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Abstract—This paper presents an indoor area occupancy counting system utilizing the

ambient structural vibration induced by pedestrian footsteps. Our system achieves 99.55%

accuracy in pedestrian footsteps detection, 0.2 people mean estimation error in pedestrian

traffic estimation, and 0.2 area occupant activity estimation error in real-world

uncontrolled experiments.

B Usiquitous AREA occupaNcY information
acquisition is essential for smart building appli-
cations such as energy/space management and
market research. Sensing methods to obtain this
information mainly fall into two categories: infra-
structure-based sensing!™ and mobile-based sens-
ing.%” Mobile-based sensing requires occupants
to carry or wear a device, therefore limiting their
applications in many scenarios such as elderly
and child monitoring. On the other hand, infra-
structure-based techniques refer to passive sens-
ing methods that do not require the monitored
subject to carry a sensing device, which is a better
fit to our sensing goal. However, these techniques,
such as surveillance cameras and motion sensors
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on doorways, often have sensing requirements,
such as line-of-sight and dense deployment at
designated areas/positions.

To overcome these limitations, footstep-
induced structural vibration is introduced for
occupancy monitoring.®® The main intuition
behind structural vibration-based sensing is that
when people walk, their footstep striking results
in structural vibrations, which are perceived
by sensors. The vibration signals caused by
multiple people can be utilized to count and track
them. By measuring structural vibrations, this
approach enables sparse sensing and does not
require occupants to carry devices. However,
prior vibration-based approaches either focus on
one person or in a limited space in the building,
which may not reflect the scenario in real-world
applications where multiple people might simul-
taneously walk between rooms and hallways.
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In this paper, we present a structural vibra-
tion-based occupancy estimation system, which
obtains occupancy information for multiple
people across various rooms. For this purpose,
the main challenges are 1) sensitivity of the
footstep-induced vibration signals to spatial
structure changes (e.g., reduction in amplitude
when the person walks in a room and signal gets
obstructed by the wall), and 2) complexity of
signal mixture when multiple people walk simul-
taneously in the sensing range.

To address these challenges, we estimate
the traffic count through characterizing the
signal mixture for different traffic conditions
and then utilize the traffic count and heuristics
about structural properties and human walking
patterns to track occupancy across rooms.
Specifically, we 1) estimate the number of peo-
ple walking in the sensing range using the sig-
nal mixture characteristics, 2) utilize the
known building layout, general walking pat-
terns, and structural characteristics to track
pedestrians when they walk along the hallway
and enter rooms, and 3) estimate the overall
occupancy of different areas of a building
based on the updates of the detected occu-
pancy change events.

The contributions of this work include

+ We present a footstep-induced structural vibra-
tion-based occupancy estimation method.

- We consider vibration wave properties to
handle a variety of signal mixture scenarios.

+ We evaluate the system with real-world
experiment datasets.

PHYSICAL BACKGROUND

To understand our method for room occu-
pancy counting, this section explores how
structural vibration waves are affected by the
building layout and how we can use the wave
properties to estimate the number of occupants
in a location.

Floor Vibration Wave Propagation

When a foot strikes the floor, its impact gener-
ates a dynamic response in the floor structure in
the form of structural vibrations. In occupancy
monitoring applications, we leverage two critical
insights regarding wave propagation: 1) the
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vibration signal energy/amplitude is inversely
proportional to the distance between the vibra-
tion sensor and the footstep location (the foot-
step-sensor distance),®!? and 2) vibration wave
propagation is affected by changes in the under-
lying structure (e.g., floor beams, voids, etc.).%!!

The first insight enables relative location
tracking and allows walking directions estimation
in the sensing area. With a known sensor loca-
tion, we can infer the position and trajectory of
occupants by observing a steady increase or
decrease in the vibration signal amplitude/
energy. Furthermore, with a series of vibration
sensors in a network, we can observe when an
occupant approaches one sensor and becomes
increasingly far from another.

