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Abstract A basic question about regularity of Boltzmann solutions in the
presence of physical boundary conditions has been open due to characteris-
tic nature of the boundary as well as the non-local mixing of the collision
operator. Consider the Boltzmann equation in a strictly convex domain with
the specular, bounce-back and diffuse boundary condition. With the aid of a
distance function toward the grazing set, we construct weighted classical C'!
solutions away from the grazing set for all boundary conditions. For the diffuse
boundary condition, we construct W17 solutions for 1 < p < 2 and weighted
WP solutions for 2 < p < oo as well.
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1 Introduction

Boundary effects play an important role in the dynamics of Boltzmann solu-
tions of
WF+v-VoF =Q(F, F), F(0,x,v)=Fyx,v), (1.1)

where F'(¢, x, v) denotes the particle distribution at time ¢, position x € 2
and velocity v € R? and Fy denotes its initial datum. Throughout this paper
the collision operator takes the form

O(F1, F2) := Qgain(F1, F2) — Qloss (F1, F2)

= / / B(v — u, o)[Fi(u)F>(v") — Fi(u) F>(v)]dwdu,
3 2
s (1.2)
where ' =u+[(v—u) oo, vV=v—[v—1u)- oo

Here, B(v —u, w) = |[v—u|“qo |5:Z| a)) and 0 < « < 1 (hard potential)

v—u v—u

and 0 < gqo (\vful a)) <C To—u]
Despite extensive developments in the study of the Boltzmann equation,
many basic questions regarding solutions in a physical bounded domain, such

as their regularity, have remained largely open. This is partly due to the char-

. a)‘ (angular cutoff).
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Regularity of the Boltzmann equation in convex domains 117

acteristic nature of boundary conditions in the kinetic theory. In [9], it is shown
that in convex domains, Boltzmann solutions are continuous away from the
grazing set. On the other hand, in [12], it is shown that singularity (disconti-
nuity) does occur for Boltzmann solutions in a non-convex domain, and such
singularity propagates precisely along the characteristics emanating from the
grazing set. The boundary of the phase space is

y = {(x,v) € 0Q x R*}.
Let n = n(x) be the outward normal direction at x € d€2. We decompose y as

yo ={(x,v) € 32 x R3 : n(x) - v <0}, (the incoming set),
v+ ={(x,v) € 92 x R3: n(x)-v > 0}, (the outcoming set), (1.3)
Yo = {(x,v) € Q2 x R?:n(x)-v=0}, (the grazing set).

In general the boundary condition is imposed only for the incoming set y_
for general kinetic PDEs [1,2,7,9]. We consider, in this paper, the following
basic boundary conditions:

(1) Diffuse boundary condition: With c;, fn(x)_u>0 ww){n(x) -uldu =1,

F(t,x,v) =cuu(v) F(t,x,u){n(x)-u}du on (x,v)e€ y_.
n(x)u>0
(1.4)

(i1) Specular reflection boundary condition:

F(t,x,v)=F(t,x, Ryv) on (x,v) € y_,
where R, v := v — 2n(x)(n(x) - v). (1.5)

(iii) Bounce-back reflection boundary condition:
F(t,x,v)=F(t,x,—v) on (x,v)€ y_. (1.6)
We denote
f = F/VE.
where
"= e_% (a global Maxwellian).

Throughout this paper we always assume a positive initial datum Foy =

VI fo = 0.
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118 Y. Guo et al.

The function f satisfies

O f +v-Vif =Tgin (f. /) —v /T (1.7)

Here
v(ff)(v) _FQloss(ff \/_f)(v)

/ / lv — ul® qo( w) V() f(u)dodu,
R3 J§?

and the gain term of the nonlinear Boltzmann operator is given by

(1.8)

1_‘gain(fl ) (v):=

1
Tanin(\/ﬁfl, «/ﬁfZ)(U)
)\/M(M fi@w) (")dewdu.

//lv M|KCI0(
R3
(1.9)

The corresponding boundary conditions for f are the following ones:
(i) Diffuse boundary condition:

[t x,v) =cu/ () f@, x,u)/uw){n(x) - u}du, on(x,v)ey_.

n(x)u>0
(1.10)
(i1) Specular reflection boundary condition:

ft,x,v) = f(t,x, Ryv), on(x,v) € y_. (1.11)
(iii) Bounce-back reflection boundary condition:

f@t,x,v) = f(t,x,—v), on(x,v) € y_. (1.12)

