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Current and future modalities of dynamic control in metabolic
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Metabolic engineering aims to maximize production of valuable
compounds using cells as biological catalysts. When
incorporating engineered pathways into host organisms, an
inherent conflict is presented between maintenance of cellular
health and generation of products. This challenge has been
addressed through two main modalities of dynamic control:
decoupling growth from production via two-phase
fermentations and autoregulation of pathways to optimize
product formation. However, dynamic control can offer even
greater potential for metabolic engineering through open-loop
and closed-loop control modalities of the production phase.
Here we review recent applications of dynamic control
strategies in metabolic engineering. We then explore the
potential of integrating biosensors and computer-assisted
feedback control as a promising future modality of dynamic
control.
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Introduction

Metabolic engineering uses cells, most commonly micro-
organisms, as biocatalysts for the production of biofuels,
therapeutics, and commodity chemicals. Organisms have
successfully been engineered to produce valuable pro-
ducts that are otherwise difficult to obtain, such as plant
secondary metabolites [1]. However, maximizing flux
towards non-native pathways places tremendous burden
on a strain by draining resources from endogenous metab-
olism. Such engineering can lead to growth defects and

loss of production, which is exacerbated if the final
product or pathway intermediates are toxic [2].

Prioritization of both growth and production can be
invaluable in achieving industrially viable yields and
titers. This can be accomplished through dynamic con-
trol: genetically modifying an organism to shift its metab-
olism using an inducing agent [3,4]. Dynamic control has
most commonly been implemented in a modality that
splits fermentations into two phases: a growth phase to
cultivate microbial cultures to high cell densities, fol-
lowed by a production phase in which heterologous path-
ways are expressed (Figure 1a). The shift from growth to
production has been controlled using a variety of strate-
gies, most commonly chemical inducers [5,6°]. Other
systems use genetically encoded autoregulation pro-
grams, in which the intracellular concentrations of key
metabolic intermediates dynamically control the expres-
sion of enzymes to shift flux at key metabolic
branch points during the fermentation without human
input [7,8°°].

Although two-phase fermentations and autoregulation
have greatly benefited metabolic engineering, both have
limitations. T'wo-phase fermentations give the user con-
trol over when growth is shifted to production, but act as
step functions with limited ability for further optimization
once the inducer is added (Figure 1a). While autoregula-
tion addresses this issue, it shifts control of the pathway
away from the human operator to the microbe (Figure 1b),
thereby preventing process corrections should the need
arise. One offers control but limited dynamism; the other,
dynamic regulation but limited control. The full potential
of dynamic control can only be realized through combin-
ing the two: continuous, rapid, tunable, and user-con-
trolled regulation.

T'wo recent reviews have excellent discussions on the
mechanisms of two-phase regulation and autoregulation
[9,10]. In this review, we discuss dynamic control in the
context of the current and future modalities in which it
can be applied to metabolic engineering (Figure 1). We
first cover strategies for inducible two-phase control of
metabolic valves. Next, we analyze examples of control
within the production phase via pathway autoregula-
tion. Lastly, we discuss the potential of new dynamic
control modalities involving open-loop (Figure Ic)
and closed-loop (Figure 1d) controls for metabolic
engineering.
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Different modalities for dynamic control in metabolic engineering. (a) Two-phase fermentation, in which an external inducing agent is used as a
step function to switch from growth to production. (b) Autoregulation of metabolism, using intracellular regulatory strategies to separate growth
from production without human input. (c) Open-loop control of production, allowing user-mediated dynamic regulation of metabolism. (d) Closed-
loop control of production, using system output and feedback algorithms to assist user input. Light blue arrows represent system outputs (e.g.
growth, product and intermediate concentrations) that are used to determine feedback response.

Two-phase fermentation dynamic control
modality: step function to switch from growth
to production phase

The predominant application of dynamic control in met-
abolic engineering has been as a binary switch: cultures
are grown to certain cell densities, then induced (most
commonly with chemicals) to activate production path-
ways that would otherwise slow growth. Recent metabolic
engineering studies utilizing common inducing agents are
listed in Table 1.

