
IEEE Communications Magazine • September 201848 0163-6804/18/$25.00 © 2018 IEEE

ABSTRACT

In this article, we introduce the concept of
FoT, a paradigm for on-demand IoT. On-demand
IoT is an IoT platform where heterogeneous con-
nected things can be accessed and managed via
a uniform platform based on real-time demands.
Realizing such a platform faces challenges includ-
ing heterogeneity, scalability, responsiveness, and
robustness, due to the large-scale and complex
nature of an IoT environment. The FoT paradigm
features the incorporation of fog computing
power, which empowers not only the IoT appli-
cations, but more importantly the scalable and
efficient management of the system itself. FoT uti-
lizes a flat-structured virtualization plane and a
hierarchical control plane, both of which extend
to the network edge and can be reconfigured
in real time, to achieve various design goals. In
addition to describing the detailed design of the
FoT paradigm, we also highlight challenges and
opportunities involved in the deployment, man-
agement, and operation of such an on-demand
IoT platform. We hope this article can shed some
light on how to build and maintain a practical and
extensible control back-end to enable large-scale
IoT that empowers our connected world.

INTRODUCTION
The Internet of Things (IoT) is one of the next
mega-trends in the technology world. With its abil-
ity to interconnect billions of smart things on a
global scale, IoT is expected to empower innu-
merable new services and applications that could
improve human lives, including smart cities, smart
health, smart homes, Industry 4.0, and so on. IoT
has a huge economic impact: the global IoT mar-
ket is projected to be over US$1 trillion in the
early 2020s [1].

The vision of IoT is powered by billions of
connected smart things, which virtualize the real
world into digital data that can be transmitted,
analyzed, and further utilized. However, the mas-
sive numbers of things have led to challenges for
IoT. On one hand, the current IoT, built upon
existing infrastructures such as cellular networks,
can hardly handle and process the tremendous
amount of data generated by connected things.
On the other hand, IoT manageability is also chal-
lenged by the massive and heterogeneous things,
and the dynamic nature of IoT where things are
plugged, unplugged, moving, or failing frequently.
It is hard to manage billions of connected things

with fine-grained control in real time. This situa-
tion is exacerbated by the stringent requirements
of IoT applications. The majority of IoT applica-
tions are real-time in nature, meaning that they
are designed to analyze continuous data streams
from different locations. These applications have
stringent quality of service (QoS) requirements,
including but not limited to computing power,
latency, throughput, loss, and robustness.

IoT devices are currently accessed and man-
aged in an ad hoc manner: most deployed things
are only visible and accessible to the owner itself,
and have no public access in general. The cause
of this is the lack of an on-demand architecture
that provides scalable and flexible management
as well as uniform and universal access to IoT
services. The recently proposed Cloud of Things
(CoT) paradigm aims to address this issue [2].
CoT provides centralized IoT access and manage-
ment in the cloud, thereby achieving a number of
benefits including on-demand service, resource
pooling, virtualization, and so on. However, the
cloud-based solution has its limitations. First, it
does not resolve the capacity challenge: massive
data still needs to be transmitted to the cloud for
analysis. Second, due to its long end-to-end laten-
cy, the cloud cannot easily respond in real time
to frequent network dynamics and failures within
vast geographical areas. Cloud-hosted applica-
tions also receive unguaranteed QoS in terms of
latency, bandwidth, and security.

Fog computing is an emerging computing
paradigm [3, 4]. Different from cloud computing
where all computing power is aggregated at a
few globally selected locations, fog computing
features the deployment of geo-distributed fog
nodes across all network hierarchies, and especial-
ly in the edge network. These fog nodes provide
different levels of capacity and responsiveness
to meet various application needs. Fog comput-
ing inherits benefits of cloud computing including
elasticity and virtualization, while bringing new
benefits such as early data resolution, responsive
management on the edge, and improved latency,
robustness, and security. However, due to cost
and energy consumption issues, fog nodes typi-
cally have limited capacities, and can only serve
things and applications in nearby areas. Collabo-
ration among fog nodes enhances capacity but
also complicates system management. Fortunate-
ly, cloud computing and fog computing are not
incompatible in nature; in fact, they compensate
each other’s limitations. This has inspired us to

Ruozhou Yu, Guoliang Xue, Vishnu Teja Kilari, and Xiang Zhang

ENABLING TECHNOLOGIES FOR SMART INTERNET OF THINGS

The authors introduce
the concept of FoT, a
paradigm for on-demand
IoT. On-demand IoT is
an IoT platform where
heterogeneous connected
things can be accessed
and managed via a
uniform platform based
on real-time demands.
Realizing such a platform
faces challenges including
heterogeneity, scalability,
responsiveness, and
robustness, due to the
large-scale and complex
nature of an IoT
environment.