Throughout this paper we assume that € is a bounded open subset of R3
and there exists & : R3 — Rsuchthat Q = {x € R?: E(x) <0}, and 02 =
{x € R?: £(x) = 0}. Moreover for all x € Q@ = QU JQ (therefore £(x) < 0)
we assume the domain is strictly convex:

> 0iE(Gg = CelgP forall ¢ € R, (1.13)
i,J

We assume that VE(x) # 0 when [£(x)] < 1 and we define the

outward normal as n(x) = %'
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Regularity of the Boltzmann equation in convex domains 119

Notation: We denote || - ||, the LP”(Q x R3) norm, while | - lyp =1-1p
is the L” (32 x R3; dy) norm, | - lyep =11y ly p, dy = |n(x) - v|dScdv
with the surface measure dS, on 9€2. For a function f of 7, x, and v we
denote || f (), = I f (@ - )llp and [f(D)lyy,p = [f( - )y, p. Denote
(v) = +/1+|v|%. The notation X < Y is equivalent to X < CY, where
C is a constant not depending on X and Y . We subscript this to denote depen-
dence on parameters, thus X <, ¥ means X < C,Y. The notation X <, Y
is equivalent to X < C,Y, where C, > O is sufficiently small. The notation
X >~; Ymeans X <, Yand Y <, X. Let A and B be m x n matrices and
all entries of B are non-negative. Let A;; be the (i, j)—entry of the matrix A.
The notation A < B means |A;;| S B;; forall i, j.

1.1 Diffuse reflection BC

Theorem 1 Assume that 0 < k < 1in (1.2) and fy € WhP(Q x R3) and

2
IV follp + Vo folly + 17 follo < 400 for any 6 € (0,1/4) and any
fixed 1 < p < 2, and the compatibility condition on (x, v) € y_,

Jo(x,v) = cpv/ M(U)/ Jo(x, u)y/ u(@){n(x) - ujdu. (1.14)

(x)-u>0

Then there exists T = T(||e‘9|”|2f0||oo) > 0 such that f € L*([0, T]; Wh-P
(2 xR3)) solves the Boltzmann equation (1.7) with diffuse boundary condition
(1.10), and satisfies, forall 0 <t <T

t
2
||vx,vf<r>||5+/0 Ve £FIDpds <o Ve follh + P follso),
(1.15)

where P is some polynomial.

Furthermore, if Fy = 1 + /1ugo with ||e(9‘”|2go||oo & 1, then the unique
bounded global-in-time solution g(t) constructed in [9] satisfying (1.15), by
changing f, fo to g, go for any finite t > 0.

There can be no size restriction on initial data Fy = /i fo. We need the
exponential weight ¢? 1V I* to have local-in-time solutions (see Lemma 7). On the
other hand, we also remark that from [3,9], the assumption ||69‘v|2g0||oo <1
for Fo = p + /;tgo without a mass constraint [ [, p3 g0 /mdvdx = 0
ensures a uniform-in-time bound as supy—, -, ||ee|”|2g(t)||OO < ||e9|”|2go||OO
(not a decay). Due to these L°° uniform-in-time bounds we are able to obtain
a global-in-time estimate for Vg.

Moreover, we show that the estimate (1.15) in Theorem 1 for p < 2 is
indeed optimal even for the free transport equation 9; f +v -V, f = 0 with the
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120 Y. Guo et al.

diffuse boundary condition (Lemma 12). In fact, the boundary integral blows
up at p = 2.

We now illustrate the main ideas in the proof of Theorem 1. Clearly, the
¢t and v derivatives behave nicely for the diffuse boundary condition as for
(x,v) € vy,

O f(t, x,v) = cpy M(v)/ O f(t, x, u)y/ u(u){n(x) - ujdu

n(x)-u>0

= c/m) / [—u- Vo f + Tgain(f, )

n(x)u>0
(/) IV r@)in(x) - uldu, (1.16)
Vo f(t, x,v) = c, Vo u(v) - Of(t,x, u)/ w){n(x) -updu. (1.17)

where we have used (1.7) toexpress 0; f = —u-Vy f+Tgain(f, f)—v( /i f)f
in (1.16).

