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The dynamics of semidilute polymer solutions are important to many polymer solution processing
techniques such as fiber spinning and solution printing. The out-of-equilibrium molecular conforma-
tions resulting from processing flows directly impact material properties. Brownian dynamics (BD)
simulations are a standard technique for studying this connection between polymer conformations
in solution and processing flows because they can capture molecular-level polymer dynamics. How-
ever, BD simulations of semidilute polymer solutions are computationally limited by the calculation
of hydrodynamic interactions (HIs) via an Ewald summed diffusion tensor and stochastic Brown-
ian displacements via the decomposition of the diffusion tensor. Techniques based on the Cholesky
decomposition scale with the number of particles N as O(N*) and approximations in the literature have
reduced this scaling to as low as O(N). These methods still require continuous updating of the diffusion
tensor and Brownian displacements, resulting in a significant constant per-time step cost. Previously,
we introduced a method that avoids this cost for dilute polymer solutions by iterative conformational
averaging (CA) of intramolecular HIs. In this work, we extend the CA method to semidilute solutions
by introducing a grid-space average of intermolecular HIs and a pairwise approximation to the Brow-
nian displacements based on the truncated expansion ansatz of Geyer and Winter. We evaluate our
method by first comparing the computational cost with that of other simulation techniques. We verify
our approximations by comparison with expected results for static and dynamic properties at equi-
librium and use our method to demonstrate the concentration dependence of HI screening. Published
by AIP Publishing. https://doi.org/10.1063/1.5041453
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Conformationally averaged iterative Brownian dynamics simulations
of semidilute polymer solutions

. INTRODUCTION

Polymer solution dynamics are of considerable relevance
to both polymer processing applications' and fundamental
polymer science.” Flows strongly affect the out-of-equilibrium
conformational motions of polymer molecules and conversely
these motions affect the rheological properties of the fluid.
This interplay between the solvent and polymer has a sig-
nificant impact on material properties in solution processing.
Of particular interest is the semidilute unentangled concen-
tration regime, which is characterized by polymer molecules
that “overlap” and exhibit a large number of intermolecu-
lar interactions.>* This contrasts from the dilute case, where
individual polymers are isolated and primarily experience
intra-molecular interactions. Processing applications of these
semidilute solutions generally involve flows which take the
solution significantly out of equilibrium,*> but even in the
equilibrium case, molecular diffusion and relaxation times
depend strongly on the polymer concentration. Due to the
ubiquity of semidiliute polymer solutions, it is important
to have physical insights into the molecular origin of their
dynamics.
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To develop this insight, experimental techniques such as
forced Rayleigh scattering,®’ pulsed field gradient nuclear
magnetic resonance,®® dynamic light scattering,'®!! and flu-
orescence correlation spectroscopy'” have all captured bulk
solution dynamics. These measurements are commonly inter-
preted in the context of fundamental theoretical models that
predict the molecular weight and concentration-dependence
of the polymer diffusion coefficient.”* Both scaling-based"?
and kinetic theories'*!> can capture the structure and dynam-
ics of semidilute solutions; namely, they show how poly-
mer solutions transition from Zimm behavior'® (used in
dilute solutions) to Rouse!” and reptation-tube behaviors'®
(used for concentrated solutions). This transition is concep-
tually captured via a length scale &, known as a correlation
“blob” that is set by the polymer concentration. Zimm behav-
ior occurs at length scales <& and concentrated (Rouse or
reptation) behavior occurs for length scales >¢. In equilib-
rium scaling arguments, this length scale is typically asso-
ciated with both structural and hydrodynamic correlations,
which are separate quantities but differ only by a factor
of order unity. These ideas hold for asymptotic limits far
from the crossover regions. Generalized scalings accounting
for the double-crossover in solvent quality and concentra-
tion have also been explored by Brownian dynamics (BD)
simulations. '’

Published by AIP Publishing.
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Bulk experimental measurements are only an indirect val-
idation of these molecular theories. To directly connect poly-
mer solution dynamics to molecular motions, fluorescently
tagged DNA chains can be directly visualized in real time
by single molecule fluorescence microscopy.”’ These single
molecule experiments have provided evidence supporting the-
oretical models including reptation in melts,’->? stretching
under transient extensional flows,?>2> and tumbling in shear
flows.?%28 Most experiments have focused on the dilute and
concentrated regimes, but recent single molecule experiments
have investigated the transition from semidilute to concen-
trated as well.”*=>? These results are similarly in agreement
with the existing scaling picture of semidilute solutions.>> It
remains unclear, however, how to extend these concepts to
more complicated situations, such as semidilute polymers with
non-linear architectures,® self-assembling structures,>* or
more generally semidilute solutions driven out-of-equilibrium.
These are persistent challenges in understanding the coupling
between polymer conformations and flow.

As an alternative to experiment and theory, simulations
are a powerful tool to obtain molecular-level information of
polymer dynamics. They allow for direct interrogation of the
underlying theoretical picture with far fewer assumptions and
resolve molecular degrees of freedom necessary to understand
more complicated or out-of-equilibrium polymer solutions.
Simulations are particularly valuable in the semidilute regime,
where accurate modeling can provide further insight into
polymer conformational dynamics. For example, simulations
have found that the transition from Zimm to Rouse dynamics
in non-dilute solutions is time-dependent as well as length-
dependent.®> Simulations of semidilute solutions in shear and
extensional flows show that the effect of concentration can
be accounted for by a rescaled Weissenburg number® which
has since been observed in experiment.’> This effect has been
confirmed by another simulation study that further explores the
complex relationship between deformation, excluded volume,
and hydrodynamics under shear flow.>” Many predictions of
scaling theory have been verified by simulation and connected
to molecular forces as well.3>°

Simulations of semidilute polymer solutions remain lim-
ited, however, because even coarse-grained polymer models
must include the effects of solvent dynamics for the long
computation times needed to capture slow polymer relaxation
modes. To capture both solvent and polymer time scales, an
“effective” solvent is used in which a stochastic displacement
accounts for solvent collisions. This solvent also must repro-
duce solvent-mediated interactions between particles, known
as hydrodynamic interactions (HIs).?> HI arises because par-
ticle motions introduce disturbance velocities in the solvent
velocity field, affecting other particles.” The effective solvent
is generally treated in one of two ways: (i) by quasi-explicitly
resolving the solvent degrees of freedom and thus capturing
HI by the exchange of momentum between the particles and
solvent and (ii) by assuming that the solvent is a continuum
and HI can be represented by an analytical expression for the
disturbance velocity.” The advantage of the first approach is
that the operation count of computing exchange between the
particles and solvent is O(N).**** The challenge in this class
of simulations is to ensure the quasi-explicit solvent correctly
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resolves the fluid inertia by careful control of the time step. In
particular, previous work has shown that accounting for vortic-
ity diffusion at all length scales in overdamped systems leads
to O(N°'3) scaling.¥

The second approach, known as Brownian dynamics
(BD), can be advantageous because it accounts for the fluid
inertia implicitly. In this case, the Langevin equation motion
for the position r; of a polymer bead i at equilibrium is?