With the second insight, we utilize the known
sensor locations and building floor plan informa-
tion to determine when occupants enter and exit
a sensing area. We observe that the distance/
amplitude relationship from the first insight
changes significantly when an occupant moves
from one area into another. Figure 1 shows an
example of the structural response through ball-
drops in a residential townhouse.® In this sce-
nario, the observed vibration signal energy is
significantly greater in the hallway (where the
sensor was located), and then reduces for excita-
tions located in the adjacent rooms. Therefore,
by observing the general walking trend for occu-
pants in a space, we can determine when they
move into various rooms in the building by moni-
toring abrupt changes to the distance/amplitude
relationship.

Floor Vibration Response Characteristics

Floor vibration monitoring systems are often
considered linear, time-invariant systems, which
indicate that each recorded vibration response
can be viewed as a linear combination of the
excitation sources at a given time.” Using this
assumption, we infer that the scenario where
multiple occupants are walking in the sensing
area will generate a signal that varies from more
impulsive (single person) to more similar to
white noise (many people). As a result, we make
two key observations: 1) signals with the same
number of people walking (1 person vs. 1 person,
2 people vs. 2 people, etc.) will tend to have
more similarity to each other, while those with
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Figure 1. Heat map showing vibration signal energy in different regions in a residential townhouse. Note the
sudden drop in energy between the hallway and adjacent rooms. Source: Shijia Pan, used with permission.®

different number of occupants (e.g., 1 person
vs. 4 people) will tend to not be as similar, and
2) as the number of occupants increases
towards the “white noise” condition, the signal
randomness increases,9 and the characteristics
of the vibration waves can be distinguished by
their increasing randomness. With an increasing
number of impulses, the recorded vibration sig-
nal converges on the random, “mixed signal”
case. By combining these two observations, our
method can learn the differences in the signal
caused by an increasing number of occupants
and use that information to estimate the num-
ber of occupants in a given room.

AREA OCCUPANCY COUNTING
SYSTEM

The area occupancy counting system has
three main modules: the sensing module, the
intra-area detection, and the interarea decision
making, as shown in Figure 2. The system first
detects the floor vibration with the sensing mod-
ules that are placed on the floor. Then, for each
sensing module, the signal is processed, which
is referred to as intra-area detection. In the
intra-area detection module, the system first
detects the sliding windows that contain human
activity events. Then, these detected events are
segmented to indicate different activities. Finally,

based on the segmented events, the system iden-
tifies the activities which are footsteps and
focuses on tracking them. To obtain the overall
occupancy count transfer between areas, the
intra-area detection will use each single sensor
data collaboratively to determine the walking
direction and number of pedestrians and eventu-
ally estimate the traffic through each area.

Sensing Module

The sensing module consists of a geophone
sensor, an OpAmp, an ADC module, and an Ardu-
ino board with processor and communication
functions, as shown in Figure 3. The sensing
module is placed on the floor to detect floor
vibrations induced by pedestrian footsteps in
the sensing area.

Each sensing area is covered by at least two
sensors to collaboratively detect the scenarios
when there are multiple people’s footsteps
mixed together.” The sensing area is defined
based on the structural layout and the effective
sensing range of the sensors in that structure. In
the example shown in Figure 1, the hallway,
bathroom, and kitchen are different areas
because there is a structural element between
these sensing areas.

The vibration sensor used here is Geophone
SM-24, which has a sensitivity of 28.8 V/m/s. In
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Figure 2. Indoor area occupancy count estimation system. The system mainly consists of three modules: the
sensing module, the intra-area detection module, and the interarea decision-making module.

our prior works with this sensor, we have
observed a sensing range on the order of 10-40
ft (3-12 m) depending on the floor construction.
When first deployed, the sensing radius for the
deployment structure can be easily obtained by
conducting a brief walking experiment in the
desired monitoring area, and sensor placement
can be optimized based on the observed sens-
ing range. The processor board used here is the
WeMo D1 R2 Mini. It is an Arduino compatible
board that supports Wi-Fi communication.
However, the synchronization between sensing
nodes is not guaranteed, which is also taken
into consideration in our occupancy counting

door activity induced signal, which is more likely
to be a single impulse signal.

