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Abstract A basic question about regularity of Boltzmann solutions in the
presence of physical boundary conditions has been open due to characteris-
tic nature of the boundary as well as the non-local mixing of the collision
operator. Consider the Boltzmann equation in a strictly convex domain with
the specular, bounce-back and diffuse boundary condition. With the aid of a
distance function toward the grazing set, we construct weighted classical C1

solutions away from the grazing set for all boundary conditions. For the diffuse
boundary condition, we constructW 1,p solutions for 1 < p < 2 and weighted
W 1,p solutions for 2 ≤ p ≤ ∞ as well.
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1 Introduction

Boundary effects play an important role in the dynamics of Boltzmann solu-
tions of

∂t F + v · ∇x F = Q(F, F), F(0, x, v) = F0(x, v), (1.1)

where F(t, x, v) denotes the particle distribution at time t, position x ∈ �
and velocity v ∈ R

3 and F0 denotes its initial datum. Throughout this paper
the collision operator takes the form

Q(F1, F2) := Qgain(F1, F2)− Qloss (F1, F2)

=
∫
R3

∫
S2

B(v − u, ω)[F1(u′)F2(v′)− F1(u)F2(v)]dωdu,
(1.2)

where u′ = u + [(v − u) · ω]ω, v′ = v − [(v − u) · ω]ω.
Here, B(v−u, ω) = |v−u|κq0

(
v−u
|v−u| · ω

)
and 0 ≤ κ ≤ 1 (hard potential)

and 0 ≤ q0
(
v−u
|v−u| · ω

)
≤ C

∣∣∣ v−u
|v−u| · ω

∣∣∣ (angular cutoff).
Despite extensive developments in the study of the Boltzmann equation,

many basic questions regarding solutions in a physical bounded domain, such
as their regularity, have remained largely open. This is partly due to the char-
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Regularity of the Boltzmann equation in convex domains 117

acteristic nature of boundary conditions in the kinetic theory. In [9], it is shown
that in convex domains, Boltzmann solutions are continuous away from the
grazing set. On the other hand, in [12], it is shown that singularity (disconti-
nuity) does occur for Boltzmann solutions in a non-convex domain, and such
singularity propagates precisely along the characteristics emanating from the
grazing set. The boundary of the phase space is

γ := {(x, v) ∈ ∂�× R
3}.

Let n = n(x) be the outward normal direction at x ∈ ∂�. We decompose γ as

γ− = {(x, v) ∈ ∂�× R
3 : n(x) · v < 0}, (the incoming set),

γ+ = {(x, v) ∈ ∂�× R
3 : n(x) · v > 0}, (the outcoming set),

γ0 = {(x, v) ∈ ∂�× R
3 : n(x) · v = 0}, (the grazing set).

(1.3)

In general the boundary condition is imposed only for the incoming set γ−
for general kinetic PDEs [1,2,7,9]. We consider, in this paper, the following
basic boundary conditions:

(i) Diffuse boundary condition: With cμ
∫
n(x)·u>0 μ(u){n(x) · u}du = 1,

F(t, x, v) = cμμ(v)
∫
n(x)·u>0

F(t, x, u){n(x) · u}du on (x, v) ∈ γ−.
(1.4)

(ii) Specular reflection boundary condition:

F(t, x, v) = F(t, x, Rxv) on (x, v) ∈ γ−,
where Rxv := v − 2n(x)(n(x) · v). (1.5)

(iii) Bounce-back reflection boundary condition:

F(t, x, v) = F(t, x,−v) on (x, v) ∈ γ−. (1.6)

We denote

f := F/
√
μ,

where

μ = e−
|v|2
2 (a global Maxwellian).

Throughout this paper we always assume a positive initial datum F0 =√
μ f0 ≥ 0.
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118 Y. Guo et al.

The function f satisfies

∂t f + v · ∇x f = �gain ( f, f )− ν(√μ f ) f. (1.7)

Here

ν(
√
μ f )(v) := 1√

μ(v)
Qloss(

√
μ f,

√
μ f )(v)

=
∫
R3

∫
S2
|v − u|κq0

(
v − u

|v − u| · ω
)√

μ(u) f (u)dωdu,
(1.8)

and the gain term of the nonlinear Boltzmann operator is given by

�gain( f1, f2)(v):= 1√
μ
Qgain(

√
μ f1,

√
μ f2)(v)

=
∫
R3

∫
S2
|v−u|κq0

(
v−u

|v−u| · ω
)√

μ(u) f1(u
′) f2(v′)dωdu.

(1.9)
The corresponding boundary conditions for f are the following ones:
(i) Diffuse boundary condition:

f (t, x, v) = cμ
√
μ(v)

∫
n(x)·u>0

f (t, x, u)
√
μ(u){n(x) · u}du, on (x, v)∈γ−.

(1.10)
(ii) Specular reflection boundary condition:

f (t, x, v) = f (t, x, Rxv), on (x, v) ∈ γ−. (1.11)

(iii) Bounce-back reflection boundary condition:

f (t, x, v) = f (t, x,−v), on (x, v) ∈ γ−. (1.12)

Throughout this paper we assume that � is a bounded open subset of R
3

and there exists ξ : R
3 → R such that � = {x ∈ R

3 : ξ(x) < 0}, and ∂� =
{x ∈ R

3 : ξ(x) = 0}. Moreover for all x ∈ �̄ = �∪ ∂� (therefore ξ(x) ≤ 0)
we assume the domain is strictly convex:

∑
i, j

∂i jξ(x)ζiζ j ≥ Cξ |ζ |2 for all ζ ∈ R
3. (1.13)

We assume that ∇ξ(x) �= 0 when |ξ(x)| � 1 and we define the
outward normal as n(x) ≡ ∇ξ(x)

|∇ξ(x)| .
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Regularity of the Boltzmann equation in convex domains 119

Notation: We denote || · ||p the L p(� × R
3) norm, while | · |γ,p = | · |p

is the L p(∂� × R
3; dγ ) norm, | · |γ±,p = | · 1γ±|γ,p, dγ = |n(x) · v|dSxdv

with the surface measure dSx on ∂�. For a function f of t, x, and v we
denote ‖ f (t)‖p = ‖ f (t, ·, ·)‖p and | f (t)|γ±,p = | f (t, ·, ·)|γ±,p. Denote
〈v〉 = √

1+ |v|2. The notation X � Y is equivalent to X ≤ CY , where
C is a constant not depending on X and Y . We subscript this to denote depen-
dence on parameters, thus X �a Y means X ≤ CaY . The notation X �a Y
is equivalent to X ≤ CaY , where Ca > 0 is sufficiently small. The notation
X �a Y means X �a Y and Y �a X . Let A and B be m × n matrices and
all entries of B are non-negative. Let Ai j be the (i, j)−entry of the matrix A.
The notation A � B means |Ai j | � Bi j for all i, j .

1.1 Diffuse reflection BC

Theorem 1 Assume that 0 ≤ κ ≤ 1 in (1.2) and f0 ∈ W 1,p(� × R
3) and

‖∇x f0‖p + ‖∇v f0‖p + ‖eθ |v|2 f0‖∞ < +∞ for any θ ∈ (0, 1/4) and any
fixed 1 < p < 2, and the compatibility condition on (x, v) ∈ γ−,

f0(x, v) = cμ
√
μ(v)

∫
n(x)·u>0

f0(x, u)
√
μ(u){n(x) · u}du. (1.14)

Then there exists T = T (‖eθ |v|2 f0‖∞) > 0 such that f ∈ L∞([0, T ];W 1,p

(�×R
3)) solves the Boltzmann equation (1.7)with diffuse boundary condition

(1.10), and satisfies, for all 0 ≤ t ≤ T

‖∇x,v f (t)‖pp +
∫ t

0
|∇x,v f (s)|pγ,pds �t ‖∇x,v f0‖pp + P(‖eθ |v|2 f0‖∞),

(1.15)
where P is some polynomial.

Furthermore, if F0 = μ + √
μg0 with ‖eθ |v|2g0‖∞ � 1, then the unique

bounded global-in-time solution g(t) constructed in [9] satisfying (1.15), by
changing f, f0 to g, g0 for any finite t ≥ 0.

There can be no size restriction on initial data F0 = √
μ f0. We need the

exponentialweight eθ |v|2 to have local-in-time solutions (seeLemma7).On the
other hand, we also remark that from [3,9], the assumption ‖eθ |v|2g0‖∞ � 1
for F0 = μ + √

μg0 without a mass constraint
∫∫
�×R3 g0

√
μdvdx = 0

ensures a uniform-in-time bound as sup0≤t≤∞ ‖eθ |v|2g(t)‖∞ � ‖eθ |v|2g0‖∞
(not a decay). Due to these L∞ uniform-in-time bounds we are able to obtain
a global-in-time estimate for ∇g.

Moreover, we show that the estimate (1.15) in Theorem 1 for p < 2 is
indeed optimal even for the free transport equation ∂t f +v ·∇x f = 0 with the
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120 Y. Guo et al.

diffuse boundary condition (Lemma 12). In fact, the boundary integral blows
up at p = 2.

We now illustrate the main ideas in the proof of Theorem 1. Clearly, the
t and v derivatives behave nicely for the diffuse boundary condition as for
(x, v) ∈ γ−,
∂t f (t, x, v) = cμ

√
μ(v)

∫
n(x)·u>0

∂t f (t, x, u)
√
μ(u){n(x) · u}du

= cμ
√
μ(v)

∫
n(x)·u>0

[−u · ∇x f + �gain( f, f )

−ν(√μ f ) f ]√μ(u){n(x) · u}du, (1.16)

∇v f (t, x, v) = cμ∇v
√
μ(v)

∫
n(x)·u>0

f (t, x, u)
√
μ(u){n(x) · u}du. (1.17)

wherewe have used (1.7) to express ∂t f = −u·∇x f+�gain( f, f )−ν(√μ f ) f
in (1.16).

Let τ1(x) and τ2(x) be unit tangential vectors to ∂� satisfying τ1(x)·n(x) =
0 = τ2(x) · n(x) and τ1(x) × τ2(x) = n(x). Define the orthonormal trans-
formation from {n, τ1, τ2} to the standard bases {e1, e2, e3} as T (x)n(x) =
e1, T (x)τ1(x) = e2, T (x)τ2(x) = e3, and T −1 = T t . Upon a change of
variable: u′ = T (x)u, we have
n(x) · u = n(x) · T t (x)u′ = n(x)tT t (x)u′ = [T (x)n(x)]t u′ = e1 · u′ = u′1,

then

cμ
√
μ(v)

∫
n(x)·u>0

f (t, x, u)
√
μ(u){n(x) · u}du

= cμ
√
μ(v)

∫
u′1>0

f (t, x, T t (x)u′)
√
μ(u′){u′1}du′,

so that we can further take tangential derivatives ∂τi as, for (x, v) ∈ γ−,
∂τi f (t, x, v)

= cμ
√
μ(v)

∫
u′1>0

{
∂τi f (t, x, T t (x)u′)+∇v f (t, x, T t (x)u′)∂T

t (x)

∂τi
u′
}

×√
μ(u′){u′1}du′

= cμ
√
μ(v)

∫
n(x)·u>0

∂τi f (t, x, u)
√
μ(u){n(x) · u}du

+ cμ
√
μ(v)

∫
n(x)·u>0

∇v f (t, x, u)∂T
t (x)

∂τi
T (x)u

√
μ(u){n(x) · u}du.

(1.18)
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Regularity of the Boltzmann equation in convex domains 121

Thedifficulty is always the control of the normal spatial derivative ∂n f.From
the general method of proving regularity in PDE with boundary conditions, it
is natural to use the Boltzmann equation to solve the normal derivative ∂n f
inside the region, in terms of ∂t f, ∇v f, and ∂τ f as:

∂n f (t, x, v) = − 1

n(x) · v

{
∂t f+

2∑
i=1

(v · τi )∂τi f−�gain( f, f )+ν(
√
μ f ) f

}
,

(1.19)
at least near ∂�. We note that due to the nonlocal terms �gain( f, f ) and
ν(
√
μ f ) f , it is strongly believed that ∂n f behaves as 1

n(x)·v at the boundary.
Unfortunately, this standard approach encounters a severe difficulty: 1

n(x)·v
/∈ L1

loc in the velocity space (a L
∞ bound is desirable for any W 1,p estimate).

The first new ingredient of our approach is to use (1.19) not inside the
domain, but at the boundary ∂�.Using the diffuse boundary condition (1.10),
(1.16), (1.17), (1.18) and (1.7), we can express ∂n f at (x, v) ∈ γ− as

∂n f (t, x, v)

= − 1

n(x) · v
{ √

μ(v)

∫
n(x)·u>0

[−u · ∇x f + �gain( f, f )− ν(√μ f ) f ]

×(t, x, u)√μ(u){n(x) · u}du
+

2∑
i=1

(v · τi )
√
μ(v)

∫
n(x)·u>0

∂τi f (t, x, u)
√
μ(u){n(x) · u}du

+
2∑

i=1

(v · τi )
√
μ(v)

∫
n(x)·u>0

∇v f (t, x, u)∂T
t (x)

∂τi
T (x)u

×√
μ(u){n(x) · u}du

−�gain( f, f )+ ν(√μ f ) f

}
. (1.20)

Due to the additional u integral in (1.20) and the crucial factor |n(x) · u| in the
measure dγ on the boundary γ , it is clear that the singularity of |∂n f |p|n · v|
in (1.20) is roughly of the order

1

{n · v}p−1 ,

so that its v-integration is precisely finite if 1 ≤ p < 2, and indeed its v
integration is uniformly bounded with respect to x .
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122 Y. Guo et al.

However, in order to control ∇v f and ∂τ f for p < 2, a new difficulty
arises. It is well-known from [3,9] that a crucial boundary estimate for diffuse
boundary takes the form of a L2−contraction:

∫
γ−

h2dγ ≤
∫
γ+

h2dγ.

Unfortunately, this is not expected to be valid for p �= 2, so it is impossible to
absorb the incoming part γ_ solely by the outgoing part γ+ part.

Our second new ingredient is to split the γ+ integral into the part near the
grazing set γ ε+ and the remaining part for p �= 2 for our boundary represen-
tations for derivatives (1.16 ), (1.17 ), (1.18), and (1.20). For small ε > 0 we
define γ ε+, the set of almost grazing velocities or large velocities

γ ε+ = {(x, v) ∈ γ+ : v · n(x) < ε or |v| > 1/ε}. (1.21)

Denote ∂ = [∇x ,∇v]. We can roughly obtain

∫
γ−
|∂ f |p �

∫
∂�

(∫
n·v>0

|∂ f |μ1/4{n · v}dv
)p

+ good terms,

�
∫
∂�

(∫
{v:(x,v)∈γ ε+}

|∂ f |μ1/4{n · v}
)p

+
∫
∂�

(∫
{v:(x,v)∈γ+\γ ε+}

|∂ f |μ1/4{n · v}
)p

+ good terms,

� sup
x

(∫
{v:(x,v)∈γ ε+}

μq/4{n · v}dv
)p/q ∫

γ ε+
|∂ f |pdγ

+
∫
γ+\γ ε+

|∂ f |pdγ + good terms.

It is important to realize that supx
(∫

{v:(x,v)∈γ ε+} μ
q/4{n · v}dv

)p/q
has a small

measure of order ε, for p > 1, so that it can be absorbed by the outgoing
part

∫
γ+ . Fortunately, the outgoing boundary integral

∫
γ+\γ ε+ can be further

bounded by the integration in the bulk and initial data by Lemma 8 with a
crucial time integration. On the other hand, such a process produces a large
constant in the Gronwall estimates and leads to a growth in time. Of course,
such an approach breaks down at p = 1. (See [10] for the estimates for p = 1.)

We introduce a crucial distance function towards the grazing set γ0.
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Regularity of the Boltzmann equation in convex domains 123

Definition 1 (Kinetic Distance) For (x, v) ∈ �̄× R
3,

α(x, v) := |v · ∇ξ(x)|2 − 2{v · ∇2ξ(x) · v}ξ(x),

where v · ∇2ξ(x) · v = ∑
i, j vi∂i∂ jξ(x)v j .

From (1.13), the kinetic distance α(x, v) vanishes if and only if (x, v) ∈ γ0.
Furthermore we combine the distance function with a strong decay factor
e−� 〈v〉t with� > 0,

e−� 〈v〉tα(x, v). (1.22)

A direct computation yields

{∂t + v · ∇x }[e−� 〈v〉tα(x, v)] = −� 〈v〉e−� 〈v〉tα(x, v)
− e−� 〈v〉t2v{v · ∇3ξ(x) · v}ξ(x)

� (−� + Oξ (1))〈v〉e−� 〈v〉tα(x, v),

with the geometric contribution Oξ (1) = 2v{v·∇3ξ(x)·v}ξ
α〈v〉 from (1.13). Through-

out this paper we assume

� ≥ max
2
∣∣v{v · ∇3ξ(x) · v}ξ ∣∣

α〈v〉 . (1.23)

Remark that if ξ is quadratic (for example if the domain is a ball or an ellipsoid)
then we are able to set� = 0 and {∂t + v · ∇x }α ≡ 0.

Theorem 2 Assume the compatibility condition (1.14), 0 < κ ≤ 1.
For any fixed 2 ≤ p < ∞ and p−2

2p < β <
p−1
2p , if ‖αβ∇x,v f0‖p +

‖eθ |v|2 f0‖∞ < ∞ for some 0 < θ < 1
4 , then there exists T =

T (‖eθ |v|2 f0‖∞) > 0 such that e−� 〈v〉tαβ∇x,v f ∈ L∞([0, T ]; L p(� × R
3))

and satisfying, for all 0 ≤ t ≤ T,

‖e−� 〈v〉tαβ∇x,v f (t)‖pp +
∫ t

0
|e−� 〈v〉tαβ∇x,v f (s)|pγ,pds

�t ‖αβ∇x,v f0‖pp + P(‖eθ |v|2 f0‖∞), (1.24)

where P is some polynomial. Furthermore, if F0 = μ + √
μg0 with

‖eθ |v|2g0‖∞ � 1, then the unique bounded global-in-time solution g(t) con-
structed in [9] satisfying (1.24), by changing f, f0 to g, g0 for any finite t ≥ 0.
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124 Y. Guo et al.

If ‖α1/2∇x,v f0‖∞ + ‖eθ |v|2 f0‖∞ < +∞ for some 0 < θ < 1
4 , then

e−� 〈v〉tα1/2∇x,v f ∈ L∞([0, T ]; L∞(� × R
3)) and satisfying, for all 0 ≤

t ≤ T,

‖e−� 〈v〉tα1/2∇x,v f (t)‖∞ �t ‖α1/2∇x,v f0‖∞ + P(‖eθ |v|2 f0‖∞). (1.25)

If α1/2∇ f0 ∈ C0(�̄× R
3) and

v · ∇x f0 − �( f0, f0) = cμ
√
μ

∫
n·u>0

{u · ∇x f0 − �( f0, f0)}√μ{n · u}du,
(1.26)

is valid for γ−, then f ∈ C1 away from the grazing set γ0. Furthermore, if
F0 = μ+√

μg0 with ‖eθ |v|2g0‖∞ � 1, then the unique bounded global-in-
time solution g(t) constructed in [9] satisfying (1.25), by changing f, f0 to
g, g0 for any finite t ≥ 0.

There can be no size restriction on initial data F0 = √
μ f0. On the other

hand, we also remark that from [3,9], the assumption ‖eθ |v|2g0‖∞ � 1 for
F0 = μ +√

μg0 without a mass constraint
∫∫
�×R3 g0

√
μdvdx = 0 ensures

a uniform-in-time bound as sup0≤t≤∞ ‖eθ |v|2g(t)‖∞ � ‖eθ |v|2g0‖∞ (not a
decay). Due to these L∞ uniform-in-time bound we are able to a global-in-
time estimate for the derivatives of g.

We remark that our results in this paper allow the initial conditions to be
singular near γ0. This is drastically different from the Vlasov case, in which
regularity of the solutions is bounded by stronger vanishing condition for
regular initial condition. Due to non-local interaction in the collision, such
kind of regularity estimate is not expected. Instead, we show that singular
behavior of the solution, i.e., weighted in αβ, can be controlled via singular
behavior of its initial state.

We remark that for � > 0, the derivatives of f (t) behaves as e� 〈v〉t so
that in terms of solution f (t), such an estimate not only creates an exponen-
tial growth in time, but also creates less integrability in velocity. Furthermore,
when � > 0, we crucially need a strong weight function eθ |v|2 to balance
such a factor e−� 〈v〉t , which produces a super exponential growth et2 in time.
We suspect that it is impossible to obtain a uniform in time estimate especially
when� �= 0.

The distance function α plays an important role in the study of regularity in
convex domains for Vlasov equations [6,7,11], which can be controlled along
the characteristics via the geometric Velocity lemma (Lemma 2). However,
such an approach has not been successful in the study of Boltzmann equation
due to the non-local nature of the Boltzmann collision operator, which mixes
up different velocities so that their distance towards γ0 can not be controlled.
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In addition to the key boundary representation (1.16)–(1.20), we establish a
delicate estimate for the interaction of e−� 〈v〉tα(x, v)with the collision kernel
in (5.16) for β < p−1

2p and ∂ = [∇x ,∇v]. An additional requirement β > p−2
2p

is needed to control the boundary singularity in (5.19). These estimates are
sufficient to treat the case for β < 1/2, but unfortunately fail for the case
β = 1/2, which accounts for the important C1 estimate.

1.2 Dynamical non-local to local estimates

In order to establish the C1 estimate, we employ the Lagrangian view point,
estimating along the trajectory. The characteristics ODE of the Boltzmann
equation (1.1) is

dX (s)

ds
= V (s),

dV (s)

ds
= 0.

For (x, v) ∈ �̄× R
3 we define tb(x, v) to be the backward exit time as

tb(x, v) = inf{τ > 0 : x − sv /∈ �}, (1.27)

and xb(x, v) = x − tbv.

Lemma 1 Let (t, x, v) ∈ [0,∞) × �̄ × R
3, 1

2 < β <
3
2 , 0 < κ ≤ 1 and

r ∈ R. Let Z(s, x, v) ≥ 0 be any bounded non-negative function in the phase
space.

(1) Let x − (t − s)v on s ∈ [t − tb(x, v), t]. For any ε > 0, there exists a
large constant l �ξ 1 which depends on the domain � such that

∫ t

t−tb(x,v)

∫
R3

e−l〈v〉(t−s) e−θ |v−u|2

|v − u|2−κ [α(x − (t − s)v, u)]β
〈u〉r
〈v〉r

× Z(s, x, v)duds

� min

{
ε
3
2−β

|v|2{α(x, v)}β−1 ,
{α(x, v)} 14− β2 |tZ | 32−β

|v|2β−1

}

× sup
s∈[t−tb(x,v),t]

{e−l〈v〉(t−s)Z(s, x, v)}

+ Cε
{α(x, v)}β−1/2

∫ t

t−tb(x,v)
e−

l
2 〈v〉(t−s)Z(s, x, v)ds, (1.28)

where tZ = sup{s : Z(s, x, v) �= 0}.
(2) Let [Xcl(s; t, x, v), Vcl(s; t, x, v)] be the specular backward trajectory

or the bounce-back trajectory in Definition 2.
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For any ε > 0, there exists l �ξ 1 such that

∫ t

0

∫
R3

e−l〈v〉(t−s) e−θ |Vcl(s;t,x,v)−u|2

|Vcl(s; t, x, v)− u|2−κ
〈u〉r
〈v〉r

Z(s, x, v)

[α(Xcl(s; t, x, v), u)]β
duds

� O(ε)

〈v〉 [α(x, v)]β−1/2 sup
0≤s≤t

{
e−

l
2 〈v〉(t−s)Z(s, x, v)

}
. (1.29)

Even though one can not hope to control the regularity near γ0 due to non-
local nature of the collision operator as in the Vlasov theory, one can control
its singular behavior (i.e. with weight αβ) thanks to such dynamical non-local
to local estimates. The crucial gain of

√
α, which only can be obtained for

expected singular behaviorwith negative power of
√
α, is due to a combination

of two facts: the gain of power 1
2 is due to a velocity average, and gain of the

local behavior of
√
α is due to time integration and convexity. Evenwith k = 1,

the gain of
√
α seems to be sharp.

The proof of such non-local to local estimates is a combination of analytical
and geometrical arguments. The first part is a precise estimate of the u integra-
tion which is bounded via 1

|v|2β−1|ξ(x−(t−s)v)|β−1/2 . In this part of the proof we

make use of a series of change of variables to obtain the precise power β − 1
2 .

The second part is to relate 1
|ξ(x−(t−s)v)|β−1/2 back to 1

α
. Clearly,

1

|ξ(x − (t − s)v)|2 �
1

α
� 1

|v · ∇ξ(x − (t − s)v|2 + |ξ(x − (t − s)v)‖v|2 ,

when |ξ(x−(t−s)v)‖v|2 is larger than |v·∇ξ(x−(t−s)v)|.On the other hand,
when |v · ∇ξ(Xcl(s))| dominates, the bound can only be achieved through a
crucial use of time integration and the geometric Velocity lemma (see Lemma
2), by connecting

dt � dξ

|v · ∇ξ | ,

and recovering a power of α as in the bound of ξ−integration through the
geometric Velocity Lemma (Lemma 2).

The most striking feature is that not only our estimates retain the local
structure for α, but they gain a

√
α order of regularity. Such a precise gain

of regularity is exactly enough to balance out the singularity in α appeared
in ∇x,vXcl(s; t, x, v) and ∇x,vVcl(s; t, x, v) in both the specular and bounce-
back cycles. In order to squeeze out a small constant for |v| � 1, we need to
use the decay of e−l〈v〉(t−s). This requires a precise regrouping of the cycles
according to the time scale of

t |v| � 1.
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Within such an important time scale, Vcl(s; t, x, v) stays almost invariant due
to the Velocity Lemma (see Lemma 2). We then are able to obtain a precise
estimate for the number of bounceswithin t |v| � 1 and extract a small constant
from e−l〈v〉(t−s) for t − s ≥ 1

|v| . On the other hand, for t − s ≤ 1
|v| , the small

constant comes from Lemma 1.

1.3 Specular reflection BC

Recall the specular reflection boundary condition in (1.11) and the specular
cycles in Definition 2. Our main theorem is as follow.

Theorem 3 Assume F0 = √
μ f0 ≥ 0 and f0 ∈ W 1,∞(�×R

3) and 0 < κ ≤
1 for 1 < β < 3

2 , 0 < θ <
1
4 , and b ∈ R,

∥∥∥∥∥
αβ− 1

2

〈v〉b ∇x f0

∥∥∥∥∥∞
+

∥∥∥∥ |v|
2αβ−1

〈v〉b ∇v f0
∥∥∥∥∞ +

∥∥∥eθ |v|2 f0
∥∥∥∞ <∞,

and the compatibility condition

f0(x, v) = f0(x, Rxv) on (x, v) ∈ γ−. (1.30)

Then for all 0 ≤ t ≤ T with T = T (‖eθ |v|2 f0‖∞) > 0

∥∥∥∥e−� 〈v〉t αβ

〈v〉b+1∇x f (t)

∥∥∥∥∞ +
∥∥∥∥∥e−� 〈v〉t

|v|αβ− 1
2

〈v〉b ∇v f (t)
∥∥∥∥∥∞

�ξ,t

∥∥∥∥∥
αβ− 1

2

〈v〉b ∇x f0

∥∥∥∥∥∞
+

∥∥∥∥ |v|
2αβ−1

〈v〉b ∇v f0
∥∥∥∥∞ + P

(∥∥∥eθ |v|2 f0
∥∥∥∞

)
,

(1.31)
where P is some polynomial. Furthermore, if � is real analytic (ξ is real
analytic on R

3) and F0 = μ+√
μg0 with ‖eθ |v|2g0‖∞ � 1, then the unique

bounded global-in-time solution g(t) constructed in [9] satisfying (1.31), by
changing f, f0 to g, g0 for any finite t ≥ 0.

Furthermore, if f0 ∈ C1 and

v · ∇x f0(x, v) = Rxv · ∇x f0(x, Rxv) on (x, v) ∈ γ−. (1.32)

then f ∈ C1 away from the grazing set γ0.

There can be no size restriction on initial data F0 = √
μ f0.We remark from

the local existence theorem, T > 0. The analyticity is a crucial assumption
using a linear L2-decay to conclude L∞−decay toward the Maxwellian in [5]
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(L2 − L∞ interpolation argument) in order to have global-in-time solutions
(See recent work [13]).

We also remark that the specular theorem is drastically different from the
diffusive theorem: in addition to the loss of moments, there is a loss of reg-
ularity of α with respect to the initial data. This makes it impossible to use
the continuity argument to choose small time interval to close the estimates.
We need to use large� in e−� 〈v〉t to extract a small constant to close, which
requires extra precise estimates. We note that in 3D case, β > 1/2, due to the
failure of the proof of the non-local to local estimates for the critical β = 1/2
(Lemma 1).

On the other hand, in 2D, due to boundedness of ∂v3 f from x3−invariance,
we are able to estimate ∂v�gain for the critical case β = 1/2 (Lemma 19).
More preciselyweconsider the 2Dspecular problem for f (t, x1, x2, v1, v2, v3)
solving

∂t f + v1∂x1 f + v2∂x2 f = �gain( f, f )− ν(
√
μ f ) f, (1.33)

where v3 is a parameter.

Theorem 4 Assume a stronger cut-off assumption on q0 of (1.2)

∣∣∣∣∇vq0
(
v − u

|v − u| · ω
)∣∣∣∣

/ ∣∣∣∣ v − u

|v − u| · ω
∣∣∣∣ � 1. (1.34)

Assume f0 ∈ W 1,∞ with (1.11). Assume that

sup
0<t≤T

{
‖eθ |v|2 f (t)‖∞ + ‖∂v3 f (t)‖∞

}
≤ cT,ζ, f0 < +∞,

then

sup
0≤t≤T

{∥∥∥∥e−� 〈v̄〉t α

1+ |v̄|2∇x f (t)

∥∥∥∥∞ +
∥∥∥∥e−� 〈v̄〉t |v̄|〈v̄〉

√
α∇v f (t)

∥∥∥∥∞
}

�T,�,L

∥∥∥∥α
1/2

〈v̄〉 ∇x̄ f0

∥∥∥∥∞ +
∥∥∥∥ |v̄|

2

〈v〉 ∇v̄ f0
∥∥∥∥∞ + ∥∥∂v3 f

∥∥∞ + P
(∥∥∥eθ |v|2 f0

∥∥∥∞
)
,

where P is some polynomial. If f0 ∈ C1 and the compatibility conditions
(1.30) and (1.32) are satisfied, then there exists f solves (1.33) and C1 away
from the grazing set γ0. Furthermore, if ‖eθ |v|2 f0‖∞ � 1, and ∂� (therefore
ξ) is real analytic, then T can be arbitrarily large.

We remark that powers of singularity α and
√
α are barely missed in 3D

case (borderline case).
In additional to the dynamical non-local to local estimate, the second impor-

tant ingredient for the specular reflection BC is the following crucial estimate

123



Regularity of the Boltzmann equation in convex domains 129

for the derivatives of specular cycles [Xcl(s; t, x, v),Vcl(s; t, x, v)] in Defini-
tion 2.

Theorem 5 There exists C = C(�) > 0 such that for all (s; t, x, v) ∈ R ×
R× �̄× R

3 with s �= t� for � = 1, 2, . . . , �∗

|∇x Xcl(s; t, x, v)| � eC |v|(t−s) |v|√
α(x, v)

,

|∇vXcl(s; t, x, v)| � eC |v|(t−s) 1

|v| ,

|∇xVcl(s; t, x, v)| � eC |v|(t−s) |v|3
α(x, v)

,

|∇vVcl(s; t, x, v)| � eC |v|(t−s) |v|√
α(x, v)

.

(1.35)

Our estimates are optimal in terms of the order of 1
α
, and eC |v|(t−s) relates to

the |v| growth in the Velocity lemma (Lemma 2). We remark that these precise
orders of singularity, play a critical role for our design of the anisotropic
norms in Theorem 3. In fact, if |∇x Xcl(s; t, x, v)| � 1

α
, it would have been

too singular for the half power gain of α from the dynamical non-local to local
estimates (Lemma 1), and our method should fail. Moreover, it is also crucial
to have precise |v| growth in both |∇x Xcl(s; t, x, v)| and |∇xVcl(s; t, x, v)| to
be controlled by e−� 〈v〉t .

We remark that |∇x Xcl(s; t, x, v)| � 1√
α
is unexpected, even after one

bounce we would have∇x x1 � 1√
α
and it is natural to expect∇x Xcl(s; t, x, v)

picks up additional power of 1√
α
in the accumulation of 1√

α
number of bounces.

However, via direct computations in 2D disk, we discover that even though

∇x t
� � 1

α
, and ∇x x

� � 1

α
,

but surprisingly

∇x Xcl(s; t, x, v) = ∇x [x� − (t� − s)v�] � 1√
α
!

Clearly, certain cancellations take place in the disk, which is difficult to even
expect for general domains.

The proof of our Theorem 5 is split into 10 steps, and it is the most
delicate proof throughout this paper. We first remark that, due to the ‘dis-
continuous behaviors’ of the normal component of v · n at each specular
reflection, it is impossible to apply the standard techniques forODE to estimate

123



130 Y. Guo et al.

|∇x,vXcl(s; t, x, v)| and |∇x,vVcl(s; t, x, v)|. We have to develop different
strategies to overcome several analytical difficulties to finally complete the
proof.

Topological obstruction and moving frames: It turns out that we only need to
consider themost delicate case in which all the bounces are almost grazing and

stayingnear the boundary for r� = |v�·n|
|v�| � 1. It is important for us to introduce

the spherical co-ordinate system to cover the whole cycle and transform it into
theODE (6.13).Unfortunately, due to the ‘hair-ball’ theorem inTopology, such
a change of coordinate system (or any change of coordinates) can not be smooth
everywhere in the 2D surface ∂�. In the case of a ball, all the trajectories are
confined in a plane, so that one may choose a single chart to cover the whole
trajectories. However, in other convex domains except the ball case, with large
t , the specular trajectories are extremely complicated, which can reach almost
every point on ∂�.Hence, choosing a single chart is all but impossible. On the
other hand, a ‘sudden’ change of a chart may create new order of singularity of
α from the matrix P as in (6.50), which will ruin the estimates. It is therefore
important to design a ‘continuous’ changes of charts associatedwith the almost
grazing bounces. Given n(x), we need to construct another globally defined,
orthogonal, and continuous vector field. Thiswould have been impossible ifwe
were to seek it only in the physical space, in light of the ‘hair-ball’ theorem. The
key observation is that,we need continuity not from just ∂�, but from the phase
space ∂�×R

3. In fact, for almost grazing bounces, the velocity field v is almost
perpendicular to n(x), which provides a natural choice for construction of the
desired moving frames. These continuous moving frames cost manageable
errors for each bounce, which are controlled by the next method.
Matrix method for normal parts of ∇x,vXcl(s) and ∇x,vVcl(s): With such a
well-defined moving charts, via the chain rule, one can represent
∇x,vXcl(s; t, x, v) and ∇x,vVcl(s; t, x, v) via a multiplication of Jacobian
matrices (t�, x�, v�) → (t�−1, x�−1, v�−1) in the spherical coordinate sys-
tem. The ‘matrix method’ refers to the study of each discrete Jacobian matrix
and precise estimates of their multiplication ( 1√

α
of them!). One important

step is to bound such a matrix by J (r�) in (6.40) which can be diagonalized
as J (r�) = P−1�P , with a diagonal matrix �. Based on the crucial can-
cellation property (6.46), we can extract a crucial second order of r� � 1
appeared in J (r�). Therefore, over the interval t |v| � 1, we are able to esti-

mate�
1√
α

�=1 J (r
�) � 1√

α
. Together with 1√

α
from the initial bounce, we expect

1
α
-singularity for both ∇x,vXcl(s; t, x, v) and ∇x,vVcl(s; t, x, v) as in (6.59).

Even though such estimate is too singular for our purpose we can improve it.
Upon a closed inspection,
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|∇xX⊥(s; t, x, v)| � 1√
α
,

for the normal component of Xcl(s). This is based on the fact v�⊥ � √
α via the

Velocity lemma [9, Lemma 1]. Unfortunately, the estimate of∇xX‖(s; t, x, v)
is like 1

α
which is still too singular.

ODE method for tangential parts of ∇x,vXcl(s) and ∇x,vVcl(s): To improve
such an estimate, we observe that given the estimates for the normal parts
[X⊥(s; t, x, v), V⊥(s; t, x, v)], the sub-system of ODE for [X‖(s; t, x, v),
V‖(s; t, x, v)], enjoys much better property. In fact, at each specular reflec-
tion, [X‖(s; t, x, v),V‖(s; t, x, v)] are continuous, unlike the normal velocity
V⊥(s; t, x, v). Upon integrating over time as V⊥(s; t, x, v) = Ẋ⊥(s; t, x, v)
(position X⊥(s; t, x, v) is still continuous at specular reflection), we are able
to derive an integral equations of [X‖(s; t, x, v),V‖(s; t, x, v)] without bro-
ken into small discontinuous pieces (6.67) at each specular reflection. In other
words, we can use the standard ODE theory to estimate these tangential parts.
Our ODE method refers such ODE (Gronwall) estimates (6.63) which lead to
the final conclusion of the theorem.

With such crucial estimates, we are able to design anisotropic norms in

terms of singularity of 1
α
. Thanks to

∫ t
0

∫
u
e−Cθ |v−u|2
|v−u|2−κ

1
α(X (s),u)β

� α−β+1/2 and
∫ t
0

∫
u
e−Cθ |v−u|2
|v−u|2−κ

1
α(X (s),u)β−1/2 � α−β+1 from the dynamical non-local to local

estimates for β > 1, we have exact cancellations of the power of α in the
coefficients on the right hand side, and we are able to close the estimates. For
|v| either small or large, more careful analysis is needed. In particular, it is
important to use the weight function of e−� 〈v〉t in (1.22) to control both the
growth in Theorem 5 as well as |v| in front of ∇x Xcl and ∇vVcl to control
singularity of |v| in (1.35).

1.4 Bounce-back reflection BC

We recall the bounce-back reflection boundary condition (1.12) and the
bounce-back cycles in Definition 2.

We define

∂t f (0) = ∂t f0 := −v · ∇x f0 + �gain( f0, f0)− ν(√μ f0) f0. (1.36)

Theorem 6 Assume f0 ∈ W 1,∞(�× R
3) and 0 < κ ≤ 1 in 0 < θ < 1

4 ,

‖〈v〉∇x f0‖∞ + ‖∇v f0‖∞ + ‖eθ |v|2∂t f0‖∞ + ‖eθ |v|2 f0‖∞ < +∞,
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and the compatibility conditions

f0(x, v) = f0(x,−v), v·∇x f0(x, v) = −v·∇x f0(x,−v) on γ−. (1.37)

Then there is T = T (‖eθ |v|2 f0‖∞) > 0 so that for all 0 ≤ t ≤ T

‖e−� 〈v〉t α〈v〉2∇x f (t)‖∞ + ‖e−� 〈v〉t |v|α
1/2

〈v〉2 ∇v f (t)‖∞ + ‖eθ |v|2∂t f (t)‖∞
�ξ,t ‖〈v〉∇x f0‖∞ + ‖∇v f0‖∞ + P(‖eθ |v|2∂t f0‖∞)+ P(‖eθ |v|2 f0‖∞),

(1.38)
for some polynomial P.

Moreover, if f0 ∈ C1 then f ∈ C1 away from the grazing set γ0. Further-
more, if F0 = μ + √

μg0 with ‖eθ |v|2g0‖∞ � 1, then the unique bounded
global-in-time solution g(t) constructed in [9] satisfying (1.38), by changing
f, f0 to g, g0 for any finite t ≥ 0.

There can be no size restriction on initial data F0 = √
μ f0. We remark

that the bounce-back case enjoys explicit expressions of ∂eXcl(s; t, x, v) and
∂eVcl(s; t, x, v) for ∂e ∈ {∂t ,∇x ,∇v}. Since ∂x t� � 1

α
and ∂x x� � 1√

α
, a new

difficulty arises in the estimate

∂x Xcl(s; t, x, v) � 1

α
,

which is too singular to control by our non-local to local estimates (Lemma
1). Roughly speaking, the new difficulty is exactly the opposite to the specular
case : ∂x� and ∂v� are in desired form but not ∂x Xcl(s; t, x, v)! The key idea
is to make a change of variable to transform (see (7.1))

∂x Xcl(s; t, x, v) � v�∂x t� + ∂x x�,

while ∂x t� captures the worst singularity of 1
α
. Fortunately, ∂x t� is paired with

∂t f, which is bounded, from the time-invariance of the problem and we are
able to close the estimate.

1.5 Non-existence of ∇2 f up to the boundary

In the appendix, we demonstrate that, our estimates can not be valid for higher
order derivatives. Otherwise, if ∂2 f were to exist up to the boundary, we
observe that from taking second derivatives of the Boltzmann equation:
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vn∂
2
n f = −∂tn f − (∂nvn)∂n f −

2∑
i=1

∂n(vτi )∂τi f

−
2∑

i=1

vτi∂nτi f − ν(F)∂n f + ∂nK ( f )+ ∂n�gain( f, f ).

If |∂n f | ≥ 1√
α
and ∂nK ( f ) behaves as K (∂n f ) then at the boundary, we have

|∂n f | ≥ 1

|vn| /∈ L1
loc(R

1),

so that ∂nK ( f ) is not defined. Since |∂n f | is expected to behave, from (1.19),
as bad as 1√

α
for all diffusive, specular and bounce-back cases, we are able to

identify initial conditions such that |∂n f | ≥ 1
|vn | for some future time.

2 Preliminary

Before the trajectory hits the boundary, t − s < tb(x, v), we have
[X (s; t, x, v), V (s; t, x, v)] = [x − (t − s)v, v] with the initial condition
[X (t; t, x, v), V (t; t, x, v)] = [x, v]. On the other hand, when the trajectory
hits the boundary we define the generalized characteristics as follows:

Definition 2 [9]
Let (x, v) /∈ γ0 and (t0, x0, v0) = (t, x, v).

(i) Define the specular cycles, � ≥ 1,

(t�+1, x�+1, v�+1) = (t�−tb(x
�, v�), xb(x

�, v�), v�−2n(x�)(v� · n(x�))).

(ii) Define the bounce-back cycles, � ≥ 1,

(t�+1, x�+1, v�+1) = (t� − tb(x
�, v�), xb(x

�, v�),−v�).

Then for � ≥ 1

t� = t1 − (�− 1)tb(x
1, v1), x� = 1− (−1)�

2
x1

+1+ (−1)�

2
x2, v�+1 = (−1)�+1v.
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(iii) For both specular and bounce-back cycles we define the backward trajec-
tory as

Xcl(s; t, x, v) =
∑
�

1[t�+1,t�)(s)
{
x� − (t� − s)v�

}
,

Vcl(s; t, x, v) =
∑
�

1[t�+1,t�)(s)v
�.

Note that if G(t, x, v) solves ∂tG+v ·∇xG = 0 with a boundary condition
(either specular, or bounce-back boundary condition) then

G(t, x, v) = G(s, Xcl(s; t, x, v), Vcl(s; t, x, v)),
where [Xcl(s), Vcl(s)] is defined respectively [9].

The following crucial invariant property of α under operator v · ∇x is the
key for our analysis.

Lemma 2 (Velocity lemma, Lemma 1 of [9]) Along the backward trajectory
we define

α(s; t, x, v) := α(Xcl(s; t, x, v), Vcl(s; t, x, v)).
Then there exists C = C(ξ) > 0 such that, for all 0 ≤ s1, s2 ≤ t,

e−C|v‖s1−s2|α(s1; t, x, v) ≤ α(s2; t, x, v) ≤ eC|v‖s1−s2|α(s1; t, x, v).
Proof The proof is basically same as the proof of Lemma 1 of [9] but the
definition of α is slightly different. By an explicit computation, we have

v · ∇xα = 2v · ∇ξ(x)[v · ∇2ξ · v] − 2v · ∇ξ(x)[v · ∇2ξ · v]
− 2v{v · ∇3ξ(x) · v}ξ(x)

= −2v{v · ∇3ξ(x) · v}ξ(x) = Oξ (1)|v|3|ξ(x)|
= Oξ (1)|v|α(x, v),

(2.1)

where we used {v · ∇2ξ(x) · v} � |v|2 from (1.13). Therefore there exists
C = Cξ > 0 such that

−C|v|α(x, v) ≤ v · ∇xα(x, v) ≤ C|v|α(x, v).
Since

d

ds
α(Xcl(s; t, x, v), Vcl(s; t, x, v)) = v · ∇xα(Xcl(s; t, x, v), Vcl(s; t, x, v)),

we conclude the lemma. ��
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Lemma 3 Let � be convex as in (1.13). Then for (x, v) ∈ γ+

tb(x, v) ��
√
α(x, v)

|v|2 , (2.2)

and

tb(x, v) ��
√
α(x, v)

|v|2 . (2.3)

Proof Recall Lemma 2. For (2.2) it suffices to prove tb(x, v) �� |n(x)·v|
|v|2 . For

x ∈ ∂� there exists 0 < δ � 1 such that

sup
y∈∂�

|x−y|<δ

|(x − y) · n(x)|
|x − y|2 � max

y∈∂�
|x−y|<δ

|∇2ξ(x)|.

If |x−y| ≥ δ then |(x−y)·n(x)|
|x−y|2 ≤ δ−2|(x−y)·n(x)| �δ,� 1.By the compactness

of � and ∂�, we have |(x − y) · n(x)| � |x − y|2 for all x, y ∈ ∂�. Taking
the inner product of x − xb(x, v) = tb(x, v)v with n(x), we have

tb(x, v)|v · n(x)| = |(x − xb(x, v)) · n(x)|
� |x − xb(x, v)|2 = C�|v|2|tb(x, v)|2,

and this proves (2.2).
For (2.3) it suffices to show tb(x, v) �ξ |n(x)·v|

|v|2 . Since ξ(x) = 0 = ξ(x −
tb(x, v)v) for (x, v) ∈ γ+, we have

0 = ξ(x − tb(x, v)v) = ξ(x)+
∫ tb(x,v)

0
[−v · ∇xξ(x − sv)]ds

= [−v · ∇xξ(x)]tb(x, v)+
∫ tb(x,v)

0

∫ s

0
{v · ∇2

x ξ(x − τv) · v}dτds.

By the convexity of ξ in (1.13) we have [v ·∇xξ(x)]tb(x, v) ≥ (tb(x,v))2

2 Cξ |v|2,
and therefore this proves (2.3). ��

We need a version of Gronwall’s inequality for matrices:

Lemma 4 Let a(τ ), b(τ ), f (τ ), g(τ ) ≥ 0 for all 0 ≤ τ ≤ t , and satisfy

[
a(τ )
b(τ )

]
�

[
0 1
|v|2 |v|

] [∫ t
τ
a(τ ′)dτ ′∫ t

τ
b(τ ′)dτ ′

]
+

[
g(t − τ)
h(t − τ)

]
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then

[
a(τ )
b(τ )

]
� eC(τ−t)

[
1 |τ − t |

|v|2|τ − t | 1

] [
g(0)
h(0)

]

+
∫ τ

t
eC(τ−τ ′)

[
1 |τ − τ ′|

|v|2|τ − τ ′| 1

] [
g(t − τ ′)
h(t − τ ′)

]
dτ ′. (2.4)

Proof First we consider Aε, Bε solving, for ε > 0,

[
Aε(τ )
Bε(τ )

]
= C

[
0 1
|v|2 |v|

] [∫ t
τ
Aε(τ ′)dτ ′∫ t

τ
Bε(τ ′)dτ ′

]
+

[
g(t − τ)
h(t − τ)

]
+

[
ε

ε

]
. (2.5)

We claim that

[
Aε(τ )
Bε(τ )

]
� eC(τ−t)

[
1 |τ − t |

|v|2|τ − t | 1

] [
g(0)+ ε
h(0)+ ε

]

+
∫ τ

t
eC(τ−τ ′)

[
1 |τ − τ ′|

|v|2|τ − τ ′| 1

] [
g(t − τ ′)+ ε
h(t − τ ′)+ ε

]
dτ ′.
(2.6)

We consider the matrix

[
1 0
0 1

] [
0 1
|v|2 |v|

]
=

[
0 1
|v|2 |v|

]
. Denote

r1 := 1+√
5

2
, r2 := 1−√

5

2
, r3 := 1√

5
.

Then we diagonalize this matrix as

[
0 1
|v|2 |v|

]
=

[
1 1

r1|v| r2|v|
] [

r1|v| 0
0 r2|v|

][
−r2r3 r3

1
|v|

r1r3 −r3 1
|v|

]
.

Denote

[
Aε(τ )
Bε(τ )

]
:=

[
−r2r3 r3

1
|v|

r1r3 −r3 1
|v|

][
Aε(τ )
Bε(τ )

]
and rewrite the equations

as

d

dτ

[
Aε(τ )
Bε(τ )

]
= C

[
r1|v| 0
0 r2|v|

] [
Aε(τ )
Bε(τ )

]
+
[
−r2r3 r3

1
|v|

r1r3 −r3 1
|v|

][
g(t−τ)+ε
h(t−τ)+ε

]
.
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Directly we compute

[
Aε(τ )
Bε(τ )

]
=

[
eCr1|v|(τ−t)Aε(t)
eCξ r2|v|(τ−t)Bε(t)

]

+
∫ τ

t

[
eCr2|v|(τ−τ ′) 0

0 eCr2|v|(τ−τ ′)
][

−r2r3 r3
1
|v|

r1r3 −r3 1
|v|

][
g(t − τ ′)+ ε
h(t − τ ′)+ ε

]
dτ ′.

Then

[
Aε(τ )
Bε(τ )

]
=

[
1 1

r1|v| r2|v|
] [

Aε(τ )
Bε(τ )

]

=
[

1 1
r1|v| r2|v|

] [
eCr1|v|(τ−t) 0

0 eCr2|v|(τ−t)

][
−r2r3 r3

1
|v|

r1r3 −r3 1
|v|

][
Aε(t)
Bε(t)

]

+
∫ τ

t

[
1 1

r1|v| r2|v|
] [

eCr1|v|(τ−τ ′) 0
0 eCr2|v|(τ−τ ′)

]

×
[
−r2r3 r3

1
|v|

r1r3 −r3 1
|v|

][
g(t − τ ′)+ ε
h(t − τ ′)+ ε

]
dτ ′.

Directly, the RHS equals

[
r3

(
r1eCr2|v|(τ−t) − r2eCr1|v|(τ−t)

) r3|v|
(
eCr1|v|(τ−t) − eCr2|v|(τ−t)

)
−r1r2r3|v|

(
eCr1|v|(τ−t) − eCr2|v|(τ−t)

)
r3

(
r1eCr2|v|(τ−t) − r2eCr1|v|(τ−t)

)
] [

Aε(t)
Bε(t)

]

+
∫ τ

t

⎡
⎣ r3

(
r1eCr2|v|(τ−τ

′)−r2eCr1|v|(τ−τ ′)
)

r3|v|
(
eCr1|v|(τ−τ ′)−eCr2|v|(τ−τ ′)

)

−r1r2r3|v|
(
eCr1|v|(τ−τ ′) − eCr2|v|(τ−τ ′)

)
r3

(
r1eCr2|v|(τ−τ

′)−r2eCr1|v|(τ−τ ′)
)
⎤
⎦

×
[
g(t − τ ′)+ ε
h(t − τ ′)+ ε

]
dτ ′.

By expansion we have |eCr1|v|(τ−t)−eCr2|v|(τ−t)| �Cξ ,δ |v‖τ − t |eCξ,δ |v|(τ−t).
Therefore we conclude (2.6).

Now we claim

a(τ ) ≤ A(τ ), b(τ ) ≤ B(τ ), for all τ ≤ t. (2.7)

First we claim that a(τ ) ≤ Aε(τ ) and b(τ ) ≤ Bε(τ ) for all τ . Otherwise, we
should have at least for some time τ0 such thata(τ ) ≤ Aε(τ ) and b(τ ) ≤ Bε(τ )
for τ0 ≤ τ ≤ t but either a(τ ) > Aε(τ ) or b(τ ) > Bε(τ ) for a small
neighborhood of τ > τ0. Especially either a(τ0) = Aε(τ0) or b(τ0) = Bε(τ0).
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But this is impossible. Since

[
Aε(τ )− a(τ )
Bε(τ )− b(τ )

]
≥ C

[
0 1
|v|2 |v|

] [∫ t
τ
(Aε(τ ′)− a(τ ′))dτ ′∫ t
τ
(Bε(τ ′)− b(τ ′))dτ ′

]
+

[
ε

ε

]
,

we have

[
Aε(τ )− a(τ )
Bε(τ )− b(τ )

]
≥

[
ε

ε

]
> 0 as τ → τ+0 . Then we prove the

inequalities (2.7) by letting ε→ 0.
Finally we prove the claim (2.4) from (2.6) and (2.7) and letting ε→ 0. ��
Recall the expression of �gain and ν in (1.7) and (1.8). Due to the Grad

estimate in [4]

�gain(
√
μ, g)+ �gain(g,√μ) =

∫
R3

k2(v, u)g(u)du,

ν(
√
μg) =

∫
R3

k1(v, u)g(u)du, (2.8)

where

k1(u, v) = |u − v|κe−|v|2+|u|2
2

∫
S2
q0(

v − u

|v − u| · ω)dω,

k2(u, v) = 2

|u − v|2 e
− 1

8 |u−v|2− 1
8
(|u|2−|v|2)2

|u−v|2

×
∫
w·(u−v)=0

q0

(
u − v√|u − v|2 + |w|2 ·

u − v
|u − v|

)
e−|w+ς |2

(|w|2 + |u − v|2) κ2 dw, (2.9)

and ς :=
(
v+u
2 · w|w|

)
w
|w| . See page 315 of [8] for details.

