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Abstract—This paper presents an indoor area occupancy counting system utilizing the

ambient structural vibration inducedby pedestrian footsteps.Our systemachieves 99.55%

accuracy in pedestrian footsteps detection, 0.2 peoplemeanestimation error in pedestrian

traffic estimation, and0.2 area occupant activity estimation error in real-world

uncontrolled experiments.

& UBIQUITOUS AREA OCCUPANCY information

acquisition is essential for smart building appli-

cations such as energy/space management and

market research. Sensing methods to obtain this

information mainly fall into two categories: infra-

structure-based sensing1–5 andmobile-based sens-

ing.6,7 Mobile-based sensing requires occupants

to carry or wear a device, therefore limiting their

applications in many scenarios such as elderly

and child monitoring. On the other hand, infra-

structure-based techniques refer to passive sens-

ing methods that do not require the monitored

subject to carry a sensing device, which is a better

fit to our sensing goal. However, these techniques,

such as surveillance cameras and motion sensors

on doorways, often have sensing requirements,

such as line-of-sight and dense deployment at

designated areas/positions.

To overcome these limitations, footstep-

induced structural vibration is introduced for

occupancy monitoring.8,9 The main intuition

behind structural vibration-based sensing is that

when people walk, their footstep striking results

in structural vibrations, which are perceived

by sensors. The vibration signals caused by

multiple people can be utilized to count and track

them. By measuring structural vibrations, this

approach enables sparse sensing and does not

require occupants to carry devices. However,

prior vibration-based approaches either focus on

one person or in a limited space in the building,

which may not reflect the scenario in real-world

applications where multiple people might simul-

taneously walk between rooms and hallways.
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In this paper, we present a structural vibra-

tion-based occupancy estimation system, which

obtains occupancy information for multiple

people across various rooms. For this purpose,

the main challenges are 1) sensitivity of the

footstep-induced vibration signals to spatial

structure changes (e.g., reduction in amplitude

when the person walks in a room and signal gets

obstructed by the wall), and 2) complexity of

signal mixture when multiple people walk simul-

taneously in the sensing range.

To address these challenges, we estimate

the traffic count through characterizing the

signal mixture for different traffic conditions

and then utilize the traffic count and heuristics

about structural properties and human walking

patterns to track occupancy across rooms.

Specifically, we 1) estimate the number of peo-

ple walking in the sensing range using the sig-

nal mixture characteristics, 2) utilize the

known building layout, general walking pat-

terns, and structural characteristics to track

pedestrians when they walk along the hallway

and enter rooms, and 3) estimate the overall

occupancy of different areas of a building

based on the updates of the detected occu-

pancy change events.

The contributions of this work include

� We present a footstep-induced structural vibra-

tion-based occupancy estimation method.

� We consider vibration wave properties to

handle a variety of signal mixture scenarios.

� We evaluate the system with real-world

experiment datasets.

PHYSICAL BACKGROUND
To understand our method for room occu-

pancy counting, this section explores how

structural vibration waves are affected by the

building layout and how we can use the wave

properties to estimate the number of occupants

in a location.

Floor Vibration Wave Propagation

When a foot strikes the floor, its impact gener-

ates a dynamic response in the floor structure in

the form of structural vibrations. In occupancy

monitoring applications, we leverage two critical

insights regarding wave propagation: 1) the

vibration signal energy/amplitude is inversely

proportional to the distance between the vibra-

tion sensor and the footstep location (the foot-

step-sensor distance),8,10 and 2) vibration wave

propagation is affected by changes in the under-

lying structure (e.g., floor beams, voids, etc.).9,11

The first insight enables relative location

tracking and allowswalking directions estimation

in the sensing area. With a known sensor loca-

tion, we can infer the position and trajectory of

occupants by observing a steady increase or

decrease in the vibration signal amplitude/

energy. Furthermore, with a series of vibration

sensors in a network, we can observe when an

occupant approaches one sensor and becomes

increasingly far from another.

With the second insight, we utilize the known

sensor locations and building floor plan informa-

tion to determine when occupants enter and exit

a sensing area. We observe that the distance/

amplitude relationship from the first insight

changes significantly when an occupant moves

from one area into another. Figure 1 shows an

example of the structural response through ball-

drops in a residential townhouse.8 In this sce-

nario, the observed vibration signal energy is

significantly greater in the hallway (where the

sensor was located), and then reduces for excita-

tions located in the adjacent rooms. Therefore,

by observing the general walking trend for occu-

pants in a space, we can determine when they

move into various rooms in the building by moni-

toring abrupt changes to the distance/amplitude

relationship.

