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Abstract. The approximation of the eigenvalues and eigenfunctions of an elliptic operator is
a key computational task in many areas of applied mathematics and computational physics. An
important case, especially in quantum physics, is the computation of the spectrum of a Schrodinger
operator with a disordered potential. Unlike plane waves or Bloch waves that arise as Schrédinger
eigenfunctions for periodic and other ordered potentials, for many forms of disordered potentials the
eigenfunctions remain essentially localized in a very small subset of the initial domain. A celebrated
example is Anderson localization, for which, in a continuous version, the potential is a piecewise
constant function on a uniform grid whose values are sampled independently from a uniform random
distribution. We present here a new method for approximating the eigenvalues and the subregions
which support such localized eigenfunctions. This approach is based on the recent theoretical tools
of the localization landscape and effective potential. The approach is deterministic in the sense that
the approximations are calculated based on the examination of a particular realization of a random
potential, and predict quantities that depend sensitively on the particular realization, rather than
furnishing statistical or probabilistic results about the spectrum associated to a family of potentials
with a certain distribution. These methods, which have only been partially justified theoretically,
enable the calculation of the locations and shapes of the approximate supports of the eigenfunctions,
the approximate values of many of the eigenvalues, and of the eigenvalue counting function and
density of states, all at the cost of solving a single source problem for the same elliptic operator. We
study the effectiveness and limitations of the approach through extensive computations in one and
two dimensions, using a variety of piecewise constant potentials with values sampled from various
different correlated or uncorrelated random distributions.
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1. Introduction. Eigenfunctions of elliptic operators are often widely dispersed
throughout the domain. For example, the eigenfunctions of the Laplacian on a rectan-
gle are tensor products of trigonometric functions, while on a disk they vary trigono-
metrically in the angular variable and as Bessel functions in the radial argument. By
contrast, in some situations eigenfunctions of an elliptic operator localize, in the sense
that they are practically zero in much of the domain (after normalizing the L? or L>
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norm, say, to 1), like the two functions pictured on the right of Figure 1.1 (which will
be explained shortly). Localization may be brought about by different mechanisms
including irregular coefficients of the elliptic operator, certain complexities of the ge-
ometry of the domain such as thin necks or fractal boundaries, confining potential
wells, and disordered potentials. A celebrated example is Anderson localization [2],
which refers to localization of the eigenfunctions of the Schrodinger operator on R™
induced by a potential with random values. The eigenfunctions of the Anderson sys-
tem model the quantum states of an electron in a disordered alloy, and localization
can even trigger a transition of the system from metallic to insulating behavior. Over
the past 60 years, analogous phenomena have been observed in many other fields,
and have found numerous applications to the design of optical [21], acoustic [23, 7],
electromagnetic [15, 22], and photonic devices [10, 17].

The localized functions shown on the right of Figure 1.1 are the first and second
eigenfunctions of the Schrodinger operator H = —A 4V on the square [0, 80] x [0, 80]
with periodic boundary conditions. The potential V' is of Anderson type: it is a
piecewise constant potential obtained by dividing the domain into 802 unit subsquares
and assigning to each a constant value chosen randomly from the interval [0, 20].

Fia. 1.1. A piecewise constant potential with randomly chosen independently and identically
distributed (i.i.d.) values, and the first two eigenfunctions of the corresponding Schrodinger operator.

Although we will consider numerous disordered potentials generated by random
distributions in this paper, we emphasize that our approach is deterministic. We aim
to efficiently predict aspects of the spectrum that depend on a particular realization
of the potential, rather than to give statistical or probabilistic results about the spec-
trum associated to a family of potentials with a certain distribution. For example,
the location of the eigenfunctions shown in Figure 1.1—where they achieve their max-
ima, what is the shape of their effective supports—depends sensitively on the precise
configuration of the disordered potential. The determination of characteristics of the
spectrum such as these is an example of the issues addressed here.

In this paper we shall focus on the Schrédinger operator H = —A + V. The
domain ) will always be either an interval in one dimension or a square in two, the
boundary conditions will be periodic, and the potential V' will be piecewise constant
with respect to a uniform mesh of 2 having positive values chosen from some prob-
ability distribution, either independently or with correlation. Much of the work can
be extended, e.g., to more general domains, potentials, PDEs, and boundary condi-
tions. In particular, we remark that the choice of periodic boundary conditions is for
simplicity, and that similar localization occurs with Neumann or Dirichlet boundary
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conditions. We generally choose unit-sized subsquares for the constant regions of the
potential, but this is merely a convenient normalization. For example, instead of con-
sidering an 80 x 80 square broken into unit subsquares as the domain in Figure 1.1,
we could have chosen instead to take the unit square as the domain, with subsquares
of side length 1/80 for the potential. Had we scaled the potential to take values in
the range from 0 to 128,000, we would have obtained the same localization (128,000
being 20 x 80?).

There is a large literature concerning the localization of eigenfunctions, approach-
ing the phenomenon from various viewpoints: spectral theory, probability, and quan-
tum mechanics. But there is nothing like a complete explanatory and predictive
theory which can quantitatively and deterministically answer such basic questions as
follows:

e How are the eigenvalues and eigenfunctions determined by a particular po-
tential?
e Given a potential, do the eigenfunctions localize, and, if so, how many?
e What are the size, shape, and location of the approximate supports and how
do the eigenfunctions decay away from them?
e What are the associated eigenvalues?
The present work aims at providing answers to these questions, based on a theory of
localization recently conceived and under active development [8, 9, 4, 16, 3].

In the next section of the paper, we briefly survey some classical tools used to
understand localization. Then, in section 3, we introduce two more recent tools:
the localization landscape function and its associated effective potential, introduced
in [8, 4]. These are easily defined. The landscape function u is the solution to
Hu = 1 subject to periodic boundary conditions, and the effective potential W is its
reciprocal. Our approach is guided by estimates and relations between these objects
and the spectrum of the Schrodinger operator from [8, 4], and the recent theoretical
work of [3]. In section 4 we show how the structure of wells and barriers of the effective
potential can be incorporated into numerical algorithms to predict the locations and
approximate supports of localized eigenfunctions. Then, in section 5, we show how the
values of the minima of the effective potential can be used to predict the corresponding
eigenvalues and density of states. Throughout, the performance of our algorithms is
demonstrated for various types of one-dimensional (1D) and two-dimensional (2D)
random piecewise constant potentials (uniform, Bernoulli, Gaussian, uncorrelated,
and correlated).