Lemma 5 For 0 ≤ κ ≤ 1,

|k1(u, v)| + |k2(u, v)| � {|v − u|κ + |v − u|−2+κ}e−
1
8 |v−u|2− 1

8
(|v|2−|u|2)2

|v−u|2

� e
− 1

10 |v−u|2− 1
10
(|v|2−|u|2)2

|v−u|2

|v − u|2−κ .

For � > 0 and −2� < θ < 2� and ζ ∈ R, we have for 0 < κ ≤ 1,

∫
R3
{|v − u|κ + |v − u|−2+κ}e−�|v−u|2−� (|v|2−|u|2)2|v−u|2 〈v〉ζ eθ |v|2

〈u〉ζ eθ |u|2 du � 〈v〉−1.
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Proof The proof is based on [9]. Note that

〈v〉ζ eθ |v|2
〈u〉ζ eθ |u|2 � [1+ |v − u|2] ζ2 e−θ(|u|2−|v|2).

Set v − u = η and u = v − η in the integration. Now we compute the total
exponent of the integrand as

− �|η|2 − �‖η|
2 − 2v · η|2
|η|2 − θ{|v − η|2 − |v|2}

= −2�|η|2 + 4�{v · η} − 4�
|v · η|2
|η|2 − θ{|η|2 − 2v · η}

= (−θ − 2�) |η|2 + (4� + 2θ) v · η − 4�
|v · η|2
|η|2 .

Since−2� < θ < 2�, the discriminant of the above quadratic form of |η| and
v·η
|η| is negative: (4� + 2θ)2+16�(−θ−2�) = 4θ2−16�2 < 0. We thus have

−�|η|2 − �‖η|
2 − 2v · η|2
|η|2 − θ{|v − η|2 − |v|2} ��,θ −

{ |η|2
2

+ |v · η|
}
.

Hence, for 0 ≤ κ ≤ 1 the integration is bounded by∫
R3

{|η|κ + |η|−2+κ} 〈η〉ζ e−C�,θ |η|2 ��,θ,κ 1.

Therefore in order to prove Lemma 5 it suffices to consider the case |v| ≥ 1.

We make another change of variables η‖ =
{
η · v|v|

}
v
|v| and η⊥ = η − η‖, so

that |v · η| = |v‖η‖| and |v − u| ≥ |η⊥|. We can absorb 〈η〉ζ , |η|κ〈η〉ζ by

e−C�,θ |η|2 , and bound the integration by, for 0 < κ ≤ 1,

∫
R3

{
1+ |η|−2+κ}e−C�,θ

{
|η|2
2 +|v·η|

}
dη

≤
∫
R3

{
1+ |η|−2+κ}e−C�,θ

2 |η|2e−C�,θ |v·η|dη

≤
∫
R2
{1+ |η⊥|−2+κ}e−

C�,θ
2 |η⊥|2

{∫
R

e−C�,θ |v|×|η‖|d|η‖|
}
dη⊥

� 〈v〉−1
∫
R2
{1+ |η⊥|−2+κ}e−

C�,θ
2 |η⊥|2

{∫ ∞

0
e−C�,θ ydy

}
dη⊥

� 〈v〉−1,

where y = |v||η‖|. ��
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We define

�gain,v(g1, g2)(v) :=
∫
R3

∫
S2

B(v − u, ω)∇v(√μ)(u)g1(u′)g2(v′)dωdu,
(2.10)

where u′ = u − [(u − v) · ω]ω and v′ = v + [(u − v) · ω]ω.
Lemma 6 (i) For 0 < θ < 1

4 and 0 ≤ κ ≤ 1, there exists Cθ > 0 such that,
for (i, j) = (1, 2) or (i, j) = (2, 1),

∣∣�gain(g1, g2)(v)∣∣ �θ ‖eθ |v|2gi‖∞
∫
R3

e−Cθ |v−u|2

|v − u|2−κ |g j (u)|du, (2.11)

and
∣∣�gain(g1, g2)(v)∣∣ �θ 〈v〉κe−θ |v|2‖eθ |v|2g1‖∞‖eθ |v|2g2‖∞,∣∣�gain,v(g1, g2)(v)∣∣ �θ 〈v〉κe−θ |v|2‖eθ |v|2g1‖∞‖eθ |v|2g2‖∞,

|ν(√μg1)g2(v)| �θ ‖eθ |v|2g2‖∞
∫
R3

e−Cθ |v−u|2

|v − u|2−κ |g1(u)|du.

(ii) For p ∈ [1,∞) and 0 < θ < 1
4 , and for (i, j) = (1, 2) or (i, j) =

(2, 1),

‖�gain(g1, g2)‖p �θ,p ‖eθ |v|2gi‖∞‖g j‖p,
‖ν(√μg1)g2‖p �θ,p ‖eθ |v|2g2‖∞‖g1‖p,∣∣∣∣

∫∫
�×R3

�gain(g1, g2)g3dvdx

∣∣∣∣ �θ,p ‖eθ |v|2gi‖∞‖g j‖p‖g3‖q ,
∣∣∣∣
∫∫
�×R3

ν(
√
μg1)g2g3dvdx

∣∣∣∣ �θ,p ‖eθ |v|2g2‖∞‖g1‖p‖g3‖q .

(iii) For p ∈ [1,∞) and 0 < θ < 1
4 , and for (i, j) = (1, 2) or (i, j) =

(2, 1),

‖∇v[�gain(g1, g2)]‖p �θ,p
∑
(i, j)

‖eθ |v|2gi‖∞‖∇vg j‖p,

‖ν(√μ∇vg1)g2‖p �θ,p ‖eθ |v|2g2‖∞‖∇vg1‖p,∣∣∣∣
∫∫
�×R3

∇v�gain(g1, g2)g3dvdx
∣∣∣∣ �θ,p

∑
(i, j)

‖eθ |v|2gi‖∞‖∇vg j‖p‖g3‖q ,
∣∣∣∣
∫∫
�×R3

ν(
√
μ∇vg1)g2g3dvdx

∣∣∣∣ �θ,p ‖eθ |v|2g2‖∞‖∇vg1‖p‖g3‖q .
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(iv) Let [Y,W ] = [Y (x, v),W (x, v)] ∈ � × R
3. For 0 < θ < 1

4 and
∂e ∈ {∂t ,∇x ,∇v},

|∂e�gain(g, g)(Y,W )|

� |∂eY |‖eθ |v|2g‖∞
∫
R3

e−Cθ |u−W |2

|u −W |2−κ |∇x g(Y, u)|du

+ |∂eW |‖eθ |v|2g‖∞
∫
R3

e−Cθ |u−W |2

|u −W |2−κ |∇vg(Y, u)|du

+ 〈v〉κe−θ |v|2 |∂eW |‖eθ |v|2g‖2∞.

Proof (i) First we show (2.11) for (i, j) = (1, 2). Clearly

|�gain(g1, g2)| � |�gain(e−θ |v|2, |g2|)| × ‖eθ |v|2g1‖∞.

By the Grad estimate, (page 315, [8]) we bound |�gain(e−θ |v|2, |g2|)|
by

∫
R2 k2(v, u)|g2(u)|du with different exponent of k2(v, u). Then we use

Lemma 5 to conclude (2.11).
For the second estimate we use (1.9)

|�gain(g1, g2)(v)| � �gain(e−θ |v|2, e−θ |v|2)× ‖eθ |v|2g1‖∞‖eθ |v|2g2‖∞
= e−θ |v|2

∫∫
B(v − u, ω)

√
μ(u)e−θ |u|2dωdu

× ‖eθ |v|2g1‖∞‖eθ |v|2g2‖∞
� 〈v〉κe−θ |v|2‖eθ |v|2g1‖∞‖eθ |v|2g2‖∞,

where we have used |u′|2 + |v′|2 = |u|2 + |v|2. The third estimate follows
similarly with ∇u(

√
μ)(u) � μ(u)1/2−δ for any δ > 0. The fourth estimate

follows from

e−θ |v|2ν(√μg1)(v) �
∫
R3
|v − u|κe−θ |v|2√μ(u)|g1(u)|du

�
∫
R3

e−Cθ |v−u|2

|v − u|2−κ |g1(u)|du,

and e−θ |v|2 |v − u|κ√μ(u) � e−Cθ |v−u|2
|v−u|2−κ .
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(ii) The first two estimates are a direct consequence of (i):

‖�gain(g1, g2)‖p � ‖eθ |v|2gi‖∞
∥∥∥∥∥∥
(∫

u

e−Cθ |v−u|2

|v − u|2−κ
)1/q (∫

u

e−Cθ |v−u|2

|v − u|2−κ |g j (u)|
p

)1/p
∥∥∥∥∥∥
L p
v

� ‖eθ |v|2gi‖∞
(∫

u

e−Cθ |u|2

|u|2−κ
)1/q (∫

u
|g j (u)|p

∫
v

e−Cθ |v−u|2

|v − u|2−κ
)1/p

� ‖eθ |v|2gi‖∞
(∫

u

e−Cθ |u|2

|u|2−κ
)
‖g j‖p

� ‖eθ |v|2gi‖∞‖g j‖p.

From the fourth estimate of (i), the same proof holds for
‖ν(√μg1)g2‖p �θ,p ‖eθ |v|2g2‖∞‖g1‖p.

For the third estimate we use (2.11) in order to bound it as

‖eθ |v|2gi‖∞
∫∫∫

�×R3×R3

e−Cθ |v−u|2

|v − u|2−κ |g j (x, u)||g3(x, v)|dudvdx

�
(∫∫∫

e−Cθ |v−u|2

|v − u|2−κ |g j (x, u)|p
)1/p (∫∫∫

e−Cθ |v−u|2

|v − u|2−κ |g3(x, u)|
q

)1/q

� ‖g j‖p‖g3‖q .

The same proof holds when exchanging i and j . Using the fourth estimate of
(i), we conclude (ii).

(iii) We compute the velocity derivative of �gain after the change of variable
u := v − u:

∇v�gain(g1, g2)
= ∇v

[∫
R3

∫
S2

B(u, ω)
√
μ(u)g1(u − (u · ω)ω)g2(v + (u · ω)ω)dωdu

]

= �gain(g1,∇vg2)+ �gain(∇vg1, g2)+ �gain,v(g1, g2).

The two first terms are estimated directly by (ii). For �gain,v , we use the fact
|∇v(√μ)(v − u)| ≤ Cμ(v − u)1/4 and then apply (ii). The other estimates
are direct consequence of the previous estimates.

(iv) It suffices to show the following computation: For 0 < θ < 1
4 and

∂e ∈ {∂t ,∇x ,∇v},
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|∂e�gain(g, g)(Y,W )|
=

∣∣∣∂e
∫
S2

∫
R3
|u|κq0

( u

|u| · ω
)
e−

|u+W |2
4 g(Y,W + [u · ω]ω)

×g(Y,W + u − (u · ω)ω)dωdu
∣∣∣

= |�gain(∂eY · ∇x g, g)(Y,W )| + |�gain(g, ∂eY · ∇x g)(Y,W )|
+|�gain(∂eW · ∇vg, g)(Y,W )| + |�gain(g, ∂eW · ∇vg)(Y,W )|
+
∣∣∣
∫
S2

∫
R3
|u|κq0

( u

|u| · ω
)
(
−1

2
)(u +W ) · ∂eW

√
μ(u +W )

×g(Y,W + [u · ω]ω)g(Y,W + u − (u · ω)ω)dωdu
∣∣∣

≤ |∂eY |||eθ |v|2g||∞
∫
R3

e−Cθ |u−W |2

|u −W |2−κ |∂x g(Y, u)|du

+|∂eW |||eθ |v|2g||∞
∫
R3

e−Cθ |u−W |2

|u −W |2−κ |∂vg(Y, u)|du

+|∂eW |〈v〉κe−θ |v|2 ||eθ |v|2g||2∞, (2.12)

where we have used the change of variables u − V �→ u. ��

Lemma 7 (Local Existence) For 0 ≤ θ < 1/4, if ‖eθ |v|2 f0‖∞ < +∞ then
there exists T > 0 depending on ‖eθ |v|2 f0‖∞, such that there exists a unique
F = μ + √

μ f which solves the Boltzmann equation (1.1) in [0, T ] and
satisfies the initial condition and boundary conditions (1.10), (1.11), (1.12)
respectively. In addition F(t, x, v) ≥ 0 on [0, T ] × �̄ × R

3 and f satisfies,
for some 0 < θ ′ < θ,

sup
0≤t≤T

‖eθ ′|v|2 f (t)‖∞ � P(‖eθ |v|2 f0‖∞), (2.13)

for some polynomial P. If f0 is continuous and satisfies the compatibility
conditions (1.14), (1.30), (1.37) respectively, then f is continuous away from
the grazing set γ0.

Moreover, for0 ≤ θ̄ < 1
4 , if‖eθ̄ |v|

2
∂t f0‖∞ ≡

∥∥∥eθ̄ |v|2 −v·∇x F0+Q(F0,F0)√
μ

∥∥∥∞ <+∞ and compatibility conditions (1.14), (1.30), (1.37) hold respectively, then

sup
0≤t≤T ∗

∥∥∥eθ̄ |v|2∂t f (t)
∥∥∥∞ � P

(∥∥∥eθ̄ |v|2∂t f0
∥∥∥∞

)
+ P

(∥∥∥eθ |v|2 f0
∥∥∥∞

)
,

(2.14)
for some polynomial P.
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Furthermore for the diffuse and bounce-back boundary conditions, if F0 =
μ + √

μg0 with ‖eθ |v|2g0‖∞ � 1 for 0 < θ < 1
4 then the results hold for

all t ≥ 0. For the specular reflection boundary condition, if ξ is real analytic,
and if ‖eθ |v|2g0‖∞ � 1 for 0 < θ < 1

4 then the results hold for all t ≥ 0.

Note that we only need the real analyticity assumption for the global-in-time
solvability in the specular BC which is crucial to bootstrap L∞−bound using
L2−bound. (L2 − L∞ interpolation argument in [9])

Proof We use the positive preserving iteration of [9,12]

∂t F
m+1+v·∇x F

m+1+ν(Fm)Fm+1 = Qgain(F
m, Fm), Fm+1|t=0 = F0 ≥ 0,

(2.15)
which is equivalent to the following equation when posing Fm := √

μ f m,

∂t f
m+1 + v · ∇x f

m+1 + ν(Fm) f m+1 = �gain( f m, f m), f m+1|t=0 = f0.
(2.16)

We use the Duhamel formula (ignoring the boundary condition):

f m+1(t, x, v) = e−
∫ t
0 ν(

√
μ f m)(s,Xcl(s),Vcl(s))ds f0(Xcl(0), Vcl(0))

+
∫ t

0
e−

∫ t
s ν(

√
μ f m)(τ,Xcl(τ ),Vcl(τ ))dτ�gain( f

m, f m)(s, Xcl(s), Vcl(s))ds.

The local existence theorem without boundary is standard:

|e(θ−t)|v|2 f m+1(t, x, v)|
� |e(θ−t)|v|2 f0| +

∫ t

0
|�gain( f m, f m)(s, Xcl(s), Vcl(s))|ds

� ‖eθ |v|2 f0‖∞ + e(θ−t)|v|2
∫ t

0

∫∫
R3×S2

B(Vcl(s)− u, ω)
√
μ(u)|

× f m(s, Xcl(s), u
′)|| f m(s, Xcl(s), v

′)|

� ‖eθ |v|2 f0‖∞ +
(

sup
0≤s≤t

‖e(θ−s)|v|2 f m(s)‖∞
)2

×
∫ t

0

∫∫
B(v − u, ω)

√
μ(u)e(θ−t)|v|2e−(θ−s)|u′|2e−(θ−s)|v′|2
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� ‖eθ |v|2 f0‖∞ +
(

sup
0≤s≤t

‖e(θ−s)|v|2 f m(s)‖∞
)2

×
∫ t

0
e−(t−s)|v|2

∫
u
|v − u|κ√μ(u)

� ‖eθ |v|2 f0‖∞ +
(

sup
0≤s≤t

‖e(θ−s)|v|2 f m(s)‖∞
)2

×
∫ t

0
e−(t−s)|v|2〈v〉{1|v|>N + 1|v|≤N }ds

� ‖eθ |v|2 f0‖∞ +
(

sup
0≤s≤t

‖e(θ−s)|v|2 f m(s)‖∞
)2 {

1

N 2 + Nt

}
.

Now we choose sufficiently large N � 1 and then small 0 < T � θ to
obtain the uniform-in-m estimate

sup
0≤t≤T

‖eθ ′|v|2 f m+1(t)‖∞ � ‖eθ |v|2 f0‖∞, (2.17)

for some 0 < θ ′ < θ.
With a boundary condition theDuhamel formula takes the formaccordingly:
(i) Diffuse reflection boundary condition, on (x, v) ∈ γ−,

f m+1(t, x, v) = cμ
√
μ(v)

∫
n(x)·u>0

f m(t, x, u)
√
μ(u){n(x) · u}du.

(2.18)
(ii) Specular reflection boundary condition, on (x, v) ∈ γ−,

f m+1(t, x, v) = f m(t, x, Rxv), (2.19)

where Rxv = v − 2n(x)(n(x) · v).
(iii) Bounce-back reflection boundary condition, on (x, v) ∈ γ−,

f m+1(t, x, v) = f m(t, x,−v). (2.20)

We then follow the proof of [9,12] to obtain the same estimates of (2.17). ��

3 Traces and the in-flow problems

Recall the phase boundary in (1.3) and the almost grazing set γ ε+ defined in
(1.21). We first estimate the outgoing trace on γ+\γ ε+. We remark that for the
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outgoing part, our estimate is global in time without the need to use cut-off
functions, in contrast to the general trace theorem.

Lemma 8 Assume that ϕ = ϕ(v) is L∞loc(R3). For any ε > 0, there exists
a constant Cε,T,� > 0 such that for any h in L1([0, T ], L1(� × R

3)) with
∂t h+ v · ∇xh+ ϕh is in L1([0, T ], L1(�×R

3)), we have for all 0 ≤ t ≤ T,

∫ t

0

∫
γ+\γ ε+

|h|dγ ds

≤ Cε,T,�

[
‖h0‖1 +

∫ t

0

{‖h(s)‖1 + |[∂t + v · ∇x + ϕ]h(s)|1
}
ds

]
.

Furthermore, for (s, x, v) in [0, T ]×�×R
3, h(s+s′, x+s′v, v) is absolutely

continuous in s′ ∈ [−min{tb(x, v), s},min{tb(x,−v), T − s}].

Proof With a proper change of variables (e.g. Page 247 in [1]) we have

∫ T

0

∫∫
�×R3

h(t, x, v)dvdxdt

=
∫ 0

−min{T,tb(x,v)}

∫∫
�×R3

h(T + s, x + sv, v)dvdxds

+
∫ min{T,tb(x,−v)}

0

∫∫
�×R3

h(0+ s, x + sv, v)dvdxds

+
∫ T

0

∫
γ+

∫ 0

−min{t,tb(x,v)}
h(t + s, x + sv, v)dsdγ dt

+
∫ T

0

∫
γ−

∫ min{T−t,tb(x,−v)}

0
h(t + s, x + sv, v)dsdγ dt. (3.1)

For (t, x, v) ∈ [0, T ] × γ+ and 0 ≤ s ≤ min{t, tb(x, v)},

h(t, x, v) = h(t − s, x − sv, v)e−ϕ(v)s

+
∫ 0

−s
eϕ(v)τ [∂t h + v · ∇xh + ϕ(v)h](t + τ, x + τv, v)dτ.

Now for (t, x, v) ∈ [ε1, T ]×γ+\γ ε+,we integrate over
∫ T
ε1

∫
γ+\γ ε+

∫ 0
min{t,tb(x,v)}

to get
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min{ε1, ε3} ×
∫ T

ε1

∫
γ+\γ ε+

|h(t, x, v)|dγ dt

� min
[ε1,T ]×[γ+\γ ε+]

{t, tb(x, v)} ×
∫ T

ε1

∫
γ+\γ ε+

|h(t, x, v)|dγ dt

�
∫ T

0

∫
γ+

∫ 0

−min{t,tb(x,v)}
|h(t + s, x + sv, v)|dsdγ dt

+T
∫ T

0

∫
γ+

∫ 0

−min{t,tb(x,v)}
|∂t h+v · ∇xh + ϕh|(t + τ, x + τv, v)dτdγ dt

�
∫ T

0
‖h(t)‖1dt +

∫ T

0
‖[∂t + v · ∇x + ϕ]h(t)‖1dt,

where we have used the integration identity (3.1), and (40) of [9] to obtain
tb(x, v) ≥ C�|n(x) · v|/|v|2 ≥ C�ε3 for (x, v) ∈ γ+\γ ε+. Now we choose
ε1 = ε1(�, ε) as

ε1 ≤ C�ε
3 ≤ inf

(x,v)∈γ+\γ ε+
tb(x, v).

We only need to show, for ε1 ≤ C�ε3, that

∫ ε1

0

∫
γ+\γ ε+

|h(t, x, v)|dγ dt ��,ε,ε1 ‖h0‖1+
∫ ε1

0
‖[∂t+v · ∇x+ϕ]h(t)‖1dt.

Because of our choice ε and ε1, tb(x, v) > t for all (t, x, v) ∈ [0, ε1]×γ+\γ ε+.
Then

|h(t, x, v)| � |h0(x−tv, v)|+
∫ t

0
|[∂t+v · ∇x+ϕ(v)]h(s, x−(t − s)v, v)| ds,

where the second contribution is bounded, from (3.1), by

∫ ε1

0

∫
γ+\γ ε+

∫ t

0
|[∂t + v · ∇x + ϕ(v)]h(s, x − (t − s)v, v)| dsdγ dt

�
∫ ε1

0
‖[∂t + v · ∇x + ϕ(v)]h(t)‖1dt.

Consider the initial datum contribution |h0(x − tv, v)|: We may assume
∂x3ξ(x0) �= 0. By the implicit function theorem, ∂� can be represented
locally by the graph η = η(x1, x2) satisfying ξ(x1, x2, η(x1, x2)) = 0
and (∂x1η(x1, x2), ∂x2η(x1, x2)) = (−∂x1ξ/∂x3ξ,−∂x2ξ/∂x3ξ) at (x1, x2,
η(x1, x2)).We define the change of variables
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(x, t) ∈ {x ∈ ∂� : |x − x0| � 1} × [0, ε1] �→ y = x − tv ∈ �̄,

where
∣∣∣ ∂y
∂(x,t)

∣∣∣ = −v1 ∂x1ξ∂x3ξ
− v2 ∂x2ξ∂x3ξ

− v3.
Therefore

|n(x) · v|dSxdt = (n(x) · v)
[
1+

(
∂x1ξ

∂x3ξ

)2

+
(
∂x2ξ

∂x3ξ

)2
]1/2

dx1dx2dt

=
[
−v1 ∂x1ξ

∂x3ξ
− v2 ∂x2ξ

∂x3ξ
− v3

]
dx1dx2dt = dy,

and
∫ ε1
0

∫
γ+\γ ε+∩{|x−x0|�1} |h0(x−tv, v)|dγ dt �ε,ε1,x0

∫∫
�×R3 |h0(y, v)|dydv.

Since ∂� is compact we can choose finite covers of ∂� and repeat the same
argument for each piece to conclude

∫ ε1

0

∫
γ+\γ ε+

|h0(x − tv, v)|dγ dt ��,ε,ε1
∫∫
�×R3

|h0(y, v)|dydv.

��

Lemma 9 (Green’s Identity) For p ∈ [1,∞) assume f, ∂t f + v · ∇x f ∈
L p([0, T ]; L p(�×R

3)) and fγ− ∈ L p([0, T ]; L p(γ )). Then f ∈ C0([0, T ];
L p(�×R

3)) and fγ+ ∈ L p([0, T ]; L p(γ )) and for almost every t ∈ [0, T ] :

‖ f (t)‖pp +
∫ t

0
| f |pγ+,p = ‖ f (0)‖pp +

∫ t

0
| f |pγ−,p

+
∫ t

0

∫∫
�×R3

{∂t f + v · ∇x f }| f |p−2 f.

See [9] for the proof. Now we state and prove following propositions for
the in-flow problems:

{∂t+v ·∇x+ν} f = H, f (0, x, v) = f0(x, v), f (t, x, v)|γ− = g(t, x, v),
(3.2)

where ν(t, x, v) ≥ 0. For notational simplicity, we define

∂t f0 ≡ −v · ∇x f0 − ν f0 + H(0, x, v), (3.3)

∇x g ≡ n

n · v

{
−∂t g −

2∑
i=1

(v · τi )∂τi g − νg + H

}
+

2∑
i=1

τi∂τi g. (3.4)
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We remark that ∂t f0 is obtained from formally solving (3.2), and (3.3), which
leads to the usual tangential derivatives of ∂τi g, and new ‘normal derivative’
∂ng through the equation (3.2).

Proposition 1 Assume the compatibility condition

f0(x, v) = g(0, x, v) for (x, v) ∈ γ−. (3.5)

Let p ∈ [1,∞) and 0 < θ < 1/4. Assume

∇x f0,∇v f0,−v · ∇x f0 − ν(0, ·, ·) f0 + H(0, ·, ·) ∈ L p(�× R
3),

∂t g,∇vg, ∂τi g ∈ L p([0, T ] × γ−),
1

n(x) · v {−∂t g −
∑
i

(v · τi )∂τi g − νg + H} ∈ L p([0, T ] × γ−),

∂t H, ∇x H, ∇vH, ∈ L p([0, T ] ×�× R
3),

e−θ |v|2∂tν, e−θ |v|
2∇xν, e

−θ |v|2∇vν ∈ L p([0, T ] ×�× R
3),

eθ |v|2 f0 ∈ L∞(�× R
3), eθ |v|2g ∈ L∞([0, T ] × γ−),

eθ |v|2H ∈ L∞([0, T ] ×�× R
3).

Then for sufficiently small T > 0, there exists a unique solution f to (3.2) such
that f, ∂t f,∇x f,∇v f ∈ C0([0, T ]; L p(�× R

3)) and their traces satisfy

∂t f |γ− = ∂t g, ∇v f |γ− = ∇vg, ∇x f |γ− = ∇x g, on γ−,
∇x f (0, x, v) = ∇x f0, ∇v f (0, x, v) = ∇v f0, in �× R

3,

∂t f (0, x, v) = ∂t f0, in �× R
3,

(3.6)

where ∂t f0 and∇x g are given by (3.3) and (3.3).Moreover for ∂e ∈ {∂t , ∂x , ∂v}

‖∂e f (t)‖pp +
∫ t

0
|∂e f |pγ+,p = ‖∂e f0‖pp +

∫ t

0
|∂eg|pγ−,p

+ p
∫ t

0

∫∫
�×R3

{∂eH − [∂ev]∇x f − [∂eν] f }|∂e f |p−2∂e f. (3.7)

Proof We apply the trace theorem to the derivatives of f by explicit computa-
tions. Denote ν(s) = ν(s, x − (t − s)v, v). First we assume f0, g and H have
compact supports in v ∈ R

3. We integrate the Eq. (3.2) along the backward
trajectories. If the initial condition is reached before hitting the boundary (case
t < tb), we have

f (t, x, v) = e−
∫ t
0 ν f0(x − tv, v)+

∫ t

0
e−

∫ s
0 νH(t − s, x − vs, v)ds,
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where we used the simplified notation
∫ t
0 ν =

∫ t
0 ν(t − τ, x − τv, v)dτ . If the

boundary has been reached before (case t > tb), we have

f (t, x, v) = e−
∫ tb
0 νg(t − tb, xb, v)+

∫ tb

0
e−

∫ s
0 νH(t − s, x − vs, v)ds,

where
∫ tb
0 ν =

∫ tb
0 ν(t − τ, x − τv, v)dτ .

Let us rewrite it as

f (t, x, v) = 1{t≤tb}e−
∫ t
0 ν f0(x − tv, v)+ 1{t>tb}e−

∫ tb
0 νg(t − tb, xb, v)

+
∫ min(t,tb)

0
e−

∫ s
0 νH(t − s, x − vs, v)ds. (3.8)

We take the derivative of f with respect to time, space and velocity for t �= tb.
Recall the following derivatives of xb and tb (see lemma 2 in [9]):

∇x tb = n(xb)

v · n(xb) , ∇vtb = − tbn(xb)

v · n(xb) ,

∇x xb = I − n(xb)

v · n(xb) ⊗ v, ∇vxb = −tb I + tbn(xb)

v · n(xb) ⊗ v.
(3.9)

Since g is defined on a surface, we cannot define its space gradient. Regarding
g(t − tb, xb(x, v), v) as function on [0, T ] × �̄× R

3, we obtain from (3.9)

∇x [g(t − tb, xb, v)] = −∇x tb∂t g + ∇x xb∇τ g
= − n(xb)

v · n(xb)∂t g +
(
I − n ⊗ v

n · v
)
∇τ g

= τ1∂τ1g + τ2∂τ2g
− n(xb)

v · n(xb)
{
∂t g + v · τ1∂τ1g + v · τ2∂τ2g

}
,

∇v[g(t − tb, xb, v)] = −tb∇x [g(t − tb, xb, v)] + ∇vg,

where τ1(x) and τ2(x) are unit vectors satisfying τ1(x)·n(x) = 0 = τ2(x)·n(x)
and τ1(x)× τ2(x) = n(x).

Therefore by direct computation for t �= tb, we deduce

∂t f (t, x, v)1{t �=tb}

= −1{t<tb}e−
∫ t
0 ν

[
ν f0 + v · ∇x f0 − H|t=0 +

∫ t

0
∂tν × f0

]
(x − tv, v)
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+1{t>tb}e−
∫ tb
0 ν

[
∂t g −

∫ tb

0
∂tν × g

]
(t − tb, xb, v)

+
∫ min(t,tb)

0
e−

∫ s
0 ν

[
∂t H −

∫ s

0
∂tν × H

]
(t − s, x − vs, v)ds, (3.10)

∇x f (t, x, v)1{t �=tb}

= 1{t<tb}e−
∫ t
0 ν

[
∇x f0 −

∫ t

0
∇xν × f0

]
(x − tv, v)

+ 1{t>tb}e−
∫ tb
0 ν

{ 2∑
i=1

τi∂τi g −
∫ tb

0
∇xν × g

− n(xb)

v · n(xb)
{
∂t g +

2∑
i=1

(v · τi )∂τi g + νg − H
}}
(t − tb, xb, v)

+
∫ min(t,tb)

0
e−

∫ s
0 ν

[
∇x H −

∫ s

0
∇xν × H

]
(t − s, x − vs, v)ds,

(3.11)

∇v f (t, x, v)1{t �=tb}

= 1{t<tb}e−
∫ t
0 ν[−t∇x f0 + ∇v f0 −

∫ t

0
(−τ∇xν +∇vν)× f0](x − tv, v)

−1{t>tb}tbe−
∫ tb
0 ν

{ 2∑
i=1

τi∂τi g

− n(xb)

v · n(xb)
{
∂t g +

2∑
i=1

(v · τi )∂τi g + νg − H
}}
(t − tb, xb, v)

+1{t>tb}e−
∫ tb
0 ν

{
∇vg(t − tb, xb, v)

−
∫ tb

0
(−τ∇xν +∇vν)× g(t − tb, xb, v)

}

+
∫ min(t,tb)

0
e−

∫ s
0 ν

{
∇vH − s∇x H

−(
∫ s

0
−τ∇xν +∇vν)× H

}
(t − s, x − vs, v)ds.

(3.12)

Here we have abbreviated the notations as
∫ t
0 ∂eν =

∫ t
0 ∂eν(t−τ, x−τv, v)dτ

and
∫ tb
0 ∂eν =

∫ tb
0 ∂eν(t − τ, x − τv, v)dτ .

First we show that ∂ f 1{t>tb} ∈ L p and ∂ f 1{t<tb} ∈ L p separately. Then
we take the L p norms above with the changes of variables in Lemma 2.1 of
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[7] and we use Jensen’s inequality in [0, t]. More precisely, for φ ∈ L1 with
φ ≥ 0,

∫∫
�×R3

1{x−tv∈�}φ(x − tv, v)

=
∫
R3

[∫
�

1{x−tv∈�}φ(x − tv, v)dx

]
dv ≤

∫∫
�×R3

φ(x, v),
∫∫

{�×R3}∩B((x0,v0);δ)
1{t≥tb}φ(t − tb(x, v), xb(x, v), v)

≤
∫ t

0

∫
∂�×R3

φ(s, x, v)|n(x) · v|dSxdvds,

(3.13)

where for the second inequality we have used the change of variables for fixed
t, v,

x �→ (t − tb(x, v), xb(x, v)). (3.14)

In fact, without loss of generality we may assume ∂x3ξ(xb(x, v)) �= 0 for
(x, v) ∈ B((x0, v0); δ) so that xb(x, v) = (xb,1, xb,2, η(xb,1, xb,2)). Using
(3.9), we compute the Jacobian

det

⎛
⎝ −∇x tb
−∇x xb,1
−∇x xb,2

⎞
⎠ = det

⎛
⎝−(v · n)−1n

−∇x xb,1
−∇x xb,2

⎞
⎠ =

∣∣∣∣−v1 ∂x1ξ∂x3ξ
− v2 ∂x2ξ

∂x3ξ
+ v3

∣∣∣∣
−1

.

Therefore dxdv =
∣∣∣−v1 ∂x1ξ∂x3ξ

− v2 ∂x2ξ∂x3ξ
+ v3

∣∣∣ dx1dx2dvdt = |n · v|dSxdvdt =
dγ dt. Using these changes of variables, we obtain

‖ f (t)1{t �=tb}‖p �t ‖ f0‖p +
[∫ t

0

∫
γ−
|g|pdγ ds

]1/p
+

[∫ t

0
‖H‖ppds

]1/p
,

and

‖∂t f (t)1{t �=tb}‖p
�t ‖v · ∇x f0 + ν f0 − H(0, ·, ·)‖p
+

[∫ t

0

∫
γ−
|∂t g|pdγ ds

]1/p
+

[∫ t

0
‖∂t H‖pp

]1/p

+ {‖eθ |v|2 f0‖∞ + ‖eθ |v|2H‖∞ + |eθ |v|2g|∞}
[∫ t

0
‖e−θ |v|2∂tν‖pp

]1/p
,
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and

‖∇x f (t)1{t �=tb}‖p
�t ‖∇x f0‖p +

[∫ t

0
‖∇x H‖pp

]1/p

+ {‖eθ |v|2 f0‖∞ + ‖eθ |v|2H‖∞ + |eθ |v|2g|∞}
[∫ t

0
‖e−θ |v|2∇xν‖pp

]1/p

+
[ ∫ t

0

∫
γ−

dγ ds
∣∣∣

2∑
i=1

τi∂τi g(t − tb, xb, v)

− n(xb)

v · n(xb)
{
∂t g +

2∑
i=1

(v · τi )∂τi g + νg − H
}
(t − tb, xb, v)

∣∣∣p
]1/p

,

and

‖∇v f (t)1{t �=tb}‖p
�t ‖∇x f0‖p + ‖∇v f0‖p + C‖ f0‖p +

[∫ t

0

∫
γ−
|∇vg|pdγ ds

]1/p

+
[∫ t

0
‖∇vH‖pp + ‖∇x H‖ppds

]1/p

+
[ ∫ t

0

∫
γ−

dγ ds
∣∣∣

2∑
i=1

τi∂τi g(t − tb, xb, v)

− n(xb)

v · n(xb)
{
∂t g +

2∑
i=1

(v · τi )∂τi g + νg − H
}
(t − tb, xb, v)

∣∣∣p
]1/p

+ {‖eθ |v|2 f0‖∞ + ‖eθ |v|2H‖∞ + |eθ |v|2g|∞}

×
[∫ t

0
‖e−θ |v|2∇xν‖pp + ‖e−θ |v|2∇vν‖pp

]1/p
.

From our hypothesis and assumption on f0, g and H with compact supports,
these terms are bounded, therefore

∂ f 1{t �=tb}≡
[
∂t f 1{t �=tb},∇x f 1{t �=tb},∇v f 1{t �=tb}

] ∈ L∞([0, T ]; L p(�×R
3)).

On the other hand, thanks to the compatibility condition, we need to show
f has the same trace on the set

M ≡ {t = tb(x, v)} ≡ {(tb(x, v), x, v) ∈ [0, T ] ×�× R
3}. (3.15)
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We claim the following fact: Let φ(t, x, v) ∈ C∞
c ((0, T )×�× R

3) then we
have ∫ T

0

∫∫
�×R3

f ∂φ = −
∫ T

0

∫∫
�×R3

∂ f 1{t �=tb}φ, (3.16)

so that f ∈ W 1,p with weak derivatives given by ∂ f 1{t �=tb}.
Proof of claim.Wefirst fix the test function φ(t, x, v).There exists δ = δφ > 0
such that φ ≡ 0 for t ≥ 1

δ
, or dist(x, ∂�) < δ, or |v| ≥ 1

δ
. Let φ(t, x, v) �= 0

and (t, x, v) ∈ M. By (3.15) and (1.27), t = tb(x, v), xb = x − tbv, and
|x − xb| = tb|v|, and

dist(x, �) ≤ |x − xb| = tb|v|.
Since tb ≤ 1

δ
, this implies that |v| ≥ δ

tb
≥ δ2.

Otherwise dist(x, ∂�) ≤ δ so that φ(t, x, v) = 0. Furthermore, by the
Velocity lemma and this lower bound for |v|, we conclude that there exists
δ′(δ,�) > 0 such that

|v · n(xb)|2 �� |v · ∇xξ(xb)|2 = α(t − tb; t, x, v)
≥ e−C�〈v〉tbα(t; t, x, v) ≥ e−C�〈v〉tbCξ |v|2|ξ(x)|
≥ e−C�δ−2

Cξ δ
4 min
dist(x,∂�)≥δ |ξ(x)| = 2δ′(δ,�) > 0.

In particular, this lower bound and a direct computation of (3.9) imply that
{φ �= 0} ∩M is a smooth 6D hypersurface.

We next take a C1 approximation of f l0, Hl, and gl (by partition of unity
and localization) such that

‖ f l0 − f0‖W 1,p → 0, ‖gl − g‖W 1,p([0,T ]×γ−\γ δ′− ) → 0,

‖Hl − H‖W 1,p([0,T ]×�×R3) → 0,

whereW 1,p([0, T ]×γ−\γ δ′− ) is the standard Sobolev space in [0, T ]×γ−\γ δ′− .
This implies, from the trace theorem, that

f l0(x, v)→ f0(x, v) and gl(0, x, v)→ g(0, x, v) in L1(γ−\γ δ′− ).

We define accordingly, for (t, x, v) ∈ [0, T ] ×�× R
3,

f l(t, x, v) = 1{t<tb}e−
∫ t
0 ν f l0(x − tv, v)+ 1{t>tb}e−

∫ tb
0 νgl(t − tb, xb, v)

+
∫ min{t,tb}

0
e−

∫ s
0 νHl(t − s, x − sv, v)ds, (3.17)
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and f l±(t, x, v) ≡ 1{t≷tb} f l . Therefore for all (x, v) ∈ γ−,

f l+(s, x + sv, v)− f l−(s, x + sv, v) = e−
∫ s
0 νgl(0, x, v)− e−

∫ s
0 ν f l0(x, v).

Since {φ �= 0} ∩M is a smooth hypersurface, we apply the Gauss theorem to
f l to obtain

∫∫∫
∂eφ f

ldxdvdt =
∫∫

[ f l+ − f l−]φe · nMdM

−
{∫∫∫

t>tb
φ∂e f

l+dxdvdt +
∫∫∫

t<tb
φ∂e f

l−dxdvdt
}
,

(3.18)

where ∂e = [∂t ,∇x ,∇v] = [∂t , ∂x1, ∂x2, ∂x3, ∂v1, ∂v2, ∂v3] and

nM = 1√
1+ |∇x tb|2 + |∇vtb|

(1,−∇x tb,−∇vtb) ∈ R
7.

We have used also (s, x + sv, v) and (x, v) ∈ γ− as our parametrization for
the manifold M ∩ {φ �= 0}, so that n(xb(x, v)) · v ≥ 2δ′ is equivalent to
n(x) · v ≥ 2δ′. Therefore the above hypersurface integration over {t �= tb} is
bounded by

�φ,δ
∫ 1

δ

0

∫
n(x)·v≥2δ′

| f l+(s, x + sv, v)− f l−(s, x + sv, v)|dSxdvds

�φ,δ
∫
n(x)·v≥2δ′

|gl(0, x, v)− f l0(s, v)|dSxdv→ 0, as l →∞,

due to the compatibility condition f0(x, v) = g(0, x, v) for (x, v) ∈ γ−.
Clearly, taking difference of (3.17) and (3.8), we deduce f l → f strongly in
L p({φ �= 0}) due to the first estimate of (3.15). Furthermore, due to (3.15), we
have a uniform-in-l bound of f l± in W 1,p({t ≷ tb, φ �= 0}) such that, up to a
subsequence,

∂e f
l+ ⇀ ∂e f 1{t>tb}, ∂e f

l− ⇀ ∂e f 1{t<tb}, weakly in L p({φ �= 0}).
Finally we conclude the claim (3.16) by letting l →∞ in (3.18).

Now, notice that from its explicit form (3.8), and since all the data are
compactly supported in the velocity space, f is itself compactly supported in
the velocity space. Recall ∂ = [∂t ,∇x ,∇v]. From this and from the L p bounds
above, we conclude

{∂t + v · ∇x + ν}∂ f = ∂H − ∂v · ∇x f − ∂ν f ∈ L p. (3.19)
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By the trace theorem (Lemma 8), the traces of ∂t f,∇x f,∇v f exist. To evaluate
these traces, we take derivatives along characteristics. Letting t → tb and
t → 0, we deduce (3.6). From the Green’s identity, Lemma 9, we have (3.7)
and therefore we conclude ∂ f ∈ C0([0, T ]; L p).

In order to remove the compact support assumption we employ the cut-off
function χ used in (1.22). Define f m = χ(|v|/m) f then f m satisfies

{∂t + v · ∇x + χ(|v|/m)ν} f m = χ(|v|/m)H,
f m(0, x, v) = χ(|v|/m) f0, f m |γ− = χ(|v|/m)g. (3.20)

Note that ∇v[χ(|v|/m)g] = χ(|v|/m)∇vg + g∇vχ(|v|/m) and χ(|v|/m)
f0(x, v) = χ(|v|/m)g(0, x, v) for (x, v) ∈ γ−. Apply the previous result
to compute the traces of the derivatives of f m . It is standard (using Green’s
identity) to show that ∂t f m,∇x f m and ∇v f m are Cauchy sequences and we
can pass to the desired limits. ��

We now study the weightedW 1,p estimate. Recall (1.22). We first define an
effective collision frequency:

ν�,β(t, x, v) = ν(v)+� 〈v〉 − βα−1[v · ∇xα], (3.21)

and

[∂t+v ·∇x+ν�,β](e−� 〈v〉tαβ f ) = e−� 〈v〉tαβ[∂t f +v ·∇x f +ν f ]. (3.22)
Due to (2.1) and� � 1, ν�,β(t, x, v) � β〈v〉.
Proposition 2 Let f be a solution of (3.2). Assume (3.5) and 〈v〉g ∈
L∞([0, T ] × γ−), and ν, 〈v〉H ∈ L∞([0, T ] × � × R

3). For any fixed
p ∈ [2,∞], 0 < θ < 1/4 and β > 0, assume

αβ∇x f0, α
β∇v f0, αβ [−v · ∇x f0 − ν(0, ·, ·) f0 + H(0, ·, ·)] ∈ L p(�× R

3),

e−� 〈v〉tαβ∂t g, e−� 〈v〉tαβ∇vg, e−� 〈v〉tαβ∂τi g ∈ L p([0, T ] × γ−),
e−� 〈v〉tαβ

n(x) · v

{
−∂t g −

∑
i

(v · τi )∂τi g − νg + H

}
∈ L p([0, T ] × γ−),

e−� 〈v〉tαβ∂t H, e−� 〈v〉tαβ∇x H, e
−� 〈v〉tαβ∇vH ∈ L p([0, T ] ×�× R

3),

e−θ |v|2e−� 〈v〉tαβ∂tν, e−θ |v|
2
e−� 〈v〉tαβ∇xν, e

−θ |v|2e−� 〈v〉tαβ∇vν ∈ L p([0, T ]×�×R
3),

eθ |v|2 f0 ∈ L∞(�×R
3), eθ |v|2g ∈ L∞([0, T ]×γ−), eθ |v|2H ∈ L∞([0, T ]×�×R

3).

Then f (t, x, v) satisfies

‖ f (t)‖∞ ≤ ‖ f0‖∞ + sup
0≤s≤t

‖g(s)‖∞ +
∥∥∥∥
∫ t

0
H(s)ds

∥∥∥∥∞ .
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For ∂e ∈ {∂t ,∇x ,∇v},

{∂t+v · ∇x+ν�,β}[e−� 〈v〉tαβ∂e f ] = e−� 〈v〉tαβ [−∂ev · ∇x f−∂eν f+∂eH ] ,

e−� 〈v〉tαβ∂e f |t=0 = e−� 〈v〉tαβ∂e f0,
e−� 〈v〉tαβ∂e f |γ− = e−� 〈v〉tαβ[∂eg|γ−],

where [∂eg|γ−] is given in (3.6). Moreover, recalling (3.3) and (3.4), we have
for 2 ≤ p <∞,

∫
�×R3

|e−� 〈v〉tαβ∂e f (t)|p +
∫ t

0

∫
�×R3

ν�,β |e−� 〈v〉tαβ∂e f |p

+
∫ t

0

∫
γ+
|e−� 〈v〉tαβ∂e f |p

�
∫
�×R3

|e−� 〈v〉tαβ∂e f0|p +
∫ t

0

∫
γ−
|e−� 〈v〉tαβ∂eg|p

+
∫ t

0

∫
�×R3

|e−� 〈v〉tαβ∂eH − e−� 〈v〉tαβ∂ev · ∇x f − ∂eνe−� 〈v〉tαβ f |
×|e−� 〈v〉tαβ∂e f |p−1,

||e−� 〈v〉tαβ∂e f (t)||∞
� ||e−� 〈v〉tαβ∂e f0||∞ + ||e−� 〈v〉tαβ∂eg||∞
+
∫ t

0
||e−� 〈v〉tαβ∂eH − ∂ev · e−� 〈v〉tαβ∇x f − ∂eνe−� 〈v〉tαβ f ||∞.

(3.23)

Proof First we assume f0, g and H have compact supports in {v ∈ R
3 : |v| <

m}. We estimate ∂ f in the bulk. From Lemma 2, we have

sup
t≤tb

e−� 〈v〉tαβ(x, v)
αβ(x − tv, v)

≤ eCm,β t , sup
t≥tb

e−� 〈v〉tαβ

e−� 〈v〉(t−tb)αβ(xb, v)
≤ eCm,β tb,

sup
max{t−tb,0}≤s≤t

e−� 〈v〉tαβ

e−� 〈v〉(t−s)α(x − sv, v)β
≤ eCm,βs .

Multiplying e−� 〈v〉tαβ to the direct computations (3.10), (3.11), and (3.12)
and then using the change of variables (3.13) and (3.14), we get

‖e−� 〈v〉tαβ∂t f (t)‖p �t,m,β ‖αβ[v · ∇x f0 + ν f0 − H(0, ·, ·)]‖p
+
[∫ t

0
|e−� 〈v〉sαβ∂t g(s)|pγ,p + ‖e−� 〈v〉sαβ∂t H(s)‖ppds

]1/p
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+C ′
[∫ t

0
‖e−θ |v|2e−� 〈v〉sαβ∂tν‖pp

]1/p
,

‖e−� 〈v〉tαβ∇x f (t)‖p �t,m,β ‖αβ∇x f0‖p
+
[∫ t

0

∣∣∣e
−� 〈v〉tαβ

v · n {∂t g +
∑
(v · τi )∂τi g + νg − H}

∣∣∣p
γ,p

ds

]1/p

+
[∫ t

0

2∑
i=1

|e−� 〈v〉sαβ∂τi g(s)|pγ,p + ‖e−� 〈v〉sαβ∇x H(s)‖pp
]1/p

+C ′
[∫ t

0
‖e−θ |v|2e−� 〈v〉sαβ∇xν‖pp

]1/p
,

‖e−� 〈v〉tαβ∇v f (t)‖p �t,m,β ‖αβ∇x,v f0‖p
+
[∫ t

0

∣∣∣e
−� 〈v〉tαβ

v · n {∂t g +
∑
(v · τi )∂τi g + νg − H}

∣∣∣p
γ,p

ds

]1/p

+
[∫ t

0

2∑
i=1

|e−� 〈v〉sαβ∂τi g(s)|pγ,p + |e−� 〈v〉sαβ∇vg(s)|pγ,p
]1/p

+
[∫ t

0
‖e−� 〈v〉sαβ∇x,vH(s)‖pp

]1/p

+C ′
[∫ t

0
‖e−θ |v|2e−� 〈v〉sαβ∇x,vν‖pp

]1/p
,

where C ′ = {‖eθ |v|2 f0‖∞ + ‖eθ |v|2H‖∞ + |eθ |v|2g|∞}.
By the hypotheses of Proposition 2 and the assumption on f0, g and

H with compact supports, the right hand sides are bounded and hence
e−� 〈v〉tαβ∂t f, e−� 〈v〉tαβ∇x f, and e−� 〈v〉tαβ∇v f are in L∞([0, T ]; L p(�×
R
3)).
Since f0, g and H are compactly supported inside {v ∈ R

3 : |v| ≤ m}, the
derivatives e−� 〈v〉tαβ∂t f, e−� 〈v〉tαβ∇x f and e−� 〈v〉tαβ∇v f are compactly
supported inside {v ∈ R

3 : |v| ≤ m} and hence from (3.22) and (3.19)

{∂t + v · ∇x + ν�,β}[e−� 〈v〉tαβ∂ f ] = e−� 〈v〉tαβ∂H
−∂v · e−� 〈v〉tαβ∇x f − ∂ν(v)e−� 〈v〉tαβ f.

Moreover, from the general definition of traces, by choosing a test func-
tion multiplied by e−� 〈v〉tαβ , we deduce e−� 〈v〉tαβ∂ f has the same trace as
e−� 〈v〉tαβ[∂ f |γ ].
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Now we can apply Lemma 9 to establish (3.23) which does not depend on
the velocity cut-off. Therefore, for the general case, we use (3.20) and pass to
the limit to conclude the proof. ��

4 Dynamical Non-local to Local Estimate

The main purpose of this section is to prove Lemma 1 and its variants (Lemma
11).

Lemma 10 For y ∈ �̄, 1
2 < β <

3
2 , 0 < κ ≤ 1, and θ > 0,

∫
R3

e−θ |v−u|2

|v − u|2−κ [α(y, u)]β du � 1

|v|2β−1|ξ(y)|β− 1
2

. (4.1)

Proof Firstly, we consider the case of |ξ(y)| ≤ δ� � 1. From the assumption,
we have ∇ξ(y) �= 0 and therefore there is a uniquely determined unit vector
n(y) = ∇ξ(y)

|∇ξ(y)| . We choose two unit vector τ1 and τ2 so that {τ1, τ2, n(y)} is
an orthonormal basis of R

3.
We decompose the velocity variables u ∈ R

3 as

u = unn(y)+ uτ · τ = unn(y)+
2∑

i=1

uτ,iτi .

We note that uτ ∈ R
2 and un ∈ R are completely free coordinates. Therefore

using the Fubini’s theorem we can rearrange the order of integration freely.
Now we split∫

R3

e−θ |v−u|2

|v − u|2−κ
1

[α(y, u)]β du

�
∫
R2

∫
R

e−θ |v−u|2

|v − u|2−κ [|un|2 + |ξ(y)‖u|2]β dunduτ
=

∫
|u|≥5|v|

+
∫
|u|≤ |v|

2

+
∫
|v|
2 ≤|u|≤5|v|

= (I)+ (II)+ (III).

For the first term (I) we use, for |u| ≥ 5|v| (therefore |v| ≤ |u|
5 ),

|u − v|2 = |u − v|2
2

+ |u − v|2
2

≥
|u|2
2 − |v|2

2
+

|u|2
2 − |v|2

2

≥ 23

4
|v|2 + 23

100
|u|2 � |v|2 + |u|2,

and we use
[|un|2 + |ξ ||u|2]β ≥ [|un|2 + 25|ξ ||v|2]β �

[|un|2 + |ξ‖v|2]β
for |u| ≥ 5|v| to have
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(I) � e−C |v|2
∫
R2

duτ
e−C |uτ |2

|vτ − uτ |2−κ
∫
R

dun
e−C |un |2[|un|2 + |ξ‖v|2]β .

Since 1

|vτ − uτ |2−κ ∈ L1
loc({uτ ∈ R

2}) for κ > 0, (4.2)

the integral over uτ is finite. Then

(I) � e−C |v|2
∫
R

e−C |un |2[|un|2 + |ξ‖v|2]β dun

� e−C |v|2
{∫ ∞

10

e−C |un |2

|un|2β1{|un |≥10}
d|un| +

∫ 10

0

d|un|[|un|2 + |ξ ||v|2]β
}

�
(
1+

∫ 10

0

d|un|[|un|2 + |ξ‖v|2]β
)
e−C |v|2

� e−C |v|2
(
1+

∫ 10

0

d[|ξ | 12 |v| tan θ ]
|ξ |β |v|2β(1+ tan2 θ)β

)

� e−C |v|2
(
1+ 1

|v|2β−1

1

|ξ |β−1/2

∫ π/2

0
(cos θ)2β−2dθ

)

� e−C |v|2
(
1+ 1

|v|2β−1

1

|ξ |β−1/2

)

� e−Cθ |v|2

|v|2β−1

1

|ξ(y)|β−1/2 ,

where we have used a change of variables: |un| = |ξ | 12 |v| tan θ and d|un| =
|ξ | 12 |v| sec2 θdθ and (cos θ)2β−2 ∈ L1

loc({θ ∈ [0, π2 ]}) for β > 1
2 .