EvenTt DEeTecTioN To detect the events, the
sliding windows of the signal are compared to
the noise signal through anomaly detection.®’
Figure 4(b) shows the detected sliding window
from the raw signal shown in Figure 4(a). To han-
dle the multiple people walking scenario, the
detected event extracted is not required to have
a fixed length.? However, to analyze the temporal
information for various overlapping footstep-
induced vibration signals, the onsets of each
impulse are detected as peaks within a series of

algorithm.

Intra-Area Detection

For sensors within each sensing
area, the event detection is con-
ducted to extract the sliding windows
that contain the events. Then, for
the continuously detected windows,
the peak detection is conducted to
detect the potential impulse events.

Next, events detected by each sensor
are segmented based on their time-
domain separation, indicating a con-
tinuous activity conducted by pedes-
trians. These segments then are

@) Sensors
Area 1

Area 2
Area 3
Area 4

analyzed to determine if it is a poten-
tial footstep signal, which is often
multiple consecutive impulses, or
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Processor

Figure 3. Sensor deployment and the floor plan. Lower right image shows
the sensing node utilized for the uncontrolled experiments.

31



Communication Challenges In The loT

(a) raw signal
T

2 2000 . T T T T . the occupancy traffic or count-
3
32 0 - %‘* = HbH ing collaboratively. First, for
E
< -2000 : : . : : - : each detected segment, the

600 605 610 615 620 625 630 635 640 ’

42108 : : (b) detected sliding window neighboring area is investigated
o3 > ——sliding window signal energy . .

53 gz_ m v ‘detected siiding window |_ in a 10 s window before and
Z \ . . P P after the passing point. If the

600 605 610 615 620 625 630 635 640 . . ..

4210 (c) detected events neighboring sensor is in a sepa-
223 ' ' ' ' ' [ slding window signal energy rate sensing area, the peaking
8 e E 2F v _detected events - . .

ZHEE . i ) y i = | time (the time where the pedes-

600 605 610 615 620 625 630 635 640 trian is passing by the sensor)

%108 (d) segmented events ——sliding window signal energy . .
5 & >4 T T T T T — — smoothed window energy array will be Compared to determine
cOoD —— start segment
Sga2r _AﬂAk: —— stop segment the transfer between areas. On
B -3l |1 : -
0 L=lZ S~ - I Y. LT | the other hand, if the neigh-
600 605 610 615 620 625 630 635 640

Timestamp (s)

Figure 4. Intra-area detection.
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consecutive detected sliding windows. Figure 4
(c) demonstrates the detected events from the
detected sliding windows shown in Figure 4(b).

EvENT SEGMENTATION The event segmentation
is conducted based on the extracted peak that
indicates the impulsive signal events, instead of
the consecutive sliding windows. We consider
a sequence of detected impulsive events with less
than 2 s pause as one activity segment. The thresh-
old (2 s) is selected based on 1) the potential struc-
tural variations causing false negative of the event
detection, and 2) the observation that the natural
step frequency of people is often higher than 1
Hz.'? Figure 4(d) shows the segmented signal with
a red line indicating the start of the segment and
the green line indicating the end of the segment.

Event IbenTiFicaTioNn To obtain the occupancy
count, we consider segments that contain at
least three consecutive detected impulsive
events as a segment of footsteps. Specifically, we
focus on the events from each footstep segment
and their correlation in different sensors. For
the identified events, the sliding window energy
array of that segment is then smoothed, as
shown in Figure 4(d), with the black dashed line.
We consider the peak of this dashed line indicat-
ing the moment the person passes by the sensor.

