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A MOMENT METHOD FOR INVARIANT ENSEMBLES

SHO MATSUMOTO AND JONATHAN NOVAK

(Communicated by Josselin Garnier)

Abstract. We introduce a new moment method in Random Matrix The-
ory specifically tailored to the spectral analysis of invariant ensembles. Our

method produces a classification of invariant ensembles which exhibit a spec-
tral Law of Large Numbers and yields an explicit description of the limiting

eigenvalue distribution when it exists. We discuss the future development and
applications of this new moment method.

1. Introduction

Random Matrix Theory (RMT) is one of the most active research topics in
contemporary probability theory. The goal of the subject is natural and compelling:
given a random matrix, describe the statistical behavior of its eigenvalues. In
addition to its intrinsic mathematical appeal, interest in RMT has been spurred
by the scientific hypothesis that spectra of large random matrices yield models for
complex systems comprised of many highly correlated components. Such systems
are ubiquitous in mathematics and nature—particular examples include zeros of
L-functions [7], energy levels of atomic nuclei [32], and arrival times of New York
City subway trains [13]—but are not within the purview of classical scalar and
vector-valued probability, whose limit theorems describe systems built from weakly
correlated components.

The universe of random matrix models is too large to be studied all at once, and
in practice it is parceled out into various paradigms. Among the most prominent
of these is the invariant paradigm, which is populated by statistical ensembles of
three types. A real invariant ensemble is a sequence

X(N) =







...

· · · X
(N)
ij · · ·
...







N

i,j=1

N = 1, 2, 3, . . . ,

of random real selfadjoint matrices such that, for each N ∈ N and any N × N
orthogonal matrix O, the distribution of X(N) coincides with that of OX(N)O−1.
Similarly, a complex invariant ensemble is a sequence of random complex selfadjoint
matrices each of which has distribution invariant under conjugation by unitary ma-
trices, and a quaternionic invariant ensemble is a sequence of random quaternionic
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selfadjoint matrices each of which has distribution invariant under conjugation by
symplectic matrices. Conjugation invariance is a physically natural assumption
(all coordinate systems are equivalent) which also has a natural probabilistic in-
terpretation: it means that the distribution of X(N) is uniform conditional on its
eigenvalues

E
(N)
1 ≥ · · · ≥ E

(N)
N .

Invariant ensembles of random matrices have been the focus of intense study for
decades; see [8, 9, 11, 14] and references therein. However, these investigations have
almost exclusively focused on a special class of invariant ensembles: those in which
the distribution of X(N) is absolutely continuous with respect to Lebesgue measure,
with density proportional to a function of the form exp(−β

2N TrV (X)). Here
Tr denotes the matrix trace, V is a sufficiently well-behaved real-valued function,
and β is the Dyson index, which is equal to 1, 2, or 4 according to whether the
ensemble is real, complex, or quaternionic. The fixation on this special class of
invariant ensembles stems from the fact that the joint density of eigenvalues is
known explicitly, being proportional to exp(−β

2N
2H), where H is the Hamiltonian

H(E1, . . . , EN ) =
1

N

N∑

i=1

V (Ei)−
1

N2

∑

i 6=j

log |Ei − Ej |.

This formula furnishes a physical interpretation of the spectrum as a system of
two-dimensional electrostatic charges living on a wire, with V playing the role
of a confining potential. This system may be analyzed directly using a variety of
powerful analytic techniques, leading to a detailed understanding of its macroscopic
and microscopic statistics in the large N limit; see [9, 10] for the state of the art.

The Dyson-type ensembles form a small island in the vast sea of all invariant
ensembles. In this note, we suggest a new approach to the spectral analysis of
general invariant ensembles, the implementation of which will both broaden and
deepen current understanding of this important paradigm. This new approach
is based on a simple observation: the distribution of any conjuagation-invariant
random selfadjoint matrix is completely determined by the joint distribution of its
diagonal matrix elements. This fundamental consequence of invariance seems to
have been overlooked; certainly, it has never been exploited. Nevertheless, it is
easily seen from the Fourier transform,

A 7→ E
[
eiTrAX(N)]

.

