
1

Privacy-aware Task Allocation and Data
Aggregation in Fog-assisted Spatial

Crowdsourcing
Haiqin Wu, Liangmin Wang, Member, IEEE, and Guoliang Xue, Fellow, IEEE

Abstract—Spatial crowdsourcing (SC) enables task owners (TOs) to outsource spatial-related tasks to a SC-server who engages
mobile users in collecting sensing data at some specified locations with their mobile devices. Data aggregation, as a specific SC task,
has drawn much attention in mining the potential value of the massive spatial crowdsensing data. However, the release of SC tasks
and the execution of data aggregation may pose considerable threats to the privacy of TOs and mobile users, respectively. Besides, it
is nontrivial for the SC-server to allocate numerous tasks efficiently and accurately to qualified mobile users, as the SC-server has no
knowledge about the entire geographical user distribution. To tackle these issues, in this paper, we introduce a fog-assisted SC
architecture, in which many fog nodes deployed in different regions can assist the SC-server to distribute tasks and aggregate data in a
privacy-aware manner. Specifically, a privacy-aware task allocation and data aggregation scheme (PTAA) is proposed leveraging
bilinear pairing and homomorphic encryption. PTAA supports representative aggregate statistics (e.g.,sum, mean, variance, and
minimum) with efficient data update while providing strong privacy protection. Security analysis shows that PTAA can achieve the
desirable security goals. Extensive experiments also demonstrate its feasibility and efficiency.

Index Terms—Spatial crowdsourcing, data aggregation, fog computing, bilinear pairing, homomorphic encryption.

F

1 INTRODUCTION

The proliferation of mobile devices, especially smartphones,
has revolutionarily changed the traditional static sensor-
based data sensing method to a new data collection and
analysis paradigm named mobile crowdsensing (or crowd-
sensing for short). With advanced wireless communication
techonologies (e.g., WiFi, 4G, and Bluetooth) and sensing
capabilities of massive embedded sensors (e.g., camera,
GPS, and accelerometer) on mobile devices, mobile user-
s/participants can perform various tasks published on a
crowdsourcing platform by the task owners (TOs) easily
with their mobile devices. The sensing data are generated
not only by the embedded sensors but also by the partic-
ipant’s personal knowledge, hence provide more compre-
hensive and diverse information for TOs. As a specific type
of crowdsourcing [1], spatial crowdsourcing (SC) enables
multiple TOs to outsource their spatio-temporal tasks to the
SC-server that is responsible for recruiting a set of mobile

• H. Wu is with the Department of Computer Science and Communication
Engineering, Jiangsu University, Zhenjiang, China, 212013. Currently,
she is a visiting PhD student in Arizona State University.
E-mail: haiqinwu@asu.edu, whq92 ujs@126.com

• L. Wang is with the Department of Computer Science and Communication
Engineering, Jiangsu University, Zhenjiang, China, 212013.
E-mail: wanglm@ujs.edu.cn

• G. Xue is with the School of Computing, Informatics, and Decision
Systems Engineering, Arizona State University, Tempe, AZ 85287 USA.
E-mail: xue@asu.edu

This work was supported in part by the National Science Foundation grants
1421685, 1461886, 1704092, and 1717197, the National Natural Science
Foundation of China under Grant U1736216, Grant 61472001, and Grant
61702233, and the National Key Research and Development Program Grant
2017YFB1400703. The information reported here does not reflect the position
or the policy of the funding agencies. This work was done while H. Wu was
visiting Arizona State University.

users to complete tasks in the specified sensing location or
area. Without deploying any static sensor in the specific
areas, SC brings many benefits such as lower deployment
cost, more sensing resources, and more sufficient spatial and
temporal coverage. Moreover, the mobile participants can
also earn rewards to compensate their consumption (e.g.,
battery, computing power, and 3G/4G quota) in participa-
tion.

Many promising SC applications are fostered in different
domains such as environmental monitoring [2], assistive
healthcare [3], intelligent transportation [4], and social sur-
vey [5]. In these SC applications, aggregating and analyzing
the data submitted by mobile users are more useful and
needed for TOs than simply collecting the raw sensing data,
since many potential values can be explored through data
aggregation. For example, the average rating of a certain
restaurant will indicate its popularity among customers.
The number of people having higher temperature than the
normal in a city can help to supervise the flu spreading
range and take related actions. The maximum movement
speed of vehicles on a certain road during rush hours can
provide real-time traffic information for path planning.

Despite the usefulness of SC, we observe that the privacy
issue is a major hindrance towards the large-scale and suc-
cessful deployment of SC applications, since the SC-server
may not be fully trusted by both TOs and mobile users.
Specifically, on one hand, tasks released by the TOs may
inadvertently reveal their private information (e.g., points of
interest (POI) and daily routine). Continuing with the afore-
mentioned examples, if Alice, as a TO, requests the traffic
information on a specific road, others may infer her presence
nearby. Taking the restaurant rating for example, if someone
requests the average rating of restaurants in a certain area,

2

others may regard him/her interested in food or the catering
industry, which may bring undesirable advertisements. Un-
der these circumstances, it is necessary to keep the sensing
tasks unknown to the SC-server. Moreover, the aggregation
results are regarded as the private assets of the requested
TOs who may not want to disclose these statistics to others.
On the other hand, for the mobile participants, the tasks
they want to join and the sensing data they submitted might
both contain their private information like POI, location,
and health status [6]. Mobile users may be reluctant to
participate for fear of their privacy disclosure. Therefore, it
is of paramount importance to preserve the privacy of both
TOs and mobile participants in the SC process, including
periods of task assignment and data aggregation.

There have been various attempts to address the privacy
and security issues in crowdsourcing, which merely focus
on the privacy protection in either task allocation ([7], [8],
[9], [10]) or data collection and aggregation ([11], [12], [13],
[14], [15], [16], [17]). Among this work, some researchers
([11], [12], [14]) assume the existence of one TO in the
system and regard the TO and the SC-server as the same
entity for simplicity, hence they ignore the privacy concerns
of multiple TOs. Moreover, the aforementioned researches
rely on a single server for both task distribution or data
aggregation, which on one hand is hard to realize efficient
and large-scale task allocation in different areas as some
users cannot connect to the remote SC-server. On the other
hand, significant overhead is incurred at the single SC-
server, especially in the multiple TOs and multiple par-
ticipants (MOMP) scenario. Although some aggregations
are conducted by collaborations, either between the SC-
server and the participants [18] or between neighboring
participants [19], the extra communication cost and long
delay make them less practical especially for the energy-
constrained participants. Additionally, in [11], [12], only
sum aggregation is supported, which does not cover all real
applications.

To tackle these issues, in this paper, inspired by the
salient benefits of fog computing [20] such as geographic
distribution, location awareness, and low latency, we pro-
pose to take full advantage of the fog node to assist the SC-
server to assign spatial tasks and aggregate the sensed data
in a privacy-aware manner. The proposed scheme ensures
that the SC-server can assign tasks to their corresponding
fog nodes without knowing task contents. In addition, many
aggregation statistics can be performed on encrypted data
and no one is able to obtain the aggregated results except
for the requested TOs. The main contributions of this paper
are as follows:

• A privacy-aware task allocation and data aggrega-
tion scheme is proposed in the novel fog-assisted
spatial crowdsourcing. We adopt the two-step task
allocation (SC-server to fog nodes and fog nodes
to participant) method, which offloads the heavy
burden of the single SC-server and realizes large-
scale task allocation. Meanwhile, apart from the ag-
gregation results, the task content of each TO is well
protected from the SC-server while the identity of
each TO keeps confidential and cannot be linked to
the task content.

• We adopt the oblivious transfer protocol to achieve
privacy-aware task secret distribution without re-
vealing which tasks the participants want to take. For
privacy-preserving data aggregation, we elaborate
some secure two-party aggregation protocols which
support representative statistics such as sum, mean,
variance, and minimum on encrypted data. More-
over, two efficient data update methods are devised
regarding two different cases.

• To the best of knowledge, this is the first secure task
allocation and data aggregation scheme to address
the privacy issues of both TOs and participants in
the MOMP and fog-assisted SC scenario. Security
analysis and experimental results also demonstrate
its security and efficiency.

The remainder of this paper is organized as follows. In
Section 2, we review the related work. Section 3 introduces
some preliminaries such as the system architecture, threat
model, design goals, and cryptography primitives. Section 4
describes the proposed scheme in detail. The security analy-
sis and performance evaluations are presented in Section 5.
Finally, Section 6 concludes the paper.

2 RELATED WORK

Existing research efforts have been devoted to privacy pro-
tection issues on different phases of general mobile crowd-
sourcing, ranging from task allocation to data collection and
data aggregation.