Interarea Decision Making
Once each sensor detects and segments impul-
sive events on their own, they make decisions on

boring sensor is in the same

sensing area, the segment of

the signals from these two sen-

sors will be compared to deter-
mine the number of people walking together in
the same sensing area.

ARrea Transrer DeTecTiON The intuition of get-
ting the pedestrian walking direction is that
structural separations cause the signal to have
significant decay when the pedestrians walk to
the next sensing area. Therefore, the peaking
timing for the sensing area the pedestrian passes
by later will be later than that of the investigated
sensor significantly. Since the synchronization of
the system is at a second level, the interarea
level instead of intra-area level direction estima-
tion is more robust under the system setting.®
Figure 5 shows an example of when a person
walks from sensor 4 to sensor 1 direction. From
Figures 5(a.1) to 5(d.1), we can see that the step
signals are concentrated between 5 to 10 s for
sensors 3 and 4, and this concentration shifts to
sensors 1 and 2 between 10 and 15 s. This
validates the selection of a 10 s window to inves-
tigate for each sensor’s neighboring sensor as
discussed.

PepesTRIAN CounT EsTimaTION For each detected
area, the signal obtained by neighboring sensors
will be compared to determine if there are multi-
ple people walking at the same time in the area.
The intuition behind the pedestrian counting is
that for sensors in the same sensing area (i.e., no
significant structural variation at the sensing
points), the same impact induced signal will not
be significantly altered through the propagation,
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which is discussed in “PHYSICAL
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OccupancYy TRAFFIC ESTIMATION

AND UppaTEs We use the
detected count and direction to
update the area occupancy

count. For example, when there are multiple peo-
ple’s footsteps detected at one area and no
transfer is detected at a different area, then the
count of the person will stay in the sensing area
until the transfer happens.

OCCUPANCY TRACKING
EVALUATION

To evaluate the module functionality as
well as the system’s overall performance, we
conducted controlled and uncontrolled experi-
ments. “Footstep Event Detection and Tracking
Evaluation” and “Pedestrian Count Evaluation”
will discuss the controlled experiments previ-
ously presented by Pan et al., and “Uncontrolled
Occupancy Tracking Evaluation” will present our
uncontrolled occupancy tracking experiments.?

Footstep Event Detection and Tracking
Evaluation

To evaluate the performance of our footstep
event detection algorithm, we conducted con-
trolled experiments in two buildings under vari-
ous experimental scenarios for a total of four
evaluation datasets.® A total of three of the data-
sets were collected from Hamerschlag Hall at
Carnegie Mellon University in Pittsburgh, PA,
where the building is representative of a large-
scale commercial building. The fourth dataset
was collected in a residential townhouse. In each
scenario, the geophone sensors were placed in
the hallway for ease of access but can be placed
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in one or more of the rooms as desired for other
deployments as long as the sensing coverage
meets the requirements discussed in “Sensing
Module.” A summary of the datasets and experi-
ments conducted is presented below.

FootsTep Event DeTECTION To evaluate our foot-
step detection system, we collected a series of
human footstep data in the Hamerschlag Hall
experimental location. For ground truth, we uti-
lized predetermined step locations for the walk-
ing traces and manually recorded the step time
(to ensure that detected steps are real steps). In
the sensing area, three locations and trajectory
directions were considered in our experiments.®
For each location and trajectory, we recorded a
total of ten walking traces.

Using this data, we evaluated the ability of our
system to correctly identify footstep events. From
the 30 walking traces recorded (3 trajectories x
10 traces each), our ground truth indicated a total
of 660 footstep events. Of these 660 footstep
events, we correctly identified 657 as footstep
excitations, which indicate a 99.55% footstep
detection accuracy.®

FoortsTtep EvENT TRAckING To evaluate our foot-
step event tracking system, we conducted con-
trolled walking experiments with two occupants
in a series of entering/exiting room scenarios.®
We considered this additional testing area to
validate the robustness of our system to differ-
ent locations. The rooms adjacent to the hallway