Indeed, diagonalizing the selfadjoint matrix A, cyclic invariance of the trace and
conjugation invariance of X(N) immediately imply that

E
[
eiTrAX(N)]

= E
[
ei(a1X

(N)
11 +···+aNX

(N)
NN

)
]
,

where a1, . . . , aN is any enumeration of the eigenvalues of A. Thus, everything one
could hope to know about X(N) is encoded in the joint distribution of the real ran-

dom variables X
(N)
11 , . . . , X

(N)
NN , which are identically distributed and exchangeable.

This reduces the spectral analysis of invariant ensembles to extracting eigenvalue
statistics from the joint distribution of diagonal matrix elements.
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2. Statement of Results

For a general selfadjoint ensemble X(N), in the absence of an analytical descrip-
tion of the eigenvalues, one must interact with the spectrum via an appropriate
system of observables. The random variables

p
(N)
d =

1

N

N∑

i=1

(
E

(N)
i

)d
, d = 1, 2, 3, . . .

which generate the algebra of symmetric polynomial functions of the eigenvalues,
are a natural choice. Indeed, they are precisely the moments of the empirical eigen-
value distribution of X(N). In RMT, the term moment method refers to any tech-
nique which relates the distribution of spectral moments to the joint distribution of
matrix elements. The prototypical moment method was introduced by Wigner in
the 1950s, and is still widely used today; see [32]. Wigner’s moment method applies
to ensembles of random selfadjoint matrices whose matrix elements enjoy a high
degree of independence; these Wigner ensembles constitute a random matrix par-
adigm which is, in a sense, orthogonal to the invariant paradigm. Wigner used his
moment method to show that, under appropriate hypotheses, the spectral moments

p
(N)
d of a Wigner ensemble X(N) tend to deterministic limits p

(∞)
d as N → ∞. This

is the random matrix version of the Law of Large Numbers.
In this note, we present a new moment method specifically tuned to the invariant

paradigm. As explained above, conjugation invariance means that we need only
consider the joint distribution of diagonal matrix elements. We will say that an

invariant ensemble X(N) is smooth if X
(N)
11 , . . . , X

(N)
NN admit joint moments of all

orders. In this case, thanks to exchangeability, it suffices to consider joint moments
indexed by Young diagrams, which provide a convenient graphical representation
of the unordered decompositions of a number into smaller numbers. For example,
the diagram

has 10 total cells and three rows of lengths 5, 3, and 2, and it represents the
decomposition 10 = 5 + 3 + 2. To a given Young diagram λ with |λ| = d cells and

`(λ) = r rows λ1, . . . , λr, we associate the degree d joint moment of X
(N)
11 , . . . , X

(N)
rr

defined by

E
[
X

(N)
11 · · ·X

(N)
11

︸ ︷︷ ︸

λ1

, . . . , X(N)
rr · · ·X(N)

rr
︸ ︷︷ ︸

λr

]
,

and denote this joint moment m
(N)
λ . For example, in the case of the diagram above,

we have

m
(N)
λ = E

[(
X

(N)
11

)5(
X

(N)
22

)3(
X

(N)
33

)2
]

.

Each diagonal matrix element of X(N) can be decomposed as

X
(N)
ii =

N∑

j=1

U
(N)
ij E

(N)
j U

(N)

ij ,
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where U (N) =
[
U

(N)
ij

]N

i,j=1
is a random matrix whose distribution is the Haar prob-

ability measure on O(N),U(N), or Sp(N) according to whether X(N) is real, com-

plex, or quaternionic. This decomposition of X
(N)
ii can be substituted into the

definition of m
(N)
λ , and the eigenvector information can be “integrated out” using

the Weingarten Calculus, a unified set of tools for the evaluation of polynomial in-
tegrals on compact topological groups; see [4, 6, 5]. What remains is a presentation

of m
(N)
λ as the expectation of a certain polynomial in the spectral moments of X(N).