The authors are with Arizona State University.
Digital Object Identifier:
10.1109/MCOM.2018.1701140

The Fog of Things Paradigm: Road toward
On-Demand Internet of Things

IEEE Communications Magazine • September 2018 49

seek a unified approach to jointly leverage both
cloud and fog computing in IoT.

In this article, we present our understanding
of the direction in which the IoT shall evolve. We
start from our vision on the emergence of on-de-
mand IoT, describing its necessity and design
goals. We then present an on-demand IoT para-
digm that jointly utilizes fog and cloud computing,
which we call the Fog of Things (FoT). FoT lever-
ages the distributed and location-aware nature
of IoT services, and features a hierarchical and
reconfigurable control plane that achieves respon-
siveness, scalability, and other design goals. We
further describe crucial challenges and opportu-
nities in the deployment, management, and oper-
ation of FoT. We envision FoT, instead of its ad
hoc or cloud-based counterparts, to be one of the
cornerstones of our future smart and connected
world.

ENVISIONING ON-DEMAND IOT
Currently, the IoT infrastructure is mostly deployed
and utilized in an ad hoc manner. Various things
are produced by different vendors to fulfill simi-
lar functions. They are commonly deployed only
to power a few applications that belong to the
deployer/owner itself, due to lack of proper visi-
bility and accessibility to the public. This has large-
ly buried the true potential of IoT where myriads
of distributed things generate massive data that
could be used for big data analytics and decision
making.

These issues have urged efforts into on-demand
IoT (also called service-oriented IoT [5]), an IoT
environment where functionalities (sensing, actu-
ation, data delivery, and data analytics) can be
provisioned in runtime and remotely accessed by
authorized users. It is based on a concept similar
to cloud computing, where computing resources
are dynamically provisioned and accessed by ten-
ants in an on-demand manner.

Three parties are involved, as shown in Fig. 1.
The IoT provider builds and manages the IoT plat-
form, providing various functionalities including
virtualization, QoS management, resource optimi-
zation, security, and so on. Infrastructure provid-
ers, such as cloud providers, network providers,
and things owners, participate in the business and
provide infrastructure support. Finally, users, or
tenants, access and utilize the provided IoT ser-
vices to develop IoT applications. In general, an
on-demand IoT can be built as an overlay upon
existing computing and network infrastructures,
but can also be built or incremented with self-
owned equipment of the providers.

On-demand IoT provides benefits similar to
those of cloud computing. From the business per-
spective, on-demand services could largely reduce
capital expenditures (CAPEX) of users by reusing
existing infrastructure. A well managed on-demand
IoT can also reduce operational expenditures
(OPEX). For things owners, allowing public access
can boost resource utilization, thus increasing their
utilities or revenues. For computing or network pro-
viders, on-demand IoT enables more flexible pric-
ing options such as pay-as-you-go, which also help
increase revenue. From the technical perspective,
centralized management helps both infrastructure
providers and users. Infrastructure providers can
alleviate their overloaded components by employ-
ing smart resource allocation. Users receive guar-
anteed services via service level agreements (SLAs).
Finally, a widely accessible IoT platform is import-
ant to the entire IoT community, inspiring collabo-
rative technological innovations.

On-demand IoT is a diverse, large-scale, com-
plex, and dynamic environment to build, oper-
ate, and maintain. IoT is naturally distributed, and
mainly offers location-based services. Hence, the
same centralized control as in cloud computing is
basically not practical. Handling device heteroge-
neity and dynamicity requires both responsiveness

On-demand IoT pro-

vides benefits similar to

those of cloud comput-

ing. From the business

perspective, on-demand

services could largely

reduce capital expendi-

tures (CAPEX) of users

by reusing existing

infrastructure. A well

managed on-demand

IoT can also reduce

operational expendi-

tures (OPEX).