Floor Vibration Response Characteristics

Floor vibration monitoring systems are often

considered linear, time-invariant systems, which

indicate that each recorded vibration response

can be viewed as a linear combination of the

excitation sources at a given time.9 Using this

assumption, we infer that the scenario where

multiple occupants are walking in the sensing

area will generate a signal that varies from more

impulsive (single person) to more similar to

white noise (many people). As a result, we make

two key observations: 1) signals with the same

number of people walking (1 person vs. 1 person,

2 people vs. 2 people, etc.) will tend to have

more similarity to each other, while those with
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different number of occupants (e.g., 1 person

vs. 4 people) will tend to not be as similar, and

2) as the number of occupants increases

towards the “white noise” condition, the signal

randomness increases,9 and the characteristics

of the vibration waves can be distinguished by

their increasing randomness. With an increasing

number of impulses, the recorded vibration sig-

nal converges on the random, “mixed signal”

case. By combining these two observations, our

method can learn the differences in the signal

caused by an increasing number of occupants

and use that information to estimate the num-

ber of occupants in a given room.

AREA OCCUPANCY COUNTING
SYSTEM

The area occupancy counting system has

three main modules: the sensing module, the

intra-area detection, and the interarea decision

making, as shown in Figure 2. The system first

detects the floor vibration with the sensing mod-

ules that are placed on the floor. Then, for each

sensing module, the signal is processed, which

is referred to as intra-area detection. In the

intra-area detection module, the system first

detects the sliding windows that contain human

activity events. Then, these detected events are

segmented to indicate different activities. Finally,

based on the segmented events, the system iden-

tifies the activities which are footsteps and

focuses on tracking them. To obtain the overall

occupancy count transfer between areas, the

intra-area detection will use each single sensor

data collaboratively to determine the walking

direction and number of pedestrians and eventu-

ally estimate the traffic through each area.

Sensing Module

The sensing module consists of a geophone

sensor, an OpAmp, an ADC module, and an Ardu-

ino board with processor and communication

functions, as shown in Figure 3. The sensing

module is placed on the floor to detect floor

vibrations induced by pedestrian footsteps in

the sensing area.

Each sensing area is covered by at least two

sensors to collaboratively detect the scenarios

when there are multiple people’s footsteps

mixed together.9 The sensing area is defined

based on the structural layout and the effective

sensing range of the sensors in that structure. In

the example shown in Figure 1, the hallway,

bathroom, and kitchen are different areas

because there is a structural element between

these sensing areas.

The vibration sensor used here is Geophone

SM-24, which has a sensitivity of 28.8 V/m/s. In

Figure 1. Heat map showing vibration signal energy in different regions in a residential townhouse. Note the

sudden drop in energy between the hallway and adjacent rooms. Source: Shijia Pan, used with permission.8
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our prior works with this sensor, we have

observed a sensing range on the order of 10–40

ft (3–12 m) depending on the floor construction.

When first deployed, the sensing radius for the

deployment structure can be easily obtained by

conducting a brief walking experiment in the

desired monitoring area, and sensor placement

can be optimized based on the observed sens-

ing range. The processor board used here is the

WeMo D1 R2 Mini. It is an Arduino compatible

board that supports Wi-Fi communication.

However, the synchronization between sensing

nodes is not guaranteed, which is also taken

into consideration in our occupancy counting

algorithm.

Intra-Area Detection

For sensors within each sensing

area, the event detection is con-

ducted to extract the sliding windows

that contain the events. Then, for

the continuously detected windows,

the peak detection is conducted to

detect the potential impulse events.

Next, events detected by each sensor

are segmented based on their time-

domain separation, indicating a con-

tinuous activity conducted by pedes-

trians. These segments then are

analyzed to determine if it is a poten-

tial footstep signal, which is often

multiple consecutive impulses, or

door activity induced signal, which is more likely

to be a single impulse signal.

EVENT DETECTION To detect the events, the

sliding windows of the signal are compared to

the noise signal through anomaly detection.8,9

Figure 4(b) shows the detected sliding window

from the raw signal shown in Figure 4(a). To han-

dle the multiple people walking scenario, the

detected event extracted is not required to have

a fixed length.9 However, to analyze the temporal

information for various overlapping footstep-

induced vibration signals, the onsets of each

impulse are detected as peaks within a series of

Figure 3. Sensor deployment and the floor plan. Lower right image shows

the sensing node utilized for the uncontrolled experiments.

Figure 2. Indoor area occupancy count estimation system. The system mainly consists of three modules: the

sensing module, the intra-area detection module, and the interarea decision-making module.
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consecutive detected sliding windows. Figure 4

(c) demonstrates the detected events from the

detected sliding windows shown in Figure 4(b).