Let 71 (x) and 72 (x) be unit tangential vectors to d€2 satisfying 71 (x)-n(x) =
0 = 1p(x) - n(x) and 71(x) X T2(x) = n(x). Define the orthonormal trans-
formation from {n, 71, 7o} to the standard bases {e], ¢, e3} as 7 (x)n(x) =
er, Tx)11(x) = ez, T(x)12(x) = e3, and 7! = T*. Upon a change of
variable: u’ = 7 (x)u, we have

nx) -u=nx) T =nx)T' X' =[Tx)nx)]u' =e -u =uj,

then

e/ () £t x, 0/ n () - u)du

n(x)u>0

= /B [ T
ul >

so that we can further take tangential derivatives 9, as, for (x, v) € y—,

0, £ (5, x,v)
[
= cuv/u) [af,fa T o) + V0 f v T ou) Ty ]
u >0 i
% Ve ) !
= /i) 0, £ (1, %, V@ () - u)du
n(x)-u>0
9T (x)
tenn [ e 0 T @u/a e - wd
(1.18)
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Regularity of the Boltzmann equation in convex domains 121

The difficulty is always the control of the normal spatial derivative d,, f. From
the general method of proving regularity in PDE with boundary conditions, it
is natural to use the Boltzmann equation to solve the normal derivative 0, f
inside the region, in terms of o, f, V, f, and d; f as:

2
O f(t,x,v) = — [atf+ Z(U *71) 0, [ —Lgain(f, f)+v(«/ﬁf)f]v
i=1

(1.19)
at least near 9€2. We note that due to the nonlocal terms Igain(f, f) and

v( /i f) f,itis strongly believed that 9, f behaves as —L__ at the boundary.

n(x)-v
Unfortunately, this standard approach encounters a severe difficulty:

n(x)- v

¢ L llo . in the velocity space (a L* bound is desirable for any WLP estimate).

The first new ingredient of our approach is to use (1.19) not inside the
domain, but at the boundary d<2. Using the diffuse boundary condition (1.10),
(1.16), (1.17), (1.18) and (1.7), we can express J, f at (x, v) € y_ as

oy f(t, x,v)
1
_ _W[ Jaw [~ Vo f + Caan(f, ) = v(JEPF]

n(x)-u>0

X (t, x, u)/ uw){n(x) - u}du
2
+ > Vi) / e f (%, 0V 1) (n(x) - u}du
i=l1 n

(x)-u>0

2 t
FX 0 aVao [ Vs S 2 T
i=1 "

x)-u>0 0T

Xy p(u){n(x) - utdu
—Lgain(f, f) + v(\/ﬁf)f}- (1.20)

Due to the additional u integral in (1.20) and the crucial factor |n(x) - u| in the
measure dy on the boundary y, it is clear that the singularity of |3, f|”|n - v|
in (1.20) is roughly of the order

1
(nvpp T

so that its v-integration is precisely finite if 1 < p < 2, and indeed its v
integration is uniformly bounded with respect to x.
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122 Y. Guo et al.

However, in order to control V, f and d; f for p < 2, a new difficulty
arises. It is well-known from [3,9] that a crucial boundary estimate for diffuse
boundary takes the form of a L?—contraction:

/ hdy < / h*dy.
Y+

Unfortunately, this is not expected to be valid for p # 2, so it is impossible to
absorb the incoming part _solely by the outgoing part y part.

Our second new ingredient is to split the y integral into the part near the
grazing set v and the remaining part for p # 2 for our boundary represen-
tations for derivatives (1.16 ), (1.17 ), (1.18), and (1.20). For small ¢ > 0 we
define y{, the set of almost grazing velocities or large velocities

yi ={(x,v) eyy 1v-n(x) <eor|v] > 1/e}. (1.21)

Denote 0 = [V, V,]. We can roughly obtain

p
/ 10f1” 5/ (/ 13f |u/*n - v}dv) + good terms,
y— IR n-v>0
P
s/ / 0f 1" *n - v)
IR {v:(x,v)eyi)
p
—I—/ / |8f|,u1/4{n -v} | + good terms,
9 \J{u:(x,v)eyp\vi)

rlq
< sup / w4 - v)dv / 0f 1Pdy
X {v:(x,v)eyy} ye

+

—i—/ [af|Pdy + good terms.
v+ \vi

It is important to realize that sup,, (f{u:(x,v)eyj} wi’*{n - v}dv) Pl has a small
measure of order €, for p > 1, so that it can be absorbed by the outgoing
part |. i Fortunately, the outgoing boundary integral | yi\ye can be further
bounded by the integration in the bulk and initial data by Lemma 8 with a
crucial time integration. On the other hand, such a process produces a large
constant in the Gronwall estimates and leads to a growth in time. Of course,
such an approach breaks down at p = 1. (See [10] for the estimates for p = 1.)
We introduce a crucial distance function towards the grazing set yyp.
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Regularity of the Boltzmann equation in convex domains 123