For the second term (II), we use |v− u| ≥ |v| − |u| ≥ |v| − |v|
2 ≥ |v|

2 from

|u| ≤ |v|
2 , and apply the change of variables u �→ |v|u to have

(II) � 1

|v|2−κ
∫
|un |+|uτ |≤ |v|

2

e−C |v|2dunduτ[|un|2 + |ξ‖uτ |2
]β

= 1

|v|2−κ
∫
|v|(|un |+|uτ |)≤|v|

2

e−C |v|2 |v|dun|v|2duτ[|v|2|un|2 + |ξ ||v|2|uτ |2
]β

� e−C |v|2

|v|2β−κ−1

∫
|uτ |≤ 1

2

∫
|un |≤ 1

2

1[|un|2 + |ξ‖uτ |2
]β dunduτ .
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Now we apply the change of variables |un| = |ξ | 12 |uτ | tan θ for θ ∈ [0, π2 ]
with dun = |ξ | 12 |uτ | sec2 θdθ to have

(II) � e−C |v|2

|v|2β−κ−1

∫
|uτ |≤ 1

2

duτ

∫ π
2

0

|ξ | 12 |uτ | sec2 θdθ[|ξ ||uτ |2 tan2 θ + |ξ ||uτ |2
]β

� e−C |v|2

|v|2β−κ−1|ξ |β−1/2

∫
|uτ |≤ 1

2

duτ
|uτ |2β−1

∫ π/2

0
(cos θ)2β−2dθ

� e−C |v|2

|v|2β−κ−1|ξ |β−1/2 ,

where we have used 1
|uτ |2β−1 ∈ L1

loc({uτ ∈ R
2}) for β < 3

2 and (cos θ)2β−2 ∈
L1
loc({θ ∈ [0, π2 ]}) for β > 1

2 .We note |v|κe−C |v|2 � 1, and (4.1) is valid in
this case.

For the last term (III), we use the lower bound of |u| (|u| ≥ |v|
2 ) to have[|un|2 + |ξ‖u|2]β ≥ [

|un|2 + |ξ | |v|24
]β

�
[|un|2 + |ξ ||v|2]β and

∫
|v|
2 ≤|u|≤5|v|

�
∫
0≤|uτ |≤5|v|

e−C
2 |vτ−uτ |2

|vτ − uτ |2−κ duτ
∫ 5|v|

0

1[|un|2 + |ξ‖v|2]β dun

�
∫ 5|v|

0

1[|un|2 + |ξ‖v|2]β dun,

where we have used 1
|uτ |2−κ ∈ L1

loc(R
2) for κ > 0.We apply a change of vari-

ables: |un| = |ξ |1/2|v| tan θ for θ ∈ [0, π/2] with d|un| = |ξ | 12 |v| sec2 θdθ .
Hence

(III) �
∫ 5|v|

0

1[|un|2 + |ξ‖v|2]β dun =
∫ π

2

0

(cos θ)2β−2

|ξ |β− 1
2 |v|2β−1

dθ

� 1

|ξ |β− 1
2

1

|v|2β−1 ,

where we used (cos θ)2β−2 ∈ L1
loc({θ ∈ [0, π2 ]}) for β > 1

2 . Overall, we
combine the estimates of (I), (II) and (III) to conclude ( 4.1).

Secondly, we consider the case of |ξ(y)| > δ�. Then we can choose any
orthonormal basis, for example the standard basis {τ1, τ2, n} = (e1, e2, e3),
to decompose the velocity variables u ∈ R

3 as u = u1e1 + u2e2 + u3e3 :=
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uτ,1e1 + uτ,2e2 + une3. Then

α(y, u) = |u · ∇ξ(y)|2 − 2ξ(y){u · ∇2ξ(y) · u} ≥ 2|ξ(y)|{u · ∇2ξ(y) · u}
= δ�C |u|2 + |ξ(y)|{u · ∇2ξ(y) · u} � |un|2 + |ξ(y)‖u|2.

Then we follow all the proof with the same decomposition for v := vτ,1e1 +
vτ,2e2 + vne3 to conclude (4.1) for |ξ(y)| > δ�. ��

We now prove the dynamical non-local to local estimates:

Proof of (1) of Lemma 1 Since 〈u〉r
〈v〉r � {1+ |v − u|2} r2 , it suffices to consider

the case r = 0. We prove (1.28).
We first assume v · ∇ξ(x) ≥ 0 and x ∈ ∂�. There exist σ1, σ2 > 0 such

that

|v · ∇ξ(x − (tb(x, v)− s)v)| � √
α(x − (tb(x, v)− s)v, v)

for all s ∈ [0, σ1] ∪ [tb(x, v)− σ2, tb(x, v)],
(4.3)

and |v|√−ξ(x − (tb(x, v)− s)v) �
√
α(x − (tb(x, v)− s)v, v) for all s ∈

[σ1, tb(x, v)−σ2]. Themapping s �→ ξ(x−(tb(x, v)−s)v) is one-to-one and
onto on s ∈ [0, σ1] or on s ∈ [tb(x, v)− σ2, tb(x, v)]. Moreover this mapping
s �→ ξ(x − (tb(x, v) − s)v) is a diffeomorphism and we have a change of
variables on s ∈ [0, σ1] or s ∈ [tb(x, v)− σ2, tb(x, v)],

ds = d|ξ |
|∇ξ(x − (tb(x, v)− s)v) · v| � d|ξ |√

α(x − (tb(x, v)− s)v)
. (4.4)

Step 1 First we establish (4.3) and (4.4).
Firstly we prove (4.3). Recall the definition of α in Definition 1. It suffices

to show

|v · ∇ξ(x − (tb(x, v)− s)v)| ≥ |v|√−ξ(x − (tb(x, v)− s)v),

s ∈ [0, σ1] ∪ [tb(x, v)− σ2, tb(x, v)],
|v · ∇ξ(x − (tb(x, v)− s)v)| ≤ |v|√−ξ(x − (tb(x, v)− s)v),

s ∈ [σ1, tb(x, v)− σ2].

If v = 0 or v ·∇ξ(x) = 0 then (4.3) holds clearly. Therefore wemay assume
v �= 0 and v · ∇ξ(x) > 0. Due to the Velocity lemma, v · ∇ξ(x)

|∇ξ(x)| > 0 and

v · ∇ξ(xb(x,v))|∇ξ(xb(x,v))| < 0. By the mean value theorem we choose t∗ ∈ (0, tb(x, v))
solving v · ∇ξ(x − (tb(x, v)− t∗)v) = 0. Moreover due to the convexity of ξ
we have
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d

ds
(v · ∇ξ(x − (tb(x, v)− s)v)) = v · ∇2ξ(Xcl(s)) · v ≥ Cξ |v|2,

and therefore t∗ ∈ (0, tb(x, v)) is uniquely determined. Clearly we have

v · ∇ξ(x − (tb(x, v)− s)v) ≥ 0 for s ∈ [t∗, tb(x, v)],
v · ∇ξ(x − (tb(x, v)− s)v) ≤ 0 for s ∈ [0, t∗].

Define �(s) = {|v · ∇ξ(x−(tb(x, v)−s)v)|2+|v|2ξ(x−(tb(x, v)−s)v)
}
.

Since 2
(
v · ∇2ξ(x − (tb(x, v)− s)v) · v)+ |v|2 > 0 we have

d

ds
�(s) = (

v · ∇ξ(x − (tb(x, v)− s)v)
)

×
{
2
(
v · ∇2ξ(x − (tb(x, v)− s)v) · v)+ |v|2

}
,

is strictly negative for s ∈ [0, t∗] and is strictly positive for s ∈ [t∗, tb(x, v)].
Note that �(0) > 0 and �(tb(x, v)) > 0 from v · ∇ξ(x)

|∇ξ(x)| > 0 and

v · ∇ξ(xb(x,v))|∇ξ(xb(x,v))| < 0. Note that � is continuous function on the interval
[0, tb(x, v)] so that it has a minimum. If min[0,tb(x,v)]�(s) ≤ 0, there exist
σ1, σ2 > 0 satisfying

�(tb(x, v)+ σ1) = �(tb(x, v))+
∫ σ1

0

d

ds
�(s)ds = 0,

�(tb(x, v)− σ2) = �(tb(x, v))−
∫ tb(x,v)

tb(x,v)−σ2
d

ds
�(s)ds = 0,

then σ1 ≤ t∗ and tb(x, v) − σ2 ≥ t∗ and there is no other s ∈ [0, tb(x, v)]
satisfying�(s) = 0. Moreover we have�(s) ≤ 0 for s ∈ [σ1, tb(x, v)− σ2].
If min[0,tb(x,v)]�(s) > 0, there do not exist such σ1 and σ2 then we let σ1 = t∗
and σ2 = tb(x, v)− t∗. This proves (4.3).

Secondly we prove (4.4). By the proof of (4.3), and the fact

d|ξ |
ds

= − d

ds
ξ(x − (tb(x, v)− s)v) = −v · ∇xξ(x − (tb(x, v)− s)v),

as well as the inverse function theorem we deduce (4.4).

Step 2 For small 0 < δ̃ � 1, we define

σ̃1 := min

{
σ1, δ̃

√
α(x, v)

|v|2
}
, σ̃2 := min

{
σ2, δ̃

√
α(x, v)

|v|2
}
. (4.5)
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Actually, thanks to the fact σi ≤ tb �
√
α(x,v)
|v|2 , by Lemma 3, we have σ̃i :=

δ̃
√
α(x, v)/|v|2.
Then both of (4.3) and (4.4) hold for s ∈ [0, σ̃1] ∪ [tb(x, v)− σ̃2, tb(x, v)]

without changing the constant. Moreover, if s ∈ [0, σ̃1] ∪ [tb(x, v) −
σ̃2, tb(x, v)] then by the Velocity lemma

max{|ξ |} := max
s∈[0,σ̃1]∪[tb(x,v)−σ̃2,tb(x,v)]

|ξ(x− (tb− s)v)| � δ̃
α(x, v)

|v|2 . (4.6)

For s ∈ [σ̃1, tb(x, v)− σ̃2] we have the following estimate with δ̃−dependent
constant:

|v|√−ξ(x − (tb(x, v)− s)v) �ξ,δ̃
√
α(x − (tb(x, v)− s)v, v). (4.7)

The proof of (4.6) is due to, for s ∈ [0, σ̃1],

|ξ(x − (tb(x, v)− s)v)| ≤
∫ s

0
|v · ∇ξ(x − (tb(x, v)− τ)v)|dτ

�
√
α(x, v)|s| � min

{
√
αtZ ,

δ̃α

|v|2
}
=: B,

(4.8)

where tZ is defined in (1.28) and α(x − (tb − τ)v, v) �ξ α(x, v) from the
Velocity lemma (Lemma 2). The proof for s ∈ [tb(x, v) − σ̃2, tb(x, v)] is
exactly same.

Now we prove (4.7). Recall that for t∗ ∈ [0, tb(x, v)] in the previous step
we proved: v · ∇ξ(x − (tb(x, v)− t∗)v) = 0. Clearly |ξ(x − (tb − s)v)| is an
increasing function on [0, t∗] and a decreasing function on [t∗, tb(x, v)]. This
is due to the convexity of ξ :

d2

ds2
[−ξ(s − (tb(x, v)− s)v)] = v · ∇2ξ(x − (tb(x, v)− s)v) · v � |v|2,

and v · ∇ξ(x) > 0 and v · ∇ξ(xb(x, v)) < 0.
Therefore, from ξ(x) = 0 = ξ(xb),

−ξ(x − (tb(x, v)− s)v) = −ξ(x)−
∫ s

tb(x,v)
v · ∇ξ(x − (tb(x, v)− τ)v)dτ

=
∫ tb(x,v)

s
v · ∇ξ(x − (tb(x, v)− τ)v)dτ

≥ (tb(x, v)− s)(v · ∇ξ(x − (tb(x, v)− s)v))

≥ σ̃2|v · ∇ξ(x − σ̃2v)| for s ∈ [t∗, tb(x, v)− σ̃2],
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and

−ξ(x − (tb(x, v)− s)v) = −ξ(xb(x, v))
−

∫ s

0
v · ∇ξ(x − (tb(x, v)− τ)v)dτ

≥ s|v · ∇ξ(x − (tb − s)v)|
≥ σ̃1|v · ∇ξ(xb(x, v)+ σ̃1v)| for s ∈ [0, σ̃1].

Hence, for s ∈ [σ̃1, tb(x, v)− σ̃2],

|ξ(x − (tb − s)v)| ≥ min {|ξ(x − σ̃2v)|, |ξ(xb(x, v)+ σ̃1v)|}
≥ min {σ̃2|v · ∇ξ(x−σ̃2v)|, σ̃1|v · ∇ξ(xb(x, v)+σ̃1v)|} .

From the definition of σ̃1 and σ̃2 in (4.5) we have

|v|2|ξ(x − (tb(x, v)− s)v)| ≥ δ̃√α(x, v)
×min {|v · ∇ξ(x − σ̃2v)|, |v · ∇ξ(xb(x, v)+ σ̃1v)|} .

Without loss of generality we may assume

|v · ∇ξ(x − σ̃2v)| = min{|v · ∇ξ(x − σ̃2v)|, |v · ∇ξ(xb(x, v)+ σ̃1v)|}.

Then by the Velocity lemma we have
√
α(x, v) �ξ |v‖ξ(x − σ̃2v)|1/2. Then

we choose s = tb(x, v)− σ̃2 to have |v|2|ξ(x− σ̃2v)| ≥ δ̃|v||ξ(x− σ̃2v)|1/2×
|v · ∇ξ(x − σ̃2v)| and

|v||ξ(x − σ̃2v)|1/2 � δ̃ × |v · ∇ξ(x − σ̃2v)|.

The left hand side is the lower bound of |v|2|ξ(x − (tb(x, v) − s)v)| for
s ∈ [σ̃1, tb(x, v)−σ̃2] and the right hand side is bounded below by theVelocity
lemma: e−C|v|tb(x,v)α(x, v) �ξ α(x, v). Therefore we conclude (4.7).

Step 3 We prove (1.28). From (4.1) with y = x − (tb(x, v)− s)v

∫ tb(x,v)

0

∫
R3

e−l〈v〉(t−s) e−θ |v−u|2

|v − u|κα(x − (tb(x, v)− s)v, u)
Z(s, x, v)duds

�
∫ tb(x,v)

0
e−l〈v〉(t−s) 1

|v|2β−1|ξ |β− 1
2

Z(s, x, v)ds.
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According to (4.5) we split the time integration as

∫ tb(x,v)
0 e−l〈v〉(t−s) 1

|v|2β−1|ξ |β− 1
2
Z(s, x, v)ds

=
∫ σ̃1

0
+
∫ tb(x,v)

tb(x,v)−σ̃2︸ ︷︷ ︸
(IV)

+
∫ tb(x,v)−σ̃2

σ̃1︸ ︷︷ ︸
(V)

.

For the first two terms (IV), we use the mapping of (4.4)

s ∈ [0, σ̃1] ∪ [tb(x, v)− σ̃2, tb(x, v)] �→ |ξ(x − (tb(x, v)− s)v)| ∈ [0, B),

where the range of |ξ | has been bounded in (4.6), and B is given by (4.8). By
the change of variables of (4.4)

(IV)� sup
0≤s≤tb(x,v)

{e−l〈v〉(t−s)Z(s, x, v)} 1

|v|2β−1

∫ C δ̃ α(x,v)|v|2

0

1

|ξ |β−1/2

d|ξ |√
α(x, v)

� sup
0≤s≤tb(x,v)

{e−l〈v〉(t−s)Z(s, x, v)} 1

|v|2β−1

1√
α(x, v)

[
|ξ |−β+ 3

2

]|ξ |=B

|ξ |=0
,

where we have used β < 3
2 . The lemma follows with B given by (4.8).

For (V) we use
√
α(x − (tb − s)v) �ξ,δ̃ |v|

√−ξ(x − (tb − s)v) for s ∈
[σ̃1, tb(x, v)− σ̃2], from (4.3), to have

1

|v|2β−1|ξ |β− 1
2

= 1(|v|√−ξ )2(β− 1
2 )

� 1

[α(x, v)]β− 1
2

.

Finally

(V) � 1

[α(x, v)]β−1/2

∫ tb(x,v)

0
e−l〈v〉(t−s)Z(s, v)ds

� O(l−1)

〈v〉[α(x, v)]β−1/2 sup
0≤s≤t

{e−l〈v〉(t−s)Z(s, x, v)}.

Now we assume x /∈ ∂�.We find x̄ ∈ ∂� and t̄b so that

x − (tb(x, v)− s)v = x̄ − (t̄b − s)v.
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Therefore, by Step 1 and the fact x̄ ∈ ∂� , we have

∫ t̄b

0

∫
R3

e−l〈v〉(t−s) e−θ |v−u|2

|v − u|2−κ [α(x̄ − (t̄b − s)v, u)
]β Z(s, x, v)duds

�
∫ t̄b

0
e−l〈v〉(t−s) e−C |v−u|2

|v|2β−1|ξ |β− 1
2

Z(s, x, v)ds.

We then deduce our lemma since α(x̄, v) � α(x, v) via the Velocity Lemma
and the fact t̄b|v| �� 1. ��
Proof of (2) Lemma 1 It suffices to consider r = 0. For the specular cycles
and the bounce-back cycles it is important to control the number of bounces,

�∗(s) = �∗(s; t, x, v) ∈ N such that t�∗+1 ≤ s < t�∗ .

An important consequence of Velocity lemma is that for the specular cycles

α(Xcl(s; t, x, v), Vcl(s; t, x, v)) � e−C|v‖t−s|α(x, v),

and therefore for the specular cycles

�∗(s; t, x, v) ≤ |t − s|
min0≤�≤�∗(s;t,x,v) |t� − t�+1| � |t − s|

min0≤�≤�∗(s;t,x,v)
√
α(x�,v�)
|v�|2

� |t − s‖v|2√
α(x, v)

eC|v|(t−s).

(4.9)
Remark that for the bounce-back cycles we do not have the growth factor
eC|v|(t−s). This is because of the fact α(Xcl(s), Vcl(s)) is either α(x1, v1) or
α(x2, v2), and the fact |t − t2| ≤ 2|t1 − t2| � C�|v| for the bounded domain.

We consider the specular BC case first. For fixed (x, v)we use the following
notation α(s) := α(s; t, x, v) := α(Xcl(s; t, x, v), Vcl(s; t, x, v)).

Firstly we consider the estimate (1.29) for |v| < δ. Using (4.9),

1{|v|≤δ}
∫ t

0

∫
R3

e−l〈v〉(t−s) e−θ |Vcl(s)−u|2

|Vcl(s)− u|2−κ
Z(s, x, v)

[α(Xcl(s; t, x, v), u)]β
duds

�
�∗(0;t,x,v)∑
�=0

∫ t�

t�+1

∫
R3

e−l〈v〉(t−s) e−θ |v�−u|2

|v� − u|2−κ
Z(s, x, v)[

α(x� − (t� − s)v�, u)
]β duds
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� t |v|2eCtδ
[α(x, v)]1/2

sup
�

{
O(δ̃)eCtδ

|v|2[α(x, v)]β−1 sup
t�+1≤s≤t�

{e−l〈v〉(t−s)Z(s, x, v)}

+ Cδ̃e
Ctδ

[α(x, v)]β−1/2

∫ t�

t�+1
e−l〈v〉(t−s)Z(s, x, v)ds

}
,

where we have used (1.28). By (2.2) and (2.3) and theVelocity lemma (Lemma

2),wehave |t�−t�+1| �ξ
√
α(x,v)
|v|2 eCt |v| �ξ,δ

√
α(x,v)
|v|2 eCtδ , and hencewededuce

( 1.29) for |v| < δ by

1{|v|<δ}
∫
· · · �ξ

O(δ̃ + l−1)te2Ctδ

[α(x, v)]β− 1
2

sup
0≤s≤t

{
e−

l
2 〈v〉(t−s)Z(s, x, v)

}
.

Now we consider |v| ≥ δ.We split the time interval as

[0, t] ⊂ [t − 1

|v| , t] ∪
[t |v|]+1⋃
j=1

[t − ( j + 1)
1

|v| , t − j
1

|v| ]. (4.10)

Consider the first time section [t− 1
|v| , t]. Due to (4.9), we bound the number

of bounces within by

sup
s∈[t− 1

|v| ,t]
�∗(s; t, x, v) �ξ

1
|v| |v|2eC

1
|v| |v|

[α(x, v)]1/2 � |v|eC
[α(x, v)]1/2 ,

and for s ∈ [t − 1
|v| , t], e−Cα(x, v) � α(Xcl(s; t, x, v), Vcl(s; t, x, v)) �

eCα(x, v), and |t�− t�+1| � [α(x,v)]1/2eC
|v|2 due to the Velocity lemma. Then we

use (1.28) to have

∫ t

t−1/|v|

∫
R3

e−l〈v〉(t−s) e−θ |Vcl(s)−u|2

|Vcl(s)− u|2−κ
Z(s, x, v)

[α(Xcl(s; t, x, v), u)]β
duds

�
�∗(0;t,x,v)∑
�=0

∫ t�

t�+1

∫
R3

e−l〈v〉(t−s) e−θ |v�−u|2

|v� − u|2−κ
Z(s, x, v)[

α(x� − (t� − s)v�, u)
]β duds

� Cξ |v|
[α(x, v)]1/2 sup�

O(δ̃)eCξ

|v|2[α(x, v)]β−1 sup
t�+1≤s≤t�

{e−l〈v〉(t−s)Z(s, x, v)}

+
�∗(0,t,x,v)∑
�=0

Cδ̃e
Cξ

[α(x, v)]β−1/2

∫ t�

t�+1
e−l〈v〉(t−s)Z(s, x, v)ds
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� O(δ̃)

|v|[α(x, v)]β−1/2 sup
0≤s≤t

{e−Cl〈v〉(t−s)Z(s, x, v)}

+ Cδ̃,ξ
[α(x, v)]β−1/2

∫ t

0
e−Cl〈v〉(t−s)Z(s, x, v)ds

�
(

O(δ̃)

|v|[α(x, v)]β−1/2 +
Cδ̃,ξ

l〈v〉[α(x, v)]β−1/2

)

× sup
0≤s≤t

{e−Cl〈v〉(t−s)Z(s, x, v)}.

Now we consider time sections [t − ( j +1) 1
|v| , t − j 1

|v| ] for j ≥ 1.Assume
that

[
t − ( j + 1)

1

|v| , t − j
1

|v|
]
⊂ [t� j+1−1, t� j+1] ∪ · · · ∪ [t� j+1, t� j ],

and [t − ( j + 1) 1
|v| , t − j 1

|v| ] ∩ [t� j+1−2, t� j+1−1] = ∅ and [t − ( j + 1) 1
|v| , t −

j 1
|v| ] ∩ [t� j , t� j−1] = ∅.
Note that for all s ∈ [t − ( j + 1) 1

|v| , t − j 1
|v| ]

e−Cξ jα(t) � α(s) � eCξ jα(t),

and

� j+1 − � j �
( j + 1) 1

|v| − j 1
|v|√

α(t− j 1
|v| )

|v|2

� |v|√
α(t)

eCξ j ,

and for � ∈ [� j+1 − 1, � j ]

|t� − t�+1| �
√
α(t − j 1

|v|)

|v|2 �
√
α(t)

|v|2 eCξ j .

From (1.28), for all � ∈ [� j+1 − 1, � j ]
∫ t�+1

t�

∫
R3

e−l〈v〉(t−s) e−θ |Vcl(s)−u|2

|Vcl(s)− u|2−κ
Z(s, x, v)[

α(Xcl(s; t, x, v), u)
]β duds

� δ̃

|v|2α(t − j/|v|)β−1 sup
[t�,t�+1]

{e−l〈v〉(t−s)Z}

+ Cδ̃
α(t − j/|v|)β−1/2

∫ t�

t�+1
e−l〈v〉(t−s)Z ,
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is bounded by

δ̃eCξ j

|v|2α(t)β−1 e
− l

2 j sup
[t�,t�+1]

{e− l
2 〈v〉(t−s)Z} + eCξ j

α(t)β−1/2 e
− l

2 j
∫ t�

t�+1
e−

l
2 〈v〉(t−s)Z

� e−Cl j

|v|2α(t)β−1 sup
0≤s≤t

{e− l
2 〈v〉(t−s)Z(s)},

where we have used the fact t − s ≥ j 1
|v| for s ∈ [t − ( j + 1) 1

|v| , t − j 1
|v| ].

Therefore

∫ t− j 1
|v|

t−( j+1) 1
|v|

∫
R3

e−l〈v〉(t−s) e−θ |Vcl(s)−u|2

|Vcl(s)− u|2−κ
Z(s, x, v)

[α(Xcl(s; t, x, v), u)]β
duds

� |� j+1 − � j | sup
� j+1≤�≤� j

∫ t�+1

t�
· · ·

� |v|√
α(t)

eCξ j × e−l j/4

|v|2α(t)β−1 sup
0≤s≤t

{e− l
2 〈v〉(t−s)Z(s, x, v)}

� e−l j/4

|v|α(t)β−1/2 sup
0≤s≤t

{e− l
2 〈v〉(t−s)Z(s, x, v)}.

Now we sum up all contributions of [t − ( j + 1) 1
|v| , t − j 1

|v| ] for j ≥ 1:

t |v|∑
j=1

∫ t− j/|v|

t−( j+1)/|v|
≤

t |v|∑
j=1

e−l j/8

|v|α(t)β−1/2 sup
0≤s≤t

{
e−

l
2 〈v〉(t−s)Z(s, x, v)

}

� e−l/8

|v|[α(x, v)]β−1/2 sup
0≤s≤t

{
e−

l
2 〈v〉(t−s)Z(s, x, v)

}
,

where we used
∑t |v|

j=1 e
−l j/8 = e−l/16

∑t |v|
j=2 e

−C ′l j ≤ e−l/16.
We conclude (1.29). For the bounce-back case we set C = 0 and we have

the same conclusion. ��
Lemma 11 Let (t, x, v) ∈ [0,∞)×�̄×R

3. Let Z(s, x, v) ≥ 0 be an arbitrary
non-negative function defined in the phase space.

(1) For 0 < ε � 1, 1
2 < β < 1 and 0 < κ ≤ 1, we have

∫ tb(x,v)

0

∫
R3

e−l〈v〉(t−s) e−θ |v−u|2

|v − u|2−κ [α(x − (tb(x, v)− s)v, u)]β
|v|
|u|

〈u〉r
〈v〉r

×Z(s, x, v)duds
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�θ,r
O(ε)

|v|2[α(x, v)]β−1 sup
s∈[0,tb(x,v)]

{e−l〈v〉(t−s)Z(s, x, v)}

+ Cε
[α(x, v)]β−1/2

∫ tb(x,v)

0
e−Cl〈v〉(t−s)Z(s, x, v)ds. (4.11)

(2) Let [Xcl(s; t, x, v), Vcl(s; t, x, v)] be either the specular backward tra-
jectory or the bounce-back backward trajectory inDefinition 2.For0 < ε � 1,
1
2 < β < 1 and 0 < κ ≤ 1 and r ∈ R, there exists l �ξ 1 and
C = Cl,β,ξ,r > 0 such that

∫ t

0

∫
R3

e−l〈v〉(t−s) e−θ |Vcl(s)−u|2

|Vcl(s)− u|2−κ
|v|
|u|

〈u〉r
〈v〉r

Z(s, x, v)

[α(Xcl(s; t, x, v), u)]β
duds

�ξ,r
Oβ,κ,r (ε)

〈v〉 [α(x, v)]β−1/2 sup
0≤s≤t

{
e−Cl,β,ξ,r 〈v〉(t−s)Z(s, x, v)

}
. (4.12)

Proof of Lemma 11 We prove (4.11). Due to Step 2 and Step 3 in the proof of
(1) of Lemma 1, it suffices to show

∫
R3

|v|e−θ |v−u|2du
|v − u|2−κ |u| [α(x − (tb(x, v)− s)v, u)]β

� 1

|v|2β−1|ξ(x − (tb(x, v)− s)v)|β− 1
2

. (4.13)

As Step 1 in the proof of (1), for fixed s and x−(tb(x, v)−s)v, we decompose
u = uτ,1τ1 + uτ,2τ2 + unn where {τ1, τ2, n} is the orthonormal basis that we
chose in the proof of (1).

Now we split as

∫
R3

|v|e−θ |v−u|2du
|v − u|2−κ |u|[α(x − (tb(x, v)− s)v, u)]β

�ξ
∫
R2

∫
R

|v|e−θ |v−u|2dunduτ
|v − u|2−κ |u|{|un|2 + |ξ(Xcl(s))‖u|2}β =

∫
|u|≥ |v|

5

+
∫
|u|≤ |v|

5

.

For the first term, we have |v|
|u| ≤ 5 so we reduce it to the previous case (4.1)

∫
|u|≥ |v|

5

�
∫
R3

e−θ |v−u|2dunduτ
|v − u|2−κ {|un|2 + |ξ(Xcl(s))‖u|2

}β ,

which is bounded by 1
|v|2β−1|ξ |β−1/2 .
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Now we consider the case of |u| ≤ |v|
5 . For fixed 0 < κ ≤ 1

|v|
|v − u|2−κ � |v|

|v|2−κ � |v|−1+κ,

and we have, from |v − u|2 = |v−u|2
2 + |v−u|2

2 ≥ 42

2·52 |v|2 + 42
2 |u|2,

e−θ |v−u|2 ≤ e−Cθ |v|2e−Cθ |u|2 .

We split
∫
R3 du =

∫
|un |≥|ξ |1/2|uτ | +

∫
|un |≤|ξ |1/2|uτ | to have

(
note 12 < β < 1

)

∫
|un |≥|ξ |1/2|uτ |

� e−C |v|2

|v|1−κ
∫
R2

e−Cθ |uτ |2

|uτ |
∫ |v|/5

|ξ |1/2|uτ |
|un|−2βe−Cθ |un |2d|un|duτ

� e−C |v|2

|v|1−κ
∫
|uτ |≤ |v|

5

e−Cθ |uτ |2

|uτ |
∫ |v|

5

|ξ |1/2|uτ |
dun
|un|2β duτ

� e−C |v|2

|v|1−κ
{
|v| + |v|−2β+1

∫
|uτ |≤ |v|

5

duτ
|uτ |

+ 1

|ξ |β− 1
2

∫
|uτ |≤ |v|

5

|uτ |−2βduτ

}

� e−C |v|2 |v|κ
{
1+ 1

|v|2β−1 (1+
1

|ξ |β− 1
2

)

}

� e−C |v|2

|v|2β−1|ξ |β− 1
2

,

∫
|un |≤|ξ |1/2|uτ |

� e−C |v|2

|v|1−κ
∫
|uτ |≤ |v|

5

e−Cθ |uτ |2

|ξ |β |uτ |2β |uτ |
∫
|un |≤|ξ |1/2|uτ |

dunduτ

� e−C |v|2

|v|1−κ
∫
|uτ |≤ |v|

5

e−Cθ |uτ |2

|ξ |β−1/2|uτ |2β duτ

� |v|−2β+κ+1e−C |v|2

|ξ |β−1/2 � e−C |v|2

|v|2β−1|ξ |β− 1
2

.

Therefore, combining the cases of |u| ≤ |v|
5 and |u| ≥ |v|

5 ,we conclude (4.13).
The proof of (4.12), (2) of Lemma 11 is a direct consequence of (4.13) and

the proof of (1.29). ��
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5 Diffuse reflection BC

5.1 W1, p(1 < p < 2) Estimate

Consider the iteration (2.16)with (2.18), and the compatibility condition for the

initial datum (1.14). Remark that the normalized Maxwellian μ(v) = e−
|v|2
2 .

From Lemma 7, we have a uniform bound (2.13) for 0 < T � 1. We apply
Proposition 1 for m = 1, 2, . . . with

ν = ν(√μ f m) ≥ 0, H = �gain( f m, f m),
g = cμ

√
μ(v)

∫
n·u>0

f m(t, x, u)
√
μ(u){n(x) · u}du.

For ∂ = [∂x , ∂v], ∂ f m satisfies

{∂t+v ·∇x+ν(√μ f m)}∂ f m+1 = Gm, ∂ f m+1(0, x, v) = ∂ f0(x, v), (5.1)

where

Gm = −[∂v] · ∇x f
m+1 − ∂[ν(√μ f m)] f m+1 + ∂[�gain( f m, f m)],

|Gm | � |∇x f
m+1| + e−

θ
2 |v|2‖eθ |v|2 f0‖2∞ + P(‖eθ |v|2 f0‖∞)

×
∫
R3

e−Cθ |v−u|2

|v − u|2−κ |∂ f
m(u)|du, (5.2)

where we have used (iv) of Lemma 6 and (2.13) of Lemma 7.
We summarize boundary conditions (1.16), (1.17), (1.18) and (1.20) for

f m+1 in (2.16). Now the boundary conditions for ∂ f m+1 for ∂ = [∇x ,∇v] is
bounded by

|∂ f m+1(t, x, v)|
�

√
μ(v)

(
1+ 〈v〉

|n(x) · v|
)∫

n(x)·u>0
|∂ f m(t, x, u)|μ1/4{n(x) · u}du

+ e− θ2 |v|2

|n(x) · v| P(||e
θ |v|2 f0||∞). (5.3)

Now we are ready to prove Theorem 1:

Proof of Thoerem 1 We claim that for 1 ≤ p < 2, if 0 < T � 1 (therefore,
(2.13) and (2.14) hold for 0 < θ < 1

4 from Lemma 7), and the compatibility
condition (1.14), then uniformly-in-m,
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sup
0≤t≤T∗

‖∂ f m‖pp +
∫ T∗

0
|∂ f m |pγ,p ��,T∗ ‖∂ f0‖pp + P(‖eθ |v|2 f0‖∞), (5.4)

for ∂ = [∇x ,∇v] and some polynomial P.
We remark that the sequence (2.16) is the one used in Lemma 7 and shown to

be a Cauchy sequence in L∞. Therefore the limit function f is a solution of the
Boltzmann equation with the diffuse boundary condition. On the other hand,
due to the weak lower semi-continuity for L p in case of p > 1, once we have
(5.4), then we pass a limit ∂ f m ⇀ ∂ f weakly in supt∈[0,T∗] ‖·‖pp and ∂ f m |γ ⇀
∂ f |γ in

∫ T∗
0 | · |pγ,p (up to a subsequence) to conclude that ∂ f satisfies the same

estimate of (5.4). Repeat the same procedure for [T∗, 2T∗], [2T∗, 3T∗], . . . , to
conclude Theorem 1.

We prove the claim (5.4) by induction. From Proposition 1, ∂ f 1 exists.
Because of our choice ∂ f 0 the estimate (5.4) is valid for m = 1. Now assume
that ∂ f i exists and (5.4) is valid for all i = 1, 2, . . . ,m. Applying Proposition
1 to show that ∂ f m+1 exists and to get (3.7), we have

sup
0≤s≤t

‖∂ f m+1(s)‖pp +
∫ t

0
|∂ f m+1|pγ+,p

� ‖∂ f0‖pp +
∫ t

0
|∂ f m+1|pγ−,p +

∫ t

0

∫∫
�×R3

|Gm ||∂ f m+1|p−1

� ‖∂ f0‖pp +
∫ t

0
|∂ f m+1|pγ−,p + P(‖eθ |v|2 f0‖∞)

×
{∫ t

0
‖∂ f m+1(s)‖pp +

∫ t

0
‖∂ f m(s)‖pp

}
, (5.5)

where we have used (5.2), Lemma 6 and the Hölder inequality.
Now we consider the boundary contributions. We use (5.3) to obtain∫ t

0

∫
γ−
|∂ f m+1(s)|p

�p sup
x∈∂�

(∫
γ−

√
μ(v)

p
(
|n · v| + 〈v〉p

|n · v|p−1

)
dv

)

×
∫ t

0

∫
∂�

[∫
u·n(x)>0

|∂ f m(s, x, u)|μ1/4(u){n · u}du
]p

dSxds

+ sup
x∈∂�

(∫
γ−
〈v〉−pβ |n · v|1−pdv

)
× t ||eθ |v|2 f0||p∞

�p

∫ t

0

∫
∂�

[∫
u·n(x)>0

|∂ f m(s, x, u)|μ1/4(u){n · u}du
]p

dSxds

+ t P(||eθ |v|2 f0||∞).
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Now we focus on
∫ t
0

∫
∂�

[∫
u·n(x)>0 |∂ f m(s, x, u)|μ1/4(u){n · u}du

]p
dSxds.

Recall (1.21). We split the {u ∈ R
3 : n(x) · u > 0} as

∫ t

0

∫
∂�

[∫
n·u>0

|∂ f m |μ1/4{n · u}du
]p

�p

∫ t

0

∫
∂�

[∫
(x,u)∈γ+\γ ε+

du

]p

+
∫ t

0

∫
∂�

[∫
(x,u)∈γ ε+

du

]p

. (5.6)

We use Hölder’s inequality to bound

[∫
(x,u)∈γ ε+

du

]p

≤
[∫
(x,u)∈γ ε+

μ
p

4(p−1) {n · u}du
]p−1

×
[∫
(x,u)∈γ ε+

|∂ f m(s, x, u)|p{n(x) · u}du
]
,

and hence the second term of (5.6) can be bounded by

∫ t

0

∫
∂�

[∫
(x,u)∈γ ε+

du

]p

�p ε

∫ t

0
|∂ f m(s)|pγ+,pds. (5.7)

For the first term (non-grazing part) of (5.6) we use the Hölder’s inequality,
Lemma 8, Lemma 5, and Lemma 6 for f m to estimate

∫ t

0

∫
∂�

[∫
(x,u)∈γ+\γ ε+

du

]p

�ε ‖∂ f0‖pp +
∫ t

0
‖∂ f m(s)‖ppds +

∫ t

0

∫∫
�×R3

∣∣Gm
∣∣ |∂ f m |p−1

�ε ‖∂ f0‖pp + P(‖eθ |v|2 f0‖∞)
×

∑
i=m,m−1

∫ t

0
‖∂ f i (s)‖pp + t P(‖eθ |v|2 f0‖p∞). (5.8)

Putting together estimates (5.5), (5.7), (5.8), and choosing sufficiently small
0 < ε � 1, 0 < T � 1, we deduce that
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sup
0≤t≤T

‖∂ f m+1(t)‖pp +
∫ T

0
|∂ f m+1|pγ+,p

�T,� ‖∂ f0‖pp + P(‖eθ |v|2 f0‖∞)

+ 1

8
max

i=m,m−1

{
sup

0≤t≤T∗
‖∂ f i (t)‖pp +

∫ T∗

0
|∂ f i |pγ+,p

}
.

To conclude the proof we use the following fact from [3]: Suppose ai ≥
0, D ≥ 0 and Ai = max{ai , ai−1, . . . , ai−(k−1)} for fixed k ∈ N.

If am+1 ≤ 1

8
Am + D then Am ≤ 1

8
A0 +

(
8

7

)2

D, for
m

k
� 1. (5.9)

Proof of (5.9): In fact, we can iterate for m,m − 1, . . . to get

am ≤ 1

8
max

{
1

8
Am−2 + D, Am−2

}
+ D ≤ 1

8
Am−2 +

(
1+ 1

8

)
D

≤ 1

8
max

{
1

8
Am−3+D, Am−3

}
+
(
1+1

8

)
D≤1

8
Am−3+

(
1+1

8
+ 1

82

)
D

≤ 1

8
Am−k + 8

7
D.

Similarly am−i ≤ 1
8 Am−k + 8

7D for all i = 0, 1, . . . , k − 1. Therefore if
1� m/k ∈ N,

Am = max{am, am−1, . . . , am−(k−1)} ≤ 1

8
Am−k + 8

7
D

≤ 1

82
Am−2k + 8

7

(
1+ 1

8

)
D ≤ 1

83
Am−3k

+8

7

(
1+ 1

8
+ 1

82

)
D

≤
(
1

8

)[m
k

]
Am−[m

k

]
k+

(
8

7

)2

D≤
(
1

8

)m
k

A0+
(
8

7

)2

D≤1

8
A0+

(
8

7

)2

D.

This completes the proof of (5.9).
Setting k = 2 and

ai = sup
0≤t≤T∗

‖∂ f i (t)‖pp+
∫ t

0
|∂ f i |pγ+,p, D = CT∗,�

{‖∂ f0‖pp+P(‖〈v〉β f0‖∞)
}
,

and applying (5.9), we complete the proof of the theorem. ��
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The following result indicates that Theorem 1 is optimal :

Lemma 12 Let � = B(0; 1) with B(0; 1) = {x ∈ R
3 : |x | < 1}. There exists

a smooth initial datum with the support of contained f0 in B(0; 1)× B(0; 1)
so that the solution f to

∂t f + v · ∇x f = 0, f |t=0 = f0,

f (t, x, v)|γ− = cμ
√
μ(v)

∫
n(x)·u>0

f (t, x, u)
√
μ(u){n(x) · u}du, (5.10)

satisfies

∫ 1

0

∫
γ−
|∇x f (s, x, v)|2dγ ds = +∞,

hence the estimate (1.15) of Theorem 1 fails for p = 2.

Proof We can prove the existence and uniqueness from [9]. We prove this
blow-up result by contradiction. Suppose

∫ 1
0

∫
γ− |∂ f (s, x, v)|2dγ ds < +∞.

Then

∂n f (t, x, v) = 1

n · v
{−∂t f − (τ1 · v)∂τ1 f − (τ2 · v)∂τ2 f } , for (x, v) ∈ γ−.

We use the boundary condition to define:

∂t f (t, x, v)|γ− = cμ
√
μ(v)A(t, x) ≡ cμ

√
μ

∫
n·u>0

∂t f
√
μ{n · u}du,

∂τi f (t, x, v)|γ− = cμ
√
μ(v)Bi (t, x)

≡ cμ
√
μ

∫
n·u>0

∂τi f
√
μ{n · u}du

+cμ
√
μ

∫
n·u>0

∇v f ∂T
∂τi

T −1u
√
μ{n · u}du.

Wemake a change of variables vn = v · n(x), vτ1 = v · τ1(x), vτ2 = v · τ2(x)
to compute

∫
∂�

dSx

∫ ∞

0
dvn

∫∫
R2

dvτ1dvτ2

×μ(v)
v⊥

{
(A)2 + (vτ1)2(B1)

2 + (vτ2)2(B2)
2
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+2vτ1 AB1 + 2vτ2 AB2 + 2vτ1vτ2B1B2

}

=
∫ ∞

0
dvn

e−
|vn |2
2

vn

∫
∂�

dSx
{
(A)2 + 2π(B1)

2 + 2π(B2)
2} .

Note that the integration over ∂� is a function of t only (independent of v).
Since

∫∞
0

dvn
vn

= ∞, we conclude that A = B1 = B2 ≡ 0 for (t, x) ∈
[0,∞)× ∂�. In particular from A(t, x) = 0 we have for all t ≥ 0

∫
n(x)·u>0

f (t, x, u)
√
μ(u){n(x) · u}du

=
∫
n(x)·u>0

f (0, x, u)
√
μ(u){n(x) · u}du. (5.11)

We now choose an initial datum that vanishes near ∂�:

f0(x, v) = φ(|x |)φ(|v|),

where φ ∈ C∞([0,∞)) and φ ≥ 0 and suppφ ⊂⊂ [0, 1) and φ ≡ 1 on [0, 12 ].
Clearly

cμ
√
μ(v)

∫
n(x)·u>0

f0(x, u)
√
μ(u){n(x) · u}du = 0.

Hence f (t, x, v) ≥ 0 since f0 ≥ 0, and satisfies the zero inflow boundary con-
dition from (5.11) and the above equality. Moreover following the backward
trajectory to the initial plane for t ∈ [18 , 14 ] and (x, v) ∈ γ+ and |v− x

|x | | < 1
64 ,

and |v| ∈ [1
8 ,

1
2

]
,

f (t, x, v) = f0(x − tv, v) = 1,

which contradicts to cμ
√
μ(v)

∫
n·u>0 f (t, x, u)

√
μ(u){n(x) · u}du = 0 for

(t, x, v) ∈ [0,∞)× γ− in (5.11). ��

5.2 Weighted W1, p (2 ≤ p < ∞) Estimate

We now establish the weighted W 1,p estimate for 2 ≤ p < ∞ with the
same iteration (2.16). From Lemma 7 for 0 < θ < 1

4 , we have the uni-
form bounds (2.13) and (2.14). Recall the notation ∂ = [∇x ,∇v]. Then
e−� 〈v〉t [α(x, v)]β∂ f m satisfies
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[∂t + v · ∇x + ν�,β + ν(√μ f m)](e−� 〈v〉tα(x, v)β∂ f m+1)

= e−� 〈v〉tα(x, v)βGm,

α(x, v)β∂ f m+1(0, x, v) = α(x, v)β∂ f0(x, v).
(5.12)

Here ν�,β is defined in (3.21) and Gm is defined in (5.2). Recall from (5.2)

e−� 〈v〉tα(x, v)β |Gm |
� e−� 〈v〉tα(x, v)β

{
|∇x f

m+1|

+ P(||eθ |v|2 f0||∞)
[
e−

θ
2 |v|2 +

∫
R3

e−Cθ |v−u|2

|v − u|2−κ |∂ f
m(u)|du

]}
.

For (x, v) ∈ γ, from (5.3), the boundary condition is bounded for β < p−1
2p

by

e−� 〈v〉t [α(x, v)]β |∂ f m+1(t, x, v)|
� e−� 〈v〉t [α(x, v)]β√μ(v)(1+ 〈v〉

|n(x) · v|
)

×
∫
n·u>0

|∂ f m(t, x, u)|〈u〉√μ{n · u}du

+ e−� 〈v〉t [α(x, v)]β
|n(x) · v| e−

θ
4 |v|2P(||eθ |v|2 f0||∞).

(5.13)

The main estimate is the following:

Proof of Theorem 2 Fix p ≥ 2, p−2
2p < β <

p−1
2p and � �� 1. We claim

that there exists 0 < T∗ � 1 such that we have the following estimates
uniformly-in-m ,

sup
0≤t≤T∗

‖e−� 〈v〉tαβ∂ f m(t)‖pp +
∫ T∗

0
|e−� 〈v〉sαβ∂ f m |pγ,p ��,T∗

P(‖eθ |v|2 f0‖∞)+ ‖αβ∂ f0‖pp,
(5.14)

for ∂ = [∇x ,∇v] and some polynomial P.
Once we have (5.14) then we pass to the limit, e−� 〈v〉tαβ∂ f m ⇀

e−� 〈v〉tαβ∂ f weakly with norms supt∈[0,T∗] ‖ · ‖pp and e−� 〈v〉tαβ∂ f m |γ ⇀
e−� 〈v〉tαβ∂ f |γ in

∫ T∗
0 | · |pγ,p and e−� 〈v〉tαβ∂ f satisfies (5.14). Repeat the

same procedure for [T∗, 2T∗], [2T∗, 3T∗], . . . , up to the local existence time
interval [0, T ] in Lemma 7 to conclude Theorem 2.
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We prove (5.14) by induction. From Proposition 2, ∂ f 1 exists. More pre-
cisely we construct ∂t f 1,∇x f 1 first and then ∇v f 1. Because of our choice
of ∂ f 0, the estimate (5.14) is valid for m = 1. Now assume that ∂ f i exists
and (5.14) is valid for all i = 1, 2, . . . ,m. Applying the weighted inflow esti-
mate (Proposition 2) we deduce that ∂ f m+1 exists. From the Green’s identity
(Lemma 9) we have

sup
0≤s≤t

‖e−� 〈v〉sαβ∂ f m+1(s)‖pp +
∫ t

0
|e−� 〈v〉sαβ∂ f m+1|pγ+,p

+
∫ t

0
‖〈v〉1/pe−� 〈v〉sαβ∂ f m+1‖pp

� ‖αβ∂ f0‖p + t P(‖eθ |v|2 f0‖∞)+
∫ t

0
|e−� 〈v〉sαβ∂ f m+1|pγ−,p

+t sup
0≤s≤t

‖e−� 〈v〉sαβ∂ f m+1(s)‖pp

+
∫ t

0

∫∫
�×R3

[e−� 〈v〉sαβ]p|Gm ||∂ f m+1|p−1

� ‖αβ∂ f0‖p + t P(‖eθ |v|2 f0‖∞)+
∫ t

0
|e−� 〈v〉sαβ∂ f m+1|pγ−,p

+t sup
0≤s≤t

‖e−� 〈v〉sαβ∂ f m+1(s)‖pp

+P(‖eθ |v|2 f0‖∞)
∫ t

0

∫∫
�×R3

[e−� 〈v〉sαβ]p|∂ f m+1|p−1

×
∫
R3

e−Cθ |v−u|2

|v − u|2−κ |∂ f
m(u)|. (5.15)

Step 1. Estimate for the nonlocal term: The key estimate is the following: For
0 < β < p−1

2p , 0 < θ <
1
4 , and some C�,β,p > 0,

sup
x∈�

∫
R3

e−Cθ |v−u|2

|v − u|2−κ
[e−�β 〈v〉sα(x, v)] βpp−1

[e−�β 〈u〉sα(x, u)] βpp−1

du ��,θ 〈v〉 βpp−1 eC�,β,ps
2
. (5.16)

First we assume |ξ(x)| < δ� so that n(x) := ∇ξ(x)
|∇ξ(x)| is well-defined. We

decompose un = u · n(x) = u · ∇ξ(x)
|∇ξ(x)| and uτ = u − unn(x). We note

α(x, v) � |v| and α(x, v) ≥ |u · ∇ξ(x)|. For 0 ≤ κ ≤ 1, we have the bound
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|v| βpp−1

∫
R3

1

|v − u|2−κ e
−Cθ |v−u|2 e

− � p
p−1 〈v〉t

e−
� p
p−1 〈u〉t

1

|u · ∇ξ(x)| 2βpp−1

du

�� |v| βpp−1

∫
R3
|v − u|−2+κe−

Cθ |v−u|2
2 e

� p
p−1 t |v−u||un|

−2βp
p−1 du

�� |v| βpp−1 eC�,β,pt
2
∫
R2

duτ

∫
R

dun|v − u|−2+κe−
Cθ |v−u|2

4 |un|−
2βp
p−1

�� Cκ |v|
βp
p−1 eC�,β,pt

2
.

where we have used

e
�βp
p−1 t |v−u| � eC�,β,pt

2 × e−
Cθ |v−u|2

4 , (5.17)

for someC�,β,p>0. Furthermorewe split the last integration as
∫
|un |/2≤|vn−un |

+ ∫
|un |/2≥|vn−un |. Both terms can be bounded together in this way

C

⎡
⎣
∫

e−
Cθ |un |2

8

|un|
βp
p−1

dun +
∫

e−
Cθ |vn−un |2

8

|vn − un|
βp
p−1

dun

⎤
⎦ � 1.

If |ξ(x)| ≥ δ� then

α(x, v) ≥ 2|ξ(x)|{v · ∇2ξ(x) · v} � δ�|v|2 � δ�|v3|2,
where v = (v1, v2, v3) is the standard Euclidian coordinate. We set v3 =
vn and vτ = (v1, v2) and follow the exactly the same proof. Therefore we
conclude (5.16).

Therefore

e−� 〈v〉sαβ
∣∣∣∣∣
∫
R3

e−Cθ |v−u|2

|v − u|2−κ ∂ f
m(u)du

∣∣∣∣∣

�θ

(∫
R3

e−Cθ |v−u|2

|v − u|2−κ
[e−�β 〈u〉sα]βq
[e−�β 〈u〉sα]βq

du

) 1
q

×
(∫

R3

e−Cθ |v−u|2

|v − u|2−κ |[e
−� 〈u〉sα]β∂ f m(u)|pdu

) 1
p

�θ 〈v〉βeCs2
(∫

R3

e−Cθ |v−u|2

|v − u|2−κ |e
−� 〈u〉sαβ∂ f m(u)|pdu

) 1
p

,

where at the last line we used p−2
2p < β <

p−1
2p so that 〈v〉β ≤ 〈v〉.
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Finally we use the Hölder’s estimate to bound the last term (nonlocal term)
of (5.15) by

CteC�,β,pt
2
P(‖eθ |v|2 f0‖∞) sup

0≤s≤t

∫∫
�×R3

|e−� 〈v〉sαβ∂ f m |p

+ (δ + ε)P(‖eθ |v|2 f0‖∞) max
i=m,m+1

∫ t

0

∫∫
�×R3

〈v〉|e−� 〈v〉sαβ∂ f i |p.
(5.18)

Step 2. Boundary Estimate: Recall (1.21). We use (5.13) to estimate the
contribution of γ−

∫ t

0

∫
γ−
|e−� 〈v〉sα(x, v)β∂ f m+1(s, x, v)|p

�p

∫ t

0

∫
γ−
[e−� 〈v〉sα(x, v)β]p√μp

(
1+ 〈v〉

|n(x) · v|
)p

×
[∫

n(x)·u>0
|∂ f m(s, x, u)|μ1/4{n · u}du

]p

+P(‖eθ |v|2 f0‖∞)
∫ t

0

∫
γ−

[e−� 〈v〉sα(x, v)β]p
|n(x) · v|p e−

θp
4 |v|2dγ ds. (5.19)

By e−� 〈v〉sα(x, v) ≤ e−
� 〈v〉
2 s |∇xξ(x)·v|2 for x ∈ ∂�, the last term is bounded

by

C�P(‖eθ |v|2 f0‖∞)
∫ t

0

∫
∂�

∫
R3
|n(x) · v|2βp−p+1e−

θp
4 |v|2dvdSxds

��,p,ζ t P(‖eθ |v|2 f0‖∞),

for β > p−2
2p so that 2βp − p + 1 > −1.

For the first term in (5.19) we split as

[∫
n(x)·u>0

· · · du
]p

�p

[∫
(x,u)∈γ ε+

· · · du
]p

+
[∫
(x,u)∈γ+\γ ε+

· · · du
]p

.