% = —ZDUV,j(U)H/EB,-jfj, (1)
J

where the first term accounts for pair-wise forces and HI via the
diffusion tensor D. The second term accounts for the solvent
collisions with the particle by a Gaussian random force f. Fluc-
tuation dissipation requires that the noise is correlated to the
HI as D = BB” .2 Therefore, BD simulations must involve the
decomposition of the diffusion tensor. The decomposition is
typically the bottleneck in BD simulations.*® An exact imple-
mentation using Cholesky factorization leads to computational
cost which scales with the number of particles as O(N?).
More efficient techniques such as Fixman’s method*’*° and
the Krylov subspace*® use polynomial approximations to take
advantage of the fact that only the product of the decomposi-
tion and noise vector B-f is required and not the decomposition
separately. These approximations reduce the scaling of the
decomposition to O(N2~%23) 4647

In semidilute BD simulations, another significant cost is
the construction of the diffusion tensor itself. In this case, an
Ewald sum which splits the slowly convergent HI into expo-
nentially convergent real space and Fourier space contributions
is necessary. An optimized pair-wise implementation leads to
O(N'?) scaling of the Ewald sum or O(N'®) overall when
Fixman’s method*’ is used to compute the Brownian noise.
Clearly, these methods show superlinear scaling that limits BD
simulations to several thousand particles. Alternatively, the HI
can be computed by a particle mesh Ewald (PME) sum to
achieve O(N log N) scaling.”° This technique has been imple-
mented in BD simulations which achieve similar scaling-!-3?
via the Krylov subspace with PME. Ideas from explicit sol-
vent simulations have also been implemented in BD to achieve
approximately linear scaling with the number of particles.*’
Finally, alternative methods such as Lattice Boltzmann (LB)
or multiparticle collision dynamics (MPCD) that use quasi-
explicit solvent may be competitive, as shown by comparisons
performed by Jain et al.® However, this comparison was per-
formed prior to many recent developments,3>* so there is a
need for further comparison. Nevertheless, this result suggests
that there may still be significant opportunities to accelerate
BD simulations.

We propose an alternative method of accelerating BD
simulations based on physical rather than numerical approx-
imations. Specifically, we take inspiration from the classic
Zimm model,'® which pre-averages HI over the equilibrium
chain conformations. Extensive effort has historically sought
to extend this idea beyond isolated chains in equilibrium. For
example, de Gennes proposed a model for pre-averaging the
HI over the out-of-equilibrium conformation of the chain.>
This approach led to the generalized Zimm model first
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considered by Ottinger>* and later by Magda et al.>> Ottinger
further included Gaussian fluctuations in the model to account
for perturbations of the chain conformation from the average,>®
and Prakash developed a more efficient approximation which
allows for investigation of long chains and extrapolation to
universal viscometric functions.>’>® We have shown that this
concept can be extended to Brownian dynamics simulations
in an iterative Conformational Averaging (CA) method.”® The
method has been implemented for dilute linear polymer solu-
tions at equilibrium and under extensional and shear flows and
can be generalized to non-linear polymer architectures such as
rings. The computational advantage of the CA method is that
the Ewald sum and decomposition do not need to be performed
repeatedly throughout the simulation. Instead, the average HI
and decomposition are sampled over the course of the sim-
ulations and then averaged. An additional simulation is then
performed using this average to obtain a self-consistent mea-
sure of the average HI in an iterative procedure outlined in
detail in Sec. II. The sampling frequency is low enough that
the simulation is computationally limited by the integration of
the Langevin equation rather than the calculation of the HI and
decomposition.

In this work, we extend the CA method to semidilute solu-
tions, where fluctuations in the intermolecular HI preclude
simply averaging the diffusion tensor over the polymer confor-
mation as in the dilute case. Here, we introduce modifications
that allow the intermolecular HI to vary over time while retain-
ing a fast approximate measure of the HI. Additionally, we
use the truncated expansion ansatz (TEA) to pre-average the
decomposition and allow for fast calculation of the Brownian
noise. The organization of this article is as follows: In Sec. II,
we summarize the governing equations for BD simulations
and introduce our iterative conformational averaging (CA)
method. In Sec. III, we compare the computational cost and
predictions of our method to those of other methods, analyze
the results through static and dynamic properties, and compare
to experimental results. We also investigate the screening of
HI by the interaction of polymer molecules with a point force
in solution.

Il. SIMULATION METHOD
A. Governing equations

We perform equilibrium BD simulations on polymer solu-
tions of N, chains and N; coarse-grained beads per chain
such that the total number of beads is N = N,N.. The beads
have positions r;, which move according to the Langevin
equation

== > DV (D) + €. 2)
J

Tildes denote dimensionless quantities; positions are normal-
ized by the bead radius (# = r/a), energies are normalized
by the thermal energy kgT [U = UlkgT)], times are nor-
malized by the single-bead diffusion time [f = #/1), where

o = 6mna’/(kgT) and 7 is the solvent viscosity], and the
mobility matrix is normalized by the drag coefficient of the
spherical polymer beads [f)ij = D;;/(6rna)].
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The beads interact via a potential U=Us+ Ug+ Ugy
that consists of connectivity, flexibility, and excluded volume,
respectively. For connectivity, we consider a Hookean spring
potential,

~ Np
RN n o2
Us = = ;(n,l_l 2%, 3)

where 7; = [F; — 7| is the distance between beads i and j and a
large spring constant &5 = 200 is chosen so that the beads are
effectively connected by stiff springs. Flexibility is modeled
by a bending potential

- Z(e ~ 00, )

where 6; is the angle formed between the bond vectors 7; ;|
and Fi1; and 89 = 0O is the equilibrium angle. The bending
constant kg = 3.33 is chosen to give a persistence length of
approximately 3 polymer beads. Excluded volume interactions
are modeled by a Lennard-Jones (LJ) potential

S R

i>j

The strength of the potential i = 0.1 is chosen so that the chain
statistics are representative of a good solvent with the excluded
volume scaling exponent v ~ 0.58. This value is determined
from the results of single chain simulations using the scaling
relation (Reo) ~ N}, where (Ry) is the equilibrium radius of
gyration in the dilute limit.

The solvent-mediated HI and Stokes drag are included
by the mobility matrix given by the Rotne-Prager Yamakawa
(RPY) tensor,®0-01

I, i :j7
Dj=1 2 (1 + )1+ (1 - ~2)r,lry], i#),5 =2, (6)
97 3rl A . o~
(1 J)I+ 3 5 Fiitij, i#j,7; £2,
where #;; = F#;/r; is a unit vector in the direction of 7

= F; —F; and I is the identity matrix. To satisfy the fluctuation-
dissipation theorem, the Brownian noise £; is related to the
mobility tensor by (£,(1)&;(t")y = 2D;6(1 — ') and (&,(1)) =
This requires the decomposition of the moblhty matrix as
D = BB’. The Brownian noise is then f V2 B,}f],
where f; is a Gaussian random variable with mean 0 and
variance 1.