This polynomial becomes more tractable if one applies a basic statistical principle,
which may be traced to the nineteenth century astronomer Thorvald N. Thiele [19]:
cumulants package the same information as moments in a more useful way. We thus

trade m
(N)
λ for the corresponding joint cumulant c

(N)
λ . For example, with λ as in

the previous example, c
(N)
λ is the coefficient of

a51
5!

a32
3!

a23
2!

in the log of the characteristic function of the random vector (X
(N)
11 , X

(N)
22 , X

(N)
33 ).

Execution of this strategy leads to the following result, which gives necessary and
sufficient conditions for the emergence of a spectral Law of Large Numbers within
the class of smooth invariant ensembles.

Theorem 2.1. For any smooth invariant ensemble X(N), the following are equiv-

alent:

(1) For each positive integer d, the random variable p
(N)
d converges, in probabi-

lity, to a constant p
(∞)
d ;

(2) For each Young diagram λ, the number N |λ|−1c
(N)
λ converges to a limit c

(∞)
λ ,

and this limit vanishes if `(λ) > 1.

Recalling that vanishing of mixed cumulants characterizes independence, The-
orem 2.1 says that the moments of the empirical eigenvalue distribution of X(N)

converge in probability to deterministic limits precisely when each diagonal element
converges rapidly to a constant, and distinct diagonal elements rapidly decouple.

A detailed proof of Theorem 2.1 implementing the strategy described above will
appear in [21]. This proof yields additional information, namely a precise relation-

ship between the numerical sequences p
(∞)
1 , p

(∞)
2 , p

(∞)
3 , . . . and c

(∞)
1 , c

(∞)
2 , c

(∞)
3 , . . . ,

where c
(∞)
d denotes c

(∞)
λ for λ a single row of d cells. It turns out that this re-

lationship may be concisely described in the language of Free Probability Theory,
a highly noncommutative probability theory developed by Voiculescu to address a
famous unsolved problem in the theory of von Neumann algebras; see [31]. A fun-
damental tool in Free Probability is a bijective transform on sequences which plays
the same role as the moment-to-cumulant transform in classical probability. More
precisely, the R-transform of a given sequence (m1,m2,m3, . . . ) is the sequence
(f1, f2, f3, . . . ) = R(m1,m2,m3, . . . ) whose terms, known as free cumulants, are
defined implicitly by

(1) md =
∑

π∈NC(d)

∏

B∈π

f|B|,
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where the summation is over the lattice of noncrossing partitions of {1, . . . , d}, and
the product is over the blocks B of π ∈ NC(d). For more details on the R-transform
and its role in Free Probability Theory, see see [23, 24, 25].

Theorem 2.2. Let X(N) be a smooth invariant ensemble. Then

R(p
(∞)
1 , p

(∞)
2 , p

(∞)
3 , . . . ) =

(
γ0

0!
c
(∞)
1 ,

γ1

1!
c
(∞)
2 ,

γ2

2!
c
(∞)
3 , . . .

)

,

where γ = β/2 is one half the Dyson index.

3. Applications

Theorems 2.1 and 2.2 together form a “skeleton key” result which can be used to
recover many seemingly disparate theorems in RMT—and even some which seem
unrelated to RMT—in a unified way. We illustrate this via several examples.