Note that the computation of the effective potential involves the solution of a sin-
gle source problem, and so is far less demanding than the computation of a significant
portion of the spectrum by traditional methods. However, a remarkable conclusion of
our results is that, for the localized problems studied here, a great deal of information
about the spectrum can be extracted easily from the effective potential.

2. Classical confinement. A simple and well-understood example of eigen-
function localization for the Schrédinger equation occurs with a classically confining
potential. Such a potential is decisively different from and simpler than the highly
disordered potentials we consider, but we shall draw a connection in the forthcoming
discussion, and for that reason we now briefly review localization by confinement.
The basic example is the finite square well potential in one dimension, for which the
analytic solution is derived in first courses on quantum mechanics [19, Vol. 1, p. 78].
This problem is posed on the whole real line with the potential V' equal to some pos-
itive number v for || > 1 and vanishing otherwise. The fundamental eigenfunction



B72 ARNOLD, DAVID, FILOCHE, JERISON, AND MAYBORODA

is then

2 — cos(ﬁiﬂ), 2l < 1,
(2.1) vz = {cyexp(—mxl), |z > 1,

where the eigenvalue ) is uniquely determined as the solution to the equation cos VA =
VA/v in the interval (0,7%/4) and ¢, = \/A/v exp(v/v — ). Since A < v, the
solution decays exponentially as |x| — oo, which captures localization in this context.
A similar calculation can be made in higher dimensions, for example, for spherical
wells [19, Vol. 1, p. 359-361], in which case the well height v must be sufficiently large
to ensure that there exists an eigenvalue smaller than v.

mﬂ% ’:.E-'iz‘-

'-."."- n-
L DM o

=

3&_ .-":r_‘}..""--l'\-' l.":':E:
R o T

Fic. 2.1. For this Bernoulli potential there are no wells surrounded by thick walls. Nonetheless,
the eigenfunctions localize.

A fundamental result for the localization of eigenfunctions of the Schrodinger
equation with a general confining potential is Agmon’s theory [1], [11, sect. 3.3], [13,
Chap. 3|, which demonstrates a similar exponential decay for a much larger class
of potentials. In this case the domain is all of R" and the Schrédinger operator is
understood as an unbounded operator on L?. One requires that the potential be
sufficiently regular and bounded below and that there is an eigenfunction ¢ with
eigenvalue A such that V' > X\ outside a bounded set. In other words, outside a
compact potential well where V dips below the energy level A, it remains above it
(thus creating confinement). Agmon defined an inner product on the tangent vectors
at a point z € R™ by

(2.2) (€ma = VIV(e) = AL+ &,

where the subscript + denotes the positive part. This defines a Riemannian metric,
except that it degenerates to zero at points & where V(z) < A. Tts geodesics define a
(degenerate) distance distK(av7 y) between points z,y € R™, and, in particular, we may
define p(x) = dist} (x,0) to be the distance from the origin to = computed using the
Agmon metric. Agmon’s theorem states, with some mild restrictions on the regularity
on V', that for any € > 0,

(2.3) / e =9P(@) )2 dg < 0.



COMPUTING SPECTRA WITHOUT EIGENVALUE PROBLEMS B73

This result describes exponential decay of the eigenfunction in an L? sense in
regions where p(x) grows, which expresses localization in this context.

For the random potentials which we investigate in this paper, the Agmon distance
is highly degenerate, and, consequently, an estimate like (2.3) is not generally useful.
Consider, as a clear example, the Bernoulli potential shown in Figure 2.1, in which
the values 0 and 4 are assigned randomly and independently to each of the 80 x 80
subsquares with probabilities 70% and 30%, respectively. As shown in color on the
right of Figure 2.1, the region where the potential is zero has a massive connected
component which nearly exhausts it. For any positive A, the Agmon distance between
any two points in this connected component is zero, and hence an estimate like (2.3)
tells us nothing. Nonetheless, as exemplified by the first two eigenfunctions shown
in the figure, the eigenfunctions do localize, a phenomenon for which we must seek a
different justification.

3. The landscape function and the effective potential. An important step
forward was made in [8] with the introduction of the landscape function, which is
simply the solution to the PDE Hu = 1 together with, for us, periodic boundary
conditions. Note that, as long as the potential V is a bounded nonnegative function,
nonzero on a set of positive measure, then u is a strictly positive periodic C'* function
(indeed, it belongs to Wg for any p < oo). The following estimate, taken from [8],
relates the landscape function to the eigenvalues.

ProroSITION 3.1. If1 :  — R is an eigenfunction of H with eigenvalue X\, then
(3.1) (@) < M@ Yl~, veQ.

If we normalize the eigenfunction v so that [|1||L~ = 1/), then the theorem
asserts that ¢ < u pointwise, a fact illustrated in Figure 3.1, which shows the 1D
case where the potential has 256 values randomly chosen uniformly i.i.d. from [0, 4].
The argument was made in [8] that if the landscape function u nearly vanishes on the
boundary of a subregion 2 of the domain €2, then (3.1) implies that any eigenfunction
1) must nearly vanish there as well, and so ¥|q, is nearly a Dirichlet eigenfunction for
Qo (with the same eigenvalue \). Similarly 1) restricts to a near Dirichlet eigenfunction
on the subdomain complementary to €2y. Except for the unlikely case in which these
two subdomains share the eigenvalue A, this suggests that ) must nearly vanish in one
of them, and so be nearly localized to the other. This viewpoint gives an initial insight
into the situation illustrated in Figure 3.1, where it is seen that the eigenfunctions are
essentially localized to the subdomains between two consecutive local minima of wu.
However, it must be remarked, in the case shown in Figure 3.1 and many other typical
cases, the landscape function merely dips, but in no sense vanishes, on the boundary
of localization regions, and so a new viewpoint is needed in order to satisfactorily
explain the localization which is observed.