Chemicals and nutrients comprise the most common
inducers used to determine the growth and production
phases of fermentation. An excellent review article
describes several chemical induction systems for regula-
tion of metabolism in Escherichia coli [29]. In particular,
anhydrotetracycline (aTc) and isopropyl B-D-1-thiogalac-
topyranoside (IPTG) are common inducers that have
been utilized to improve production of compounds such
as isopropanol, anthocyanin, malate, 1,4-butanediol
[11,14-16], and many others. The carbon source, which
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Table 1

Induction strategies used to separate growth and production phases for metabolic engineering in E. coli and S. cerevisiae

Inducer Organism Control node Control Product Improvement Reference
strategy
aTc E. coli gabD, ybgC, CRISPRI 1,4-BDO ~2-fold (titer) [11]
tesB
aTlc E. coli Pfk SspB Glucaric acid 42% (titer) [12]
aTc E. coli Pfk SspB Myo-inositol 2-fold (titer, yield) [13]
Doxycycline S. cerevisiae HXK1 P7xteto Gluconate, Isobutanol 50-fold (yield), 3- [6°]
fold (yield)
IPTG E. coli metJ CRISPRI P3G ~21-fold (titer) [14]
IPTG E. coli gltA CRISPRI Isopropanol 3.7-fold (titer), 3.1- [15]
fold (yield)
IPTG/aTc E. coli PC, CS, ACN, CRISPRI Malate 2.3-fold (titer) [16]
ICL, MS
Arabinose E. coli VioABCE araBAD Deoxyviolacein 5-fold (titer) [17]
Galactose/ S. cerevisiae ERG9 PcaL1, PveTs Amorphadiene 3-6-fold (titer) [18]
methionine
Galactose/glucose S. cerevisiae ERGSY, PuxTt1, Carotenoids 1156 mg/L [19]
tHMG1, CITE, PGAL1/10
CrtYB, Crtl
Methionine/copper S. cerevisiae ERG9 Pctra, PveTs Artemisinic Acid 10-fold (titer) [20]
Methionine S. cerevisiae ERG9 PumeTa Sesquiterpenes Various [21-23]
B-Estradiol S. cerevisiae CrtE, CrtB, P65-Gal-ER, Zeaxanthin 50-fold (titer) [24]
Crtl, CrtY, modified
Crtz PaaLto
Temperature E. coli IdhA, icd pR, pL p-Lactate, itaconic acid 122.8 g/L, 48% [25,26]
(productivity)
Oxygen E. coli Various nar p-Lactate, 2,3-BDO, 1,3-PDO Various [277]
production
genes
pH S. cerevisiae IdhL Pvpa1, Pcowia Lactic acid 2.9-79¢g/L [28]

heavily regulates metabolism and gene expression pro-
files, presents another popular induction strategy. For
instance, the @raBAD promoter system in K. co/i, which
allows for tight and tunable transcriptional induction via
L-arabinose, has been used to initiate the production
phase of fermentations. Because E. co/i can metabolize
L-arabinose as a carbon source, Rodrigues ez al. engi-
neered a strain to prevent arabinose catabolism and
stabilize induction, achieving five-fold improvement in
deoxyviolacein titers [17].

In contrast to E. co/i, inducible systems in the baker’s
yeast Saccharomyces cerevisiae primarily use specific car-
bon sources, nutrients and ions to control transcription.
The galactose-activated and glucose-repressed GAL/
and GAL10 promoters have been widely used to induce
heterologous pathways, following growth phases in
glucose, by switching to galactose-containing media
[18-20]. Nutrients can also be used to control gene
expression. For instance, methionine, which represses
genes under control of the Pypr; promoter, has
been ubiquitously used for controlled inhibition of
ERGY to direct farnesyl pyrophosphate (FPP) flux
away from sterol biosynthesis [18,21-23]. Another com-
monly used inducer in yeast is copper (II) ion, which
activates or represses transcriptional expression via the

native yeast promoters Poyp; and Porrs, respectively
[20,30°].

Exogenous chemicals have also been developed for
dynamic control in yeast. For example, using the Tet-
Off system, which enables transcription only in the
absence of tetracycline antibiotics, Tan e# a/. overpro-
duced gluconic acid and isobutanol by redirecting glucose
flux away from central carbon metabolism via repression
of HXK1 [6°]. Similarly, Liang ez a/. fused the native GAL4
DNA-binding domain, an estrogen receptor, and the p65
activation domain of human NF-kB to create a tightly
regulated system inducible by B-estradiol. Using this
inducible system, they achieved 50-fold improvements
in production of zeaxanthin over use of constitutive
promoters [24].