2.1 Privacy-aware task allocation

Various privacy protection techniques are utilized to meet
the different privacy requirements of either TOs or partic-
ipants during the task allocation phase in crowdsourcing
environments. To protect the participant’s location privacy
when requesting tasks, obfuscation [21], perturbation ([8],
[22]), and encryption-based approaches [23] were widely
employed to hide or distort the accurate location of partici-
pants. For task preferences privacy, Shin et al. [24] proposed
an anonymous network-based (e.g., Tor) privacy-preserving
framework for both task assignment and data submission,
which disassociates the participant with his/her interest-
ed/requested tasks. [25] achieved the protection of TO’s
task privacy and participant’s privacy simultaneously by
proposing a secure task matching scheme based on proxy
re-encryption. Although the server cannot learn the specific
keywords in which participants are interested, the identical
ciphertext derived from the same keyword would indicate
that a set of workers have the same task preference. To pre-
vent the privacy disclosure from task contents, Ni et al. [9]
protected the task confidentiality in two stages, which relies
on the security of q-DBDHI assumption and AFGH proxy
re-encryption, respectively. Recently, few works have stud-
ied the privacy-aware task assignment in the fog-assisted
SC, in [10], an encryption-based method was adopted for
task privacy, and enabled the assigned fog nodes and mobile
users to decrypt the task. Their solution, however, is not
secure enough as the task can also be decrypted by the
curious SC-server.

3

2.2 Privacy-aware data aggregation

Generally, existing privacy-aware data aggregation schemes
can be categorized into two groups: collection-oriented data
aggregation which focuses on collecting high-quality sensed
data, and statistic-oriented data aggregation which aims to
conduct various statistic analysis on sensed data.

For collection-oriented data aggregation, Qiu et al.
[19] proposed SLICER, which incorporates data coding
technique and message transfer strategies to achieve k-
anonymous privacy protection for multimedia data. In their
design, the authors aim to reconstruct the original multime-
dia data while maintaining high data quality and achieving
participants’ privacy protection. To improve the quality of
sensory data collected from multiple participants, the topic
of truth discovery [26] has drawn wide attention recently.
Accordingly, some researchers have proposed a series of
privacy-preserving truth discovery frameworks ([27], [28],
[29]) in order to find the truthful information of each sensing
object through reliability-aware aggregation without com-
promising user privacy.

For statistic-oriented data aggregation, Shi et al. [18]
proposed a privacy-preserving data aggregation scheme
based on data slicing and mixing techniques, which sup-
ports additive aggregation and some non-additive (such as
max/min) aggregation functions. This scheme hides the da-
ta of participants from the server by slicing data into many
parts and distributing all but one of those slices among their
neighbors. However, the collusion between neighbors and
the server would inevitably reveal users’ original data and
this solution suffers from the single-point failure problem
(i.e., the server cannot obtain correct results if any neighbor
fails to submit data). Similar problems also exist in [30],
[13]. Without involvements of neighbor participants, Li et al.
[11] adopted a secure additive homomorphic stream cipher
called CMT to provide efficient Sum and Min aggregation
on encrypted data. Nevertheless, this solution relies on a
trusted third party TTP for secrets distribution, and requires
extra communications to deal with dynamic user join-in
and leaving. Moreover, the security level would degrade
when more users collude with the server. Recently, Fan et
al. [12] proposed a novel privacy-aware and trustworthy
Sum aggregation protocol for mobile sensing, which can
protect the data privacy of benign users and detect invalid
data submitted by malicious users, even if multiple users
collude with each other. In the fog-computing environment,
Lu et al. [31] employed the homomorphic Paillier encryption
and Chinese remainder theorem to aggregate hybrid sensing
data, and early filtered the false data from unauthenticated
devices using one-way hash chain. However, these aggre-
gation protocols are limited to one or two simple statistic
computations, which is not enough for diverse statistic
analysis. As an improvement, in [15], more aggregation
computations (such as mean, variance) are supported over
ciphertexts by using BGV homomorphic encryption. For a
given task, the public key of the requested TO is sent to
the server, which is then assigned to the users for data
encryption. Obviously, both servers and users can easily
link two or more tasks to the same TO via public key. From
another perspective, instead of hiding data, [14] presented
an anonymous data aggregation protocol that achieved n-

source anonymity. Concretely, bitwise-XOR homomorphic
encryption is adopted to recover all user data without
knowing their sources. Although this scheme can support
more aggregation operations in the plaintext, it is actually
at the cost of data confidentiality disclosure.

More importantly, we observe that the aforementioned
researches have two crucial limitations. On one hand, most
work is based on the single-server model, which inevitably
poses a heavy burden at the server and does not efficiently
fit the MOMP SC scenario. On the other hand, the privacy
of multiple TOs is not fully considered in the whole SC
process, i.e., both in task allocation and data aggregation
phases.

3 PRELIMINARIES

In this section, we give an overview of our system model, as
well as a description of the security model, design objective,
and some cryptography primitives.

3.1 System model

As shown in Fig. 1, a fog-assisted spatial crowdsourcing
system consists of a spatial crowdsourcing server (SC-
server), multiple task owners (TOs), a set of fog nodes,
multiple mobile participants, and an authority center (AC).
The elements of the system are explained below.

Fig. 1. System architecture

• Spatial crowdsourcing server (SC-server): The SC-
server provides aggregation services for TOs by as-
signing their corresponding tasks to fog nodes ac-
cording to the target area. Specifically, the SC-server
receives the encrypted data from fog nodes and joint-
ly computes the encrypted aggregated results with
fog nodes. Finally, the encrypted results are returned
to the TOs for decryption.

• Task owners (TOs): TOs can be individuals or or-
ganizations who generate spatial aggregation tasks
and aim to obtain aggregation statistics over data
collected from specific locations/areas of interests.
However, it is nontrivial to accomplish these tasks
individually due to their limited storage and com-
putation capability. Hence, TOs release their tasks on

4

a SC-server along with some reward information (to
incentivize users participation).

• Fog nodes: In fog-assisted crowdsourcing, the fog
nodes are deployed at the edge of network and act
as the relay between the SC-server and mobile par-
ticipants. Particularly, each fog node manages a geo-
graphical area and is in charge of task distributions
in its covering area. It collects encrypted sensing data
from mobile participants and collaborates with the
SC-server to accomplish some computations, which
are then sent to the SC-server for further processing.
Particularly, fog nodes are able to detect invalid (e.g.,
modified) data from adversaries.

• Mobile participants: Mobile participants or users1

are those who carry mobile sensing devices and can
flexibly perform sensing tasks according to their own
willingness (e.g., if the given rewards are sufficient to
compensate their sensing cost). To protect their data
privacy, sensing data are encrypted before submitted
to the fog nodes.

• Authority center (AC): The AC is responsible for
bootstrapping the whole system, registering all sys-
tem entities, and distributing corresponding keys
to them. After that, it will be offline and does not
participate in the crowdsourcing process.

3.2 Security model and assumptions
In our security model, the AC is considered fully trusted and
will not be attacked by any adversary, since it manages all
system parameters and keys. We assume that the TOs, the
SC-server, fog nodes, and mobile participants are all honest-
but-curious, which means that they will strictly conform to
the designated protocols and honestly calculate the aggre-
gated results, but try to infer more privacy of others, based
on the information they hold.

Security threats come from two aspects: external and
internal attacks. More specifically, external attackers may
eavesdrop on communication channels to intercept the en-
crypted sensing data, intermediate and aggregated results.
Moreover, they may disguise as legitimate and authorized
participants to submit false data to the fog nodes. On the
other hand, internal attackers could be any system entity
except for the AC. For example, a task owner may want to
learn the aggregated results of some tasks issued by other
TOs. The mobile participants may also try to know other
sensing data and TOs’ aggregated results. The SC-server and
fog nodes are both curious to know more sensitive infor-
mation (e.g., identity, health status, and location) about TOs
and participants by tracking their interested tasks or sensing
data. We assume that there is no collusion between the SC-
server and any fog node, which is a common assumption in
threat models used in cryptographic protocols [32].

3.3 Design objective
Based on the aforementioned system and security models,
we aim to design a privacy-aware task allocation and data
aggregation scheme in fog-assisted SC. Particularly, we aim
to achieve the following three objectives:

1. We use mobile users and participants interchangeably in this
paper.

1) Privacy preservation. Our scheme should meet two
aspects of privacy requirements as below.

• Privacy of TOs. During the task allocation
phase, the SC-server cannot learn the exact
task content of TOs. Although it is inevitable
for the SC-server to know the exact fog n-
odes to which tasks are sent, neither the SC-
server nor a fog node is aware of the tasks
assigned to a given participant. Conversely,
the participants and fog nodes do not know
the owner(s) of their assigned task(s). During
the data aggregation phase, the aggregated
results are not revealed to any entity except
for the TO generating the aggregation task.

• Privacy of participants. Neither the SC-server
nor a fog node can infer if a given participant
has been assigned specific task(s), or deter-
mine whether two tasks have been assigned
to the same participant. Moreover, the sensing
data of participants should be kept confiden-
tial from other entities.

2) Security. Unauthorized participants or external ad-
versaries cannot forge or modify the sensing data
without being detected.

3) Efficiency. The computation cost of our proposed
scheme should be as less as possible at each entity,
especially at the mobile users.

3.4 Cryptography primitives

1) Bilinear Pairing [33]: Let G1,G2 and GT be three
multiplicative cyclic groups with the same prime
order p, where p is κ bits, G1 and G2 are generated
by g and h, respectively. A bilinear pairing is a map
e : G1 ×G2 → GT with the following properties:

• Bilinearity: e(ga1 , g
b
2) = e(g1, g2)

ab for all g1 ∈
G1, g2∈G2 and random numbers a, b ∈ Z∗

p;
• Non-degeneracy: There exists g ∈ G1, h ∈ G2

which satisfies e(g, h) ̸=1;
• Computability: For all g1 ∈ G1, g2 ∈ G2,

e(g1, g2) can be computed efficiently.