Polymers are simulated in a cubic box of size V = L3
with periodic boundary conditions. The size of the box is
determined by V = N /¢, where ¢ is the monomer con-
centration. We set the normalized concentration ¢/¢* where
& = Np/(4/3n(Ry0)?) is the overlap concentration.

The long-range nature of HI is accounted for by an Ewald
summed RPY tensor as formulated by Beenakker®? and later
corrected for bead overlap by Jain et al.3® This accounts for
interactions between beads inside the primary image simula-
tion box and all periodic replicas of the primary image. The
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Ewald sum overcomes the slow convergence of the HI by
splitting the sum into real space and reciprocal space parts
which both decay exponentially. Accounting for the correc-
tion due to self-interaction gives the mobility matrix in three
terms

D; =D} + D" + D7, Q)
self 6 40 3)
D 1 - —a+—=a’|6;l,
A e
~ real -
D" = ) MY Fy), @®)
nez?
= reci] 1 -7 = I
Diij = 6 Z exp(—ik, - rij)Mg)(k/l)-
ka#0

The parameter a determines the computational load of the
real space and reciprocal space sums by their convergence
rates. We choose @ = 6/L for our simulations which has been
shown to provide a good balance between the two sums.>® The
vector n = (ny, ny, n;) with integer components specifies all
images including the primary image. The prime on the sum
over n in the real space term indicates that the primary image
n = (0, 0, 0) is omitted for i =j. MS) is a 3 X 3 matrix and a
function of the vector between the images of beads i and j, 7
= i‘j —Fi+nL,

=2
MPF = [Clerfc(a7)+C M]
\r
252
+ | Cyerfe(ar) + a;L\/;”)]ﬁ )
The parameters Cj...Cy4 are given by
SRR
C = -
-, F<2
74 3-2 5.2 9 3, @
Cr =4a'7F +3a°7 - 20077 — za + 14a” + =,
2 2 10
33 = (10)
B F T 33 v > 2,
C3 - 37 F<2
32 rs 2z,
3 3
Cy = —4a7# = 3077 + 162°F + Ea —2a° - ~—62l.
F

In the reciprocal space sum, k, = 27”1 andl € Z3. The 3 x 3

. 2) . .
matrix M E,) is given as

M =m§3>(1— (11)

kak,
)

where k = |k| and m(, is given as

k2 K2k \6r —i2

(2)

=[1- 1+ —+—|—exp|— | (12
Ma ( 3)( 4a? 8a4)k2 eXp(4a2) (12)

The Ewald sum is optimized following the procedure of Jain
et al.*® to minimize computational time while ensuring the
sum has converged to an error of approximately 1074,

B. Iterative conformational averaging method

The computational bottleneck in BD simulations is
typically the decomposition of the mobility matrix to
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calculate the correlated Brownian noise. Progress towards
overcoming this bottleneck by mathematical approximations
is discussed in the Introduction. In this work, we instead
make a physical approximation by assuming that hydrody-
namic interactions can be conformationally averaged (CA)
over the structure of the polymer chain and the neighboring
molecules. An averaged form of the Brownian noise is also
used to maintain fluctuation-dissipation. The advantage of this
approximation is that the HI and Brownian noise do not need
to be explicitly computed throughout the simulation. The CA
method requires relatively infrequent sampling of the HI to
provide a sufficient average over the conformational space of
the solution structure. The challenge is that there is a self-
consistent relationship between the average HI and the solution
structure such that the average HI generally cannot be deter-
mined before simulation. We overcome this by performing
iterative BD simulations until converged to a self-consistent
result. Previously, we have implemented this iterative proce-
dure for single chain BD simulations using an approximation
of the Langevin equation

d~(w)
= - Z<D,,><w>v @+E" 0. 13)

This differs from the original Langevin equation in that we
have introduced a mobility matrix and a Brownian noise matrix
which are averaged over polymer conformations. Fluctuation-
dissipation is maintained by the new random velocity ng),
which satisfies (€ ()" (t)) = 2Dy 6(t — 1'). In addi-
tion, a superscript (w) has been introduced to denote the
iteration number, with the first simulation as w = 0. For a
complete description of the single chain method, we refer-
ence our previous publication;” here, we briefly outline the
method:

1. Start with a guess for the averaged mobility matrix, typ-
ically the freely draining (FD) case, (D) = ¢;1. It
is also possible to make guesses which are closer to
the converged average, such as the predictions of Zimm
theory.

2. Perform a BD simulation using the averaged mobil-
ity matrix to capture the solvent-mediated forces and
Brownian noise. The decomposition of the mobility
matrix is only required once at the start of each
iteration.

3. Use the BD simulation to calculate the time averaged
mobility matrix for this iteration. Assuming steady state,
the phase space average can be replaced with a time aver-
age where the conformational probability is discretely
sampled via the BD simulation.

4. Repeat steps 2 and 3 with increasing values of w =1, 2,
3, ... until converged to a self-consistent mobility matrix
<]~)ij>(w+1) ~ <1~)U>(w)

Each iteration is run for 157, where 7 is the longest relax-
ation time of a single chain. We find this provides sufficient
sampling of conformational space. In the first iteration using
freely draining dynamics, 7 is the Rouse relaxation time. For
subsequent iterations including HI, this is the Zimm relaxation
time.



174904-5 Young, Marvin, and Sing

C. CA for semidilute solutions

1. Conformational averaging the intra-versus
inter-molecular mobility tensors

Prior work by the authors has shown that the CA method
quantitatively matches standard BD simulations for single lin-
ear and ring polymers in equilibrium and out-of-equilibrium
under steady state flow conditions with the exception of strong
shear flows that exhibit large conformational oscillations.>”
Semidilute solutions are more challenging, however, because
CA based on the 3N x 3N bead-index based diffusion tensor
would remove any relative spatial information for a pair of two
hydrodynamically interacting monomers on different chains.
Instead, we introduce a spatial average to capture intermolec-
ular HI, while retaining the previous index-based procedure
for intramolecular HI. To modify our approach, we introduce
notation to specify both the bead indices i and j (running from
i,j=1toi,j=Np) and chain indices @ and 8 (running from
a, B =1t a, B=N,). The mobility matrix is thus fully
denoted by the bead and chain indices of interacting particles,
their spatial separation, and the iteration number w; to capture

all of these attributes, we write the full mobility as D 2. (w )( ),
which is given by the Rotne-Prager-Yamaka tensor dlscussed

Y dt Y.
(DO gy = 2 2D

J. Chem. Phys. 149, 174904 (2018)

previously. The self-HI for individual chains is calculated in
the same fashion as in prior work by the authors,