EVENT SEGMENTATION The event segmentation

is conducted based on the extracted peak that

indicates the impulsive signal events, instead of

the consecutive sliding windows. We consider

a sequence of detected impulsive events with less

than 2 s pause as one activity segment. The thresh-

old (2 s) is selected based on 1) the potential struc-

tural variations causing false negative of the event

detection, and 2) the observation that the natural

step frequency of people is often higher than 1

Hz.12 Figure 4(d) shows the segmented signal with

a red line indicating the start of the segment and

the green line indicating the end of the segment.

EVENT IDENTIFICATION To obtain the occupancy

count, we consider segments that contain at

least three consecutive detected impulsive

events as a segment of footsteps. Specifically, we

focus on the events from each footstep segment

and their correlation in different sensors. For

the identified events, the sliding window energy

array of that segment is then smoothed, as

shown in Figure 4(d), with the black dashed line.

We consider the peak of this dashed line indicat-

ing the moment the person passes by the sensor.

Interarea Decision Making

Once each sensor detects and segments impul-

sive events on their own, they make decisions on

the occupancy traffic or count-

ing collaboratively. First, for

each detected segment, the

neighboring area is investigated

in a 10 s window before and

after the passing point. If the

neighboring sensor is in a sepa-

rate sensing area, the peaking

time (the time where the pedes-

trian is passing by the sensor)

will be compared to determine

the transfer between areas. On

the other hand, if the neigh-

boring sensor is in the same

sensing area, the segment of

the signals from these two sen-

sors will be compared to deter-

mine the number of people walking together in

the same sensing area.

AREA TRANSFER DETECTION The intuition of get-

ting the pedestrian walking direction is that

structural separations cause the signal to have

significant decay when the pedestrians walk to

the next sensing area. Therefore, the peaking

timing for the sensing area the pedestrian passes

by later will be later than that of the investigated

sensor significantly. Since the synchronization of

the system is at a second level, the interarea

level instead of intra-area level direction estima-

tion is more robust under the system setting.8

Figure 5 shows an example of when a person

walks from sensor 4 to sensor 1 direction. From

Figures 5(a.1) to 5(d.1), we can see that the step

signals are concentrated between 5 to 10 s for

sensors 3 and 4, and this concentration shifts to

sensors 1 and 2 between 10 and 15 s. This

validates the selection of a 10 s window to inves-

tigate for each sensor’s neighboring sensor as

discussed.

PEDESTRIAN COUNT ESTIMATION For each detected

area, the signal obtained by neighboring sensors

will be compared to determine if there are multi-

ple people walking at the same time in the area.

The intuition behind the pedestrian counting is

that for sensors in the same sensing area (i.e., no

significant structural variation at the sensing

points), the same impact induced signal will not

be significantly altered through the propagation,

Figure 4. Intra-area detection.
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which is discussed in “PHYSICAL

BACKGROUND.” When that hap-

pens, the features that describe

the signal overlapping can be

used to estimate the number of

pedestrians walking in the area

simultaneously.9 The features are

1) normalized cross-correlation

between spatio-different signals,

2) normalized cross-correlation

between temporal-different sig-

nals, 3) signal duration, and

4) signal entropy.9

OCCUPANCY TRAFFIC ESTIMATION

AND UPDATES We use the

detected count and direction to

update the area occupancy

count. For example, when there are multiple peo-

ple’s footsteps detected at one area and no

transfer is detected at a different area, then the

count of the person will stay in the sensing area

until the transfer happens.

OCCUPANCY TRACKING
EVALUATION

To evaluate the module functionality as

well as the system’s overall performance, we

conducted controlled and uncontrolled experi-

ments. “Footstep Event Detection and Tracking

Evaluation” and “Pedestrian Count Evaluation”

will discuss the controlled experiments previ-

ously presented by Pan et al., and “Uncontrolled

Occupancy Tracking Evaluation” will present our

uncontrolled occupancy tracking experiments.8,9

Footstep Event Detection and Tracking

Evaluation

To evaluate the performance of our footstep

event detection algorithm, we conducted con-

trolled experiments in two buildings under vari-

ous experimental scenarios for a total of four

evaluation datasets.8 A total of three of the data-

sets were collected from Hamerschlag Hall at

Carnegie Mellon University in Pittsburgh, PA,

where the building is representative of a large-

scale commercial building. The fourth dataset

was collected in a residential townhouse. In each

scenario, the geophone sensors were placed in

the hallway for ease of access but can be placed

in one or more of the rooms as desired for other

deployments as long as the sensing coverage

meets the requirements discussed in “Sensing

Module.” A summary of the datasets and experi-

ments conducted is presented below.