Other induction strategics have focused on manipulating
culture conditions to regulate metabolism. In E. co/i,
growth and production have been decoupled by changing
the fermentation temperature. For example, Zhou e al.
used the temperature-sensitive A promoters pr and py, to
downregulate production of lactate (a growth inhibitor)
during an initial growth phase at 33 °C, then turned on
production at 42 °C, leading to titers of 122.8 g/LL
D-lactate [25]. Using the same promoters at lower
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temperatures, Harder ¢ a/. attained fast growth at 37 °C,
then downregulated the TCA cycle at 28 °C by repres-
sing isocitrate dehydrogenase (i) with the repressor
C1857 to produce 47 g/l of itaconic acid [26]. E. coli
metabolism has also been regulated through dissolved
oxygen (DO), using the oxygen-sensitive #ar promoter.
Hwang er a/. split fermentations into aerobic and micro-
aerobic stages by controlling rotation speed. In doing
so, they achieved titers of lactate, 2,3-butanediol, and
1,3-propanediol that were comparable to those obtained
in optimized strains using chemical induction [27°]. In §.
cerevisiae, Rajkumar ez a/. developed a system to regulate
metabolism by inducing gene expression at low pH,
using modified Pygp; and Pcawis promoters with bind-
ing sites from the stress-responsive transcription factors
Msn2/Msn4p, Rlm1p, and Swi4p. These synthetic pro-
moters were then applied in low-pH fermentations to
improve production of lactic acid [28]. Since tempera-
ture, oxygenation, and pH are much more reversible
than chemical inducers, they provide flexibility for
implementation of more complex dynamic control
strategies.

Development of dynamic control tools in organisms other
than E. coli and §. cerevisiae represents an intriguing area
for future exploration. For example, aTc, IPTG, and
arabinose-inducible expression systems from F. co/i have
successfully been imported to Corynebacterium glutamicum,
a commonly used organism for amino acid [31] and
organic acid production [32,33]. In addition, promoter
systems that are regulated by erythritol/oleic acid and
glycerol/glucose have recently been developed in the
oleaginous yeasts Yarrowia lipolytica and Pichia pastoris,
respectively [34-36]. These studies offer promise for
expanding dynamic control in other industrially relevant
organisms.

Autoregulation modality: cell-mediated
control of the production phase

Dynamic control can also be implemented without the
use of external inducers by genetically engineering auto-
regulation programs within metabolic pathways, thereby
mimicking endogenous pathway regulation. Several stud-
ies have taken advantage of native regulatory systems to
autonomously balance metabolic flux between growth
and production [37,38]. One of the first examples of
autoregulation in metabolic engineering was demon-
strated by Farmer and Liao, who developed a system
to autonomously control pps and idi in E. coli using the
acetyl-phosphate responsive promoter AcP [7]. In doing
so, excess carbon flux that would normally be used for
acetate production was instead shunted towards lycopene
production without inhibiting cell growth. This strategy
showed that by controlling key metabolic nodes, dyna-
mic autoregulation can often outperform constitutive
overexpression.
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Dynamic control via autoregulation has been implemen-
ted using a variety of auto-induction strategies. A com-
mon method is using carbon source responsive promoters
which automatically tune gene expression between
growth (high sugar concentration) and production (low
sugar concentration) phases. For instance, in §. cerevisiae,
the hexose transporter promoters Pyxr; and Ppxrs,
which are activated and repressed by glucose respec-
tively, have been effectively used to temporally regulate
gene expression. These promoters have been used to
make products such as fatty alcohols and a-santalene
autonomously by allowing regular growth in glucose-
containing media, then automatically turning on produc-
tion genes as glucose runs out to convert glucose and
ethanol in the media to desired product [30°,39]. Simi-
larly, the Popp2 promoter has been used in autoregulation
programs for production of polyketides and triacetic acid
lactone [40,41]. This promoter is also repressed by glu-
cose, keeping production pathways turned off during the
growth phase; then, after the glucose is consumed, the
Papiz promoter is derepressed and induced by the etha-
nol produced during the growth phase via glucose fer-
mentation. Other glucose-repressed promoters such as
Pgsar and Pgycy offer intriguing alternatives for autore-
gulation in yeast [42°,43°]. Auto-induction media for £.
coli follows a similar principle, using regulation of the /ac
operon by glucose and lactose to delay gene expression
until glucose is sufficiently consumed [44].