Such a new viewpoint was developed in the paper [4], where the emphasis was
placed on the effective potential W, defined as the reciprocal 1/u of the landscape
function. A key property of W and the explanation for its name is that it is the
potential of an elliptic operator which is conjugate to the Schrodinger operator H
and so has the same spectrum. The following essential identity was derived in [4].

PROPOSITION 3.2. Suppose that the potential V' € L°°(§) is nonnegative and
positive on a set of positive measure. Let u > 0 be the landscape function and let
W = 1/u be the effective potential. Define L : H*(Q) — H~1(Q2) by

(3.2) L¢ = —% div(u? grad ¢).
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Fic. 3.1. The potential on the left gives rise to the landscape function, plotted in blue on the
right. The first four eigenfunctions are also plotted, scaled so that their mazimum value is the
reciprocal of their eigenvalue, illustrating the inequality of (3.1).

Then
(—A+V)(up) =u (L +W)p, ¢c H'(Q).

In this result, H' denotes the periodic Sobolev space on 2 and H ! its dual. The
equation holds in H~!, making sense because u € C*.

COROLLARY 3.3. Let V', u, and W be as in Proposition 3.2 and let A € R. Then
W € H' satisfies (—A + V) = M\ if and only if ¢ := 1 /u satisfies (L +W)p = \o.

Thus the eigenvalues of the operator L + W (with periodicity) are the same as
those of the original Schrédinger operator, and the eigenfunctions are closely related.
However, the corresponding potentials W and V are very different. The effective
potential W is often much more regular than the physical potential V. More impor-
tantly, it has a clear structure of wells and walls. As we shall see, these induce a
sort of localization by confinement, which is not evident from the physical potential.
For example, for the Bernoulli potential shown in Figure 2.1, the effective potential
is shown in Figure 3.2. Note that the effective potential contains many wells: small
regions where its value is low, but surrounded, or nearly surrounded, by crestlines
where its values are relatively high. If we think of a gradient flow starting at a generic
point in the domain and ending at a local minimum, thereby associating the point
to one of the local minima of W, the crestlines, displayed in green in Figure 3.2, are
the boundaries of the basins of attraction of the local minima. There are several
algorithms to compute the precise location of these crestlines. The one used in this
case is the watershed transform as described in [5].

In recent work [3], we have established a rigorous connection between the well
and wall structure of W and the exponential decay of eigenfunctions. We define the
W-distance distKV, to be the Agmon distance, as defined after (2.2) in section 2, but
with the potential V replaced by the effective potential W. Then we show, roughly
speaking, that whenever a well of the effective potential exists with sufficient separa-
tion of the well depth from the height of the surrounding barriers, then eigenfunctions
¥ of the operator H with eigenvalue A are localized to {W < A} in the sense that they
decay exponentially in the W-distance associated to the eigenvalue. More precisely,
in [3], we prove the following theorem.

THEOREM 3.4. Suppose (¢, \) is an eigenpair of the Schrodinger operator H =
—A+ V. Let W be the effective potential and let distKV(x,y) be the associated W -
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Fic. 3.2. The effective potential associated to the Bernoulli potential of Figure 2.1. It is shown
with its crestlines which partition the domain into a few hundred basins of attraction surrounding
wells.

distance. Let 6 > 0,
S={zeQ|W(x)<A+d},

a sublevel set of W, and let h(x) be the W-distance from x to S. Then there exists a
constant C depending only on ||V| L~ and § (but not the domain Q) such that

/ M@ 2 de < C / 2 da.
Q Q

This result can be found, stated in considerably more generality and in sharper
form, in [3, Corollary 3.5]. The dependence of the constant is given there explicitly. It
grows at most linearly in ||V||~. The same paper also proves exponential decay for
the gradient of the eigenfunctions. On the other hand these theoretical results do not
capture fully the accuracy with which W predicts the behavior of the eigenfunctions.
Our numerical results show that the eigenfunctions typically occupy a single connected
component of the set W < X\ and decay exponentially across each green crestline of
Figure 3.2, whereas the theorems do not rule out that a resonance occurs resulting in
eigenfunctions that have significant mass in several different components of W < A.

4. Eigenfunction prediction. We may apply the theory described in the pre-
vious section to predict the location and extent of the supports of localized eigenfunc-
tions. For this we proceed in four steps.

1. Compute the landscape function u from the PDE Hu = 1, and define the
effective potential W = 1/u.

2. To approximate a desired number of localized eigenfunctions, identify the
same number of local minima of W, selected in order of increasing minimal
value. The location of these minima will be our prediction of the place where
the eigenfunctions localize, in the sense that the maximum of the localized
eigenfunction will occur nearby there.

3. To each of the selected local minimum we associate an energy level E given
by the minimum value of W in the well times a constant greater than 1. The
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constant is chosen so that F is close to the fundamental eigenvalue of the well,
or perhaps somewhat larger. (We show in the next section how this may be
achieved.)
4. From the corresponding sublevel set, consisting of all z for which W(z) <
E, we compute the connected component which contains the selected local
minimum. This is the region we predict to be occupied by the eigenfunction.
Figure 4.1 shows the outcome of applying this approach to the 1D Schrodinger
equation with the potential shown in Figure 3.1. The landscape function was com-
puted using Lagrange cubic finite elements with a uniform mesh of 2,560 subintervals
(10 elements per constant piece of the potential). The finite element solution was
evaluated at 15,360 equally-spaced points (six per element), with the reciprocals giv-
ing the values of the effective potential. The local maxima and local minima of the
effective potential were then identified by comparing the value at each point to that
of its two immediate neighbors. For comparison, the true eigenvalues and eigenfunc-
tions were computed by using the same finite element discretization and solving the
resulting sparse matrix real symmetric generalized eigenvalue problem using a Krylov—
Schur solver. The finite element discretizations were implemented using the FEniCS
software environment [18], calling the SLEPc library [12] for the eigenvalue solves.
Note that the locations of the four local minima of the effective potential, indicated
by small circles in both plots of Figure 4.1, very nearly coincide with the locations
of the maxima of the four corresponding eigenfunctions. Moreover, the correspon-
dence respects the ordering of the eigenvalues, in the sense that the ith eigenfunction
corresponds to the ith well for ¢« = 1,2,3,4. To predict the extent of the localized
eigenfunctions, we use as outer boundaries the level curves of the effective potential
at an energy level F set to be 1.875 times the depth of the wells. This is 150% of the
value we justify in the next section as an approximation of the eigenvalues. Of course,
this choice is somewhat arbitrary, since the effective support of a localized function
is not an absolute notion, but must be defined with respect to some tolerance. We
could as well have chosen a somewhat larger level to get wider regions incorporating
more of the tail of the eigenfunctions, or have chosen a somewhat smaller level to get