FOOTSTEP EVENT DETECTION To evaluate our foot-

step detection system, we collected a series of

human footstep data in the Hamerschlag Hall

experimental location. For ground truth, we uti-

lized predetermined step locations for the walk-

ing traces and manually recorded the step time

(to ensure that detected steps are real steps). In

the sensing area, three locations and trajectory

directions were considered in our experiments.8

For each location and trajectory, we recorded a

total of ten walking traces.

Using this data, we evaluated the ability of our

system to correctly identify footstep events. From

the 30 walking traces recorded (3 trajectories �
10 traces each), our ground truth indicated a total

of 660 footstep events. Of these 660 footstep

events, we correctly identified 657 as footstep

excitations, which indicate a 99.55% footstep

detection accuracy.8

FOOTSTEP EVENT TRACKING To evaluate our foot-

step event tracking system, we conducted con-

trolled walking experiments with two occupants

in a series of entering/exiting room scenarios.8

We considered this additional testing area to

validate the robustness of our system to differ-

ent locations. The rooms adjacent to the hallway

Figure 5. Inter-area decision making. An example of the signal detected by

Sensor 1-4 when a person walks from Sensor 4 to Sensor 1.
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consisted of a carpeted room at the end of the

hallway (room 1) and the building stairwell

(room 2). Using these two rooms, we collected

data for two change of occupancy scenarios: 1)

one occupant walks into room 1, followed by a

second occupant who walks into room 2, and 2)

one occupant walks into room 2, immediately fol-

lowed by a second occupant walking into room

2, and then one of the two occupants walks out

of room 2. Each scenario was repeated 10 times

for a total of 40 footstep traces where an occu-

pant enters a room (2 occupants � 2 scenarios �
10 trials), and 10 traces where an occupant exits

a room.

We used these 2 scenarios and 50 footstep

traces to evaluate the accuracy of our system

in detecting when an occupant enters a room,

exits a room, and for real-time occupancy count-

ing. Of the 40 walking traces where an occupant

enters a room, our system correctly identified 38

of them, resulting in a 95% true-positive detection

rate. For the tenwalking traceswhere an occupant

leaves a room, we observed an 80% true-positive

rate. To evaluate the false-positive rate, we consid-

ered ten of the walking traces from the dataset in

the detection evaluation above and found that our

system experiences a 30% false-positive rate.

For real-time occupancy counting, we define a

“success” as the instances where an occupancy

change (entering or exiting a room) is detected at

the correct step event time (i.e., there is not a

time shift in the detected step).8 Of the 20 walking

traces considered, our system correctly identi-

fied the occupancy estimation for 17 of them,

resulting in an 85% true-positive rate for occu-

pancy counting.

Pedestrian Count Evaluation

We evaluated the performance of our pedes-

trian count approach through experiments in

various scenarios. Counting the pedestrians is per-

formed through k-nearest neighbor classification

with five traces for training and three traces for

testing.9 The most robust counting accuracies are

for one and four people for which our approach

results in 83.33% and 91.67%. One-person walking

is mostly confused with the two-people walking

case, which achieved 66.67% accuracy. This could

be due to greater likelihood of synchronized

walking. Three-people walking case, which is of a

33.33% accuracy, is confused with the four-people

case often. Overall, the average counting estima-

tion error is 0.2 people.

Uncontrolled Occupancy Tracking Evaluation

For uncontrolled experiments, the metrics

used to evaluate the area occupancy counting

system are detection rate of human walking seg-

mentation in each area and the area transfer

direction detection rate percentage, and the area

occupancy count error. The system is deployed

in the hallway, as shown in Figure 3. The sensors

are placed on the floor and powered through the

battery packs. A Raspberry Pi is placed in the

hallway as the hub for the data collection.

A camera is used as the ground truth recording.

A total of eight sensors are placed in the hall-

way, as shown in Figure 3, where four sensing

areas are covered by each pair of two sensors

from left to right in the figure. The structural sep-

arations along the hallway are the beams that

are aligned with the walls of the room separa-

tion; therefore, each sensing area is linked to

two rooms.

The ground truth is manually labeled and

aligned to the raw sensing signal. For each

labeled activity segment, the ground truth pro-

vides the activity occurring area ID, the number

of people in each area, and the detected event

segmentation transferring between areas. For

the event segmentation transferring, we evaluate

the detection rate as the number of transfers

accurately detected to the next area over the

total number of transfers detected. For the rest

of the evaluation, we analyze the aforemen-

tioned metrics for each sensing area. In total, 18

activity segments are labeled in a 15 min record.