3.1. Gaussian ensembles. LetX(N) be an invariant ensemble such thatX
(N)
11 , . . . ,

X
(N)
NN are independent Gaussians of mean c1 and variance c2N

−1, with c1, c2 con-
stants. By Gaussianity, all pure cumulants of order higher than two vanish. More-
over, mixed cumulants are identically zero by independence. We thus have existence

of the limits c
(∞)
λ for all Young diagrams λ. More precisely, we have

c
(∞)
1 = c1, c

(∞)
2 = c2,

and all other c
(∞)
λ are zero. Theorem 2.1 thus implies that each spectral moment

p
(N)
d of X(N) converges in probability to a deterministic limit p

(∞)
d . Theorem 2.2

yields the R-transform of the limiting moment sequence

R(p
(∞)
1 , p

(∞)
2 , p

(∞)
3 , . . . ) = (c1, γc2, 0, 0, . . . ).

There is a unique probability measure µ(∞) with this R-transform: the Wigner
semicircle distribution with mean c1 and variance γc2. Thus we recover the Wigner

semicircle law for Gaussian ensembles, which first appeared in [32]. For an extensive
discussion of this result and its central role in RMT, we refer the reader to [8, 9,
10, 11].

3.2. Wishart ensembles. For each N , let Z(N) be a p×N random matrix whose
matrix entries are iid Gaussians with mean 0 and variance αN−1, with α constant.
One then has an affiliated invariant ensemble, known as a Wishart ensemble, whose
N th member is X(N) =

(
Z(N)

)∗(
Z(N)

)
. Mixed cumulants of the diagonal matrix

elements X
(N)
11 , . . . , X

(N)
NN are identically zero by independence. Moreover, it is

easy to compute the pure cumulants of a single diagonal element: using the Wick
formula, one obtains

c
(N)
d = pγ1−d

( α

N

)d

(d− 1)!, d ∈ N.

Suppose now that p = pN grows with N in such a way that the limit

c = lim
N→∞

p

N

exists. Then, we have

c
(∞)
d = lim

N→∞
Nd−1c

(N)
d = cγ1−dαd(d− 1)!.
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Theorem 2.1 thus implies that each spectral moment p
(N)
d of X(N) converges in

probability to a deterministic limit p
(∞)
d . Theorem 2.2 yields the R-transform of

the limiting moment sequence:

R(p
(∞)
1 , p

(∞)
2 , p

(∞)
3 , . . . ) = (cα, cα2, cα3, . . . ).

There is a unique probability measure µ(∞) with this R-transform: the Marčhenko-
Pastur distribution with rate c and jump size α. This yields the famous Marčhenko-

Pastur law, which first appeared in [20]. Gaussian Wishart ensembles are important
in multivariate statistics, where they first appeared in [33]. In Free Probability, the
Marčhenko-Pastur law arises naturally as a free version of the Poisson limit theorem,
see [23, 25] for more on this.

3.3. Sum of independent ensembles. LetX(N) and Y (N) be independent smooth
invariant ensembles, and suppose it is known that the spectral moments of each
converge in probability to deterministic limits:

pd(X
(N)) → xd and pd(Y

(N)) → yd.

From this data, we obtain a new smooth invariant ensemble defined by setting
Z(N) := X(N) + Y (N) for each N ∈ N. Given a Young diagram λ, the relation-
ship between the corresponding joint cumulants of the diagonal matrix elements of
Z(N), X(N), Y (N) is, by independence, simply

cλ(Z
(N)) = cλ(X

(N)) + cλ(Y
(N)).

Now, since the spectral moments of X(N) and Y (N) are known to converge to
deterministic limits, Theorem 2.1 implies existence of the limits

cλ(X) := lim
N→∞

N |λ|−1cλ(X
(N)),

cλ(Y ) := lim
N→∞

N |λ|−1cλ(Y
(N)),

with these limits vanishing if `(λ) > 1. We thus obtain

cλ(Z) = lim
N→∞

N |λ|−1cλ(Z
(N)) = cλ(X) + cλ(Y ),

so that by Theorem 2.1 we have convergence in probability of the spectral moments
pd(Z

(N)) to deterministic limits zd. Moreover, by Theorem 2.2,

R(z1, z2, z3, . . . ) = R(x1, x2, x3, . . . ) +R(y1, y2, y3, . . . ).

