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ABSTRACT

In this article, we introduce the concept of 
FoT, a paradigm for on-demand IoT. On-demand 
IoT is an IoT platform where heterogeneous con-
nected things can be accessed and managed via 
a uniform platform based on real-time demands. 
Realizing such a platform faces challenges includ-
ing heterogeneity, scalability, responsiveness, and 
robustness, due to the large-scale and complex 
nature of an IoT environment. The FoT paradigm 
features the incorporation of fog computing 
power, which empowers not only the IoT appli-
cations, but more importantly the scalable and 
efficient management of the system itself. FoT uti-
lizes a flat-structured virtualization plane and a 
hierarchical control plane, both of which extend 
to the network edge and can be reconfigured 
in real time, to achieve various design goals. In 
addition to describing the detailed design of the 
FoT paradigm, we also highlight challenges and 
opportunities involved in the deployment, man-
agement, and operation of such an on-demand 
IoT platform. We hope this article can shed some 
light on how to build and maintain a practical and 
extensible control back-end to enable large-scale 
IoT that empowers our connected world.

INTRODUCTION
The Internet of Things (IoT) is one of the next 
mega-trends in the technology world. With its abil-
ity to interconnect billions of smart things on a 
global scale, IoT is expected to empower innu-
merable new services and applications that could 
improve human lives, including smart cities, smart 
health, smart homes, Industry 4.0, and so on. IoT 
has a huge economic impact: the global IoT mar-
ket is projected to be over US$1 trillion in the 
early 2020s [1].

The vision of IoT is powered by billions of 
connected smart things, which virtualize the real 
world into digital data that can be transmitted, 
analyzed, and further utilized. However, the mas-
sive numbers of things have led to challenges for 
IoT. On one hand, the current IoT, built upon 
existing infrastructures such as cellular networks, 
can hardly handle and process the tremendous 
amount of data generated by connected things. 
On the other hand, IoT manageability is also chal-
lenged by the massive and heterogeneous things, 
and the dynamic nature of IoT where things are 
plugged, unplugged, moving, or failing frequently. 
It is hard to manage billions of connected things 

with fine-grained control in real time. This situa-
tion is exacerbated by the stringent requirements 
of IoT applications. The majority of IoT applica-
tions are real-time in nature, meaning that they 
are designed to analyze continuous data streams 
from different locations. These applications have 
stringent quality of service (QoS) requirements, 
including but not limited to computing power, 
latency, throughput, loss, and robustness.

IoT devices are currently accessed and man-
aged in an ad hoc manner: most deployed things 
are only visible and accessible to the owner itself, 
and have no public access in general. The cause 
of this is the lack of an on-demand architecture 
that provides scalable and flexible management 
as well as uniform and universal access to IoT 
services. The recently proposed Cloud of Things 
(CoT) paradigm aims to address this issue [2]. 
CoT provides centralized IoT access and manage-
ment in the cloud, thereby achieving a number of 
benefits including on-demand service, resource 
pooling, virtualization, and so on. However, the 
cloud-based solution has its limitations. First, it 
does not resolve the capacity challenge: massive 
data still needs to be transmitted to the cloud for 
analysis. Second, due to its long end-to-end laten-
cy, the cloud cannot easily respond in real time 
to frequent network dynamics and failures within 
vast geographical areas. Cloud-hosted applica-
tions also receive unguaranteed QoS in terms of 
latency, bandwidth, and security.

Fog computing is an emerging computing 
paradigm [3, 4]. Different from cloud computing 
where all computing power is aggregated at a 
few globally selected locations, fog computing 
features the deployment of geo-distributed fog 
nodes across all network hierarchies, and especial-
ly in the edge network. These fog nodes provide 
different levels of capacity and responsiveness 
to meet various application needs. Fog comput-
ing inherits benefits of cloud computing including 
elasticity and virtualization, while bringing new 
benefits such as early data resolution, responsive 
management on the edge, and improved latency, 
robustness, and security. However, due to cost 
and energy consumption issues, fog nodes typi-
cally have limited capacities, and can only serve 
things and applications in nearby areas. Collabo-
ration among fog nodes enhances capacity but 
also complicates system management. Fortunate-
ly, cloud computing and fog computing are not 
incompatible in nature; in fact, they compensate 
each other’s limitations. This has inspired us to 
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seek a unified approach to jointly leverage both 
cloud and fog computing in IoT.