2) Oblivious Transfer (OT) [34]: OT is a two-party proto-
col which enables a receiver to learn one or several
input secrets of a sender while the sender does not
know which secrets the receiver has learned. More-
over, apart from the requested secrets, the receiver
cannot learn any information about other secrets.
Particularly, in the 1-out-of-N OT (OTN

1) protocol,
the sender has N input strings X1, X2, . . . , XN as
secrets, the receiver can choose one secret XI and
does not learn any information about the otherN−1
secrets. At the same time, the sender learns nothing
about the secret index I (i.e., oblivious to which
secret is transferred).

3) Distributed Two Trapdoor Public-Key Cryptosystem
(DT-PKC) [35]: DT-PKC is a state-of-the-art cryptog-
raphy primitive with additive homomorphic prop-
erty which supports secure computations in the
multi-key setting (i.e., multiple users). Compared

5

with the previous double trapdoor decryption cryp-
tosystem [36], DT-PKC further avoids the risk of the
strong trapdoor leakage by splitting the system’s
strong private key into two different shares. Hence,
it provides higher security and more suitability for
fog-assisted crowdsourcing. The main algorithms
work as follows:

• Setup(1k): Given a security parameter k, this
algorithm outputs the system parameter sp =
(q1, q2, N, g′) for DT-PKC, where q1 and q2
are two large prime numbers with k bits,
N = q1q2, and g′ is a generator of order
(q1 − 1)(q2 − 1)/2 [37].

• KeyGen(sp): Given the system parameter sp,
we compute SK = λ= lcm(q1 − 1, q2 − 1)/2
as the system’s strong private key, where lcm
denotes the least common multiple of two
numbers. For the weak private key of an
entity i, we randomly select ski=θi∈ [1, N/4]
as his/her weak private key, and compute
hi = g′θi mod N2, the corresponding public
key is pki = (N, g′, hi). In addition, we also
define a function L(x) = (x−1)/N for ease of
presentation (to be used in data decryption).

• SkeyS(λ): This algorithm splits the system’s
strong private key SK = λ into two partial
strong private keys SKj = λj(j = 1, 2),
where λ1 + λ2 ≡ 0 mod λ and λ1 + λ2 ≡
1 mod N2.

• Enc(m, pki): Given a message m ∈ ZN and
a public key pki, this algorithm chooses a
random number r ∈ [1, N/4] and outputs
the ciphertext [m]pki = (Ci,1, Ci,2), where
Ci,1 = g′rθi(1 + mN) mod N2 and Ci,2 =
g′r mod N2.

• WDec([m]pki , ski): This algorithm perform-
s decryption with the user’s weak private
key. Given a ciphertext [m]pki and a weak
private key ski = θi, it outputs m =
L((Ci,1/C

θi
i,2) mod N2).

• PSD1([m]pki , λ1): This algorithm performs
the first-step partial decryption with the par-
tial strong private key λ1. Given a ciphertext
[m]pki = (Ci,1, Ci,2) and the partial strong
private key λ1, it outputs the partial decrypt-
ed ciphertext CT

(1)
i = (Ci,1)

λ1 = g′rθiλ1(1 +
mNλ1)mod N2.

• PSD2([m]pki , CT
(1)
i , λ2): This algorithm per-

forms the second-step partial decryption with
another partial strong private key λ2. Given
the partial decrypted ciphertext CT

(1)
i , it first

executes CT
(2)
i = (Ci,1)

λ2 = g′rθiλ2(1 +
mNλ2) mod N2), then computes m =

L(CT
(1)
i · CT

(2)
i).

Additive homomorphic property: Given m1,m2 ∈ ZN

under the same pk, we have [m1]pk · [m2]pk = ((1 +
(m1 + m2)N) · hr1+r2 mod N2, g′(r1+r2) mod N2) =
[m1 + m2]pk, and ([m]pk)

N−1 = ((1 + (N − 1)mN) ·
h(N−1)r1 mod N2, g′(N−1)r1 mod N2)=[−m]pk.

For ease of presentation, the notations used in this paper
are listed in Table 1.

TABLE 1
Notation Settings

Notations Description
m Number of TOs in the system
n Number of participants in the system
di The sensing data of participant pi

λ1, λ2 Partial strong private keys
L(x) Bit-length of x

pkx, skx Key-pair (public and private keys) of entity x
[m]pki

Ciphertext of message m encrypted by pki
pkΣi

The random public key of task owner oi

4 OUR PROPOSED SCHEME

In this section, we present our Privacy-aware Task
Allocation and data Aggregation scheme (PTAA) for fog-
assisted spatial crowdsourcing. PTAA consists of five phas-
es: system initialization, task generation and allocation, data
collection and aggregation, data decryption, and additional
data update if necessary. For better understanding, we first
give a brief overview of our proposed scheme.

4.1 Overview

In the system initialization phase, the AC generates the
system parameters, registers the TOs, SC-server, fog nodes,
and mobile participants by assigning them correspond-
ing key pairs, respectively. To get the statistics of some
spatial-related data with least privacy disclosure, each TO
anonymously sends the encrypted task content and some
essential information such as aggregation types and ob-
fuscated sensing area to the SC-server. According to the
obfuscated sensing area, the SC-server first assigns tasks
to the corresponding fog nodes who can decrypt the task
content and further publicize them to the local mobile
participants2. Particularly, if a participant wants to take
some sensing tasks, he/she interacts with the SC-server to
obtain corresponding task secrets which are regarded as
credentials for task authorization. Meanwhile, the SC-server
cannot know which task secrets the participant requested.
To protect the data privacy during the submission phase,
each participant hides his/her sensing data with a random
number and further encrypts them with his/her public key.
For each encrypted data received, fog nodes first verify
its authenticity (really from the authorized participants),
and then collaboratively compute the encrypted aggregation
with the SC-server. Finally, the SC-server returns the result
to the corresponding TO who can decrypt and obtain the
aggregated result. In addition, if a TO wants to timely
update his/her statistic result, we present two solutions
available to efficiently deal with data updates according to
two different cases.

2. Local mobile participants mean those who are located in the
coverage area of a fog node.

6

4.2 System initialization

This phase is run by the AC which consists of two steps.
First, the AC generates necessary parameters and secrets
for the system. We call this step Setup. Next, it registers
all entities (including the TOs, SC-server, fog nodes, and
mobile participants) into the system and assigns them the
corresponding keys. We call this step Entity registration and
key distribution.

1) Setup: Given the security parameters κ and
k, the AC first generates the bilinear parameters
(G1,G2,GT , e, g, h, p,G), where G1,G2, and GT are three
multiplicative cyclic groups with the same prime order p,
e : G1 × G2 → GT, g and h are the generators of G1

andG2, respectively, and G = e(g, h). The AC randomly
chooses a ∈ Z∗

p as its secret key and calculates its public key
A = ha. Next, the AC generates the DT-PKC parameters
sp = (q1, q2, N, g′) by performing the algorithm Setup(1k),
as introduced in Section 3.4.

2) Entity registration and key distribution: For the SC-
server, the AC will issue a pair of keys for task encryption
and decryption during the registration phase. Specifically,
the AC randomly chooses s ∈ Z∗

p as the SC-server’s secret
key and computes S = gs as the public key. For each TO
oj and mobile participant pi, the AC registers them by ex-
ecuting KeyGen(sp) and sending (skoj , pk

o
j) and (skpi , pk

p
i)

to them, respectively. Note that, the system’s strong private
key SK = λ is also split into λ1 and λ2 using algorithm
SkeyS(λ) after this process. Regarding each fog nodes fi,
the AC randomly selects ρi ∈ Z∗

p as the private key and
computes its public key gρi . Moreover, the AC picks a
random number α ∈ Z∗

p and computes A′ = (gα)1/a. α
is sent to all fog nodes while A′ is sent to the SC-server.

4.3 Task generation and allocation

After system initialization, in this phase, any TO with
statistic task requirements will generate his/her task and
outsource it to the SC-server. Then our PTAA performs two-
step task allocation from the SC-server to the mobile users
via a set of fog nodes, while the privacy of TOs and mobile
users are well protected.

1) Task generation: Without loss of generality, we assume
that there are m TOs in the system, denoted as O =
{o1, o2, . . . , om}. If a TO oi ∈ O wants to get the statistic
information of some sensed data in a specific area, he/she
first generates a spatial task τi = (τ ci , τ

o
i , τ

l
i , τ

t
i), where

τ ci denotes the sensing content (e.g., temperature) of task
τi, τoi represents the aggregation/statistic operation (e.g.,
sum, average) to be performed, τ li and τ ti denote the exact
sensing location/area and expiration time, respectively. In
addition, oi also chooses a nonce ςi ∈ [1, N/4] and computes
a random public key pkΣi = (N, g, hΣi = g(θoi+ςi)/2),
which is used to re-encrypt the intermediate data during
aggregation (to be described in Section 4.4). Note that the
randomness of the public key prevents adversaries from
inferring if two tasks are from the same TO. To protect the
task privacy, oi picks two random numbers r1, r2 ∈ Z∗

p and
encrypts τi as follows.

c1 = (τ ci ||τ li ||τ ti)e(S, h)r1Gr2 , c2 = hr1 , c3 = Ar2 . (1)

To enable the SC-server to assign tasks to the qualified
fog nodes without any disclosure of the exact sensing lo-
cation/area, τ li is replaced by an obfuscated sensing area τ ri ,
indicating that by which fog node τ li is covered. Finally, oi
sends the message (c1, c2, c3, τ

o
i , τ

r
i , pkΣi) to the SC-server.