ZI(ZT'B f Dr(saﬁp(w)({ })D(Yﬁ(iaf S(w) 'ﬁ (w))

D (w) _
(D) S

(14)

Here, the superscript S denotes that this is a self-HI term,
and while the average is over all chains, the Kronecker delta
ensures that @ = 8. The denominator calculates the number of
chains. The integral in the numerator is over all possible con-
formations of all chains, as denoted by the path integral. The
value P*)({r®}) is a configurational probability as described
previously. In practice, we replace this conformational path
integral with an integral over a steady-state trajectory,

By - oI5 d0ap D @70 -1y
< > TZ(L/B 6(1,8 ( )

This self-HI mobility (ﬁ;’(w)> retains the indices i and j. By
contrast, the intermolecular HI will retain the spatial location
by averaging over all indices at a specific location r,

D 0 = )3 @) =0 =11 = dap)

The superscript O indicates the intermolecular HI. The indices
i, j, @, and B are all part of the sums, while a Dirac delta

16
I3 dt i 5@ =) - 1) 1o
d (w) Nb C ap,e w
L= NPT, U+ B0, (1)
ij ap

function considers only the bead pairs that contribute to the
diffusivity at a separation of r. In the infinitesimal limit,

<]~)0(r))(w) is simply the RPY tensor. However, we assign sim-
ilar values of r to a discrete grid (Fig. 1). This transforms the
mobility matrix from a function of the continuous distance
between beads, (ﬁo(i))(w), to a function of the discrete grid
space displacement, (ﬁO(Ai)>(w), where AF = (A%, Ay, A?) is
the displacement between beads rounded to the nearest grid
point. In the subsequent iterations w + 1, HI between chains is
accounted for using the grid average measured in the previous
iteration w. At any given time, the displacements of the N(N
— Np)/2 bead pairs are calculated and rounded to points on
the discrete grid. The resulting mobility matrix retains spatial
information because the choice of the matrix element to apply
depends on relative position AF;;; because we update which
matrix element is used over the course of the simulation, this
method incorporates fluctuations into the intermolecular por-
tion of the HI. The resulting form of the Langevin equation
gives the total velocity as a combination of the intramolecu-
lar and intermolecular components. The time-dependence of
the intermolecular HI has been shown explicitly to reflect
the change in AF; with the conformations of surrounding
chains,

Here we have constructed the 3N x 3N mobility matrix
DT Y@ from the two averages

DTN = D)6 + (B W75 (1 = Sag). (18)

The matrix multiplication of the mobility tensor with the
bead forces (ﬁ;ﬁ < )V;j U is then the same as in traditional BD
simulations.

The quantitative details of the grid are chosen to mini-
mize computational time while retaining an accurate measure
of the continuous HI. We use a cubic grid with points sepa-
rated by one bead diameter d = 2.0. The number of grid points
in each dimension is the size of the box divided by the bead
diameter plus an additional grid point allocated for the origin,
M, = Z/dg + 1. The total number of grid points is M = MS
for the cubic simulation box. Out-of-equilibrium flow con-
ditions may require modifications to the grid to account for
deformed box boundary conditions, but in this work we only
consider equilibrium dynamics. Large simulation boxes will
have memory limitations because the number of grid points
scales as M ~ L3. To address this, we use a fine grid at
small displacements and a coarser grid at large displacements,
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a) Conformations
. PY{7}) 875 —7)
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w=w-+1

®

(DefFywt) L Peffy(w)
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b)

conformations and
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Two contributions for the HI field

~S><w>

~ O w
(Dy; (w)

(D (7))
3 )¢<

o

Monomer % on chain @

Chain self-HI (based on
monomer index)

Interchain HI (based on relative
spatial position)

FIG. 1. (a) Schematic describing how to calculate CA for semidilute solutions. For the first iteration w = 0, a freely draining mobility matrix (ﬁeﬂ yw=0) = 6;i6
is used to run a BD simulation of the semidilute solution. This simulation is run at steady-state, and the regularly sampled conformations are used to calculate

an average mobility tensor (ﬁq# Y®=1)_This is then used to run another simulation to find a new set of sample conformations. This procedure is performed

iteratively until the average mobility tensor no longer changes <Deﬂ .)(w ) = (lN)g# .)(w“) with iterations. (b) We split the overall mobility tensor <1~)eﬁ . Y®) into two

contributions. The intra-molecular self-HI (]3;)(“’ ) is indexed via the relative distance along the contour of the chain, while the inter-molecular HI (ﬁo(?))(“’) is

indexed by the relative spatial grid point AF.

dg = 4.0, in simulations with large box sizes. A coarse grid is
reasonable because for large displacements, the HI is slowly
varying. Furthermore, we show in Sec. III E that the HI is often
screened at these distances. The HI is sampled approximately
100 times per Tg. This sampling interval is chosen so that the
computationally expensive Ewald sum is not the bottleneck in
the simulation while retaining an accurate average of confor-
mational space. In the second and subsequent iterations, the
fluctuating grid space mobility matrix is updated once every 10
time steps with a time step of 10737(. Similarly, this interval
is long enough that the matrix multiplication of the mobil-
ity matrix with the pair-wise forces (ﬁ;ﬁ & )V U remains the
bottleneck while retaining an accurate measure of the HI. Pre-
vious work has shown that this interval could be increased to
50 or 100 time steps without significantly affecting dynamic
properties.*®

2. Brownian noise using time-averaged TEA

We also need to account for fluctuations in the average
Brownian noise. In single chain CA, the mobility matrix and
Brownian noise matrix do not fluctuate, so we only need to
carry out the Cholesky decomposition once per iteration. In the
semidilute case, however, we retain fluctuations in the inter-
molecular HI; this would be a bottleneck similar to traditional
BD simulations. To overcome this, we use the truncated expan-
sion ansatz (TEA) to measure a time-averaged decomposition.
The “ansatz” of the TEA is that the square root of the mobility
matrix can be factorized into individual two-body contribu-
tions such that the correlated random vector in the Brownian
noise takes the form

3N D
~ ~ yVlm
&=DuC Y B'="fn (19)

m=1 Dll
Following the notation of Geyer and Winter,%® Eq. (19) gives
one component of the size 3N Brownian noise vector. We use

indices / and m to emphasize that this sum is over entries in

a single row [ of the mobility matrix and that Eq. (19) does
not follow index notation. This contrasts with the bead index
notation used previously, which denotes a 3 X 3 tensor relating
the vector quantities of force and velocity for simulation beads.
There are thus 3N coefficients C; which ensure each bead
recovers the correct self-mobility. The weighting factor B’ is
chosen so that the Brownian noise approximates the mobility
matrix decomposition by satisfying fluctuation-dissipation via
cov(&, &) ~ D. For diagonal entries of the sum, corresponding
to [ = m, the weighting factor 8’ = 1. All off diagonal entries
have the same weighting factor, given by