Thus we recover the fundamental fact that the R-transform of the sum of two inde-
pendent invariant ensembles is, asymptotically, the sum of their R-transforms. This
fact, which is analogous to the classical statement that the log-Fourier transform
of a sum of two independent scalar random variables is the sum of their log-Fourier
transforms, was discovered by Voiculescu in his first paper linking random matri-
ces to Free Probability Theory [30]. In Free Probability, the R-transform plays
the role of the log-Fourier transform in the sense that it linearizes the addition of
free random variables; that this holds for large independent random matrices is a
manifestation of the more general fact that independent invariant ensembles are
asymptotically free, see [22, 24, 25].
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3.4. Compressed ensembles. Let X(N) be a smooth invariant ensemble, and

suppose it is known that the spectral moments p
(N)
d of X(N) converge in probability

to deterministic limits p
(∞)
d . For any choice of t ∈ (0, 1), one obtains a new smooth

invariant ensemble whoseN th memberX
(N)
btNc is the btNc×btNc principal submatrix

of X(N). Let p
(N)
d,t denote the spectral moments of X

(N)
btNc. For any Young diagram

λ, the corresponding joint cumulants c
(N)
λ and c

(N)
λ,t of the diagonal matrix elements

of X(N) and X
(N)
btNc are well-defined and equal for btNc ≥ `(λ). By Theorem 2.1,

the limit
c
(∞)
λ = lim

N→∞
N |λ|−1c

(N)
λ

exists and vanishes if `(λ) > 1. Moreover,

c
(∞)
λ,t = lim

N→∞
(btNc)|λ|−1c

(N)
λ,t

= t|λ|−1 lim
N→∞

N |λ|−1c
(N)
λ

= t|λ|−1c
(∞)
λ .

Thus, Theorem 2.1 implies that each p
(N)
d,t converges to a deterministic limit p

(∞)
d,t ,

and Theorem 2.2 yields

R(p
(∞)
1,t , p

(∞)
2,t , p

(∞)
3,t , . . . ) =

(
(γt)0

0!
c
(∞)
1 ,

(γt)1

1!
c
(∞)
2 ,

(γt)2

2!
c
(∞)
3 , . . .

)

.

This reproduces the so-called free compression principle for corners of random ma-
trices, see [23].

3.5. Random lozenge tilings. Let

(b
(N)
1 , . . . b

(N)
N ), N = 1, 2, 3, . . .

be a sequence of random integer vectors such that b
(N)
1 > · · · > b

(N)
N for each N ∈ N.

This random data gives rise to a sequence Ω(N) of random planar domains via the
following construction. Fix a coordinate system in the plane whose axes meet at
a 120◦ angle. We specify Ω(N) by constructing its boundary, which consists of two
piecewise linear components, one deterministic and one random. The determinis-
tic component of ∂Ω(N) is simply the horizontal axis in the plane. The random
component is built in three steps. First, construct the line parallel to the lower
boundary passing through the point (0, N). Second, affix N outward-facing unit
triangles to this line such that the midpoints of their bases have horizontal coordi-

nates b
(N)
1 > · · · > b

(N)
N . Finally, erase the bases of these triangles. We will refer to

Ω(N) as the sawtooth domain of rank N with boundary conditions (b
(N)
1 , . . . , b

(N)
N ).

A lozenge is a unit rhombus in the plane whose sides are parallel to one of the
coordinate axes, or to the line bisecting the obtuse angle between them. Lozenges
are thus divided into three classes: left-leaning, right-leaning, and vertical. Each
instance of the random domain Ω(N) can be tiled with lozenges in finitely many
ways, an example being given in Figure 1. Consequently, we may consider a ran-
dom tiling T

(N) of Ω(N) whose distribution is uniform conditional on its boundary
conditions. For each instance of T(N), and any integer 1 ≤ k ≤ N , the horizontal
line through (0, k) passes through exactly k vertical tiles, as in Figure 1. Moreover,
the entire tiling can be reconstructed given only the locations of the vertical tiles.
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-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 1. A lozenge tiling of a sawtooth domain of rank 6.