LEETT AL

F1a. 4.1. On the left is the effective potential corresponding to the piecewise constant potential
with 256 uniformly i.i.d. randomly selected values shown on the left of Figure 3.1. The first, second,
third, and fourth deepest local minima are marked and labeled. The small yellow circles signify
the positions of these minima. We expect the corresponding eigenfunctions to be centered near the
location of the minima, with extent related to the surrounding basin of attraction. This prediction,
plotted in green, and the actual first four eigenfunctions, superimposed over the predictions, are
shown on the right.
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narrower regions.

Next, we vary this example by increasing the amplitude of the potential by a
factor of 64, so that it takes values between 0 and 256, but is otherwise identical to
the potential shown on the left of Figure 3.1. The results analogous to Figure 4.1 for
this potential are shown in Figure 4.2. Note that, despite the fact that the potentials
are proportional in the two cases, the effective potentials look quite different and the
eigenfunctions localize in entirely different places. The eigenvalue maxima occur at
17.85, 41.47, 90.75, and 72.92 for the smaller potential and at 90.57, 73.42, 204.5,
and 110.5 for the second. These locations again are captured very accurately by
the minima of the effective potential, and in the correct order. A crucial difference
between the two examples is that the eigenvalues for the problem with the larger
potential are much more tightly localized, as predicted by the thinner wells of its
effective potential.

256

—

128

Fi1Gc. 4.2. The effective potential for the potential equal to 64 times that shown on the left
of Figure 3.1, with the four deepest local minima and their wells marked and labeled, and then a
comparison with the actual first four eigenfunctions.

In the examples depicted in Figures 4.1 and 4.2, we looked at the first four eigen-
values and found that the eigenvalues are very accurately located by the local minima
of the effective potential. We now look at what happens for a larger number of local
minima. Obviously, at some point the eigenfunction locations cannot be predicted
by the local minima, since there are infinitely many eigenfunctions and only finitely
many local minima. Figure 4.3, which is similar to the plot on the right-hand side of
Figure 4.2, and, in particular, uses the same potential, shows the locations of the first
16 local minima of W (as yellow dots), plotted over the first 16 eigenfunctions. We
see that for all 16, the location of the local minimum of W predicts very accurately
the location of the corresponding eigenfunction. Figure 4.4 and Table 4.1 explore the
situation further, comparing the location of the nth local minimum of W, plotted on
the z-axis, to that of the maximum of the nth eigenfunction, plotted on the y-axis,
for n = 1,...,20. Since these nearly coincide for n < 16, the first 16 points lie very
nearly on the line y = . From then on, however, the points deviate from the line
because the ordering of the local minima does not perfectly match the ordering of the
most closely associated eigenfunctions. Specifically, as can be seen from Table 4.1,
the 17th local minimum of W occurs at the location of the 19th eigenfunction, and
the 18th occurs at the location of the 20th eigenfunction.

We now consider the 2D case where the potential is the random 80 x 80 Bernoulli
potential shown in Figure 2.1, for which the effective potential is shown in Figure 3.2.
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FiG. 4.3. For the same potential as Figure 4.2 the first 16 local minima locations accurately
predict the locations of the corresponding eigenfunctions.

256 169
©
..
o3
192 A
e19 ”
L]
128 -
o4
o5
018 ol
o2
64 51
&
° el7
0 . . 220
0 64 128 192 256

Fia. 4.4. First 20 local minima on the x-axis versus the mazimum of the corresponding eigen-
function on the y-azis.

TABLE 4.1
The data plotted in Figure 4.4.

n W min eigfn max n W min eigfn max
1 90.57 90.55 11 47.43 47.43
2 73.42 73.43 12 44.52 44.50
3 204.50 204.50 13 180.52 180.52
4 110.50 110.50 14 158.48 158.48
5 100.48 100.48 15 41.50 41.50
6 232.50 232.50 16 253.32 253.33
7 22548 225.48 17 177.50 17.43
8 59.48 59.48 18 2.45 90.95
9 18.22 18.18 19 146.53 177.50
10 222.48 222.48 20 163.58 2.47
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Fi1G. 4.5. The first plot shows the prediction for the location of the first four eigenfunctions for
the Bernoulli potential of Figure 2.1. The second plot shows the actual positions of these eigenfunc-
tions, superimposed. The final plot compares the actual positions to the predictions.

To compute the landscape function we again used the finite element method with
Lagrange cubic finite elements on a uniform mesh. The mesh was obtained by dividing
each of the unit squares into 10 x 10 subsquares, each of which was further divided
into two triangles, resulting in 1,280,000 triangles altogether. We then evaluated
the solution at a uniform grid of 400 x 400 points and found the local minima of
the effective potential by comparing each of these values to the values at the eight
nearest neighbors (horizontally, vertically, and diagonally). In Figure 4.5 the first plot
shows the first four local minima of the effective potential. For each, a corresponding
sublevel set of the effective potential is shown. The four minima and sublevel sets
are our predictors for the locations of the eigenfunctions. The energy level E of the
sublevel sets was taken as 1.56 times the well depth, just slightly larger than the
prediction for the eigenvalue, namely 1.5 times the well depth, which we propose in
the next section. Recall that the choice of E' is somewhat arbitrary. This choice gives
a good visual match with the apparent support of the eigenfunctions. The second plot
in Figure 4.5 is a plot of the sum of four eigenfunctions, each normalized in the L*°
norm. Since they are localized one can easily distinguish the location of each within
the sum, which is very close to that predicted. The third plot is a superposition of
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F1G. 4.6. For the potential of Figure 1.1, the correspondence between eigenfunctions and wells
of the effective potential does not respect the ordering of the well minima. Moreover, the third and
fourth minima effectively define a single well.