1 —T1=3N( —e)
3N(€?2 - €)

where € is an average over the off-diagonal entries of the
mobility matrix

B = ; (20)

2y

_ L Din
BNEIE Z,:mzﬁ Di

The coefficients are given by

1

G = (22)

72 Dlzm
L+ B2 X Ymsi ByDum

Details on the derivation of the TEA can be found in the
original paper by Geyer and Winter.%3 The conformationally
averaged TEA is implemented by calculating the parameters
B’ and C; each time the Ewald sum mobility matrix is sam-
pled. We thus calculate the time-average TEA parameters for
a given iteration

1 T
B =2 > B, (23)
t

1 T
)™ =2 > M. 24)
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Here, time-averages are over 7' samples of the mobility matrix
during a steady-state simulation. We motivate the use of these
averages instead of their instantaneous values by observing
that that these values do not deviate significantly from these
averages even when they were calculated at every time step.
These quantities can then be used to calculate the Brownian
noise as

3N ~
(W) R (w) (w) \(w) <D]m>(w)(t) ~
&) = O™ ENCH" B ;—<Dll>(w)(;)fm(r). (25)

The advantage of using the TEA is that once the averaged
parameters are obtained, the calculation of the Brownian noise
requires only the sum in Eq. (25). Using other methods, the
expense would be similar to the full BD simulation because the
decomposition would have to be repeated in full each time the
mobility matrix is updated. The sum in the TEA can be repre-
sented as a matrix-vector product by first dividing the diagonal
components of the mobility matrix by S’ such that B; = 1
to recover Stokes drag. Then the simulation implementation
is

() o (D)W 3
£V =B D #ﬂ,(?l)fmm. (26)
m=1 m

Furthermore, we can implement a “block” version of the TEA
similar to the block TEA by using a block of s random vectors
for f,,. Then the matrix-vector product becomes a matrix-
matrix product between the 3N X 3N mobility matrix and 3N
X s block random vectors to yield s Brownian noise vectors.
This is advantageous because the mobility matrix generally
changes slowly such that it does not need to be updated every
time step. Then the update interval Agpy > 1 and we can use
s = Agpy. The matrix-matrix product is faster than perform-
ing multiple matrix-vector products and has efficient imple-
mentations which can be significantly accelerated by multi-
threading.

Simulations using the TEA are known to reproduce the
dynamic properties of the Cholesky decomposition for dilute
theta polymers.*®936* The main assumption of the TEA is
that HI coupling is weak and is therefore unsuitable for dense
systems such as collapsed polymers and dense colloidal sus-
pensions. We maintain a low volume fraction by simulating
semiflexible polymers which have a larger radius of gyra-
tion and thus a lower overlap concentration. This allows us
to reach high normalized concentrations c¢/c* while remaining
below a volume fraction of ¢ =~ 0.10, above which the TEA
begins to deviate significantly from the Cholesky decomposi-
tion.*® We have tested the accuracy of the TEA with an error
criterion®®

E= @, (27)

D]

where C = cov(&, £) is the covariance matrix of the Brownian
noise and |-| is the Frobenius norm, defined as the square root of
the sum of the squares of matrix entries. To follow fluctuation-
dissipation, the covariance must satisfy C ~ D. We find that for
the volume fractions used in this work, the error is close to that
of the Krylov subspace method. Using the conformationally
averaged TEA parameters gives an error criterion close to the
original TEA. For higher density systems such as flexible, short
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polymers in semidilute theta solutions, the weak HI coupling
assumption of the TEA may not be appropriate. In this case,
the decomposition could be calculated instantaneously from
the average HI using Fixman’s approximation or the Krylov
subspace at an increased computational cost. In this work, we
consider only the TEA.

lll. RESULTS
A. Comparison of computational cost

We now compare the computational time of the CA
method to the TEA and the Krylov subspace as a function of the
number of polymer beads for N = 1000 — 10 000. For the CA
method, the cost of the FD iteration and HI iteration is shown
separately. The FD iteration scales approximately linearly with
N and is an order of magnitude or more faster than the HI iter-
ation. Therefore, the expense of conformationally averaging
the HI in the initial FD simulation is relatively small and can
be neglected when comparing the CA method to other tech-
niques for moderate system sizes. The subsequent HI iteration
cost scales as O(N?) and is an order of magnitude faster than
the TEA or Krylov subspace simulations. The O(N?) scaling is
due to the matrix-vector multiplication of the mobility matrix
with the pair-wise forces. The reduction in computational time
compared to the TEA and Krylov subspace simulations is
due to the reduced frequency of performing the Ewald sum
(typically every Agpy = 25 — 100 time steps in the TEA and
Krylov methods versus every ~10 000 time steps in the CA
method) and the decomposition to find the TEA parameters 8
and C;, which is performed at the same frequency as the Ewald
sum.

Figure 2 shows the serially executed (1 thread) scaling
with N for chains of N, = 100 at a concentration c/c* = 1.0
with Agpy = 25 and number of chains increasing from N,
= 10 — 100. The Krylov subspace simulation uses the block
Krylov with error tolerance E; < 0.01, which has been shown

Krylov ] CAw=1 v O(N'2) ——emm
TEA e O(N?)
CAw=0 4  O(N'Y9)
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FIG. 2. Serial execution time per time step as a function of the number of
beads for the Krylov method (black squares), TEA method (red circles), the
first iteration of the CA method w = 0 (blue triangles), and the second iteration
of the CA method w =2 (purple triangles). Inset: Scaling of the execution time
with the number of parallel threads for N = 10 000.
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to be sufficient for BD simulations of polymer solutions.*® The
inset shows scaling of the computational time with the number
of threads used. The Ewald sum has been parallelized using
OpenMP. The matrix-vector product of the mobility matrix
with the random vector and the matrix-matrix products in the
TEA and block Krylov calculation of the Brownian noise use
Intel Math Kernel Library (MKL) routines. The simulations
are performed on dual 8-core Intel Xeon E5-2667 processors.

For larger systems, the O(N?) scaling causes the com-
putational time for all methods compared here to become
prohibitive. In this case, a particle-mesh Ewald technique is
more appropriate due to the O(N log N) scaling. Comparing
to the matrix-free technique of Liu and Chow>> implemented
for polymer solutions by Sadaat and Khomami,*® we observe
a crossover at N ~ 10°. The matrix-free technique considers a
different model for the polymer interactions, so this compar-
ison is not quantitative and is not shown in Fig. 2. However,
it does indicate that the CA method significantly reduces the
prefactor in the computational cost. Jain et al.® have shown
that explicit solvent models such as LB and Stochastic Rotation
Dynamics (SRD) are significantly faster than BD simulations
and have O(N) scaling. BD simulations implementing PME
have shown that the issue of scaling can largely be overcome.*’
Implementation of a PME technique in the CA method could
reduce the O(N?) scaling while retaining the low prefactor,
which would make BD simulations of polymer solutions com-
parable to explicit solvent models. Further optimizations for
systems with O(10®) polymer beads are an interesting area of
further study.