By the Hölder’s inequality in u, the γ ε+ contribution (grazing part) of (5.19) is
bounded as
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Cp

∫ t

0

∫
γ−
[e−� 〈v〉sα(x, v)β ]p√μp

(
|n · v| + 〈v〉p

|n · v|p−1

)

×
∣∣∣∣∣
∫
(x,u)∈γ ε+

e−� 〈u〉sα(x, u)β∂ f m{n · u}1/p {n · u}1/qμ1/4

e−� 〈u〉sα(x, u)β
du

∣∣∣∣∣
p

dvdSxds

��,p
∫ t

0

∫
γ−
[e−� 〈v〉sα(x, v)β ]p

(
|n · v| + 〈v〉p

|n · v|p−1

)√
μ

p

×
[∫
(x,u)∈γ+

[e−� 〈v〉sα(x, u)β]p|∂ f m |p{n · u}du
]

×
[∫
(x,u)∈γ ε+

[e−� 〈u〉sα(x, u)β]−qμq/4{n · u}du
]p/q

dvdSxds,

��,p,�,β εaeC�,β,pt
2
∫ t

0
|e−� 〈v〉sαβ∂ f m(s)|pγ+,pds,

where we used [e−� 〈v〉sα(x, v)] ≤ |∇ξ(x) · v|2 �� |n(x) · v|2 and, for
β >

p−2
2p (2βp − p + 1 > −1),

[e−� 〈v〉sα(x, v)β]p
(
|n · v| + 〈v〉p

|n · v|p−1

)√
μ

p

��
(|n(x) · v|1+2βp + 〈v〉p|n(x) · v|2βp−p+1)√μ(v)p ∈ L1({v ∈ R

3}),

and, here, a > 0 is determined via , with p−1
p = 1

q ,

∫
γ ε+
[e−�β 〈u〉sα(x, u)]− 2βp

p−1μ
p

4(p−1) {n · u}du

��
∫
γ ε+

[
e−

�
β
〈u〉s
2 |u · ∇ξ(x)|

]− 2βp
p−1

e−
p

4(p−1) |u|2 |n · u|du

��
∫
γ ε+
|u · n|1− 2βp

p−1 e
� p
(p−1) 〈u〉se−

p
4(p−1) |u|2du

�� eC�,β,ps
2
∫
γ ε+
|u · n|1− 2βp

p−1 e−
p

8(p−1) |u|2du

��,p εaeC�,β,pt
2
,

for some a = 2(1− β p
p−1) > 0 since 1− 2βp

p−1 > −1.
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On the other hand, for the non-grazing contribution γ+\γ ε+, we use a similar
estimate to get

∫ t

0

∫
γ−
[e−� 〈v〉sα(x, v)β]p√μp

(
1+ 〈v〉

|n(x) · v|
)p

×
[∫
γ+\γ ε+

|∂ f m(s, x, u)|μ(u)1/4{n(x) · u}du
]p

dγ ds

��
∫ t

0

∫
∂�

∫
R3
[e−� 〈v〉sα(x, v)β]p

(
|n · v| + 〈v〉p

|n · v|p−1

)√
μ

p

×
[ ∫

γ+\γ ε+
e−� 〈v〉sα(x, v)β |∂ f m(s, x, u)|{n · u}1/p

× {n · u}1/qμ(u)1/4
[e−� 〈u〉sα(x, u)]β du

]p

dvdSxds

��
∫ t

0

∫
γ−
[e−� 〈v〉sα(x, v)β]p

(
|n · v| + 〈v〉p

|n · v|p−1

)√
μ

p

×
[∫
γ+\γ ε+

[e−� 〈u〉sα(x, u)β]p|∂ f m |p{n · u}du
]

×
[∫
γ+
[e−� 〈u〉sα(x, u)β]−qμq/4{n · u}du

]p/q

dvdSxds

�� eC�,β,pt
2
∫ t

0

∫
γ+\γ ε+

[e−� 〈u〉sα(x, u)β]p|∂ f m(s)|pdγ ds,

where we have used
∫
γ+
[e−� 〈u〉sα(x, u)β]−qμ(u)q/4{n(x) · u}du

=
∫
γ+
[e−� 〈u〉sα(x, u)β]− p

p−1μ(u)
p

4(p−1) {n · u}du ��,p,ε eC�,β,pt
2
.

By Lemma 8, (5.12), and (5.18), the non-grazing part is further bounded by

∫ t

0

∫
γ+\γ ε+

�ε
∫ t

0
‖αβ∂ f0‖pp +

∫ t

0
‖e−� 〈v〉sαβ∂ f m‖pp

+
∫ t

0

∫∫
�×R3

|Gm |[e−� 〈v〉sαβ]p|∂ f m |p−1

�
∫ t

0
‖αβ∂ f0‖pp +

∫ t

0
‖e−� 〈v〉sαβ∂ f m‖pp
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+t sup
0≤s≤t

‖e−� 〈v〉sαβ∂ f m(s)‖pp + (1+ t)P(‖eθ |v|2 f0‖∞)

+CteC�,β,pt
2
P(‖eθ |v|2 f0‖∞) sup

0≤s≤t

∫∫
�×R3

|e−� 〈v〉sαβ∂ f m |p

+(δ + ε)P(‖eθ |v|2 f0‖∞)
× max

i=m,m+1

∫ t

0

∫∫
�×R3

〈v〉|e−� 〈v〉sαβ∂ f i |p. (5.20)

In summary, the boundary contribution of (5.15) is controlled by, for all 0 ≤
t ≤ T,

∫ t

0
|e−� 〈v〉sαβ∂ f m(s)|pγ−,pds

�
∫ T

0
‖α(v)β∂ f0‖pp + εa

∫ T

0
|e−� 〈v〉sαβ∂ f m |pγ+,p

+T max
i=m−1,m

sup
0≤t≤T∗

‖e−� 〈v〉tαβ∂ f i (t)‖pp + P(‖eθ |v|2 f0‖∞)

+CteC�,β,pt
2
P(‖eθ |v|2 f0‖∞) sup

0≤s≤t

∫∫
�×R3

|e−� 〈v〉sαβ∂ f m |p

+(δ + ε)P(‖eθ |v|2 f0‖∞) max
i=m,m+1

∫ t

0

∫∫
�×R3

〈v〉|e−� 〈v〉sαβ∂ f i |p.
(5.21)

Finally we collect the terms to deduce

sup
0≤t≤T

‖e−� 〈v〉tαβ∂ f m+1(t)‖pp +
∫ T

0
‖〈v〉1/pe−� 〈v〉sαβ∂ f m+1‖pp

+
∫ T

0
|e−� 〈v〉sαβ∂ f m+1|pγ+,pds

≤ CT,�

{
‖αβ∂ f0‖pp + P(‖eθ |v|2 f0‖∞)

}

+
{
ε + δ + T eC�,β,p(T )

2
}
P(‖eθ |v|2 f0‖∞)

× max
i=m,m−1

{
sup

0≤t≤T
‖αβ∂ f i (t)‖pp +

∫ T

0
|e−� 〈v〉sαβ∂ f i |pγ+,p

+
∫ T

0
‖〈v〉1/pe−� 〈v〉tαβ∂ f i‖pp

}
.

123



186 Y. Guo et al.

Recall C�,β,p from (5.16). Choose 0 < T � 1, and 0 < ε � 1, 0 < δ � 1
and hence

sup
0≤t≤T

‖e−� 〈v〉tαβ∂ f m+1(t)‖pp +
∫ T

0
|e−� 〈v〉tαβ∂ f m+1|pγ+,p

≤ CT,�

{
‖αβ∂ f0‖pp + P(‖eθ |v|2 f0‖∞)

}

+ 1

8
max

i=m,m−1

{
sup

0≤t≤T
‖e−� 〈v〉tαβ∂ f i (t)‖pp +

∫ T

0
|e−� 〈v〉tαβ∂ f i |pγ+,p

}
.

Set

ai = sup
0≤t≤T∗

‖e−� 〈v〉tαβ∂ f m+1(t)‖pp +
∫ T

0
|e−� 〈v〉tαβ∂ f m+1|pγ+,p,

D = CT,�

{
‖αβ∂ f0‖pp + P(‖eθ |v|2 f0‖∞)

}
.

Applying (5.9) with k = 2, we complete the proof. ��

5.3 Weighted C1 estimate

We start with the same iterative sequences (5.12) with β = 1
2 . For (x, v) ∈ γ,

note that
√
α(x, v) = |n(x) · v|. Recall Gm in (5.2). We define

Nm(t, x, v) := e−� 〈v〉t
√
α(x, v)Gm(t, x, v). (5.22)

From (5.13) with β = 1
2 , we have, for (x, v) ∈ γ−,

e−� 〈v〉t |√α(x, v)∂ f m+1(t, x, v)|
� 〈v〉cμ

√
μ(v)

∫
n(x)·u>0

e−� 〈u〉t
√
α(x, u)|∂ f m(t, x, u)|e� 〈u〉t 〈u〉√μ(u)du

+ e−
θ
4 |v|2P(‖eθ |v|2 f0‖∞),

(5.23)
for ∂ = [∇x ,∇v].

Let (x, v) /∈ γ0 and (t0, x0, v0) = (t, x, v). Define the stochastic (diffuse)
cycles as t1 = t−tb(x, v), x1 = x−tb(x, v)v, and v1 ∈ R

3 with n(x1)·v1 > 0.
For � ≥ 1,

t�+1 = t� − tb(x
�, v�), x�+1 = xb(x

�, v�),

v�+1 ∈ R
3 with n(x�+1) · v�+1 > 0.
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Lemma 13 If t1 < 0 then

|e−� 〈v〉tα(x, v)1/2∂ f m+1(t, x, v)| � ‖α(x, v)1/2∂ f0‖∞
+
∫ t

0
|Nm(s, x − (t − s)v, v)|ds. (5.24)

If t1 > 0 then

|e−� 〈v〉tα(x, v)1/2∂ f m+1(t, x, v)|
�

∫ t

t1
|Nm(s, x − (t − s)v, v)|ds + e−

θ
4 |v|2 P(‖eθ |v|2 f0‖∞)

+ 1

w(v)

∫
∏�−1

j=1 V j

�−1∑
i=1

1{t�+1<0<t�} |α1/2∂ f m+1−i (0, xi − t ivi , vi )| d��−1
i

+ 1

w(v)

∫
∏�−1

j=1 V j

�−1∑
i=1

1{t i+1<0<t i }
∫ t i

0
|Nm−i (s, xi − (t i − s)vi , vi )| ds d��−1

i

+ 1

w(v)

∫
∏�−1

j=1 V j

�−1∑
i=1

1{t i+1<0}
∫ t i

t i+1
|Nm−i (s, xi − (t i − s)vi , vi )| ds d��−1

i

+ 1

w(v)

∫
∏�−1

j=1 V j

�−1∑
i=2

1{t i−1<0}e−
θ
4 |vi−1|2 P(‖eθ |v|2 f0‖∞) d��−1

i−1

+ 1

w(v)

∫
∏�−1

j=1 V j

1{t�>0}|e−� 〈v
�−1〉t�α(x�, v�−1)1/2∂ f m+1−�(t�, x�, v�−1)| d��−1

�−1 ,

(5.25)

where V j = {v j ∈ R
3 : n(x j ) · v j > 0} and

w(v) = cμ
〈v〉√μ(v),

and

d��−1
i =

{
��−1

j=i+1μ(v
j )cμ|n(x j ) · v j |dv j

} {
w(vi )e� 〈vi 〉t i 〈vi 〉2cμμ(vi )dvi

}
{
�i−1

j=1e
� 〈v j 〉t j 〈v j 〉2cμμ(v j )dv j

}
.

Remark that d��−1
i is not a probability measure!

Proof For t1 < 0 we use (5.12) with β = 1 to obtain

e−� 〈v〉tα(x, v)1/2∂ f m+1(t, x, v) � α(x − tv, v)1/2∂ f0(x − tv, v)

+
∫ t

0
e−ν�,1(v)(t−s)Nm(s, x − (t − s)v, v)ds.
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Consider the case of t1 > 0. We prove by the induction on �, the number of
iterations. First for � = 1, along the characteristics, for t1 > 0, we have

e−� 〈v〉tα1/2∂ f m+1(t, x, v)

� e−ν�,1(v)(t−t1)e−� 〈v〉t1α1/2∂ f m+1(t1, x1, v)

+
∫ t

t1
e−ν�,1(v)(t−s)Nm(s, x − (t − s)v, v)ds.

Now we apply (5.23) to the first term above to further estimate

e−� 〈v〉tα1/2|∂ f m+1(t, x, v)|
� e−ν�,1(v)(t−t1)e−

θ
4 |v|2P(‖eθ |v|2 f0‖∞)

+
∫ t

t1
e−ν�,1(v)(t−s)|Nm(s, x − (t − s)v, v)|ds

+e−ν�,1(v)(t−t1)〈v〉cμ
√
μ(v)

∫
V1

e−� 〈v1〉t1α1/2|∂ f m(t1, x1, v1)|

×e� 〈v1〉t1〈v1〉
√
μ(v1)dv1

� e−
θ
4 |v|2P(‖eθ |v|2 f0‖∞)+

∫ t

t1
|Nm(s, x − (t − s)v, v)|

+ cμ
w(v)

∫
V1

e−� 〈v1〉t1α1/2|∂ f m(t1, x1, v1)|e� 〈v1〉t1w(v1)〈v1〉2μ(v1)dv1.
(5.26)

Now we continue to express ∂ f m(t1, x1, v1) via backward trajectory to get

e−� 〈v1〉t1α(x1, v1)1/2|∂ f m(t1, x1, v1)|
≤ 1{t2<0<t1}

{
α1/2|∂ f m(0, x1 − t1v1, v1)|

+
∫ t1

0
|Nm−1(s, x1 − (t1 − s)v1, v1)|ds

}

+ 1{t2>0}
{
e−� 〈v1〉t2α1/2|∂ f m(t2, x2, v1)|

+
∫ t1

t2
|Nm−1(s, x1 − (t1 − s)v1, v1)|ds

}
.

Therefore we conclude from (5.26) that

e−� 〈v〉tα(x, v)1/2|∂ f m+1(t, x, v)|
�

∫ t

t1
|Nm(s, x − (t − s)v, v)|ds + e−

θ
4 |v|2P(||eθ |v|2 f0||∞)
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+ 1

w(v)

∫
V1

1{t2<0<t1}α(x1 − t1v1, v1)1/2|∂ f0(x1 − t1v1, v1)

×|e� 〈v1〉t1w(v1)〈v1〉2cμμ(v1)dv1

+ 1

w(v)

∫
V1

1{t2<0<t1}
∫ t1

0
|Nm−1(s, x1 − (t1 − s)v1, v1)|ds

×e� 〈v1〉t1w(v1)〈v1〉2cμμ(v1)dv1

+ 1

w(v)

∫
V1

1{t2>0}
∫ t1

t2
|Nm−1(s, x1 − (t1 − s)v1, v1)|ds

×e� 〈v1〉t1w(v1)〈v1〉2cμμ(v1)dv1

+ 1

w(v)

∫
V1

1{t2>0}e−� 〈v
1〉t2α(x2, v1)1/2|∂ f m(t2, x2, v1)|

×e� 〈v1〉t1w(v1)〈v1〉2cμμ(v1)dv1,
and it equals (5.25) for � = 2.

Assume (5.25) is valid for � ∈ N. We use (5.23) and express the last term
of (5.25) as

1{t�>0}e−� 〈v
�−1〉t�α(x�, v�−1)|∂ f m+1−k(t�, x�, v�−1)|

� 〈v�−1〉cμ
√
μ(v�−1)

∫
V�

1{t�>0}e−� 〈v
�〉t�α1/2|∂ f m+1−(k+1)(t�, x�, v�)|

×e� 〈v�〉t�〈v�〉
√
μ(v�)dv� + e−

θ
4 |v�−1|2P(‖eθ |v|2 f0‖∞). (5.27)

Then we decompose 1{t�>0} = 1{t�+1<0<t�} + 1{t�+1>0}, where the first part
hits the initial plane as

1{t�+1<0<t�}e−� 〈v
�〉t�α1/2|∂ f m+1−(�+1)(t�, x�, v�)|

� α1/2|∂ f0(x� − t�v�, v�)|

+
∫ t�

0
|Nm+1−(�+2)(s, x� − (t� − s)v�, v�)|ds, (5.28)

and the second part hits the boundary as

1{t�+1>0}e−� 〈v〉tα1/2|∂ f m+1−(�+1)(t�, x�, v�)|
� e−� 〈v�〉t�+1

α1/2|∂ f m+1−(�+1)(t�+1, x�+1, v�)|

+
∫ t�

t�+1
|Nm+1−(�+2)(s, x� − (t� − s)v�, v�)|ds.

(5.29)
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To summarize, from (5.27) upon integrating over
∏�−1

j=1 V j , we obtain a bound
for the last term of (5.25) as

1

w(v)

∫
∏�−1

j=1 V j

1{t�>0}|e−� 〈v
�−1〉t�α1/2∂ f m+1−�(t�, x�, v�−1)|d��−1

�−1

� P(‖eθ |v|2 f0‖∞) 1

w(v)

∫
∏�−1

j=1 V j

1{t�>0}e−
θ
4 |v�−1|2d��−1

�−1

+ 1

w(v)

∫
∏�

j=1 V j

1{t�>0}e−� 〈v
�〉t�√α|∂ f m+1−(�+1)(t�, x�, v�)|d���,

where by (5.28) and (5.29), the last term is bounded by

1

w(v)

∫
∏�

j=1 V j

〈v�−1〉cμ
√
μ(v�−1)

√
μ(v�)〈v�〉e� 〈v�〉t�dv�

×
�−2∏
j=1

{
e� 〈v j 〉t j 〈v j 〉2cμμ(v j )dv j

}

×
{
w(v�−1)e� 〈v�−1〉t�−1〈v�−1〉2μ(v�−1)dv�−1

}

×
{
1{t�+1<0<t�}

[
α1/2|∂ f (0, x� − t�v�, v�)|

+
∫ t�

0
|Nm−�−2(s, x� − (t� − s)v�, v�)|ds

]

+ 1{t�+1>0}
[
e−� 〈v�〉t�+1

α1/2|∂ f m−�−1(t�+1, x�+1, v�)|

+
∫ t�

t�+1
|Nm−�−2(s, x� − (t� − s)v�, v�)|ds

]}
.

Now we use (5.26) to conclude Lemma 13. ��

Lemma 14 There exists �0(ε) > 0 such that for � ≥ �0 and for all (t, x, v) ∈
[0, 1] × �̄× R

3, we have

∫
∏�−1

j=1 V j

1{t�(t,x,v,v1,...,v�−1)>0}d��−1
�−1 ��

(
1

2

)−�/5
.

Proof The similar result with different weight is proven in Lemma 23 of [9].
We note that, for some fixed constant C0 > 0,
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d��−1
�−1 ≤ w(v�−1)e� 〈v�−1〉t�−1〈v�−1〉2cμμ(v�−1)

×��−2
j=1e

� 〈v j 〉t j 〈v j 〉2cμμ(v j )dv1 . . . dv�−1

≤ ��−1
j=1{C ′eC ′t2μ(v j )

1
4 } dv1 . . . dv�−1 ≤ {C0}���−1

j=1μ(v
j )

1
4 dv j .

Choose a sufficiently small δ = δ(C0) > 0. Define

Vδj ≡ {v j ∈ V j : v j · n(x j ) ≥ δ, |v j | ≤ δ−1},

where we have
∫
V j\Vδj C0μ(v

j )
1
4 � δ for some C0 > 0.

On the other hand if v j ∈ Vδj then by Lemma 6 of [9], (t j−t j+1) ≥ δ3/C�.

Therefore if t� ≥ 0 then there can be atmost
{[

C�
δ3

]
+ 1

}
numbers of vm ∈ Vδm

for 1 ≤ m ≤ �− 1. Equivalently there are at least �− 2 −
[
C�
δ3

]
numbers of

vmi ∈ Vmi \Vδmi
. Hence from {C0}�−1 = {C0}m × {C0}�−1−m , we have

∫
∏�−1

j=1 V j

1{t�(t,x,v,v1,...,v�−1)>0}d��−1
�−1

≤

[
C�
δ3

]
+1∑

m=1

∫
{

there are exactly m of vmi ∈ Vδmi

and �− 1− m of vmi ∈ Vmi \Vδmi

}
�−1∏
j=1

C0μ(v
j )1/4dv j

≤

[
C�
δ3

]
+1∑

m=1

(
�− 1
m

){∫
V
C0μ(v)

1/4dv

}m {∫
V\Vδ

C0μ(v)
1/4dv

}�−1−m

≤
([

C�
δ3

]
+ 1

)
{�− 1}

[
C�
δ3

]
+1{δ}�−2−

[
C�
δ3

] {∫
V
C0μ(v)

1/4dv

}[
C�
δ3

]
+1

� �

N
{Ck} �N

(
�

N

)− N�
10

≤ {CN } �N
(
�

N

) �
N
(
�

N

)− �
N

N2
20 ≤

(
�

N

) �
N

(
− N2

20 +3
)

≤
(

1

�/N

)− N2
20 +3
N �

≤
(
1

2

)−�
,

wherewe have chosen � = N×
([

C�
δ3

]
+ 1

)
and N =

([
C�
δ3

]
+ 1

)
� C > 1.

��
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Now we are ready to prove the weighted C1 part of the main theorem:

Proof of weighted C1 part in Theorem 2 First we show the W 1,∞ estimate.
Recall that we use the same sequences (5.12) with β = 1

2 used for theweighted
W 1,p estimate (2 ≤ p < ∞). We estimate along the stochastic cycles with
(5.24) and (5.25). For t1 < 0, the backward trajectory first hits t = 0. From
Lemmas 13 and 6 for (5.22), we deduce, for ∂ = [∇x ,∇v],

sup
0≤t≤T

‖1{t1<0}e−� 〈v〉tα1/2∂ f m+1(t)‖∞

� ‖α1/2∂ f0‖∞ + P(‖eθ |v|2 f0‖∞)+ T sup
0≤t≤T

‖e−� 〈v〉tα1/2∂ f m+1(t)‖∞

+
∫ t

t1

∫
R3

e−� 〈v〉(t−s) e
−Cθ |v−u|2

|v − u|2−κ
α(x − (t − s)v, v)1/2

α(x − (t − s)v, u)1/2
duds

︸ ︷︷ ︸
× P(‖eθ |v|2 f0‖∞)max

m
sup

0≤t≤T∗
‖e−� 〈v〉tα1/2∂ f m+1(t)‖∞,

where we have used an elementary fact (6.75) with bounded time. Note that,
for any β > 1

2 ,

1

α(x − (t − s)v, u)1/2
� 1

α(x − (t − s)v, u)β
+ 1 (5.30)

We apply (1.28) to bound the underbrace term as, for 1 ≥ β > 1
2 ,

⎧⎨
⎩1|v|�1

α(x, v)
1
2+ 3

4− β2 t
3
2−β
Z

|v|2β−1 +1|v|�1
ε
3
2−βα(x, v) 12

|v|2α(x, v)β−1

⎫⎬
⎭+ α(x, v)

1
2

� 〈v〉ε2α(x, v)β− 1
2

� t
3
2−β
Z + ε 3

2−β + 1

ε2�
, (5.31)

where we used α(x, v) � |v|2 and tZ is define in (1.28).
If t1(t, x, v) ≥ 0, the backward trajectory first hits the boundary, then from

(5.25) we have the following line-by-line estimate

|1{t1>0}e−� 〈v〉tα1/2∂ f m+1(t, x, v)|

�
∫ t

t1

∫
R3

e−� 〈v〉(t−s) e
−Cθ |Vcl(s)−u|2

|Vcl(s)− u|2κ
α(Xcl(s), Vcl(s))

1
2

α(Xcl(s), u)
1
2

duds

︸ ︷︷ ︸
×‖e−� 〈v〉sα1/2∂ f m(s)‖∞
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+P(‖eθ |v|2 f0‖∞)+ �(CeCt2)� max
1≤i≤�−1

‖α 1
2 ∂ f m+1−i

0 ‖∞
+�(CeCt2)�〈v〉√μ(v)
×max

i

∫ t i

0

∫
R3

e−� 〈vi 〉(t−s) e
−Cθ |Vcl(s)−u|2

|Vcl(s)− u|2κ
α(Xcl(s), Vcl(s))

1
2

α(Xcl(s), u)
1
2

duds

︸ ︷︷ ︸
× max

1≤i≤�−1
sup

0≤s≤t
‖e−� 〈v〉sα1/2∂ f m+1−i (s)‖∞

+�(CeCt2)�P(‖eθ |v|2 f0‖∞)+
(
1

2

)− �5
sup

0≤s≤t
‖e−� 〈v〉sα1/2∂ f m+1−�(s)‖∞,

where we have used (5.12), Lemma 14, and Lemma 6 for (5.22) and (6.75).
For the underbraced terms we apply (5.30) and (5.31). Therefore

|1{t1>0}e−� 〈v〉tα1/2∂ f m+1(t, x, v)|
� C�C

C�t2
{
t
3
2−β + ε 3

2−β + 1

ε2�

}
× max

0≤i≤m sup
0≤s≤t

‖e−� 〈v〉sα1/2∂ f i (s)‖∞

+ C�C
C�t2 max

0≤i≤m ‖α
1/2∂ f i0‖∞ +

(
1

2

)− �
5

max
0≤i≤m sup

0≤s≤t
‖e−� 〈v〉sα1/2∂ f i (s)‖∞.

We choose a large � then small t then small ε and then finally large � to
conclude

sup
0≤t≤T∗

‖e−� 〈v〉tα1/2∂ f m+1(t)‖∞ ≤ 1

8
max

m−�≤i≤m sup
0≤t≤T∗

‖e−� 〈v〉tα1/2∂ f i (t)‖∞

+‖α1/2∂ f0‖∞ + P(‖eθ |v|2∂ f0‖∞).

Set D = ‖α1/2∂ f0‖∞ + P(‖eθ |v|2∂ f0‖∞),
ai = sup

0≤t≤T∗
‖e−� 〈v〉tα1/2∂ f i (t)‖∞, Ai = max{ai , ai−1, . . . , ai−(�−1)},

then we have am+1 ≤ 1
8 Am + D. Use (5.9) to conclude

sup
0≤t≤T∗

‖e−� 〈v〉tα1/2∂ f (t)‖∞ � ‖α1/2∂ f0‖∞ + P(‖eθ |v|2 f0‖∞).

The existence and uniqueness and the estimate in Theorem 2 are valid for a
small time T∗ > 0.We follow the same procedure for t ∈ [T∗, 2T∗] to conclude

sup
T∗≤t≤2T∗

‖e−� 〈v〉tα1/2∂ f (t)‖∞ ��,T∗ ‖e−� 〈v〉T∗∂ f (T∗)‖∞+P(‖eθ |v|2 f0‖∞).

123



194 Y. Guo et al.

Then we conclude the weighted W 1,∞ part of Theorem 2 following the
same procedure for [T∗, 2T∗], [2T∗, 3T∗], . . . .

Now we consider the continuity of e−� 〈v〉tα1/2∂ f . Remark that for
each step e−� 〈v〉tα1/2∂ f m satisfies the condition of Proposition 2. There-
fore we conclude from (1.26), (3.4) and [9] that e−� 〈v〉tα1/2∂ f m ∈
C0

([0, T∗] × (�̄ × R
3) \ γ0

)
. Now we follow W 1,∞ estimate part for

e−� 〈v〉tα1/2[∂ f m+1−∂ f m] to show that e−� 〈v〉tα1/2∂ f m is aCauchy sequence
in L∞. Then e−� 〈v〉tα1/2∂ f m → e−� 〈v〉tα1/2∂ f strongly in L∞ so that
e−� 〈v〉tα1/2∂ f ∈ C0

([0, T∗] × (�̄× R
3) \ γ0

)
. ��

6 Specular reflection BC

We denote the standard spherical coordinate x‖ = x‖(ω) = (x‖,1, x‖,2) for
ω ∈ S

2

ω = (cos x‖,1(ω) sin x‖,2(ω), sin x‖,1(ω) sin x‖,2(ω), cos x‖,2(ω)),

where x‖,1(ω) ∈ [0, 2π) is the azimuth and x‖,2(ω) ∈ [0, π) is the inclination.
We define an orthonormal basis of R

3, {r̂(ω), φ̂(ω), θ̂(ω)}, with r̂(ω) := ω
and

φ̂(ω) := (cos x‖,1(ω) cos x‖,2(ω), sin x‖,1(ω) cos x‖,2(ω),− sin x‖,2(ω)),
θ̂ (ω) := (− sin x‖,1(ω), cos x‖,1(ω), 0).

Moreover, r̂ × φ̂ = θ̂ , φ̂ × θ̂ = r̂ , θ̂ × r̂ = φ̂, and

∂x‖,1 r̂ = sin x‖,2 θ̂ , ∂x‖,2 r̂ = φ̂, (6.1)

where ∂x‖,1 r̂ does not vanish (non-degenerate) away from x‖,2 = 0 or π.
Without loss of generality we assume 0 = (0, 0, 0) ∈ �. For

p = (z, w) ∈ ∂�× S
2 with n(z) · w = 0,

we define the north pole Np ∈ ∂� and the south pole Sp ∈ ∂� as

Np := |Np|(n(z)× w) ∈ ∂�, Sp := −|Sp|(n(z)× w) ∈ ∂�,

where ∂x‖,1 r̂ is degenerate. We define the straight-line Lp passing both poles

Lp := {τNp + (1− τ)Sp : τ ∈ R}.

Lemma 15 Assume � is convex (1.13). Fix p = (z, w) ∈ ∂� × S
2 with

n(z) · w = 0.
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(i) There exists a smooth map (spherical-type coordinate)

ηp : [0, 2π)× (0, π)→ ∂�\{Np,Sp},
x‖p := (x‖p,1, x‖p,2) �→ ηp(x‖p), (6.2)

which is one-to-one and onto. Here on [0, 2π) × (0, π) we have ∂iηp :=
∂ηp
∂x‖p,i

�= 0 and

∂ηp

∂x‖p,1
(x‖p)×

∂ηp

∂x‖p,2
(x‖p) �= 0. (6.3)

We define

np := n ◦ ηp : [0, 2π)× (0, π)→ S
2.

(ii) We define the p−spherical coordinate in the tubular neighborhood of the
boundary:
For δ > 0, δ1 > 0, C > 0, we have a smooth one-to-one and onto map

�p : [0,Cδ)× [0, 2π)× (δ1, π − δ1)× R× R
2 → {x ∈ �̄ : |ξ(x)| < δ}\BCδ1 (Lp)× R

3,

(x⊥p , x‖p,1, x‖p,2, v⊥p , v‖p,1, v‖p,2) �→ �p(x⊥p , x‖p,1, x‖p,2, v⊥p , v‖p,1, v‖p,2),

where BCδ1(Lp) := {x ∈ R
3 : |x − y| < Cδ1 for some y ∈ Lp}.

Explicitly,

�p(x⊥p, x‖p, v⊥p, v‖p)

:=
[

x⊥p[−np(x‖p)] + ηp(x‖p)
v⊥p[−np(x‖p)] + v‖p · ∇ηp(x‖p)+ x⊥pv‖p · ∇[−np(x‖p)]

]
,

(6.4)

where∇ηp=
(
∂1ηp, ∂2ηp

) =
(
∂ηp
∂x‖p,1

,
∂ηp
∂x‖p,2

)
and∇np = (∂1np, ∂2np) =(

∂np
∂x‖p,1

,
∂np
∂x‖p,2

)
.

The Jacobian matrix is

∂�(x⊥, x‖, v⊥, v‖)
∂(x⊥, x‖, v⊥, v‖)

=

⎡
⎢⎢⎢⎢⎣

−n(x‖)
∂η
∂x‖,1 (x‖)

−x⊥ ∂n
∂x‖,1 (x‖)

∂η
∂x‖,2 (x‖)

−x⊥ ∂n
∂x‖,2 (x‖)

03,3

−v‖ · ∇x‖n(x‖)

−v⊥ ∂n
∂x‖,1 (x‖)

+v‖·∇x‖
∂η
∂x‖,1 (x‖)

−x⊥v‖·∇x‖ ∂n
∂x‖,1 (x‖)

−v⊥ ∂n
∂x‖,2 (x‖)

+v‖·∇x‖
∂η
∂x‖,2 (x‖)

−x⊥v‖·∇x‖ ∂n
∂x‖,2 (x‖)

−n(x‖)
∂η
∂x‖,1 (x‖)

−x⊥ ∂n
∂x‖,1 (x‖)

∂η
∂x‖,2 (x‖)

−x⊥ ∂n
∂x‖,2 (x‖)

⎤
⎥⎥⎥⎥⎦ .

(6.5)
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We fix an inverse map

�−1
p : {x ∈ �̄ : |ξ(x)| < δ}\BCδ′(Lp)× R

3 → [0,Cδ)
×[0, 2π)× (δ1, π − δ1)× R× R

2.

In general this choice is not unique but once we fix the range as above
then an inverse map is uniquely determined.
We denote, for (x, v) ∈ {x ∈ �̄ : |ξ(x)| < δ}\BCδ′(Lp)× R

3

(x⊥p, x‖p,1, x‖p,2, v⊥p, v‖p,1, v‖p,2) = �−1
p (x, v).

(iii) Let q = (y, u) ∈ ∂�× S
2 with n(y) · u = 0 and |p− q| � 1 and

�p(x⊥p, x‖p, v⊥p, v‖p) = (x, v) = �q(x⊥q, x‖q, v⊥q, v‖q).

Then

∂(x⊥p, x‖p, v⊥p, v‖p)
∂(x⊥q, x‖q, v⊥q, v‖q)

= ∇�−1
q ∇�p

= Id6,6 + Oξ (|p− q|)

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 1 1 03,3
0 1 1
0 0 0 0 0 0
0 |v| |v| 0 1 1
0 |v| |v| 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(6.6)

We remark that the purpose of change of chart (6.4) is designed such that
the flow dx

dt = v is preserved to dX
dt = V .

Proof of (i) in Lemma 15 We define the orthonormal matrix for p = (z, w) ∈
∂�× S

2 which maps {e1, e3, e3} �→ {n(z), w, n(z)× w}:

Op =
[
n(z) w n(z)× w ]T

3×3 .

For x ∈ ∂� with x �= Np and x �= Sp we define

(x‖p,1, x‖p,2) ∈ [0, 2π)× (0, π), such that r̂(x‖p,1, x‖p,2) = Op
x

|x | .

Now we define Rp : [0, 2π)× [0, π)→ (0,∞) such that

ξ(Rp(x‖p,1, x‖p,2)O−1
p r̂(x‖p,1, x‖p,2)) = 0. (6.7)
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We also define ηp : [0, 2π)× [0, π)→ ∂� such that

ηp(x‖p,1, x‖p,2) = Rp(x‖p,1, x‖p,2)O−1
p r̂(x‖p,1, x‖p,2).

Directly, from (6.1) and (6.7), with fixed p = (z, w),

∂Rp

∂x‖p,1
(x‖p,1, x‖p,2) =

− sin(x‖p,2)Rp∇ξ(ηp(x‖p,1, x‖p,2)) ·O−1
p θ̂(x‖p,1, x‖p,2)

∇ξ(ηp(x‖p,1, x‖p,2)) ·O−1
p r̂(x‖p,1, x‖p,2)

= − sin(x‖p,2)[Rp(x‖p,1, x‖p,2)]2∇ξ(ηp(x‖p,1, x‖p,2)) ·O−1
p θ̂(x‖p,1, x‖p,2)

∇ξ(ηp(x‖p,1, x‖p,2)) · ηp(x‖p,1, x‖p,2)
,

∂Rp

∂x‖p,2
(x‖p,1, x‖p,2) =

−Rp(x‖p,1, x‖p,2)∇ξ(ηp(x‖p,1, x‖p,2)) ·O−1
p φ̂(x‖p,1, x‖p,2)

∇ξ(ηp(x‖p,1, x‖p,2)) ·O−1
p r̂(x‖p,1, x‖p,2)

= −[Rp(x‖p,1, x‖p,2)]2∇ξ(ηp(x‖p,1, x‖p,2)) ·O−1
p φ̂(x‖p,1, x‖p,2)

∇ξ(ηp(x‖p,1, x‖p,2)) · ηp(x‖p,1, x‖p,2)
.

Here ∇ξ(ηp(x‖p,1, x‖p,2)) · ηp(x‖p,1, x‖p,2) �= 0 due to the convexity.
And by (6.1)

∂ηp

∂x‖p,1
(x‖p,1, x‖p,2) =

∂Rp

∂x‖p,1
O−1

p r̂ + sin(x‖p,2)RpO−1
p θ̂ ,

∂ηp

∂x‖p,2
(x‖p,1, x‖p,2) =

∂Rp

∂x‖p,2
O−1

p r̂ + RpO−1
p φ̂.

Directly we check a non-degenerate condition (6.3)

∂ηp

∂x‖p,1
(x‖p)×

∂ηp

∂x‖p,2
(x‖p)

= Rp
∂Rp

∂x‖p,1
O−1

p θ̂ + sin(x‖p,2)Rp
∂Rp

∂x‖p,2
O−1

p φ̂ − sin(x‖p,2)R2
pO−1

p r̂ �= 0.

Proof of (ii) of Lemma 15. We fix p = (z, w) and drop p−index (for the chart)
in this step. Define

�1 : [0,∞)×[0, 2π)×(0, π)→ �̄\Lp, �1(x⊥, x‖) = η(x‖)+x⊥[−n(x‖)].
(6.8)

Note that this mapping is surjective: For any x ∈ �̄\Lp, there exists (could
be several) y0 ∈ ∂� satisfying |x − y0| = miny∈∂� |x − y| (∂� is compact).
Now we choose p̃ = (z̃, w̃) ∈ ∂� × S

2 such that y0 /∈ Lp̃. Note that this
spherical-type coordinate ηp̃ : (x‖p̃,1, x‖p̃,2) �→ ηp̃(x‖p̃) ∈ ∂�\{Np̃,Sp̃}.
Denote ηp̃(x∗‖p̃) = y0. Since y0 is a minimizer of |x − y| we have (x − y0) ·
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∂ηp̃
∂x‖,i (x

∗‖p̃) = 0 for i = 1, 2. Since ∇ηp̃(x‖p̃) �= 0 from (6.3) and ξ(η(x‖)) = 0,

we have 0 ≡ ∇ξ(η(x∗‖p̃)) ·
∂ηp̃
∂x‖,i (x

∗‖p̃). Due to (6.3), we conclude
x−ηp̃(x∗‖p̃ )
|x−ηp̃(x∗‖p̃ )|

=
[−n(y0)]. This implies ηp̃(x∗‖p̃) /∈ Lp and hence we can choose p̃ = p. Finally
we write

x = ηp(x∗‖p)+ (x − η(x∗‖p)) = ηp(x∗‖p)+ |x − ηp(x∗‖p)|[−n(x∗‖p)].
Since η and ξ (therefore n and n) are smooth, the �1 is smooth. Directly

we compute the Jacobian matrix

∂�1(x⊥, x‖)
∂(x⊥, x‖)

=

⎡
⎢⎢⎣−n(x‖)

∂η
∂x‖,1 (x‖)

+x⊥[− ∂n
∂x‖,1 (x‖)]

∂η
∂x‖,2 (x‖)

+x⊥[− ∂n
∂x‖,2 (x‖)]

⎤
⎥⎥⎦
3×3

, (6.9)

where
[−n(x‖)

]
,

[
∂η
∂x‖,1 (x‖)

+x⊥[− ∂n
∂x‖,1 (x‖)]

]
,

[
∂η
∂x‖,2 (x‖)

+x⊥[− ∂n
∂x‖,2 (x‖)]

]
are column vectors in

R
3.
By the basic linear algebra, the Jacobian (a determinant of the Jacobian

matrix) equals

−n ·
(
∂η

∂x‖,1
× ∂η

∂x‖,2

)
+x⊥n ·

(
∂n
∂x‖,1

× ∂η

∂x‖,2

)
−x⊥n ·

(
∂n
∂x‖,2

× ∂η

∂x‖,1

)

−|x⊥|2n ·
(
∂n
∂x‖,1

× ∂n
∂x‖,2

)
.

We use the facts ∇η(x‖) �= 0 and ξ(η(x‖)) = 0 and

0 ≡ ∇ξ(η(x‖)) · ∂η
∂x‖,i

(x‖) = |∇ξ(η(x‖))|
(
n(x‖) · ∂η

∂x‖,i
(x‖)

)
.

Therefore

−n(x‖) ·
(
∂η

∂x‖,1
(x‖)× ∂η

∂x‖,2
(x‖)

)
�= 0, for all x‖ ∈ [0, 2π)× (0, π).

We conclude that there exists a small δ > 0 such that if |x⊥| ≤ δ and x‖ ∈
[0, 2π)× (0, π) then

det

(
∂�1(x⊥, x‖)
∂(x⊥, x‖)

)
= −n(x‖) ·

(
∂η

∂x‖,1
(x‖)× ∂η

∂x‖,2
(x‖)

)
+ Oξ (|x⊥|) �= 0.
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We use the inverse function theorem and we choose an inverse map

�−1
1 : �̄\Lp → [0, δ)× [0, 2π)× (0, π).

If x ∈ �1([0, δ)× [0, 2π)× (0, π)) then

�−1
1 (x) := (x⊥, x‖) and x = η(x‖)+ x⊥[−n(x‖)].

Since �1 is surjective onto �̄\Lp, for x ∈ �̄\Lp and x⊥ ≥ 0,

ξ(x) = ξ(η(x‖)+ x⊥[−n(x‖)])
= ξ(η(x‖))+

∫ x⊥

0

d

ds
ξ(η(x‖)+ s[−n(x‖)])ds

=
∫ x⊥

0
[−n(x‖)] · ∇ξ(η(x‖)+ s[−n(x‖)])ds

=
∫ x⊥

0

{
[−n(x‖)] · ∇ξ(η(x‖))+

∫ s

0
n(x‖) · ∇2ξ(η(x‖)

+τ [−n(x‖)]) · n(x‖)dτ
}
ds,

Then by the convexity of ξ in (1.13), we have the following equivalent relation:
Recall (6.4) and assume �p(x⊥p, x‖p, v⊥p, v‖p) = (x, v). Assume

dist(x, ∂�) < δ � 1, then from the argument in the proof of (ii) of Lemma
15, we know that (x⊥p, x‖p) is uniquely determined. Nowwe focus on v⊥p, v‖p
in (6.4). Since both ∂x‖η and ∂x‖n are perpendicular to n, it follows that
v⊥p = −(n(x‖)) · v is uniquely defined. Since ∂x1η and ∂x2η are linearly
independent for dist(x, ∂�) < δ � 1, v‖,i are uniquely determined as well.

Proof of (iii) of Lemma 15. Let q = (y, u) ∈ ∂�× S
2 with n(y) · u = 0 and

|p− q| � 1. First we claim

x⊥p = x⊥q,

ηp(x‖p) = ηq(x‖q),
v⊥p = v⊥q,

v‖p · ∇ηp(x‖p)− x⊥pv‖p · ∇np(x‖p) = v‖q · ∇ηq(x‖q)− x⊥qv‖q · ∇nq(x‖q).
(6.10)

Once we show the first two equalities then the third and fourth equalities
are clearly valid because np ⊥ v‖ ·∇x‖ηp and np ⊥ v‖ ·∇x‖np for all v‖ ∈ R

2.

(Since ξ(ηp) = 0 we have v‖,i∂x‖,i [ξ(ηp(x‖,1, x‖,2))] = v‖,i∂x‖,iηp ·∇x‖ξ = 0,
and since np · np = 1 we have np · [v‖ · ∇x‖np] = 0).
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Now we prove the first two equalities of (6.10) and it suffices to prove
ηp(x‖p) = ηq(x‖q). And it suffices to show that for x ∈ �̄ with |ξ(x)| � 1
there exists a unique x∗ ∈ ∂� ∩ B(x, δ) for some 0 < δ � 1 such that

|x − x∗|2 = min
y∈∂�,|y−x |�1

|x − y|2. (6.11)

By the definition of (6.8) the uniqueness of such x∗ in (6.11) implies ηp(x‖p) =
x∗ = ηq(x‖q).

The existence of such x∗ ∈ ∂� is clear from the compactness of ∂�.Without
loss of generality (up to rotation)wemay assume ∂x3ξ(y) �= 0 for |y−x∗| � 1
and ∂x1ξ(x

∗) = 0 = ∂x2ξ(x∗). Then we can find the graph a : (x1, x2) �→ R

but ξ(x1, x2, a(x1, x2)) = 0 when x∗ = (x∗1 , x∗2 , a(x∗1 , x∗2 )) ∈ ∂�. By the
implicit function theorem,

∂x1a = −∂x1ξ/∂x3ξ, ∂x2a = −∂x2ξ/∂x3ξ,

and ∂x1a(x
∗
1 , x

∗
2 ) = 0 = ∂x2a(x∗1 , x∗2 ).

Clearly x∗=(x∗1 , x∗2 , a(x∗1 , x∗2 )) satisfies
∣∣(x1, x2, x3)−(x∗1 , x∗2 , a(x∗1 , x∗2 ))

∣∣
� 1 and

∂

∂x∗i

∣∣(x1, x2, x3)− (x∗1 , x∗2 , a(x∗1 , x∗2 ))
∣∣2

= −
{
(xi − x∗i )+ (x3 − a(x∗1 , x∗2 ))

∂a

∂x∗i
(x∗1 , x∗2 )

}
= 0, for i = 1, 2,

if and only if (6.11) holds. We take x∗i −derivative to get

1+
(
∂a

∂x∗i
(x∗1 , x∗2 )

)2

− (x3 − a(x∗1 , x∗2 ))
∂2a

∂x∗i ∂x∗i
(x∗1 , x∗2 )

= 1− (x3 − a(x∗1 , x∗2 ))
∂2a

∂x∗i ∂x∗i
(x∗1 , x∗2 ) �= 0,

for |x3 − a(x∗1 , x∗2 )| �ξ 1. Using the inverse function theorem we have a
uniquely determined x∗ : {y ∈ �̄ : |y − x | � 1} → ∂� ∩ B(x, δ). This
proves our claim (uniqueness of x∗ in (6.11)) and therefore (6.10).

From the second equality of (6.10) and (6.2)

r̂(x‖q,1, x‖q,2) = OqO−1
p r̂(x‖p,1, x‖p,2).
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Therefore for i = 1, 2,

∑
j=1,2

∂ r̂

∂x‖q, j
(x‖q)

∂x‖q, j
∂x‖p,i

= OqO−1
p

∂ r̂

∂x‖p,i
(x‖p),

and from (6.1)

⎡
⎣− sin(x‖q,2)r̂(x‖q) sin(x‖q,2)θ̂(x‖q) φ̂(x‖q)

⎤
⎦
[

0 01,2
02,1

∂x‖q
∂x‖p

]

3×3

= OqO−1
p

⎡
⎣03,1 sin(x‖p,2)θ̂(x‖p) φ̂(x‖p)

⎤
⎦ ,

where we used θ̂ × φ̂ = −r̂ .
For x‖p,2, x‖q,2 /∈ {0, π},

⎡
⎢⎢⎣
0 0 0

0
∂x‖q,1
∂x‖p,1

∂x‖q,1
∂x‖p,2

0
∂x‖q,2
∂x‖p,1

∂x‖q,2
∂x‖p,2

⎤
⎥⎥⎦ =

⎡
⎢⎣

−1
sin(x‖q,2)

r̂(x‖q)T
1

sin(x‖q,2)
θ̂(x‖q)T

φ̂(x‖q)T

⎤
⎥⎦OqO−1

p

⎡
⎣ 03,1 sin(x‖p,2)θ̂(x‖p) φ̂(x‖p)

⎤
⎦ .

Here Oq = Op + Oξ (|p− q|), and sin(x‖p,2)θ̂(x‖p) = sin(x‖q,2)θ̂(x‖q)+
Oξ (|p− q|) and φ̂(x‖p) = φ̂(x‖q)+ Oξ (|p− q|).
Therefore for x‖p,2, x‖q,2 /∈ {0, π}

[
∂x‖q
∂x‖p

]

2×2

� Id2,2 + Oξ (|p− q|). (6.12)

From the third equality of (6.10)

[
−nq(x‖q)

∂1ηq(x‖q )
−x⊥q∂1nq(x‖q )

∂2ηq(x‖q )
−x⊥q∂2nq(x‖q )

] [ 0 01,2
02,1

∂v‖q
∂x‖p

]
= [

03,1 Z1 Z2
]
,

and

Zi =
2∑
j=1

v‖p, j
2∑

m=1

(
∂m∂ jηp−x⊥p∂m∂ jnp

) (
δmi−

∂x‖q,m
∂x‖p,i

)
�Oξ (1)|v||p−q|,

where we have used (6.12).
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Therefore

[
0 01,2

02,1
∂v‖q
∂x‖p

]
= 1

[−nq] ·
([∂1ηq − x⊥q∂1nq] × [∂2ηq − x⊥q∂2nq]

)

×
⎡
⎣ (∂1ηq − x⊥q∂1nq)× (∂2ηq − x⊥q∂2nq)

(∂2ηq − x⊥q∂2nq)× (−nq)
(−nq)× (∂1ηq − x⊥q∂1nq)

⎤
⎦[

03,1 Z1 Z2
]
,

and hence from the above estimate of Zi we have

[
∂v‖q
∂x‖p

]

2×2

�ξ |v‖p− q|.

Again from the fourth equality of (6.10) and nq(x‖q) = np(x‖p),

[
−nq(x‖q)

∂1ηq(x‖q )
−x⊥q∂1nq(x‖q )

∂2ηq(x‖q )
−x⊥q∂2nq(x‖q )

] [1 0

0
∂v‖q
∂v‖p

]

=
[
−np(x‖p)

∂1ηp(x‖p )
−x⊥p∂1np(x‖p )

∂2ηp(x‖p )
−x⊥p∂2np(x‖p )

]
.

Since
[
−np(x‖p)

∂1ηp(x‖p )
−x⊥p∂1np(x‖p )

∂2ηp(x‖p )
−x⊥p∂2np(x‖p )

]

=
[
−nq(x‖q)

∂1ηq(x‖q )
−x⊥q∂1nq(x‖q )

∂2ηq(x‖q )
−x⊥q∂2nq(x‖q )

]
+ Oξ (|p− q|),

we have

⎡
⎣
∂v‖q,1
∂v‖p,1

∂v‖q,1
∂v‖p,2

∂v‖q,2
∂v‖p,1

∂v‖q,2
∂v‖p,2

⎤
⎦ = Id2,2 + Oξ (|p− q|).

��
Lemma 16 Assume dx

dt = 0, dvdt = 0 and let�p(x⊥p, x‖p, v⊥p, v‖p) = (x, v).
(i) For |ξ(Xcl(s; t, x, v))| < δ and |Xcl(s; t, x, v)− Lp| > Cδ1 we define

(Xp(s; t, x, v),Vp(s; t, x, v)) := �−1
p (Xcl(s; t, x, v), Vcl(s; t, x, v))

:= (x⊥p(s; t, x, v), x‖p(s; t, x, v),
v⊥p(s; t, x, v), v‖p(s; t, x, v)).
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Then |v| � |Vp| and⎡
⎢⎢⎣
ẋ⊥p

ẋ‖p
v̇⊥p

v̇‖p

⎤
⎥⎥⎦ (s; t, x, v) =

⎡
⎢⎢⎣

v⊥p

v‖p
F⊥p(xp, vp)
F‖p(xp, vp)

⎤
⎥⎥⎦ (s; t, x, v). (6.13)

Here

F⊥p = F⊥p(x⊥p, x‖p, v‖p)

=
2∑

j,k=1

v‖p,kv‖p, j ∂ j∂kηp(x‖p) · np(x‖p)

−x⊥p

2∑
k=1

v‖p,k(v‖p · ∇)∂knp(x‖p) · np(x‖p), (6.14)

where
2∑

j,k=1

v‖p,kv‖p, j ∂ j∂kηp(x‖p) · np(x‖p) �ξ −|v‖|2,

and

F‖p = F‖p(x⊥p, x‖p, v⊥p, v‖p)

=
∑
i=1,2

Gp,i j (x⊥p, x‖p)
(−1)i

np(x‖p) · (∂1ηp(x‖p)× ∂2ηp(x‖p))
×
{
2v⊥pv‖p · ∇np(x‖p)− v‖p · ∇2ηp(x‖p) · v‖p (6.15)

+x⊥pv‖p · ∇2np(x‖p) · v‖p
}
· {np(x‖p)× ∂i+1ηp(x‖p)

}
,

where a smooth bounded function Gp,i j (x⊥p, x‖p) is specified in (6.22).
(ii) For τ ∈ (t�+1, t�), if the p�−spherical coordinate is well-defined in

[τ, t�) then
[X�(τ ; t, x, v),V�(τ ; t, x, v)]

≡ [X�(τ ; t�, 0, x�‖�, v�⊥�, v�‖�),V�(τ ; t�, 0, x�‖�, v�⊥�, v�‖�)]
and, for ∂v��

= [∂v�⊥� , ∂v�‖� ],
[ |∂x�‖�X�(τ )| |∂v��X�(τ )|
|∂x�‖�V�(τ )| |∂v��V�(τ )|

]
�

[
1 |τ − t�|

|v|2|τ − t�| 1

]
. (6.16)

123



204 Y. Guo et al.

For t�+1 < τ < s < t� then

X�(τ ; t, x, v) ≡ X�(τ ; s,X�(s; t, x, v),V�(s; t, x, v)),
V�(τ ; t, x, v) ≡ V�(τ ; s,X�(s; t, x, v),V�(s; t, x, v)),

and

[ |∂X�(s)X�(τ )| |∂V�(s)X�(τ )||∂X�(s)V�(τ )| |∂V�(s)V�(τ )|
]

�
[

1 |τ − s|
|v|2|τ − s| 1

]
. (6.17)

Moreover, for either [∂X, ∂V] = [∂x�‖� , ∂v�⊥� , ∂v�‖� ] or [∂X, ∂V] = [∂X�(s), ∂V�(s)]

[ |∂XF(τ )| |∂VF(τ )|
| ddτ ∂XF(τ )| | ddτ ∂VF(τ )|

]
�

[ |v|2 |v|
|v|3 |v|2

]
. (6.18)

Proof From v̇ = 0 and the second equation of (6.4) equals

0 = v̇⊥(s)[−n(x‖(s))] − 2v⊥(s)v‖ · ∇n(x‖(s))+ v̇‖(s) · ∇η(x‖(s))
+v‖ · ∇2η(x‖) · v‖ − x⊥v̇‖ · ∇n(x‖)− x⊥v‖ · ∇2n(x‖) · v‖. (6.19)

We take the inner product with n(x‖(s)) to the above equation to have

v̇⊥(s) = [v‖ · ∇2η(x‖) · v‖] · n(x‖)−x⊥[v‖ · ∇2n(x‖) · v‖] · n(x‖)
:= F⊥(v⊥, v‖, x‖), (6.20)

where we have used the fact ∇n ⊥ n and ∇η ⊥ n.
Since 0 = ξ(η(x‖)) we take x‖,i and x‖, j derivatives to have

0 = ∂x‖, j
[∑

k

∂kξ∂x‖,iηk

]
=

∑
k,m

∂k∂mξ∂x‖, jηm∂x‖,iηk +
∑
k

∂kξ∂x‖,i ∂x‖, jηk,

and from the convexity (1.13) and n = ∇ξ/|∇ξ |,

[
v‖ · ∇2η · v‖

] · n = ∑
i, j,k

v‖,i∂kξ∂i∂ jηkv‖, j
|∇ξ |

= −
∑

i, j,k,m

{v‖,i∂iηm}∂k∂mξ{∂ jηmv‖, j }
|∇ξ | �ξ −|v‖|2.
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Define ai j (x‖) via

[
a11 a12
a21 a22

]
=

[
∂1n · ∂1n ∂1n · ∂2n
∂2n · ∂1n ∂2n · ∂2n

] [
∂1η · ∂1η ∂1η · ∂2η
∂2η · ∂1η ∂2η · ∂2η

]−1

,

where det(∂iη · ∂ jη) = |∂1η × ∂2η|2 �= 0 due to (6.3). Then ∇n is generated
by ∇η :

−∂in(x‖) =
∑
k

aik(x‖)∂kη(x‖).

