 =769 + (1 — 7)<,
0™ =70 + (1 —7)0" ;

20: end while

S




D. Implementation of DRL-CC

We implemented the DRL-CC framework on Ubuntu 16.04.
We chose to use the MPTCP v0.92 [24], which is a Linux
kernel implementation of MPTCP and was built based on the
Linux Kernel long-term support release v4.4.x. The available
resource of a kernel program is strictly limited: even the
floating point calculation is not allowed in the kernel. A DRL
agent, however, may need to do lots of complex mathematical
calculations (e,g, computing the gradients) for both forward
passes and back propagations in the DNN training and in-
ference. Thus, it is impossible to run the DRL agent in the
kernel. We implemented the proposed DRL agent as a user-
space process using Tensorflow [1]. The DRL agent runs as a
daemon process, which is always kept active and waits for the
MPTCP flow queries. Every flow reserves a memory space in
the kernel for their subflows, and every subflow can fetch their
congestion window size from its memory space. Whenever a
MPTCP flow queries, the DRL agent derives an action and
deploys it by updating the corresponding congestion window
size for each subflow through the MPTCP implementation.

In order to be compatible to current MPTCP implemen-
tation, we implemented the proposed DRL-CC agent as a
pluggable program following the Linux’s specification for
congestion control. First, we specified the congestion handler
interface tcp_congestion_ops, which is a structure of func-
tion call pointers. Then we implemented a callback function
mptcp_drl_cong_avoid, which will be called by each subflow
every time an acknowledgment packet is received. Using this
function, subflows can keep observing and updating their
congestion window sizes.

In addition, before the online-testing, we trained the DRL-
CC agent for over 50, 000 epochs (i.e., 50,000 transition sam-
ples) in an offline manner, using iPerf3 [14] to continuously
generate packets to keep the network always busy in the test
environment, which produced sufficient transition samples for
training. Due to different link delays, packet loss rates and
bottleneck bandwidth settings, the offline training time varies
from an hour to several hours. For example, in the setting of
the bandwidth b; = by = 8Mbps, the delay d; = do = 200ms
and the packet loss rate p; = ps = 0.5%, it took 2.5 hours to
complete the offline training process. Once it was taken online,
it immediately became ready for use without any setup latency.
Note that offline training only needs to be done once and no
additional offline training is needed if the agent is rebooted. As
mentioned above, even though we used DNNs for inference
in our implementation, each of which, however, has only 2
hidden layers. According to our testing, the online inference
time is really short, about 0.5ms, which causes negligible
overhead for online decision making. Just as many other RL
agents, re-training needs to be performed for DRL-CC when
the network environment changes (e.g., from a low-bandwidth
and high-delay network to a high-bandwidth and low-delay
network). This is because sufficient transition samples need to
be collected to update the DNN of the agent such that it can
gain enough experience for the new environment to make good
decisions when similar situations occur. However, what is the
the best way to re-train a trained agent for a new environment

is a fairly big research topic and is out of the scope of this
paper, which will be studied in our future work.

IV. PERFORMANCE EVALUATION

We conducted a comprehensive empirical study for perfor-
mance evaluation under various test scenarios. In this section,
we describe the settings of our test environment, test scenarios,
and then present and analyze the corresponding results.

A. Common Experimental Setup

We compared DRL-CC with a few baselines, including
LIA [27], BALIA [26], OLIA [17] and wVegas [42], which
are all well-known congestion control algorithms proposed
particularly for MPTCP. We used their implementation in
MPTCP v0.92 [24] for our experiments.

We set up a test environment in our lab for our experiments.
The test environment consists of 2 laptops as client and server
separately, both running Ubuntu Linux 16.04LTS. Due to the
light weight of our design, there is no need for any special
device (such as GPU) for training. We found that we could
easily run and train the DRL-CC agent on a regular laptop,
which has an Intel i7-3630QM CPU and 4GB memory. Two
nodes are connected with a Gigabit switch. The server and
client have two and one Gigabit Ethernet interfaces respec-
tively, which created two different communication links (i.e.,
single-link paths) for our testing.

In the test environment, each MPTCP flow includes two
subflows, which is the most common setting for MPTCP in
practise and has also been used for testing in related works [4],
[26]. Similar as in [4], we controlled some key parameters
of the communication links in the test environment, such as
delay, bandwidth and loss rate using netem [23], which can
emulate the communication properties of a wide area network
for testing network protocols. We considered a wide range
of settings in our experiments: the link delay was set to range
from 50ms to 400ms, the packet loss rate was set to range from
0.5% to 4%, and the bottleneck bandwidth varied from 2Mbps
to 16Mbps. In our experiments, all the data packets were
captured by tcpdump [38] and analyzed by wireshark [40].