In this article, we present our understanding 
of the direction in which the IoT shall evolve. We 
start from our vision on the emergence of on-de-
mand IoT, describing its necessity and design 
goals. We then present an on-demand IoT para-
digm that jointly utilizes fog and cloud computing, 
which we call the Fog of Things (FoT). FoT lever-
ages the distributed and location-aware nature 
of IoT services, and features a hierarchical and 
reconfigurable control plane that achieves respon-
siveness, scalability, and other design goals. We 
further describe crucial challenges and opportu-
nities in the deployment, management, and oper-
ation of FoT. We envision FoT, instead of its ad 
hoc or cloud-based counterparts, to be one of the 
cornerstones of our future smart and connected 
world.

ENVISIONING ON-DEMAND IOT
Currently, the IoT infrastructure is mostly deployed 
and utilized in an ad hoc manner. Various things 
are produced by different vendors to fulfill simi-
lar functions. They are commonly deployed only 
to power a few applications that belong to the 
deployer/owner itself, due to lack of proper visi-
bility and accessibility to the public. This has large-
ly buried the true potential of IoT where myriads 
of distributed things generate massive data that 
could be used for big data analytics and decision 
making.

These issues have urged efforts into on-demand 
IoT (also called service-oriented IoT [5]), an IoT 
environment where functionalities (sensing, actu-
ation, data delivery, and data analytics) can be 
provisioned in runtime and remotely accessed by 
authorized users. It is based on a concept similar 
to cloud computing, where computing resources 
are dynamically provisioned and accessed by ten-
ants in an on-demand manner.

Three parties are involved, as shown in Fig. 1. 
The IoT provider builds and manages the IoT plat-
form, providing various functionalities including 
virtualization, QoS management, resource optimi-
zation, security, and so on. Infrastructure provid-
ers, such as cloud providers, network providers, 
and things owners, participate in the business and 
provide infrastructure support. Finally, users, or 
tenants, access and utilize the provided IoT ser-
vices to develop IoT applications. In general, an 
on-demand IoT can be built as an overlay upon 
existing computing and network infrastructures, 
but can also be built or incremented with self-
owned equipment of the providers.

On-demand IoT provides benefits similar to 
those of cloud computing. From the business per-
spective, on-demand services could largely reduce 
capital expenditures (CAPEX) of users by reusing 
existing infrastructure. A well managed on-demand 
IoT can also reduce operational expenditures 
(OPEX). For things owners, allowing public access 
can boost resource utilization, thus increasing their 
utilities or revenues. For computing or network pro-
viders, on-demand IoT enables more flexible pric-
ing options such as pay-as-you-go, which also help 
increase revenue. From the technical perspective, 
centralized management helps both infrastructure 
providers and users. Infrastructure providers can 
alleviate their overloaded components by employ-
ing smart resource allocation. Users receive guar-
anteed services via service level agreements (SLAs). 
Finally, a widely accessible IoT platform is import-
ant to the entire IoT community, inspiring collabo-
rative technological innovations.

On-demand IoT is a diverse, large-scale, com-
plex, and dynamic environment to build, oper-
ate, and maintain. IoT is naturally distributed, and 
mainly offers location-based services. Hence, the 
same centralized control as in cloud computing is 
basically not practical. Handling device heteroge-
neity and dynamicity requires both responsiveness 
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Figure 1. Three major parties in on-demand IoT: infrastructure providers, IoT provider, and users.
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and scalability. In general, system management 
and optimization are a great challenge both on 
the infrastructure and on the architectural design. 
Below, we highlight some design goals of on-de-
mand IoT. 

Scalability is probably the most important 
property of any IoT system. Even a mid-scale 
IoT needs to manage millions of heterogeneous 
devices.

Virtualization is crucial in realizing dynamic 
and elastic services. In general, devices should 
be exposed only to the minimum extent to which 
their functions can be utilized. Devices with simi-
lar functions should be further abstracted using a 
uniform interface for simple and efficient access.

Responsiveness is more important in the IoT 
environment than in other environments, since a 
significant portion of IoT applications are time-crit-
ical. Responsiveness is also crucial in handling sys-
tem dynamics such as device joining or removal, 
failure, and mobility.

Location awareness is in the nature of most 
IoT services. A well-designed IoT system should 
provide location awareness support to applica-
tions, and in return utilize it to improve system 
performance and management.

Robustness is to ensure system functionality 
during system disturbances such as failures or 
maintenance. Realizing robustness is specifically 
crucial in versatile environments like IoT, where 
disturbances happen frequently.