Figure 1. Three major parties in on-demand IoT: infrastructure providers, IoT provider, and users.

Broadband providers

Cellular providers

Backbone providers Cloud providers

Fog providers

Infrastructure providers

Things owners Network providers Computing providers

IoT provider Publish /subscribe platform QoS management Access control Resource optimization

User applications

Smart industry Smart city

Virtual reality

Connected cars

Smart health

Smart grid

Smart traffic
Smart home

Access requests

Commands & Management Raw Data & Status

Data

IEEE Communications Magazine • September 201850

and scalability. In general, system management
and optimization are a great challenge both on
the infrastructure and on the architectural design.
Below, we highlight some design goals of on-de-
mand IoT.

Scalability is probably the most important
property of any IoT system. Even a mid-scale
IoT needs to manage millions of heterogeneous
devices.

Virtualization is crucial in realizing dynamic
and elastic services. In general, devices should
be exposed only to the minimum extent to which
their functions can be utilized. Devices with simi-
lar functions should be further abstracted using a
uniform interface for simple and efficient access.

Responsiveness is more important in the IoT
environment than in other environments, since a
significant portion of IoT applications are time-crit-
ical. Responsiveness is also crucial in handling sys-
tem dynamics such as device joining or removal,
failure, and mobility.

Location awareness is in the nature of most
IoT services. A well-designed IoT system should
provide location awareness support to applica-
tions, and in return utilize it to improve system
performance and management.

Robustness is to ensure system functionality
during system disturbances such as failures or
maintenance. Realizing robustness is specifically
crucial in versatile environments like IoT, where
disturbances happen frequently.

Elasticity means providing proper scaling
and reconfiguration when demands from users
change over time. It also means the system can
sustain short-term load variations without severe
congestion.

Security in IoT is different than in other envi-
ronments, mainly because of the constrained
nature of IoT devices. Providing native security
support to resource-constrained devices is thus an
important factor in architectural design. IoT secu-
rity is vital, since a security breach in IoT can be
much more devastating and life-threatening given
IoT’s ability to monitor and manipulate physical
objects.

In the following, we present the design of FoT,
an on-demand IoT paradigm. FoT is able to native-
ly achieve several design goals, and also supports
realizing the other goals with orthogonal technol-
ogies.

THE FOT PARADIGM

ARCHITECTURE OVERVIEW

Our FoT architecture has four planes, as shown
in Fig. 2.

The data plane consists of the physical compo-
nents, including connected things, network devic-
es, and computing nodes. These components
perform their functionalities based on upper-plane
commands. Due to heterogeneity and dynamic-
ity, the data plane commonly requires frequent
reconfiguration and optimization from upper
planes.

The virtualization plane stands as an interme-
diary between physical components and decision
units in the upper planes. It abstracts heteroge-
neous physical components into uniform and
manageable virtual components.

The control plane is the decision core of the
architecture. It performs all decision-making tasks
in FoT, including component registration, service
provisioning, status monitoring and reporting,
failure handling, and many more. Our FoT con-
trol plane specifically features a recursively built
hierarchy of controllers to achieve several design
goals of FoT.

The application/management plane provides
external interfaces of the entire FoT system, and
consists of the service interface and the man-
agement interface. This plane discloses system
services and parameters to authorized users/
management teams, and receives application
requests and system objectives to be realized by
the underlying planes.

DATA PLANE OPERATION

The data plane consists of the physical compo-
nents. FoT specifically features the integration of
geo-distributed fog nodes, which, in addition to
enhancing application performance, also enables
local management of other components, as
detailed later.

Two key characteristics of the data plane
are heterogeneity and dynamicity. Heterogene-
ity causes difficulty in automatic management,

Figure 2. Four basic planes of FoT.

 Control plane

System monitoring Resource optimization

Service provisioning

Energy management

Dynamics handling

Data plane Connected
things

Network
devices

Computing
power

Virtualization plane Things, network, and computing
virtualization

Application/management plane

Application service interface

Management
interface

Figure 3. Virtualization plane design with three main elements: the driver store,
virtualization agents, and virtualization drivers.