B. Test Scenarios and Experimental Results

We introduce our test scenarios and present the corre-
sponding experimental results. In the first four test scenarios,
we evaluated the performance of DRL-CC in a relatively
steady environment. Specifically, 5 MPTCP flows (each with 2
subflows) were established between the server and the client
and kept active through each experiment. The MPTCP data
traffic was generated by retrieving a binary document from a
simple HTTP server. The document size ranged from 2MB
to 8MB. The goodput was calculated by diving the document
size by the elapsed download time. Each number presented in
the following figures is the average goodput per MPTCP flow.

Scenario 1: In this scenario, we show how the document
size affects the goodput. We set the bandwidth by = by =
8Mbps, the delay d; = dy = 100ms and the packet loss
rate p; = po = 2%. We used the documents with dif-
ferent sizes: 2M, 4M and 8M. The corresponding results



35

T
[ DRL-CG
I LA
[C—/BALIA
[ OLIA
I \\Vegas

25F

Per—flow Goodput (Mbps)

Document Size (MB)

(a) Average per-flow goodput VS. document size

T
[N DRL-CC

Jain’s Fairness Index

BALIA OLIA wVegas

(b) Jain’s fairness index

Fig. 3: Scenario 1: by = by = 8Mbps, d; = ds = 100ms and
P1 =DpP2 = 2%

are presented in Fig. 3. First, we can see that DRL-CC
significantly outperforms all the other methods in terms of
goodput. For example, when the document size is 8M, DRL-
CC outperforms LIA, BALIA, OLIA, wVegas by 313%, 279%,
272%, 198% respectively. Moreover, since there are two links
(paths) between the server and the client and each of them
has a bandwidth of 8Mbps, the total end-to-end bandwidth is
16Mbps. There are 5 MPTCP flows and each of them obtains
an average goodput of 3.2Mbps (if DRL-CC is used), which
means that DRL-CC makes full use of all available bandwidth.
In addition, we show the Jain’s fairness index (calculated over
all MPTCP flows) given by each algorithm in Fig. 3b. We
can see that all the algorithms achieve very good fairness
since the corresponding indices are all close to 1. Hence,
compared to the baselines, DRL-CC leads to much higher
goodput without sacrificing fairness. This is mainly due to the
way how we define the reward (Section III-A), particularly
the utility function, which usually leads to a good tradeoff
between goodput and fairness.

Since all the methods have a similar behavior with different
document sizes, and in order to have a relatively long testing
time, we used the 8M document in the following scenarios. We
present the results corresponding to the next three scenarios in
Fig. 4. In addition, we found all the algorithms led to similarly
good fairness in the other scenarios. Due to space limitation,

we omit the corresponding results and figures.

Scenario 2: In this scenario, we fixed the delay d; =
d> = 100ms and the packet loss rate p; = py = 2%, we
aimed to show the performance of all these methods with
different bandwidths by setting the bandwidth b /bs to 2M,
4M, 8M and 16M in different experiments respectively. The
corresponding results are presented in Fig. 4a. We can see
when the bandwidth is small (i.e. 2Mbps), the goodputs of
all the methods are fairly low and almost the same. When the
bandwidth is increased, DRL-CC leads to sharp improvements
on goodput, which are much more significant than those
given by the other methods. Particularly, when the bandwith
is 8Mbps, DRL-CC leads to 325%, 280%, 269% and 181%
improvements over the baselines respectively.

Scenario 3: This scenario was designed to show how the
goodputs given by these methods vary with the delay. We set
the bandwidth b; = by = 8Mbps and the packet loss rate
p1 = p2 = 0.5%, the delay d; /ds was changed from 20ms all
the way to 400ms. The results are shown in Fig. 4b. Similar
as in the last scenario, when the delay is small (i.e. 50ms), the
goodputs of all the methods are fairly high and close. When
the delay is increased, the goodputs given by all the methods
drop as expected. However, DRL-CC only experiences pretty
minor degradation on goodput; while the drops of the other
methods are much more substantial. Particularly, when the
delay is 400ms, DRL-CC offers 656%, 473%, 489% and 382%
improvements over the baselines respectively.

Scenario 4: We designed this scenario to see how the
packet loss rate affects the goodputs given by all the methods.
We set the bandwidth b, = by, = 16Mbps and the delay
dy = dy = 50ms. The packet loss rate was set to 0.5%,
1%, 2% and 4% in different experiments respectively. The
corresponding results are shown in Fig. 4c. Similar as in
Scenario 2, when the packet loss rate is increased, DRL-
CC maintains fairly statable performance without a sharp
degradation on goodput. However, the goodputs given by all
the baselines drop dramatically with the packet loss rate.
Particularly, in the case of lossy links with a loss rate of 4%,
DRC-CC outperforms these baselines by 468%, 456%, 409%
and 319% respectively.