Definition 1 (Kinetic Distance) For (x, v) € Q x R3,
a(x, v) = [v- VE®) [ = 2{v - VZE(x) - v}E (),

where v - V2£(x) - v = Zi,j v;0;0;£(x)v;.

From (1.13), the kinetic distance «(x, v) vanishes if and only if (x, v) € yp.
Furthermore we combine the distance function with a strong decay factor
e~ with o > 0,

e~ T Wy (x, v). (1.22)

A direct computation yields

(0, +v- Vil le PV q(x, v)] = —o ()e P a(x, v)
— e Wy V3E(x) - v)}E(x)
S (@ + 0z () (v)e ™ a(x, v),

v{v-V3E
o

with the geometric contribution O¢ (1) = % from (1.13). Through-

out this paper we assume

2 |v{v - VE(x) - v}§]
a(v) '

w > max

(1.23)

Remark that if £ is quadratic (for example if the domain is a ball or an ellipsoid)
then we are able to set o = 0 and {9; + v - V}a = 0.

Theorem 2 Assume the compatibility condition (1.14), 0 < k < 1.
For any fixed 2 < p < oo and 1’2—_172 < B < pz_;l’ if||ozﬂVx,vfo||p +
||e@|“|2f0||oo < oo for some 0 < 0 < 41'1’ then there exists T =

T (1" follao) > O such that e~ V' aPV, , f € L®([0, T]; LP(Q x R3))
and satisfying, forall0 <t < T,

t
le=™ WbV, FOIL + / e WPV L F(s)IEds
0
2
S 1PV follh + PP folloo), (1.24)

where P is some polynomial. Furthermore, if Fy = wu + /ugo with

||ee|v|2g0||oo & 1, then the unique bounded global-in-time solution g(t) con-
structed in [9] satisfying (1.24), by changing f, fo to g, go for any finite t > 0.
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124 Y. Guo et al.

If ||oz1/2Vx,vf0||oo + ||e‘9|”‘2fo||OO < 400 for some 0 < 6 < %, then
e~ WIGl2y,  f e L0, T]; L®(Q x RY)) and satisfying, for all 0 <
t<T,

_ 2
le™™ a2V, fOlloo Sr N2 Ve folloo + P folloo). (1.25)

Ifa'2V fy € COU(Q x R3) and

0 Vefo = TG0 fo) = /B [ (- Vfo = Do f) /il - ubd
n-u>0 (1.26)
is valid for y_, then f € C' away from the grazing set yo. Furthermore, if
Fo =+ /ugo with ||e€|”|2go||oo & 1, then the unique bounded global-in-
time solution g(t) constructed in [9] satisfying (1.25), by changing f, fo to
g, go for any finite t > 0.

There can be no size restriction on initial data Fy = ,/u fo. On the other

hand, we also remark that from [3,9], the assumption ||ee|v|2go||oo < 1 for
Fo = p + /;go without a mass constraint [ [, p3 g0 /mdvdx = 0 ensures

a uniform-in-time bound as supy—; . ||eg|v‘2g(t)||OO < ||e9|”|2go||OO (not a
decay). Due to these L™ uniform-in-time bound we are able to a global-in-
time estimate for the derivatives of g.

We remark that our results in this paper allow the initial conditions to be
singular near yp. This is drastically different from the Vlasov case, in which
regularity of the solutions is bounded by stronger vanishing condition for
regular initial condition. Due to non-local interaction in the collision, such
kind of regularity estimate is not expected. Instead, we show that singular
behavior of the solution, i.e., weighted in af, can be controlled via singular
behavior of its initial state.