Another strategy to implement metabolic autoregulation
is by engineering quorum sensing systems that are regu-
lated by cell density. Recently, Gupta e7 @/. imported into
E. coli the Esa quorum sensing system from Pantoea
stewartii, which downregulates genes under the Pgg
promoter in the absence of 3-oxohexanoylhomoserine
lactone (AHL). By varying repression of Py g through
expression of AHL synthase Esal, gene circuits were
designed that allowed knockdown of target genes pf#A
and aroK, which are essential but compete with produc-
tion. In this way, dynamic autonomous repression of pf#A
and arvK led to significant improvements in production of
myo-inositol, glucaric acid, and shikimic acid [45]. An
autoregulation system was also developed in §. cerevisiae
by Williams ¢7 @/. in the form of a genetic AND gate that is
activated by quorum sensing and aromatic amino acids
[46]. At high cell densities and in the presence of trypto-
phan, a-pheromone is expressed from the Parpo pro-
moter and arrests cell growth. At the same time, heterol-
ogous production genes are expressed from the quorum
sensing-induced Pyygijz; promoter, while an imported
RNAi system downregulates competing endogenous
genes ARO7 and €DC19. This led to a 37-fold improve-
ment in production of para-hydroxybenzoic acid (PHBA),
demonstrating the efficacy of dynamic translational con-
trol using an autoregulated system (quorum sensing) that
acts in concert with user-mediated induction (with an
aromatic amino acid).
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Changes in intracellular metabolite concentrations can
also be used to drive engineered autoregulation systems.
In one study in §. cerevisiae, Yuan and Ching controlled
the £ERGY gene, which drives FPP towards ergosterol,
using the Pgrgy promoter within the ergosterol pathway
(Figure 2a) [47°°]. This promoter is downregulated in the
presence of ergosterol; by engineering product inhibition
into the pathway, sufficient ergosterol is produced to
maintain health while excess flux is diverted towards
amorpha-4,11-diene. Titers were improved 2-5 fold using
this strategy, demonstrating that native regulatory ele-
ments can be successfully used to downregulate essential
pathways that compete with the product of interest. In
another example, David ¢z /. imported a malonyl-CoA-
regulated transcriptional repressor, FapR, from Bacillus
subtilis into S. cerevisiae, and inserted its binding sites into
the constitutive P-pppq promoter to design a malonyl-CoA
activated promoter (Figure 2b) [8°°]. This system was
used to autoregulate the Chloroflexus aurantiacus malonyl-
CoA reductase (mucr,,), producing 3-hydroxypropionic
acid (3-HP) in the presence of excess malonyl-CoA. At
the same time, fatty acid synthase FAS7, which is essen-
tial for growth but competes with product formation, was
autoregulated by glucose levels using the Pyyxk; promoter
to allow flux towards fatty acid synthesis during growth

but repress it in the production phase. By simultanecously
autoregulating 3-HP production and malonyl-CoA con-
centrations, it was possible to produce 0.8 g/L. of 3-HP
(Figure 1b). This study effectively combines external
carbon source-mediated two-stage fermentation with
autoregulation of an intracellular metabolite to increase
production of a valuable molecule.

Autoregulation in metabolic engineering has not been
limited to E. coli and §. cerevisiae. Yin et al. utilized a low-
pH-induced promoter, Pgas, to regulate Aspergillus niger
fermentations, which turn acidic over time [48]. Using
P,,s to autoregulate expression of CAD, which encodes for
an enzyme that converts cis-aconitate to itaconate, led toa
5.3-fold improvement in itaconate titers. In another
example, Le e al. performed transcriptomic analyses of
CHO cells to identify the dynamic Txnip promoter,
which is upregulated as a culture reaches stationary phase.
By using this promoter to drive expression of the fructose
transporter GLU'T5, the CHO cells were able to consume
fructose in stationary phase, reducing formation of lactate,
which hinders the production of protein therapeutics.
Finally, Zhou and Zeng have developed riboswitches
activated and repressed by L-lysine for Corynebacterium
glutamicum. Using these riboswitches to autoregulate gltA
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Genetic circuits for autoregulation of gene expression. (a) The Pgrgs promoter is used to autoregulate ergosterol biosynthesis through ergosterol-
mediated downregulation of ERG9, which competes with isoprenoid production [47°°]. (b) The bacterial transcriptional repressor FapR, which is
inactivated by malonyl CoA, was engineered into yeast to control expression of mcr.,, in combination with glucose-mediated control of FAS1
using the Pyxk1 promoter to autoregulate malonyl-CoA flux between essential fatty acid biosynthesis and 3-HP production [8°°].
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(repressed by L-lysine) and /ysE (activated by L-lysine),
encoding citrate synthase (entry into the TCA cycle) and
L-lysine export genes respectively, improved L-lysine
yields by 63% and 21% [49,50]. These examples highlight
the potential for further development of autoregulation
systems in less commonly used host organisms.