In summary, first of all, this set of scenarios and
experiments well justify the superiority of DRL-CC on
goodput. Particularly, we observe that DRL-CC significantly
outperform the baselines in those cases with high bandwidth,
long delay and high packet loss rate. Through good training,
DRL-CC can find that making better use of available
bandwidth leads to much higher goodput. So it always tries
to increase congestion window sizes quickly and aggressively
when detecting more available bandwidth. However, the
other methods behave much more conservatively in this case
since they don’t have a mechanism that can explicitly and
quickly utilize available bandwidth. In addition, DRL-CC is
more suitable for tough network environments (e.g., lossy
wireless networks) with a high delay or packet loss rate. As
mentioned before, most existing methods follow pre-defined
policies to control congestion windows, which are usually
too conservative, i.e, reducing or significantly reducing
window sizes once detecting long RTTs or packet losses but



<
w
23

~—afe— DRL-CC|
- =0 = LIA X .
s BALIA R AN
@ || —tlb OLIA @
_8'5 = =4 = wVegas _%25
=3 ="
24 2 2
] ]
o o
o o
[OF) (O
3 3
o o
T o T 1
o 3 —=k~— DRL-CC]|
& o -0 = LIA
e o= = 4 -mmm o . Acliubnleiteleiieltols 05 BALIA
- S T —a—OLIA
= =9= = wVegas
H

=== DRL-C(|

Per-flow Goodput (Mbps)

B

4 8 16 50 100
Bandwidth (Mbps)

(a) Scenario 2: Average per-flow goodput VS.
bandwidth with d; = d2 = 100ms and p; =

Delay (ms)

(b) Scenario 3: Average per-flow goodput VS.
delay with by = by = 8Mbps and p; = p2 =

i
200 400
Loss rate

(c) Scenario 4: Average per-flow goodput VS.
loss rate with by = by = 16Mbps and di =
ds = 50ms

Fig. 4: Performance of all the methods over different settings

opening congestion windows back up slowly. This certainly
leads to low goodput. However, in these cases, DRL-CC
usually makes a few attempts and quickly figures out the best
ways to set up window sizes without being too conservative
or aggressive. Therefore, we can observe DRL-CC brings
much more improvements in these tough cases. Last but
not the least, as mentioned above, DRL-CC features a joint
congestion control over all active MPTCP flows, which is
expected to deliver superior performance over those baselines
that perform congestion control for flows independently.

Next we introduce two scenarios, in which we tested DRL-
CC in a more dynamic and complicated environment. For
example, we changed the number of MPTCP flows or even
the number of subflows over time. Note that these situations
may occur in practice, e.g. a user may open and close a
website frequently over time, which leads to establishments
and terminations of multiple MPTCP flows. The number of
subflows of a MPTCP may also change due to the network
state fluctuations, e.g. stepping away from a WiFi hotspot may
cause the loss of the corresponding link on a mobile phone.
Note that those baselines are not supposed to have any problem
dealing with such dynamics since they all manage individual
flows separately.

Most settings in Scenarios 5 and 6 are the same as the last
few scenarios. We used those key parameters as follows: the
bandwidth b; = bs = 8Mbps, the delay d; = dy = 100ms
and the packet loss rate p; = po = 2%. In the following
scenarios, rather than requesting a file from server, we directly
used iPerf3 [14] to continuously generate packets to keep the
network busy.

Scenario 5: In this scenario, we tested DRL-CC’s capability
of dealing with the case with dynamic establishments and
terminations of MPTCP flows. During a testing period of 150
seconds, establishments of MPTCP flows followed a Poisson
process where the lambda was set to 10; and each flow lasted
for 30 seconds. The average (over time) total goodputs of all
MPTCP flows are shown in Fig. 5. We can see that DRL-CC
is robust to such a highly-dynamic environment. Compared to
the baselines, DRL-CC can still achieve 382%, 351%, 336%,
257% improvements on total goodput.

Total Goodput (Mbps)

DRL-CC LIA

BALIA OLIA wVegas

Fig. 5: Scenario 5: Average total goodput in the case with
dynamic establishments and terminations of MPTCP flows

Scenario 6: As the number of subflows of a MPTCP flow
may be changed during the running time, we considered the
scenario where one of two subflows suddenly disappeared.
Specifically, a total of 5 MPTCP flows were established in
the beginning. During a testing period of 200 seconds, one
of the subflows of each flow was closed via shutting down
a network interface at 60s. The corresponding results are
shown in Fig. 6. Similar as in the last scenario, DRL-CC can
deliver robust performance in this dynamic case. Specifically,
DRL-CC outperforms those baselines by 193%, 178%, 186%,
204% respectively. In order to show the behavior of flows and
the performance of DRL-CC over time, we plot Fig. 7. We
can see that DRL-CC experiences a sharp drop right at the
subflow termination time 60s. However, we observe that its
total average goodput stabilizes at 8Mbps (maximum possible
after the termination), which shows that DRL can quickly
adjust itself to the single network interface setting at 60s, and
utilize the rest of available bandwidth.