TABLE 4.2
The values of the effective potential at its first five minima, and the first five eigenvalues for
the uniformly random potential of Figure 1.1; cf. Figure 4.6.

1 2 3 4 5
minima 2.3061  2.4246 24763 2.4796  2.5370
eigenvalues 3.6112 3.6618 3.7075  3.7717  3.9190

the first two, to facilitate comparison.

In the three cases just considered, there is a clear correspondence between the
first four eigenfunctions and the four deepest wells of the effective potential, with
each of eigenfunctions, when ordered as usual by increasing eigenvalue, centered at
the corresponding local minimum of the effective potential, ordered by depth of the
minimum. However, this ideal situation does not always pertain. When two eigenval-
ues, or two of the minima, are nearly equal, their ordering may not be respected by
the correspondence. Another situation which may arise is that the basin surrounding
one of the minima may include another. In that case the second minima does not
lead to a separate eigenfunction. Both of these issues arise in the case of the uni-
formly random potential of Figure 1.1. Figure 4.6 shows the first five local minima
of the effective potential, and their basins. The numbers provided show the ordering
by the depth of the wells. Note that the third and fourth minima nearly coincide in
location, and they only contribute one well, even though they are, technically, two
distinct minima. The actual minimum values and eigenvalues are given in Table 4.2.
It reveals that the third and fourth minima are not only close in location, but nearly
coincide in value as well. Moreover, the difference between their value and values of
the preceding and following minima is rather small. These close values account for the
fact that the correspondence between the eigenfunctions and minima clearly visible
in Figure 4.6 does not respect the precise ordering. Nonetheless, the structure of the
effective potential clearly provides a lot of information on the localization structure
of the eigenfunctions. To account for such near coincidences we could seek to develop
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Fic. 4.7. A correlated potential and the corresponding effective potential with its seven lowest
minima marked. On the top left is the original correlated potential, on the top right the corresponding
effective potential. On the bottom are the first seven eigenfunctions with the color giving the order
as indicated by the inset. A rectangle is superimposed on each eigenfunction. The heights of the
rectangles and eigenfunctions are mormalized to unity, while each rectangle’s width indicates the
extent of the localized eigenfunction as predicted by the effective potential (using a sublevel set at
an energy level equal to 1.875 times the depth of the wells as was done for Figure 4.1). The small
yellow circles give the position of the local minima and the numbers over them, the order of the local
minima. Notice that the order differs from the order of the corresponding eigenfunctions after the
first three.

TABLE 4.3
The values of the effective potential at its first seven minima, and the first seven eigenvalues
for the correlated potential of Figure 4.7.

1 2 3 4 5 6 7
minima 0.012752  0.022966  0.024642  0.025647 0.025673  0.026626  0.028347
eigenvalues  0.016534  0.030069 0.031620  0.032953  0.033822  0.034479  0.034735

an algorithm to identify clusters of minima with nearly equal values and relate them
to clusters of nearly equal eigenvalues. However, we shall not pursue this direction
here.

Thus far we have examined random piecewise constant potentials with values
taken i.i.d. according to some probability distribution (uniform or Bernoulli). In
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the final example of this section, we consider a potential for which the values are
correlated rather than independent. To generate values for the potential, we use
circulant embedding to convert uncorrelated Gaussian N (0, 1) random vector samples
to correlated Gaussians [14]. We take a 1D example, in which the potential is piecewise
constant with n unit length pieces, with n even. Define ¢; = ¢,—; = oexp(—di),
0 < i < n/2, where d is a positive constant, and let @ be the diagonal matrix
with entries qg,q1,.-.,qn—1. A sample vector for the values of V' is obtained by
squaring the components of the vector F~1QFz, where z is a vector of length n
with components sampled independently from a normalized Gaussian distribution,
and F is the discrete Fourier transform on C™. This type of a random potential is
typically created by optical speckles in a Bose-Einstein condensate; see, e.g., [20, 6].
It is quite challenging to derive rigorous probabilistic results when the correlation is
not negligibly small, especially in higher dimensions. The landscape theory, however,
continues to apply. We consider an example with n = 1,024, 0 = 1.0, d = 0.01, shown
in Figure 4.7 along with the corresponding effective potential. Note that, although
the potential and effective potential look quite different from the previous examples,
the effective potential still has clearly defined wells which allow us to apply our theory.
In the final plot in Figure 4.7 we use the effective potential as before to predict the
location and extent of the first seven eigenfunctions. As in the uncorrelated cases,
the well minima very nearly coincide with the peak of the eigenfunctions. The first
three minima, in order, correspond to the first three eigenfunctions, but after that the
order is not the same. The discrepancy in ordering is not very significant, however,
since both the minimum values and the eigenvalues are very close to one another, as
indicated in Table 4.3.

In this section we have shown how we can deduce the approximate locations
and approximate supports of eigenfunctions just by processing the effective potential,
without solving eigenvalue problems. We remark that this information could be re-
fined to give an approximation of the precise shape of the eigenfunction. To do so,
one could solve for the eigenfunction with a standard PDE eigensolver, but with the
domain taken as a regular domain just slightly larger than the approximate support,
and with Dirichlet boundary conditions. Because of the localization, this computa-
tional domain will be much smaller than the original domain and this computation
much less expensive than a global eigenvalue solve. The development and study of
such algorithms, however, goes beyond the scope of this paper, and is left for future
work.

5. Eigenvalue prediction. We now turn to the question of predicting eigenval-
ues of the Schrédinger operator H from the effective potential. As a simple illustration
of the utility of the effective potential for eigenvalue estimation, we start by recalling
the basic lower bound on the fundamental eigenvalue in terms of the potential V', and
show how it can be improved by using the effective potential.

For an eigenfunction v of H with eigenvalue A, normalized to have L? norm 1,
we have

(5.1) A= (Hy,¥) = || grady|> + (Vib, ),

which represents the decomposition into kinetic and potential energy. Dropping the
kinetic energy term and replacing V' by its infimum gives a lower bound on the eigen-
values:

(5.2) A > inf V.
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Now we use the fundamental identity of Proposition 3.2 to decompose the eigenvalue
in terms of the effective potential:

(H,¢) = (u*Lo, ¢) + (W, ),

where ¢ = ¢ /u. In view of the form of L (3.2), the first term on the right-hand side
is positive, so dropping it and replacing W by its infimum gives another lower bound:

(5.3) A > inf W.