We take the inner product (6.19) with (−1)i+1(n(x‖)× ∂in(x‖)) to have
∑
k

(δki + x⊥aki )v̇‖,k

= (−1)i+1

−n(x‖) · (∂1η(x‖)× ∂2η(x‖))
× {−2v⊥v‖ · ∇n(x‖)+ v‖ · ∇2η(x‖) · v‖ − x⊥v‖ · ∇2n(x‖) · v‖

}
· (−n(x‖)× ∂i+1η(x‖)),

where we used the notational convention for ∂i+1η, the index i+1 mod 2 . For
|ξ(x)| � 1(and therefore |x⊥| � 1) the matrix δki + x⊥aki is invertible: there
exists the inverse matrixGi j such that

∑
i (δki+x⊥aki (x‖))Gi j (x⊥, x‖) = δk j .

Therefore we have

v̇‖, j =
∑
i

Gi j (x⊥, x‖)
(−1)i+1

−n(x‖) · (∂1η(x‖)× ∂2η(x‖))
× {−2v⊥v‖ · ∇n(x‖)+ v‖ · ∇2η(x‖) · v‖ − x⊥v‖ · ∇2n(x‖) · v‖

}
· (−n(x‖)× ∂i+1η(x‖))

:= F‖, j (x⊥, x‖, v⊥, v‖).
(6.21)

Here

[
G11 G12

G21 G22

]
= 1

1+ x⊥(a11 + a22)+ (x⊥)2(a11a22 − a12a21)

[
1+ x⊥a22 −x⊥a12
−x⊥a21 1+ x⊥a11

]
,

[
a11 a12
a21 a22

]
= 1

|∂1η|2|∂2η|2 − (∂1η · ∂2η)2

×
[ |∂1n|2|∂2η|2 − (∂1n · ∂2n)(∂1η · ∂2η) −|∂1n|2(∂1η · ∂2η)+ (∂1n · ∂2n)|∂1η|2
(∂1n · ∂2n)|∂2η|2 − |∂2n|2(∂1η · ∂2η) −(∂1n · ∂2n)(∂1η · ∂2η)+ |∂2n|2|∂1η|2

]
.

(6.22)
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To complete the proof of (6.13), from ẋ = v and v̇ = 0, we have

v = −v⊥n + v‖ · ∇η + x⊥[−∇n(x‖)]ẋ‖
= ẋ⊥(−n(x‖))+ x⊥[−∇n(x‖)]ẋ‖ + ∇ηẋ‖

0 = v̇⊥(−n(x‖))− v⊥∇nẋ‖ + v̇‖∇η + v‖∇2ηẋ‖
+ẋ⊥v‖[−∇n(x‖)] + x⊥v̇‖[−∇n(x‖)] + x⊥v‖[−∇2n]ẋ‖.

We therefore conclude that ẋ⊥ = v⊥, and ẋ‖ = v‖ from �−1
p .We then solve

v̇⊥ and v̇‖ to obtain (6.13).
Now we prove (6.16) and (6.17). From (6.14) and (6.15), ẋ‖� = v‖�, ẋ⊥� =

v⊥� and v̇⊥� = F⊥� and v̇‖� = F‖� . Denote ∂ = [ ∂

∂x�‖�
, ∂

∂v�⊥�
, ∂

∂v�‖�
]. From

(6.14) and (6.15),

[ |∂F⊥|
|∂F‖|

]
�

[ |v|2{|∂x⊥| + |∂x‖|} + |v||∂v‖|
|v|2{|∂x⊥| + |∂x‖|} + |v|{|∂v⊥| + |∂v‖|}

]
. (6.23)

Nowweuse a single (rough) bound of |∂F⊥|+|∂F‖| � |v|2{|∂x⊥|+|∂x‖|}+
|v|{|∂v⊥| + |∂v‖|} to have

d

dτ
{|∂v⊥�(τ )| + |∂v‖�(τ )|}

� |∂F⊥�(τ )| + |∂F‖�(τ )|
� |v|2{|∂x⊥�(τ )| + |∂x‖�(τ )|

}+ |v|{|∂v⊥�(τ )| + |∂v‖�(τ )|
}
.

Combining with d
dτ [x⊥�(τ ), x‖�(τ )] = [v⊥�(τ ), v‖�(τ )] yields

d

dτ

[ |∂x⊥�(τ )| + |∂x‖�(τ )||∂v⊥�(τ )| + |∂v‖�(τ )|
]

�ξ
[

0 1
|v|2 |v|

] [ |∂x⊥�(τ )| + |∂x‖�(τ )||∂v⊥�(τ )| + |∂v‖�(τ )|
]
.

By Lemma 4 we prove our claim (6.16). The proof of (6.17) is exactly same
but we use ∂ = [∂X�(s), ∂V�(s)] to conclude the proof.

We prove the first row of (6.18) by (6.23). By taking the time derivative to
(6.14), (6.15) and applying (6.13), we prove the second row of row of (6.18).

��
We are ready to prove Theorem 5:

Proof of Theorem 5 First we consider the case of t < tb(x, v). In this case

(Xcl(s; t, x, v), Vcl(s; t, x, v)) = (x − (t − s)v, v).
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Directly

∂(Xcl(s; t, x, v), Vcl(s, t, x, v))
∂(t, x, v)

=
[ −v Id3,3 −(t − s)Id3,3
03,1 03,3 Id3,3

]
6×7
,

where Idm,m is the m by m identity matrix and 0m,n is the m by n zero matrix.
Now we consider the case of t ≥ tb(x, v). We split our proof into 10 steps.

Step 1. Moving frames and grouping with respect to the scaling t |v| = Lξ ,
with fixed 0 < Lξ � 1.

Fix (t, x, v) ∈ [0,∞) × �̄ × R
3. Also we fix small constant δ = δξ > 0

which depends on the domain. We define, at the boundary,

r� := |v�⊥|
|v�| =

|v · n(x�)|
|v| = |Vcl(t�; t, x, v) · n(Xcl(t�; t, x, v))|

|v| . (6.24)

Bounces �(and (t�, x�, v�)) are categorized as Type I or Type II:

a bounce � is T ype I (almost grazing) if and only if r� ≤ √
δ,

a bounce � is T ype I I (non-grazing) if and only if r� >
√
δ.

(6.25)

Let s∗ ∈ [t�+1, t�] such that

|ξ(Xcl(s∗; t�, x�, v�))| = max
t�+1≤τ≤t�

|ξ(Xcl(τ ; t�, x�, v�))|.

Since

d2

ds2
ξ(Xcl(s; t�, x�, v�)) = d2

ds2
ξ(x� − (t� − s)v�) = v� · ∇2

x ξ(x
� − (t� − s)v�) · v� > 0

there exists a unique s∗ solving

d

ds
ξ(Xcl(s∗; t�, x�, v�)) = v� · ∇xξ(Xcl(s∗; t�, x�, v�)) = 0.
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Note that v� · ∇ξ(x�− (t�− s)v�) is monotone in either one of the interval
(t�+1, s∗) or (s∗, t�).Without of generalitywemay assume |t�−s∗| ≥ 1

2 |t�+1−
t�|. Then

|ξ(Xcl(s∗; t�, x�, v�))| =
∣∣∣∣∣
∫ t�

s∗
v� · ∇ξ(x� − (t� − s)v�, v�)ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ t�

s∗

∫ t�

s
v� · ∇2ξ(x� − (t� − τ)v�, v�) · v�dτds

∣∣∣∣∣

�ξ |v
�|2|t� − s∗|2

2
�ξ

(
sup

s∈[t�+1,t�]
|v� · n(Xcl(s))|

|v�|

)2

,

where we used (2.2) and (2.3) and the Velocity lemma (Lemma 2).
Therefore if a bounce � is Type I then maxt�+1≤τ≤t� |ξ(Xcl(τ ; t, x, v))| ≤

Cδ. If a bounce � is Type II then |ξ(Xcl(τ ; t, x, v))| > Cδ for some τ ∈
[t�+1, t�]. We always assume that v �= 0.

Now we assign a coordinate chart for each bounce � (moving frames).
For Type I bounce � in (6.25), we assign p� ∈ ∂� × S

2 and p�−spherical
coordinates in Lemma 15 and (6.4): we choose p� := (z�, w�) on ∂� × S

2

with n(z�) · w� = 0

z� = x�, w� = v� − (v� · n(z�))n(z�)
|v� − (v� · n(z�))n(z�)| . (6.26)

Note that, by the definition of Type I bounce, |v� − (v� · n(z�)n(z�))|2 =
|v|2 − |v�⊥|2 � |v|2(1− δ) �δ |v|2 and hence w� is well-defined.

Moreover
|Xcl(s; t, x, v)− Lp� | � Cδ > 0, (6.27)

for |v‖t� − s| ≤ 1
100 minx∈∂� |x |. This is due to the fact that the projection of

Vcl(s) on the plane passing z� and perpendicular to n(z�)× w� is at most |v|
magnitude but the distance from z� to the origin(the projection of poles Np�

and Sp�) has lower bound
1
10 minx∈∂� |x |, |s − t�| � 1.

For Type II bounce �(t�, x�, v�), we choose p� = (z�, w�) with |z�− x�| ≤√
δ but we choose arbitrary w� ∈ S

2 satisfying n(z�) · w� = 0. We choose
p�−spherical coordinate in Lemma 15 and (6.4) with this p�. Note that unlike
Type I, this p�−spherical coordinate might not be defined for s ∈ [t�+1, t�]
but only defined near the boundary.
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Whenever the moving frame is defined (for all τ ∈ (t�+1, t�]when � is Type
I, and |τ − t�| � 1 when � is Type II) we denote, by (6.4) and (6.10),

(X�(τ ),V�(τ )) = (x⊥�(τ ), x‖�(τ ), v⊥�(τ ), v‖�(τ )) := �−1
p�
(Xcl(τ ), Vcl(τ )).

Especially at the boundary we denote

(x�⊥�, x
�‖�, v

�⊥�, v
�‖�) := lim

τ↑t�
(X�(τ ),V�(τ )), with x�⊥� = 0, v�⊥� ≥ 0.

Then we define

(x�+1
⊥� , x

�+1
‖� , v

�+1
‖� ) = lim

τ↓t�+1
(x⊥�(τ ), x‖�(τ ), v‖�(τ )),

and
v�+1
⊥� := − lim

τ↓t�+1
v⊥�(τ ). (6.28)

Now we regroup the indices of the specular cycles, without order changing,
as

{0, 1, 2, . . . , �∗ − 1, �∗} = {0} ∪ G1 ∪ G2 ∪ · · · ∪ G[ |t−s‖v|
Lξ

] ∪ G[ |t−s‖v|
Lξ

]+1,

where [a] ∈ N is the greatest integer less than or equal to a. Each group is

G1 = {1, . . . , �1 − 1, �1},
G2 = {�1, �1 + 1, . . . , �2 − 1, �2},
...

G[ |t−s‖v|
Lξ

] = {�[ |t−s‖v|
Lξ

]−1, �[ |t−s‖v|
Lξ

]−1 + 1, . . . , �[ |t−s‖v|
Lξ

] − 1, �[ |t−s‖v|
Lξ

]},
G[ |t−s‖v|

Lξ
]+1 = {�[ |t−s‖v|

Lξ
], �[ |t−s‖v|

Lξ
] + 1, . . . , �∗},

(6.29)
where �1 = inf{� ∈ N : |v| × |t0 − t�1 | ≥ Lξ } and inductively

�i = inf{� ∈ N : |v| × |t�i − t�i+1 | ≥ Lξ }, (6.30)

and we have denoted �∗ = �[ |t−s‖v|
Lξ

]+1.

Our analysis is carried out in each group Gi . We note that within each
Gi , |t�i − t�i+1‖v| < Lξ by our design, so from the velocity lemma, r�i is
comparable to each other, so is |v�|. We can also cover the entire Gi via a
single chart in Section 8. By the chain rule, with the assigned p�−spherical
coordinate (moving frame), we have for fixed 0 ≤ s ≤ t and s ∈ (t�∗+1, t�∗)
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∂(Xcl(s; t, x, v), Vcl(s; t, x, v))
∂(t, x, v)

= ∂(Xcl(s), Vcl(s))

∂(t�∗ , x�∗‖�∗ , v
�∗⊥�∗ , v

�∗‖�∗ )︸ ︷︷ ︸
from the last bounce to the s-plane

×
[ |t−s‖v|

L∗ ]∏
i=1

∂(t�i+1 , x�i+1
‖�i+1

, v�i+1
⊥�i+1

, v�i+1
‖�i+1

)

∂(t�i+1−1, x�i+1−1
‖�i+1−1

, v�i+1−1
⊥�i+1−1

, v�i+1−1
‖�i+1−1

)
× · · · ×

∂(t�i+1, x�i+1
‖�i+1

, v�i+1
⊥�i+1

, v�i+1
‖�i+1

)

∂(t�i , x�i‖�i , v
�i⊥�i , v

�i‖�i )︸ ︷︷ ︸
i−th intermediate group︸ ︷︷ ︸

whole intermediate groups

× ∂(t1, x1‖1 , v
1⊥1
, v1‖1)

∂(t, x, v)︸ ︷︷ ︸
from the t-plane to the first bounce

.

(6.31)
Step 2. From the last bounce �∗ to the s− plane

We choose s�∗ ∈ ( t�∗+s
2 , t�∗) ⊂ (s, t�∗) such that |v‖t�∗ − s�∗ | � 1 and

the �∗-spherical coordinate (X�∗(s�∗),V�∗(s�∗)) is well-defined regardless of

types of �∗ in (6.25). Notice that s�∗ is independent of t�∗ and s so that ∂s
�∗

∂t�∗ =
0 = ∂s�∗

∂s .

Wefirst follow the flow in (x, v) co-ordinate to near the boundary at t = s�∗ ,
change to the chart to (X, V ), then follow the flow in (X, V ). Regarding s�∗

as a free variable, by the chain rule,

∂(Xcl(s), Vcl(s))

∂(t�∗ , x�∗‖�∗ , v
�∗⊥�∗ , v

�∗‖�∗ )

= ∂(Xcl(s), Vcl(s))

∂(s�∗ ,X�∗(s�∗),V�∗(s�∗))

∂(s�∗ , x⊥�∗ (s
�∗), x‖�∗ (s

�∗), v⊥�∗ (s
�∗), v‖�∗ (s

�∗))

∂(t�∗, x�∗‖�∗ , v
�∗⊥�∗ , v

�∗‖�∗ )

= ∂(Xcl(s), Vcl(s))

∂(s�∗ , Xcl(s�∗), Vcl(s�∗))

∂(s�∗ , Xcl(s�∗), Vcl(s�∗))

∂(s�∗ ,X�∗(s�∗),V�∗(s�∗))

× ∂(s
�∗ , x⊥�∗ (s

�∗), x‖�∗ (s
�∗), v⊥�∗ (s

�∗), v‖(s�∗))
∂(t�∗, x�∗‖�∗ , v

�∗⊥�∗ , v
�∗‖�∗ )

.

Firstly, we claim

∂(Xcl(s), Vcl(s))

∂(s�∗,X�∗(s�∗),V�∗(s�∗))

=
[−Vcl(s�∗) Oξ (1)(1+ |v‖s�∗ − s|) Oξ (1)|s�∗ − s|

03,1 Oξ (1)|v| Oξ (1)

]
. (6.32)
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Since

Xcl(s) = Xcl(s
�∗)− (s�∗ − s)Vcl(s

�∗), Vcl(s) = Vcl(s
�∗),

and s�∗ is independent of s, we have

∂(Xcl(s), Vcl(s))

∂(s�∗, Xcl(s�∗), Vcl(s�∗))
=

[−Vcl(s�∗) Id3,3 −(s�∗ − s)Id3,3
03,1 03,3 Id3,3

]
.

Furthermore due to Lemma 15, we conclude

∂(s�∗, Xcl(s�∗), Vcl(s�∗))

∂(s�∗,X�∗(s�∗),V�∗(s�∗))

=

⎡
⎢⎢⎣

1 01,3 01,3

03,1 −n�∗
∂1η�∗−x⊥�∗ ∂1n�∗

∂2η�∗−x⊥�∗ ∂2n�∗
03,3

03,1 −v‖�∗ · ∇x‖�∗ n�∗
v‖�∗ ·∇∂1η�∗−v⊥�∗ ∂1n�∗−x⊥�∗ v‖�∗ ·∇∂1n�∗

v‖�∗ ·∇∂2η�∗−v⊥�∗ ∂2n�∗−x⊥�∗ v‖�∗ ·∇∂2n�∗
−n�∗

∂1η�∗−x⊥�∗ ∂1n�∗
∂2η�∗−x⊥�∗ ∂2n�∗

⎤
⎥⎥⎦ ,

where all entries are evaluated at (X�∗(s
�∗),V�∗(s

�∗)). The multiplication of
the above two matrices gives (6.32).

Secondly, we claim that whenever p�−spherical coordinate is defined for
all τ ∈ [s�, t�], we have the following 7× 6 matrix

∂(s�, x⊥� (s�), x‖� (s�), v⊥� (s�), v‖� (s�))
∂(t�, x�‖� , v

�⊥� , v
�‖� )

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 01,2 0 01,2

−v⊥(s�) Oξ (1)|v|2|t� − s�|2 Oξ (1)|t� − s�| Oξ (1)|v||t� − s�|2
−v‖(s�) Id2,2 + Oξ (1)|v|2|t� − s�|2 Oξ (1)|v||t� − s�|2 Oξ (1)|t� − s�|(Id2,2 + |v‖t� − s�|)
Oξ (1)|v|2 Oξ (1)|v|2|t� − s�| 1+ Oξ (1)|v‖t� − s�| Oξ (1)|v‖t� − s�|
Oξ (1)|v|2 Oξ (1)|v|2|t� − s�| Oξ (1)|v‖t� − s�| Id2,2 + Oξ (1)|v‖t� − s�|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(6.33)
In this step we just need (6.33) for � = �∗ but we need (6.33) for general � in
Step 8.

Clearly the first raw is identically zero since s� is chosen to be independent
of (t�, x�‖�, v

�⊥�, v
�‖�). The first column (temporal derivatives) holds due to the

fact that the characteristics ODE (6.13) is autonomous. Moreover,
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∂

∂t�
(X�(s�; t�, x�, v�),V�(s�; t�, x�, v�))

= ∂

∂t�
(X�(s� − t�; 0, x�, v�),V�(s� − t�; 0, x�, v�))

= − ∂

∂s�
(X�(s�; t�, x�, v�),V�(s�; t�, x�, v�))

= −(V�(s�; t�, x�, v�), F(X�(s�; t�, x�, v�),V�(s�; t�, x�, v�))
= (−v⊥(s�),−v‖(s�), Oξ (1)|v|2, Oξ (1)|v|2).

Now we turn to other entries in (6.33). From the characteristics ODE (6.13)
in the p�−spherical coordinate (6.16), (6.17), and (6.18), we deduce (6.33) for
|v‖s� − t�| � 1.

Step 3. From t− plane to the first bounce
We choose s1 ∈ (t1, t1+t

2 ) ⊂ (t1, t) such that |v‖t1− s1| � 1 and the polar
coordinate (X1(s1),V1(s1)) is well-defined.More precisely we choose 0 <  
such that |v‖t − − t1| � 1 and define

s1 := t − . (6.34)

We first follow the flow in the cartesian coordinate to near the boundary at
s1, change to the chart to p�-spherical coordinate, then follow the flow in that
coordinate.

Then, by the chain rule,

∂(t1, x1‖1, v
1⊥1
, v1‖1)

∂(t, x, v)

= ∂(t1, x1‖1, v
1⊥1
, v1‖1)

∂(s1, Xcl(s1), Vcl(s1))

∂(s1, Xcl(s1), Vcl(s1))

∂(t, x, v)

= ∂(t1, x1‖1, v
1⊥1
, v1‖1)

∂(s1, x⊥1(s
1), x‖1(s1), v⊥1(s

1), v‖1(s1))
∂(s1,X1(s1),V1(s1))

∂(s1, Xcl(s1), Vcl(s1))

× ∂(s
1, Xcl(s1), Vcl(s1))

∂(t, x, v)
.

We fix p1−spherical coordinate and drop the index of the chart.
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Firstly, we claim
∂(t1, x1‖, v1⊥, v1‖)

∂(s1, x⊥(s1), x‖(s1), v⊥(s1), v‖(s1))

��

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1
|v1⊥|

|v|2|s1−t1|2
|v1⊥|

|s1−t1|
|v1⊥|

|v‖s1−t1|2
|v1⊥|

02,1
|v|
|v1⊥|

+ |v|2|s1 − t1|2 Id2,2 + |v‖s1 − t1| |s1−t1‖v|
|v1⊥|

+ |s1 − t1|2|v| |s1 − t1|
0 |v|2

|v1⊥|
+ |v|2|s1 − t1| |v|2

|v1⊥|
+ |v|2|s1 − t1| 1+ |v‖s1 − t1| |v‖s1 − t1|

02,1
|v|2
|v1⊥|

+ |v|2|s1 − t1| |v|2|s1 − t1| 1+ |v‖s1 − t1| Id2 + |v||s1 − t1|

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(6.35)
Note that since ODE is autonomous we have ∂t

1

∂s = 1, ∂(x
1,v1)
∂s1

= 0.

The t1 is determined via x⊥(t1) = 0, i.e.

0 = x⊥(s1)− v⊥(s1)(s1 − t1)+
∫ s1

t1

∫ s1

s
F⊥(X(τ ),Vcl(τ ))dτds, (6.36)

where X(τ ) = X(τ ; s1,X(s1; t, x, v),V(s1; t, x, v)),V(τ ) = V(τ ; s1,
X(s1; t, x, v),V(s1; t, x, v)). For ∂ ∈ {∂x⊥(s1), ∂x‖(s1), ∂v⊥(s1), ∂v‖(s1)},

v⊥(s1)∂t1 − ∂t1
∫ s1

t1
F⊥(X(τ ),V(τ ))dτ + ∂x⊥(s1)− ∂v⊥(s1)(s1 − t1)

+
∫ s1

t1

∫ s1

s
{∂X(τ ) · ∇XF⊥ + ∂V(τ ) · ∇VF⊥}(X(τ ),V(τ ))dτds = 0.

(6.37)

But v1⊥ = − lims↓t1 v⊥(s) = −v⊥(s1) +
∫ s1

t1 F⊥(X(τ ),V(τ ))dτ , we apply

Lemma 16 and |s1 − t1| �ξ min{ |v1⊥||v|2 , t} and (2.2) and (2.3), to obtain
⎡
⎢⎢⎢⎢⎢⎢⎣

∂t1

∂x⊥(s1)
∂t1

∂x‖(s1)
∂t1

∂v⊥(s1)
∂t1

∂v⊥(s1)

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
v1⊥

{
1+ ∫ s1

t1
∫ s1

s
∂

∂x⊥(s1)
F⊥(X(τ ),V(τ ))dτds

}
1
v1⊥

∫ s1

t1
∫ s1

s
∂

∂x‖(s1)
F⊥(X(τ ),V(τ ))dτds

1
v1⊥

{
(t1 − s1)+ ∫ s1

t1
∫ s1

s
∂

∂v⊥(s1)
F⊥(X(τ ),V(τ ))dτds

}
1
v1⊥

∫ s1
t1

∫ s1
s

∂
∂v‖(s1)F⊥(X(τ ),V(τ ))dτds

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

� ξ,t

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
|v1⊥|

|v|2|s1−t1|2
|v1⊥|

|s1−t1|
|v1⊥|

|v‖s1−t1|2
|v1⊥|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Taking (x(s1), v(s1)) derivatives of the characteristic equations

v1⊥ = − lim
s↓t1

v⊥(s) = −v⊥(s1)+
∫ s1

t1
F⊥(Xcl(τ ),Vcl(τ ))dτ,

x1‖ = x‖(s1)−
∫ s1

t1
v‖(s)ds,

v1‖ = v‖(s1)−
∫ s1

t1
F‖(Xcl(τ ),Vcl(τ ))dτ.

and using the above estimates, (6.37) and Lemma 16 yields

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x1‖
∂x⊥(s1)
∂x1‖

∂x‖(s1)
∂x1‖

∂v⊥(s1)
∂x1‖

∂v‖(s1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

�ξ,t

⎡
⎢⎢⎢⎢⎢⎣

|v|
|v1⊥|

+ |v|2|s1 − t1|2
Id2,2 + |v‖s1 − t1|

|s1−t1‖v|
|v1⊥|

+ |s1 − t1|2|v|
|s1 − t1|

⎤
⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂v1⊥
∂x⊥(s1)
∂v1⊥
∂x‖(s1)
∂v1⊥

∂v⊥(s1)
∂v1⊥
∂v‖(s1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

�ξ,t

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

|v|2
|v1⊥|

+ |v|2|s1 − t1|
|v|2
|v1⊥|

+ |v|2|s1 − t1|
1+ |v‖s1 − t1|
|v‖s1 − t1|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂v1‖
∂x⊥(s1)
∂v1‖

∂x‖(s1)
∂v1‖

∂v⊥(s1)
∂v1‖

∂v‖(s1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�ξ,t

⎡
⎢⎢⎢⎣

|v|2
|v1⊥|

+ |v|2|s1 − t1|
|v|2|s1 − t1|

1+ |v‖s1 − t1|
Id2,2 + |v‖s1 − t1|

⎤
⎥⎥⎥⎦ .

Secondly, we claim

∂(X1(s1),V1(s1))

∂(t, x, v)
= ∂(X1(s1),V1(s1))

∂(Xcl(s1), Vcl(s1))

∂(Xcl(s1), Vcl(s1))

∂(t, x, v)
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(∂1η×∂2η)T
n·(∂1η×∂2η) + Oξ (|v‖t1 − s1|) Oξ (|t − s1|)

03,1
(∂2η×n)T

n·(∂1η×∂2η) + Oξ (|v‖t1 − s1|) Oξ (|t − s1|)
(n×∂2η)T

n·(∂1η×∂2η) + Oξ (|v‖t1 − s1|) Oξ (|t − s1|)
Oξ (|v|) (∂1η×∂2η)T

n·(∂1η×∂2η)+Oξ (|v||t − s1|)
03,1 Oξ (|v|) (∂2η×n)T

n·(∂1η×∂2η)+Oξ (|v||t − s1|)
Oξ (|v|) (n×∂1η)T

n·(∂1η×∂2η)+Oξ (|v||t − s1|)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
6×7

,

(6.38)

where the entries are evaluated at (X1(s1),V1(s1)). Note that |v‖t1−s1| �ξ 1.
From (6.5)

∂(Xcl(s1), Vcl(s1))

∂(X(s1),V(s1))
= ∂�(X(s1),V(s))
∂(X(s1),V(s))

:=
[
A 03,3
B A

]
+ x⊥

[
03,3 03,3
D 03,3

]
.

Note that, from (6.9) and (6.3),

det(A) = det[ [−n(x‖)] ∂x‖,1η(x‖) ∂x‖,2η(x‖) ]
= [−n(x‖)] · (∂x‖,1η(x‖)× ∂x‖,2η(x‖)) �= 0,

A−1 = 1

[−n] · (∂x‖,1η × ∂x‖,2η)
× [(∂x‖,1η × ∂x‖,2η)T , (∂x‖,2η × [−n])T , ([−n] × ∂x‖,1η)T ].

From basic linear algebra

det

(
∂(Xcl(s1), Vcl(s1))

∂(Xcl(s1),Vcl(s1))

)
= det

[
A 03,3

B + x⊥D A

]

= {det(A)}2 = {[−n] · (∂1η × ∂2η)}2,

and
(
∂(Xcl(s1),Vcl(s1))
∂(Xcl(s1),Vcl(s1))

)
is invertible. From basic linear algebra

∂(Xcl(s1),Vcl(s1))

∂(Xcl(s1), Vcl(s1))
=

[
∂(Xcl(s1), Vcl(s1))

∂(Xcl(s1),Vcl(s1))

]−1

=
[

A 03,3
B + x⊥D A

]−1

=
[

A−1 03,3
−A−1(B + x⊥D)A−1 A−1

]
=

[
A−1(x‖) 03,3

|v| + Oξ (x⊥) A−1(x‖)

]
, (6.39)

123



216 Y. Guo et al.

and we obtain

∂(Xcl(s1),Vcl(s1))

∂(Xcl(s1), Vcl(s1))
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(∂1η×∂2η)T
[−n]·(∂1η×∂2η)
(∂2η×[−n])T
[−n]·(∂1η×∂2η) 03,3
([−n]×∂1η)T
[−n]·(∂1η×∂2η)
Oξ (1)(|v|) (∂1η×∂2η)T

[−n]·(∂1η×∂2η)
Oξ (1)(|v|) (∂2η×[−n])T

[−n]·(∂1η×∂2η)
Oξ (1)(|v|) ([−n]×∂1η)T

[−n]·(∂1η×∂2η)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From Xcl(s1; t, x, v) = x−(t−s1)v = x− ×v and Vcl(s1; t, x, v) = v,
∂(Xcl(s1), Vcl(s1))

∂(t, x, v)
=

[
03,1 Id3,3 −(t − s1)Id3,3
03,1 03,3 Id3,3

]
.

Finally we multiply the above two matrices and use |x⊥(s1)| � |v‖t1− s1| to
conclude the second claim (6.38).

Step 4. Estimate of ∂(t�+1, x�+1
‖�+1
, v�+1

⊥�+1
, v�+1

‖�+1
)/∂(t�, x�‖�, v

�⊥�, v
�‖�)

Recall r� from (6.24). We show that there exists M=Mξ,t � 1, which only
depends on �, such that for all �∈N and 0≤ t�+1≤ t�≤ t and v ∈ R

3,

J �+1
� := ∂(t�+1, x�+1

‖�+1
, v�+1

⊥�+1
, v�+1

‖�+1
)

∂(t�, x�‖� , v
�⊥� , v

�‖�)

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 M
|v|r

�+1 M
|v|r

�+1 M
|v|2

M
|v|2 r

�+1 M
|v|2 r

�+1

0 1+ Mr�+1 Mr�+1 M
|v|

M
|v|r

�+1 M
|v|r

�+1

0 Mr�+1 1+ Mr�+1 M
|v|

M
|v|r

�+1 M
|v|r

�+1

0 M |v|(r�+1)2 M |v|(r�+1)2 1+ Mr�+1 M(r�+1)2 M(r�+1)2

0 M |v|r�+1 M |v|r�+1 M 1+ Mr�+1 Mr�+1

0 M |v|r�+1 M |v|r�+1 M Mr�+1 1+ Mr�+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

:= J (r�+1)︸ ︷︷ ︸
Definition of J (r�+1)

. (6.40)

Wealso denote the Jacobianmatrixwithin a singlep�− spherical coordinate:

J̃ �+1
� := ∂(t�+1, x�+1

‖� , v
�+1
⊥� , v

�+1
‖� )

∂(t�, x�‖�, v
�⊥�, v

�‖�)
.

Note this bound (6.40) holds for both Type I and Type II in (6.25). We split
the proof for each Type:
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Proof of (6.40) when r� <
√
δ and r�+1 <

√
δ: Note that p�−spherical

coordinate is well-defined of all τ ∈ [t�+1, t�]. Due to the chart changing

∂(t�+1, x�+1
‖�+1
, v�+1

⊥�+1
, v�+1

‖�+1
)

∂(t�, x�‖�, v
�⊥�, v

�‖�)

=
⎡
⎣ 1 01,5

05,1
∂(x�+1

‖�+1
,v�+1
⊥�+1

,v�+1
‖�+1

)

∂(x�‖� ,v
�⊥� ,v

�‖� )

⎤
⎦ ∂(t�+1, 0, x�+1

‖� , v
�+1
⊥� , v

�+1
‖� )

∂(t�, 0, x�‖�, v
�⊥�, v

�‖�)︸ ︷︷ ︸
= J̃ �+1

�

.

where
∂(x�+1

‖�+1
,v�+1
⊥�+1

,v�+1
‖�+1

)

∂(x�‖� ,v
�⊥� ,v

�‖� )
is the 5× 5 right lower submatrix of (6.6).

Note that |p� − p�+1| �ξ r� from r� ≤ C
√
δ, (6.26) and (2.2). In order to

show (6.40) it suffices to show that J̃ �+1
� is bounded as (6.40):

J̃ �+1
� ≤ J (r�+1). (6.41)

This is due to the following matrix multiplication

⎡
⎣ 1 01,5

05,1
∂(x�+1

‖�+1
,v�+1
⊥�+1

,v�+1
‖�+1

)

∂(x�‖� ,v
�⊥� ,v

�‖� )

⎤
⎦ J̃ �+1

�

≤

⎡
⎢⎢⎢⎢⎢⎢⎣

1 01,2 01,3
02,1 1+ Cr�+1 Cr�+1 03,3

Cr�+1 1+ Cr�+1

0 0 1 0 0
03,1 Cr�+1|v| Cr�+1|v| 0 1+ Cr�+1 Cr�+1

Cr�+1|v| Cr�+1|v| 0 Cr�+1 1+ Cr�+1

⎤
⎥⎥⎥⎥⎥⎥⎦
J (r�+1)

≤ J (Cr�+1),

where we used (6.6) with an adjusted constant C > 0.
Now we prove the claim (6.41). We fix the p�−spherical coordinate and

drop the index � for the chart.
If v�⊥ = 0 then t�+1 = t�. Otherwise if v�⊥ �= 0 then t�+1 is determined

through

0 = v�⊥(t�+1 − t�)+
∫ t�

t�+1

∫ t�

s
F⊥(X�(τ ; t�, x�, v�),V�(τ ; t�, x�, v�))dτds.

(6.42)
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Since the ODE for [X�(τ ; t, x, v),V�(τ ; t, x, v)] is autonomous,

0 = v�⊥(t�+1 − t�)

+
∫ t�−t�+1

0

∫ 0

t�+1−t�+s
F⊥(X�(τ ; 0, x�, v�),V�(τ ; 0, x�, v�))dτds.

We take t�-derivative to have

0 = ∂(t�+1 − t�)

∂t�

{
v�⊥ −

∫ t�−t�+1

0
F⊥(X�,V�)(t�+1 − t� + s; 0, x�, v�)ds

}
,

= ∂(t�+1 − t�)

∂t�

{
v�⊥ −

∫ t�

t�+1
F⊥(X�(s; t�, x�, v�),V�(s; t�, x�, v�))ds

}

= ∂(t�+1 − t�)

∂t�
(−v�+1

⊥ ),

where we used the definition

v�+1
⊥ = − lim

s↓t�+1
v⊥(s) = −v�⊥ +

∫ t�

t�+1
F⊥(X(τ ; t, x, v),V(τ ; t, x, v))dτ.

(6.43)
Therefore we conclude ∂t

�+1

∂t�
= 1. Then combining with

x�+1
‖ =x�‖+

∫ t�+1−t�

0
v‖(s; 0, x�, v�)ds, v�+1=v�+

∫ t�+1−t�

0
F(s; 0, x�, v�)ds,

(6.44)

we conclude
∂x�+1

‖
∂t�

= ∂v�+1
‖
∂t�

= ∂v�+1
⊥
∂t�

= 0.

Taking derivatives of (6.42) as before and using |t� − t�+1| �ξ,t
min{ |v�+1

⊥ |
|v|2 , 1}, from (2.3), and Lemma 16, we obtain

⎡
⎢⎢⎢⎣

∂t�+1

∂x�‖
∂t�+1

∂v�⊥
∂t�+1

∂v�‖

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1
v�+1
⊥

∫ t�+1

t�
∫ s
t�

∂

∂x�‖
F⊥(X�(τ ),V�(τ ))dτds

1
v�+1
⊥

{
(t�+1 − t�)+ ∫ t�+1

t�
∫ s
t�

∂

∂v�⊥
F⊥(X�(τ ),V�(τ ))dτds

}

1
v�+1
⊥

∫ t�

t�+1

∫ t�

s
∂

∂v�‖
F⊥(X�(τ ),V�(τ ))dτds

⎤
⎥⎥⎥⎥⎥⎦
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�ξ,t

⎡
⎢⎢⎣

1
|v|

|v�+1
⊥ |
|v|
1
|v|2

1
|v|2

|v�+1
⊥ |
|v|

⎤
⎥⎥⎦ . (6.45)

Taking (x(t�), v(t�)) derivatives of the characteristic equations (6.44), by
Lemma 16 and (6.45), we estimate directly

⎡
⎢⎢⎢⎢⎢⎣

∂x�+1
‖
∂x�‖
∂x�+1

‖
∂v�⊥
∂x�+1

‖
∂v�‖

⎤
⎥⎥⎥⎥⎥⎦

�ξ,t

⎡
⎢⎢⎣
Id2,2 + |v�⊥||v|

1
|v|

1
|v|

|v�+1
⊥ |
|v|

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

∂v�+1
‖
∂x�‖
∂v�+1

‖
∂v�⊥
∂v�+1

‖
∂v�‖

⎤
⎥⎥⎥⎥⎥⎦

�ξ,t

⎡
⎢⎢⎣

|v�+1
⊥ |

1+ |v�+1
⊥ |
|v�|

Id2,2 + |v�+1
⊥ |
|v�|

⎤
⎥⎥⎦ .

Now we move to Dv�+1
⊥ estimates. First we claim the crucial estimate of

t� − t�+1:

(t� − t�+1)F⊥(x�, v�) = 2v�+1
⊥ + Oξ (1)|t� − t�+1|2|v�|3. (6.46)

As (6.42), we use the fact x�⊥ = 0 = x�+1
⊥ and the definition v�+1

⊥ =
− lims↓t�+1 v⊥(s) and

v̇⊥(s) = F⊥(X�(s; t�, x�, v�),V�(s; t�, x�, v�))
= F⊥(X�(s; t�+1, x�+1, v�+1),V�(s; t�+1, x�+1, v�+1)),

to conclude the similar identity of (6.42)

0 = −v�+1
⊥ (t� − t�+1)

+
∫ t�

t�+1

∫ s

t�+1
F⊥(X�(τ ; t�+1, x�+1, v�+1),V�(τ ; t�+1, x�+1, v�+1))dτds.

(6.47)

By Lemma 16, F⊥(X�(τ ; t�, x�, v�),V�(τ ; t�, x�, v�)) = F⊥(x�, v�) +
Oξ (1)|t�+1 − t�‖v|3. Plugging this into (6.47) we have

0 = −v�+1
⊥ (t� − t�+1)+ 1

2
(t� − t�+1)2F⊥(x�, v�)+ Oξ (1)|t� − t�+1|3|v|3,

and this proves our claim (6.46).
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Taking derivatives in (6.43), from the extra cancellation in terms of order
of t� − t�+1 in (6.46), by (6.45), we obtain

∂v�+1
⊥
∂x�‖

= −F⊥(x�, v�)
v�+1
⊥

∫ t�

t�+1

∫ t�

s

∂

∂x�‖
F⊥(X�(τ ),V�(τ ))dτds

+
∫ t�

t�+1

∂

∂x�‖
F⊥(X�(τ ),V�(τ ))dτ

=
{
(t� − t�+1)F⊥(x�, v�)

−2v�+1
⊥

+ 1

}
(t� − t�+1)

∂

∂x�‖
F⊥(x�, v�)

+ Oξ (1)

{
|t� − t�+1|2|v�|3 + |t� − t�+1|3|v�|3

|v�+1
⊥ | | ∂

∂x�‖
F⊥(x�, v�)|

}

�ξ

{
−1+ Oξ (1)

|t� − t�+1|2|v�|3
|v�+1
⊥ | + 1

}
|t� − t�+1||v�|2

+ |t� − t�+1|2|v�|3
{
1+ |t� − t�+1‖v�|2

|v�+1
⊥ |

}

�ξ |t� − t�+1|2|v�|3
(
1+ |t� − t�+1‖v�|2

|v�+1
⊥ |

)
�ξ |t� − t�+1|2|v�|3

�ξ,t
|v�+1
⊥ |2
|v�| ,

∂v�+1
⊥
∂v�⊥

= −1− ∂t
�+1

∂v�⊥
F⊥(x�, v�)+

∫ t�

t�+1

∂

∂v�⊥
F⊥(X�(τ ),V�(τ ))dτ

= −1+ F⊥(x�, v�)
v�+1
⊥

(t� − t�+1)− F⊥(x�, v�)
v�+1
⊥

×
∫ t�+1

t�

∫ s

t�

∂

∂v�⊥
F⊥(X�(τ ),V�(τ ))dτds+

∫ t�

t�+1

∂

∂v�⊥
F⊥(X�(τ ),V�(τ ))dτ

= −1+ 2+ Oξ (1)
|t� − t�+1|2|v�|3

v�+1
⊥

− F⊥(x�, v�)
v�+1
⊥

(t� − t�+1)2

2

×
{
lim
s↑t�

∂

∂v�⊥
F⊥(X�(τ ),V�(τ ))+ Oξ (1)|t� − t�+1‖v�|2

}

+(t� − t�+1)

{
lim
s↑t�

∂

∂v�⊥
F⊥(X�(τ ),V�(τ ))+ Oξ (1)|t� − t�+1‖v�|2

}
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= 1+ Oξ (1)

{
|t� − t�+1|2|v�|3

|v�+1
⊥ | + |t� − t�+1|2|v�|2

+|t
� − t�+1|3
|v�+1
⊥ | |v�|3

∣∣∣∣∣ lims↑t�
∂

∂v�⊥
F⊥(X�(τ ),V�(τ ))

∣∣∣∣∣
}

� 1+ |t� − t�+1|2|v�|2
{
1+ |v�|

|v�+1
⊥ | +

|t� − t�+1‖v�|2
|v�+1
⊥ |

}
�ξ,t 1+ |v�+1

⊥ |
|v�| ,

∂v�+1
⊥
∂v�‖

= −F⊥(x�, v�)
v�+1
⊥

∫ t�

t�+1

∫ t�

s

∂

∂v�‖
F⊥(X�(τ ),V�(τ ))dτds

−
∫ t�

t�+1

∂

∂v�‖
F⊥(X�(τ ),V�(τ ))dτ

=
{
(t� − t�+1)F⊥(x�, v�)

−2v�+1
⊥

+ 1

}
(t� − t�+1)

∂

∂v�‖
F⊥(x�, v�)

+Oξ (1)|t� − t�+1|2|v�|2
{
|F⊥(x�, v�)||t� − t�+1|

|v�+1
⊥ | + 1

}

�ξ |t� − t�+1|2|v�|2
{
1+ |t� − t�+1‖v�|2

|v�+1
⊥ |

}
�ξ,t

|v�+1
⊥ |2
|v�|2 . (6.48)

These estimates complete the proof of the claims (6.40) and (6.41) when
r� <

√
δ and r�+1 <

√
δ.

Proof of (6.40) for either r� ≥ √
δ or r�+1 ≥ √

δ:Without loss of generalitywe
assume r� > C

√
δ in (6.25). Recall that we chose a p�−spherical coordinate

as p� = (z�, w�) with |z� − x�| ≤ √
δ and any w� ∈ S

2 with n(z�) · w� = 0.
Fix �. Let us choose fixed numbers  1, 2 > 0 such that |v| 1 � 1 as

well as also |v‖t�+1 − (t� − 1 − 2)| � 1 so that

s� ≡ t� − 1, s�+1 ≡ s� − 2 = t� − 1 − 2,

satisfying |v‖t�+1 − s�+1| = |v‖t�+1 − (t� − 1 − 2)| � 1 as well as also
|v‖t� − s�| = |v‖ 1| � 1 so that the spherical coordinates are well-defined
for s ∈ [t�+1, s�+1] and s ∈ [s�, t�].
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Notice that

∂t�+1

∂s�+1 =
∂(s�+1 + 1 + 2 − tb(x�, v�))

∂s�+1 = 1,
∂s�+1

∂s�
= ∂(s� − 1)

∂s�
= 1,

∂s�

∂t�
= ∂(t� − 1)

∂t�
= 1.

We first follow the flow in p�−spherical coordinate, then change to the
Euclidian coordinate to near the boundary s�, follow the flow until s�+1, and
then change to the chart to p�+1−spherical coordinate. By the chain rule,

∂(t�+1, x�+1
‖�+1
, v�+1

⊥�+1
, v�+1

‖�+1
)

∂(t�, x�‖�, v
�⊥�, v

�‖�)

= ∂(t�+1, x�+1
‖�+1
, v�+1

⊥�+1
, v�+1

‖�+1
)

∂(s�+1, x⊥�+1(s
�+1), x‖�+1(s

�+1), v⊥�+1(s
�+1), v‖�+1(s

�+1))

× ∂(s
�+1,Xp�+1(s�+1),Vp�+1(s�+1))

∂(s�+1, Xcl(s�+1), Vcl(s�+1))

× ∂(s
�+1, Xcl(s�+1), Vcl(s�+1))

∂(s�, Xcl(s�), Vcl(s�))

× ∂(s�, Xcl(s�), Vcl(s�))

∂(s�,Xp�(s�),Vp�(s�))

∂(s�, x⊥�(s�), x‖�(s�), v⊥�(s�), v‖�(s�))
∂(t�, x�‖�, v

�⊥�, v
�‖�)

.

We can express that t�+1 = t�− tb(x�, v�) = s�+1+ 1+ 2− tb(x�, v�).
Let us regard t�+1 as t1 and s�+1 as s1 and  1 + 2 as  in (6.34). Then we
use (6.35) and (2.3) to have

∂(t�+1, x�+1
‖ , v�+1

⊥ , v�+1
‖ )

∂(s�+1, x⊥(s�+1), x‖(s�+1), v⊥(s�+1), v‖(s�+1))

≤
⎡
⎢⎣

1 Oδ,ξ (1) 1
|v| Oδ,ξ (1)

1
|v|2

02,1 Oδ,ξ (1) Oδ,ξ (1) 1
|v|

03,1 Oδ,ξ (1)|v| Oδ,ξ (1)

⎤
⎥⎦ .

From (6.39)

∂(s�+1,Xp�+1(s�+1),Vp�+1(s�+1))

∂(s�+1, Xcl(s�+1), Vcl(s�+1))
�ξ

⎡
⎣ 1 01,3 01,3
03,1 Oξ (1) 03,3
03,1 Oξ (1)|v| Oξ (1)

⎤
⎦ ,
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and from s�+1 = s�− 2, Xcl(s�+1) = Xcl(s�)−(s�+1−s�)Vcl(s�), Vcl(s�+1)

= Vcl(s�),

∂(s�+1, Xcl(s�+1), Vcl(s�+1))

∂(s�, Xcl(s�), Vcl(s�))
�ξ

⎡
⎣ 1 01,3 01,3
03,1 Id3,3 |s1 − s2|Id3,3
03,1 03,3 Id3,3

⎤
⎦ ,

and from (6.5)

∂(s�, Xcl(s�), Vcl(s�))

∂(s�,Xp�(s�),Vp�(s�))
�ξ

⎡
⎣ 1 01,3 01,3
03,1 Oξ (1) 03,3
03,1 |v| Oξ (1)

⎤
⎦ .

Recalling (6.33), we have

∂(s�, x⊥� (s�), x‖� (s�), v⊥� (s�), v‖� (s�))
∂(t�, x�‖� , v

�⊥� , v
�‖� )

�ξ

⎡
⎣ 1 01,2 01,3

Oξ (1)|v| Oξ (1) Oξ (1)|t� − s1|
Oξ (1)|v|2 Oξ (1)|v| Oξ (1)

⎤
⎦ .

By a direct matrix multiplication

∂(t�+1, x�+1
‖�+1
, v�+1

⊥�+1
, v�+1

‖�+1
)

∂(t�, x�‖�, v
�⊥�, v

�‖�)
�t,ξ

⎡
⎢⎣

1 1
|v|

1
|v|2

02,1 1 1
|v|

03,1 |v| 1

⎤
⎥⎦ .

Note that for Type II we have r�+1 �
√
δ so that from (6.40)

J (r�+1) �

⎡
⎢⎣

1 M
|v|
√
δ M

|v|2 min{1,√δ}
02,1 M

√
δ M

|v| min{1,√δ}
03,1 M |v|min{δ,√δ} M min{δ,√δ}

⎤
⎥⎦

�δ,t,ξ
∂(t�+1, x�+1

‖�+1
, v�+1

⊥�+1
, v�+1

‖�+1
)

∂(t�, x�‖�, v
�⊥�, v

�‖�)
.

This proves our claim (6.40) for Type II.

Step 5. Eigenvalues and diagonalization of (6.40)
By a basic linear algebra (row and column operations), the characteristic

polynomial of (6.40) equals, with r = r�+1,
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det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1− λ M
|v|r

M
|v|r

M
|v|2

M
|v|2 r

M
|v|2 r

0 1+ Mr − λ Mr M
|v|

M
|v|r

M
|v|r

0 Mr 1+ Mr − λ M
|v|

M
|v|r

M
|v|r

0 M |v|r2 M |v|r2 1+ Mr − λ Mr2 Mr2

0 M |v|r M |v|r M 1+ Mr − λ Mr
0 M |v|r M |v|r M Mr 1+ Mr − λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= (λ− 1)5[λ− (1+ 5Mr)].
Therefore eigenvalues are

λ1 = λ2 = λ3 = λ4 = λ5 = 1,

λ6 = 1+ 5Mr�+1 = 1+ 5M
|v�+1
⊥ |

|v�+1| .
(6.49)

Corresponding eigenvectors are
⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
−1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0

−|v|r
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0
0

−|v|
0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0

−|v|

⎞
⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎝

1
|v|
|v|
|v|2r
|v|2
|v|2

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Write P = P(r�) as a block matrix of above column eigenvectors. Then

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1
0 1 1 1 1 |v|
0 −1 0 0 0 |v|
0 0 −|v|r 0 0 |v|2r
0 0 0 −|v| 0 |v|2
0 0 0 0 −|v| |v|2

⎤
⎥⎥⎥⎥⎥⎥⎦
,

P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
5|v|

−1
5|v|

−1
5|v|2r

−1
5|v|2

−1
5|v|2

0 1
5

−4
5

1
5|v|r

1
5|v|

1
5|v|

0 1
5

1
5

−4
5|v|r

1
5|v|

1
5|v|

0 1
5

1
5

1
5|v|r

−4
5|v|

1
5|v|

0 1
5

1
5

1
5|v|r

1
5|v|

−4
5|v|

0 1
5|v|

1
5|v|

1
5|v|2r

1
5|v|2

1
5|v|2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.50)

Therefore

J (r) = P(r)�(r)P−1(r),
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and

�(r) := diag [1, 1, 1, 1, 1, 1+ 5Mr] ,

where the notation diag[a1, . . . , am] is a m × m−matrix with aii = ai and
ai j = 0 for all i �= j.

Step 6. The i-th intermediate group
We claim that, for i = 1, 2, . . . , [ |t−s||v|

Lξ
],

J �i+1
�i+1−1 × · · · × J �i+1

�i

=
∂(t�i+1 , x�i+1

‖�i+1
, v�i+1

⊥�i+1
, v�i+1

‖�i+1
)

∂(t�i+1−1, x�i+1−1
‖�i+1−1

, v�i+1−1
⊥�i+1−1

, v�i+1−1
‖�i+1−1

)
× · · · ×

∂(t�i+1, x�i+1
‖�i+1

, v�i+1
⊥�i+1

, v�i+1
‖�i+1

)

∂(t�i , x�i‖�i , v
�i⊥�i , v

�i‖�i )

≤ P(ri )(�(ri ))
Cξ
ri P−1(ri ).

(6.51)
By the definition of the group, Lξ ≤ |v‖t�i − t�i+1 | ≤ C1 < +∞ for all i .

By the Velocity lemma (Lemma 2),

1

C1
e−

C
2 C1r�i ≤ r�i+1 ≡ |v�i+1

⊥ |
|v| , r�i+1−1 ≡ |v�i+1−1

⊥ |
|v| , . . . , r�i+1 ≡ |v�i+1

⊥ |
|v| ,

r�i ≡ |v�i⊥|
|v| ≤ C1e

C
2 C1r�i ,

and define

ri ≡ C1e
C
2 C1r�i .