In summary, we conclude that DRL-CC is robust to highly-
dynamic network environments. As mentioned above, our
design features an LSTM-based network that can learn an ef-
fective representation of all active flows. Unlike feed-forward
neural networks or CNNs (commonly used in DRL), our
model can well handle a variable input size (i.e., the cases



with dynamic establishments and terminations of flows and
subflows). We actually observed that DRC-CC was able to
adjust its control policy quickly and properly whenever there
was change during these experiments, which ensures good
and stable overall performance. Our results have confirmed
the effectiveness and robustness of our design.

T T
[ DRL-C!
I LA
[ BALIA |4
[ OLIA
I Vegas

Total Goodput (Mbps)

BALIA OLIA wVegas

Fig. 6: Scenario 6: Average total goodput in the case with
dynamic terminations of MPTCP subflows

BALIA
—8—OLIA
=& =wVegas | |

Total Goodput (Mbps)

S S S S W
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time (10s)

Fig. 7: Scenario 6: Average total goodput over time in the case
with dynamic terminations of MPTCP subflows

Another important property of MPTCP is its friendliness
to (regular) TCP flows. If there simultaneously co-exists both
MPTCP and TCP flows in a network, MPTCP should not bring
goodput improvements for its own flows at the cost of those
TCP flows. It is quite common to have both TCP and MPTCP
flows in a network since some servers/clients may not support
MPTCP.

Scenario 7: We designed this scenario to evaluate the good-
puts of all active flows given by all these congestion control
methods in a MPTCP and TCP co-existing environment. In
this scenario, there were a total of 5 MPTCP flows (that used
two different links (path) for communications as described
above), and 5 regular single-path TCP flows that competed
for one of MPTCP’s links. Those key parameters were set
as follows: by = by = 8Mbps, di = do = 100ms and
p1 = p2 = 2% We measured the average per-flow goodput for
both TCP and MPTCP, and presented the results on Fig. 8.
We can see that if DRL-CC is used, the goodput of a TCP

Per-flow Goodput (Mbps)

Regular TCP MPTCP

Fig. 8: Scenario 7: Per-flow goodputs of regular TCP and
MPTCP flows

@

Per-flow Goodput (Mbps)
3

DRL-CC LIA BALIA OLIA wVegas

Fig. 9: Scenario 8: Average per-flow goodput in the case with
asymmetric wireless links

flow is quite similar as those given by the baselines; however,
the corresponding MPTCP flows have a much higher goodput.
Specifically, compared to the best baseline LIA, the per-flow
TCP goodput corresponding to the use of DRL-CC is slightly
lower but the corresponding MPTCP goodput is 106% higher.
Moreover, DRL-CC offers higher goodputs for both TCP and
MPTCP flows than all the other baselines. This is also mainly
due to the way how we define the reward (Section III-A),
particularly the utility function, which takes into account both
TCP and MPTCP flows. This observation confirms that DRL-
CC is TCP-friendly.

In addition, we conducted an additional experiment in
a practical wireless environment, in which a laptop was
equipped with two WiFi network interfaces and there existed
asymmetric links. Most of other settings are the same as those
in the above scenarios, and there were 5 MPTCP flows in total.

Scenario 8: In this scenario, we aimed to demonstrate how
DRL-CC performs in a practical wireless environment with
asymmetric links. The bandwidth and delay were limited to
by = 100Mbps and by, = 10Mbps; and d; = bms and ds =
2ms respectively. We measured the average per-flow goodput
for MPTCP flows, and presented the corresponding results in
Fig. 9.

Since both the delay and the packet loss ratio are fairly



low in this scenario, the performance gaps between different
methods are relatively smaller compared to other scenarios
but they are still noticeable. Specifically, we can see that
DRL-CC still outperforms all the other baseline methods in
terms of goodput, by 9.6%, 7.7%, 8.51% and 66.5% on
average respectively. Thus, we can conclude that DRL-CC is
able to make good use of available bandwidth and perform
consistently well under different network conditions such as
those with asymmetric characteristics.