B. Validation of the CA method

To validate the approximations of the CA method, we
compare to non-CA BD simulations where the mobility matrix
and its decomposition are recalculated every 25 time steps.
We use the TEA and the Krylov subspace to rapidly perform
this calculation and use a combination of static and dynamic
properties to evaluate the accuracy of the CA procedure. For
the former, we focus on the radius of gyration, defined for each
polymer chain as <R§0> =1/N Z?’” @ri — rc)2 ~ NZ" where r,
is the center of mass of the chain. The first equation provides
a molecular definition of <R§0>’ while the second relationship
expresses the scaling prediction as a function of Ny and the
Flory exponent v. We capture the dynamic behavior of the
polymer chains by calculating the long time diffusion constant
defined as

1
Dy = lim = ((re(1) - re(0))%) (28)

and the zero-shear viscosity calculated via the Green-Kubo
formula®

=g [ OO, 29)
where the stress tensor is determined by the Kirkwood
forumula®

LA
Top = 5 0 D riiaFig: (30)
i j#

We simulate a system with N =50 and N = 20, which is
small enough to be computationally tractable by both the TEA
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TABLE I. Simulation parameters for various chain lengths. The dilute radius
of gyration, diffusion constant, and end-to-end distance are determined from
single chain simulations. The highest and lowest concentration, associated
simulation box sizes, and number of chains simulated are also shown.

Ny (RZg) Do (Reo) ol L Ne

50 198.32  0.11
100 43821  0.075
150 686.86  0.058

34.50
51.28
64.20

0.01 -3.0
0.13-4.67
0.10-5.77

251.26-41.91 20
173.99-53.19 15
214.02-55.39 13

method and the Krylov subspace. We vary the concentration
from 0.01 c¢/c* to 3.0 ¢/c* in order to remain at a low volume
fraction for short chains with a high overlap concentration.
More details on the simulation parameters can be found in
Table 1.

Figure 3 plots the radius of gyration normalized by the
dilute limit value as a function of concentration. The radius
of gyration in the FD and HI iterations of the CA method is
nearly constant for all concentrations. Both the Hl iteration and
the TEA simulation predict the size of the chain to be slightly
larger than in the FD simulation. The three simulations should
agree if fluctuation-dissipation is strictly maintained, but there
is a constant quantitative difference at all concentrations due
to the TEA approximation that the Brownian noise can be
constructed by pairwise contributions. The deviation in the
radius of gyration does not qualitatively change the dynam-
ics of the system, which have been shown to match well with
standard BD simulations.*®93-6* However, we again note that
this method becomes less accurate for more concentrated sim-
ulation systems. The Krylov subspace simulations are in close
agreement with the FD simulation. Additionally, the size of
the chain is slightly larger in the CA simulations with HI than
either the TEA or the Krylov simulations. We attribute this to
the conformationally averaged intramolecular HI which uses a
constant diffusion tensor for HI between polymer beads on the
same chain. At high concentrations, the simulations are more
sensitive to approximations such that neglecting intramolecu-
lar fluctuations causes a small change in the size of the chain.

1.1
*
s+ ot
S ‘ * - n
L
]
]
2
5 1le e e o e o |
> [ ]
gm: v v v v v v v L4
~ v
TEA =
w=0 °
w=1 a
w = .
Krylov v
0.9 I ’ I I
0.01 0.1 1
c/c*

FIG. 3. Mean squared radius of gyration normalized by the dilute limit value
as a function of concentration for the TEA method (black squares), Krylov
subspace (green triangles), the FD iteration of the CA method w = 0 (red
circles), the first HI iteration of the CA method w = 1 (blue triangles), and a
second HI iteration (purple diamonds).
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We can also compare dynamic property predictions of the
TEA, Krylov, and CA simulations. Figure 4 plots the center-
of-mass, long-time diffusion constant Dy, as a function of c¢/c*.
For the first iteration w = 0, the freely draining mobility matrix
results in slow diffusion (red circles) that weakly decreases
above c/c* ~ 1. The subsequent iteration w = 1 includes HI and
there is a concomitant increase in Dy, due to the presence hydro-
dynamic shielding. Each bead no longer experiences Stokes
drag independently, as in the FD case. In this case, the value of
Dy, from both CA and TEA is in agreement (Fig. 4, black
squares and blue triangles). Increasing concentration leads
to a marked decrease in Dy, especially as c/c* approaches
the overlap concentration and enters the semidilute regime.
An additional HI iteration, w = 2, reveals that the dynamic
properties have nearly converged after one iteration. This is
expected; at equilibrium, chain conformations do not depend
on hydrodynamics, so averaging the HI over an FD simulation
is sufficient. There is a small quantitative change originating
from the structural differences caused by the TEA as observed
in the static properties.

The Krylov simulations again show quantitative differ-
ences from the TEA and CA simulations. At low concen-
trations, the diffusion constant from the Krylov simulations
is approximately 5% larger, in agreement with previous
work. 469364 I the semidilute regime, the Krylov and TEA
simulations agree and the CA method has a slightly higher
diffusion constant. We also attribute this to the conformational
averaging of the intramolecular HI as in the case of the radius
of gyration. Fluctuations in the TEA parameters 8’ and C;
are small, so deviations are caused primarily by the diffusion
tensor itself and not the decomposition technique.

To further investigate the effect of fluctuations on the
dynamics, we also consider the zero-shear viscosity. The diffu-
sion constant is relatively insensitive to preaveraging as shown
by the success of Zimm theory, but Ottinger has found that
incorporating Gaussian fluctuations into Zimm theory leads to
a decrease in the viscosity.”® In Fig. 5, we find a similar result.
All simulations show similar scaling with concentration, but

0.1 - ‘ b1 |
[ b4 1
I &, . ]
&
TEA = :
w =0 °
S w=1 A
w =2 3 &
Krylov v
° ° ° ° ° o
°
°
0.01 b : :
0.01 0.1 1

FIG. 4. Long time diffusion constant as a function of concentration for the
TEA method (black squares), Krylov subspace (green triangles), the FD itera-
tion of the CA method w =0 (red circles), the first Hl iteration of the CA method
w =1 (blue triangles), and a second HI iteration w = 2 (purple diamonds).
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FIG. 5. Zero-shear viscosity as a function of concentration for the Krylov
subspace (green triangles), the FD iteration of the CA method w = 0 (red
circles), the first HI iteration of the CA method w = 1 (blue triangles), and a
second HI iteration w = 2 (purple diamonds).

the freely draining iteration of the CA method shows the high-
est viscosity as expected because the polymer is unshielded
from solvent drag. Simulations including HI have a lower vis-
cosity, with the Krylov simulations being slightly less than the
CA method. While we do not draw any quantitative conclu-
sions due to the difficulty in measuring the long-time terminal
regime of the stress-stress autocorrelation function used in the
Green-Kubo relation, we speculate that this difference reflects
the absence of fluctuations in the intra-molecular portion of
the diffusion tensor.