Note that τoi is inevitably revealed to the SC-server for the
implementation of aggregation analysis.

2) Privacy-aware task allocation: After receiving the above
information, the SC-server assigns these tasks to the cor-
responding fog nodes who then further distribute them to
the local participants in a privacy-preserving way. Without
loss of generality, we assume that the SC-server holds a
set of tasks T = {τ1, τ2, . . . , τm} which is identified with
the corresponding indices and there is a set of fog nodes
F = {f1, f2, . . . , fk} in the system. For any task τi ∈ T , the
SC-server assigns τi to a set of qualified fog nodes, denoted
as Fi that is located in τ ri . Concretely, it first calculates
c′1 = e(A′, c3), where A′ is distributed by the AC before.
Then, for each qualified fog node fj ∈ Fi, it computes the
following formula:

φj = e(gρj , c2)
s. (2)

Obviously, we have φj = e(gρj , hr1)s =Gρj ·r1·s accord-
ing to the bilinearity property. Finally, the SC-server sends
(i, c1, c

′
1, φj , pkΣi , τ

o
i) to fj .

Upon reception, fj performs decryption with its private
key ρj and α, and gets the specific task requirements as
follows:

τ ci ||τ li ||τ ti =
c1

c
′1/α
1 · φ1/ρj

j

. (3)

Subsequently, fj publicizes the decrypted task require-
ments to its local participants and allocates them the corre-
sponding tasks by issuing them task secrets. Task autho-
rization is essential to thwart attacks from unauthorized
participants. Suppose that there are ηj tasks τ1, τ2 . . . , τηj

distributed to fj , if a participant pi located in the covering
area of fj wants to take some tasks, he/she first sends a task
request message to fj with his/her real identity. If fj accepts
the request3, pi will interact with fj and obtain the desired
task secrets without revealing which secrets are requested.
Particularly, we adopt the OT protocol [34] which uses
OT 2

1 as the primitive [38] to achieve privacy-aware secret
acquisition. As shown in Algorithm 1, fj first computes
ηj commitment keys in the initialization phase (Line 1-6).
Note that to further reduce the key size, a0j can be set as 1
for all j ∈ [1, ℓ] without compromising the system security.
In the transfer phase (Line 7-14), fj and pi need to jointly
perform OT 2

1 protocol ℓ times, in which pi should pick a
ij
j rj

if he/she wants to learn any XI . Finally, pi can reconstruct
KI and use it to open the corresponding commitment YI .

4.4 Data submission and aggregation
In this phase, the participants send their encrypted data to
the fog node(s) along with some verification information.
The fog node(s) will verify the data integrity and aggregate
all data according to the specified operation requirement,
while not knowing each participant’s data.

3. The fog node can decide whether to accept the task request
according to many factors such as the trust level of participants. This
line of work is orthogonal to ours.

7

Algorithm 1: Privacy-aware Task Secret Acquisition
Input: fj has ηj task secrets X1, X2, . . . , Xηj , where

ηj = 2ℓ.
Output: pi obtains the desired task secret XI .

1 Generate ℓ random key pairs (a01, a
1
1), . . . , (a

0
ℓ , a

1
ℓ);

2 for all I ∈ [1, ηj] do
3 ⟨i1, i2, . . . , iℓ⟩ ← the bits of I ;

4 Compute KI =gΠ
ℓ
j=1a

ij
j and YI =commitKI

(XI);
5 end
6 Sends the commitments Y1, Y2, . . . , Yηj to pi;
7 if pi wants to participate in task I then
8 fj chooses random elements r1, r2, . . . , rℓ;
9 end

10 for each j ∈ [1, ℓ] do

11 OT 2
1 [fj , pi]

pick→ a
ij
j rj ;

12 end
13 fj sends g1/r1r2···rℓ to pi;
14 pi reconstructs KI = (g1/(r1r2··· rℓ))(a

i1
1 r1)···(a

iℓ
ℓ rℓ) and

opens the commitment YI and reveal XI ;

Assuming that pi has obtained data di for a task τj , to
protect the data confidentiality, pi first chooses a random
number ri and encrypts di with his/her public key pki
to get µi = [di + ri]pki . Then, pi needs to compute some
verification information to allow the fog node to validate
the data integrity. Specifically, pi generates a hash message
authentication code (HMAC) for µi under the task secret
key Xj : hi =HMACXj (j|µi|ri|ti), where j is the identifier
of task τj and ti is the current time slot. Finally, pi sends the
message (j, µi, ri, hi) to the corresponding fog node fj ∈ Fj

with a randomly generated pseudonym.
When fj receives all messages from the participants, it

first verifies if the received data are really from authorized
participants and are not tampered with by any adversary.
Specifically, fj finds the jth task secret Xj and computes
h′ =HMACXj (j|µi|ri|ti) based on the current time slot.

Then, it checks h′ ?
= hi, if this equation holds, µi is con-

sidered authentic without being falsified. Otherwise, µi is
considered invalid and will be rejected.

Subsequently, fj starts to aggregate all valid data accord-
ing to τoj with the assistance of the SC-server. Concretely, we
formally illustrate several aggregation protocols for some
representative statistics such as computing sum, mean, vari-
ance, minimum and maximum.

Sum. Suppose that there are a set of participants N =
{p1, p2, . . . , pnj} submitting data to fj for oi’s task τj . Al-
gorithm 2 describes the secure sum aggregation protocol,
which allows fj to get the encrypted summation of all
sensed data [

∑
pi∈N

di]pkΣi
.

Firstly, each encrypted data µi = [di + ri]pki is partially
decrypted by fj using λ1, and the intermediate result µ′

i is
sent to the SC-server along with µi. Then, the SC-server can
decrypt µ′

i and get µ′′
i = di + ri with λ2, after which the

summation of µ′′
i (denoted by S in Line 10) is computed

for all pi ∈ N . The SC-server re-encrypts the summation S
with the random public key of oi and sends it to fj . Upon
receiving [S]pkΣi

, fj first calculates the summation of all

Algorithm 2: Secure Sum Aggregation (SSA)

Input: fj has λ1, pkΣi ,
∪

pi∈N
ri,

∪
pi∈N

µi; SC-server has

λ2, pkΣi .
Output: The encrypted summation of data

[
∑

pi∈N
di]pkΣi

.

1 // Fog node fj ;
2 for all pi ∈ N do
3 µ′

i ← PSD1(µi, λ1);
4 Send (µi, µ

′
i) to the SC-server;

5 end
6 // SC-server;
7 for all pi ∈ N do
8 µ′′

i ← PSD2(µi, µ
′
i, λ2);

9 end
10 S ←

∑
pi∈N

µ′′
i ;

11 Compute [S]pkΣi
;

12 Send [S]pkΣi
to fj ;

13 // Fog node fj ;
14 Compute R←

∑
pi∈N

ri and [R]pkΣi
;

15 [
∑

pi∈N
di]pkΣi

← [S]pkΣi
· ([R]pkΣi

)N−1;

random numbers, which is also encrypted with pkΣi (Line
14). Finally, according to the homomorphic property, fj
can remove the random numbers and obtain the encrypted
summation of all sensed data (Line 15).

Algorithm 3: Secure Mean Aggregation (SMA)

Input: fj has λ1, pkΣi ,
∪

pi∈N
ri,

∪
pi∈N

µi; SC-server has

λ2, pkΣi .
Output: The encrypted approximate mean of data

[d]pkΣi
.

1 // Fog node fj and SC-server;
2 [D]pkΣi

← [
∑

pi∈N
di]pkΣi

;

3 // Fog node fj ;
4 x← 1/|N |;
5 x← (m, e) such that x = m · βe;
6 Compute [m]pkΣi

, [e]pkΣi
← ([−e]pkΣi

)N−1;
7 // Fog node fj and SC-server;
8 [m′]pkΣi

← SM([m]pkΣi
, [D]pkΣi

);
9 [d]pkΣi

← ([m′]pkΣi
, [e]pkΣi

);

Mean. Intuitively, we can derive the mean easily via
division in the plaintext domain when given the sum and
the number of participants. However, it is hard to derive
the encrypted mean given the encrypted sum and number
because DT-PKC does not directly support division com-
putation in the ciphertext domain. Although secure multi-
plication SM protocol in [39] is an alternative to compute
the encrypted mean by converting the division operation to
the multiplication operation, it cannot be applied directly
since SM only supports computations on BigInteger. In-
spired by the IEEE 754-2008 standard for the floating-point
arithmetic, we convert the floating-point number 1/|N | into
two integers m and e, which represents its integral signifi-

8

cand and exponent, respectively. As shown in Algorithm 3,
x = m · 10e and we then compute two ciphertexts [m]pkΣi

and [e]pkΣi
(Line 6). Note that [e]pkΣi

can be derived from its
encrypted inverse [−e]pkΣi

since e < 0. Finally, the fog node
and the SC-server jointly compute the encrypted integral
significand of the mean value (i.e., [m′]pkΣi

) by running the
SM protocol which outputs [D · m]pkΣi

. Correspondingly,
the encrypted mean, denoted as [d]pkΣi

, can be represented
by two encrypted integers [m′]pkΣi

and [e]pkΣi
. In this case,

oi can recover the mean value by computing m′ · 10e after
decryption.