Elasticity means providing proper scaling 
and reconfiguration when demands from users 
change over time. It also means the system can 
sustain short-term load variations without severe 
congestion.

Security in IoT is different than in other envi-
ronments, mainly because of the constrained 
nature of IoT devices. Providing native security 
support to resource-constrained devices is thus an 
important factor in architectural design. IoT secu-
rity is vital, since a security breach in IoT can be 
much more devastating and life-threatening given 
IoT’s ability to monitor and manipulate physical 
objects.

In the following, we present the design of FoT, 
an on-demand IoT paradigm. FoT is able to native-
ly achieve several design goals, and also supports 
realizing the other goals with orthogonal technol-
ogies.

THE FOT PARADIGM

ARCHITECTURE OVERVIEW

Our FoT architecture has four planes, as shown 
in Fig. 2.

The data plane consists of the physical compo-
nents, including connected things, network devic-
es, and computing nodes. These components 
perform their functionalities based on upper-plane 
commands. Due to heterogeneity and dynamic-
ity, the data plane commonly requires frequent 
reconfiguration and optimization from upper 
planes.

The virtualization plane stands as an interme-
diary between physical components and decision 
units in the upper planes. It abstracts heteroge-
neous physical components into uniform and 
manageable virtual components.

The control plane is the decision core of the 
architecture. It performs all decision-making tasks 
in FoT, including component registration, service 
provisioning, status monitoring and reporting, 
failure handling, and many more. Our FoT con-
trol plane specifically features a recursively built 
hierarchy of controllers to achieve several design 
goals of FoT.

The application/management plane provides 
external interfaces of the entire FoT system, and 
consists of the service interface and the man-
agement interface. This plane discloses system 
services and parameters to authorized users/
management teams, and receives application 
requests and system objectives to be realized by 
the underlying planes.

DATA PLANE OPERATION

The data plane consists of the physical compo-
nents. FoT specifically features the integration of 
geo-distributed fog nodes, which, in addition to 
enhancing application performance, also enables 
local management of other components, as 
detailed later.

Two key characteristics of the data plane 
are heterogeneity and dynamicity. Heterogene-
ity causes difficulty in automatic management, 

Figure 2. Four basic planes of FoT.
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and can lead to expensive manpower for manual 
reconfiguration. To address heterogeneity, we 
add the virtualization plane between the conven-
tional control plane and data plane. Dynamicity 
causes a scalability issue and performance fluctua-
tion. We delegate the handling of these dynamics 
to the control plane to achieve fast and optimized 
responses.

VIRTUALIZATION PLANE OPERATION

The virtualization plane’s goal is to hide the het-
erogeneity of the data plane. Specifically, for 
components with similar functions, the system 
maintains a general functional template, which 
defines the minimum necessary information need-
ed to access and utilize the components. Using 
the functional template, the system will gener-
ate a functional profile for each component to 
describe its function, location, capacity, and other 
information. For example, the functional template 
of a surveillance camera includes its resolution, 
color profile, location, output format, commands, 
and so on. These attributes are shared by all sur-
veillance cameras, and hence can be abstract-
ed. The network is commonly abstracted using 
software-defined networking (SDN). Computing 
power is commonly abstracted as virtual machines 
(VMs).

Connected things are harder to virtualize 
than networks and computing, as they can be 
very diverse in functions and specifications. We 
design the virtualization plane shown in Fig. 3, 
which consists of three basic elements: the virtu-
alization drivers, the driver store, and the virtualiza-
tion agents. For all similar components (e.g., the 
same series of sensors of a vendor), the system 
maintains a virtualization driver, that is, a module 
that translates a component-specific profile into 
a functional profile of the component. All virtual-
ization drivers are stored in the driver store, a cen-
tralized database. When the platform introduces a 
new type of component, for example, a new sen-
sor model, the corresponding driver is added to 
the  store by the IoT provider. Component virtual-
ization is automatically performed by virtualization 
agents. Each agent keeps a list of locally stored 
drivers. When a new component is connected, its 
information is sent to the nearest agent, who will 
search its local list for the corresponding driver. 
If the driver is not available, the agent will down-
load it from the central driver store. The agent 
then performs virtualization for the component 
as well as subsequent same-type components. 
These agents are distributed in the network, such 
as alongside controllers or at access points. They 
act as local bridges between the heterogeneous 
data plane and the uniform control plane.

CONTROL PLANE OPERATION 
The control plane implements all the management 
and optimization functionalities. We propose a 
novel hierarchical control plane that utilizes the 
in-network computing power provided by fog 
computing to resolve the control plane scalability 
problem.