We remark that for o > 0, the derivatives of f(¢) behaves as e g0
that in terms of solution f(¢), such an estimate not only creates an exponen-
tial growth in time, but also creates less integrability in velocity. Furthermore,

0lv|?

when @ > 0, we crucially need a strong weight function e to balance

such a factor e~ ()" which produces a super exponential growth ¢! in time.
We suspect that it is impossible to obtain a uniform in time estimate especially
when @ # 0.

The distance function « plays an important role in the study of regularity in
convex domains for Vlasov equations [6,7,11], which can be controlled along
the characteristics via the geometric Velocity lemma (Lemma 2). However,
such an approach has not been successful in the study of Boltzmann equation
due to the non-local nature of the Boltzmann collision operator, which mixes
up different velocities so that their distance towards ) can not be controlled.
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Regularity of the Boltzmann equation in convex domains 125

In addition to the key boundary representation (1.16)—(1.20), we establish a
delicate estimate for the interaction of e~ ") o (x, v) with the collision kernel
in (5.16) for B < pl and 0 = [V4, V,]. An additional requirement 8 > ;pz
is needed to control the boundary singularity in (5.19). These estimates are
sufficient to treat the case for 8 < 1/2, but unfortunately fail for the case

B = 1/2, which accounts for the important C! estimate.

1.2 Dynamical non-local to local estimates

In order to establish the C! estimate, we employ the Lagrangian view point,
estimating along the trajectory. The characteristics ODE of the Boltzmann
equation (1.1) is

dX(s) dv(s)

= V(s), =0.
ds () ds

For (x, v) € Q x R3 we define 1, (x, v) to be the backward exit time as

tp(x,v) = inf{r > 0 :x — sv ¢ 2}, (1.27)
and xp(x, v) = x — .

Lemma 1 Ler (¢, x,v) € [0,00) x Q x R3, % < B < % 0 <« <1and
r € R. Let Z(s, x,v) > 0 be any bounded non-negative function in the phase
space.

(1) Letx — (t —s)vons € [t —tp(x,v),t]. For any ¢ > 0, there exists a
large constant | >>¢ 1 which depends on the domain 2 such that

[ e et ()
t—ty (x.0) JR3 v —u|>*la(x — (t —s)v,u)]P (v)"
x Z(s, x,v)duds

. [ g2p e, )} =51z 3 P
< min

[v[*a(x, v)}ﬁ‘l’ v[2f-1

X sup (e =) 7 (5. x, v)}
se[t—ty(x,v),t]
Ce

1
+ W/ e‘é(”)(l‘—s)Z(s, x, v)ds, (1.28)
a(x,v

t—ty(x,v)
where tz = sup{s : Z(s, x, v) # 0}.

(2) Let [ Xa(s; t, x,v), Va(s; t, x, v)] be the specular backward trajectory
or the bounce-back trajectory in Definition 2.
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126 Y. Guo et al.

For any ¢ > 0, there exists | >>¢ 1 such that

/t/ I e OlVatsitro—ul gy 2@, x0)
. _ 12—« r . B
0o Jr3 [Va(s; 1, x,v) — ul>~ (0)" [a(Xals: 1, x, v), u)]
o0
5 (8) — sup {eié(l’)(’*S)Z(s,x, U)} . (129)
(V) [a(x, V)P71? g<py

Even though one can not hope to control the regularity near yy due to non-
local nature of the collision operator as in the Vlasov theory, one can control
its singular behavior (i.e. with weight o#) thanks to such dynamical non-local
to local estimates. The crucial gain of /a, which only can be obtained for
expected singular behavior with negative power of /«, is due to a combination
of two facts: the gain of power % is due to a velocity average, and gain of the
local behavior of +/« is due to time integration and convexity. Even withk = 1,
the gain of /a seems to be sharp.

The proof of such non-local to local estimates is a combination of analytical
and geometrical arguments. The first part is a precise estimate of the u integra-

tion which is bounded via AT |s(x—1(z—s)v)|ﬁ*1/2 . In this part of the proof we

make use of a series of change of variables to obtain the precise power § — %

The second part is to relate back to é Clearly,

1
& (x—(t=s)v)|P~1/2

1 1 1

~

EG—G -0 o v -VEG —( — )P+ E@ — 7 — 0[P’

when |E(x— (1 —s)v)||v|?is larger than [v- V& (x — (f —s)v)|. On the other hand,
when |v - VE(X(s))| dominates, the bound can only be achieved through a
crucial use of time integration and the geometric Velocity lemma (see Lemma
2), by connecting

dg

lv- V&I’

2

dr >~

and recovering a power of « as in the bound of & —integration through the
geometric Velocity Lemma (Lemma 2).