C. Static properties

We now consider further predictions of the method in
comparison to experiment and theory. We simulate chains of
length Nj, = 100 and N, = 150 and compare to the results for
Np =501from Sec. III B to study the effect of molecular weight.
Detailed simulation parameters and inputs can be found in
Table I. For all but the most concentrated simulations, the box
size is chosen such that the average polymer end-to-end length
is less than the minimum image distance V(R - R) < L/2. We
also emphasize that the solutions considered here are unen-
tangled because the chains are too short and/or dilute. The
concentration above which polymers begin to entangle c, is
typically in the range of 4-30 ¢/c* % but the highest concentra-
tion simulated here is 5.77 ¢/c*. We again consider the radius of
gyration as a function of concentration. In the standard scaling
picture for flexible chains, the chain conformation is deter-
mined by solvent statistics associated with excluded volume
below a correlation length &éc. Above the correlation length,
excluded volume interactions are screened and the polymer
again follows random walk behavior leading to the predic-
tion® (Rg) = <Rg’0>(C/C*)_(2V_1)/ ©=2) For a good solvent
with v ~ 0.588, this gives (R;) ~ (c¢/c*)™*!2. In contrast to
this prediction, which has been observed in prior simulations of
flexible polymers,?’ we are simulating semiflexible polymers
with a relatively high persistence length, so this scaling is not
observed. Instead, we seem to be in the so-called “marginal sol-
vent regime” where the persistence length is sufficiently long
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that scaling theories break down and dynamic properties show
mean-field behavior.°® Mean-field theory predicts no concen-
tration dependence, or (Rg) ~ (c/c*)°.% This is close to the
behavior we observe in simulation (Fig. 6). For longer chains,
we begin to see a weak concentration dependence associated
with the transition from good to marginal solvents for the larger
thermal blob size. Again, we see a small quantitative difference
between the FD and HI iterations associated with the TEA that
does not affect the concentration dependence.

D. Dynamic properties

Scaling theory can also be used to predict dynamic prop-
erties. The analysis is similar, with the chain following dilute
behavior below the correlation length é¢ and concentrated
behavior above &¢. This is based on the expectation that the
correlation length and the hydrodynamic correlation length
are proportional, £¢ ~ &;. In this case, unscreened hydro-
dynamics (i.e., Zimm dynamics) are observed for length
scales <&j, while HI is screened for length scales >¢&
(i.e., Rouse dynamics). These results lead to the scaling
relationship®

-(1-v)/(3v-1)
¢ ) . G1)

DL =Dy

C
Here, D; ~ (c/c*)™%* for good solvents. This contrasts with
the behavior of Dy expected in the absence of HI, which should
be independent of concentration (D ~ (c/c*)°) because the
Stokes drag on each monomer does not depend on its envi-
ronment, except when monomer-monomer excluded volume
constraints become important. In Fig. 7, we plot the diffusion
constant normalized by the dilute limit value from single chain
simulations (Dy/Dy). We observe that for w = 0 (FD), there
is only a weak dependence of Dy, on c/c*, consistent with the
expected (c/c*)°, scaling. At large values of ¢/c*, however, we
find that there is a measurable decrease in D; for all Nj,. We
attribute this to excluded volume, which should be the largest
for N, = 50 where the volume fraction of beads is the largest;
indeed, this case exhibits the largest decrease in Dy .

1.2

—~ x
2 Lo m s
~ n [] u " =
N
3
S ol 49 z R
il s 3
2 [
Ny =50, w =0 o Ny =50, w=1 L]
Ny = 100 0 F—%— N, =10,w=1 @ —
Np =150, w =0 2 N, =150,w =1 4
0.9 L L L
0.01 0.1 1 10
c/c*

FIG. 6. Normalized mean squared radius of gyration as a function of con-
centration for the FD iteration w = 0 (black open symbols) and the first HI
iteration w = 1 (red closed symbols) for N, = 50 (squares), N = 100 (circles),
and Nj = 150 (triangles).
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FIG. 7. Normalized long time diffusion constant as a function of concentra-
tion for the FD iteration w = 0 (black open symbols) and the first HI iteration
w =1 (red closed symbols) for N = 50 (squares), N, = 100 (circles), and Nj
= 150 (triangles). Experimental measurements from single molecule DNA
experiments>’ (blue open triangles) and dynamic light scattering of tracer
polystyrene!! (blue line) are coplotted. Lines connecting points are guides to
the eye.

When HI is included (w = 1), there is a pronounced
decrease in the value of Dy, reflecting the change in the HI
environment. Similar to the FD case, we observe an enhanced
decrease in Dy, compared to the longer polymers for the short,
Nyp = 50 chains. This is again consistent with our hypothe-
sis that excluded volume plays a large role in dynamics. In
agreement with scaling predictions, longer chains (N, = 100,
150) collapse onto a single curve when Dy /Dy is plotted ver-
sus (c/c*). We note that we obtain the scaling D; ~ (¢/c*)™%°,
which Eq. (31) predicts corresponds to a value of v = 0.57.
This is close to the prediction for a good solvent; however,
it is unclear how this is modified by (1) the marginal solvent
behavior observed in equilibrium and (2) the excluded volume
effects seen for FD (w = 0).

We find that inclusion of HI allows us to capture the dif-
fusion behavior observed in experiment. Measurements from
single molecule DNA experiments® and dynamic light scat-
tering of polystyrene!! are co-plotted with the simulation
results. The FD simulation does not show the correct con-
centration dependence. The simulation with conformationally
averaged HI shows the same scaling as the experimental data
and quantitatively matches the single molecule experiments
(blue upside-down triangles). The light scattering data shows
the same scaling but an earlier transition into the semidilute
regime.!! This could be related to differences (1) due to the
flexibility of individual polymer chains used in the scattering
experiment versus the semiflexible chains used in simulation
and (2) in how the overlap concentration c* is defined for light
scattering experiments versus for our simulations.