Algorithm 4: Secure Variance Aggregation (SVA)

Input: fj has λ1, pkΣi ,
∪

pi∈N
ri,

∪
pi∈N

µi, [d]pkΣi
;

SC-server has λ2, pkΣi .
Output: The encrypted approximate variance

[
∑

pi∈N
(di − d)2/N]pkΣi

.

1 // Fog node fj ;
2 Choose a random number r ∈ ZN and
r ≥ max(

∪
pi∈N

ri), and compute [r · 10−e]pkΣi
;

3 M ← [m′]pkΣi
· [r · 10−e]pkΣi

;
4 M ′ ← PSD1(M,λ1);
5 for all pi ∈ N do
6 Compute Ri = (r − ri) · 10−e;
7 µ′

i ← PSD1(µi, λ1);
8 Send (M,M ′, µi, µ

′
i) to the SC-server;

9 end
10 // SC-server;
11 M ′′ ← PSD2(M,M ′, λ2);
12 for all pi ∈ N do
13 µ′′

i ← PSD2(µi, µ
′
i, λ2);

14 Xi ← [M ′′ − µ′′
i · 10−e]pkΣi

,
Yi = [(M ′′ − µ′′

i · 10−e)2]pkΣi
;

15 Send Xi, Yi to fj ;
16 end
17 // Fog node fj ;
18 for all pi ∈ N do
19 Zi ← Xi · [Ri]

N−1
pkΣi

;

20 Z ′
i ← Yi · ZN−2Ri

i · [R2
i]

N−1
pkΣi

;
21 end
22 Z ←

∏
pi∈N Z ′

i;
23 Execute Line 4-9 in SMA ;
24 [

∑
pi∈N

(di − d)2/nj]pkΣi
← ([m′′]pkΣi

, [3e]pkΣi
);

Variance. Algorithm 4 shows our secure variance aggre-
gation protocol (SVA) which is based on the execution result
of SMA. Given the encrypted average value [d]pkΣi

, the
basic idea is to first compute the encrypted sum of square
[
∑

pi∈N
(di − d)2]pkΣi

, and then derive the encrypted variance

leveraging the SMA protocol.
It is noted that [d]pkΣi

is represented by
([m′]pkΣi

, [e]pkΣi
), in which m′ is 10−e times as large

as the actual mean value and decides the result of variance.
Hence, we focus on considering [m′]pkΣi

in the variance
computation. As presented in Algorithm 4, fj initially hides

the mean d by choosing a random number r > max(
∪

pi∈N
ri)

(to ensure that Ri > 0). For consistency, r is also increased
to 10−e times before encryption. After getting M , M and µi

are both partially decrypted using λ1, and the intermediate
results are then sent to the SC-server. Using λ2, the SC-
server can further decryptM ′, µ′

i and getM ′′=(d+r)·10−e

and µ′′ = di + ri, respectively. Subsequently, the SC-server
encrypts M ′′−µ′′ · 10−e and (M ′′−µ′′ · 10−e)2 with pkΣi ,
after which the ciphertexts are sent to fj . At the fog node,
the random numbers are further removed and we get
Z ′
i = [(m′ − di · 10−e)2]pkΣi

(Line 20). For each pi ∈ N ,
we can get the encrypted sum of squares by multiplication
(Line 22). Finally, following Line 4-9 in SMA, the encrypted
variance of all sensed data can be derived and represented
by ([m′′]pkΣi

, [3e]pkΣi
), where m′′ is 10−3e times as large as

the actual variance.
Minimum. To compute the minimum value of all sensed

data, we employ a secure less than protocol SLT [35], which
is used as the building block for our secure minimum aggre-
gation protocol (SMinA). Given two encrypted data [di]pki

and [dj]pkj , SLT outputs an encrypted data [u′]pkΣi
which

indicates the relationship between di and dj . Specifically,
u′ = 0 shows that di ≥ dj while u′ = 1 shows that di < dj .

Algorithm 5: Secure Minimum Aggregation (SMinA)

Input: fj has λ1, pkΣi ,
∪

pi∈N
ri,

∪
pi∈N

µi; SC-server has

λ2, pkΣi .
Output: The encrypted minimum data

[min(
∪

pi∈N
di)]pkΣi

.

1 // Fog node fj ;
2 for i = 1 to |N | do
3 µ′

i ← PSD1(µi, λ1);
4 Send µi, µ

′
i to the SC-server;

5 end
6 // SC-server;
7 for i = 1 to |N | do
8 µ′′

i ← PSD2(µi, µ
′
i, λ2);

9 Compute [µ′′
i]pkΣi

;
10 Send [µ′′

i]pkΣi
to fj ;

11 end
12 // Fog node fj ;
13 for i = 1 to |N | do
14 [di]pkΣi

← [µ′′
i]pkΣi

· ([ri]pkΣi
)N−1;

15 end
16 // Fog node fj and SC-server;
17 x← [d1]pkΣi ;
18 for i = 2 to |N | do
19 [u′]pkΣi

← SLT(x, [di]pkΣi);
20 Z1 ← x · ([di]pkΣi

)N−1;
21 Z2 ← SM([u′]pkΣi

, Z1);
22 x← [di]pkΣi · Z2;
23 end

Based on the SLT and SM protocols, we elaborate SMinA
in detail, as shown in Algorithm 5. Given all encrypted
hidden data (µ1, µ2, . . . , µnj), fj and the SC-server first
jointly compute the original sensing data encrypted under
pkΣi (i.e., [di]pkΣi

in Line 14). Subsequently, we set the initial

9

minimum as d1 and compute its ciphertext x = [d1]pkΣi
.

For the rest encrypted data, we iteratively compute the
encrypted minimum (Line 18-23). Specifically, take the first
iteration as an example, after executing SLT protocol, we
compute Z1 = [d1−di]pkΣi

and Z2 = [u′ ·(d1−di)]pkΣi
with

SM. Finally, we set x = [di+u′ ·(d1−di)]pkΣi
by performing

ciphertext multiplication. It is obvious that if d1 < di,
we have x = [d1]pkΣi

as the encrypted minimum since
u′ = 1 when the above inequality satisfies. Through |N |− 1
iterations, the encrypted minimum can be derived. For
secure maximum aggregation, we only need to make two
modifications in Line 20 and Line 22: Z1 ← ([di]pkΣi

)·xN−1,
x← x · Z2.

4.5 Data decryption and result acquisition

After obtaining the encrypted aggregated results, each fog
node fj ∈ Fi first sends the result to the SC-server. If multi-
ple fog nodes are involved in the task τj (i.e., (|Fi| > 1)), the
SC-server needs to further aggregate the encrypted result
leveraging the additive homomorphic property. Otherwise,
the SC-server directly returns the encrypted result to oi.

Upon receiption, oi can derive the final aggregated result
by executing decryption algorithm WDec() with his/her
private key θoi and the nonce ςi chosen in the task genera-
tion phase. It is noted that other TOs, except for oi, cannot
decrypt the ciphertext and obtain the correct result, as pkΣi

is only associated with the random public key of oi.

4.6 Data update

In some cases, the TOs may need to update the aggregated
results periodically in order to get the latest statistics. It is,
however, much more costly especially for the small-portion
data update if all phases are undergoing from scratch. In this
section, we provide two alternative and efficient solutions
for data update (refer to as PPTA-DU1 and PPTA-DU2,
respectively) targeting at two different cases, depending on
whether the participants keep joining his/her chosen tasks.

According to the task requirement, the fog nodes broad-
cast a data update request to their local participants. If a
participant pi is still willing to contribute data to task τj , in
our PPTA-DU1, he/she needs to respond to the request only
when new data is generated. Take the sum operation as an
example, assuming that pi has new data dni and old data doi ,
then he/she computes µu

i = [dni +2ri]pki · ([doi + ri]pki)
N−1,

and sends µu
i (i.e., [∆d + ri]pki , where ∆d = dni − doi)

and ri to the fog node. Following similar steps in Al-
gorithm 2, the fog node can obtain [∆d + ri]pkΣi

, with
which the updated sum can be derived by computing
[
∑

pi∈N
di]pkΣi

· [∆d+ ri]pkΣi
· ([ri]pkΣi

)N−1.

On the contrary, if pi decides to leave the task and anoth-
er participant pj wants to join, in our PPTA-DU2, pi replies
a ”leave” message attached with his/her previous encrypted
data µi = [di + ri]pki , while pj replies a ”join” message
attached with his/her encrypted data µj = [dj + rj]pkj . In
addition, both ri and rj are also sent to the fog node for
later computation. After the partial decryption at the fog
node, the SC-server can get di + ri and dj + rj by further
partial decryption. Then, it computes∆d+∆r and encrypts
it with pkΣi , where ∆d = dj − di and ∆r = rj − ri. Finally,

to obtain the update result, the fog node needs to compute
[
∑

pi∈N
di]pkΣi

· [∆d +∆r]pkΣi
· ([∆r]pkΣi

)N−1.

5 PERFORMANCE EVALUATION

In this section, we first analyze how PATT can achieve the
privacy and security goals given in Section 3.3, then we
demonstrate the efficiency of PATT in terms of computation
and communication cost through extensive experiments.