The positions of the vertical tiles on adjacent lines interlace, a feature which is
reminiscent of Cauchy interlacing for the eigenvalues of a selfadjoint matrix and its
principal submatrices.

Let us associate to the random tiling T
(N) a finite sequence of unitarily invariant

random Hermitian matrices defined by

X(k,N) = Uk







b
(N)
k1

. . .

b
(N)
kk






U−1
k , 1 ≤ k ≤ N,

where Uk is a Haar-distributed random k × k unitary matrix and b
(N)
k1 > · · · >

b
(N)
kk are the horizontal coordinates of the centroids of the vertical tiles on the

horizontal line through (0, k). It is tempting to hope that the distribution of X
(N)
k

coincides with the distribution of the k × k principal submatrix of X
(N)
N . In this

case, the joint distribution of the diagonal matrix elements X
(k,N)
11 , . . . , X

(k,N)
kk of

X(k,N) would coincide with the joint distribution of the first k diagonal matrix

elements X
(N,N)
11 , . . . , X

(N,N)
kk of X(N,N) and we would be in the setting of the

previous example. This is not quite the case—the k-dimensional random vector
(
X

(k,N)
11 , . . . , X

(k,N)
kk

)
has the same distribution as

(
X

(N,N)
11 , . . . , X

(N,N)
kk

)
−

N−k∑

i=1

(Zi1, . . . , Zik),

where

Z(k,N) =






Z11 · · · Z1k

... · · ·
...

ZN−k,1 · · · ZN−k,k






is an (N − k) × k random matrix independent of T(N) whose entries Zij are iid
uniformly random samples from the unit interval [0, 1]. For a proof of this, see

[26]. Suppose it is known that the spectral moments p
(N)
d of N−1X(N,N) converge

in probability to deterministic limits p
(∞)
d , these numbers being the moments of

the “limit profile” of N−1Ω(N). Fix t ∈ (0, 1), and let p
(N)
d,t denote the spectral

moments of N−1X(btNc,N). For any Young diagram λ, the corresponding joint
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cumulants c
(N)
λ and c

(N)
λ,t of N−1X(N,N) and N−1X(btNc,N) are well-defined for

btNc ≥ `(λ). By the above, the relation between these joint cumulants is

c
(N)
λ,t = c

(N)
λ − δ1,`(λ)(N − btNc)c|λ|(N

−1Z),

where Z is a single uniformly random sample from the unit interval. By Theorem
2.1, the limit

c
(∞)
λ = lim

N→∞
N |λ|−1c

(N)
λ

exists and vanishes if `(λ) > 1. We thus obtain

c
(∞)
λ,t = lim

N→∞
(btNc)|λ|−1c

(N)
λ,t

= t|λ|−1c
(∞)
λ − δ1,`(λ)(1− t)t|λ|−1c|λ|(Z),

so that p
(N)
d,t converges in probability to a deterministic limit p

(∞)
d,t , by Theorem 2.1.

The numbers
p
(∞)
d,t , d ∈ N, t ∈ (0, 1),

are the moments of the “limit shape” of N−1
T
(N). From Theorem 2.2, we obtain

R(p
(∞)
1,t , p

(∞)
2,t , p

(∞)
3,t , . . . ) =

(
t0

0!
c
(∞)
1 ,

t1

1!
c
(∞)
2 ,

t2

2!
c
(∞)
3 , . . .

)

− (1− t)

(
t0

0!
u1,

t1

1!
u2,

t2

2!
u3, . . .