V. RELATED WORK

Congestion Control: Congestion control, as a fundamental
problem in networking, has been widely studied in the context
of TCP [2], [13]. Most of the classical congestion control
algorithms proposed for regular TCP are either loss-sensitive
(such as NewReno [13]), or delay-sensitive (such as TCP
Vegas [2]). They usually pre-define some packet-level events
as congestion signals, and conduct the congestion window
adjustment based on a fixed control policy. Recently, several
works targeted at learning a control policy from the runtime
state. In a pioneering work [41], the authors presented a
congestion control approach called Remy, which can generate
control rules for different cases. Dong et al. [3] proposed
Performance-oriented Congestion Control (PCC), in which
each sender continuously observes the connection between its
actions and empirically experienced performance, enabling it
to consistently adopt actions that result in high Performance.
The authors of [44] introduced a congestion control protocol,
Verus, which continuously learns a delay profile that captures
the correlation between end-to-end packet delay and the out-
standing window size, and uses this correlation to adjust the
congestion window.

Unlike these related works targeting at the regular TCP, we
aim to optimize performance of more recent MPTCP, which is
quite different from MPTCP. It has also been shown [26], [27]
that MPTCP may suffer from serious performance degradation
when directly applying a regular TCP congestion control
algorithm separately on each sub-flow.

Congestion control is also a critical problem for MPTCP and
has also been well studied recently in the literature. In [20],
Michio et al. proposed a congestion control scheme, which en-
ables an end-to-end connection that uses flows along multiple
paths to fairly compete with TCP flows at shared bottlenecks,
and in the meanwhile, maximizes the utilization of different
paths. Hassayoun et al. [11] proposed Dynamic Window
Coupling (DWC), a multipath congestion control mechanism
that seeks to be fair to other flows in the network while being
able to maximize its own throughput. DWC detects shifting
bottlenecks in the network and responds by dynamically
regrouping subflows. In [27], Raiciu et al. designed Linked In-
crease Algorithm (LIA), which couples the congestion control
policies running on different subflows by linking their increase
functions. The authors of [17] presented Opportunistic Linked
Increase Algorithm (OLIA), which resolves some performance
issues of LIA while retaining non-flappiness and responsive-
ness. As an extension of the well-known TCP Vegas [2],
the authors of [42] proposed weighted Vegas for MPTCP,

which adopts the packet queuing delay as a congestion signal,
achieving fine-grained load balancing. In [26], Peng et al.
proposed BAlanced LInked Adaptation (BALIA) to generalize
existing congestion control algorithms through a fluid model
and strike a good performance. In [5], the authors quantified
the penalty of the coupled congestion control for links that
do not share a bottleneck, then designed and implemented
a practical shared bottleneck detection (SBD) algorithm for
MPTCP, namely MPTCP-SBD, to overcome the penalty. A
recent work [45] presented MPTCPD, an energy-efficient
variant of MPTCP particularly for datacenters, which can
provide energy efficiency by minimizing the flow completion
time. Morevoer, Le et al. [16] developed ecMTCP, which is
an energy-efficient congestion control algorithm. Dong et al.
[4] designed mVeno particularly for wireless communications
with multiple radio interfaces. Raiciu ef al. [28] implemented
MPTCP in Linux kernel and evaluated its performance. They
mainly focused on the algorithms needed to efficiently use
paths with different characteristics, notably send and receive
buffer tuning and segment reordering. They also compared the
performance of their implementation with regular TCP on web
servers.

As mentioned above, unlike these related works present-
ing pre-defined policies for congestion control in MPTCP,
we develop a novel model-free experience-driven framework
based on DRL, which learns the best control policy based on
real-time runtime states. Moreover, the proposed framework
features a novel end-to-end trainable DNN model for action
inference, which can even deal with a variable input size.

Deep Reinforcement Learning (DRL): DRL has won his
world-wide fame due to its impressive successes on game-
playing tasks such as Go and Atari games. It has recently
attracted extensive research attention from both industry and
academia. In a pioneering work [21], Mnih et al. proposed
deep Q-learning and DQN, which can learn successful policies
directly from high dimensional sensory inputs. As introduced
above, they introduced two new techniques, experience replay
and target network, to ensure learning stability. The authors
of [10] proposed Double Q-learning as a specific adaptation
of the DQN and an improvement to the earlier work [21].
Another improvement was introduced in [29] to use prioritized
experience replay in DQN such that important transition
samples can be replayed more frequently, which can lead
to more efficient learning. In [39], Wang e al. presented a
new dueling neural network architecture, which includes two
separate estimators: one for the state value function and one
for the state-dependent action advantage function. So far, we
only discuss works related to discrete control with a limited
action space. Continuous control has also be addressed in
the context of DRL. Lillicrap et al. [18] proposed an actor-
critic-based and model-free algorithm, DDPG, based on the
deterministic policy gradient, which represents a state-of-the-
art DRL-based solution to continuous control. Gu et al. [7]
proposed normalized advantage functions for reducing sample
complexity for continuous control. In [8], the authors proposed
an interesting policy gradient method Q-Prop, which uses a
Taylor expansion of the off-policy critic as a control variant.
The authors of [22] proposed asynchronous gradient descent



for optimizing learning with DNNs, and showed its successes
on a wide variety of continuous motor control tasks.