5.1 Security analysis
Privacy of TOs. In our scheme, we mainly consider three
aspects for the privacy of TOs, including identity privacy,
task privacy, and result privacy. First, besides hiding the
real identities of TOs via pseudonyms, we use the random
public key pkΣi to prevent the SC-server from inferring if
two tasks are generated by the same TO. Second, the task
contents are encrypted by TOs under public keys of both
AC (i.e., A) and the SC-server (i.e., S). Moreover, the specific
sensing location/area τ li is obfuscated with a larger area
τ ri . Therefore, the SC-server cannot obtain the detailed task
information except for the aggregation operation, which
is inevitably disclosed to ensure the successful task com-
pletion. For the next task assignment, only the qualified
fog nodes and participants in the obfuscated sensing area
can get the specific task contents without knowing their
creators (i.e., TOs). During the data aggregation phase, the
aggregated results are encrypted with pkΣi , ensuring that
only oi holding θoi and the nonce ςi can decrypt and obtain
the final results.

Privacy of participants. During the task allocation phase,
leveraging the OT protocol, the SC-server cannot learn
which task(s) a specific participant wants to take. In oth-
er words, given two tasks, the SC-server cannot derive
whether two task secrets are sent to the same participant.
In the data submission phase, each participant encrypts
his/her sensed data di by using a random number ri and
the public key pki, the different random numbers chosen by
each participant in DT-PKC make the ciphertext different
even for the same sensing data. Therefore, the fog node
or other adversaries will not be able to derive di from µi

and cannot identify whether two ciphertexts have the same
plaintext. For the data aggregation, the fog node first per-
forms partial decryption, while the SC-server can only get
the hidden plaintext after further decryption. Based on the
re-encrypted intermediate results, the fog node can obtain
the encrypted aggregation result based on the homomorphic
property of DT-PKC under the same public key. Since the
SC-server and fog nodes are non-collusive, none of them
can derive the sensing data with their owned information.

Data security. In our scheme, the participant who wants
to join task j needs to first request the corresponding task
secret Xj from the fog node. Xj is then used as the key
of HMAC which concatenates the task number j, the en-
crypted data µj , the random number rj , and the timestamp
ti together. After receiving the message {j, µj , rj , hi}, the
fog node checks if HMACXj (j|µi|ri|ti) = hi, this equation
holds only when the participant has Xj (i.e., authorized to
task j) and the submitted data are not tampered with by
adversaries. In this way, the data security is guaranteed.

10

5.2 Experiment
Simulation setup. We conducted the simulations in Java
based on JPBC library and BigInteger Class, to implement
bilinear pairing operation and DT-PKC cryptosystem, re-
spectively. In particular, the Type A elliptic curve, defined
as y2 = x3 + x with κ = 160, is used for the privacy-
aware task distribution. While the BigInteger Class in java
development kit is used for secure statistic computations,
where N is set to be 1024 bits to achieve 80-bit security
levels [40]. Moreover, we adopted 160-bit HMAC-SHA1 to
perform data verification and ensure the data integrity. In
the simulations, we varied the number of TOs m from 10 to
50 with each TO generating one spatial task for simplicity.
We assumed that there were 10 fog nodes deployed in the
spatial crowdsourcing area, and each task was uniformly
distributed to these fog nodes. On the other hand, we varied
the number of participants from 10 to 100 with an increment
of 10, and each participant randomly generated a sensing
data distributed over [0,100]. To further demonstrate the
efficiency of our data update method, the number of partic-
ipants is set from 200 to 1000 with an increment of 200. All
simulations were run on a laptop with Intel Core i7-4650U
CPU (1.7 GHz) and 8 GB RAM.

The performance metrics include running time at four
entities during the task allocation and data aggregation
phases. For each metric, we first measured the running time
of some cryptographic primitives, then evaluated the impact
of m and n (i.e., nj in this paper, we assume that the same
number of participants join any task j for easy presentation)
on above metrics. Note that, we did not take any existing
solution as the baseline for comparison, as those approaches
either fail to consider the TOs’ privacy or fit for our MOMP
scenario.

Simulation results. We demonstrate the efficiency of our
proposed scheme from the following four performance met-
rics.

1) Basic cryptographic primitive performance: Table 2 shows
the running time of some basic cryptographic primitives
such as bilinear pairing, HMAC, and different encryption
and decryption operations in our protocol. The result is
averaged over 100 runs.

TABLE 2
The performance of basic cryptographic primitives (ms)

Oper. time Oper. Time Oper. Time
Pairing 16 Exp 15 HMAC 0.8
Enc1 20 Enc2 32 PSD1 10
PSD2 35 Dec1 6 Dec2 38

Here, Exp represents the exponentiation operation on the
ciphertext. Enc1 and Enc2 denote one-time task and data
encryption at TO and participant, respectively. PSD1 and
PSD2 denote the first and second partial decryption, respec-
tively performed at the fog node and the SC-server in our
protocol. Last, Dec1 denotes the final decryption of integer
aggregation result, while Dec2 is for decryption operation
of float-point number result such as mean and variance.
As we observe, the results demonstrate that decrypting
the encrypted float-point number is most costly, while data
encryption at the participant and partial decryption at the
SC-server show comparable overhead. In contrast, HMAC
is much more efficient with the lowest computation cost.

2) Cost of task allocation: In this paper, we mainly evaluate
the computation time of the first-step task allocation (SC-
server to fog nodes), as the cost in the second-step allocation
(fog nodes to participants) depends on the OT protocol
which has been analyzed in [34]. Fig. 2 shows the impact
of m on the computation time at the SC-server and one
qualified fog node, respectively. We observe that the running
time of both SC-server and fog node increases with m. This
is obvious due to the fact that the SC-server and the fog node
need to perform proportional encryptions and decryptions
with more tasks. Comparing the SC-server to the fog node,
we note that the SC-server takes more time than the fog
node. This is as expected, because the SC-server needs to
perform more calculations than the fog node. For each task
with k qualified fog nodes, the SC-server conducts k+1
pairing and k exponentiation operations, while each fog
node mainly conducts two exponentiation operations when
decrypting a task.

10 20 30 40 50
m

0

100

200

300

400

500

600

700

800

900

C
om

pu
ta

tio
n

co
st

 in
 th

e
ta

sk
 a

llo
ca

tio
n

(m
s)

SC-server
Fog node

Fig. 2. The computation cost in the task allocation phase

3) Cost of data encryption: To demonstrate the user side
efficiency during data submission and aggregation phase,
we show in Fig. 3 the cost of data encryption at each user
with respect to the number of tasks each user takes during
data submission, as users are not involved in any compu-
tation of data aggregation. As we can see, the computation
cost of data encryption linearly grows when each user takes
more tasks. This is obvious since more data needed to be
encrypted. When there are 50 tasks, the running time is
about 1600ms, which is consistent with the result (Enc2)
tested in Table 2.

3) Cost of data aggregation: Fig. 4 plots the running time
of our four statistic aggregation protocols, respectively. To
evaluate the efficiency of our secure aggregation scheme,
we mainly compare the computation cost with varying n at
the SC-server and the fog node who are two leading roles in
our protocol execution.

Cost of sum aggregation. As we observe in Fig. 4(a), the
result of the impact of n is consistent with the result in Fig.2,
and the computation cost on both sides linearly increases as
n grows. However, the SC-server’s computation cost is more
costly and grows more rapidly than the fog node, despite of
the same number of partial decryption and encryption. This
is because each PSD2 at the SC-server takes much more time
(about three times as shown in Table (2) than each PSD1 at
the fog node. Thus the second partial decryption dominates

11

10 20 30 40 50
m

0

200

400

600

800

1000

1200

1400

1600

1800

C
os

t o
f e

nc
ry

pt
io

n
at

 e
ac

h
pa

rti
ci

pa
nt

Fig. 3. The computation cost in the task allocation phase

the SC-server’s cost and is nearly three times as much as
that at the fog node. It is observed that when n = 100, the
computation costs of the SC-server and the fog node are
3300ms and 1200ms, respectively.

10 20 30 40 50 60 70 80 90 100
n

0

1000

2000

3000

4000

C
om

pu
ta

tio
n

co
st

 o
f s

um
 (m

s)

(a)

SC-server
Fog node

(b)

SC-server Fog node
Entities

0

100

200

300

C
om

pu
ta

tio
n

co
st

 o
f m

ea
n

(m
s)

10 20 30 40 50 60 70 80 90 100
n

0

5000

10000

15000

C
om

pu
ta

tio
n

co
st

 o
f v

ar
ia

nc
e

(m
s) (c)

SC-server
Fog node

10 20 30 40 50 60 70 80 90 100
n

0

1

2

3

4

C
om

pu
ta

tio
n

co
st

 o
f m

in
im

um
 (m

s) 104 (d)

SC-server
Fog node

Fig. 4. The computation cost of four statistic aggregations

Cost of mean aggregation. As illustrated in Algorithm
3, our mean computation is based on the result of sum
aggregation, it is observed that the impact of n on the
cost of mean depends on its impact on the cost of sum
aggregation. Therefore, we omit the impact of n and show
the cost of mean aggregation at two entities when given the
encrypted sum and n. As shown in Fig. 4(b), the fog node
takes more running time (about 250ms) than the SC-server
(about 90ms) when computing the encrypted average value
(Algorithm 3), the reason is that SM protocol requires more
computations at the fog node [39], moreover, the fog node
first needs to convert the float-point number 1/|N | into two
encrypted BigInteger [m]pkΣi

and [e]pkΣi
, which induces

extra computation cost.
Cost of variance aggregation. Fig. 4(c) shows the impact of

n on the cost of variance computation, which is consistent
with the results in Fig. 3(a). Interestingly, we observe that
the fog node shows slightly more running time than the SC-
server, although more cost is incurred at the SC-server for
PSD2. The reason is that the fog node requires to perform

extra 3n exponentiation operations (each accounts for about
50% running time of PSD2) on the ciphertexts (Line 18-21,
Algorithm 4), hence offsets the more computation cost of
PSD2. Moreover, as shown in Fig. 4(b), SMA induces more
cost at the fog node. Therefore, finally, the fog node and the
SC-server present comparable computation cost. When n =
100, the computation cost at the SC-server is only 500ms
more than that at the fog node.