)

,

where u1, u2, u3, . . . is the cumulant sequence of Z (these numbers are Bernoulli
numbers). This provides a description of the limit shape of N−1

T
(N) in terms of

the limit profile of N−1Ω(N).
The convergence of random lozenge tilings to a deterministic limit shape has

been extensively studied from a statistical physics viewpoint, beginning with the
paper [3], which studied random lozenge tilings of a hexagon; these coincide with
tilings of a sawtooth domain having all its teeth in two “clumps.” A limit shape
theorem for lozenge tilings of sawtooth domains whose number of sides remains
fixed as N → ∞ was obtained by Petrov [28]. Limit shapes for lozenge tilings of
sawtooth domains Ω(N) whose number of sides grows without bound as N increases,
so that the limit profile of Ω(N) need not be the restriction of Lebesgue measure to
finitely many intervals, were treated by Bufetov and Gorin [2]. The fact that limit
shapes for random tilings tend to be governed by random matrix limit laws has
been known since the seminal work of Johansson [15]; however, the identification
of lozenge tilings of sawtooth domains with invariant ensembles at finite N via the
above construction, and the subsequent derivation of a limit shape theorem via a
moment method analysis of the corresponding invariant ensemble, is new.

4. Conclusion

We have outlined a new moment method in Random Matrix Theory specifically
tailored to the invariant ensembles. The method is based on the observation that, if
the distribution of a random selfadjoint matrix is invariant under conjugation, then
it is completely determined by the joint distribution of its diagonal matrix elements,
which form a family of real, identically distributed, exchangeable random variables.
When these random variables admit joint moments of all orders, the Weingarten
calculus may be used to recognize them as statistics of spectral moments. This
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leads to a characterization of smooth invariant ensembles which exhibit a spectral
Law of Large Numbers, and a formula for the limiting spectral moments when
they exist. The utility of these results was illustrated via a number of significant
examples from RMT, as well as an example from 2D statistical physics which is not
a priori related to random matrices. There is much more that can be done with
this idea; for example, one can address fluctuations of the eigenvalues of smooth
invariant ensembles, thereby producing a Central Limit Theorem to accompany
Theorem 2.1, or carry out a moment method analysis of the largest eigenvalue
in smooth invariant ensembles analogous to Soshnikov’s analysis of the spectral
edge in Wigner ensembles; see [29]. Another extremely interesting direction is the
generalization of this moment method to the multimatrix setting. These directions
will be the subject of future work.

Let us conclude with further discussion of how our moment method for invariant
ensembles fits into the existing literature. First, in ergodic theory, a beautiful
paper of Olshanski and Vershik analyzed infinite random selfadjoint matrices with
conjugation invariant law; see [27]. It was shown there that the distribution of any
such matrix is completely determined by the distribution of a single diagonal matrix
element, with distinct diagonal matrix elements being independent. This is the N =
∞ version of Theorem 2.1. In the Free Probability community, Collins studied the

distribution of the single random variableX
(N)
11 in complex invariant ensembles with

deterministic eigenvalues using an early version of Weingarten Calculus, and found
a connection with free cumulants and the R-transform; see [4]. Building on Collins’
work, the sum of two independent real or complex invariant ensembles was analyzed
by Guionnet and Maida, who used large deviation methods to obtain results related
to our third example; see [12]. In the Integrable Probability community, Bufetov
and Gorin obtained a counterpart of (one direction of) Theorem 2.1 for a certain
class of discrete particle systems; see [2]. Their results, which were inspired by work
of Borodin, Bufetov, and Olshanski in asymptotic representation theory [1], have
in turn been a source of inspiration to us. The work of Bufetov and Gorin is not
based in RMT; instead, its technical backbone is the asymptotic analysis of certain
families of symmetric functions via determinantal formulas and steepest descent.
Using their technology, Bufetov and Gorin obtained a Law of Large Numbers for the
random lozenge tilings model discussed above. This lozenge tiling model is a special
case of the celebrated dimer model, for which a comprehensive limit theory has
been developed by Kenyon, Okounkov, and Sheffield, see [16, 17, 18] and references
therein.
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