Hierarchical Structure: Our FoT control plane 
features a hierarchy of controllers that apply con-
trol over data plane components in a large geo-
graphical area, as shown in Fig. 4. The controllers 
are organized into a tree structure. At the bot-

tom are leaf controllers, each covering a certain 
area of connected things and other components 
(routers, fog nodes, etc.). For example, a leaf 
controller can control all components in a smart 
building or a smart home. On top of that, sever-
al adjacent low-level controllers are aggregated 
and controlled by a parent controller. The parent 
controller also controls leftover areas between 
its children’s controlled areas. Each controller is 
located at a computing node within or near the 
area it controls, which has sufficient computing 
power to support the controller’s operation. The 
root controller aggregates global information and 
is commonly located in the cloud.

Recursive Operation: Controllers operate in a 
recursive manner. Each controller (except the leaf 
controllers) applies both direct and indirect con-
trol to its control domain. Specifically, for compo-
nents within its child controller’s area, the parent 
controller indirectly issues queries and commands 
via the child. For example, if a new device access 
request is received at the parent controller, the 
request will be passed to the corresponding child 
controller, who will process the request and pro-
vide the corresponding access to the device if 
the request is authorized. For components not 
covered by any child, the controller directly que-
ries and commands the components. The internal 
logic of our design is to ensure that control tasks 
are handled by the lowest possible level of con-
trol. For example, routing between devices within 
a smart building can be directly handled by the 
leaf controller of the building without referring to 
higher-level controllers. 

Figure 4. Our control plane design with hierarchical and recursive controllers. 
Dashed circles show the projected control area of a child controller of the 
current level, while dotted circles show the control area of ancestor con-
trollers of current-level controllers. Child controllers are deployed in dense 
areas to alleviate parent load and/or provide better responsiveness.
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Self-Contained Reconfiguration: Similar to the 
recursive architecture for cellular networks [6], 
the FoT control plane is reconfigurable. Control-
ler assignment is based on the density of com-
ponents within an area, and can be reconfigured 
by the parent controller on the fly. Furthermore, 
we argue that controllers should be designed to 
be self-contained. This means that a parent con-
troller can automatically deploy and configure 
new child controllers at emerging dense areas in 
its control domain, using its controlled fog com-
puting power, without human intervention. This 
enables a self-organizing control plane that can 
automatically adjust to system load, which is very 
important in achieving scalability, responsiveness, 
robustness, and elasticity.

Benefits: The benefits of our design are sever-
al. First, it achieves scalability by utilizing the loca-
tion awareness of IoT services, reducing the states 
stored at higher-level controllers. For example, 
the root controller does not need to store the sta-
tuses of most individual devices. Each controller 
now works on a limited local view of the whole 
network, which greatly increases the overall scal-
ability of the system. Second, our design improves 
responsiveness and robustness when facing net-
work dynamics. When a component moves or 
fails, this event is immediately handled by the 
direct controller. In the case of system-wide opti-
mization, the controller hierarchy can be config-
ured to participate in distributed optimization, 
which amortizes the control overhead of using a 
single controller.

APPLICATION/MANAGEMENT PLANE OPERATION

The application/management plane has two parts: 
the service interface and the management inter-
face. The service interface exposes IoT services to 
tenants, including sensing and actuation by con-
nected things, connectivity, and fog and cloud 
computing. It accepts application requests from 
tenants, and translates them into services that will 
be accommodated by the control plane. Simi-
larly, the management interface exposes system 
status to the IoT provider. The IoT provider can 
specify policies through the interface that will be 
enforced by the control plane. This enables effi-
cient management without frequently diving into 
system details.

SYSTEM FUNCTION USE CASES

Component Registration: Components need to 
be registered to be visible and accessible. Com-
ponent registration and management should be 
handled close to the edge to alleviate overhead 
at higher-level controllers. Initially, the compo-
nent broadcasts a hello message. The message 
is sent to the nearest virtualization agent follow-
ing default network rules. Upon reception, the 
agent looks up or downloads the virtualization 
driver and generates the functional profile of the 
component. This information is sent to the direct 
area controller, who creates a virtual identity of 
the component containing its uniform resource 
identifier (URI) and functional profile. In subse-
quent operations, the controller will command 
the component based on its functional profile. 
Note that the binding among component, agent, 
and controller can be reconfigured in runtime. For 
example, if the component moves, a new virtu-

alization agent may take charge and report to a 
new controller.