Then we have

1

(C1)2
e−CC1ri ≤ r j ≤ ri for all �i+1 ≤ j ≤ �i . (6.52)

From (6.40), we have a uniform bound for all �i+1 ≤ j ≤ �i

J j+1
j � J (ri ) = P(ri )�(ri )P−1(ri ).

Therefore

J �i+1
�i+1−1 × · · · × J �i+1

�i
≤ P(ri )[�(ri )]|�i+1−�i |P−1(ri ).
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Now we only left to prove |�i+1 − �i | �� 1
ri
: For any �i+1 ≤ j ≤ �i , we

have ξ(x j ) = 0 = ξ(x j+1) = ξ(x j − (t j − t j+1)v j ).We expand ξ(x j − (t j −
t j+1)v j ) in time to have

ξ(x j+1) = ξ(x j )+
∫ t j+1

t j

d

ds
ξ(Xcl(s))ds

= ξ(x j )+(v j · ∇ξ(x j ))(t j+1−t j )+
∫ t j+1

t j

∫ s

t j

d2

dτ 2
ξ(Xcl(τ ))dτds,

and

0 = (v j · ∇ξ(x j ))(t j+1 − t j )+ (t
j − t j+1)2

2
(v j · ∇2ξ(Xcl(τ∗)) · v j ),

for some τ∗ ∈ [t j+1, t j ].

Therefore

v j · ∇ξ(x j )

|v| = (t j − t j+1)|v|v
j · ∇2ξ(Xcl(τ∗)) · v j

2|v|2 .

From the convexity (1.13), there exists C2 � 1

1

C2
|t j − t j+1‖v| ≤ |r j | = |v j

⊥|
|v| = |v j · ∇ξ(x j )|

|v| ≤ C2|t j−t j+1‖v|. (6.53)

Therefore we have a lower bound of

|v‖t j − t j+1| : |v‖t j − t j+1| ≥ 1

C2
|r j | ≥ 1

(C1)2C2
e−CC1ri ,

where we have used (6.52). Finally, using the definition of one group(1 ≤
|v‖t�i − t�i+1 | ≤ C1), we have the following upper bound of the number of
bounces in this one group(i−th intermediate group)

|�i − �i+1| ≤ |v‖t�i − t�i+1 |
min�i≤ j≤�i+1 |v‖t j − t j+1| ≤

C1
1

(C1)2C2
e−CC1ri

�ξ
1

ri
,

and this completes our claim (6.51).
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Step 7. Whole intermediate groups
Recall P and P−1 from (6.50). We claim that, there exists C3 > 0 such that

[ |t−s‖v|
Lξ

]∏
i=1

J �i+1
�i+1−1 × · · · × J �i+1

�i
≤ (C3)

|t−s‖v|P
(
r[ |t−s‖v|

Lξ
]

)
P−1(r1).

(6.54)
From the one group estimate (6.51),

[ |t−s‖v|
Lξ

]∏
i=1

J �i+1
�i+1−1 × · · · × J �i+1

�i
� P(r[ |t−s‖v|

Lξ
])

×
[ |t−s‖v|

Lξ
]−1∏

i=1

[
(�(ri+1))

Cξ
ri+1 P−1(ri+1)× P(ri )︸ ︷︷ ︸

]
× (�(r1))

Cξ
r1 P−1(r1).

Now we focus on the underbraced matrix multiplication. Directly

P−1(ri+1)P(ri ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1+ ri

ri+1
5|v| 0 0

1− ri
ri+1
5

0 1
1− ri

ri+1
5 0 0 |v|−1+ ri

ri+1
5

0 0
1+4

ri
ri+1
5 0 0 4|v|1−

ri
ri+1
5

0 0
1− ri

ri+1
5 1 0 |v|−1+ ri

ri+1
5

0 0
1− ri

ri+1
5 0 1 |v|−1+ ri

ri+1
5

0 0
1− ri

ri+1
5|v| 0 0

4+ ri
ri+1
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Due to the choice of ri ≡ C1e
C
2 C1r�i in (6.52) we have

∣∣∣ ri
ri+1

∣∣∣ �
∣∣∣ r�i
r�i+1

∣∣∣ ≤ Cξ ,

where we have used the Velocity lemma and (2.2) and (2.3): 1
C1 e

−C
2 C1r�i+1 ≤

1
C1 e

−C
2 |t�i−t�i+1 |r�i+1 ≤ r�i ≤ C1e

C
2 |t�i−t�i+1 |r�i+1 ≤ C1e

C
2 C1r�i+1 .
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Therefore for sufficiently large Cξ > 0, for all i

˜P−1(ri+1)P(ri ) ≤ Q :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 Cξ
|v| 0 0 Cξ

0 1 Cξ 0 0 Cξ |v|
0 0 Cξ 0 0 Cξ |v|
0 0 Cξ 1 0 Cξ |v|
0 0 Cξ 0 1 Cξ |v|
0 0 Cξ

|v| 0 0 Cξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.55)

where we use a notation: For a matrix A, the entries of a matrix Ã are absolute
values of the entries of A, i.e. ( Ã)i j = |(A)i j |. In particular, the entries of
P−1(̃ri+1)P(ri ) are absolute values of the entries of the matrix multiplication
P−1(ri+1)P(ri ).

Again we diagonalize Q as

Q = FAF−1

:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 2Cξ
2Cξ−1

0 1 0 0 0 2Cξ |v|
2Cξ−1

0 0 0 0 −|v| |v|
0 0 1 0 0 2Cξ |v|

2Cξ−1

0 0 0 1 0 2Cξ |v|
2Cξ−1

0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1 0

1

1

0 0

2Cξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −Cξ
2Cξ−1

1
|v| 0 0 −Cξ

2Cξ−1

0 1 −Cξ
2Cξ−1 0 0 −Cξ |v|

2Cξ−1

0 0 −Cξ
2Cξ−1 1 0 −Cξ |v|

2Cξ−1

0 0 −Cξ
2Cξ−1 0 1 −Cξ |v|

2Cξ−1

0 0 −1
2|v| 0 0 1

2

0 0 1
2|v| 0 0 1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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and directly

Q[ |t−s‖v|
Lξ

] = FA[ |t−s‖v|
Lξ

]F−1

= F diag

[
1, 1, 1, 1, 0, (2Cξ )

[ |t−s‖v|
Lξ

]
]
F−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
|v|

Cξ
2Cξ−1 ((2Cξ )

[ |t−s‖v|
Lξ

] − 1) 0 0 Cξ
2Cξ−1 ((2Cξ )

[ |t−s‖v|
Lξ

] − 1)

0 1 Cξ
2Cξ−1 ((2Cξ )

[ |t−s‖v|
Lξ

] − 1) 0 0 |v| Cξ
2Cξ−1 ((2Cξ )

[ |t−s‖v|
Lξ

] − 1)

0 0 (2Cξ )
[ |t−s‖v|

Lξ
]

2 0 0 |v| (2Cξ )
[ |t−s‖v|

Lξ
]

2

0 0 Cξ
2Cξ−1 ((2Cξ )

[ |t−s‖v|
Lξ

] − 1) 1 0 |v| Cξ
2Cξ−1 ((2Cξ )

[ |t−s‖v|
Lξ

] − 1)

0 0 Cξ
2Cξ−1 ((2Cξ )

[ |t−s‖v|
Lξ

] − 1) 0 1 |v| Cξ
2Cξ−1 ((2Cξ )

[ |t−s‖v|
Lξ

] − 1)

0 0 1
|v|
(2Cξ )

[ |t−s‖v|
Lξ

]

2 0 0 (2Cξ )
[ |t−s‖v|

Lξ
]

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6.56)
Notice that from (6.49)

[�(ri )]
Cξ
ri ≤ (1+ 5Mri )

Cξ
ri Id6,6 ≤ C ′

ξ Id6,6.

Now we use (6.51) and take the absolute value of the entries and then use
(6.55) and (6.56), for t̃ := t − s,

[ t̃ |v|Lξ
]∏

i=1

J �i+1
�i+1−1 × · · · × J �i+1

�i
≤ ˜P(r[ t̃ |v|Lξ

])
[ t̃ |v|Lξ

]∏
i=1

[
(1+ 5Mri )

Cξ
ri Q

]
Q−1P̃−1(r1)

≤ (C ′
ξ )
[ t̃ |v|Lξ

] × ˜P(r[ t̃ |v|Lξ
])FA[ t̃ |v|Lξ

]F−1P̃−1(r1).

Now we use the explicit form of (6.56) to bound

CCt̃ |v|

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 (Cξ )t̃ |v|
|v|

(Cξ )t̃ |v|
|v|

(Cξ )t̃ |v|
|v|2

1
|r1|

(Cξ )t̃ |v|
|v|2

(Cξ )t̃ |v|
|v|2

0 (Cξ )t̃ |v| (Cξ )t̃ |v| (Cξ )t̃ |v|
|v|

1
|r1|

(Cξ )t̃ |v|
|v|

(Cξ )t̃ |v|
|v|

0 (Cξ )t̃ |v| (Cξ )t̃ |v| (Cξ )t̃ |v|
|v|

1
|r1|

(Cξ )t̃ |v|
|v|

(Cξ )t̃ |v|
|v|

0 |v|(Cξ )t̃ |v|
∣∣∣∣r[ t̃ |v|Lξ

]

∣∣∣∣ |v|(Cξ )t̃ |v|
∣∣∣∣r[ t̃ |v|Lξ

]

∣∣∣∣ (Cξ )t̃ |v|
∣∣∣∣∣∣r[ t̃ |v|Lξ

]

∣∣∣∣∣∣
|r1| (Cξ )t̃ |v|

∣∣∣∣r[ t̃ |v|Lξ
]

∣∣∣∣ (Cξ )t̃ |v|
∣∣∣∣r[ t̃ |v|Lξ

]

∣∣∣∣
0 |v|(Cξ )t̃ |v| |v|(Cξ )t̃ |v| (Cξ )t̃ |v| 1

|r1| (Cξ )t̃ |v| (Cξ )t̃ |v|

0 |v|(Cξ )t̃ |v| |v|(Cξ )t̃ |v| (Cξ )t̃ |v| 1
|r1| (Cξ )t̃ |v| (Cξ )t̃ |v|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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� CC |t−s‖v|

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1
|v|

1
|v||v1⊥|

1
|v|2

02,1 Oξ (1) 1
|v1⊥|

1
|v|

0 |v1⊥| Oξ (1)
|v1⊥||v|

02,1 |v| |v|
|v1⊥|

Oξ (1)

⎤
⎥⎥⎥⎥⎥⎥⎦
6×6

, (6.57)

where we have used (6.53) and the Velocity lemma (Lemma 2) and (2.2), (2.3)
and

ri = C1e
C
2 C1ri � eC |t−s‖v| |v1⊥|

|v| , and
r[ |t−s‖v|

Lξ
]

r1

= r
[ |t−s‖v|

Lξ
]

r1
=

∣∣∣∣∣v
[ |t−s‖v|

Lξ
]

⊥

∣∣∣∣∣
|v1⊥|

≤ C1e
C
2 |v‖t−s|.

Step 8. Intermediate summary for the matrix method and the final estimate for
Type II

Recall from (6.31) and (6.33), (6.57), (6.35),

∂(s�∗,X�∗(s
�∗),V�∗(s

�∗))

∂(s1,X1(s1),V1(s1))
≡ ∂(s�∗, x⊥�∗ (s

�∗), x‖�∗ (s
�∗), v⊥�∗ (s

�∗), v‖�∗ (s
�∗))

∂(s1, x⊥1(s
1), x‖1(s1), v⊥1(s

1), v‖1(s1))

= ∂(s�∗, x⊥�∗ (s
�∗), x‖�∗ (s

�∗), v⊥�∗ (s
�∗), v‖�∗ (s

�∗))

∂(t�∗, x�∗‖�∗ , v
�∗⊥�∗ , v

�∗‖�∗ )

×
[ |t−s‖v|

Lξ
]∏

i=1

∂(t�i+1, x�i+1
‖�i+1

, v�i+1
⊥�i+1

, v�i+1
‖�i+1

)

∂(t�i+1−1, x�i+1−1
‖�i+1−1

, v�i+1−1
⊥�i+1−1

, v�i+1−1
‖�i+1−1

)

× · · · ×
∂(t�i+1, x�i+1

‖�i+1
, v�i+1

⊥�i+1
, v�i+1

‖�i+1
)

∂(t�i , x�i‖�i , v
�i⊥�i , v

�i‖�i )

× ∂(t1, x1‖1, v
1⊥1
, v1‖1)

∂(s1, x⊥1(s
1), x‖1(s1), v⊥1(s

1), v‖1(s1))
≤ (6.33)× (6.57)× (6.35).
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Then directly we bound it by

≤ (6.33)× CC |t−s‖v|

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
|v1⊥|

+ |v|
|v1⊥|2

+ |t1 − s1| 1
|v| + |v|

|v1⊥|2
+ |s1 − t1| 1

|v‖v1⊥|
+ |s1 − t1|2 1

|v|2 + |s1−t1|
|v|

|v|2
|v1⊥|2

+ |v|
|v1⊥|

+ |v‖s1 − t1| 1+ |v|2
|v1⊥|2

1
|v1⊥|

+ |s1 − t1| 1
|v|

|v|2
|v1⊥|2

+ |v|
|v1⊥|

+ |v‖s1 − t1| 1+ |v|2
|v1⊥|2

1
|v1⊥|

+ |s1 − t1| 1
|v|

|v|2
|v1⊥|

+ |v| |v1⊥| + |v|2
|v1⊥|

Oξ (1)
|v1⊥||v|

|v|3
|v1⊥|2

+ |v|2
|v1⊥|

+ |v|2|s1 − t1| |v| + |v|3
|v1⊥|2

|v|
|v1⊥|

+ |v‖s1 − t1| Oξ (1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(6.58)

where we have used the Velocity lemma (Lemma 2) and (6.53), (2.2), (2.3)
and

|v‖t1 − s1| ≤ min{|v|(tb(x, v)+ tb(x,−v)), (t − s)|v|}

�� min

{
|v1⊥|
|v| , (t − s)|v|

}
�� CC |t−s‖v|min

{
|v1⊥|
|v| , 1

}
.

Again we use the velocity lemma (Lemma 2) and (6.53), (2.2), (2.3) and

|v‖t�∗ − s�∗ | ≤ min{|v‖t�∗ − t�∗+1|, |t − s||v|}

�� min

{
|v�∗⊥ |
|v| , |t − s‖v|

}
�� CC |t−s‖v|min

{
|v1⊥|
|v| , 1

}
,

and |v⊥(s�∗)| �� CC |v|(t−s)|v1⊥| to have, from (6.58)

∂(s�∗,X�∗(s
�∗),V�∗(s

�∗))

∂(s1,X1(s1),V1(s1))
� CC |t−s‖v|

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 01,3 0 01,2
|v1⊥| |v|

|v1⊥|
1
|v|

1
|v|

|v| |v|2
|v1⊥|2

1
|v1⊥|

1
|v|

|v|2 |v|3
|v1⊥|2

|v|
|v1⊥|

Oξ (1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
7×7

.

(6.59)
We consider the following case:

There exists � ∈ [�∗(s; t, x, v), 0] such that r� ≥
√
δ. (6.60)
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Therefore � is Type II in (6.25). Equivalently τ ∈ [t�+1, t�] for some �∗ ≤
� ≤ 0 and |ξ(Xcl(τ ; t, x, v))| ≥ Cδ. By the Velocity lemma (Lemma 2), for
all 1 ≤ i ≤ �∗(s; t, x, v),

|ri | = |vi⊥|
|v| �ξ e−Cξ |v‖t i−t�||r�| �ξ e−Cξ |v|(t−s)

√
δ.

Especially, for all 1 ≤ i ≤ �∗(s; t, x, v),

|r1| �ξ e−Cξ |v|(t−s)
√
δ,

1

|ri | =
|v|
|vi⊥|

�ξ
eCξ |v|(t−s)

√
δ

.

Note that �∗(s; t, x, v) � maxi
|v‖t−s|

ri
�δ CC |v‖t−s|.

Therefore in the case of (6.60), from (6.59),

∂(s�∗,X�∗(s
�∗),V�∗(s

�∗))

∂(s1,X1(s1),V1(s1))
� CC(t−s)|v|

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 01,2 0 01,2
|v1⊥| 1√

δ

1√
δ

1
|v|

1
|v|

|v| 1
δ

1
δ

1
|v|

1√
δ

1
|v|

|v|2 |v|1
δ
|v|1
δ

1√
δ

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�δ CC |v|(t−s)

⎡
⎣

0 01,3 01,3
|v| 1 1

|v|
|v|2 |v| 1

⎤
⎦ .

From (6.32) and (6.38) we conclude

∂(Xcl(s; t, x, v), Vcl(s; t, x, v))
∂(t, x, v)

�δ,ξ CC |v|(t−s) ∂(Xcl(s), Vcl(s))

∂(s�∗ ,X�∗(s�∗),V�∗(s�∗))

⎡
⎣

0 01,3 01,3
|v| 1 1

|v|
|v|2 |v| 1

⎤
⎦

× ∂(s
1, x⊥1(s

1), x‖1(s1), v⊥1(s
1), v‖1(s1))

∂(t, x, v)

�δ,ξ CC |v|(t−s)
[ |v| 1 |s�∗ − s|
03,1 |v| 1

]⎡
⎣

0 01,3 01,3
|v| 1 1

|v|
|v|2 |v| 1

⎤
⎦
⎡
⎣ 1 01,3 01,3
03,1 1 |t − s1|
03,1 |v| 1

⎤
⎦

�δ,ξ CC |v|(t−s)
[ |v| 1 1

|v|
|v|2 |v| 1

]
6×7

.

(6.61)
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We remark ∂x⊥�∗ and ∂v⊥�∗ have desired bounds but ∂x‖�∗ and ∂v‖�∗ still have
undesired bounds in (6.59). We only need to consider the remaining case of
(6.60), i.e.

For all � ∈ [�∗(s; t, x, v), 0], we have r� ≤
√
δ. (6.62)

Note that in this case the moving frame (p�−spherical coordinate) is well-
defined for all τ ∈ [s, t]. In next two step we use the ODE method to refine
the estimates for submatrix of (6.59):

∂(x‖�∗ (s
�∗), v‖�∗ (s

�∗))

∂(x⊥1(s
1), x‖1(s1), v⊥1(s

1), v‖1(s1))

=
⎡
⎢⎣
∂x‖�∗ (s

�∗ )
∂x⊥1 (s

1)

∂x‖�∗ (s
�∗ )

∂x‖1 (s1)
∂x‖�∗ (s

�∗ )
∂v⊥1 (s

1)

∂x‖�∗ (s
�∗ )

∂v‖1 (s1)
∂v‖�∗ (s

�∗ )
∂x⊥1 (s

1)

∂v‖�∗ (s
�∗ )

∂x‖1 (s1)
∂v‖�∗ (s

�∗ )
∂v⊥1 (s

1)

∂v‖�∗ (s
�∗ )

∂v‖1 (s1)

⎤
⎥⎦
4×6

.

Step 9. ODE method within the time scale |t − s‖v| � Lξ
Recall the end points (time) of intermediate groups from (6.29):

s < t�∗<t
�[ |t−s‖v|

Lξ
]+1

︸ ︷︷ ︸
[ |t−s‖v|

Lξ
]+1

< t
�[ |t−s‖v|

Lξ
]
<t
�[ |t−s‖v|

Lξ
]−1

+1

︸ ︷︷ ︸
[ |t−s‖v|

Lξ
]

< · · · < t�i < t�i−1+1︸ ︷︷ ︸
i

< · · ·

< t�2 < t�1+1︸ ︷︷ ︸
2

< t�1 < t1︸ ︷︷ ︸
1

< t,

where the underbraced numbering indicates the index of the intermediate
group. We further choose points independently on (t, x, v) for all i =
1, 2, . . . , [ |t−s‖v|

Lξ
]:

t�1+1 < s2 < t�1,
t�2+1 < s3 < t�2,

...

t�i+1 < si+1 < t�i < · · · < t�i−1+1︸ ︷︷ ︸
i−intermediate group

< si < t�i−1,

...

t
�[ |t−s‖v|

Lξ
]+1

< s
�[ |t−s‖v|

Lξ
]+1

< t
�[ |t−s‖v|

Lξ
]
.

We claim the following estimate at si+1 via si . Within the i-th intermediate
group, we fix p�i -spherical coordinate in Step 9. The goal is to estimate deriva-
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tives with respect to initial (x1, v1) at si+1 in terms of si . This is a bit different
from previous steps.

⎡
⎢⎢⎣

∣∣∣∣
∂x‖�i (s

i+1)

∂x⊥1 (s
1)

∣∣∣∣
∣∣∣∣
∂x‖�i (s

i+1)

∂x‖1 (s1)

∣∣∣∣∣∣∣∣
∂v‖�i (s

i+1)

∂x⊥1 (s
1)

∣∣∣∣
∣∣∣∣
∂v‖�i (s

i+1)

∂x‖1 (s1)

∣∣∣∣

⎤
⎥⎥⎦ �δ,ξ

[
1 1

|v|
|v| 1

]
⎡
⎢⎢⎣

∣∣∣∣
∂x‖�i (s

i )

∂x⊥1 (s
1)

∣∣∣∣
∣∣∣∣
∂x‖�i (s

i )

∂x‖1 (s1)

∣∣∣∣∣∣∣∣
∂v‖�i (s

i )

∂x⊥1 (s
1)

∣∣∣∣
∣∣∣∣
∂v‖�i (s

i )

∂x‖1 (s1)

∣∣∣∣

⎤
⎥⎥⎦

+ eC |v‖t−si |
[
1 1

|v|
|v| 1

]⎡
⎣ 0 0

|v|
(
1+ |v|∣∣v1⊥

∣∣
)
|v|

(
1+ |v|

|v1⊥|

)
⎤
⎦ ,

⎡
⎢⎢⎣

∣∣∣∣
∂x‖�i (s

i+1)

∂v⊥1 (s
1)

∣∣∣∣
∣∣∣∣
∂x‖�i (s

i+1)

∂v‖1 (s1)

∣∣∣∣∣∣∣∣
∂v‖�i (s

i+1)

∂v⊥1 (s
1)

∣∣∣∣
∣∣∣∣
∂v‖�i (s

i+1)

∂v‖1 (s1)

∣∣∣∣

⎤
⎥⎥⎦

�δ,ξ
[
1 1

|v|
|v| 1

]
⎡
⎢⎢⎣

∣∣∣∣
∂x‖�i (s

i )

∂v⊥1 (s
1)

∣∣∣∣
∣∣∣∣
∂x‖�i (s

i )

∂v‖1 (s1)

∣∣∣∣∣∣∣∣
∂v‖�i (s

i )

∂v⊥1 (s
1)

∣∣∣∣
∣∣∣∣
∂v‖�i (s

i )

∂v‖1 (s1)

∣∣∣∣

⎤
⎥⎥⎦+ eC |v‖t−si |

[
1 1

|v|
|v| 1

] [
0 0
1 1

]
.

(6.63)

For the sake of simplicity we drop the index �i .
Denote, from (6.15),

F‖(x⊥, x‖, v⊥, v‖) := D(x⊥, x‖, v‖)+ E(x⊥, x‖, v‖)v⊥, (6.64)

where D is a r3-vector-valued function and E is a 3×3matrix-valued function:

D(x⊥, x‖, v‖) =
∑
i

Gi j (x⊥, x‖)
(−1)i+1

−n(x‖) · (∂1η(x‖)× ∂2η(x‖))
× {

v‖ · ∇2η(x‖) · v‖ − x⊥v‖ · ∇2n(x‖) · v‖
} · (−n(x‖)× ∂i+1η(x‖)),

and

E(x⊥, x‖, v‖) =
∑
i

Gi j (x⊥, x‖)
(−1)i+1

−n(x‖) · (∂1η(x‖)× ∂2η(x‖))2v‖·

× ∇n(x‖) · (−n(x‖)× ∂i+1η(x‖)).

Note that E is linear in v‖. HereGi j (·, ·) is a smooth bounded function defined
in (6.22) and we used the notational convention i ≡ i mod 2.
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From Lemma 15 we take the time integration of (6.13) along the character-
istics to have

x‖(si+1) = x‖(si )−
∫ si

si+1
v‖(τ )dτ,

v‖(si+1) = v‖(si )−
∫ si

si+1

{
E(x⊥(τ ), x‖(τ ), v‖(τ ))v⊥(τ )

+D(x⊥(τ ), x‖(τ ), v‖(τ ))
}
dτ.

Note that v⊥(τ ) is not continuous with respect to the time τ . Using (6.13) we
rewrite this time integration as

∫ si

si+1
E(x⊥(τ ), x‖(τ ), v‖(τ ))v⊥(τ )dτ =

∫ si

t�i−1+1
+
�i−1+1∑
�=�i−1

∫ t�

t�+1
+
∫ t�i

si+1
,

then we use v⊥(τ ) = ẋ⊥(τ ) and the integration by parts to have

∫ si

t�i−1+1
E(x⊥(τ ), x‖(τ ), v‖(τ ))ẋ⊥(τ )dτ

+
�i−1+1∑
�=�i−1

∫ t�

t�+1
E(x⊥(τ ), x‖(τ ), v‖(τ ))ẋ⊥(τ )dτ

+
∫ t�i

si+1
E(x⊥(τ ), x‖(τ ), v‖(τ ))ẋ⊥(τ )dτ

= E(si )x⊥(si )− E(t�i−1+1) x⊥(t�i−1+1)︸ ︷︷ ︸
=0

−
∫ si

t�i−1+1

[
v⊥(τ ), v‖(τ ), F‖(τ )

] · ∇E(τ )x⊥(τ )dτ

+
�i−1+1∑
�=�i−1

⎧⎨
⎩E(t�) x⊥(t�)︸ ︷︷ ︸

=0

−E(t�+1) x⊥(t�+1)︸ ︷︷ ︸
=0

−
∫ t�

t�+1

[
v⊥(τ ), v‖(τ ), F‖(τ )

] · ∇E(τ )x⊥(τ )dτ
}

+E(t�i ) x⊥(t�i )︸ ︷︷ ︸
=0

−E(si+1)x⊥(si+1)

−
∫ t�i

si+1

[
v⊥(τ ), v‖(τ ), F‖(τ )

] · ∇E(τ )x⊥(τ )dτ
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= E(x⊥, x‖, v‖)(si )x⊥(si )− E(si+1)x⊥(si+1)

−
∫ si+1

si

[
v⊥(τ ), v‖(τ ), F‖(τ )

] · ∇E(τ )x⊥(τ )dτ,

where we have used the fact Xcl (t�) ∈ ∂� (therefore x⊥(t�) = 0) and the
notation E(τ ) = E(x⊥(τ ), x‖(τ ), v‖(τ )), D(τ ) = D(x⊥(τ ), x‖(τ ), v‖(τ )),
F‖(τ ) = F‖(x⊥(τ ), x‖(τ ), v⊥(τ ), v‖(τ )).
Overall we have

x‖(si+1) = x‖(si )−
∫ si

si+1
v‖(τ )dτ,

v‖(si+1) = v‖(si )− E(si )x⊥(si )+ E(si+1)x⊥(si+1)

+
∫ si

si+1

[
v⊥(τ ), v‖(τ ), F‖(τ )

] · ∇E(τ )x⊥(τ )dτ −
∫ si

si+1
D(τ )dτ.

(6.65)
Denote

∂ =
[
∂x⊥(s1), ∂x‖(s1), ∂v⊥(s1), ∂v‖(s1)

]

=
[

∂

∂x⊥(s1)
,

∂

∂x‖(s1)
,

∂

∂v⊥(s1)
,

∂

∂v‖(s1)

]
.

Weclaim that, in a sense of distribution on (s1, x⊥(s1), x‖(s1), v⊥(s1), v‖(s1))
∈ [0,∞)× (0,Cξ )× (0, 2π ] × (δ, π − δ)× R× R

2,

[
∂x⊥(si+1; s1, x(s1), v(s1)), ∂x‖(si+1; s1, x(s1), v(s1)),
∂v‖(si+1; s1, x(s1), v(s1))

]

=
∑
�

1[t�+1,t�)(s
i+1)

[
∂x⊥, ∂x‖, ∂v‖

]
,

∂
[
v⊥(si+1; s1, x(s1), v(s1))x⊥(si+1; s1, x(s1), v(s1))

]

=
∑
�

1[t�+1,t�)(s
i+1) {∂v⊥x⊥ + v⊥∂x⊥} ,

(6.66)

i.e. the distributional derivatives of [x⊥, x‖, v‖] and v⊥x⊥ equal the piecewise
derivatives.

Proof of (6.66). Let φ(τ ′, x⊥, x‖, v⊥, v‖) ∈ C∞
c ([0,∞)× (0,Cξ )×S

2×R×
R
2). Therefore φ ≡ 0 when x⊥ < δ. For x⊥ ≥ δ we use the proof of Lemma

15: For x = η(x‖)+ x⊥[−n(x‖)],
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|x⊥| �ξ ξ(x) = ξ(η(x‖)+ x⊥[−n(x‖)]) �ξ |x⊥|,

and therefore ξ(x) �ξ δ and α(x, v) �ξ |ξ(x)‖v|2 �ξ |v|2δ. Since we are
considering the case t − s > tb(x, v), from |v|tb(x, v) � x⊥ ≥ δ we have

|v| �ξ δ
t−s and finally we obtain the lower bound α(x, v) �ξ δ3

|t−s|2 > 0. By
the Velocity lemma, for (x, v) ∈ supp(φ)

α(x�, v�) �ξ e−C |v‖t
1−t�|α(x, v) �ξ e−C |v|(t−s) δ3

|t − s|2 �ξ,|t−s|,δ,φ 1 > 0,

where we used the fact that φ vanishes away from a compact subset
supp(φ). Therefore t�(t, x, v) = t�(t, x⊥, x‖, v⊥, v‖) is smoothwith respect to
x⊥, x‖, v⊥, v‖ locally on supp(φ) and therefore M = {(τ ′, x, v) ∈ supp(φ) :
τ ′ = t�(t, x, v)} is a smooth manifold.

It suffices to consider the case |τ ′ − t�(t, x, v)| � 1. Denote ∂e ∈
{∂x⊥, ∂x‖,1, ∂x‖,2, ∂v⊥, ∂v‖,1, ∂v‖,2} and nM = e1 to have

∫
{(τ ′,x,v)∈supp(φ)}

[∂ex⊥(τ ′; t, x, v), ∂ex‖(τ ′; t, x, v), ∂ev‖(τ ′; t, x, v)]
×φ(τ ′, x, v)dxdvdτ ′

=
∫
τ ′<t�

+
∫
τ ′≥t�

=
∫
M

(
lim
τ ′↑t�

[x⊥(τ ′), x‖(τ ′), v‖(τ ′)] − lim
τ ′↓t�

[x⊥(τ ′), x‖(τ ′), v‖(τ ′)]
)

× φ(τ ′, x, v){e · nM}dxdv
−
∫
{τ ′ �=t�(t,x,v)}

[x⊥(τ ′), x‖(τ ′), v‖(τ ′)]∂eφ(τ ′, x, v)dτ ′dvdx

= −
∫
{τ ′ �=t�(t,x,v)}

[x⊥(τ ′), x‖(τ ′), v‖(τ ′)]∂eφ(τ ′, x, v)dτ ′dvdx,

where we used the continuity of [x⊥(τ ′; t, x, v), x‖(τ ′; t, x, v), v‖(τ ′; t, x, v)]
in terms of τ ′ near t�(t, x, v).

Note thatv⊥(τ ′; t, x, v) is discontinuous around |τ ′−t�|�1(limτ ′↓t� v⊥(τ ′)= − limτ ′↑t� v⊥(τ ′)). However with crucial x⊥(τ ′)−multiplication, we have
x⊥(t�)v⊥(t�) = 0 and therefore

∫
{(τ ′,x,v)∈supp(φ)}

∂e[x⊥(τ ′; t, x, v)v⊥(τ ′; t, x, v)]φ(τ ′, x, v)dxdvdτ ′

=
∫
τ ′<t�

+
∫
τ ′≥t�
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=
∫
M

(
lim
τ ′↑t�

[x⊥(τ ′)v⊥(τ ′)] − lim
τ ′↓t�

[x⊥(τ ′)v⊥(τ ′)]
)

× φ(τ ′, x, v){e · nM}dxdv
−

∫
{τ ′ �=t�(t,x,v)}

[x⊥(τ ′)v⊥(τ ′)]∂eφ(τ ′, x, v)dτ ′dvdx

= −
∫
{τ ′ �=t�(t,x,v)}

[x⊥(τ ′; t, x, v)v⊥(τ ′; t, x, v)]∂eφ(τ ′, x, v)dτ ′dvdx.

This completes the proof of (6.66).
Since v⊥ always is multiplied with x⊥ in (6.65), we may apply (6.66) and

take derivative inside each
∫ si

si+1 of (6.65), separating the main terms with ∂ex‖
and ∂ev‖, and treating the rest (underbraced terms) as forcing terms to obtain,
for ∂e ∈ {∂x⊥, ∂x‖,1, ∂x‖,2, ∂v⊥, ∂v‖,1, ∂v‖,2},

∂ex‖(si+1) = ∂ex‖(si )−
∫ si

si+1
∂ev‖(τ )dτ,

∂v‖(si+1) = ∂eE(si+1)x⊥(si+1)+ E(si+1) ∂ex⊥(si+1)︸ ︷︷ ︸+∂ev‖(si )
−∂e[E(x⊥, x‖, v‖)x⊥](si+1)

+
∫ si

si+1
∂ev⊥(τ )︸ ︷︷ ︸ ∂x⊥E(τ )x⊥(τ )+ ∂ev‖(τ ) · ∇x‖E(τ )x⊥(τ )dτ

+
∫ si

si+1

{[
∂ex⊥(τ )︸ ︷︷ ︸ ∂x⊥E(τ )+ ∂ex‖(τ ) · ∇x‖E(τ )+ ∂ev‖(τ ) · ∇v‖E(τ )

]
v⊥(τ )

+E(τ ) ∂ev⊥(τ )︸ ︷︷ ︸+ ∂ex⊥(τ )︸ ︷︷ ︸ ∂x⊥D(τ )+ ∂ex‖(τ ) · ∇x‖D(τ )+ ∂ev‖(τ )∇v‖D(τ )

}

·∇v‖E(τ )x⊥(τ )dτ

+
∫ si

si+1

{
v⊥(τ )[∂ex⊥(τ )︸ ︷︷ ︸, ∂ex‖(τ ), ∂ev‖(τ )] · ∇∂x⊥E(τ )

+v‖(τ ) · [∂ex⊥(τ )︸ ︷︷ ︸, ∂ex‖(τ ), ∂ev‖(τ )] · ∇∇x‖E(τ )

+F‖(τ ) · [∂ex⊥(τ )︸ ︷︷ ︸, ∂ex‖(τ ), ∂ev‖(τ )] · ∇∇v‖E(τ )

}
x⊥(τ )dτ

+
∫ si

si+1

{
v⊥(τ )∂x⊥E(τ )+ v‖(τ ) · ∇x‖E(τ )+ F‖(τ ) · ∇v‖E(τ )

}
∂ex⊥(τ )︸ ︷︷ ︸ dτ

−
∫ si

si+1

[
∂ex⊥(τ )︸ ︷︷ ︸, ∂ex‖(τ ), ∂ev‖(τ )

]
· ∇D(τ )dτ. (6.67)

Now we use (6.59) to control the underbraced term of (6.67). Notice that we
cannot directly use (6.59) since nowwefix the chart forwhole i-th intermediate
group but the estimate (6.59) is for the moving frame. (For clarity, we write
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the index for the chart for this part.) Note the time of bounces within the i-th
intermediate group (|t�i−1 − t�i‖v| � Lξ ) are

t�i+1 < si+1 < t�i < t�i−1 < · · · < t�i−1+2 < t�i−1+1 < si < t�i−1 .

Nowwe apply (6.6) and (6.59) to bound, for τ ∈ (si+1, si ) and � ∈ {�i , �i−
1, . . . , �i−1 + 2, �i−1 + 1, �i−1}
∂(x⊥�(τ ), x‖�(τ ), v⊥�(τ ), v‖�(τ ))
∂(x⊥1(s

1), x‖1(s1), v⊥1(s
1), v‖1(s1))

= ∂(x⊥�(τ ), x‖�(τ ), v⊥�(τ ), v‖�(τ ))
∂(x⊥�i (τ ), x‖�i (τ ), v⊥�i (τ ), v‖�i (τ ))

∂(x⊥�i (τ ), x‖�i (τ ), v⊥�i (τ ), v‖�i (τ ))
∂(x⊥1(s

1), x‖1(s1), v⊥1(s
1), v‖1(s1))

� eC |t−s‖v|

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
Id6,6+Oξ (|p�−p�i |)

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 1 1 03,3
0 1 1
0 0 0 0 0 0
0 |v| |v| 0 1 1
0 |v| |v| 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|v|
|v1⊥|

|v|
|v1⊥|

|v|
|v1⊥|

1
|v|

1
|v|

1
|v|

|v|2
|v1⊥|2

|v|2
|v1⊥|2

|v|2
|v1⊥|2

1
|v1⊥|

1
|v|

1
|v|

|v|2
|v1⊥|2

|v|2
|v1⊥|2

|v|2
|v1⊥|2

1
|v1⊥|

1
|v|

1
|v|

|v|3
|v1⊥|2

|v|3
|v1⊥|2

|v|3
|v1⊥|2

|v|
|v1⊥|

Oξ (1) Oξ (1)

|v|3
|v1⊥|2

|v|3
|v1⊥|2

|v|3
|v1⊥|2

|v|
|v1⊥|

Oξ (1) Oξ (1)

|v|3
|v1⊥|2

|v|3
|v1⊥|2

|v|3
|v1⊥|2

|v|
|v1⊥|

Oξ (1) Oξ (1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� eC |t−s‖v|

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|v|
|v1⊥|

|v|
|v1⊥|

|v|
|v1⊥|

1
|v|

1
|v|

1
|v|

|v|2
|v1⊥|2

|v|2
|v1⊥|2

|v|2
|v1⊥|2

1
|v1⊥|

1
|v|

1
|v|

|v|2
|v1⊥|2

|v|2
|v1⊥|2

|v|2
|v1⊥|2

1
|v1⊥|

1
|v|

1
|v|

|v|3
|v1⊥|2

|v|3
|v1⊥|2

|v|3
|v1⊥|2

|v|
|v1⊥|

Oξ (1) Oξ (1)

|v|3
|v1⊥|2

|v|3
|v1⊥|2

|v|3
|v1⊥|2

|v|
|v1⊥|

Oξ (1) Oξ (1)

|v|3
|v1⊥|2

|v|3
|v1⊥|2

|v|3
|v1⊥|2

|v|
|v1⊥|

Oξ (1) Oξ (1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.68)

where we have used |p� − p�i | � 1.
We plug in (6.67) with (6.68) respectively, collecting terms with tedious but

straightforward bounds (E is linear in v‖). We summarize the results as: for
s ∈ [si+1, si ]
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[
| ∂x‖(s)
∂x⊥ |

| ∂v‖(s)
∂x⊥ |

]
�ξ

⎡
⎣ | ∂x‖(si )

∂x⊥ |
| ∂v‖(si )
∂x⊥ | + |v|| ∂x‖(si )

∂x⊥ |

⎤
⎦

+
⎡
⎣

∫ si

s | ∂v‖
∂x⊥ |∫ si

s |v|2| ∂x‖
∂x⊥ | + |v|| ∂v‖

∂x⊥ |

⎤
⎦+

[
0

eC |v‖t−s| |v|2
|v1⊥|

]
,

[ | ∂x‖(s)
∂x‖ |

| ∂v‖(s)
∂x‖ |

]
�ξ

⎡
⎣ | ∂x‖(si )

∂x‖ |
| ∂v‖(si )
∂x‖ | + |v|| ∂x‖(si )

∂x‖ |

⎤
⎦

+
⎡
⎣

∫ si

s | ∂v‖
∂x‖ |∫ si

s |v|2| ∂x‖
∂x‖ | + |v|| ∂v‖

∂x‖ |

⎤
⎦+

[
0

eC |v‖t−s| |v|2
|v1⊥|

]
,

[
| ∂x‖(s)
∂v⊥ |

| ∂v‖(s)
∂v⊥ |

]
�ξ

⎡
⎣ | ∂x‖(si )

∂v⊥ |
| ∂v‖(si )
∂v⊥ | + |v|| ∂x‖(si )

∂v⊥ |

⎤
⎦

+
⎡
⎣

∫ si

s | ∂v‖
∂v⊥ |∫ si

s |v|2| ∂x‖
∂v⊥ | + |v|| ∂v‖

∂v⊥ |

⎤
⎦+

[
0

eC |v‖t−s||v|
]
,

[ | ∂x‖(s)
∂v‖ |

| ∂v‖(s)
∂v‖ |

]
�ξ

⎡
⎣ | ∂x‖(si )

∂v‖ |
| ∂v‖(si )
∂v‖ | + |v|| ∂x‖(si )

∂v‖ |

⎤
⎦

+
⎡
⎣

∫ si

s | ∂v‖
∂v‖ |∫ si

s |v|2| ∂x‖
∂v‖ | + |v|| ∂v‖

∂v‖ |

⎤
⎦+

[
0

eC |v‖t−s||v|
]
. (6.69)

We apply Lemma 4 to (6.69) and we prove the claim (6.63).

Step 10. ODE method within the time scale |t − s| � 1: Refinement of the
estimate (6.59)

We claim that

⎡
⎣ |

∂x‖
�̃
(s)

∂x⊥1
| | ∂x‖�̃ (s)

∂x‖1
| | ∂x‖�̃ (s)

∂v⊥1
| | ∂x‖�̃ (s)

∂v‖1
|

| ∂v‖�̃ (s)
∂x⊥1

| | ∂v‖�̃ (s)
∂x‖1

| | ∂v‖�̃ (s)
∂v⊥1

| | ∂v‖�̃ (s)
∂v‖1

|

⎤
⎦ � CC |v‖t−s|

⎡
⎣

|v|
|v1⊥|

|v|
|v1⊥|

1
|v|

1
|v|

|v|2
|v1⊥|

|v|2
|v1⊥|

1 1

⎤
⎦ ,

(6.70)

where �̃ =
[ |t−s‖v|

Lξ

]
.

Proof of the claim (6.70). By the chain rule

[
Dxx‖i Dvx‖i
Dxv‖i Dvv‖i

]
= ∂(x‖i , v‖i )
∂(x‖i−1, v‖i−1)

[
Dxx‖i−1 Dvx‖i−1

Dxv‖i−1 Dvv‖i−1

]
.
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Note, from (6.6)

∂(x‖i , v‖i )
∂(x‖i−1, v‖i−1)

≤ C

[
1 0
|v| 1

]
≤ C

[
1 1

|v|
|v| 1

]
:= CB.

Denote

Di (s) =
[ |Dxx‖i (s)| |Dvx‖i (s)||Dxv‖i (s)| |Dvv‖i (s)|

]
, G :=

[
0 0
|v|2
|v1⊥|

1

]
.

Note that from (6.63)

Di (s
i+1) ≤ CBDi (s

i )+ CBG.

Therefore, by induction,

D[ |t−s‖v|
Lξ

](s) ≤ CD[ |t−s‖v|
Lξ

](s
[ |t−s‖v|

Lξ
]
)+ CBG

≤ C2BD[ |t−s‖v|
Lξ

]−1(s
[ |t−s‖v|

Lξ
]
)+ CBG

≤ C2BD[ |t−s‖v|
Lξ

]−1(s
[ |t−s‖v|

Lξ
]−1
)+ C3BG+ CBG

≤ C3B2D[ |t−s‖v|
Lξ

]−1(s
[ |t−s‖v|

Lξ
]−2
)+ {C2B+ Id}CBG

≤ C4B3D[ |t−s‖v|
Lξ

]−2(s
[ |t−s‖v|

Lξ
]−2
)+ {C3B2 + C2B+ Id}CBG

...

� CC |t−s‖v|BC[|t−s‖v|]D1(s
1)+

C[|t−s‖v|]∑
i=0

Ci+1BiBG.

By a direct computation yields B j ≤ 2 jB. Therefore

D[ |t−s‖v|
Lξ

](s) � CC |t−s‖v|B{D1(s
1)+ BG}.

From (6.16) we have D1(s1) �
[
1 1

|v|
|v| 1

]
and we conclude our claim (6.70).
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With these estimates, we refine (6.59) to give a final estimate for the case
that |ξ(Xcl(τ ; t, x, v))| < δ for all τ ∈ [s, t]:

∂(s�∗, x⊥(s�∗), x‖(s�∗), v⊥(s�∗), v‖(s�∗))
∂(s1, x⊥(s1), x‖(s1), v⊥(s1), v‖(s1))

� CC |v|(t−s)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 01,2 0 01,2
|v1⊥| |v|

|v1⊥|
|v|
|v1⊥|

1
|v|

1
|v|

|v| |v|
|v1⊥|

|v|
|v1⊥|

|t − s| |t − s|
|v|2 |v|3

|v1⊥|2
|v|3
|v1⊥|2

|v|
|v1⊥|

Oξ (1)

|v|2 |v|2
|v1⊥|

|v|2
|v1⊥|

Oξ (1) Oξ (1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(6.71)

and from (6.32) and (6.38)

∂(Xcl(s; t, x, v), Vcl(s; t, x, v))
∂(t, x, v)

� CC |v|(t−s) ∂(Xcl(s), Vcl(s))

∂(s�∗,Xcl(s�∗),Vcl(s�∗))

⎡
⎢⎢⎣

0 01,3 01,3
|v| |v|

|v1⊥|
1
|v|

|v|2 |v|3
|v1⊥|2

|v|
|v1⊥|

⎤
⎥⎥⎦

×∂(s
1, x⊥(s1), x‖(s1), v⊥(s1), v‖(s1))

∂(t, x, v)

� CC |v|(t−s)
[ |v| 1 |s�∗ − s|
03,1 |v| 1

]
⎡
⎢⎢⎣

0 01,3 01,3
|v| |v|

|v1⊥|
1
|v|

|v|2 |v|3
|v1⊥|2

|v|
|v1⊥|

⎤
⎥⎥⎦

×
⎡
⎣ 1 01,3 01,3
03,1 1 |t − s1|
03,1 |v| 1

⎤
⎦

� CC |v|(t−s)

⎡
⎣ |v| |v|

|v1⊥|
1
|v|

|v|2 |v|3
|v1⊥|2

|v|
|v1⊥|

⎤
⎦ . (6.72)

Finally from (6.61) and (6.72), we conclude, for all τ ∈ [s, t]

∂(Xcl(s; t, x, v), Vcl(s; t, x, v))
∂(t, x, v)

≤ CeC |v|(t−s)

⎡
⎣ |v| |v|

|v1⊥|
1
|v|

|v|2 |v|3
|v1⊥|2

|v|
|v1⊥|

⎤
⎦
6×7

.
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From the Velocity lemma (Lemma 2),

|v1⊥| = |v1 · [−n(x1)]| = |Vcl(t1; t, x, v) · n(Xcl(t
1; t, x, v))|

=
√
α(Xcl(t1), Vcl(t1)) ≥ eC|v||t−t1|√α(x, v) �

√
α(x, v),

and this completes the proof for the case (6.60). ��
Proof of Theorem 3 We use the approximation sequence (2.16) with (2.19).
Due to Lemma 7 we have supm sup0≤t≤T ‖eθ |v|2 f m(t)‖∞ �ξ,T
P(‖eθ ′|v|2 f0‖∞).
Nowwe claim that the distributional derivatives coincide with the piecewise

derivatives. This is due to Proposition 1 and Proposition 2 together with an
invariant property of �( f, f ) = �gain( f, f )− ν(√μ f ) f : Assume f m(v) =
f m−1(Ov) holds for some orthonormal matrix. Then

�( f m, f m)(v) = �( f m−1, f m−1)(Ov). (6.73)

Using (6.73), we apply Proposition 1 to have

f m(t, x, v)

= e−
∫ t
0
∑�∗(0)
�=0 1[t�+1,t�)(s)ν(

√
μ f m−�)(s)ds f0(Xcl(0), Vcl(0))

+
∫ t

0

�∗(0)∑
�=0

1[t�+1,t�)(s)e
− ∫ t

s

∑�∗(s)
j=0 1[t j+1,t j )(τ )ν(F

m− j )(τ )dτ

× �gain( f m−�, f m−�)(s, Xcl(s), Vcl(s))ds.

Now we consider the spatial and velocity derivatives. In the sense of distri-
butions, we have for ∂e ∈ {∇x ,∇v}

∂e f
m(t, x, v) = Ie + IIe + IIIe. (6.74)

Here

Ie = e−
∫ t
0
∑�∗(0)
�=0 1[t�+1,t�)(s)ν(F

m−�)(s)ds
∂e[Xcl(0), Vcl(0)] · ∇x,v f0(Xcl(0), Vcl(0)),

and

IIe =
∫ t

0

�∗(0)∑
�=0

1[t�+1,t�)(s)e
− ∫ t

s

∑�∗(s)
j=0 1[t j+1,t j )(τ )ν(F

m− j )(τ )dτ

×∂e
[
�gain( f

m−�, f m−�)(s, Xcl(s), Vcl(s))
]
ds
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−
∫ t

0

�∗(0)∑
�=0

1[t�+1,t�)(s)e
− ∫ t

s

∑
j 1[t j+1,t j )(τ )ν(F

m− j )(τ )dτ

×
∫ t

s

�∗(s)∑
j=0

1[t j+1,t j )(τ )∂e[ν(Fm− j )(τ, Xcl(τ ), Vcl(τ ))]dτ

×�gain( f m−�, f m−�)(s, Xcl(s), Vcl(s))ds

−e−
∫ t
0
∑�∗(0)
�=0 1[t�+1,t�)(s)ν(F

m−�)(s)ds f0(Xcl(0), Vcl(0))

×
∫ t

0

�∗(0)∑
�=0

1[t�+1,t�)(s)∂e
[
ν(Fm−�)(s, Xcl(s), Vcl(s))

]
ds,

and

IIIe =
�∗(0)∑
�=0

[
−∂et� lim

s↑t�
ν(
√
μ f m−�)(s, Xcl(s), Vcl(s))

+ ∂et�+1 lim
s↓t�+1

μ(
√
μ f m−�)(s, Xcl(s), Vcl(s))

]

×e−
∫ t
0
∑�∗(0)
�=0 1[t�+1,t�)(s)ν(

√
μ f m−�)(s)

+
�∗(0)∑
�=0

[
lim
s↑t�

e−
∫ t
s

∑
j 1[t j+1,t j )(τ )ν(F

m− j )(τ )dτ

×�gain( f m−�, f m−�)(s, Xcl(s), Vcl(s))

− lim
s↓t�+1

e−
∫ t
s

∑
j 1[t j+1,t j )(τ )ν(F

m− j )(τ )dτ

×�gain( f m−�, f m−�)(s, Xcl(s), Vcl(s))

+
∫ t

0

∑
�

1[t�+1,t�)(s)
�∗(s)∑
j=0

[
− lim
τ↓t j

ν(Fm− j )(τ, Xcl(τ ), Vcl(τ ))

+ lim
τ↑t j+1

ν(Fm− j )(τ, Xcl(τ ), Vcl(τ ))

]

×e−
∫ t
s

∑�∗(s)
j=0 1[t j+1,t j )(τ )ν(F

m− j )(τ )dτ

×�gain( f m−�, f m−�)(s, Xcl(s), Vcl(s)).
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For IIIe we rearrange the summation, use (6.28) and apply (6.73) to get

IIIe =
�∗(0)∑
�=0

[
−ν(√μ f m−�)(t�, x�, v�)+ ν(√μ f m−�+1)(t�, x�, Rx�v

�)
]

×∂et�e−
∫ t
0
∑�∗(0)
�=0 1[t�+1,t�)(s)ν(

√
μ f m−�)(s)

+
�∗(0)∑
�=0

e−
∫ t
t�

∑
j 1[t j+1,t j )(τ )ν(

√
μ f m− j )(τ )dτ

[
�gain( f

m−�, f m−�)(t�, x�, v�)

−�gain( f m−�+1, f m−�+1)(t�, x�, Rx�v
�)
]

+
∫ t

0

∑
�

1[t�+1,t�)(s)
− ∫ t

s

∑�∗(s)
j=0 1[t j+1,t j )(τ )ν(F

m− j )(τ )dτ

×�gain( f m−�, f m−�)(s, Xcl(s), Vcl(s))

×
�∗(s)∑
�=0

[
−ν(√μ f m−�)(t�, x�, v�)+ ν(√μ f m−�+1)(t�, x�, Rx�v

�)
]

= 0.

Proof of (6.73). The proof is due to the change of variables

ũ = Ou, ω̃ = Oω, dũ = du, dω̃ = dω.

Note

�( f m, f m)(v)

=
∫
R3

∫
S2
|v − u|κq0

(
v − u

|v − u| · ω
)√

μ(u)

× {
f m(u − [(u − v) · ω]ω) f m(v + [(u − v) · ω]ω)− f m(u) f m(v)

}
dωdu

=
∫
R3

∫
S2
|Ov −Ou|κq0

( Ov −Ou

|Ov −Ou| ·Oω
)√

μ(Ou)

×
{
f m−1(Ou − [(Ou −Ov) ·Oω]Oω) f m−1(Ov + [(Ou −Ov) ·Oω]Oω)
− f m−1(Ou) f m−1(Ov)

}
dωdu

=
∫
R3

∫
S2
|Ov − ũ|κq0

( Ov − ũ

|Ov − ũ| · ω̃
)√

μ(ũ)

× {
f m−1(ũ − [(ũ −Ov) · ω̃]ω̃) f m−1(Ov + [(ũ −Ov)] · ω̃)ω̃

− f m−1(ũ) f m−1(Ov)
}
dω̃dũ

= �( f m−1, f m−1)(Ov).
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This proves (6.73). Especiallywe can apply (6.73) for the specular reflection
BC (2.19) with Ov = Rxv as well as the bounce-back reflection BC (2.20)
with Ov = −v.