Figure 5.1 allows one to compare the two bounds for a random potential with 64
values chosen uniformly i.i.d. in the range [0, 8]. The fundamental eigenvalue for this
realization is 1.58, indicated on the plot in red. The infimum of V is, however, very
near zero: 0.00009, and so the bound (5.2) is nearly worthless. (In this realization
inf V' happens to be particularly small, but the expected value of 1/65 = 0.015 is
again of little use.) By contrast, inf W = 1.22, which is a useful lower bound. In
fact, the fundamental eigenvalue is equal to about 1.3 inf W. We shall see below that
this factor of roughly 1.25 or 1.3 applies for a wide range of random potentials in one

3l

F1G. 5.1. A random potential (in shaded gray), the corresponding effective potential (the solid
blue line), and the fundamental eigenvalue (the horizontal red line).

IS

In the remainder of this section, we shall consider two approaches to eigenvalue
prediction, one based solely on the local minima values of the effective potential, and
the other based on a variant of Weyl’s law utilizing the effective potential. Although
we shall explain the thinking behind these approaches, it has to be noted that neither
has yet been justified rigorously.

5.1. Eigenvalues from minima of the effective potential. In this section we
discuss the approximation of the eigenvalues of the Schrodinger operator H using the
effective potential W. We shall be interested in both the approximation of individual
eigenvalues, and in the distribution of the eigenvalues. The latter is captured by the
density of states (DOS). Defined precisely, the DOS is the distribution on R obtained
by summing the delta functions centered at each eigenvalue. For visualization, it is
often converted to a piecewise constant function with respect to a partition of the
real line into intervals of some length € > 0, with the value over any interval being
the integral of the DOS over the interval (so a plot of this function is a histogram
of the eigenvalues using bins of width €). The integrated density of states (IDOS) is
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the integral of the DOS from —oo to a real value E. The resulting function N : R —
N is simply the eigenvalue counting function, with N(E) defined as the number of
eigenvalues < F.

To motivate our first approach to eigenvalue prediction, consider again the po-
tential shown in Figure 1.1, a piecewise constant function with 80 x 80 pieces and
constant values chosen randomly and independently from [0,20]. In the first plot
of Figure 5.2 we have computed the values of the effective potential W at its local
minima and compared the first 100 of these, in increasing order, to the first 100 eigen-
values of W. Just below we plot the quotients of each of these eigenvalues divided
by the corresponding local minimum value of W. Observe that the quotient is quite
constant, taking on a value of roughly 1.5. We shall endeavor to explain this value
below, but first we observe that this ratio of roughly 1.5 between the mth eigenvalue
and the mth minimum value of the effective potential holds over a wide range of ran-
dom potentials in two dimensions. In the remainder of the first two rows of Figure 5.2
we show the same results also for the Bernoulli potential of Figure 2.1 and the corre-
lated potential shown in Figure 5.3. (The correlated potential was constructed with
circulant embedding as discussed above for one dimension, except that we of course
used the 2D discrete Fourier transform, and we took as aperture function ox(d|t|)
with ¢ = 4 and d = 0.05, where x is the characteristic function of the unit interval,
instead of oexp(—d|t|) as we took previously.) The three pairs of plots in the final
two rows of the figure show the case of a uniformly random 40 x 40 potential with
values taken between 0 and 4, 16, and 64, respectively. The quotient is quite close to
being constant with value 1.5, particularly in the last two cases. In the first case, with
the lowest disorder, the ratio drifts away from 1.5 to about 1.75 after approximately
50 eigenvalues.

Of course, the minima of the effective potential can only predict a limited number
of eigenvalues. Indeed, W has only a finite number of local minima, while there are
infinitely many eigenvalues. In Figure 5.4 we revisit the fifth case shown in Figure 5.2,
with a uniformly random 40 x 40 potential with values in [0, 16]. For this realization
of the potential, W has exactly 252 local minima. These are plotted alongside the
first 300 eigenvalues in the left-hand side of Figure 5.4, and their ratios with the
corresponding eigenvalues are plotted on the left. We see that, in this case, the ratio
of 1.5 remains quite accurate for more than 150 of the 252 minima.

In Table 5.1 we display the mean and standard deviation of these ratios computed
for the first 10, 50, and 100 eigenvalues for each of the six potentials of Figure 5.2.
The main observation is that, across all this range, the ratio stays quite close to 1.5.

Table 5.2 is similar, but shows the results for a variety of potentials in one dimen-
sion. Again, we see that the ratio of the eigenvalue to the corresponding minimum
values of the effective potential is roughly constant, as it was in two dimensions. How-
ever, the constant value we find in one dimension is about 1.25 or 1.3 rather than the
value of 1.5 we saw in two dimensions.

Finally, in Figure 5.5 we plot the 1st, 10th, and 25th eigenvalues versus the
corresponding minima values of W for numerous different realizations of a random
potential. The first figure displays 64 realizations of a 1D potential on [0, 256] with
256 values selected uniformly i.i.d. from [0, 16], while the second figure displays 64
realizations of a 2D potential on [0, 40] x [0, 40] with 1,600 random values again chosen
uniformly i.i.d. from [0, 16]. We see that in the first case the points line up well along
the line A = 1.25Win, and in the second along the line A = 1.5W ;.
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F1c. 5.2. A comparison of 100 eigenvalues with the corresponding minimum values of W for siz
different potentials with the ratio of the two shown beneath each one. Top two rows: (left) random
80 X 80 piecewise potential with values chosen uniformly in [0,20]; (center) Bernoulli potential of
Figure 2.1; (right) correlated potential of Figure 5.3. Bottom two rows: random 40 x 40 piecewise
potential with values chosen uniformly in (left) [0,4], (center) [0,16], (right) [0,64]. In all of these
cases, one can notice that the ratio of the minimum values of W to the corresponding eigenvalues
remains remarkably close to the value 1.5.

From this and other evidence, we conclude that in many cases
(5.4) A~ (1 + g) Wnin.