Driver store

Virtualization agent

Virtualization drivers

IEEE Communications Magazine • September 2018 51

and can lead to expensive manpower for manual
reconfiguration. To address heterogeneity, we
add the virtualization plane between the conven-
tional control plane and data plane. Dynamicity
causes a scalability issue and performance fluctua-
tion. We delegate the handling of these dynamics
to the control plane to achieve fast and optimized
responses.

VIRTUALIZATION PLANE OPERATION

The virtualization plane’s goal is to hide the het-
erogeneity of the data plane. Specifically, for
components with similar functions, the system
maintains a general functional template, which
defines the minimum necessary information need-
ed to access and utilize the components. Using
the functional template, the system will gener-
ate a functional profile for each component to
describe its function, location, capacity, and other
information. For example, the functional template
of a surveillance camera includes its resolution,
color profile, location, output format, commands,
and so on. These attributes are shared by all sur-
veillance cameras, and hence can be abstract-
ed. The network is commonly abstracted using
software-defined networking (SDN). Computing
power is commonly abstracted as virtual machines
(VMs).

Connected things are harder to virtualize
than networks and computing, as they can be
very diverse in functions and specifications. We
design the virtualization plane shown in Fig. 3,
which consists of three basic elements: the virtu-
alization drivers, the driver store, and the virtualiza-
tion agents. For all similar components (e.g., the
same series of sensors of a vendor), the system
maintains a virtualization driver, that is, a module
that translates a component-specific profile into
a functional profile of the component. All virtual-
ization drivers are stored in the driver store, a cen-
tralized database. When the platform introduces a
new type of component, for example, a new sen-
sor model, the corresponding driver is added to
the store by the IoT provider. Component virtual-
ization is automatically performed by virtualization
agents. Each agent keeps a list of locally stored
drivers. When a new component is connected, its
information is sent to the nearest agent, who will
search its local list for the corresponding driver.
If the driver is not available, the agent will down-
load it from the central driver store. The agent
then performs virtualization for the component
as well as subsequent same-type components.
These agents are distributed in the network, such
as alongside controllers or at access points. They
act as local bridges between the heterogeneous
data plane and the uniform control plane.

CONTROL PLANE OPERATION
The control plane implements all the management
and optimization functionalities. We propose a
novel hierarchical control plane that utilizes the
in-network computing power provided by fog
computing to resolve the control plane scalability
problem.

Hierarchical Structure: Our FoT control plane
features a hierarchy of controllers that apply con-
trol over data plane components in a large geo-
graphical area, as shown in Fig. 4. The controllers
are organized into a tree structure. At the bot-

tom are leaf controllers, each covering a certain
area of connected things and other components
(routers, fog nodes, etc.). For example, a leaf
controller can control all components in a smart
building or a smart home. On top of that, sever-
al adjacent low-level controllers are aggregated
and controlled by a parent controller. The parent
controller also controls leftover areas between
its children’s controlled areas. Each controller is
located at a computing node within or near the
area it controls, which has sufficient computing
power to support the controller’s operation. The
root controller aggregates global information and
is commonly located in the cloud.

Recursive Operation: Controllers operate in a
recursive manner. Each controller (except the leaf
controllers) applies both direct and indirect con-
trol to its control domain. Specifically, for compo-
nents within its child controller’s area, the parent
controller indirectly issues queries and commands
via the child. For example, if a new device access
request is received at the parent controller, the
request will be passed to the corresponding child
controller, who will process the request and pro-
vide the corresponding access to the device if
the request is authorized. For components not
covered by any child, the controller directly que-
ries and commands the components. The internal
logic of our design is to ensure that control tasks
are handled by the lowest possible level of con-
trol. For example, routing between devices within
a smart building can be directly handled by the
leaf controller of the building without referring to
higher-level controllers.

Figure 4. Our control plane design with hierarchical and recursive controllers.
Dashed circles show the projected control area of a child controller of the
current level, while dotted circles show the control area of ancestor con-
trollers of current-level controllers. Child controllers are deployed in dense
areas to alleviate parent load and/or provide better responsiveness.