Using Lemma 6 and (2.12), we obtain for ∂e ∈ {∇x ,∇v}

IIe � P(‖eθ |v|2 f0‖∞)
∫ t

0

�∗(0)∑
�=0

1[t�+1,t�)(s)|∂eXcl(s)|

×
∫
R3

e−Cθ |Vcl(s)−u|2

|Vcl(s)− u|2−κ |∇x f
m−�(s, Xcl(s), u)|duds

+P(‖eθ |v|2 f0‖∞)
∫ t

0

�∗(0)∑
�=0

1[t�+1,t�)(s)|∂eVcl(s)|

×
∫
R3

e−Cθ |Vcl(s)−u|2

|Vcl(s)− u|2−κ |∇v f
m−�(s, Xcl(s), u)|duds

+t P(‖eθ |v|2 f0‖∞)〈v〉κe−θ |v|2 sup
0≤s≤t

|∂eV (s; t, x, v)|.

We shall estimate the following:

e−� 〈v〉t [α(x, v)]
β

〈v〉b+1 |∂x f (t, x, v)|, e−� 〈v〉t |v|[α(x, v)]
β− 1

2

〈v〉b |∂v f (t, x, v)|.

From (1.35), the Velocity lemma (Lemma 2), Lemma 7, and Fm ≥ 0 for
all m, with� � 1

e−� 〈v〉t 1

〈v〉b+1 [α(x, v)]β Ix

�ξ,t e−� 〈v〉t
1

〈v〉b+1 [α(Xcl(0), Vcl(0))]βe2C|v|t

×
{ |v|√
α(x, v)

|∂x f0(Xcl(0), Vcl(0))| + |v|3
α(x, v)

|∂v f0(Xcl(0), Vcl(0))|
}

�ξ,t
∥∥∥∥ |v|
〈v〉b+1α

β− 1
2 ∂x f0

∥∥∥∥∞ +
∥∥∥∥ |v|3
〈v〉b+1α

β−1∂v f0

∥∥∥∥∞
�ξ,t

∥∥∥∥∥
αβ− 1

2

〈v〉b ∂x f0
∥∥∥∥∥∞

+
∥∥∥∥ |v|2αβ−1

〈v〉b ∂v f0

∥∥∥∥∞ ,
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and

e−� 〈v〉t |v|〈v〉b [α(x, v)]
β− 1

2 Iv

�ξ,t e−� 〈v〉t |v|〈v〉b [α(Xcl(0), Vcl(0))]β− 1
2 e2C|v|t

×
{

1

|v| |∂x f0(Xcl(0), Vcl(0))| + |v|√
α(x, v)

|∂v f0(Xcl(0), Vcl(0))|
}

�ξ,t
∥∥∥α

β− 1
2

〈v〉b ∂x f0
∥∥∥∞ +

∥∥∥∥ |v|2
〈v〉bα

β−1∂v f0

∥∥∥∥∞ ,

where we have used α(x, v) �ξ |v|2 and the choice of� � 1.
From Lemma 5, Lemma 6, and Lemma 7,

IIe �t P(‖eθ |v|2 f0‖∞)
∫ t

0
ds
�∗(0)∑
�=0

1[t�+1,t�)(s)
∫
R3

du
e−Cθ |u−Vcl(s)|2

|u − Vcl(s)|2−κ

×
{
|∂eXcl(s)||∂x f m− j (s, Xcl(s), u)| + |∂eVcl(s)|

×
(
1+ |∂v f m− j (s, Xcl(s), u)|

)}
.

Now we use (1.35) to have

e−� 〈v〉t [α(x, v)]
β

〈v〉b+1 IIx �t,ξ P(‖eθ |v|2 f0‖∞)

×
{∫ t

0

∫
R3

e−Cθ |Vcl(s)−u|2

|u − Vcl(s)|2−κ e
−� 〈v〉t e� 〈u〉seC |v‖t−s| |v|[α(x, v)]β−

1
2

[α(Xcl(s), u)]β
〈u〉b+1

〈v〉b+1 duds

× sup
m

sup
0≤s≤t

∥∥∥∥e−� 〈u〉s [α(Xcl(s), u)]β
〈u〉b+1 ∂x f

m− j (s, Xcl(s), u)

∥∥∥∥∞
+

∫ t

0

∫
R3

e−Cθ |Vcl(s)−u|2

|u − Vcl(s)|2−κ e
−� 〈v〉t e� 〈u〉seC |v‖t−s| 〈u〉b

〈v〉b
|v|2[α(x, v)]β−1

|u|[α(Xcl(s), u)]β− 1
2

× sup
m

sup
0≤s≤t

∥∥∥∥∥e−� 〈u〉s
|u|[α(Xcl(s), u)]β− 1

2

〈u〉b ∂v f
m− j (s, Xcl(s), u)

∥∥∥∥∥∞

}
.

We first claim that

e−� 〈v〉t e� 〈u〉seC |v|(t−s)e−C ′|v−u|2 � e−
� 〈v〉
2 (t−s)eC

′′(s+s2)e−C ′′|v−u|2 . (6.75)
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Using 〈u〉 ≤ 1+ |u| ≤ 1+ |v| + |u − v| ≤ 1+ 〈v〉 + |v − u|, we bound the
first three exponents as

− (� − C)〈v〉(t − s)−�(〈v〉 − 〈u〉)s
≤ −(� − C)〈v〉(t − s)+� |v − u|s +� s.

Then we have, for 0 < σ � 1

� |v − u|s = σ� 2

2
|v − u|2 + s2

2σ
− 1

2σ
[s − σ� |v − u|]2 ≤ σ�

2

2
|v − u|2 + s2

2σ
,

to bound the whole exponents of (6.75) by

− (� − C)〈v〉(t − s)+� |v − u|s − C ′|v − u|2 +� s

≤ −(� − C)〈v〉(t − s)− (C − σ�
2

2
)|v − u|2 + s2

2σ
+� s

≤ −(� − C)〈v〉(t − s)− Cσ,� |v − u|2 + C ′
σ,� {s2 + s}.

Hence we prove the claim (6.75) for � � 1.
Now we use (6.75) to bound

e−� 〈v〉t 1

〈v〉b+1 [α(x, v)]β IIx

�t,ξ P(‖eθ |v|2 f0‖∞)×

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ t

0

∫
R3

e−
� 〈v〉
2 (t−s) e

−C ′
θ |Vcl(s)−u|2

|Vcl(s)− u|2−κ
〈u〉b+1

〈v〉b+1

〈v〉[α(x, v)]β− 1
2

[α(Xcl(s), u)]β duds
︸ ︷︷ ︸

(A)

× sup
m

sup
0≤s≤t

∥∥∥∥e−� 〈v〉s αβ

〈v〉b+1 ∂x f
m(s)

∥∥∥∥∞
+
∫ t

0

∫
R3

e−
� 〈v〉
2 (t−s) e

−C ′
θ |Vcl(s)−u|2

|Vcl(s)− u|2−κ
〈u〉b
〈v〉b

|v|2[α(x, v)]β−1

|u|[α(Xcl(s), u)]β− 1
2

duds

︸ ︷︷ ︸
(B)

× sup
m

sup
0≤s≤t

∥∥∥∥∥e−� 〈v〉s
|v|αβ− 1

2

〈v〉b ∂v f
m(s)

∥∥∥∥∥∞

}
. (6.76)

For (A) we use (1.29) with Z = 〈v〉[α(x, v)]β− 1
2 and l = �

2 and r = b + 1.
For (B) we use (4.12) with β �→ β − 1

2 and Z = 〈v〉[α(x, v)]β−1 and l = �
2

and r = b. Then
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(A), (B) � 1.

Similarly, but with a different weight e−� 〈v〉t |v|〈v〉b [α(x, v)]β−
1
2 , we use

(1.35) to have

e−� 〈v〉t |v|〈v〉b [α(x, v)]
β− 1

2 IIv

�t,ξ P(‖eθ |v|2 f0‖∞)

×
{∫ t

0

∫
R3

e−C |Vcl(s)−u|2

|u − Vcl(s)|2−κ e
−� 〈v〉t e� 〈u〉seC |v‖t−s| 〈v〉[α(x, v)]β−

1
2

[α(Xcl(s), u)]β
〈u〉b+1

〈v〉b+1 duds

× sup
m

sup
0≤s≤t

∥∥∥∥e−� 〈u〉s [α(Xcl(s), u)]β
〈u〉b+1 ∂x f

m(s, Xcl(s), u)

∥∥∥∥∞
+
∫ t

0

∫
R3

e−C |Vcl(s)−u|2

|u − Vcl(s)|2−κ e
−� 〈v〉t e� 〈u〉seC |v‖t−s| 〈u〉b

〈v〉b
|v|2[α(x, v)]β−1

|u|[α(Xcl(s), u)]β− 1
2

× sup
m

sup
0≤s≤t

∥∥∥∥∥e−� 〈u〉s
|u|[α(Xcl(s), u)]β− 1

2

〈u〉b ∂v f
m(s, Xcl(s), u)

∥∥∥∥∥∞

}
.

Again we use (6.75) and (1.29) and (4.12) exactly as (6.76). Therefore for
0 < δ = δ(‖eθ |v|2 f0‖∞)� 1

e−� 〈v〉t 1

〈v〉b+1 [α(x, v)]βIIx + e−� 〈v〉t |v|〈v〉b [α(x, v)]
β− 1

2 IIv

� δ

{
sup
m

sup
0≤s≤t

∥∥∥∥e−� 〈v〉s αβ

〈v〉b+1 ∂x f
m(s)

∥∥∥∥∞
+ sup

m
sup

0≤s≤t

∥∥∥∥∥e−� 〈v〉s
|v|αβ− 1

2

〈v〉b ∂v f
m(s)

∥∥∥∥∥∞

}
.

Collecting all the terms, for 1 < β < 3
2 and b ∈ R with � � 1 and

0 < δ � 1, we get

sup
m

sup
0≤s≤t

∥∥∥∥e−� 〈v〉t αβ

〈v〉b+1 ∂x f
m(t)

∥∥∥∥∞ + sup
m

sup
0≤s≤t

∥∥∥∥∥e−� 〈v〉t
|v|αβ− 1

2

〈v〉b ∂v f
m(t)

∥∥∥∥∥∞
�

∥∥∥∥∥
αβ− 1

2

〈v〉b ∂x f0
∥∥∥∥∥∞

+
∥∥∥∥ |v|

2αβ−1

〈v〉b ∂v f0

∥∥∥∥∞ + P(
∥∥∥eθ |v|2 f0

∥∥∥∞).

We remark that this sequence f m is Cauchy in L∞([0, T ] × �̄ × R
3) for

0 < T � 1. Therefore the limit function f is a solution of the Boltzmann
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equation satisfying the specular reflection BC. On the other hand, due to the
weak lower semi-continuity of L p, p > 1, we pass a limit ∂ f m ⇀ ∂ f weakly
in the weighted L∞−norm.

Now we consider the continuity of e−� 〈v〉t 〈v〉−1αβ∂x f and e−� 〈v〉t |v|
αβ− 1

2 ∂v f . Remark that e−� 〈v〉t 〈v〉−1αβ∂x f m and e−� 〈v〉t |v|αβ− 1
2 ∂v f m sat-

isfy all the conditions of Proposition 2. Therefore we conclude

e−� 〈v〉t 〈v〉−1αβ∂x f
m ∈ C0([0, T ] × (�̄× R

3 \ γ0)),
e−� 〈v〉t |v|αβ− 1

2 ∂v f
m ∈ C0([0, T ] × (�̄× R

3 \ γ0)).

Now we follow W 1,∞ estimate proof for e−� 〈v〉t 〈v〉−1αβ[∂x f m+1 − ∂x f m]
and e−� 〈v〉t |v|αβ− 1

2 [∂v f m+1 − ∂ f m] to show that e−� 〈v〉t 〈v〉−1αβ∂x f m and
e−� 〈v〉t |v|αβ− 1

2 ∂v f m are Cauchy in L∞. Then we pass a limit e−� 〈v〉t 〈v〉−1

αβ∂x f m → e−� 〈v〉t 〈v〉−1αβ∂x f and e−� 〈v〉t |v|αβ− 1
2 ∂v f m → e−� 〈v〉t |v|

αβ− 1
2 ∂v f strongly in L∞ so that e−� 〈v〉t 〈v〉−1αβ∂x f ∈ C0([0, T ∗] × (�̄ ×

R
3 \ γ0)) and e−� 〈v〉t |v|αβ− 1

2 ∂v f ∈ C0([0, T ] × (�̄× R
3 \ γ0)). ��

7 Bounce-back reflection BC

We recall the bounce-back cycles from (iv) of Definition 2: (t0, x0, v0) =
(t, x, v) and for � ≥ 1,

t� = t1 − (�− 1)tb(x
1, v1),

x� = 1− (−1)�

2
x1 + 1+ (−1)�

2
x2,

v�+1 = (−1)�+1v,

where tb(x, v) is defined in (1.27).

Lemma 17 For all 0 ≤ s ≤ t,

min{α(x1, v1), α(x2, v2)} �� α(Xcl(s; t, x, v), Vcl(s; t, x, v))
�� max{α(x1, v1), α(x2, v2)}.

For �∗(s; t, x, v) ∈ N (therefore t�∗+1(t, x, v) ≤ s ≤ t�∗(t, x, v))

�∗(s; t, x, v) ≤ |t − s|
tb(x1, v1)

��
|t − s‖v|2√
α(x, v)

.
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For all 0 ≤ s ≤ t uniformly

|∂xi t�(t, x, v)| =
∣∣∣∣−� ∂xi ξ(x

1)

v · ∇ξ(x1) − (�− 1)
∂xi ξ(x

2)

−v · ∇ξ(x2)
∣∣∣∣ ��

t |v|2
α(x, v)

,

|∂vi t�(t, x, v)| =
∣∣∣∣�tb(x, v) ∂xi ξ(x

1)

v · ∇ξ(x1) + (�− 1)tb(x,−v) ∂xi ξ(x
2)

−v · ∇ξ(x2)
∣∣∣∣

��
t√

α(x, v)
,

|∂xi x�j (x, v)| =
∣∣∣∣1− (−1)�

2

{
δi j − v j∂xi ξ(x1)

v · ∇ξ(x1)
}
+ 1+ (−1)�

2

{
δi j − v j∂xi ξ(x2)

v · ∇ξ(x2)
}∣∣∣∣

�� 1+ |v|√
α(x, v)

,

|∂vi x�j (x, v)| =
∣∣∣∣1− (−1)�

2
(−tb(x, v))

{
δi j − v j∂xi ξ(x1)

v · ∇ξ(x1)
}

+1+ (−1)�

2
(−tb(x,−v))

{
δi j − v j∂xi ξ(x2)

v · ∇ξ(x2)
}∣∣∣∣ ,

��
1

|v| ,
∂xi v

� = 0, |∂vi v�j | = |(−1)�δi j | �� 1,

|∂xi (t� − t�+1)| =
∣∣∣∣ ∂xi ξ(x1)v · ∇ξ(x1) +

∂xi ξ(x2)

−v · ∇ξ(x2)
∣∣∣∣ ��

1√
α(x, v)

,

|∂vi (t� − t�+1)| =
∣∣∣∣tb(x, v)−∂xi ξ(x1)v · ∇ξ(x1) + tb(x,−v) ∂xi ξ(x2)

v · ∇ξ(x2)
∣∣∣∣ ��

1

|v|2 .

Proof These are direct consequence of (3.9) and the Velocity lemma (Lemma
2). ��

Now we state the key ingredient in the case of the bounce-back BC: In the
sense of distribution,

∂e

⎡
⎣�∗(s)∑
�=0

∫ t j

max{s,t j+1}
Am− j (τ, x j − (t j − τ)v j , v j )dτ

⎤
⎦

=
�∗(s)∑
j=0

∫ t j

max{s,t j+1}

[
∂et

j , ∂ex
j + τ∂ev j , ∂ev j

]

·∇t,x,vA
m− j (τ, x j − (t j − τ)v j , v j )dτ

+
�∗(s)−1∑
j=0

∂e[t j − t j+1] lim
τ↓−(t j−t j+1)

Am− j (τ + t j , x j + τv j , v j )

+∂et�∗(s) lim
τ↓−(t�∗(s)−s)

Am−�∗(s)(τ + t�∗(s), x�∗(s) + τv�∗(s), v�∗(s)). (7.1)
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Proof of (7.1) For each time intervals [t j+1, t j ], we apply the change of vari-
ables

x j − (t j − τ)v j , τ ∈ [t j+1, t j ] �→ x j + τv j , τ ∈ [−(t j − t j+1), 0],
for j = 0, 1, . . . , �∗(s)− 1,

x�∗(s) − (t�∗(s) − τ)v�∗(s), τ ∈ [s, t�∗(s)] �→ x�∗(s)

+τv�∗(s), τ ∈ [−(t�∗(s) − s), 0]. (7.2)

From (3.16) the piecewise derivatives equal distributional derivatives almost
everywhere. Moreover

∂e

⎡
⎣�∗(s)∑

j=0

∫ t j

max{s,t j+1}
Am− j (τ, x j − (t j − τ)v j , v j )dτ

⎤
⎦

= ∂e

⎡
⎣�∗(s)−1∑

j=0

∫ t j

t j+1
· · ·

⎤
⎦+ ∂e

[∫ t�∗(s)

s
· · ·

]

= ∂e

⎡
⎣�∗(s)−1∑

j=0

∫ 0

−(t j−t j+1)

Am− j (τ + t j , x j + τv j , v j )dτ
⎤
⎦

+ ∂e
[∫ 0

−(t�∗(s)−s)
Am−�∗(s)(τ + t�∗(s), x�∗(s) + τv�∗(s), v�∗(s))

]

=
�∗(s)−1∑
j=0

∫ 0

−(t j−t j+1)

∂e

[
Am− j (τ + t j , x j + τv j , v j )

]
dτ

+
�∗(s)−1∑
j=0

∂e[t j − t j+1] lim
τ↓−(t j−t j+1)

Am− j (τ + t j , x j + τv j , v j )

+
∫ 0

−(t�∗(s)−s)
∂e

[
Am−�∗(s)(τ + t�∗(s), x�∗(s) + τv�∗(s), v�∗(s))

]

+ ∂et�∗(s) lim
τ↓−(t�∗(s)−s)

Am−�∗(s)(τ + t�∗(s), x�∗(s) + τv�∗(s), v�∗(s)).

Directly we have

∂e

[
Am− j (τ + t j , x j + τv j , v j )

]
=

[
∂et

j , ∂ex
j + τ∂ev j , ∂ev j

]

·∇t,x,vA
m− j (τ + t j , x j + τv j , v j ).
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Then we apply the inverse of the change of variables in (7.2) to the time
integration terms:

�∗(s)∑
j=0

∫ t j

max{s,t j+1}

[
∂et

j , ∂ex
j + τ∂ev j , ∂ev j

]

· ∇t,x,vA
m− j (τ, x j − (t j − τ)v j , v j )dτ.

We collect the terms and conclude (7.1). ��
Now we are ready to proof the main theorem:

Proof of Theorem 6 We use the approximation sequence (2.16) with (2.20).
Due to Lemma 7 we have (2.13) and (2.14).

Now we consider the spatial and velocity derivatives. From the iteration
(2.15) and (2.20), for �∗(0; t, x, v) = �∗ with t�∗+1 ≤ 0 < t�∗,

f m+1(t, x, v)

= e
−∑�∗(0)

j=0

∫ t j

max{0,t j+1} ν(F
m− j )(τ )dτ

f0(x
�∗(0) − t�∗(0)v�∗(0), v�∗(0))

+
�∗(0)∑
�=0

∫ t�

max{0,t�+1}
e
−∑�∗(s)

j=0

∫ t j

max{0,t j+1} ν(F
m− j )(τ )dτ

× �gain ( f m−�, f m−�)(s, x� − (t� − s)v�, v�)ds,

where ν(Fm− j )(τ ) = μ(
√
μ f m− j )(τ ) = ν(

√
μ f m− j )(τ, x j − (t j −

τ)v j , v j ).
From (7.1) and (6.73), in the sense of distribution, for ∂e ∈ {∂x , ∂v},

∂e f
m(t, x, v) = Ie + IIe = e−

∫ t
0
∑

j 1[t j+1 ,t j )(τ )ν(F
m− j )(τ,Xcl(τ ),Vcl(τ ))dτ f0(Xcl(0), Vcl(0))

×
⎧⎨
⎩−

�∗(0)∑
j=0

∫ t j

max{0,t j+1}

[
∂et

j , ∂ex
j + τ∂ev j , ∂ev j

]
· ∇t,x,vν(F

m− j )(τ, x j − (t j − τ)v j , v j )dτ
IIe

−
�∗(0)−1∑
j=0

∂e[t j − t j+1]ν(Fm− j )(t j+1, x j+1, v j )
Ie
− ∂et�∗(0)ν(Fm−�∗(0))(0, x j − t jv j , v j )

Ie

⎫⎬
⎭

+e−
∫ t
0
∑

j 1[t j+1 ,t j )(τ )ν(F
m− j )(τ,Xcl(τ ),Vcl(τ ))dτ ∂e

[
x�∗(0)−t�∗(0)v�∗(0), v�∗(0)

]
· ∇x,v f0(Xcl(0), Vcl(0))

Ie

+
�∗(0)−1∑
�=0

∂e[t� − t�+1]e−
∑�∗(t�−t�+1)

j=0

∫ 0
max{t�−t�+1−t j ,−(t j−t j+1)} ν(F

m− j )(τ+t j ,x j+τv j ,v j )dτ

×�gain( f m−�, f m−�)(t�+1, x�+1, v�)
Ie

+∂et�∗(0)e−
∫ t
0 1[t j+1 ,t j )(s)ν(F

m− j )(τ )dτ
�gain( f

m−�∗(0), f m−�∗(0))(0, x�∗(0) − t�∗(0)v�∗(0), v�∗(0))
Ie
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+
∫ t

0
1[t�+1,t�)(s)e

− ∫ t
s

∑�∗(s)
j=0 1[t j+1 ,t j )(s)ν(F

m− j )(τ )dτ

×[∂et�, ∂ex� + s∂ev
�, ∂ev

�] · ∇t,x,v�gain( f
m−�, f m−�)](s, x� − (t� − s)v�, v�)ds

IIe

+
∫ t

0
1[t�+1,t�)(s)�gain( f

m−�, f m−�)(s, Xcl(s), Vcl(s))ds

×
⎧⎨
⎩−

�∗(s)−1∑
j=0

∂e[t j − t j+1]ν(Fm− j )(t j+1, x j+1, v j )
Ie
− ∂et�∗(s)ν(Fm−�∗(s))(s, Xcl(s), Vcl(s))Ie

−
�∗(s)∑
j=0

∫ t j

max{s,t j+1}
[∂et j , ∂ex j + τ∂ev j , ∂ev j ] · ∇t,x,vν(F

m− j )(τ, x j − (t j − τ)v j , v j )dτ
IIe

⎫⎬
⎭ .

(7.3)

We shall estimate the followings:

e−� 〈v〉t α(x, v)〈v〉2 ∂x f (t, x, v), e−� 〈v〉t |v|α(x, v)
1/2

〈v〉2 ∂v f (t, x, v).

Firstly, we estimate Ie. Using Lemma 17 and Lemma 6 and Fm ≥ 0 from
(2.15) and Lemma 7, for some polynomial P ,

e−� 〈v〉t 〈v〉−2α(x, v)Ix

� e−� 〈v〉t 〈v〉−2α(x, v)P(‖eθ |v|2 f ‖∞)
×

{
e−θ |v|2 t |v|2

α(x, v)
〈v〉κ +

[(
1+ |v|

α(x, v)

)
+ t |v|3
α(x, v)

]
|∂x f0|

+ t |v|2
α(x, v)

e−
θ
2 |v|2 + te−

θ
2 |v|2〈v〉κ t |v|2

α(x, v)

}

� ‖〈v〉−2α(1+ |v| + |v|3
α(x, v)

)∂x f0‖∞ + 〈v〉−2e−Cθ |v|2P(‖eθ |v|2 f0‖∞)

� (1+ ‖〈v〉∂x f0‖∞)× P(‖eθ |v|2 f0‖∞).

Similarly

e−� 〈v〉t |v|〈v〉−2α1/2Iv

� e−� 〈v〉t |v|〈v〉−2[α(x, v)]1/2P(‖eθ |v|2 f ‖∞)
×

{
e−

θ
2 |v|2 t

α(x, v)1/2
〈v〉κ + |∇v f0|

+
[(

1

|v| +
α(x, v)1/2

|v|2
)
+ t |v|
α(x, v)1/2

+ t

]
|∂x f0|
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+ te− θ2 |v|2

α(x, v)1/2
+te−

θ
2 |v|2〈v〉κ t

α(x, v)1/2

}

� (1+ ‖〈v〉∂x f0‖∞ + ‖∂v f0‖∞)P(‖eθ |v|2 f0‖∞).

Secondly, we estimate IIe. Let φe ∈ {φx, φv} with φx = e−� 〈v〉t α(x,v)〈v〉2 and

φv = e−� 〈v〉t |v|α(x,v)
1/2

〈v〉2 . We have

e−� 〈v〉tφe(v)[α(x, v)]βe IIe
� e−� 〈v〉tφe(v)[α(x, v)]βe

{
1+ (1+ t)e−

θ
2 |v|2

∥∥∥eθ |v|2 f
∥∥∥∞

}

×
{∫ t

0

�∗(0)∑
j=0

1[t j+1,t j )(s)|∂et j |〈v〉κds ×
∥∥∥eθ |v|2∂t f

∥∥∥∞ (7.4)

+
∫ t

0

�∗(0)∑
j=0

1[t j+1,t j )(s){|∂ex�| + t |∂ev�|}ν(√μ∂x f m−�)(s, Xcl(s), Vcl(s))ds (7.5)

+
∫ t

0

�∗(0)∑
j=0

1[t j+1,t j )(s)|∂ev�|
∫
R3
|Vcl(s)− u|κ−1

√
μ(u) f m−�(s, Xcl(s), u)duds

(7.6)

+
∫ t

0

�∗(0)∑
�=0

1[t�+1,t�)(s)|∂et�|

×
[∣∣∣�gain(∂t f m−�, f m−�)

∣∣∣+
∣∣∣�gain( f m−�, ∂t f m−�)

∣∣∣
]
ds (7.7)

+
∫ t

0

�∗(0)∑
�=0

1[t�+1,t�)(s)

{
|∂ex�| + t |∂ev�|

}

×
[∣∣∣�gain(∂x f m−�, f m−�)

∣∣∣+
∣∣∣�gain( f m−�, ∂x f m−�)

∣∣∣
]
ds (7.8)

+
∫ t

0

�∗(0)∑
�=0

1[t�+1,t�)(s)|∂ev�|
[ ∣∣∣�gain,v( f m−�, f m−�)

∣∣∣

+
∣∣∣�gain( f m−�, ∂v f m−�)

∣∣∣+
∣∣∣�gain(∂v f m−�, f m−�)

∣∣∣
]
ds

}
. (7.9)

Firstly, we consider ∂et j−contribution. Then from Lemma 17 and (2) of
Lemma 6

e−� 〈v〉t α(x, v)〈v〉2 {(7.4)x + (7.7)x}

� e−� 〈v〉t α(x, v)〈v〉2 e−
θ
2 |v|2 t t |v|2

α(x, v)
〈v〉‖eθ |v|2 f ‖∞‖eθ |v|2∂t f ‖∞
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+e−� 〈v〉t α(x, v)〈v〉2 (1+ t)‖eθ |v|2 f ‖∞t
t |v|2
α(x, v)

e−
θ
2 |v|2‖eθ |v|2∂t f ‖∞

�t 1+ P(‖eθ |v|2∂t f0‖∞)+ P(‖eθ |v|2 f0‖∞).

Similarly,

e−� 〈v〉t |v|α(x, v)
1/2

〈v〉2 {(7.4)v + (7.7)x}

�t
|v|
〈v〉2 e

−Cθ |v|2
[
P(‖eθ |v|2∂t f0‖∞)+ P(‖eθ |v|2 f0‖∞)

]

�t 1+ P(‖eθ |v|2∂t f0‖∞)+ P(‖eθ |v|2 f0‖∞).

Secondly, we consider the terms (7.5) and (7.8), which include |∂ex�| +
t |∂ev�|. We use (2) of Lemmas 6 and 17, |∂x x�| + t |∂xv�| � |v|√

α(x,v)
, and

(6.75) to estimate

e−� 〈v〉t α(x, v)〈v〉2 {(7.5)x + (7.7)x}

�t

[
1+ P(‖eθ |v|2∂t f0‖∞)+ P(‖eθ |v|2 f0‖∞)

]

×
�∗(0;t,x,v)∑
�=0

∫ t�

t�+1

∫
R3

e−� 〈v〉t |v|〈v〉2α(x, v)
1/2

× e−Cθ |u−v�|2

|u − v�|2−κ |∂x f
m−�(s, Xcl(s), u)|duds,

�t

[
1+ P(‖eθ |v|2∂t f0‖∞)+ P(‖eθ |v|2 f0‖∞)

]

× max
0≤�≤m sup

0≤s≤t
‖e−� 〈v〉s α〈v〉2 ∂x f

m−�(s)‖∞

×
∫ t

0

�∗(0;t,x,v)∑
�=0

1[t�+1,t�)(s)
∫
R3

e−
�
2 〈v〉(t−s) 〈u〉2

〈v〉2

× |v|α(x, v) 12
|Vcl(s)− u|2−κα(Xcl(s), u)

e−Cθ |v−u|2duds.

We use 〈u〉2
〈v〉2 � 〈v − u〉2 and (1.29) to bound it by

�t

[
1+ P(‖eθ |v|2∂t f0‖∞)+ P(‖eθ |v|2 f0‖∞)

]

× max
0≤�≤m sup

0≤s≤t
‖e−� 〈v〉s α〈v〉2 ∂x f

m−�(s)‖∞
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× O(δ)

〈v〉α(x, v)1/2 |v|α(x, v)
1/2

� O(δ)
[
1+ P(‖eθ |v|2∂t f0‖∞)+ P(‖eθ |v|2 f0‖∞)

]

× max
0≤�≤m sup

0≤s≤t
‖e−� 〈v〉s α〈v〉2 ∂x f

m−�(s)‖∞.

Similarly we further use |∂vx�| + t |∂vv�| � 1
|v| from Lemma 17 to obtain

e−� 〈v〉t |v|α(x, v)
1/2

〈v〉2 {(7.5)v + (7.7)v}

�t

[
1+ P(‖eθ |v|2∂t f0‖∞)+ P(‖eθ |v|2 f0‖∞)

]

×
�∗(0;t,x,v)∑
�=0

∫ t�

t�+1

∫
R3

e−� 〈v〉t |v|〈v〉2 (
1

|v| + 1)α(x, v)1/2

× e−Cθ |u−v�|2

|u − v�|2−κ |∂x f
m−�(s, Xcl(s), u)|duds,

�t

[
1+ P(‖eθ |v|2∂t f0‖∞)+ P(‖eθ |v|2 f0‖∞)

]

× max
0≤�≤m sup

0≤s≤t
‖e−� 〈v〉t |u|α〈u〉2 ∂x f

m−�(s, Xcl(s), u)‖∞

×
�∗(0;t,x,v)∑
�=0

∫ t�

t�+1

∫
R3

×e−
�
2 〈v〉(t−s) |v|〈u〉2

〈v〉2
( 1
|v| + 1)α(x, v)1/2

|Vcl(s)− u|2−κα(x, u)duds.

From 〈u〉2
〈v〉2 � 〈v − u〉2, the last integration is bounded by

�∗(0;t,x,v)∑
�=0

∫ t�

t�+1

∫
R3

e−
�
2 〈v〉(t−s)〈v − u〉2 〈v〉α(x, v)

1/2

α(Xcl(s), u)

e−C |Vcl(s)−u|2

|Vcl(s)− u|2−κ duds.

By the dynamical non-local to local estimate (1.29), this is bounded by

O(δ)
[
1+ P(‖eθ |v|2∂t f ‖∞)+ P(‖eθ |v|2 f ‖∞)

]

× max
0≤�≤m sup

0≤s≤t
‖e−� 〈v〉s α(x, v)〈v〉2 ∂x f

m−�(s)‖∞.
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Thirdly, we consider ∂ev�−contribution, (7.6) and (7.9). Note that (7.6)x =
0 = (7.9)x since ∂xv j ≡ 0. From Lemma 17 and (3) of Lemma 6,

e−� 〈v〉t |v|α(x, v)
1/2

〈v〉2 {(7.6)v + (7.9)v}

�
[
1+ P(‖eθ |v|2∂t f0‖∞)+ P(‖eθ |v|2 f0‖∞)

]

×
∫ t

0

�∗(0)∑
�=0

1[t�+1,t�)(s)e
−� 〈v〉t |v|α(x, v)1/2

〈v〉2 e−C |v|2

×
∫
R3

e−Cθ |Vcl(s)−u|2

|Vcl(s)− u|2−κ |∂v f
m−�(s, Xcl(s), u)|duds

�
[
1+ P(‖eθ |v|2∂t f0‖∞)+ P(‖eθ |v|2 f0‖∞)

]

×
∫ t

0

�∗(0)∑
�=0

1[t�+1,t�)(s)
∫
R3

e−� 〈v〉t e−� 〈u〉se−C |v|2 |v|〈u〉2α(x, v)1/2
|u|〈v〉2α(Xcl(s), u)1/2

× e−Cθ |Vcl(s)−u|2

|Vcl(s)− u|2−κ duds

× sup
0≤s≤t

max
0≤�≤m ‖e

−� 〈u〉s |u|α(x, u)1/2
〈u〉2 ∂v f

m−�(s, x, u)‖∞.

Now we choose β ′ ∈ (12 , 1) and use α(x, u) � |u|2 to have

1

[α(Xcl(s), u)]1/2 � |u|2(β ′− 1
2 )

[α(Xcl(s), u)]β ′ .

Now we use (6.75) to bound the integration by

∫ t

0

�∗(0)∑
�=0

1[t�+1,t�)(s)
∫
R3

e−� 〈v〉(t−s) |v|
|u|

|u|2β ′−1α(x, v)1/2

|Vcl(s)− u|2−κα(Xcl(s), u)β
′

×e−C |v|2e−Cθ |Vcl(s)−u|2duds

Now we use |u|2β ′−1 ≤ 〈v〉2β ′−1〈u − v〉2β ′−1 and we apply (4.12) to bound
this integration by

O(δ)〈v〉−2+2β ′α(x, v)1−β ′ � O(δ),
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Hence

e−� 〈v〉t |v|α(x, v)
1/2

〈v〉2 {(7.6)v + (7.9)v}

�
[
1+ P(‖eθ |v|2 f0‖∞)+ P(‖eθ |v|2∂t f0‖∞)

]

× sup
0≤s≤t

max
0≤�≤m ‖e

−� 〈v〉s |u|α(x, u)1/2
〈u〉2 ∂v f

m−�(s, x, u)‖∞

×
{

O(δ)

〈v〉[α(x, v)]β ′−1/2
α(x, v)1/2e−Cθ |v|2 + O(δ)

}

�
[
1+ P(‖eθ |v|2 f0‖∞)+ P(‖eθ |v|2∂t f0‖∞)

]

+O(δ)
[
P(‖eθ |v|2 f0‖∞)+ P(‖eθ |v|2∂t f0‖∞)

]

× sup
0≤s≤t

max
0≤�≤m ‖e

−� 〈v〉s |u|α(x, u)1/2
〈u〉2 ∂v f

m−�(s, x, u)‖∞.

Now we gather all the estimates with small 0 < δ � 1 to close the esti-
mate. Then we follow the exactly same argument as the specular case and this
complete the proof of Theorem 6. ��
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Appendix: Non-existence of second derivatives

In the previous theorem, we consider the first-order derivative of the Boltz-
mann solution with several boundary conditions. Now we show that some
second order spatial derivative does not exist up to the boundary in general so
that our result is quite optimal.

Assume that all the second order spatial derivatives exist away from the
grazing set γ0 = {(x, v) ∈ ∂�× R

3 : n(x) · v = 0} but up to some boundary
∂�× R

3. Taking the normal derivative ∂n = n(x) · ∇x = ∇x ξ(x)|∇x ξ(x)| · ∇x to the
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Boltzmann equation directly yields

v · ∂n∇x f = −∂n∂t f − ν(√μ f )∂n f + ∂n�gain( f, f )− ∂nν(√μ f ) f︸ ︷︷ ︸ .

In this section we show that the underbraced term blows up at the boundary
with any velocity for symmetric domains.

Assume f0 � (
√
μ)1−δ for some 0 < δ � 1. Then there exists k f0(v, u)

such that

�gain( f, f0)+ �gain( f0, f )− ν(√μ f ) f0 :=
∫
R3

k f0(v, u) f (u)du.

First consider the diffuse reflection boundary condition. Theorem 2 plays
an important role in our proof.

Proposition 3 (Diffuse BC) Assume � = {x ∈ R
3 : |x | < 1} and ξ(x) =

|x |2 − 1. Assume the initial datum f0 satisfies, for some x0 ∈ ∂�,

lim
n(x0)·u=0

∫
k f0(v, u)u · n(x0)∂n f0(x0, u)duτ > C > 0, (8.1)

where uτ = u− (u · n(x0))n(x0). Then for any t > 0 such that for all v ∈ R
3,

∂n�gain( f, f )(t, x0, v)− ∂nν(√μ f ) f (t, x0, v) = ∞. (8.2)

We remark that for 0 < θ < 1
4 we have supt ‖eθ |v|2 f (t)‖∞ � ‖eθ |v|2 f0‖∞

due to Lemma 7 or [3,9] and ‖α1/2∂ f (t)‖∞ � 1 for ∂ = [∂t ,∇x ,∇v] due to
Theorem 2. The blow-up of (8.2) is due to the interaction between expected
singular behavior 1√

α
with the non-local collision operator. For the diffuse

reflection, indeed this blow-up happens for any time 0 < t � 1. Our proof
assumes crucially the initial condition is non-zero at the boundary. However,
for initial data vanish near the boundary, it is strongly believed that solutions
will become non-zero at a short time later at the boundary and such a blow-up
will happen generically.

Proof We denote the different quotient

#ε f (t, x, v) := f (t, x + ε[−n(x)], v)− f (t, x, v)

ε
.

Then

#ε{�gain( f, f )} − ν(√μ#ε f ) f = �gain(#ε f, f )
+ �gain( f,#ε f )− ν(√μ#ε f ) f.
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Assuming f � f0 � (√μ)1−δ for 0 < δ � 1, we have

�gain(#ε f, f )+ �gain( f,#ε f )− ν(√μ#ε f ) f

�
∫
R3

k f0(v, u)#ε f (x, u)du�
∫
R3

k f0(v, u)
f (x−εn(x), u)− f (x, u)

ε
du,

(8.3)
where k f0(v, u) � k(v, u) in (2.9) with slightly different exponents. For sim-
plicity let us assume k f0(v, u) is bounded. We split as with 0 < �� 1

∫
R3

k f0(v, u)
f (t, x − εn(x), u)− f (t, x, u)

ε
du

=
∫
|n(x)·u|≤ε︸ ︷︷ ︸

I

+
∫
ε≤|n(x)·u|≤�︸ ︷︷ ︸

II

+
∫
�≤|n(x)·u|︸ ︷︷ ︸

III

. (8.4)

The first term is bounded as I � O(1)‖eθ |v|2 f ‖∞. The last term is bounded
due to Theorem 2. Since ξ(x) = |x |2 − 1, for all 0 < r < ε � 1,

∇ξ(x − rn(x)) · u = ∇ξ(x) · u −
∫ r

0

{∇ξ(x) · ∇2ξ(x − r ′n(x)) · u} dr ′

= ∇ξ(x) · u − 2
∫ r

0
∇ξ(x) · udr ′

= ∇ξ(x) · u + O(ε)|∇ξ(x) · u|
= ∇ξ(x) · u. (8.5)

Therefore � ≤ |n(x) · u| implies � �
√
α(x, u) and

III � ‖e−� 〈v〉t√α∇x f (t)‖∞
∫
��√α

e� 〈u〉t√
α

k f0(v, u)du

=
∫
�≤√α,|u|≤N

+
∫
�≤√α,|u|≥N

� O(1)+ eCNt

�
.

For the second term of (8.4) we use (8.5) to conclude, for 0 ≤ r ≤ ε,

ε � |n(x − rn(x)) · u| � �.

Therefore f (t, x − εn(x), u) is differentiable so that

f (t, x − εn(x), u)− f (t, x, u)

ε
=

∫ 1

0
∂n f (t, x − εrn(x), u)dr. (8.6)
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We further split II as

II =
∫
ε≤|n(x)·u|≤�

1
N ≤|u|≤N︸ ︷︷ ︸

IIa

+
∫
ε≤|n(x)·u|≤�
|u|≤ 1

N ,|u|≥N︸ ︷︷ ︸
IIb

.

For the second term we use Theorem 2 to have

IIb � e−N
∫ 1

0
dr

∫
ε�|un |��

dun

∫
|uτ |�N

duτ k f0(v, u)∂n f (t, x − εrn(x), u)

� e−N
∫ 1

0
dr

∫
ε�|un |��

dun

∫
|uτ |�N

duτ

× k f0(v, u)√|un|2 + CrεN 2
, (8.7)

where we used

ξ(x − εrn(x)) = ξ(x)+ Cεr = Cεr.

The main term is IIa:

IIa =
∫ 1

0
dr

∫∫
ε�|un |��
1
N ≤|u|≤N

duτdun k f0(v, u)∂n f (t, x − εrn(x), u).

From (2.3), for ε � |un| � � and 1
N ≤ |u| ≤ N ,

tb(x−εrn(x), u) �
√
α(x−εrn(x), u)

|u|2 �
√
�2+εr N 2

1
N2

� N 2
√
�2+εN 2.

Let x(r) = x − εrn(x). For ε � |un| � � and 1
N ≤ |u| ≤ N and t �

N 2
√
�2 + εN 2,

∂n f (t, x(r), u)

= n(x(r)) · ∇x

{
f (t − tb, xb, u)

+
∫ tb

0
[�gain( f, f )− ν(F) f ](t − s, x(r)− su, u)ds

}
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=
2∑

i=1

n(x(r)) · τi (xb)∂τi f (t − tb, xb, u)

+n(x(r)) · n(xb)
n(xb) · u u · n(xb)∂n f (t − tb, xb, u)

+
∫ tb

0
n(x(r)) · {�gain(∇x f, f )+ �gain( f,∇x f )

−ν(√μ∇x f ) f − ν(√μ f )∇x f }(t − s, x(r)− su, u)ds.

Now we expand in time for the underlined term and choose 0 < t � 1
(N 2

√
�2 + εN 2 � 1) so that

u · n(xb)∂n f (t − tb, xb, u)

= u · n(xb)∂n f0(xb, u)+
∫ t−tb

0
{u · n(xb)}∂t∂n f (s, xb, u)ds

= u · n(xb)∂n f0(xb, u)+ O(1)te�Nt‖e−� 〈v〉t√α∂t∂n f (t)‖∞.

We remark that ∂t f can satisfy the same estimate as in Theorem 2. The tan-
gential derivative term is bounded by

|n(x(r)) · τi (xb(x(r), u))‖∂τi f (t − tb, xb, u)|
� |n(xb) · τi (xb)+ O(tb(x(r), u))u · ∇xn(x(r))‖∂τi f (t − tb, xb, u)|
�

√
α(xb, u)

|u| |∇x f (t − tb, xb, u)|
� Ne�Nt‖e−� 〈v〉t√α∇x f (t, x, v)‖∞,

and the time integration terms are bounded by, from tb(x(r), u) �
√
α(x(r),u)
|u|2 ,

‖eθ |v|2 f ‖∞
∫ tb

0

∫
R3

e−C |u−u′|2

|u − u′|2−κ |∂x f (t − s, x(r)− su, u′)|du′ds

+ Ne�Nt‖eθ |v|2 f ‖∞‖e−� 〈v〉t√α∇x f (t)‖∞
� ‖eθ |v|2 f ‖∞‖e−� 〈v〉t√α∇x f (t)‖∞e�Nt

×
{∫ tb

0

∫
R3

e−� 〈u〉(t−s) e
−C |u−u′|2

|u − u′|2−κ
|u′|δ

α(x(r)− su, u′) 1+δ2
du′ds

}

� ‖eθ |v|2 f ‖∞‖e−� 〈v〉t√α∇x f (t)‖∞ e�NtCN

[α(x(r), u)]δ/2 .
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Now we plug these estimates into IIa to have

IIa + IIb

�
∫ 1

0

∫
ε�|un |��
1
N �|u|�N

1√
α(x0 − εrn(x0), u)

×
[∫

·n(x0)·uτ=0
k f0(v, u)u · n(x0)∂n f0(x0, u)duτ

]
u·n(x0)=0

−
{
O(t)e−�Nt‖e−� 〈v〉t√α∂t∂n f (t)‖∞ + e−N

}

×
∫ 1

0

∫∫
ε�|un |��
1
N �|u|�N

1√
α(x0 − εrn(x0), u)

− O(1)Ne�Nt‖e−� 〈v〉t√α∇x f (t)‖∞
− ON (1)e

�Nt‖eθ |v|2 f0‖∞‖e−� 〈v〉t√α∇x f (t)‖∞
×

∫ 1

0

∫∫
ε�|un |��
1
N �|u|�N

1

[α(x0 − εrn(x0), u)]δ/2 .

Due to (8.1), if δ < 1, for N � 1 and t � 1 with N 2
√
�2 + εN 2 � 1

II �
∫ 1

0

∫
ε�|un |��
1
N �|u|�N

1√|un|2 + Cεr |uτ |2
dunduτdr

�
∫
ε≤|un |≤�

N 2

|un| + √
εN

duτdun

� N 2 ln
1

ε +√
εN

− ON ,�(1)

� N 2

2
ln

1

ε
− o(1) ln

1

ε
− ON ,�(1)→∞.

��
For the bounce-back and specular cases we consider small solutions

f = σg for 0 < σ � 1. (8.8)

where f solves (1.7). Then g solves

∂t g + v · ∇x g + σν(√μg)g = σ�gain(g, g).
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Note that for either the bounce-back or specular cases we can express g
along the trajectory

g(t, x, v) = e−σ
∫ t
0 ν(

√
μg)(s,Xcl(s),Vcl(s))dsg0(Xcl(0; t, x, v), Vcl(0; t, x, v))

+σ
∫ t

0
e−σ

∫ t
s ν(

√
μg)(τ,Xcl(τ ),Vcl(τ ))dτ

×�gain(g, g)(s, Xcl(s; t, x, v), Vcl(s; t, x, v))ds, (8.9)

where the backward trajectories are defined in Definition 2 respectively. We
remark that for 0 < σ � 1, g is uniformly bounded in C1 away from the
grazing set γ0.

Proposition 4 (Bounce-Back BC) Assume � = {x ∈ R
3 : |x | < 1} and

ξ(x) = |x |2 − 1. Assume the initial datum f0 = σg0 ≥ 0 supported in
1
2 ≤ |v| ≤ 2 and

lim
n(x0)·u=0

∫
kg0(v, u)u · ∇x g0(x0, u)duτ > C > 0, (8.10)

for some x0 ∈ ∂� and some v ∈ R
3 where uτ = u − [u · n(x0)]n(x0). Then

there exists 0 < t = Cσ for some C > 0 such that

∂n�gain(g, g)(t, x0, v)− ∂nν(√μg)g(t, x0, v) = ∞. (8.11)

We remark that u · ∇x g0(x0, u) is rather arbitrary for u · n(x0) = 0.

Proof Assuming g � g0 � (√μ)1−δ for 0 < δ � 1, we have

�gain(#εg,√μ+ g)+ �gain(√μ+ g,#εg)− ν(√μ#ε g)(√μ+ g)

�
∫
R3

kg0(v, u)#ε g(x, u)du�
∫
R3

kg0(v, u)
g(x − εn(x), u)− g(x, u)

ε
du,

(8.12)
where kg0(v, u) � k(v, u) in (2.9) with slightly different exponents. For sim-
plicity let us assume kg0(v, u) is bounded.

We choose (x, v) ∈ �̄×R
3 so that |x� − x0| � 1 and |v� −±v0| � 1 for

all � ∈ N (even or odd). Then

∫
R3

kg0(v, u)
g(t, x − εn(x), u)− g(t, x, u)

ε
du =

∫
|n(x)·u|≤ε

+
∫
ε≤|n(x)·u|

.

The first term is bounded. Due to (8.5) we have |n(x) · u| ≥ ε implies |n(x −
rn(x)) · u| � ε for all 0 ≤ r ≤ ε. Then by Theorem 6, the function g is
differentiable and the second term equals
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∫
|n(x)·u|≥ε

kg0(v, u)
g(t, x − εn(x), u)− g(t, x, u)

ε
du

=
∫ 1

0

∫
|n(x)·u|≥ε

kg0(v, u)∂ng(t, x − εrn(x), u)dudr

=
∫ 1

0

∫
ε≤|n(x)·u|≤1,|τ(x)·u|≤N

+
∫ 1

0

∫
ε≤|n(x)·u|≤1,|τ(x)·u|≥N

+
∫ 1

0

∫
|n(x)·u|≥1

. (8.13)

For the third term of (8.13) we use Theorem 6 to have

|∂ng(t, x − εrn(x), u)| � 〈u〉2e� 〈u〉t
α(x − εrn(x), u) � 〈u〉2e� 〈u〉t ,

and therefore the third term of (8.13) is bounded. For the second term of (8.13)
we use Theorem 6 to bound

‖e−� 〈v〉t α〈v〉2∇x g(t)‖∞ ×
∫ 1

0
dr

∫ 1

ε

dun
e�δN 2

|un|2 + CrεN 2

∫
R2

duτkg0(v, u)

� e−N ×
∫ 1

0
dr

∫ 1

ε

dun
1

|un|2 + CrεN 2 . (8.14)

Now we focus on the first term of (8.13). Using (8.9), (7.3), Theorem 6, and
Lemma 17, we have

∂ng(t, y, u)

= e−σ
∫ t
0 ν(

√
μg)(τ )dτ

{
[∂nx�∗(0) − ∂nt�∗(0)v�∗(0)] · ∇x g0(Xcl(0), Vcl(0))

+v�∗(0) · ∇vg0(Xcl(0), Vcl(0))
}

+σ‖eθ |v|2g0‖∞
{

t2|u|2
α(y, u)

e−
θ
4 |u|2‖eθ |v|2∂t g0‖∞ + t (1+ t)|u|2

α(y, u)
e−

θ
4 |u|2

+ sup
0≤s≤t

‖e−� 〈v〉tα∂x g(t)‖∞
∫ t

0

∫
R3

∑
�

1[t�+1,t�)(s)
e− θ8 |v�−u′|2

|v� − u′|2−κ
|∂nx�|

e−� 〈u′〉sα(Xcl(s), u′)
du′ds

}
.
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Using Lemma 1.29, Lemma 17, and (6.75), we bound the last integration by

e� 〈u〉t |u|√
α(y, u)

∫ t

0

∫
R3

e−� 〈u〉(t−s) e− θ8 |Vcl(s)−u′|2

|Vcl(s)− u′|2−κ
1

α(Xcl(s), u′)
du′ds

�ε e� 〈u〉t
|u|
〈u〉

1

α(y, u)
.

Now by the explicit computations in Lemma 17

e−σ
∫ t
0 ν(μ+

√
μg)(τ )dτ

{
[∂nx�∗(0) − ∂nt�∗(0)v�∗(0)] · ∇x g0(Xcl(0), Vcl(0))

+v�∗(0) · ∇vg0(Xcl(0), Vcl(0))
}

≥ e−σ t〈u〉‖eθ |v|
2
g0‖∞

{
�∗(0)

n(y) · ∇ξ(x1)
v · ∇ξ(x1) + (�∗(0)− 1)

n(y) · ∇ξ(x2)
−v · ∇ξ(x2)

}
︸ ︷︷ ︸

Vcl(0)

·∇x g0(Xcl(0), Vcl(0))

−Cξ |u|√
α(y, u)

|∇x g0(Xcl(0), Vcl(0))| − Cξ |u||∇vg0(Xcl(0), Vcl(0))|

≥ e−tσ 〈u〉‖eθ |v|2 g0‖∞Oξ (1)
t |u|2
α(y, u)

Vcl(0) · ∇x g0(Xcl(0), Vcl(0))

−Oξ (1+ t |u|)√
α(y, u)

|u‖∇x g0(Xcl(0), Vcl(0))| − Cξ |u||∇vg0(Xcl(0), Vcl(0))|,

where for the underbraced term we used

n(y) ·
{

n(xb)

n(xb) · v −
n(y)

n(y) · v
}

= n(y) · ∇ξ(y − tbv) (∇ξ(y) · v)− n(y) · ∇ξ(y) (∇ξ(y − tbv) · v)
(∇ξ(y) · v) (∇ξ(y − tbv) · v)

=
tb

{
(n(y) · [v · ∇]∇ξ(y − τ̃ v)) (∇ξ(y) · v)− n(y) · ∇ξ(y)

(
v · ∇2ξ(y − τ̃ v) · v

)}

(∇ξ(y) · v) (−∇ξ(y − tbv) · v)

= − tb
(−∇ξ(xb) · v)

(
v · ∇2ξ(y − τ̃ v) · v

)

n(y) · v + tb
(−∇ξ(xb) · v) (n(y) · [v · ∇]∇ξ(y − τ̃ v))

:= − A(y, v)

n(y) · v + B(y, v), (8.15)

where for some τ̃ ∈ [0, tb], and from (2.2), (2.3), and the Velocity lemma
(Lemma 2) we have A ≥ 0 and

A(y, v) ≥ Cξ
v

|v| · ∇
2ξ(y − τ̃ v) · v|v| �� 1, B(y, v) �� 1

|v| .
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Therefore finally the underbraced term has the following explicit lower bound:

�∗(0)
[
n(y) · ∇ξ(x1)
v · ∇ξ(x1) − n(y) · ∇ξ(x2)

v · ∇ξ(x2)
]
+ n(y) · ∇ξ(x2)

v · ∇ξ(x2)
= �∗(0) A(y, v)

n(x1) · v + �∗(0)B(y, v)+ O

(
1

n(x1) · v
)

= Oξ (1)
t |v|2
α(y, v)

+ Oξ (1+ t |v|)√
α(y, v)

.