Here A is one of the lower eigenvalues of H, for which the corresponding eigenfunction
is localized to a subdomain ¢, Wi, is the minimum value of the effective potential
on that subdomain, and n is the number of dimensions (thus far 1 or 2). The constant
14+ n/4, i.e., 1.25 in one dimension and 1.5 in two dimensions, is a rough approxima-
tion in accord with our observations and which we now further justify heuristically.
It is remarkable that this constant, though dimension-dependent, is independent of
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F1a. 5.3. A correlated potential with 80 x 80 pieces and the corresponding effective potential.
The potential takes values ranging from 2.364 x 10~2 to 60.56, while the effective potential’s values
range from 0.374 to 57.17.
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—e— eigenvalues

—e— minima

1.5

1.0

0.5

0 50 100 150 200 250 300 0 50 100 150 200 250 300

Fi1G. 5.4. A plot of all the minima of W wversus the eigenvalues, and, on the right, their ratio,
for the same potential realization as the fifth case shown in Figure 5.2.

TABLE 5.1
The mean and standard deviation for the ratio of the first 10, 50, and 100 eigenvalues to the
corresponding minima values of W. For a wide range of potentials in two dimensions, the ratio is
roughly 1.5 across many eigenvalues.

10 eigs 50 eigs 100 eigs

Potential Ne Mean SD Mean SD Mean SD

uniform [0,20] 80 1.519 0.024 1.520 0.018 1.524 0.017
Bernoulli 80 1.585 0.034 1.607 0.041 1.646 0.049
correlated 80 1.519 0.018 1.532 0.028 1.530 0.022
uniform [0, 4] 40 1.479 0.018 1.510 0.034 1.582 0.087
uniform [0, 16] 40 1.518 0.041 1.515 0.026  1.516 0.021
uniform [0, 64] 40 1.503 0.025 1.511 0.024 1.477 0.043

the specific realization of the potential and of the parameters of its probability distri-
bution, the size of the domain, etc.
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TABLE 5.2
The mean and standard deviation for the ratio of the first 10, 25, and 50 eigenvalues to the
corresponding minima values of W, tabulated here for eight different types of random potentials in
one dimension.

10 eigs 25 eigs 50 eigs
Potential Ne Mean SD Mean SD Mean SD
uniform [0, 4] 256 1.303 0.026 1.321 0.029 1.300 0.067
1024 1.302 0.019 1.301 0.020 1.304 0.022
uniform [0, 16] 256 1.322 0.023 1.308 0.031 1.240 0.099
1024 1.274 0.018 1.296 0.031 1.294 0.027
Bernoulli 256 1.301 0.033 1.316 0.050 1.296 0.130
1024 1.262 0.014 1.272 0.026  1.266 0.073
correlated 256 1.335 0.055 1.404 0.090 1.310 0.171
1024 1.280 0.018 1.286 0.017 1.303 0.042
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© 25th eigenvalue
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v

4.5

»
)

W
n

eigenvalue
eigenvalue

1.25Wmin

w
o

25

1.0 15 2.0 2.5 3.0 3.5 4.0 1.50 1.75 2.00 225 2.50 2.75 3.00 3.25
Wonin Wonin

Fi1G. 5.5. The 1st, 10th, and 25th eigenvalues versus the corresponding minima values of the
effective potential, for 64 independent realizations of a random potential. Left, in one dimension
where the black line shown is A\ = 1.25W . Right, in two dimensions with X\ = 1.56Wip.

We now give some heuristic support of the eigenvalue approximation (5.4). Our
argument will be rather crude, and we do not claim it fully explains the numerical
evidence presented above. Let v denote one of the eigenfunctions associated to a
smaller eigenvalue. We assume v to be localized, i.e., essentially supported in a
small subdomain €2y, for which it is the fundamental Dirichlet eigenfunction. We also
assume that on the subdomain €2y the landscape function w is well approximated by
a constant multiple of the fundamental eigenfunction v of the subdomain. This is
roughly supported by experimental results such as those shown in Figure 3.1. Another
supporting argument comes from the expansion of the constant 1 on €y in terms of
the Dirichlet eigenfunctions of the domain, retaining only the first term ¢y, and
dropping the terms coming from the eigenfunctions which change sign. Then u ~
(co/A)Y, indeed a multiple of 1. We may use these two assumptions, together with
the definition Hu = 1 of the landscape function, to approximate the Rayleigh quotient:

_ JovHYde  Jo, vHYdx  [o uHudr [ udz

A —_— ~ ~ —_— .
Jov?da fQo P2 dx fﬂo u? dx fQo u2 dx
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Next, we assume that on g the landscape function u (or ¥ which we are supposing is
a constant multiple of u there) can be approximated by the simplest sort of positive
bump-like function, the positive part of a concave quadratic function. After rotating
and translating the coordinate system, this means that

u~ urrlax[l - Z(xi/ai)2] on QO ~ {Jf S R™ | Z(Z‘i/ai)2 S 1 }
for some positive constants a;. Thus our approximation to the eigenvalue is

fQo udz _ ¢ o fQo 1= (2i/a;)?) dx
Jo, ¥?dr Umax’ Jo, 1 = 2(@i/ai)?]? da”

Finally, we compute ¢ using the change of variables &; = z;/a; to convert the integrals
in the numerator and denominator into integrals over the unit ball B which can be
computed with polar coordinates. This gives ¢ =14 n/4 (independent of the values
of the a; and so of the size and shape of the ellipsoid). Since 1/tumax = Winin, this
indeed gives the approximation (5.4).