Controller

Computing device

Network devices

Connected things

Projected control area

Actual control area

Ancestor control area

Control channels

IEEE Communications Magazine • September 201852

Self-Contained Reconfiguration: Similar to the
recursive architecture for cellular networks [6],
the FoT control plane is reconfigurable. Control-
ler assignment is based on the density of com-
ponents within an area, and can be reconfigured
by the parent controller on the fly. Furthermore,
we argue that controllers should be designed to
be self-contained. This means that a parent con-
troller can automatically deploy and configure
new child controllers at emerging dense areas in
its control domain, using its controlled fog com-
puting power, without human intervention. This
enables a self-organizing control plane that can
automatically adjust to system load, which is very
important in achieving scalability, responsiveness,
robustness, and elasticity.

Benefits: The benefits of our design are sever-
al. First, it achieves scalability by utilizing the loca-
tion awareness of IoT services, reducing the states
stored at higher-level controllers. For example,
the root controller does not need to store the sta-
tuses of most individual devices. Each controller
now works on a limited local view of the whole
network, which greatly increases the overall scal-
ability of the system. Second, our design improves
responsiveness and robustness when facing net-
work dynamics. When a component moves or
fails, this event is immediately handled by the
direct controller. In the case of system-wide opti-
mization, the controller hierarchy can be config-
ured to participate in distributed optimization,
which amortizes the control overhead of using a
single controller.

APPLICATION/MANAGEMENT PLANE OPERATION

The application/management plane has two parts:
the service interface and the management inter-
face. The service interface exposes IoT services to
tenants, including sensing and actuation by con-
nected things, connectivity, and fog and cloud
computing. It accepts application requests from
tenants, and translates them into services that will
be accommodated by the control plane. Simi-
larly, the management interface exposes system
status to the IoT provider. The IoT provider can
specify policies through the interface that will be
enforced by the control plane. This enables effi-
cient management without frequently diving into
system details.

SYSTEM FUNCTION USE CASES

Component Registration: Components need to
be registered to be visible and accessible. Com-
ponent registration and management should be
handled close to the edge to alleviate overhead
at higher-level controllers. Initially, the compo-
nent broadcasts a hello message. The message
is sent to the nearest virtualization agent follow-
ing default network rules. Upon reception, the
agent looks up or downloads the virtualization
driver and generates the functional profile of the
component. This information is sent to the direct
area controller, who creates a virtual identity of
the component containing its uniform resource
identifier (URI) and functional profile. In subse-
quent operations, the controller will command
the component based on its functional profile.
Note that the binding among component, agent,
and controller can be reconfigured in runtime. For
example, if the component moves, a new virtu-

alization agent may take charge and report to a
new controller.

Service Query: There are two ways an applica-
tion can request a service. First, if the application
knows the service URI, a direct request can be
issued through the service interface. The request
will be broadcast to the entire control plane. If the
service is found, all controllers along the broadcast
path will jointly establish routing between the ser-
vicing component and the application. Second, the
application can request a generic service (e.g., video
surveillance) at or near a specific location. In this
case, the request will be shipped to the direct con-
troller of the location of interest along the control
hierarchy, who will then query its local components
and find one that fulfills the request. In general,
direct queries can be inefficient due to the need for
searching the system. To reduce the overhead of
direct queries, the URI can be designed to encode
location information. However, this requires mobility
management at the addressing level [7].

Mobility Management and Failure Handling:
FoT handles network events in two steps. First, the
event is immediately tackled by a local controller
for fast response. For example, a leaf controller
will quickly handle a local failure by finding local
alternatives to avoid service disruption, such as
finding replacement sensors to cover the area
of a failed sensor, or alternative routing paths to
bypass a router failure. Second, if the event has
impact exceeding the local area, or alternatives
cannot be found locally, the event will be report-
ed to upper levels for further coordination. For
example, a regional failure may involve resolution
of multiple controllers.

Note that our architecture is naturally robust
against control plane failures. When a child con-
troller fails, its controlled area is automatically
handed over to the parent, which ensures the
continuity of system operation. This way, the only
single point of failure is the root controller, which
can be backed up by replicas in the cloud. Still,
events are handled at the lowest possible level of
control, which ensures responsiveness and scal-
ability of the system.