Even though, DRL has made tremendous successes, the
research on the feasibility and effectiveness of using it in the
context of quite different network control problems is still in
its infancy. To the best of our knowledge, we are the first to
leverage DRL for congestion control in DRL. Moreover, the
neural network architecture in DRL-CC is different from those
in all these related works.

VI. CONCLUSION

In this paper, we presented design, implementation and
evaluation of a DRL-based framework, DRL-CC, for con-
gestion control in MPTCP. DRL-CC utilizes a single agent
to dynamically and jointly perform congestion control for
all active MPTCP flows on an end host with the objective
of maximizing the overall utility (such as goodput). DRL-
CC features a novel end-to-end trainable DNN model for
action inference, which consists of a flexible LSTM-based
representation network, a critic network and an actor network.
This neural network architecture can be used to learn an
effective representation of all active TCP and MPTCP flows
to enable the above joint control, and deal with network
dynamics with time-varying flows. We implemented DRL-CC
based on the MPTCP implementation in the Linux kernel.
We conducted a comprehensive empirical study to evaluate
the performance of DRL-CC under seven different scenarios.
The experimental results have well justify its effectiveness and
superiority over a few well-known MPTCP congestion control
algorithms (including LIA, OLIA, BALIA and wVegas) in
all of these scenarios in terms of goodput and fairness; its
robustness to highly-dynamic environments with time-varying
flows; as well as its friendliness to the regular TCP.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen et al., Tensorflow:
Large-scale machine learning on heterogeneous distributed systems,
arXiv preprint, 2016, arXiv:1603.04467.

[2] L. L Brakmo and L. L Peterson, TCP Vegas: End to end congestion
avoidance on a global Internet, IEEE Journal on selected Areas in
communications, Vol. 13, No. 8, 1995, pp. 1465-1480.

[3] M. Dong, Q. Li, D. Zarchy, P. B Godfrey and M. Schapira, PCC: Re-
architecting congestion control for consistent high performance, USENIX
NSDI’2015, 2015.

[4] P. Dong, J. Wang, J. Huang and H. Wang and G. Min, Performance
enhancement of multipath TCP for wireless communications with mul-
tiple radio interfaces, IEEE Transactions on Communications, Vol. 64,
No. 8, 2016, pp. 3456-3466.

[51 S. Ferlin, O. Alay, T. Dreibholz, D. A Hayes, D. A. Hayes and M. Welzl,
Revisiting congestion control for multipath TCP with shared bottleneck
detection, IEEE INFOCOM’16, 2016.

[6] A. Ford, C. Raiciu, M. Handley and O. Bonaventure, TCP extensions
for multipath operation with multiple addresses, IETF RFC 6824, 2013.

[71 S. Gu, T. Lillicrap, I. Sutskever and S. Levine, Continuous deep Q-
Learning with model-based acceleration, /ICML’16, pp. 2829-2838.

[8] S. Gu, T. Lillicrap, Z. Ghahramani, R. Turner and S. Levine, Q-prop:
Sample-efficient policy gradient with an off-policy critic, arXiv preprint,
2016, arXiv:1611.02247.

[9] P. Gupta and P. R. Kumar, The capacity of wireless network, /EEE

Transactions on Information Theory, Vol. 46, No. 2, 2000, pp. 388—

404.

H. v. Hasselt, A. Guez, and D. Silver, Deep reinforcement learning with

double Q-learning, AAAI’16, pp. 2094-2100.

S. Hassayoun, J. Iyengar and D. Ros, Dynamic window coupling for

multipath congestion control, IEEE ICNP’11, 2011, pp. 341-352.

[10]

[11]

[12]
[13]

[14]
[15]

[16]

(17]

(18]

(19]

[20]
[21]
[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]
(30]
[31]
[32]
(33]
[34]

[35]

[36]
[37]

[38]
(391

[40]
[41]
[42]

[43]

[44]

[45]

[46]

S. Hochreiter and J. Schmidhuber, Long Short-Term Memory, Neural
Computation, Vol. 9, No. 8, 1997, pp. 1735-1780.

J. C. Hoe, Improving the start-up behavior of a congestion control
scheme for TCP, ACM SIGCOMM’96, Vol 26, No. 4, 1996, pp. 270-280.
iPerf3: https:/fiperf.fr/

D. Kingma and J. Ba, Adam: a method for stochastic optimization,
ICLR’15, 2015.

T. A. Le, C. Hong, M. Razzaque, S. Lee and H. Jung, ecMTCP: an
energy-aware congestion control algorithm for multipath TCP, IEEE
communications letters, Vol. 16, No. 2, 2012, pp, 275-277.