The results we have shown in Figure 5.2 and Tables 5.1 and 5.2 demonstrate
that the approximation (5.4) can be used to estimate 100 eigenvalues with errors of
a few percent. Note that it is nonetheless very cheap to apply (5.4), the cost being
that of solving a single source problem and the extraction of some maxima, much less
than the cost of computing many eigenvalues. As another example of the utility of
(5.4), we now use it to approximate the density of states in the interval [0, 1] of the
1D Schrédinger operator for which the piecewise constant potential has 2'9=524,288
pieces. (Specifically, we compute on the interval [0,2!°] and assign the random values
to unit subintervals uniformly i.i.d. in [0,4].) We display the DOS as a histogram with
100 bins. The top left plot in Figure 5.6 shows the actual density of states, requiring
the computation of all 7,122 of the eigenvalues which belong to the interval [0, 1]. The
finite element mesh we use to approximate the Schrédinger operator in this case has
10 x 2'9 elements, and we use piecewise cubic finite elements, so that the problem
has about 15.7 million degrees of freedom. The calculation of 7,000 eigenvalues is
thus a very large computation. It required about 40 CPU hours on a workstation
with an Intel Core i7-4930K processor, using spectral slicing and the Krylov—Schur
method of SLEPc. However, an accurate approximation of the density of states can
be obtained quickly using the effective potential without resorting to the computation
of any eigenvalues. This approximation is shown in the top right plot of Figure 5.6. It
is a histogram of all those values of 1.25Wy,;, which belong to the same interval [0, 1]
(8,800 in all). The computation of these values is much less demanding. It required
slightly over five minutes of CPU time of the same workstation, i.e., was about 480
times faster. The two histograms are compared in the bottom plot.

A\~

5.2. Eigenvalues from a variant of Weyl’s law. The approximation (5.4)
can be used to predict, at most, one eigenvalue per local minimum of W. Intuitively,
it approximates a localized eigenfunction by the fundamental mode of the well around
the local minimum. Now we present an alternative approach, which again relies on the
effective potential W, but which gives some sort of prediction for all of the eigenvalues.
For large eigenvalues, it provides information similar to Weyl’s law. Recall that Weyl’s
law for the Schrodinger equation is an asymptotic formula for the eigenvalue counting
function:

(5.5) N(E) ~ Ny (E) := (27) " vol{ (z,¢) € A x R* | V(2) + |([? < E} as E — oo,
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FIG. 5.6. Density of states on [0,1] for the case of a uniformly random potential with 21°

pieces, displayed with 100 bins. On the top left, histogram of the actual eigenvalues. On the top
right, histogram of 1.25 times the local minima of W. The bottom highlights the differences between
the two.

where the volume term is the 2n-dimensional measure of the indicated subset of the
phase space 2 x R™. Assuming smoothness and growth conditions for the potential,
Weyl’s law holds asymptotically as E tends to +oco and so for a large number of eigen-
values [24, Theorem 6.8]. Inverting the counting function, we can thus view Weyl’s
law as furnishing an approximation of the nth eigenvalue, which is asymptotically
valid for n large. Weyl’s law is generally not expected to be accurate for a small
number of eigenvalues. However, experimentally we have found that, for the sorts
of random potentials considered in this paper, a variant of Weyl’s law invoking the
effective potential W gives very good results right down to the first few eigenvalues,
while remaining asymptotically correct. The variant, which we shall refer to as the
effective Weyl’s law, is obtained by simply replacing the potential V' in (5.5) by the
effective potential W:

N (E) = (2m) " vol{ (2,¢) € 2 x R |[W(x) +[¢[> < ).

Figure 5.7 compares the true eigenvalue counting function N (shown in black),
Weyl’s law (green), and the effective Weyl’s law (red), for four different types of
potentials. The first is uniformly random i.i.d. with 512 pieces and values in [0, 1].
The second is the Bernoulli potential where the 512 random values are either 0 or
1, each with probability 1/2. The third is a correlated Gaussian squared potential
like that of Figure 4.7. The fourth is quite different: the 512 Boolean values 0 and
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F1c. 5.7. This figure presents the eigenvalue counting function N, the Weyl’s law approximation
Ny, and the effective Weyl’s law approximation Ny, for some potentials in one dimension. Top row:
uniform and Boolean random potentials. Bottom row: correlated and periodic Boolean potentials.
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Fic. 5.8. This figure presents the eigenvalue counting function N, the Weyl’s law approrimation
Ny, and the effective Weyl’s law approzimation Ny, for the 2D potential of Figure 1.1, showing
the first 100 eigenvalues on the left and restricting to the first 10 on the right.

1 are assigned alternately. For this potential, there is no localization. Nonetheless,
we see that, in each case, Weyl’s law becomes a good approximation only after 100
or so eigenvalues and, in every case, it incorrectly predicts many eigenvalues in the
interval from 0 to the least eigenvalue. By contrast, the effective Weyl’s law provides a
very good approximation of the counting function for many eigenvalues, starting from
the first. It is revealing to compare the two potentials which take on only Boolean
values (the second and the fourth). Because the classical Weyl’s law is unaffected by



COMPUTING SPECTRA WITHOUT EIGENVALUE PROBLEMS BI1

rearrangement of the potential, it gives the same prediction for the counting function
in both cases. But the actual counting functions differ very significantly, a fact which
is well captured by the effective Weyl’s law. (Similar results were published in [4].)

Finally, in Figure 5.8 we show similar results for a single 2D potential, namely
the uniformly random 80 x 80 potential of Figure 1.1. The first plot shows the first
100 eigenvalues, while the second zooms in on the first 10 eigenvalues. The predictive
power of the effective Weyl’s law does not seem to be as great as in one dimension,
but again it displays a great improvement over the classical Weyl’s law for small
eigenvalues.

6. Conclusion. We have demonstrated numerically that the effective potential,
defined as the reciprocal of the localization landscape function, accurately captures a
great deal of information about the localization properties of a random potential, and
shown how to employ it to predict eigenvalues and eigenfunctions. These predictions
are attained by solving a single PDE source problem, without the direct solution
of any eigenvalue problems, and so at a very low computational price. The wells
of the effective potential reveal the main localization subdomains, and the values of
its minima are found to be very good predictors of the corresponding fundamental
eigenvalues. We have tested this approach on piecewise constant potentials with
several types of random distributions, uniformly random and Bernoulli, and with a
certain correlated distribution, in both one and two dimensions. We have further
used the effective potential to predict the density of states and obtain good precision
even for small eigenvalues, something which is not attained by the classical Weyl law
asymptotics. In highly demanding computations where the Schrédinger equation has
to be solved for a large number eigenfunctions and eigenvalues (as, for instance, in
semiconductor physics), the resulting computational efficiency makes it now possible
to reproduce numerically, to analyze, and to understand the behavior of quantum
disordered materials.
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