E. Concentration dependent Hl screening

Above we introduced HI screening in the context of scal-
ing theory. Concentration screening is a fundamental concept
in polymer physics and is widely utilized to describe the con-
formation of a polymer in semidilute solutions and melts.
HI screening is less well studied but equally important for
dynamic properties below ¢**, the concentration where the
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correlation length shrinks below the thermal blob size. Calcu-
lations using scaling theory'? or effective medium theory!'*!3
predict that the concentration screening length &¢ and the
HI screening length £, have the same scaling with concen-
tration. This is intuitive because they are both driven by the
increase in monomer density. The scaling theory prediction for
the concentration correlation length is

-v/(3v-1)
) (32)

c
éc = (R
or éc ~ (c/c*)™%76 for good solvents and &c ~ (c/c*)™'0
for theta solvents.%> Effective medium theory is consistent
with this scaling theory for both theta'> and good'* solvents.
We can directly and quantitatively measure HI screening and
show that it behaves similar to theoretical predictions. This
has important implications for the development of constitu-
tive models for semidilute polymer solutions, where the effects
of HI are generally accounted for by an effective friction
factor.®’

In simulation, we measure HI screening by placing a point
force in solution. The point force exerts a disturbance velocity
on the surrounding polymers and solvent. We can then calcu-
late the total disturbance velocity due to the point force and
polymers at a displacement r by

N
o) =D FP 4+ Y DAY, (33)
j=1

where FP' refers to the strength of the point force and D™
refers to the 3 x 3 diffusion tensor at a displacement r. The
first term gives the disturbance velocity in pure solvent, and
the second term gives the effect of the background polymer
solution with the diffusion tensor from CA, <]~)0(A7';))(w>0).
Here, the diffusion tensor is evaluated at A7, which is the
discretized distance between the polymer bead j at a position
F; and a displacement 7 from the point force. With this mea-
surement, we can determine the HI screening length from the
effective medium theory result'#
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where v is the pure solvent disturbance velocity and r = Irl.
We can then use the pure solvent velocity from the RPY tensor
and fit the theoretical prediction to the simulation result via
the screening length &;,. We normalize the simulation results
so that the disturbance velocity v (r = 0) at the point force
location is given by the product of Stokes drag and the point
force strength in agreement with the theoretical framework.
We choose the magnitude of the point force so that it does not
significantly perturb chain conformations out-of-equilibrium,
yet is large enough that the resulting velocity perturbation is
easily measurable.

The disturbance velocity also depends on the direction
relative to the direction of the applied force as reflected in the
RPY tensor. We choose to apply the force in the x-direction
with the point force located at the origin. We then measure
the disturbance velocity along the x-axis and y-axis. As seen
in Figs. 8(a) and 8(b), the decay in the y-direction is faster
than in the x-direction which is expected due to the form
of the RPY tensor. This anisotropy is not reflected in most
theoretical models, however, because they average over all
directions of the perturbing force FP' to reflect the isotropy
of the polymer solution. In the equilibrium case, this feature
does not appear to be essential as the scaling theory results
agree with experiment. This will change when flows drive
the system out-of-equilibrium, however, and the underlying
solution is no longer anisotropic. This coupling between fluid
anisotropy and the resulting HI is an intriguing topic for future
study.

Fitting the screening length to the simulation results,
we find that the screening length in both the x and y direc-
tions scales with concentration as &, ~ (c/c*)! [Fig. 8(c)].
This is in agreement with the effective medium theory result
for the scaling of (R,), which predicts a mean-field struc-
ture of the semidilute solution despite the good solvent due
to the semiflexibility of the polymers. At concentrations
lower than the overlap, the simulation results diverge as HI
becomes unscreened in the dilute solution and the theoretical
description of the effective medium becomes less accurate. At
the overlap concentration, the correlation length is approxi-

_ : : _ (P2 \1/2 :
v(r) = vy(r)exp(—r/&n), (34) mately equal to the radius of gyration, £¢ = (Rg0> /2 This
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FIG. 8. (a) Normalized disturbance velocity in the x-direction versus distance along the x-axis from the point force. The black line is from the RPY tensor, and
the lines for higher concentrations are fits of the RPY tensor to the simulation data via Eq. (34) and not guides to the eye. (b) Normalized disturbance velocity in
the x-direction versus distance along the y-axis. (c) Screening length in the x-direction (black squares) and y-direction (red circles) as a function of concentration.

Lines are guides to the eye with a slope of —1.
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differs somewhat from the simulation results, although this
could be due to the method used here to obtain &;,. Furthermore
a small quantitative difference between the two length scales
is expected. '3

IV. CONCLUSIONS

In this work, an iterative conformational averaging
method for computing hydrodynamic interactions and the
Brownian noise in polymer solutions has been proposed based
upon the polymer configuration and the locations of surround-
ing molecules. This generalization of the dilute CA method>’
retains many of the same advantages. Specifically, the exe-
cution time per time step is reduced by an order of magni-
tude or more because the computationally expensive Ewald
sum and decomposition are replaced by memory calls to
the spatially averaged HI and TEA parameters, respectively.
We have shown that this approach quantitatively matches
the predictions of a traditional BD simulation and experi-
ment. Additionally, we have used the method to investigate
the concentration-dependence of HI screening in polymer
solutions.

There are also limitations to the method that must be
considered for the specific use case. While the dynamic prop-
erties generally match those of traditional BD simulations,
we have found that neglecting fluctuations in the intramolec-
ular HI can cause a quantitative deviation in the zero-shear
viscosity. Additionally, static properties will deviate slightly
due to the assumptions of the TEA. If highly accurate simula-
tions are required, the resolution of the grid-space average HI
is also important. In particular, the preliminary results from
semidilute CA simulations in extensional flow suggest that
polymer stretch and solution stress are sensitive to intramolec-
ular fluctuations and the resolution of the grid-space HI. A
complete analysis of these approximations and their effect on
out-of-equilibrium dynamics will be carried out in a future
publication.

This method is particularly relevant for the determination
of HI screening associated with microstructural changes. Here
we have considered only concentration and degree of poly-
merization, but topological effects relevant in branched and
ring polymers are also of significance to industrial and biolog-
ical research. For example, dilute ring polymer solutions show
a delayed coil-stretch transition due enhanced hydrodynamic
backflow associated with the looped conformation.%® The con-
centration dependence of this phenomenon due to topologi-
cal interactions with surrounding rings is an interesting area
for further study. More generally, the idea of flow-dependent
HI screening and generalization of the correlation length to
account for flow-driven anisotropies of the polymer confor-
mation is of importance for developing accurate constitutive
models of polymer solutions.

Areas of further improvement for the CA method include
reducing the O(N?) scaling and implementing a more accu-
rate decomposition method. Currently, large scale simula-
tion remains challenging relative to methods which achieve
reduced scaling by FFT approximations to the wave space
mobility. It is possible that a similar implementation or other
algorithms such as the fast multipole method for the RPY
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tensor®® could be extended to the CA method. The challenge
would be to maintain the small prefactor that makes the CA
method advantageous while achieving lower complexity. Inte-
grating ideas from these methods into the CA algorithm could
also improve the accuracy of the grid space intermolecular
average. The use of the TEA for approximating the decompo-
sition is also a concern for dense systems. Semidilute polymer
solutions are characterized by low segmental density making
the TEA an appropriate choice. For specific problems such
as entangled solutions of relatively short chains, however, the
assumption of weak HI may lead to more significant errors in
the correlation between HI and Brownian noise. In this case,
an average approximation to the eigenspectrum based upon
iterative techniques may be required.
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