Service Query: There are two ways an applica-
tion can request a service. First, if the application 
knows the service URI, a direct request can be 
issued through the service interface. The request 
will be broadcast to the entire control plane. If the 
service is found, all controllers along the broadcast 
path will jointly establish routing between the ser-
vicing component and the application. Second, the 
application can request a generic service (e.g., video 
surveillance) at or near a specific location. In this 
case, the request will be shipped to the direct con-
troller of the location of interest along the control 
hierarchy, who will then query its local components 
and find one that fulfills the request. In general, 
direct queries can be inefficient due to the need for 
searching the system. To reduce the overhead of 
direct queries, the URI can be designed to encode 
location information. However, this requires mobility 
management at the addressing level [7].

Mobility Management and Failure Handling: 
FoT handles network events in two steps. First, the 
event is immediately tackled by a local controller 
for fast response. For example, a leaf controller 
will quickly handle a local failure by finding local 
alternatives to avoid service disruption, such as 
finding replacement sensors to cover the area 
of a failed sensor, or alternative routing paths to 
bypass a router failure. Second, if the event has 
impact exceeding the local area, or alternatives 
cannot be found locally, the event will be report-
ed to upper levels for further coordination. For 
example, a regional failure may involve resolution 
of multiple controllers.

Note that our architecture is naturally robust 
against control plane failures. When a child con-
troller fails, its controlled area is automatically 
handed over to the parent, which ensures the 
continuity of system operation. This way, the only 
single point of failure is the root controller, which 
can be backed up by replicas in the cloud. Still, 
events are handled at the lowest possible level of 
control, which ensures responsiveness and scal-
ability of the system.

CHALLENGES AND OPPORTUNITIES

DEPLOYMENT

An IoT system cannot be built in one night. Incre-
mental deployment enables early utilization of sys-
tem services, while augmenting the system with 
new equipment and services during normal oper-
ation. Hence, the system can be scaled based on 
user needs. There are several factors that need to 
be considered for system incrementation. First, 
deploying new devices incurs various costs includ-
ing deployment, management, energy, and so 
on. Second, investment into different dimensions 
(new connected things, network devices, or com-
puting nodes) at different locations may result in 
different improvements of system performance. 
Therefore, it is advised that the IoT provider opti-
mize its deployment utility based on system-wide 
measurement of performance.

MANAGEMENT

Runtime Control Plane Reconfiguration: One 
key feature of our design is that controllers can 
be automatically deployed or revoked based 

An IoT system cannot 

be built in one night. 

Incremental deployment 

enables early utilization 

of system services, 

while augmenting 

the system with new 

equipment and services 

during normal opera-

tion. Hence the system 

can be scaled based on 

user needs.



IEEE Communications Magazine • September 2018 53

on data plane load. This ensures elastic control 
against fluctuating loads. However, deploying 
controllers can be costly, especially in dense areas 
where computing power is already scarce. In this 
case, the system needs to consider the trade-
off between deploying more local controllers to 
improve system manageability or devoting more 
computing power and energy to improving appli-
cation performance. Finding the optimal deploy-
ment and assignment policy subject to capacities 
and dynamic loads constitutes an optimization 
problem to be addressed.

Network Planning and Orchestration: In IoT, 
the network is largely the performance bottle-
neck due to its limited capacity and long delay. 
Network planning techniques such as QoS-aware 
routing [8], traffic engineering [9], and interfer-
ence management [10] have each demonstrated 
their advantages in different network environ-
ments. However, applying these techniques in IoT 
incurs scalability and dynamicity issues. To resolve 
the scalability issue, proper traffic classification 
and/or aggregation is needed to reduce control 
plane states. To resolve dynamicity, both offline 
and online algorithms need to be developed; the 
former achieves resource planning in the long 
run, while the latter provides quick responses to 
network dynamics. Furthermore, service function 
chaining should be considered during network 
planning, which constitutes the network orches-
tration problem.

Service Provisioning and Orchestration: 
Service provisioning fulfills application service 
requests. Services are provisioned in several dimen-
sions: connected thing access, data delivery, and 
data processing. These can be considered either 
separately or jointly. For example, a real-time pro-
cessing application that analyzes data streams from 
distributed sensors would require joint consider-
ation of sensor data access, data delivery, (poten-
tial) in-network pre-processing, and analytics logic 
embedding. Factors to be considered include 
usage costs, network and computing power, ener-
gy consumption, QoS (bandwidth, latency, etc.), 
robustness, elasticity, multi-tenant resource sharing, 
and so on. An important consideration is to utilize 
geo-distributed fog nodes to host data processing 
and analytics, to achieve early resolution of the 
massive data at the edge. A related problem is 
service orchestration [4], where an application is 
decomposed into distributed sub-services. Optimi-
zation algorithms can be developed, but a general 
framework that can incorporate different dimen-
sions and constraints is preferred. 