CHALLENGES AND OPPORTUNITIES

DEPLOYMENT

An IoT system cannot be built in one night. Incre-
mental deployment enables early utilization of sys-
tem services, while augmenting the system with
new equipment and services during normal oper-
ation. Hence, the system can be scaled based on
user needs. There are several factors that need to
be considered for system incrementation. First,
deploying new devices incurs various costs includ-
ing deployment, management, energy, and so
on. Second, investment into different dimensions
(new connected things, network devices, or com-
puting nodes) at different locations may result in
different improvements of system performance.
Therefore, it is advised that the IoT provider opti-
mize its deployment utility based on system-wide
measurement of performance.

MANAGEMENT

Runtime Control Plane Reconfiguration: One
key feature of our design is that controllers can
be automatically deployed or revoked based

An IoT system cannot

be built in one night.

Incremental deployment

enables early utilization

of system services,

while augmenting

the system with new

equipment and services

during normal opera-

tion. Hence the system

can be scaled based on

user needs.

IEEE Communications Magazine • September 2018 53

on data plane load. This ensures elastic control
against fluctuating loads. However, deploying
controllers can be costly, especially in dense areas
where computing power is already scarce. In this
case, the system needs to consider the trade-
off between deploying more local controllers to
improve system manageability or devoting more
computing power and energy to improving appli-
cation performance. Finding the optimal deploy-
ment and assignment policy subject to capacities
and dynamic loads constitutes an optimization
problem to be addressed.

Network Planning and Orchestration: In IoT,
the network is largely the performance bottle-
neck due to its limited capacity and long delay.
Network planning techniques such as QoS-aware
routing [8], traffic engineering [9], and interfer-
ence management [10] have each demonstrated
their advantages in different network environ-
ments. However, applying these techniques in IoT
incurs scalability and dynamicity issues. To resolve
the scalability issue, proper traffic classification
and/or aggregation is needed to reduce control
plane states. To resolve dynamicity, both offline
and online algorithms need to be developed; the
former achieves resource planning in the long
run, while the latter provides quick responses to
network dynamics. Furthermore, service function
chaining should be considered during network
planning, which constitutes the network orches-
tration problem.

Service Provisioning and Orchestration:
Service provisioning fulfills application service
requests. Services are provisioned in several dimen-
sions: connected thing access, data delivery, and
data processing. These can be considered either
separately or jointly. For example, a real-time pro-
cessing application that analyzes data streams from
distributed sensors would require joint consider-
ation of sensor data access, data delivery, (poten-
tial) in-network pre-processing, and analytics logic
embedding. Factors to be considered include
usage costs, network and computing power, ener-
gy consumption, QoS (bandwidth, latency, etc.),
robustness, elasticity, multi-tenant resource sharing,
and so on. An important consideration is to utilize
geo-distributed fog nodes to host data processing
and analytics, to achieve early resolution of the
massive data at the edge. A related problem is
service orchestration [4], where an application is
decomposed into distributed sub-services. Optimi-
zation algorithms can be developed, but a general
framework that can incorporate different dimen-
sions and constraints is preferred.

Energy Management and Optimization:
Energy management is a crucial part of IoT [11].
First, a large number of connected things are bat-
tery-powered, and hence have very tight energy
budget. Second, deployment of connected things
tend to be denser in areas that are already con-
gested with devices (e.g., business districts, urban
centers, and factories). Energy consumption of
massive things could cause problems for the ener-
gy grid that serves other more critical services,
such as lighting or emergency systems. The use of
energy harvesters could alleviate the situation, but
are not available in scenarios like indoor environ-
ments. Proper energy management should jointly
consider energy consumption of all components,
and utilize various energy sources including

power networks, local power generators, energy
harvesters, and the smart grid. Both short-term
and long-term energy planning is helpful in FoT.