The most striking feature is that not only our estimates retain the local
structure for «, but they gain a /o order of regularity. Such a precise gain
of regularity is exactly enough to balance out the singularity in o appeared
in Vi, Xa(s; £, x, v) and V, , Va(s; ¢, x, v) in both the specular and bounce-
back cycles. In order to squeeze out a small constant for [v| >> 1, we need to
use the decay of e~/")¢=9)_ This requires a precise regrouping of the cycles
according to the time scale of

tlv] >~ 1.
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Regularity of the Boltzmann equation in convex domains 127

Within such an important time scale, Vi (s; ¢, x, v) stays almost invariant due
to the Velocity Lemma (see Lemma 2). We then are able to obtain a precise
estimate for the number of bounces within 7|v| ~ 1 and extracta small constant
from e~ /W) fort — g > % On the other hand, forr — s < W’ the small
constant comes from Lemma {

1.3 Specular reflection BC

Recall the specular reflection boundary condition in (1.11) and the specular
cycles in Definition 2. Our main theorem is as follow.

Theorem 3 Assume Fy = ffo >0and fy € WL Q xR and0 < k <
1f0r1<ﬁ<§ 0<9<Z,andbeR

aﬂ_%
—bvxf

|
(v)

o]+ [, -

and the compatibility condition
Jo(x,v) = folx, Ryv) on (x,v) € y_. (1.30)

Then forall 0 <t < T with T = T(|e?""" folleo) > O

# vl 2
_ o _ Vo
He R T A LCl E C Er(
o
g—1 2 B—1
aP 2 [v]*a
St vafo + TV v /o +P(H ol fOH )
o0

(1.31)
where P is some polynomial. Furthermore, if Q2 is real analytic (€ is real
analytic on R3) and Fy = w~+ /1go with ||ee|“|2g0||OO & 1, then the unique
bounded global-in-time solution g(t) constructed in [9] satisfying (1.31), by

changing f, fo to g, go for any finite t > 0.
Furthermore, if fo € C' and

v- Vi folx,v) = Ryv- Vi fo(x, Ryv) on (x,v) € y_. (1.32)

then f € C' away from the grazing set .

There can be no size restriction on initial data Fo = /i fo. We remark from
the local existence theorem, 7 > 0. The analyticity is a crucial assumption
using a linear L?-decay to conclude L*°—decay toward the Maxwellian in [5]
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(L? — L™ interpolation argument) in order to have global-in-time solutions
(See recent work [13]).

We also remark that the specular theorem is drastically different from the
diffusive theorem: in addition to the loss of moments, there is a loss of reg-
ularity of o with respect to the initial data. This makes it impossible to use
the continuity argument to choose small time interval to close the estimates.
We need to use large @ in e~ (V! to extract a small constant to close, which
requires extra precise estimates. We note that in 3D case, 8 > 1/2, due to the
failure of the proof of the non-local to local estimates for the critical 8 = 1/2
(Lemma 1).

On the other hand, in 2D, due to boundedness of d,, f from x3—invariance,
we are able to estimate d,["gain for the critical case B = 1/2 (Lemma 19).
More precisely we consider the 2D specular problem for f (¢, x1, x2, v{, v2, v3)
solving

O [+ v10x, [+ v20x, [ = Tgain(f, ) — v/ ) f, (1.33)
where v3 is a parameter.

Theorem 4 Assume a stronger cut-off assumption on qg of (1.2)

vm(”:; )‘/

Assume fo € WL with (1.11). Assume that

vV—u

' 1. (1.34)

v —ul

2
sup {11671 £ (O)lloc + 190 f Dlloo} = €16, < +00,

0<t<T
then
sup { ) B P LR 0 }
0<t<T 1+ v 00 (v) 00
1/2 |U|2 e
Srou | Veh| | evah| st P ([ 5] ).
(v) 00 (v) o 00

where P is some polynomial. If fo € C' and the compatibility conditions
(1.30) and (1.32) are satisfied, then there exists f solves (1.33) and C' away
from the grazing set yy. Furthermore, if ||e9|v|2fo||OO & 1, and 02 (therefore
&) is real analytic, then T can be arbitrarily large.