Therefore

∂ng(t, y, u)

≥ e−σ t〈u〉‖eθ |v|
2
g0‖∞Oξ (1)

t |u|2
α(y, u)

Vcl(0) · ∇x g0(Xcl(0), Vcl(0))

−Oξ (1+ t |u|)√
α(y, u)

|u‖∇x g0(Xcl(0), Vcl(0))| − Cξ |u||∇vg0(Xcl(0), Vcl(0))|

−σ‖eθ |v|2g0‖∞
{

t2|u|2
α(y, u)

e−
θ
4 |u|2‖eθ |v|2∂t g0‖∞ − t (1+ t)|u|2

α(y, u)
e−

θ
4 |v|2

− sup
0≤s≤t

‖e−� 〈v〉tα∂x g(t)‖∞ × e� 〈u〉t |u|〈u〉
1

α(y, u)

}
.

(8.16)

Choose y = x − εrn(x), t = Cσ f or C � 1, 0 < δ � 1 and α(y, u) � 1.
Then the first contribution of (8.13) is bounded below by∫ 1

0

∫
ε≤|n(x)·u|≤δ

∫
|τ(y)·u|≤N

� σ
∫ 1

0
dr

∫
ε≤|un |≤δ

dun

∫
|uτ |≤N

duτ
1

|un|2 + CrεN 2

×kg0(v, u)Vcl(0) · ∇x g0(Xcl(0), Vcl(0))

� σ
∫ 1

0
dr

∫
ε≤|un |≤δ

dun
|un|2 + CrεN 2

∫
|uτ |≤N

duτkg0(v, u)u · ∇x g0(x0, u).

(8.17)

Now we use the condition (8.10) for ε � 1 and un � 1∫
|uτ |≥N

kg0(v, u)Vcl(0) · ∇x g0(Xcl(0), Vcl(0))duτ

�
∫
n(x0)·uτ=0

kg0(v, u)u · ∇x g0(x0, u)duτ = C �= 0.
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We combine this term with the second term of (8.13) to conclude

(8.17)− (8.14) � {Cσ − e−N − o(1)}
∫ δ

ε

dun

∫ 1

0

dr

|un|2 + CrεN 2

�
∫ 1

ε

1

CεN 2 ln

(
1+ CεN 2

|un|2
)
dun � 1

N 2

1

ε
.

(8.18)

Now all the other terms of (8.16) except the first term are bounded by

∫ 1

ε

dun
1

|un| + δ
∫ 1

ε

dun
1

|un|2 � | ln ε| + δ × 1

ε
.

Therefore we conclude (8.2) as ε→ 0. ��

In order to show the non-existence of ∇2 f up to the boundary for the
specular reflection BC (Proposition 5) we first obtain the explicit lower bound
of (1.35) with a lower dimensional symmetric domain, 2D disk.

Lemma 18 Let � = {x̄ = (x1, x2) ∈ R
2 : |x1|2 + |x2|2 < 1}. Define

r :=
√
x21 + x22 ∈ [0, 1], θ ∈ [0, 2π) such that (cos θ, sin θ) = 1√

x21 + x22

(x1, x2),

v̄n := v1 cos θ + v2 sin θ, v̄θ := −v1 sin θ + v2 cos θ.

We claim that as α→ 0 (therefore |r − 1| � 1, v̄n � 1) asymptotically

|∂n X̄cl(s; t, x, v) · n̄(X̄cl(s; t, x, v))| � |t − s‖v̄θ |2√
v̄2n + (1− r2)v̄2θ

� |t − s‖v̄|2√
α(x, v)

,

|∂n V̄cl(s; t, x, v) · n̄(X̄cl(s; t, x, v))| � |t − s‖v̄|4
v̄2n + (1− r2)v̄2θ

� |t − s‖v̄|4
α(x, v)

.

(8.19)

Proof Explicitly x = (r cos θ, r sin θ, x3), and v = (v̄n cos θ − v̄θ sin θ, v̄n
sin θ + v̄θ cos θ, v3), and
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x� = (cos θ�, sin θ�, x3 − (t − t�)v3),

v� =
(√
v̄2n + v̄2θ cosψ�,

√
v̄2n + v̄2θ sinψ�, v3

)
,

t1 = t −
r |v̄n| +

√
(1− r2)v̄2θ + v̄2n
v̄2n + v̄2θ

,

t� = t −
r |v̄n| + (2�− 1)

√
(1− r2)v̄2θ + v̄2n

v̄2n + v̄2θ
,

and

�∗(s; t, x, v) ≤ (t − s)|v̄|2
2
√
(1− r2)v̄2θ + v̄2n

− r |v̄n|
2
√
(1− r2)v̄2θ + v̄2n

+ 1

2

< �∗(s; t, x, v)+ 1,

where, for � ≥ 1

θ0 = θ, θ� = θ − cos−1

⎛
⎝ v̄θ√

v̄2θ + v̄2n

⎞
⎠− (2�− 1) cos−1

⎛
⎝ r v̄θ√

v̄2n + v̄2θ

⎞
⎠ ,

ψ0 = cos−1

⎛
⎝ v̄n cos θ − v̄θ sin θ√

v̄2n + v̄2θ

⎞
⎠ , ψ� = ψ0 − 2� cos−1

⎛
⎝ r v̄θ√

v̄2n + v̄2θ

⎞
⎠ .

Therefore, for t�+1 < s < t�,we have Xcl(s) = x�− (t�− s)v�, Vcl(s) = v�,
and

r(s) = |X̄cl(s)| = |x̄� − (t� − s)v̄�|,
v̄n(s) = V̄cl(s) · X̄cl(s)

|X̄cl(s)|
, v̄θ (s) = V̄cl(s) ·

(
0 −1
1 0

)
X̄cl(s)

|X̄cl(s)|
, v3(s) = v3.

Directly

∂θ v̄n = vθ , ∂θ v̄θ = −v̄n,

∂n cos
−1

⎛
⎝ r v̄θ√

v̄2n+v̄2θ

⎞
⎠ = −v̄θ√

v̄2n + (1− r2)v̄2θ

,
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∂θ cos
−1

⎛
⎝ v̄θ√

v̄2n+v̄2θ

⎞
⎠ = 1, ∂θ cos

−1

⎛
⎝ r v̄θ√

v̄2n + v̄2θ

⎞
⎠ = r v̄n√

v̄2n + (1− r2)v̄2θ

,

∂v̄n cos
−1

⎛
⎝ v̄θ√

v̄2n + v̄2θ

⎞
⎠ = v̄θ

v̄2n + v̄2θ
, ∂v̄n cos

−1

⎛
⎝ r v̄θ√

v̄2n + v̄2θ

⎞
⎠ = r v̄θ

v̄2n + v̄2θ
,

∂v̄θ cos
−1

⎛
⎝ v̄θ√

v̄2n + v̄2θ

⎞
⎠ = −v̄n

v̄2n + v̄2θ
, ∂v̄θ cos

−1

⎛
⎝ r v̄θ√

v̄2n + v̄2θ

⎞
⎠ = −r v̄n

v̄2n + v̄2θ
,

∂v̄n cos
−1

⎛
⎝ v̄n cos θ − v̄θ sin θ√

v̄2n + v̄2θ

⎞
⎠ = v̄θ

v̄2n + v̄2θ
,

∂v̄θ cos
−1

⎛
⎝ v̄n cos θ − v̄θ sin θ√

v̄2n + v̄2θ

⎞
⎠ = v̄n

v̄2n + v̄2θ
,

∂θ cos
−1

⎛
⎝ v̄n cos θ − v̄θ sin θ√

v̄2n + v̄2θ

⎞
⎠ = 0 = ∂n cos−1

⎛
⎝ v̄n cos θ − v̄θ sin θ√

v̄2n + v̄2θ

⎞
⎠ ,

and

∂v̄θ θ
� = |v̄n|

|v̄|2 + |t − s|, ∂v̄r θ
� = − v̄θ

|v̄|2 − (2�− 1)
r v̄θ
|v̄|2 ,

∂θ θ
� � |t − s‖v̄|2|v̄n|

v̄2n + (1− r2)v̄2θ
, ∂nθ

� = (2�− 1)v̄θ√
v̄2n + (1− r2)v̄2θ

,

and

∂θψ
� � |t − s‖v̄|2|v̄n|

v̄2n + (1− r2)v̄2θ
, ∂nψ

� = 2�v̄θ√
v̄2n + (1− r2)v̄2θ

,

∂v̄θ ψ
� � |t − s||v̄n|√

v̄2n + (1− r2)v̄2θ

� |t − s|, ∂v̄nψ� = −2�
r v̄θ

v̄2n + v̄2θ
+ Oξ (1)

1

|v̄| ,
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and

t� − t�+1 ≤
2
√
(1− r2)v̄2θ + v̄2n
v̄2n + v̄2θ

,

�∗(s) ≤ |t − s||v̄|2
2
√
v̄2n + (1− r2)v̄2θ

− r |v̄n|
2
√
v̄2n + (1− r2)v̄2θ

+ 1

2
≤ �∗(s)+ 1,

and

∂r t
� = −|v̄n|

v̄2n + v̄2θ
+ (2�− 1)

r v̄2θ

|v̄|2
√
v̄2n + (1− r2)v̄2θ

,

∂θ t
� = −(2�− 1)v̄n v̄θr2

|v̄|2
√
v̄2n + (1− r2)v̄2θ

� |t − s‖v̄θ |r2√
v̄2n + (1− r2)v̄2θ

,

∂v̄n t
� = −(2�− 1)

v̄n

|v̄|2
√
v̄2n + (1− r2)v̄2θ

+ Oξ (1)
1+ |v̄‖t − s|

|v̄|2 ,

∂v̄θ t
� ≤ (2�− 1)

(1− r2)|v̄θ |
|v̄|2

√
v̄2n + (1− r2)v̄2θ

+ 2(2�− 1)
|v̄θ |

√
v̄2n + (1− r2)v̄2θ

|v̄|4

� |t − s| (1− r2)|v̄θ |
v̄2n + (1− r2)v̄2θ

+ |t − s| |v̄θ ||v̄|2 .

If r < 1
2 then (1− r2)v̄2θ + v̄2n ≥ 3

4 |v̄|2 and

∂v̄θ t
� � |t − s|4|v̄θ |

3|v̄|2 + |t − s| |v̄θ ||v̄|2 � |t − s| |v̄θ ||v̄|2 .

If r ≥ 1
2 and |v̄θ | ≤ |v̄n| then

∂v̄θ t
� � |t − s||v̄θ |

v̄2n
2 + v̄2n

2

+ |t − s| |v̄θ ||v̄|2 � |t − s| |v̄θ ||v̄|2 .

If r ≥ 1
2 and |v̄θ | ≥ |v̄n| then

∂v̄θ t
� � |t − s| (1− r2)|v̄θ |

(1− r2)|v̄θ |( |v̄θ |2 + |v̄θ |
2 )

+ |t − s| |v̄θ ||v̄|2 � |t − s|
|v̄| .
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Therefore

∂v̄θ t
� � |t − s|

|v̄| .

Directly

∂n X̄cl(s) = ∂nθ�
(
− sin θ�

cos θ�

)
− ∂t

�

∂n
|v̄|

(
cosψ�

sinψ�

)

− (t� − s)|v̄|∂ψ
�

∂n

(
− sinψ�

cosψ�

)

= (2�− 1)v̄2θ

|v̄|
√
v̄2n + (1− r2)v̄2θ

(
− sin θ� − cosψ�

cos θ� − sinψ�

)

+ Oξ (1)

{
(2�− 1)|v̄θ‖v̄n|

|v̄|
√
v̄2n + (1− r2)v̄2θ

+ (2�− 1)(1− r)|v̄θ |2
|v̄|

√
v̄2n + (1− r2)v̄2θ

+ |v̄n|
|v̄| + �|t

� − t�+1|
}
,

where Oξ (1)-remainder is bounded by

� |t − s‖v̄|2
v̄2n + (1− r2)v̄2θ

⎧⎨
⎩
|v̄θ‖v̄n|
|v̄| + |1− r ||v̄2θ |

|v̄| +
√
v̄2n + (1− r2)v̄2θ

|v̄|

⎫⎬
⎭+ |v̄n|

|v̄|

� |t − s‖v̄|(1+ |v̄|)√
v̄2n + (1− r2)v̄2θ

+ |t − s||v̄| + |v̄n|
|v̄| .

Now we focus on the first term (most singular term) of ∂n X̄cl(s). We note
that

ψ� = ψ0 − 2� cos−1

⎛
⎝ r v̄θ√

v̄2n + v̄2θ

⎞
⎠

= θ� +
⎧⎨
⎩cos−1

⎛
⎝ v̄n cos θ − v̄θ sin θ√

v̄2n + v̄2θ

⎞
⎠− θ + cos−1

⎛
⎝ v̄θ√

v̄2n + v̄2θ

⎞
⎠
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− cos−1

⎛
⎝ r v̄θ√

v̄2n + v̄2θ

⎞
⎠
⎫⎬
⎭

In the limit of r → 1, we have v̄n cos θ−v̄θ sin θ√
v̄2n+v̄2θ

� −sgn{v̄θ } cos θ . Without the

loss of generality we assume v̄θ > 0. Then for cos θ �= 0, cos−1 is decreasing,
and
cos−1

⎛
⎝ v̄n cos θ − v̄θ sin θ√

v̄2n + v̄2θ

⎞
⎠− θ = θ + π

2
− av̄n cos θ − θ + o(v̄n) � π

2
− av̄n cos θ.

for some constant a > 0. In particular, at θ = 0, a = 1. Therefore, we have
for the leading order term of v̄n in ∂n Xcl is

(− sin θ� − cosψ�

cos θ� − sinψ�

)
=

(− sin θ� − cos(θ� + π
2 − a cos θv̄n)

cos θ� − sin(θ� + π
2 − a cos θv̄n)

)

=
(− sin θ� + sin(θ� − a cos θv̄n)

cos θ� − cos(θ� − a cos θv̄n)

)
� −a cos θv̄n

(
cos θ�

sin θ�

)

which is parallel to n(X̄cl(s)). Without loss of generality we now fix θ = 0
and |v| = 1, r = 1,

∂n X̄cl(s) · n̄(X̄cl(s; t, x, v))

= lim
r↓0

⎧⎨
⎩

(2�− 1)v̄2θ

|v̄|
√
v̄2n + (1− r)v̄2θ

v̄n + |t − s‖v̄|(1+|v̄|)√
v̄2n+(1− r2)v̄2θ

+|t − s||v̄|+|v̄n||v̄|

⎫⎬
⎭ .

This prove the first estimate of (8.19).
Using the same estimates leads to

∂v̄n X̄cl(s) = (2�− 1)

⎧⎨
⎩
−r v̄θ
|v̄|2

(− sin θ�

cos θ�

)
+ v̄n

|v̄|
√
v̄2n + (1− r2)v̄2θ

(
cosψ�

sinψ�

)⎫⎬
⎭

+Oξ (1)
1+ |v̄‖t − s|

|v̄|
= 2�− 1

|v̄|
(

sin θ� + cosψ�

− cos θ� + sinψ�

)
+ Oξ (1)

1+ |v̄‖t − s|
|v̄| � 1

|v̄| .

Since t�∗+1 < 0 < t�∗ ,

∂nv
� = ∂nψ�(−|v̄| sinψ�, |v̄| cosψ�, 0)
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= |t − s‖v̄|2|v̄θ |
v̄2n + (1− r2)v̄2θ

(−|v̄| sinψ�, |v̄| cosψ�, 0).

Therefore we conclude our claim for ∂n V̄cl(0). We can easily check

|∂θ X̄cl(s)| � |v̄|√
v̄2n + (1− r2)v̄2θ

|v̄‖t − s|,

|∂θ V̄cl(s)| � |v̄|2√
v̄2n + (1− r2)v̄2θ

|v̄‖t − s|,

|∂v̄n V̄cl(s)| � 1+ |v̄|2|t − s|√
v̄2n + (1− r2)v̄2θ

,

|∂v̄θ X̄cl(s)| � 1

|v̄| , |∂v̄θ V̄cl(s)| � 1+ |v̄‖t − s|.

(8.20)

��
Based on Example 1, we naturally consider the 2D specular problem. We

consider the 2D specular problem for f (t, x1, x2, v1, v2, v3) solving (1.33)
where v3 is a parameter. Here (x1, x2) ∈ � = {x ∈ R

2 : ξ(x) > 0} and
the convexity (1.13) is valid for all ζ ∈ R

2. We study (1.33) with specular
boundary condition (1.11). Denote v := (v̄, v3) = (v1, v2; v3) ∈ R

3. We
define

α(x, v̄) = |v̄ · ∇ξ(x)|2 − 2{v̄ · ∇2ξ(x) · v̄}ξ(x).
Note that ∇ξ(x) = (∂x1ξ(x), ∂x2ξ(x), 0).

The following estimate is crucial to establish the weighted C1 estimate
(Theorem 4) and non-existence of ∇2 f up to the boundary (Proposition 5).

Lemma 19 For θ > 0 and for i = 1, 2,

e−� 〈v〉s |∂vi�gain( f, f )|
� ‖eθ |v|2 f ‖∞

{
‖eθ |v|2 f ‖∞ + ‖∂v3 f ‖∞ +

∥∥∥∥e−� 〈v〉s |v̄|〈v̄〉α
1/2∇v̄ f

∥∥∥∥∞
}
,

(8.21)
where v = (v̄, v3) = (v1, v2, v3).
Proof The key is to split u‖,3 with respect to the size of |v̄+ ū⊥|√α(v̄ + ū⊥).

Recall from [8] that the gain term of the nonlinear Boltzmann operator in
(1.9) equals

�gain(g1, g2)(v)
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= C
∫
R3

du
∫
u·w=0

dw g1(v + w)g2(v + u)q∗0
( |u|
|u + w|

)

|u + w|κ−1

|u| e−
|u+v+w|2

4 ,

= C
∫
R3

du
∫
u·w=0

dw g2(v + w)g1(v + u)q∗0
( |u|
|u + w|

)

|u + w|κ−1

|u| e−
|u+v+w|2

4 ,

= C
∫
R3

du
∫
(u−v)·w=0

dw g1(v + w)g2(u)q∗0
( |u − v|
|u − v + w|

)

∣∣u − v + w∣∣κ−1

|u − v| e−
|u+w|2

4 ,

= C
∫
R3

du
∫
(u−v)·w=0

dw g2(v + w)g1(u)q∗0
( |u − v|
|u − v + w|

)

|u − v + w|κ−1

|u − v| e−
|u+w|2

4 , (8.22)

where q∗0 (cos θ) = q0(cos θ)
| cos θ | . This is due to two change of variables (37),(38)

and page 316 of [8]. Then

∂vi�gain( f, f ) = 2�gain(∂vi f, f )

+C
∫
R3

du‖
∫
u‖·u⊥=0

dw f (v + u⊥) f (v + u‖)

×q∗0
( |u‖|
|u‖ + u⊥|

) |u‖ + u⊥|κ−1

|u‖| e−
|u‖+v+u⊥|2

4

(
−ei

2

)
· (u‖ + v + u⊥)

= 2�gain(∂vi f, f )+ Oξ (1)e
−C |v|2‖eθ |v|2 f ‖2∞.

Denote the standard cutoff function χ ≥ 0: χ ≡ 1 on [0, 1] and χ ≡ 0 for
[2,∞). We have

�gain(∂vi f, f ) =
∫
R3

du‖ f (v + u‖)
∫
u‖·u⊥=0

du⊥∂vi f (v + u⊥)

×e−
|u‖+u⊥+v|2

4 q∗0
( |u‖|
|u‖ + u⊥|

) |u‖ + u⊥|κ−1

|u‖| .
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We further split it into, for 0 < ε � 1,

∫
R3

du‖ f (v + u‖)
∫
u‖·u⊥=0

χ

( |v̄ + ū⊥|1−εα1/2−ε
u‖,3

)

×∂vi f (v + u⊥)e−
|u‖+v+u⊥|2

4 q∗0
( |u‖|
|u‖ + u⊥|

) |u‖ + u⊥|κ−1

|u‖| du⊥

+
∫
R3

du‖ f (v + u‖)
∫
u‖·u⊥=0

{
1− χ

( |v̄ + ū⊥|1−εα1/2−ε
u‖,3

)}

×∂vi f (v + u⊥)e−
|u‖+v+u⊥|2

4 q∗0
( |u‖|
|u‖ + u⊥|

) |u‖ + u⊥|κ−1

|u‖| du⊥.

For the first part, |u‖,3| ≥ |v̄ + ū⊥|1−εα1/2−ε, and we parametrize u⊥, on a

plain perpendicular to u‖ ∈ R
3, as u⊥,3 = − ū‖·ū⊥

u‖,3 so that

du⊥ = |u‖|
|u‖,3|dū⊥ := |u‖|

|u‖,3|du⊥,1du⊥,2, (8.23)

and the first part equals

∫
R3

du‖ f (v + u‖)
∫
R2

dū⊥∂vi f
(
v1 + u⊥,1, v2 + u⊥,2, v3 − ū‖ · ū⊥

u‖,3

)

×χ
( |v̄ + ū⊥|1−εα1/2−ε

u‖,3

)
e−

|u‖+v+u⊥|2
4

q∗0 (
|u‖|

|u‖+u⊥|)
|u‖,3‖u‖ + u⊥|1−κ .

We now integrate by part in u⊥,i for i = 1, 2 to get

−
∫
R3

du‖ f (v + u‖)
∫
R2
∂v3 f

(
v̄ + ū⊥, v3 − ū‖ · ū⊥

u‖,3

)

× χ
( |v̄ + ū⊥|1−εα1/2−ε

u‖,3

)
e−

|u‖+v+u⊥|2
4

q∗0
( |u‖|
|u‖+u⊥|

)
u‖,idū⊥

|u‖,3|2|u‖ + u⊥|1−κ

−
∫
R3

du‖ f (v + u‖)
∫
R2

f

(
v̄ + ū⊥, v3 − ū‖ · ū⊥

u‖,3

)

× ∂u⊥,i
⎧⎨
⎩χ

( |v̄ + ū⊥|1−εα1/2−ε
u‖,3

)
e−

|u‖+v+u⊥|2
4

q∗0
( |u‖|
|u‖+u⊥|

)
ū‖,i

|u‖,3‖u‖ + u⊥|1−κ

⎫⎬
⎭ dū⊥.
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Directly |∂u⊥,iα(v̄ + ū⊥)| � α(v̄ + ū⊥)1/2 and
∣∣∣du⊥,3du⊥,i

∣∣∣ ≤ |ū‖|
|u‖,3| , we conclude

|∂u⊥,i { } | � χ ′ |v̄ + ū⊥|−εα1/2−ε + |v̄ + ū⊥|1−εα−ε
u‖,3

e−
|u‖+v+u⊥|2

4
‖q∗0‖∞|ū‖|

|u‖,3‖u‖ + u⊥|1−κ

+χe−C |u‖+u⊥+v|2
⎧⎨
⎩

‖q∗0‖∞|ū‖|2
|u‖,3|2|u‖+u⊥|1−κ +

‖q∗0‖C1 |ū‖|2
|u‖,3|2|u‖ + u⊥|3−κ +

‖q∗0‖∞|ū‖|(1+ |ū‖|
|u‖,3| )

|u‖,3‖u‖ + u⊥|2−κ

⎫⎬
⎭

�q∗0 1{u‖,3�|v̄+ū⊥|1−εα1/2−ε}
{

1

|v̄ + ū⊥| +
|v̄ + ū⊥|1−εα−ε

|u‖,3|
}

e−
|u‖+v+u⊥|2

4 |ū‖|
|u‖,3‖u‖ + u⊥|1−κ

+1{|v̄+ū⊥|1−εα1/2−ε≤u‖,3}
|ū‖|(1+ |ū‖|)

|u‖,3|2|u‖ + u⊥|1−κ
(
1+ 1

|u‖ + u⊥|2
)
e−C |u‖+v+u⊥|2 .

Note that | f (v + u‖)| � e−C |v+u‖|2‖eθ |v|2 f ‖∞ and

∣∣∣∣ f
(
v̄ + ū⊥, v3 − ū‖ · ū⊥

u‖,3

)∣∣∣∣ � e−C |v̄+ū⊥|2−C |v3+u⊥,3(u‖,ū⊥)|2‖eθ |v|2 f ‖∞,
(8.24)

and

e−|u‖+u⊥+v|2e−C |v+u‖|2e−C |v̄+ū⊥|2−C |v3+u⊥,3(u‖,ū⊥)|2

� e−C ′|v|2e−C ′|u⊥|2e−C |v+u‖|2,

where v := v‖ + v⊥ with v‖ := v · u‖
|u‖| and

|v + u‖|2 + |v + u⊥|2 = |v‖ + u‖|2 + |v⊥|2 + |v⊥ + u⊥|2 + |v‖|2 ≥ |v|2.

The ∂u⊥,i { }−contribution are bounded by the following three estimates: For
the first term

e−|v|2‖eθ |v|2 f ‖2∞
∫
R2

e−|u⊥|2dū⊥
|v̄ + ū⊥|

∫
R2
|ū‖|κe−|v̄+ū‖|2dū‖

×
∫
|u‖,3−|v̄+ū⊥|1−εα

1
2−ε|�1

du‖,3
|u‖,3| � e−C ′|v|2 .

For the second term we use

f (v̄ + ū⊥, v3 − ū‖ · ū⊥
u‖,3

) � e−C |v+u⊥|2‖eθ |v|2 f ‖∞ 1

1+
(
v3 − ū‖·ū⊥

|u‖,3|
)ε
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such that

f (v + u‖)
|v̄ + ū⊥|1−εα−ε

|u‖,3|2 f

(
v3 − ū‖ · ū⊥

u‖,3

)

×e−
|u‖+u⊥+v|2

4 |ū‖|
|u‖ + u⊥|1−κ

� e−|v|2e−|v+u‖|2e−|u⊥|2‖eθ |v|2 f ‖2∞
|v̄ + ū⊥|1−εα−ε|ū‖|

|u‖ + u⊥|1−κ
× 1

|u‖,3|2−ε
1

|u‖,3|ε + [v3u‖,3 − ū‖ · ū⊥]ε

� e−|v|2e−|v+u‖|2e−|u⊥|2‖eθ |v|2 f ‖2∞
|v̄ + ū⊥|1−εα−ε〈v〉
|u‖ + u⊥|1−κ

1

|u‖,3|2−ε|ū⊥|ε
× 1[

v3u‖,3
|ū⊥| − ū‖ · ū⊥|ū⊥|

]ε ,

where we have used

e−|v+u‖|2 |u‖| � {|u‖ + v| + |v|}e−|v+u‖|2 � (1+ |v|)e−C |v+u‖|2 .

Now we decompose ū‖ = ū‖,a + ū‖,b := ū‖ · ū⊥|ū⊥| + (ū‖ − ū‖ · ū⊥|ū⊥|) and
bound e−|v|2‖eθ |v|2 f ‖2∞×
∫
|u‖,3−|v̄+ū⊥|1−εα

1
2−ε|�1

du‖,3
∫
R2

dū⊥e−|ū⊥|
2 |v̄ + ū⊥|1−εα−ε
|ū⊥|ε|u‖,3|2−ε

×
∫
R

e
−|ū‖,b+(v−v· ū⊥|ū⊥| )|

2

dū‖,b
|ū‖,b|1−κ

∫
R

dū‖,ae−|ū‖,a |
2

[ū‖,a − v3u‖,3
|ū⊥| ]ε

�
∫
R2

dū⊥e−|ū⊥|
2
∫
|u‖,3−|v̄+ū⊥|1−εα

1
2−ε|�1

du‖,3
|v̄ + ū⊥|1−εα(v̄ + ū⊥)−ε

|ū⊥|ε|u‖,3|2−ε ,

where we have first integrated u‖ 3D integral and then changed variables
ū‖,a �→ ū‖,a − v · ū⊥|ū⊥| . The u‖,3-integration yields

�
∫
R2

dū⊥e−|ū⊥|
2 |v̄ + ū⊥|1−εα(v̄ + ū⊥)−ε

|ū⊥|ε
∫
|u‖,3−|v̄+ū⊥|1−εα

1
2−ε|�1

du‖,3
|u‖,3|2−ε

�
∫
R2

dū⊥e−|ū⊥|
2 |v̄ + ū⊥|1−εα(v̄ + ū⊥)−ε

|ū⊥|ε
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× 1

|v̄ + ū⊥|(1−ε)(1−ε)
1

α(v̄ + ū⊥)(
1
2−ε)(1−ε)

�
∫
R2

dū⊥e−|ū⊥|
2 |v̄ + ū⊥|ε(1−ε)

|ū⊥|ε
1

α(v̄ + ū⊥)
1
2−(1−ε)ε

.

Note thatα(v̄+ū⊥)
1
2−ε(1−ε) � [n(x)·(v̄+ū⊥)]1−ε(1−ε) and |ū⊥|ε � [n⊥·ū⊥]ε

and we bound the above by

� 〈v〉
∫
R

e−|n·ū⊥|2

[n · ū⊥ + n · v̄]1−2ε(1−ε) d[n · ū⊥]
∫
R

e−|n⊥·ū⊥|2

|n⊥ · ū⊥|ε d[n
⊥ · ū⊥] � 〈v〉.

For the third term in ∂u⊥,i { } we bound it by ‖eθ |v|2 f ‖2∞×

∫
R3

dū‖
∫
R2

dū⊥

{∫
|u‖,3|≥|v̄+ū⊥|1−εα1/2−ε

e−|u‖,3−v3|2

|u‖,3|2 du‖,3

}

×〈u‖〉
2e−C{|u‖+v|2−|u⊥|2}

|u + w|1−κ
(
1+ 1

|u‖ + u⊥|2
)

�
∫
R3

dū‖

{∫
R2

e−C |u⊥|2dū⊥
|v̄ + ū⊥|1−εα1/2−ε

}
〈ū‖〉2e−C{|u‖+v|2}
|u‖+u⊥|1−κ

(
1+ 1

|u‖+u⊥|2
)
.

We note that, by separating |ξ | ≥ δ or |ξ | ≤ δ, we can write
α1/2−(1−ε)(1+ε2) ≥ {n · [v̄ + ū⊥]}1−(1−ε)(1+ε2) and |v̄ + ū⊥|1−(1−ε)(1+ε2) ≥
{n⊥ · [v̄ + ū⊥]}1−(1−ε)(1+ε2), where n⊥ =

[
0 −1
1 0

]
n, so that the inner 2D

integral are two convergent 1D one

∫
|(v̄+ū⊥)·n⊥|≥1

e−C |u⊥|2dū⊥
α1/2−ε

+
∫
|v̄+ū⊥|≤1,|n⊥{v̄+ū⊥}|≤1

dū⊥
|v̄ + ū⊥|1−εα1/2−ε

≤ 1+
∫
|n⊥{v̄+ū⊥}|≤1

e−C |u⊥|2dū⊥
α1/2−ε

+
∫
|n⊥{v̄+ū⊥}|≤1

dū⊥
|v̄ + ū⊥|1−εα1/2−ε

+
∫
|n⊥{v̄+ū⊥}|≤1

e−C |u⊥|2dū⊥
|v̄ + ū⊥|1−ε

< +∞.
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Similarly, the first term is bounded by

‖〈v〉ζ eθ |v|2 f ‖∞‖∂v3 f ‖
∫
R3

du‖

{∫
|u‖,3|≥|v̄+ū⊥|1−εα1/2−ε

e−|v3−u‖,3|2

|u‖,3|2
}

×q∗0 (
|u|

|v+w|)u‖,idū⊥
|u‖ + u⊥|κ−1 e−

|u+v+w|2
4 ,

and the same argument yields the same bound.
We now turn to

e−� 〈v〉s
∫
R3

du‖ f (v + u‖)
∫
u⊥·u‖=0

{
1− χ

( |v̄ + ū⊥|1−εα1/2−ε
u‖,3

)}
du⊥

∂vi f (v + u⊥)e−
|u+v+w|2

4
q∗0 (

|u|
|v+w|)

|u‖‖u + w|1−κ .

In this case,
|v̄ + ū⊥|1−εα1/2−ε ≥ |u‖,3|.

We now parametrize du⊥ in two different ways.
We decompose

ū‖ = ū‖,n + ū‖,n⊥ := ū‖ · n + ū‖ · n⊥. (8.25)

If |u‖,3| ≥ |ū‖,n⊥|, then we use the same parametrization as in (8.23) and
absorb the factor (v̄ + ū⊥)α

1/2 in L∞ norm, to get

e−� 〈v〉se� 〈v+u⊥〉s
∫
R3

du‖ f (v + u‖)

×
∫
R2

dū⊥e−� 〈v+u⊥〉s∂vi f
(
v̄ + ū⊥, v3 − ū‖ · ū⊥

u‖,3

)

×[1− χ
( |v̄ + ū⊥|1−εα1/2−ε

u‖,3

)
]e−

|u‖+v+u⊥|2
4

q∗0
( |u‖|
|u‖+u⊥|

)

|u‖,3‖u‖ + u⊥|1−κ

�s ‖eθ |v|2 f ‖∞‖e−� 〈v〉s v̄α
1/2

〈v̄〉 ∂vi f (s)‖∞

×
∫
R3

du‖
∫
|v̄+ū⊥|1−εα1/2−ε≥u‖,3

dū⊥
|v̄ + ū⊥|α1/2

e−C |u⊥|2e−C |v+u‖|2

|u‖,3||u‖ + u⊥|1−κ .
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First we integrate ū‖,n to drop 1
|u‖+u⊥|1−κ singular term for 0 < κ ≤ 1

∫
e−|vn+u‖,n |2

|u‖ − u⊥|1−κ du‖,n ≤
∫

e−|vn+u‖,n |2

|u‖,n − u⊥,n|1−κ du‖,n <∞,

so that we only need to bound, for |v̄ + ū⊥|1−εα1/2−ε ≥ u‖,3,

∫
dū‖,n⊥

∫
e−|ū⊥|2−|v+u‖|2dū⊥

|v̄ + ū⊥|2εα2ε|v̄ + ū⊥|1−2εα1/2−2ε

1

|u‖,3|

≤
∫

dū‖,n⊥
{∫

e−|ū⊥|2dū⊥
|v̄ + ū⊥|2εα2ε

}
e−|v+u‖|2

|u‖,3|2−ε/4 .

The inner integral is finite, since α ≥ |n · {v̄ + ū⊥}| = |v̄ · n + ū⊥,n|, and
the integral is a 1D integral:

∫
R

e−|ū⊥,n |2dū⊥,n
|n · v̄ + ū⊥,n|4ε < +∞.

Moreover, from |u‖,3| ≥ |ū‖,n⊥|, the outer integral takes the form

∫
R

e−|u‖,3+v3|2e−|v‖,n⊥+u‖,n⊥|2du‖,3du‖,n⊥
|u‖,3|2−ε/4

≤
∫

e−|u‖,3+v3|2e−|v‖,n⊥+u‖,n⊥|2du‖,n⊥du‖,3
{|u‖,n⊥| + |u‖,3|}2−ε/4 <∞.

We are done in this case.
We now consider the case |u‖,3| ≤ |u‖,n⊥|. We now choose a different

parametrization. We define

u⊥,n := u⊥ · n, u⊥,n⊥ := u⊥ · n⊥.

Nowwechoose u⊥,n andu⊥,3 as parameters so thatu⊥,n⊥ = −u⊥,nu‖,n+u⊥,3u‖,3
u‖,n⊥

and

du⊥ = |u‖|
|u‖,n⊥|

du⊥,ndu⊥,3,
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so that we need to bound

e−� 〈v〉s
∫
R3

du‖ × f (v + u‖)
∫
R2

du⊥,ndu⊥,3

∂vi f

(
vn+u⊥,n, vn⊥−

u⊥,nu‖,n+u⊥,3u‖,3
u‖,n⊥

, v3 + u⊥,3
) |u‖|
|u‖,n⊥|

×
{
1− χ

( |v̄ + ū⊥|1−εα1/2−ε
u‖,3

)}
e−

|u‖+v+u⊥|2
4

q∗0
( |u‖|
|u‖+u⊥|

)

|u‖‖u‖ + u⊥|1−κ .

Directly this is bounded by ‖eθ |v|2 f ‖∞‖e−� 〈v〉s |v̄|α
1/2∂vi f〈v̄〉 ‖∞×

∫
R3

du‖
∫
|v̄+ū⊥|1−εα1/2−ε≥|u‖,3|

〈v̄ + ū⊥〉e−|ū⊥|2−|v+u‖|2du⊥,ndu⊥,3
|v̄ + ū⊥|α1/2

du‖
|u‖,n⊥‖u‖ + u⊥|1−κ

�s

∫
R3

du‖
∫
|v̄+ū⊥|1−εα1/2−ε≥|u‖,3|

〈v̄ + ū⊥〉e−|ū⊥,n |2−|v+u‖|2

|v̄ + ū⊥|2εα2ε|v̄ + ū⊥|1−2εα1/2−2ε

1

|u‖,n⊥|
dū⊥,n .

where we integrate u⊥,3 first to drop
∫
R

e−C |u⊥,3|
2
du⊥,3

|u‖+u⊥|1−κ �
∫
R

e−C |u⊥,3|
2
du⊥,3

|u‖,3+u⊥,3|1−κ <+∞.
In the case of |v̄ + ū⊥| ≤ 1, this is bounded by

�s

∫
R3

du‖
∫

e−|u⊥|2−|v+u‖|2du⊥,n
|v̄ + ū⊥|2εα2ε

1

|u‖,n⊥‖u‖,3|1−ε

�s

∫
R3

du‖
∫

e−|u⊥|2−|v+u‖|2du⊥,n
|ū⊥,n + v̄n|4ε

1

|u‖,n⊥‖u‖,3|1−ε

�s

∫
R3

du‖

{∫
e−|ū⊥,n |2du⊥,n
|ū⊥,n + v̄n|4ε

}
e−|v+u‖|2

|u‖,n⊥‖u‖,3|1−ε
,

where the inner integral is 1D which is finite and bounded. On the other hand,
from the assumption |u‖,3| ≤ |ū‖,n⊥|, the outer integral is

∫
e−|v+u‖|2dū‖,n⊥dū‖,ndu‖,3

|ū‖,n⊥‖u‖,3|1−ε

≤
∫ {∫ |ū‖,n⊥|

0

du‖,3
|u‖,3|1−ε

}
e−|v̄n+ū‖,n |2e−|v̄n⊥+ū‖,n⊥|2

|ū‖,n⊥|
dū‖,n⊥dū‖,n

≤
∫∫

R2

e−|v̄n+ū‖,n |2e−|v̄n⊥+ū‖,n⊥|2

|ū‖,n⊥|1−ε
dū‖,n⊥dū‖,n <∞.
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In the case of |v̄ + ū⊥| ≥ 1 we bound the integration as

∫
R3

∫
R

〈v̄ + ū⊥〉ε〈v̄ + ū⊥〉1−ε
|u‖,3| 2ε

1−2ε |v̄ + ū⊥|1−εα 1
2−ε

e−|ū⊥,n |2e−|v+u‖|2

|u‖,n⊥||u‖ + u⊥|1−κ dū⊥,ndu‖

�
∫
R3

du‖
∫ 〈v̄n + ū⊥,n〉ε〈v̄n⊥〉εe−|ū⊥,n |2e−|v+u‖|2

|u‖,3| 2ε
1−2ε [ū⊥,n + v̄n]2( 12−ε)|ū‖,n⊥|

dū⊥,n.

Again
∫ |ū‖,n⊥|
0

du‖,3
|u‖,3|

2ε
1−2ε

� |ū‖,n⊥|1−
2ε

1−2ε and hence the integration is

bounded by

〈v̄n〉ε〈v̄n⊥〉ε
∫∫

e−|ū⊥,n |2e−|v̄+ū‖|2

|ū‖,n⊥|
2ε

1−2ε |ū⊥,n + v̄n|1−2ε

≤ 〈v̄n〉ε〈v̄n⊥〉ε〈v̄n⊥〉−
2ε

1−2ε 〈v̄n〉−(1−2ε) � 1.

��
Now we prove the main result for 2D specular case.

Proof of Theorem 4 We repeat our proof in 3D for the simpler 2D case, and
we only point out the differences. Lemma 7 is valid with easy adaptations. The
new ∂v3 f (t) estimate follows from taking the v3 derivative

{∂t + v1∂x1 + v2∂x2}∂v3 f + ν(F)∂v3 f
= �gain,v3( f, f )+ �gain(∂v3 f, f )

+ �gain( f, ∂v3 f )− νv3(
√
μ f ) f − ν(√μ∂v3 f ) f.

Since

|νv3(
√
μ f ) f | + |�gain,v3( f, f )| � P(‖eθ |v|2 f ‖∞),

|ν(√μ∂v3 f ) f |+|�gain(∂v3 f, f )| � P(‖eθ |v|2 f ‖∞)
∫

e−C |v−u|2

|v−u|2−κ |∂v3 f (u)|du,

and ∂v3 f (t, x, v) = ∂v3 f (t, x, Rxv) for (x, v) ∈ γ− then we follow the proof
of Lemma 7 (similar to ∂t f proof) to conclude ‖∂v3 f (t)‖∞ � ‖∂v3 f0‖∞ +
P(‖eθ |v|2 f ‖∞).
The Velocity lemma (Lemma 2) is valid with changing v to v̄. The non-local

to local estimates (1.28) and (1.29) are valid for 0 < κ ≤ 1 for v̄ = (v1, v2): In
the proof of (1.28) in Lemma 1, Step 1, the claim (4.1) is valid. In Step 2, (4.3)
and (4.4) are valid with α(x, v̄). In Step 3 we define σ̃1 and σ̃2 by changing

123



Regularity of the Boltzmann equation in convex domains 285

v to v̄. Then (4.6), and (4.8) hold by changing v to v̄. We follow the same

proof of Step 4 to bound
∫ tb(x,v̄)
0

e−l〈v̄〉(t−s)

|v|2β−1|ξ |β− 1
2
Z(s, v)ds. We use 1

|v| ≤ 1
|v̄| to

conclude (1.28). For the proof of (1.29) in Lemma 1, we use the same time
splitting of (4.10) with changing |v| to |v̄|. Then all the proofs are followed
and we conclude the proof using 1

|v| ≤ 1
|v̄| .

The fundamental Theorem 5 is valid with a simpler proof with changing all
v to v̄. In fact, due to topological advantage, we can use a global chart x‖ = θ
in R

1 (such as the polar co-ordinates) for the boundary as

η(x‖) = [R(x‖) cos x‖, R(x‖) sin x‖],

(vector-valued function) with a global ODE for in the polar co-ordinate system
near the boundary! The proof of Theorem 5 follows step by step of the 3D
case but with simpler arguments without changes of charts. The estimate of
e−� 〈v〉t α

1+|v|2∇x f (t) exactly as in 3D case, valid for α. The most delicate part

is to estimate∇v̄�gain( f, f ),where aweight stronger than√α, due to β > 1/2
in (1.29). It is important to know, that we are unable to establish (1.29) in the
2D case with β = 1/2. However, we are able to close the estimate by using
additional bounds on ∂v3 f .

Basically we follow the Proof of Theorem 3 but we use Lemma 19 when
derivatives act on V̄cl(s) argument of�gain( f m−�, f m−�)(s, Xcl(s), V̄cl(s), v3).

More precisely we use Lemma 6 for e ∈ {x1, x2, v1, v2}

IIe of (6.74)

=
∫ t

0
ds
�∗(0)∑
�=0

1[t�+1,t�)(s)e
− ∫ t

s

∑�∗(s)
j=0 1[t j+1,t j )(τ )ν(F

m− j )(τ )dτ

×
{
∂e X̄cl(s) ·

[
�gain(∇x̄ f

m−�, f m−�)+ �gain( f m−�,∇x̄ f
m−�)

]

×(s, X̄cl(s), Vcl(s))

+∂eV̄cl(s) · ∇v̄
[
�gain( f

m−�, f m−�)
]
(s, X̄cl(s), Vcl(s))

}

−
∫ t

0
ds
�∗(0)∑
�=0

1[t�+1,t�)(s)e
− ∫ t

s

∑
j 1[t j+1,t j )(τ )ν(F

m− j )(τ )dτ
�gain( f

m−�, f m−�)(s, X̄cl(s), Vcl(s))

×
∫ t

s
dτ

�∗(s)∑
j=0

1[t j+1,t j )(τ )
{
∂e X̄cl(s) · ν(√μ∇x̄ f

m− j )(τ, X̄cl(τ ), Vcl(τ ))

+
∫
R3
∂e V̄cl(s) · ∇v̄B(v − u, ω)

√
μ(u) f m− j (τ, X̄cl(τ ), u)du

}
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−e−
∫ t
0
∑�∗(0)
�=0 1[t�+1,t�)(s)ν(F

m−�)(s)ds f0(Xcl(0), Vcl(0))
∫ t

0

�∗(0)∑
�=0

1[t�+1,t�)(s)

×
{
∂e X̄cl(s) · ν(√μ∇x̄ f

m− j )(τ, X̄cl(τ ), Vcl(τ ))

+
∫
R3
∂e V̄cl(s) · ∇v̄B(v − u, ω)

√
μ(u) f m− j (τ, X̄cl(τ ), u)du

}
.

We repeat the estimates of x and v derivatives with weight α
〈v̄〉2 ,

|v̄|
〈v̄〉
√
α

respectively. From (1.35),

∫ t

0
e−� 〈v〉t α(x, v̄)〈v̄〉2 |∂x̄ V̄cl(s)||∂v̄�gain( f m−�, f m−�)|ds

�
∫ t

0
e−� 〈v〉(t−s) |v̄|3eC |v̄‖t−s|

〈v̄〉2 |e� 〈v〉s∂v̄�gain( f m−�, f m−�)|ds

�
∫ t

0
e−� 〈v̄〉(t−s)|v̄|ds × { RHS of (8.21)}

� 1

�
P(‖eθ |v|2 f0‖∞){1+ ‖∂v3 f0‖∞ + ‖e−� 〈v〉s |v̄|〈v̄〉α

1/2∂v̄ f ‖∞}.

From (1.35),

∫ t

0
e−� 〈v〉t |v̄|

√
α(x, v̄)

〈v̄〉 |∂v̄ V̄cl(s)||∂v̄�gain( f m−�, f m−�)|ds

�
∫ t

0
e−� 〈v〉(t−s) |v̄|2eC |v̄‖t−s|

〈v̄〉 |e� 〈v〉s∂v̄�gain( f m−�, f m−�)|ds

�
∫ t

0
e−� 〈v̄〉(t−s)|v̄|ds × { RHS of (8.21)}

� 1

�
P(‖eθ |v|2 f0‖∞){1+ ‖∂v3 f0‖∞ +

∥∥∥∥e−� 〈v〉s |v̄|〈v̄〉α
1/2∂v̄ f

∥∥∥∥∞}.

For the term containing ∂x V̄cl(s)·∇v̄B(v−u, ω)we use (1.34). The estimate
for the other terms are same as the proof of Theorem 3. ��
Proposition 5 (Specular BC) Recall (8.8). Let � := {x̄ ∈ R

2 : |x̄ | < 1} be
2D disk and ξ(x̄) = |x̄ |2 − 1. Assume the initial datum f0 = σg0(|x |, v) ≥ 0
supported in 1

2 ≤ |v| ≤ 2 and

lim
n(x0)·u=0

∫
kg0(v, u)un∂ng0(x0, u)duτ > C > 0, (8.26)

for some x0 ∈ ∂� and some v ∈ R
3. Then there exists 0 < t = Cσ for some

C > 0 such that if |Xcl(0; t, x, v)− x0| � 1 then we have a blow-up (8.11).
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Remark.We note that the condition (8.26) is compatible with the compatibility
condition of the specular BC (1.32). The specular reflection BC entails, at
x ∈ ∂�, g(t, x, v) = g(t, x, v − 2(n(x) · v)n(x)). Now we take a spatial
derivative parallel to the boundary, ∂τ

∂τ g(x, v) = ∂τ g(x, v − 2(n · v)n)− [2(n · v)∂τn + 2(∂τn · v)n]
·∇vg(x, v − 2(n · v)n)

= ∂τ g(x, R(x)v)− 2(n · v)∂vτ g(x, R(x)v)
−2(∂τn · v)∂vn g(x, R(x)v),

and take ∂v

∂vg(x, v) = {I− n ⊗ n}∂vg(x, v − 2(n · v)n).

The compatibility condition reads v · ∇x g0(x, v) = R(x)v · ∇x g0(x, R(x)v)
and hence

vn∂ng0(x, v)+ vτ ∂τ g0(x, v)
= −vn∂ng0(x, R(x)v)+ vτ ∂τ g0(x, R(x)v)
= −vn∂ng0(x, R(x)v)+ vτ ∂τ g0(x, v)+ 2vnvτ ∂vτ g0(x, R(x)v)

+2vτ (∂τn · v)∂vn g0(x, R(x)v).

Now from the specular BC we can set ∂vn g(x, v) = 0 (oddness) and
∂vτ g0(x, v) bounded at x ∈ ∂�. Hence in the limit as n(x) · v → 0 with
n(x) · v < 0 and x ∈ ∂�, the compatibility condition reduces to evenness for
the function vn∂ng(x, v) at the grazing set

lim
vn→0

vn∂ng(x, v) = lim
vn→0

(R(x)v)n∂ng(x, R(x)v)

= lim
vn→0

(−vn)∂ng(x, R(x)v). (8.27)

By setting limvn→0 vn∂ng(x, v) = C > 0 we can have (8.26).

Proof of Proposition 5 The crucial ingredients of the proof are a 2Dborderline
estimate of Theorem 4 (due to Lemma 19) and the explicit lower bound of
(8.19) in Example 1.
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We decompose

∫
R3

kg0(v, u)
g(t, x − εn(x), u)− g(t, x, u)

ε
=

∫
|n(x)·u|≤ε

+
∫
ε≤|n(x)·u|≤1︸ ︷︷ ︸

II

+
∫
1≤|n(x)·u|

.

By Lemma 7, the first term is bounded by

∫
|n(x)·u|≤ε

� O(1)‖g‖∞.

Due to (8.5), 1 ≤ |n(x) · u| implies 1 � |n(x − εn(x)) · u| for 0 ≤ ε � 1.
Therefore we use Theorem 4 to bound the third term as

∫
1≤|n(x)·u|

�
∫

e� 〈ū〉t 1+ |ū|2
1+ ε|ū|2kg0(v, u)du × ‖e−� 〈v̄〉t α

1+ |v̄|2∇x̄ f (t)‖∞

� ON ,t (1)‖e−� 〈v̄〉t α

1+ |v̄|2∇x̄ f (t)‖∞.

Now we focus on the second term II. Due to (8.5), g(t, x − εrn(x), u) is
differentiable for all 0 ≤ r ≤ 1 and we have (8.6). We further decompose

II =
∫
ε≤|n(x)·u|≤1

∫ 1

0
kg0(v, u)∂ng(t, x − εrn(x), u)drdu =

∫
ε≤|un |≤1|uτ |≤N

+
∫
ε≤|un |≤1|uτ |≥N

.

Set x(r) := x − εrn(x).We apply Theorem 4 as (8.14) to bound the second
term as

∫ 1

0

∫
ε≤|un |≤1

e−N

|un|2 + Cεr N 2 dundr � e−N

ε
.

From (8.9), (6.74), and Theorem 4,

II �
∫
ε≤|un |≤1|uτ |≤N

du
∫ 1

0
dr kg0(v, u)

{
∂n X̄cl(0) · ∇x̄ g0(Xcl(0), Vcl(0))

+∂n V̄cl(0) · ∇v̄g0(Xcl(0), Vcl(0))
}

+σ P(‖eθ |v|2 f0‖∞)
∫
ε≤|un |≤1|uτ |≤N

du
∫ 1

0
dr kg0(v, u)
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×
{∫ t

0
|∂n X̄cl(s)|

∫
R3

e−Cθ |Vcl(s)−u|2

|Vcl(s)− u|2−κ |∇x̄ g(s)|duds

+
∫ t

0
|∂n V̄cl(s)|

∫
R3

e−Cθ |Vcl(s)−u|2

|Vcl(s)− u|2−κ |∇v̄g(s)|duds

+〈u〉κe−θ |u|2 sup
0≤s≤t

|∂n V̄cl(s; t, x, v)|
}
.

From (8.19),

∂n X̄cl(0) · ∇x̄ g0(Xcl(0), Vcl(0)) � |t ||ū|2
α(x(r), u)

Vcl(0)

·n(Xcl(0))∂ng0(Xcl(0), Vcl(0)).

If |Xcl(0)− x0| � 1 in (8.26), for 0 < δ � 1

t
∫
ε≤|un |≤δ|uτ |≤N

du
∫ 1

0
dr kg0(v, u)∂n X̄cl(0) · ∇x̄ g0(Xcl(0), Vcl(0))

� t
∫ 1

0
dr

∫
ε≤|un |≤δ

dun
1

|un|2 + Cεr N 2 .

From our assumption (∇v̄g0 ≡ 0 for |u| ≤ N ) ∂n V̄cl(0) · ∇v̄g0 contribution
vanishes. From Theorem 4, (8.19) and (1.29) all the other contributions with
time integration are bounded by

σ ×
∫ 1

0
dr

∫
ε≤|un |≤δ

dun
1

|un|2 + Cεr N 2 .

Collecting the terms and using (8.18) yields for t = Cσ with C � 1

II � (t − σ − e−N )

∫ 1

0
dr

∫
ε≤|un |≤δ

dun
1

|un|2 + Cεr N 2 �N
1

ε
→+∞,

as ε→ 0 and this proves the proposition. ��
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