For each sensor, when a series of impulsive

signals is detected, we verify if it is a recorded

event. The evaluation metric is the difference

between the number of detected walking activity

events and the actual number of events (i.e.,

ground truth). For areas 1 and 4, we achieve 0

activity event detection error. For area 2, we

observe a mean error of 0 activity event, with

standard deviation less than 1 activity event.

For area 3, we observe missed detected activity

events and have a mean detection error of

0.2 activity event, with standard deviation less

than 1 activity event. To further explore area
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variations, a longer deployment (1–12 months)

with a higher resolution ground truth system is

needed in the future. The transfer direction

detection for these 18 cases is 100% correct.

DISCUSSION AND RELATED WORK

Energy Efficiency Structural Vibration Sensing

The power supply used in our experiments is

battery packs with capacities between 4400 and

10 000 mAh, which are sufficient for the data col-

lection that is less than a day. However, com-

pared to other low-power consumption design,

the inevitable high sampling rate and amplifica-

tion are the key power consumption source. In

addition, for the wireless transmission-based

data uploading, the communication is another

key power consumption source. The power con-

sumption can be reduced with adaptive sensing

configuration to control the sampling rate and

the communication. For example, for locations

that do not have pedestrian all the time, the sen-

sor can be awakened when the neighbor sensor

detects people walking toward it.

Sensing Methods Comparison

Various sensing approaches are utilized

for occupancy estimation applications. These

approaches belong to two main categories: 1)

mobile-based sensing6,7 and 2) infrastructure-

based sensing.1–5 We also compare the reported

accuracy of these state-of-the-art systems here.

Mobile-based sensing methods utilize smart

devices that people carry with them (e.g., smart-

phone, GPS, etc.) to detect the presence of peo-

ple. Therefore, they require subjects to carry

the sensing devices with them all the time (and

hence are obtrusive). However, in many scenar-

ios, it is often impractical to rely on the subjects

to bring their devices and provide access.

Infrastructure-based sensing methods rely on

passive sensors in the building and hence are not

obtrusive. Some examples of infrastructure-based

sensors are 1) vision-based sensors (98% accu-

racy),1 2) radio frequency (RF)-based sensors (70–

90% accuracy),2 3) motion sensors (90% accu-

racy),4 4) pressure sensors (100% accuracy),3 and

5) gas sensors (94% accuracy).5 However, the

application of these approaches is limited in some

applications due to installment and deployment

requirements. Vision-based sensors1 are sensitive

to indoor visual occlusions such as furniture and

the columns. RF,2 pressure,3 and motion sensors4

require dense sensing deployment for fine-grained

occupancy estimation. Gas sensors,5 which track

the carbon dioxide concentration, are slow to

respond to the changes in the occupancy.

Vibration-Based Sensing

Researchers have introduced vibration-based

sensing to overcome the limitations of the current

approaches. The main intuition behind vibration-

based sensing is that the footstep striking causes

the floors to vibrate. These vibrations are received

by the sensors and can be utilized for extracting

information about the occupants. Some examples

of occupant information extracted from the foot-

step-induced vibration are presence,8,13,14 loca-

tion,15–17 identity,12 and health-related balance.10

Furthermore, the vibration-based sensing has

been utilized for characterizing other interactions

of indoor occupants.18–20 Due to their applications,

these works are generally focused on one occu-

pant in the sensing range. However, focusing on

one occupant for occupancy estimation applica-

tion is an important limitation. In our previous

work, we focused on estimating the number of peo-

ple (one, two, or three people) in the sensing

range.9 However, this approach is useful for a lim-

ited sensing approach and becomes obsolete in a

large sensing area. In this paper, we focus on dev-

eloping a vibration-based occupancy estimation

system, which is suitable for large sensing areas,

which better represent real-life applications.

CONCLUSION
In this paper, we present our work on an area

occupancy counting system, which can be used

in various smart building applications such as

energy/space usage monitoring. We present our

nonintrusive structural vibration-based sensing

method to track the occupancy change from

each area. We conducted both controlled and

uncontrolled experiments to verify the system in

school buildings. The system achieves 99.55%

accuracy in footstep event detection and 0.2 peo-

ple mean estimation error for multiple pedes-

trian counting in the controlled experiments.

In the uncontrolled experiments, the system

achieves an average of 0.2 area walking activity
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event detection rate with a less than 1 standard

deviation and 100% for area transfer direction

estimation.
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