Scalability: With all the flexibility of centralized
management comes the concern of scalability.
For example, using SDN as the network controller
may suffer from the intrinsic scalability issue of
SDN controllers. Our hierarchical control plane
serves as a natural remedy for this issue. The IoT
provider can deploy multiple levels of SDN con-
trollers, where each controller controls a local
domain, much like the way our FoT controllers
work. In fact, our hierarchical control plane can
be viewed as a generalization of the existing hier-
archical SDN architecture [6], which has already
demonstrated the scalability gain of such a design.
Nevertheless, scalability will remain a problem
in IoT even with such an approach, and surely
deserves future research and development efforts.

SECURITY
Constrained Device Security: One major chal-
lenge in IoT security is the constrained nature
of IoT components. Components such as bat-
tery-powered sensors or RFID tags have very lim-
ited computing power and energy budget [12],
and thus are hardly capable of running complex
cryptographic algorithms. With the emergence
of IoT-related attacks [13], development of con-
strained security mechanisms is both important
and urgent. However, this field of study is still in
its infancy and requires extensive efforts in the
near future.

Infrastructure-Assisted Security: One way of
realizing effective but inexpensive IoT security is
to rely on the platform itself. Such practices have
already been utilized in other environments like
data centers and backbones: by deploying secu-
rity functions within the network, traffic can be
checked before reaching the end hosts. Such an
approach can be extended to the IoT scenario.
For example, functions that help establish secure
channels at access points could greatly alleviate
the resource burden on constrained devices,
while still receiving most of the benefits of secure
transmission. Despite some early efforts [14],
there has not yet been much research in this field.
We anticipate that infrastructure-assisted security
will play a significant role in IoT security.

Privacy: Privacy is of significant concern in
IoT, since a majority of IoT applications are based
on location [15]. While existing location priva-
cy mechanisms address this issue for each sin-
gle service or application, using a combination
of different location-based services could still
leak sensitive information. This again requires
privacy mechanisms natively embedded into the
platform instead of handled by things owners or
application developers. IoT can also invade pri-
vate spaces like homes or factories, which could
cause leakage of sensitive information other than
location. Proper protection of such information is
another direction for future research.

CONCLUSIONS
In this article, we present a novel on-demand IoT
paradigm, the Fog of Things. The FoT paradigm
extends both the data plane and the control plane
to the network edge, thus achieving many ben-
efits including scalability, responsiveness, robust-

With all the flexibility of

centralized management

comes the concern of

scalability. For exam-

ple, using SDN as the

network controller may

suffer from the intrinsic

scalability issue of SDN

controllers. Our hier-

archical control plane

serves as a natural rem-

edy for this issue.

IEEE Communications Magazine • September 201854

ness, location awareness, and so on. We lay out
the design of the FoT architecture, which features
a flat-structured virtualization plane and a hier-
archical and recursive control plane. The virtu-
alization plane achieves universal abstraction of
data plane components, while the control plane
achieves scalable and fine-grained control utilizing
location awareness of IoT services. We explain
the detailed operation of each plane and the sys-
tem. We also highlight challenges and opportu-
nities in deployment, management, and security
of FoT. In general, we envision the FoT paradigm
to be a major enabler of on-demand IoT that will
play a crucial role in our smart and connected
future. Enabling such a future, however, requires
extensive future work on the development and
implementation of the FoT framework as well as
resolving its various issues such as scalability and
security.

ACKNOWLEDGMENT

This research was supported in part by NSF grants
1461886, 1704092, and 1717197.

REFERENCES
[1] “IoT Market Forecasts”; https: //www.postscapes.com/inter-

net-of-things-market-size/, accessed May 15, 2018.
[2] A. Botta et al., “Integration of Cloud Computing and Internet

of Things: A Survey,” Future Generation Comp. Sys., vol. 56,
Mar. 2016, pp. 684–700.

[3] M. Chiang et al., “Clarifying Fog Computing and Networking:
10 Questions and Answers,” IEEE Commun. Mag., vol. 55,
no. 4, Apr. 2017, pp. 18–20.

[4] P. Hu et al., “Survey on Fog Computing: Architecture, Key
Technologies, Applications and Open Issues,” J. Net. Comp.
Appl., vol. 98, Sept.–Nov. 2017, pp. 27–42.