Energy Management and Optimization: 
Energy management is a crucial part of IoT [11]. 
First, a large number of connected things are bat-
tery-powered, and hence have very tight energy 
budget. Second, deployment of connected things 
tend to be denser in areas that are already con-
gested with devices (e.g., business districts, urban 
centers, and factories). Energy consumption of 
massive things could cause problems for the ener-
gy grid that serves other more critical services, 
such as lighting or emergency systems. The use of 
energy harvesters could alleviate the situation, but 
are not available in scenarios like indoor environ-
ments. Proper energy management should jointly 
consider energy consumption of all components, 
and utilize various energy sources including 

power networks, local power generators, energy 
harvesters, and the smart grid. Both short-term 
and long-term energy planning is helpful in FoT.

Scalability: With all the flexibility of centralized 
management comes the concern of scalability. 
For example, using SDN as the network controller 
may suffer from the intrinsic scalability issue of 
SDN controllers. Our hierarchical control plane 
serves as a natural remedy for this issue. The IoT 
provider can deploy multiple levels of SDN con-
trollers, where each controller controls a local 
domain, much like the way our FoT controllers 
work. In fact, our hierarchical control plane can 
be viewed as a generalization of the existing hier-
archical SDN architecture [6], which has already 
demonstrated the scalability gain of such a design. 
Nevertheless, scalability will remain a problem 
in IoT even with such an approach, and surely 
deserves future research and development efforts.

SECURITY 
Constrained Device Security: One major chal-
lenge in IoT security is the constrained nature 
of IoT components. Components such as bat-
tery-powered sensors or RFID tags have very lim-
ited computing power and energy budget [12], 
and thus are hardly capable of running complex 
cryptographic algorithms. With the emergence 
of IoT-related attacks [13], development of con-
strained security mechanisms is both important 
and urgent. However, this field of study is still in 
its infancy and requires extensive efforts in the 
near future. 

Infrastructure-Assisted Security: One way of 
realizing effective but inexpensive IoT security is 
to rely on the platform itself. Such practices have 
already been utilized in other environments like 
data centers and backbones: by deploying secu-
rity functions within the network, traffic can be 
checked before reaching the end hosts. Such an 
approach can be extended to the IoT scenario. 
For example, functions that help establish secure 
channels at access points could greatly alleviate 
the resource burden on constrained devices, 
while still receiving most of the benefits of secure 
transmission. Despite some early efforts [14], 
there has not yet been much research in this field. 
We anticipate that infrastructure-assisted security 
will play a significant role in IoT security.

Privacy: Privacy is of significant concern in 
IoT, since a majority of IoT applications are based 
on location [15]. While existing location priva-
cy mechanisms address this issue for each sin-
gle service or application, using a combination 
of different location-based services could still 
leak sensitive information. This again requires 
privacy mechanisms natively embedded into the 
platform instead of handled by things owners or 
application developers. IoT can also invade pri-
vate spaces like homes or factories, which could 
cause leakage of sensitive information other than 
location. Proper protection of such information is 
another direction for future research.

CONCLUSIONS
In this article, we present a novel on-demand IoT 
paradigm, the Fog of Things. The FoT paradigm 
extends both the data plane and the control plane 
to the network edge, thus achieving many ben-
efits including scalability, responsiveness, robust-
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ness, location awareness, and so on. We lay out 
the design of the FoT architecture, which features 
a flat-structured virtualization plane and a hier-
archical and recursive control plane. The virtu-
alization plane achieves universal abstraction of 
data plane components, while the control plane 
achieves scalable and fine-grained control utilizing 
location awareness of IoT services. We explain 
the detailed operation of each plane and the sys-
tem. We also highlight challenges and opportu-
nities in deployment, management, and security 
of FoT. In general, we envision the FoT paradigm 
to be a major enabler of on-demand IoT that will 
play a crucial role in our smart and connected 
future. Enabling such a future, however, requires 
extensive future work on the development and 
implementation of the FoT framework as well as 
resolving its various issues such as scalability and 
security. 
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