Potential of open-loop and closed-loop
modalities for dynamic control of the
production phase of fermentation

Continuous user-inputted or computer-inputted control
using open-loops or closed-loops is potentially a powerful
feature of dynamic control for metabolic engineering.
This would allow for continued optimization within the
production phase, while maintaining the ability to adjust
fermentation conditions and respond to perturbations.
Current implementations of two-phase fermentations
act as step functions that cannot be readily modified once
switched to the production phase (Figure 1a), while
autoregulation of pathways takes control entirely out of
the hands of the user (Figure 1b). One obstacle to
achieving user-inputted or computer-inputted control
of the production phase of fermentation is that it is
difficult to reverse signals from chemical inducers due
to their persistence in the media, which limits their use in
temporal control to step functions [29]. A potential solu-
tion is using systems inducible by temperature, pH, and
oxygenation, which offer more reversibility; however,
these systems generally offer little dose-dependent con-
trol of expression.

An enticing possible solution is to use optogenetics: light-
mediated control of gene expression [51,52]. Using opto-
genetics to control expression levels of key metabolic
enzymes would allow open-loop and closed-loop controls
of engineered metabolic pathways using light inputs.
Light has several advantages. It can be instantancously
and reversibly applied in highly tunable doses deter-
mined by either light intensity or pulse frequencies.
Light is also relatively inexpensive, and has minimal
toxicity and off-target effects. However, before optoge-
netics can be applied to metabolic engineering, the
limitations in light penetration imposed by high cell
densities need to be understood and resolved. Promising
new technologies, involving highly light-sensitive pro-
teins and optogenetic circuits, allow for robust and
homogencous gene expression in fermentations of at
least 50 ODgqo in 5-L bioreactors [53°°]. Optogenetic
systems stimulated by red [54], green [55,56], and blue
[52,53°°,57] light could be used simultaneously for
orthogonal multichromatic control, provided that cross-
talk between the optogenetic systems is sufficiently min-
imized. Optogenetics offers a powerful induction strategy
for dynamic control in metabolic engineering.

Dynamic open-loop control during the production phase
of fermentation represents a promising new frontier for
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optimization of chemical production [53°°]. However, a
potential drawback of open-loop control is that there is no
active feedback to determine if the operation is on track
to attaining the desired outcome, thus requiring trial and
error to find optimal operating conditions or the develop-
ment of computer models for each specific strain. This
problem can be addressed in the form of computer-
assisted automated control to regulate gene expression
using real-time output measurements to provide feed-
back to control inputs (Figure 3). Several groups have
demonstrated computer-assisted feedback regulation of
gene expression. However, this technology has thus far
only been used in proof-of-concept-studies that showcase
dynamic control of cell growth or fluorescent reporters,
and not yet to metabolic engineering. Nevertheless, real-
time control of cellular metabolism offers tremendous
potential for metabolic engineering applications, such as
to prevent the accumulation of toxic intermediates or
depletion of essential metabolites.

The choice of algorithm for feedback control depends on
the complexity of the system. For simple pathways or
maintenance at a static set-point, computationally inex-
pensive Proportional-Integral (PI) control would likely be
sufficient. However, Model Predictive Control (MPC) or
other advanced control algorithms may be needed to
implement dynamic signal tracking or regulate complex
systems [58]. While these algorithms are more computa-
tionally expensive, they are necessary to accurately cap-
ture the dynamism of metabolic pathways of interest,
which contain complex regulation networks and thus
exhibit highly nonlinear behaviors.