Cost of minimum aggregation. Regarding the computa-
tion cost of minimum aggregation, as shown in Fig. 4(d),
one straightforward observation is that the computation
cost at the SC-server and the fog node both grows with
increasing n, which is in accord with the aforementioned
results. However, another observation is that the fog node
incurs much more computation cost than the SC-server.
This is reasonable due to the fact that the fog node needs
another (2n-1) exponentiation operations (Line 14 and Line
20, Algorithm 5). In addition, both sub-protocols SLT and
SM require the fog node to perform more computations
than the SC-server. When n = 100, it takes 6000ms more
than the SC-server, which are 32000ms and 26000ms at the
fog node and the SC-server, respectively.

4) Cost of data updates: Finally, we evaluate the per-
formance of our scheme in dealing with data updates.
For better demonstration of our efficiency, we assume that
there are 1000 participants in the system and simulate
the computation cost with varying number of participants
who really need to update their data. Take sum aggre-
gation as an example, Fig. 5 compares the computation
cost for data updates in the first case (i.e., some partici-
pants generate new data and no participants leave or join
the system) with our PTAA-DU1 and without PTAA-DU1
(i.e., re-executing all operations), respectively. We observe
that the total update cost at participant (Fig. 5(a)) in our
scheme grows as an increasing amount of new data is
generated, while the same cost is induced regardless of the
updated participants without our update method. When the
number of updated participants is more than 800, using
PTAA-DU1 incurs more computation cost. This is because
for n′ updated participants, our update method requires
n′(Enc2+Exp) computations, whereas re-execution requires
nEnc2 computations (n′ ≤ n). At the fog node and the
SC-server, PTAA-DU1 exhibits better performance with no
expensive computations induced in sum aggregation (Fig.
5(b), 5(c)). As a result, from the perspective of the whole
update process, our solution still significantly reduces the
overall computation cost (about 37.7% when all old data are
updated), as presented in Fig. 5(d).

Similarly, Fig. 5 shows the total computation cost for data
updates in the second case (some participants leave and
others join the system) with PTAA-DU2 and without PTAA-
DU2, respectively. It is clear to see that the computation
costs at three entities (Fig. 6(a)∼(c)) are much less using
our PTAA-DU2 than re-computations, especially when the
number of newly joined participants is small. With the
increased number of new (old) participants joining (leaving)
the system, the computation cost in our scheme all increases
and reaches the highest when all participants are updated,
which is the same as the running time of re-execution.
This is consistent with the fact that our scheme requires
n’Enc2 computations for n′ newly joined participants,

12

(a)

200 400 600 800 1000
Number of updated participants

0

1

2

3

4

5

C
om

pu
ta

tio
n

co
st

 a
t p

ar
tic

ip
an

t (
m

s) 104

With PTAA-DU1
Without PTAA-DU1

(b)

200 400 600 800 1000
Number of updated participants

0

1

2

3

4

C
om

pu
ta

tio
n

co
st

 a
t f

og
 (m

s)

104

With PTAA-DU1
Without PTAA-DU1

(c)

200 400 600 800 1000
Number of updated participants

0

1

2

3

4

C
om

pu
ta

tio
n

co
st

 a
t S

C
-s

er
ve

r (
m

s) 104

With PTAA-DU1
Without PTAA-DU1

(d)

200 400 600 800 1000
Number of updated participants

0

2

4

6

8

O
ve

ra
ll

co
m

pu
ta

tio
n

co
st

 (m
s)

104

With PTAA-DU1
Without PTAA-DU1

Fig. 5. The computation cost of data update (case 1)

while re-execution requires nEnc2 computations (n′ ≤ n).
Meanwhile, in PTAA-DU2, extra n′PSD1+Enc2+Exp and
n’PSD2+Enc2 computations are performed at the fog n-
ode and the SC-server, respectively. In contrast, it takes
nPSD1+Enc2+Exp and nPSD2+Enc2 computations to re-
execute the SSA protocol. As a whole, our update solution
exhibits the superiority in the total running time of data
update, which is also demonstrated in Fig. 6(d).

(a)

200 400 600 800 1000
Number of updated participants

0

1

2

3

4

C
om

pu
ta

tio
n

co
st

 a
t p

ar
tic

ip
an

t (
m

s) 104

With PTAA-DU2
Without PTAA-DU2

(b)

200 400 600 800 1000
Number of updated participants

0

5000

10000

15000

C
om

pu
ta

tio
n

co
st

 a
t f

og
 (m

s)

With PTAA-DU2
Without PTAA-DU2

(c)

200 400 600 800 1000
Number of updated participants

0

1

2

3

4

C
om

pu
ta

tio
n

co
st

 a
t S

C
-s

er
ve

r (
m

s) 104

With PTAA-DU2
Without PTAA-DU2

(d)

200 400 600 800 1000
Number of updated participants

0

2

4

6

8

O
ve

ra
ll

co
m

pu
ta

tio
n

co
st

 (m
s)

104

With PTAA-DU2
Without PTAA-DU2

Fig. 6. The computation cost of data update (case 2)

Generally, in our PTAA scheme, the time costs incurred
at the TO and the participant are much lower than that at the
SC-server and the fog node, which achieves the lightweight
participation especially for energy-constrained mobile user-
s. To further accelerate the execution of our protocol and
reduce the computation cost, some existing techniques, such
as parallel computing [41] and packing method [42], can be
employed seamlessly to our design.

6 CONCLUSION

In this paper, we propose a privacy-aware task allocation
and data aggregation scheme PTAA for fog-assisted spa-

tial crowdsourcing. PTAA adopts two-step task allocation
strategy, which enables the SC-server to allocate tasks to
qualified fog nodes without knowing the task content, and
enables the fog nodes to further allocate tasks to qualified
mobile participants without knowing if two tasks are from
the same TO or two tasks are assigned to the same user.
In the data aggregation phase, secure aggregation protocols
allow the fog node(s) and the SC-server to jointly compute
the encrypted aggregated result while ensuring the data
and result privacy of participants and TOs, respectively.
Simulation results show the scalability and efficiency of our
proposed scheme.

REFERENCES

[1] D. Yang, G. Xue, X. Fang, and J. Tang, “Incentive mechanisms
for crowdsensing: crowdsourcing with smartphones,” IEEE/ACM
Transactions on Networking, vol. 24, no. 3, pp. 1732–1744, 2016.

[2] “irain2,” http://irain.eng.uci.edu, [Online available].
[3] A. Ara, M. Al-Rodhaan, T. Yuan, and A. Al-Dhelaan, “A secure

privacy-preserving data aggregation scheme based on bilinear
elgamal cryptosystem for remote health monitoring systems,”
IEEE Access, vol. 5, pp. 12 601–12 617, 2017.

[4] “waze,” http://waze.com, [Online available].
[5] “yelp,” https://www.yelp.com/, [Online available].
[6] Y. Yang, X. Liu, R. H. Deng, and Y. Li, “Lightweight sharable

and traceable secure mobile health system,” IEEE Transactions on
Dependable & Secure Computing, vol. PP, no. 99, pp. 1–14, 2017.

[7] X. Fan, P. Yang, Q. Li, D. Liu, Y. Zhao, and Y. Zhao, “Safe-crowd:
secure task allocation for collaborative mobile social network,”
Security & Communication Networks, vol. 9, no. 15, pp. 2686–2695,
2016.

[8] H. To, G. Ghinita, L. Fan, and C. Shahabi, “Differentially private
location protection for worker datasets in spatial crowdsourcing,”
IEEE Transactions on Mobile Computing, vol. 16, no. 4, pp. 934–949,
2017.

[9] J. Ni, K. Zhang, X. Lin, Q. Xia, and X. S. Shen, “Privacy-preserving
mobile crowdsensing for located-based applications,” in IEEE
International Conference on Communications, 2017, pp. 1–6.

[10] J. Ni, X. Lin, K. Zhang, and Y. Yu, “Secure and deduplicated spatial
crowdsourcing: A fog-based approach,” in Global Communications
Conference, 2017, pp. 1–6.

[11] Q. Li and G. Cao, “Efficient and privacy-preserving data aggrega-
tion in mobile sensing,” in IEEE International Conference on Network
Protocols, 2012, pp. 1–10.

[12] J. Fan, Q. Li, and G. Cao, “Privacy-aware and trustworthy data
aggregation in mobile sensing,” in Communications and Network
Security, 2015, pp. 31–39.

[13] L. Zhang, X. Wang, J. Lu, P. Li, and Z. Cai, “An efficient privacy p-
reserving data aggregation approach for mobile sensing,” Security
& Communication Networks, vol. 9, no. 16, pp. 3844–3853, 2016.