R. Khalili, N. Gast, M. Popovic, U. Upadhyay and J. Le Boudec,
MPTCP is not Pareto-optimal: performance issues and a possible so-
lution, ACM CoNEXT’12, 2012.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver
and D. Wierstra, Continuous control with deep reinforcement learning,
ICLR’16.

S. H Low and D. E Lapsley, Optimization flow control. 1. Basic
algorithm and convergence, IEEE/ACM Transactions on networking,
Vol. 518, No. 6, 1999, pp. 861-874.

H. Michio, et al. , Multipath congestion control for shared bottleneck,
PFLDNeT Workshop, 2009.

V. Mnih, et al. , Human-level control through deep reinforcement
learning, Nature, Vol. 518, No. 7540, 2015, pp. 529-533.

V. Mnih, et al. , Asynchronous methods for deep reinforcement learning,
ICML’16, pp. 1928-1937.

netem: https://wiki.linuxfoundation.org/networking/netem

C. Paasch, S. Barre, et al. , Multipath TCP in the Linux Kernel,
https://www.multipath-tcp.org

D. P. Palomar and M. Chiang, A tutorial on decomposition methods
for network utility maximization, IEEE Journal on Selected Areas in
Communications, Vol. 24, No. 8, 2006, pp. 1439-1451.

Q. Peng, A. Walid, J. Hwang and S. H Low, Multipath TCP: analysis,
design, and implementation, IEEE/ACM Transactions on Networking,
Vol. 24, No. 1, 2016, pp. 596-609.

C. Raiciu, M. Handley, and D. Wischik, Coupled congestion control for
multipath transport protocols, RFC 6356, 2011.

C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O.
Bonaventure and M. Handley, How hard can it be? designing and
implementing a deployable multipath TCP, USENIX NSDI’12, 2012.

T. Schaul, J. Quan, I. Antonoglou and D. Silver, Prioritized experience
replay, arXiv preprint, 2015, arXiv:1511.05952

R. Z. Shen, Valiant Load-Balancing: building networks that can support
all traffic matrices, Algorithms for Next Generation Networks, 2010.
J. F. Shortle, J. M. Thompson, D. Gross and C. M. Harris, Fundamentals
of queueing theory (5th Edition), Wiley, 2018.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra and M. Riedmiller,
Deterministic policy gradient algorithms, /CML’14, 2014.

R. Srikant, The mathematics of Internet congestion control, Springer
Science & Business Media, 2012.

I. Sutskever, O. Vinyals, and Q. V Le, Sequence to sequence learning
with neural networks, NIPS’14, pp. 3104-3112.

R. S Sutton, D A McAllester, S. P Singhand and Y. Mansour, Policy gra-
dient methods for reinforcement learning with function approximation,
NIPS’00, 2000, pp. 1057-1063.

R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction
2nd Edition), MIT press, 2018.

TFLearn: http://tflearn.org/

Tepdump: hitps://www.tcpdump.org/

Z. Wang, T. Schaul, M. Hessel, H. Van, M. Lanctot and N. De
Freitas, Dueling network architectures for deep reinforcement learning,
ICML’16, pp. 1995-2003.

wireshark: available from https://www.wireshark.org/

K. Winstein and H. Balakrishnan, TCP ex machina: computer-generated
congestion control, ACM SIGCOMM’13, 2013, pp. 123-134.

M. Xu, Y. Cao and E. Dong, Delay-based Congestion Control for
Multipath TCP, IEEE ICNP’12, 2015.

Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu and D. Yang,
Experience-driven networking: a deep reinforcement learning based
approach, IEEE INFOCOM’18, 2018.

Y. Zaki, T. Ptsch, J. Chen, L. Subramanian, & C. Grg, Adaptive con-
gestion control for unpredictable cellular networks, ACM SIGCOMM’15,
Vol. 45, No. 4, 2015, pp. 509-522.

J. Zhao, J. Liu, and H. Wang and C. Xu, Multipath TCP for datacenters:
From energy efficiency perspective, IEEE INFOCOM’17, 2017, pp. 1-9.
D. Zhou, W. Song and M. Shi, Goodput Improvement for Multipath
TCP by Congestion Window Adaptation in Multi-Radio Devices, IEEE
CCNC’13, 2013, pp. 508-514.