So far, three induction strategies have been used for 7z
stlico feedback control in microbial systems. Several stud-
ies in §. cerevisiae use fluorescence measurements from a
reporter driven by Pgar,; to controls feed rates of media
containing either glucose or galactose [59°°,60,61]. In
another study, Uhlendorf e @/. controlled osmotic pres-
sure in yeast using MPC to add media containing con-
centrated sorbitol [62]. In this system, osmotic stress
induced the high osmolarity glycerol (HOG) signaling
cascade, including a fluorescent reporter engineered
under the control of the Pgyr,; promoter. Other groups
have employed optogenetic dimerizing systems to regu-
late expression of a fluorescent protein from the Pgap,g
promoter: the red/infrared responsive PhyB-PIF3 with
MPC control [63], or the blue light responsive CRY2-
CIB1 using bang-bang (on-off) control [64]. Feedback
control of optogenetic systems has also been demon-
strated in mammalian cells to clamp fluorescent protein
expression at desired set points via PI control [65], as well
as to dynamically track mathematical functions in E. co/i
[56]. Recently, Milias-Argeitis ef a/. demonstrated, for the
first time, optogenetic feedback control of microbial
growth rates by regulating expression of the merE auxo-
trophic marker in E. co/i, using PhyB-PIF3 [66]. This

www.sciencedirect.com

Current Opinion in Biotechnology 2018, 52:56-65



62 Tissue, cell and pathway engineering
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Integration of computer-assisted feedback control algorithms with in vivo processes for dynamic regulation of fluorescence. Culture samples are
measured for fluorescence outputs, which are fed to a chosen algorithm. Based on the difference between the readings and the desired set-point,
the algorithm returns input pulses which are used to induce the culture and minimize the output offset. Pl, Proportional-Integral; MPC, Model

Predictive Control; ZAD, Zero Average Dynamics.

study utilized both PI and MPC control, finding that PI
control was sufficient for growth control due to the slow
dynamics, whereas MPC control was necessary for accu-
rate dynamic signal tracking of GFP fluorescence.

For rapid and accurate feedback control, it is essential to
have easily and frequently measurable system outputs.
The studies above implemented dynamic control through
tracking fluorescent reporters either via flow cytometry or
microscopy imaging using microfluidic devices (Figure 3).
For metabolic engineering applications, this strategy can
be adapted to use fluorescent reporters controlled by
genetically encoded biosensors of specific products, pre-
cursors, byproducts, or cofactors, allowing user-operated
or computer-operated closed-loop controls of engineered
metabolic pathways [67,68]. This represents a challeng-
ing but exciting frontier in metabolic engineering.

Future outlooks

Endogenous metabolic networks are naturally regulated
at the DNA, RNA, and protein levels to provide tight and
robust control, yet most control exerted in metabolic
engineering has predominantly relied on transcriptional
regulation. In particular, developing expansive sets
of post-translational tools to control enzymes would sig-
nificantly boost dynamic control and optimization of
engineered metabolic pathways. In E. co/;, inducible
ClpXP-mediated proteolysis has been used to improve
titers of glucaric acid and myo-inositol [12,13]. While

post-translational control has thus far not been imple-
mented in yeast for metabolic engineering, the devel-
opment of degrons highlight the potential for future
progress [69-72].

Dynamically regulated gene circuits are another research
area with great potential for metabolic engineering. For
example, the GAL expression system in yeast controls
metabolism of galactose through a transcriptional activa-
tor Gal4p, a repressor Gal80p, and sensor Gal3p. Inter-
actions between these proteins have been used to create
galactose-regulated gene circuits [73]. These circuits
could provide powerful metabolic engineering tools, such
as amplified expression of bottleneck enzymes or
inverted activation/repression of competing pathways.
Sets of promoters with inverted induction/repression
responses, such as the aforementioned Ppxr11/Puxrs
and Pcyupi/Porrs In yeast, could provide additional
opportunities for deployment of orthogonally inducible
gene circuits.

Conclusion

Dynamic control has long served as a critical component
of the metabolic engineering toolbox. Two-phase fer-
mentations and autoregulation have been used ubiqui-
tously in metabolic engineering to achieve impressive
improvements in titers and yields of valuable products.
However, there remains significant potential to bridge the
current gaps that remain between ‘dynamic’ and ‘control’
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seen in these two control strategies. This can only be
achieved through the development of easily applied and
rapidly reversible induction methods. Optogenetic con-
trol of gene expression could prove a promising tool for
user-mediated dynamic control of the production phase
[53°°]. In the future, tighter and more robust control may
be achieved through computer-aided feedback regulation
of fermentations, using genetically encoded biosensors
that provide rapid measurements of the state of the
system. In our opinion, this seems to be a logical next
step forward to achieve full dynamic control in metabolic
engineering.
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