Figure 5. Inter-area decision making. An example of the signal detected by
Sensor 1-4 when a person walks from Sensor 4 to Sensor 1.
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consisted of a carpeted room at the end of the
hallway (room 1) and the building stairwell
(room 2). Using these two rooms, we collected
data for two change of occupancy scenarios: 1)
one occupant walks into room 1, followed by a
second occupant who walks into room 2, and 2)
one occupant walks into room 2, immediately fol-
lowed by a second occupant walking into room
2, and then one of the two occupants walks out
of room 2. Each scenario was repeated 10 times
for a total of 40 footstep traces where an occu-
pant enters a room (2 occupants x 2 scenarios x
10 trials), and 10 traces where an occupant exits
aroom.

We used these 2 scenarios and 50 footstep
traces to evaluate the accuracy of our system
in detecting when an occupant enters a room,
exits a room, and for real-time occupancy count-
ing. Of the 40 walking traces where an occupant
enters a room, our system correctly identified 38
of them, resulting in a 95% true-positive detection
rate. For the ten walking traces where an occupant
leaves a room, we observed an 80% true-positive
rate. To evaluate the false-positive rate, we consid-
ered ten of the walking traces from the dataset in
the detection evaluation above and found that our
system experiences a 30% false-positive rate.

For real-time occupancy counting, we define a
“success” as the instances where an occupancy
change (entering or exiting a room) is detected at
the correct step event time (i.e., there is not a
time shift in the detected step).® Of the 20 walking
traces considered, our system correctly identi-
fied the occupancy estimation for 17 of them,
resulting in an 85% true-positive rate for occu-
pancy counting.

Pedestrian Count Evaluation

We evaluated the performance of our pedes-
trian count approach through experiments in
various scenarios. Counting the pedestrians is per-
formed through k-nearest neighbor classification
with five traces for training and three traces for
testing.” The most robust counting accuracies are
for one and four people for which our approach
results in 83.33% and 91.67%. One-person walking
is mostly confused with the two-people walking
case, which achieved 66.67% accuracy. This could
be due to greater likelihood of synchronized
walking. Three-people walking case, which is of a

33.33% accuracy, is confused with the four-people
case often. Overall, the average counting estima-
tion error is 0.2 people.

Uncontrolled Occupancy Tracking Evaluation

For uncontrolled experiments, the metrics
used to evaluate the area occupancy counting
system are detection rate of human walking seg-
mentation in each area and the area transfer
direction detection rate percentage, and the area
occupancy count error. The system is deployed
in the hallway, as shown in Figure 3. The sensors
are placed on the floor and powered through the
battery packs. A Raspberry Pi is placed in the
hallway as the hub for the data collection.
A camera is used as the ground truth recording.

A total of eight sensors are placed in the hall-
way, as shown in Figure 3, where four sensing
areas are covered by each pair of two sensors
from left to right in the figure. The structural sep-
arations along the hallway are the beams that
are aligned with the walls of the room separa-
tion; therefore, each sensing area is linked to
two rooms.

The ground truth is manually labeled and
aligned to the raw sensing signal. For each
labeled activity segment, the ground truth pro-
vides the activity occurring area ID, the number
of people in each area, and the detected event
segmentation transferring between areas. For
the event segmentation transferring, we evaluate
the detection rate as the number of transfers
accurately detected to the next area over the
total number of transfers detected. For the rest
of the evaluation, we analyze the aforemen-
tioned metrics for each sensing area. In total, 18
activity segments are labeled in a 15 min record.

For each sensor, when a series of impulsive
signals is detected, we verify if it is a recorded
event. The evaluation metric is the difference
between the number of detected walking activity
events and the actual number of events (i.e.,
ground truth). For areas 1 and 4, we achieve 0
activity event detection error. For area 2, we
observe a mean error of 0 activity event, with
standard deviation less than 1 activity event.
For area 3, we observe missed detected activity
events and have a mean detection error of
0.2 activity event, with standard deviation less
than 1 activity event. To further explore area

IEEE Pervasive Computing



variations, a longer deployment (1-12 months)
with a higher resolution ground truth system is
needed in the future. The transfer direction
detection for these 18 cases is 100% correct.