[5] V. Issarny et al., “Revisiting Service-Oriented Architecture
for the IoT: A Middleware Perspective,” Proc. ICSOC, 2016,
pp. 3–17.

[6] M. Moradi et al., “SoftMoW: Recursive and Reconfigurable
Cellular WAN Architecture,” Proc. ACM CoNEXT, 2014, pp.
377–90.

[7] J. Eriksson, M. Faloutsos, and S. V. Krishnamurthy, “DART:
Dynamic Address RouTing for Scalable Ad Hoc and Mesh
Networks,” IEEE/ACM Trans. Net., vol. 15, no. 1, Feb. 2007,
pp. 119–32.

[8] J. W. Guck et al., “Unicast QoS Routing Algorithms for SDN:
A Comprehensive Survey and Performance Evaluation,” IEEE
Commun. Surveys & Tutorials, vol. 20, no. 1, 2018, pp. 388–415.

[9] A. Mendiola et al., “A Survey on the Contributions of Soft-
ware-Defined Networking to Traffic Engineering,” IEEE Com-
mun. Surveys & Tutorials, vol. 19, no. 2, 2017, pp. 918–53.

[10] M. Noura and R. Nordin, “A Survey on Interference Man-
agement for Device-to-Device (D2D) Communication and
Its Challenges in 5G Networks,” J. Net. Comp. Appl., vol. 71,
Aug. 2016, pp. 130–50.

[11] N. Kaur and S. K. Sood, “An Energy-Efficient Architecture
for the Internet of Things (IoT),” IEEE Sys. J., vol. 11, no. 2,
June 2017, pp. 796–805.

[12] H. Hellaoui, M. Koudil, and A. Bouabdallah, “Energy-Effi-
cient Mechanisms in Security of the Internet Of Things: A
Survey,” Comp. Networks, vol. 127, Nov. 2017, pp. 173–89.

[13] S. Cobb, “10 Things to Know About the October
21 IoT DDoS Attacks”; https://www.welivesecurity.
com/2016/10/24/10-things-know-october-21-iot-ddos-at-
tacks/, accessed May 15, 2018.

[14] S. Nair, S. Abraham, and O. A. Ibrahim, “Security Fusion: A
New Security Architecture for Resource-Constrained Envi-
ronments,” Proc. USENIX HotSec, 2011, p. 2.

[15] L. Chen et al., “Robustness, Security and Privacy in Loca-
tion-Based Services for Future IoT: A Survey,” IEEE Access,
vol. 5, 2017, pp. 8956–77.

BIOGRAPHIES
RUOZHOU YU [S‘13] received his B.S. degree from Beijing Uni-
versity of Posts and Telecommunications, China, in 2013. He
is now a Ph.D. candidate in the School of Computing, Infor-
matics, and Decision Systems Engineering at Arizona State Uni-
versity. His research interests include network virtualization,
software-defined networking, cloud and data center networks,
edge computing, the Internet of Things, and so on.

GUOLIANG XUE [M’96, SM’99, F’11] is a professor of comput-
er science and engineering at Arizona State University. He
received his Ph.D degree (1991) in computer science from the
University of Minnesota, Minneapolis. His research interests
include survivability, security, and resource allocation issues in
networks. He is an Editor of IEEE Network and the Area Editor
of IEEE Transactions on Wireless Communications, Wireless Net-
working.

VISHNU TEJA KILARI [S’13] received his M.S. degree from Arizona
State University, Tempe, in 2013. Currently he is a Ph.D. student
in the School of Computing, Informatics, and Decision Systems
Engineering at Arizona State University. His research interests
include botnets, smart grid security and hardware assisted secu-
rity.

XIANG ZHANG [S’13] received his B.S. degree from the Univer-
sity of Science and Technology of China, Hefei, in 2012. He is
now a Ph.D. candidate in the School of Computing, Informatics,
and Decision Systems Engineering at Arizona State University.
His research interests include network economics and game
theory in crowdsourcing and cognitive radio networks.

We envision the FoT

paradigm to be a major

enabler of on-demand

IoT, and will play a

crucial role in our smart

and connected future.

Enabling such a future,

however, requires

extensive future work

on the development

and implementation

of the FoT framework

as well as resolving its

various issues such as

scalability and security.