Zhiyuan Xu is currently pursuing the Ph.D. degree
at the Department of Electrical Engineering and
Computer Science, Syracuse University, Syracuse,
NY, USA. He received the B.E. degree in School of
Computer Science and Engineering from University
of Electronic Science and Technology of China,
Chengdu, China, in 2015. He was an exchange
student in 2013 at Department of Computer Science
and Information Engineering, National Taiwan Uni-
versity of Science and Technology, Taipei, Taiwan.
He was a visiting student in 2015 at Dalhousie
University, Halifax, NS, Canada. His current research interests include deep
reinforcement learning and communication networks.

Jian Tang (F19) is a professor in the Department
of Electrical Engineering and Computer Science at
Syracuse University. He received his Ph.D degree
in Computer Science from Arizona State University
in 2006. His research interests lie in the areas of
Wireless Networking, Machine Learning, Big Data
and Cloud Computing. Dr. Tang has published over
130 papers in premier journals and conferences. He
received an NSF CAREER award in 2009, the 2016
Best Vehicular Electronics Paper Award from IEEE
Vehicular Technology Society (VTS), and Best Pa-
per Awards from the 2014 IEEE International Conference on Communications
(ICC) and the 2015 IEEE Global Communications Conference (Globecom)
respectively. He has served as an editor for a few IEEE journals, including
IEEE Transactions on Big Data, IEEE Transactions on Mobile Computing,
IEEE Transactions on Network Science and Engineering, IEEE Transactions
on Wireless Communications, IEEE Internet of Things Journal and IEEE
Transactions on Vehicular Technology. In addition, he served as a TPC co-
chair for the 2019 IEEE/ACM International Symposium of Quality of Service
(IWQoS), the 2018 International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services (Mobiquitous), the 2015
IEEE International Conference on Internet of Things (iThings) and the 2016
International Conference on Computing, Networking and Communications
(ICNC); as the TPC vice chair for the 2019 IEEE International Conference
on Computer Communications (INFOCOM); and as an area TPC chair for
INFOCOM 2017-2018. He is also an IEEE fellow, an IEEE VTS distinguished
lecturer, and the vice chair of the Communications Switching and Routing
Committee of IEEE Communications Society.

Chengxiang Yin is currently pursuing the Ph.D.
degree at the Department of Electrical Engineering
and Computer Science, Syracuse University, Syra-
cuse, NY, USA. He received his B.S. degree from
the School of Information and Electronics at Beijing
Institute of Technology, Beijing, China, in 2016.
His research interests include Deep Learning and
Computer Vision.

Yanzhi Wang is currently an assistant professor in
the Department of Electrical and Computer Engi-
neering at Northeastern University. He has received
his Ph.D. Degree in Computer Engineering from
University of Southern California (USC) in 2014,
and his B.S. Degree with Distinction in Electronic
Engineering from Tsinghua University in 2009. Dr.
Wang’s current research interests are the energy-
efficient and high-performance implementations of
deep learning and artificial intelligence systems. Be-
sides, he works on the application of deep learning
and machine intelligence in various mobile and IoT systems, medical systems,
and UAVs, as well as the integration of security protection in deep learning
systems. His works have been published in top venues in conferences and
journals (e.g. ASPLOS, MICRO, HPCA, ISSCC, AAAIL ICML, ICLR, ECCYV,
ACM MM, CCS, VLDB, FPGA, DAC, ICCAD, DATE, LCTES, INFOCOM,
ICDCS, Nature SP, etc.), and have been cited for around 4,000 times according
to Google Scholar. He has received four Best Paper Awards, has another seven
Best Paper Nominations and two Popular Papers in IEEE TCAD. His group is
sponsored by the NSF, DARPA, IARPA, AFRL/AFOSR, and industry sources.

Guoliang Xue (F09) is a professor of Computer
Science and Engineering at Arizona State University.
He earned a PhD degree in Computer Science in
1991 from the University of Minnesota, an MS
degree in Operations Research in 1984, and a BS
degree in Mathematics in 1981, both from Qufu
Normal University. His research interests include re-
source allocation in computer networks, security and
survivability issues in networks, and machine learn-
ing enabled crowdsourcing. He is an Area Editor of
IEEE Transactions on Wireless Communications for
the Wireless Networking Area overseeing 12 editors. He is a past editor of
IEEE/ACM Transactions on Networking, and Computer Networks. He was
a TPC co-chair of IEEE INFOCOM?2010 and a co-General Chair of IEEE
CNS2014. He was a Keynote Speaker at IEEE LCN2011, IEEE ICNC2014,
and IEEE ICT-DM2018, and IFIP WWIC2018. He is an IEEE Fellow. He
served as the VP-Conferences of the IEEE Communications Society (ComSoc)
in 2016 and 2017.