[14] Y. Zhang, Q. Chen, and S. Zhong, “Privacy-preserving data aggre-
gation in mobile phone sensing,” IEEE Transactions on Information
Forensics & Security, vol. 11, no. 5, pp. 980–992, 2016.

[15] G. Zhuo, Q. Jia, L. Guo, M. Li, and P. Li, “Privacy-preserving
verifiable data aggregation and analysis for cloud-assisted mobile
crowdsourcing,” in INFOCOM 2016 - the IEEE International Confer-
ence on Computer Communications, IEEE, 2016, pp. 1–9.

[16] H. Jin, L. Su, H. Xiao, and K. Nahrstedt, “Inception:incentivizing
privacy-preserving data aggregation for mobile crowd sensing
systems,” pp. 341–350, 2016.

[17] Y. Sei and A. Ohsuga, “Differential private data collection and
analysis based on randomized multiple dummies for untrusted
mobile crowdsensing,” IEEE Transactions on Information Forensics
& Security, vol. 12, no. 4, pp. 926–939, 2017.

[18] J. Shi, R. Zhang, Y. Liu, and Y. Zhang, “Prisense: privacy-
preserving data aggregation in people-centric urban sensing sys-
tems,” in IEEE INFOCOM, 2010, pp. 1–9.

[19] F. Qiu, F. Wu, and G. Chen, “Privacy and quality preserving
multimedia data aggregation for participatory sensing systems,”
IEEE Transactions on Mobile Computing, vol. 14, no. 6, pp. 1287–
1300, 2015.

13

[20] L. Rodero-Merino and L. Rodero-Merino, Finding your Way in the
Fog: Towards a Comprehensive Definition of Fog Computing. ACM,
2014.

[21] K. Vu, R. Zheng, and J. Gao, “Efficient algorithms for k-
anonymous location privacy in participatory sensing,” in INFO-
COM, 2012 Proceedings IEEE, 2012, pp. 2399–2407.

[22] G. Ghinita, G. Ghinita, and C. Shahabi, A framework for protecting
worker location privacy in spatial crowdsourcing. VLDB Endowment,
2014.

[23] Y. Shen, L. Huang, L. Li, and X. Lu, “Towards preserving worker
location privacy in spatial crowdsourcing,” in IEEE Global Commu-
nications Conference, 2015, pp. 1–6.

[24] M. Shin, C. Cornelius, P. Dan, A. Kapadia, D. Kotz, and N. Trian-
dopoulos, “Anonysense: A system for anonymous opportunistic
sensing,” Pervasive & Mobile Computing, vol. 7, no. 1, pp. 16–30,
2011.

[25] J. Shu and X. Jia, “Secure task recommendation in crowdsourcing,”
in Global Communications Conference, 2017, pp. 1–6.

[26] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han, “Resolving
conflicts in heterogeneous data by truth discovery and source
reliability estimation,” in ACM SIGMOD International Conference
on Management of Data, 2014, pp. 1187–1198.

[27] C. Miao, W. Jiang, L. Su, Y. Li, S. Guo, Z. Qin, H. Xiao, J. Gao,
and K. Ren, “Cloud-enabled privacy-preserving truth discovery
in crowd sensing systems,” in ACM Conference on Embedded Net-
worked Sensor Systems, 2015, pp. 183–196.

[28] C. Miao, L. Su, W. Jiang, Y. Li, and M. Tian, “A lightweight
privacy-preserving truth discovery framework for mobile crowd
sensing systems,” in INFOCOM 2017 - IEEE Conference on Computer
Communications, IEEE, 2017, pp. 1–9.

[29] Y. Zheng, H. Duan, and C. Wang, “Learning the truth privately
and confidently: Encrypted confidence-aware truth discovery in
mobile crowdsensing,” IEEE Transactions on Information Forensics
& Security, vol. 13, no. 10, pp. 2475–2489, 2018.

[30] S. M. Erfani, S. Karunasekera, C. Leckie, and U. Parampalli,
“Privacy-preserving data aggregation in participatory sensing
networks,” in IEEE Eighth International Conference on Intelligent
Sensors, Sensor Networks and Information Processing, 2013, pp. 165–
170.

[31] R. Lu, K. Heung, A. Lashkari, and A. Ghorbani, “A lightweight
privacy-preserving data aggregation scheme for fog computing-
enhanced iot,” IEEE Access, vol. 5, pp. 3302–3312, 2017.

[32] X. Liu, B. Qin, R. H. Deng, and Y. Li, “An efficient privacy-
preserving outsourced computation over public data,” IEEE Trans-
actions on Services Computing, vol. 10, no. 5, pp. 756–770, 2017.

[33] E. J. Goh, Encryption schemes from bilinear maps. Stanford Univer-
sity, 2007.

[34] M. Naor and B. Pinkas, “Oblivious transfer with adaptive
queries,” Lecture Notes in Computer Science, vol. 1666, pp. 573–590,
1999.

[35] X. Liu, R. H. Deng, K. K. R. Choo, and J. Weng, “An efficient
privacy-preserving outsourced calculation toolkit with multiple
keys,” IEEE Transactions on Information Forensics & Security, vol. 11,
no. 11, pp. 2401–2414, 2016.

[36] E. Bresson, D. Catalano, and D. Pointcheval, “A simple public-
key cryptosystem with a double trapdoor decryption mechanism
and its applications.” in Advances in Cryptology - ASIACRYPT 2003,
International Conference on the Theory and Application of Cryptology
and Information Security, Taipei, Taiwan, November 30 - December 4,
2003, Proceedings, 2003, pp. 37–54.

[37] R. Cramer and V. Shoup, “Universal hash proofs and a paradigm
for adaptive chosen ciphertext secure public-key encryption,” in
International Conference on the Theory and Applications of Crypto-
graphic Techniques: Advances in Cryptology, 2002, pp. 45–64.

[38] M. Bellare and S. Micali, Non-Interactive Oblivious Transfer and
Applications. Springer New York, 1989.

[39] Y. Elmehdwi, B. K. Samanthula, and W. Jiang, “Secure k-nearest
neighbor query over encrypted data in outsourced environments,”
pp. 664–675, 2013.

[40] E. B. Barker, W. C. Barker, W. E. Burr, M. E. Smid, and M. E.
Smid, “Recommendation for key management, part 1: General
(revised),” NIST Special Publication,, vol. 800, no. 57, pp. 1–142,
2007.

[41] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and
V. Sunderam, PVM: Parallel virtual machine: a users’ guide and
tutorial for networked parallel computing. MIT Press, 1995.

[42] A. Liu, Z. Kai, L. Lu, and G. Liu, “Efficient secure similarity
computation on encrypted trajectory data,” in IEEE International
Conference on Data Engineering, 2015, pp. 66–77.

Haiqin Wu received the bachelor’s degree in
computer science from Jiangsu University in
June 2014. She is working towards the PhD
degree in the Department of Computer Science
and Engineering, Jiangsu University. She is cur-
rently a visiting PhD student in the School of
Computing, Informatics, and Decision Systems
Engineering, Arizona State University. Her re-
search interests include data security and pri-
vacy, mobile crowdsensing, and data query pro-
cessing.

Liangmin Wang received his B.S. degree
(1999) in Computational Mathematics in Jilin U-
niversity, Changchun, China, and the PhD de-
gree (2007) in Cryptology from Xidian University,
Xi’an, China. He is a full professor in the School
of Computer Science and Communication En-
gineering, Jiangsu University, Zhenjiang, China.
He has been honored as a “Wan-Jiang Scholar”
of Anhui Province since Nov. 2013. Now his re-
search interests include data security & privacy.
He has published over 60 technical papers at

premium international journals and conferences, like IEEE Transactions
on Intelligent Transportation Systems, IEEE Transactions on Vehicular
Technology, IEEE Global Communications Conference, IEEE Wireless
Communications and Networking Conference. Dr WANG has severed
as a TPC member of many IEEE conferences, such as IEEE ICC,
IEEE HPCC, IEEE TrustCOM. Now he is an associate editor of Security
and Communication Networks, a member of IEEE, ACM, and a senior
member of Chinese Computer Federation.

Guoliang Xue is a professor of Computer Sci-
ence and Engineering at Arizona State Universi-
ty. He received the PhD degree in Computer Sci-
ence from the University of Minnesota in 1991.
His research interests span the areas of Quali-
ty of Service provisioning, network security and
privacy, crowdsourcing and network economics,
RFID systems and Internet of Things, smart city
and smart grids. He has published over 280
papers in these areas, many of which in top con-
ferences such as INFOCOM, MOBICOM, NDSS

and top journals such as IEEE/ACM Transactions on Networking, IEEE
Journal on Selected Areas in Communications, and IEEE Transactions
on Mobile Computing. He was a keynote speaker at IEEE LCN’2011
and ICNC’2014. He was a TPC Co-Chair of IEEE INFOCOM’2010 and
a General Co-Chair of IEEE CNS’2014. He has served on the TPC of
many conferences, including ACM CCS, ACM MOBIHOC, IEEE ICNP,
and IEEE INFOCOM. He served on the editorial board of IEEE/ACM
Transactions on Networking. He serves as the Area Editor of IEEE
Transactions on Wireless Communications, overseeing 13 editors in the
Wireless Networking area. He is an IEEE Fellow.