DISCUSSION AND RELATED WORK

Energy Efficiency Structural Vibration Sensing

The power supply used in our experiments is
battery packs with capacities between 4400 and
10 000 mAh, which are sufficient for the data col-
lection that is less than a day. However, com-
pared to other low-power consumption design,
the inevitable high sampling rate and amplifica-
tion are the key power consumption source. In
addition, for the wireless transmission-based
data uploading, the communication is another
key power consumption source. The power con-
sumption can be reduced with adaptive sensing
configuration to control the sampling rate and
the communication. For example, for locations
that do not have pedestrian all the time, the sen-
sor can be awakened when the neighbor sensor
detects people walking toward it.

Sensing Methods Comparison

Various sensing approaches are utilized
for occupancy estimation applications. These
approaches belong to two main categories: 1)
mobile-based sensing®’ and 2) infrastructure-
based sensing.!™ We also compare the reported
accuracy of these state-of-the-art systems here.

Mobile-based sensing methods utilize smart
devices that people carry with them (e.g., smart-
phone, GPS, etc.) to detect the presence of peo-
ple. Therefore, they require subjects to carry
the sensing devices with them all the time (and
hence are obtrusive). However, in many scenar-
ios, it is often impractical to rely on the subjects
to bring their devices and provide access.

Infrastructure-based sensing methods rely on
passive sensors in the building and hence are not
obtrusive. Some examples of infrastructure-based
sensors are 1) vision-based sensors (98% accu-
racy),! 2) radio frequency (RF)-based sensors (70—
90% accuracy),” 3) motion sensors (90% accu-
racy), 4) pressure sensors (100% accuracy),® and
5) gas sensors (94% accuracy).” However, the
application of these approaches is limited in some
applications due to installment and deployment
requirements. Vision-based sensors' are sensitive
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to indoor visual occlusions such as furniture and
the columns. RF,2 pressure,3 and motion sensors*
require dense sensing deployment for fine-grained
occupancy estimation. Gas sensors,” which track
the carbon dioxide concentration, are slow to
respond to the changes in the occupancy.

Vibration-Based Sensing

Researchers have introduced vibration-based
sensing to overcome the limitations of the current
approaches. The main intuition behind vibration-
based sensing is that the footstep striking causes
the floors to vibrate. These vibrations are received
by the sensors and can be utilized for extracting
information about the occupants. Some examples
of occupant information extracted from the foot-
step-induced vibration are presence,®!** loca-
tion,'>!7 identity,'? and health-related balance.'”
Furthermore, the vibration-based sensing has
been utilized for characterizing other interactions
of indoor occupants.'®?° Due to their applications,
these works are generally focused on one occu-
pant in the sensing range. However, focusing on
one occupant for occupancy estimation applica-
tion is an important limitation. In our previous
work, we focused on estimating the number of peo-
ple (one, two, or three people) in the sensing
range.” However, this approach is useful for a lim-
ited sensing approach and becomes obsolete in a
large sensing area. In this paper, we focus on dev-
eloping a vibration-based occupancy estimation
system, which is suitable for large sensing areas,
which better represent real-life applications.

CONCLUSION

In this paper, we present our work on an area
occupancy counting system, which can be used
in various smart building applications such as
energy/space usage monitoring. We present our
nonintrusive structural vibration-based sensing
method to track the occupancy change from
each area. We conducted both controlled and
uncontrolled experiments to verify the system in
school buildings. The system achieves 99.55%
accuracy in footstep event detection and 0.2 peo-
ple mean estimation error for multiple pedes-
trian counting in the controlled experiments.
In the uncontrolled experiments, the system
achieves an average of 0.2 area walking activity
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event detection rate with a less than 1 standard
deviation and 100% for area transfer direction
estimation.
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