We remark that powers of singularity o and /« are barely missed in 3D
case (borderline case).

In additional to the dynamical non-local to local estimate, the second impor-
tant ingredient for the specular reflection BC is the following crucial estimate
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for the derivatives of specular cycles [ X (s; £, x, v), Ve (s; t, x, v)] in Defini-
tion 2.

Theorem 5 There exists C = C(2) > 0 such that for all (s;t,x,v) € R x
Rx QxR3withs £t fort =1,2,...,4,

v
IViXa(s;t,x,v)| S eC|U|(lfs)L

Jalx,v)’

5 1

Vo Xa(s; t,x,v)| S eClvl(z_S)ﬂ’
v

(1.35)

3

v
Vo Va(s; £, x, v)| < (i) V7
a(x,v)

|v]

Jalx,v)

Our estimates are optimal in terms of the order of é and e€1V1¢=9) relates to
the |v| growth in the Velocity lemma (Lemma 2). We remark that these precise
orders of singularity, play a critical role for our design of the anisotropic
norms in Theorem 3. In fact, if |V, Xq(s; 1, x, v)| =~ é it would have been
too singular for the half power gain of « from the dynamical non-local to local
estimates (Lemma 1), and our method should fail. Moreover, it is also crucial
to have precise |v| growth in both |V, X (s; ¢, x, v)| and |V, Va(s; £, x, v)| to
be controlled by e~ (V)

We remark that |V, Xa(s; 1, x,v)| =~ \/L& is unexpected, even after one

IV Vals; £, x, v)| < €I

bounce we would have V,x! ~ La and itis natural to expect V, X q(s; £, x, v)

picks up additional power of \/L& in the accumulation of ia number of bounces.
However, via direct computations in 2D disk, we discover that even though

1 1
the ~ —, and V,Cx‘Z ~ —,
o o

but surprisingly
1
VeXa(ss t,x,v) = Velx' — (" —5)v'] < ok

Clearly, certain cancellations take place in the disk, which is difficult to even
expect for general domains.

The proof of our Theorem 5 is split into 10 steps, and it is the most
delicate proof throughout this paper. We first remark that, due to the ‘dis-
continuous behaviors’ of the normal component of v - n at each specular
reflection, it is impossible to apply the standard techniques for ODE to estimate
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Vi oXa(s; t,x,v)| and |Vy,Va(s; ¢, x, v)|. We have to develop different
strategies to overcome several analytical difficulties to finally complete the
proof.

Topological obstruction and moving frames: It turns out that we only need to

consider the most delicate case in which all the bounces are almost grazing and

staying near the boundary for r’ _ '|l|

the spherical co-ordinate system to cover the whole cycle and transform it into
the ODE (6.13). Unfortunately, due to the ‘hair-ball’ theorem in Topology, such
achange of coordinate system (or any change of coordinates) can not be smooth
everywhere in the 2D surface 9€2. In the case of a ball, all the trajectories are
confined in a plane, so that one may choose a single chart to cover the whole
trajectories. However, in other convex domains except the ball case, with large
t, the specular trajectories are extremely complicated, which can reach almost
every point on d€2. Hence, choosing a single chart is all but impossible. On the
other hand, a ‘sudden’ change of a chart may create new order of singularity of
o from the matrix P as in (6.50), which will ruin the estimates. It is therefore
important to design a ‘continuous’ changes of charts associated with the almost
grazing bounces. Given n(x), we need to construct another globally defined,
orthogonal, and continuous vector field. This would have been impossible if we
were to seek it only in the physical space, in light of the ‘hair-ball’ theorem. The
key observation is that, we need continuity not from just €2, but from the phase
space dQ x R3. In fact, for almost grazing bounces, the velocity field v is almost
perpendicular to n(x), which provides a natural choice for construction of the
desired moving frames. These continuous moving frames cost manageable
errors for each bounce, which are controlled by the next method.

Matrix method for normal parts of Vy ,Xa(s) and Vi , Va(s): With such a
well-defined moving charts, via the chain rule, one can represent
VivXals;t,x,v) and V, ,Va(s; ¢, x,v) via a multiplication of Jacobian
matrices (tf, xt, vg) — (tz_l, -t vz_l) in the spherical coordinate sys-
tem. The ‘matrix method’ refers to the study of each discrete Jacobian matrix
and precise estimates of their multiplication (JL& of them!). One important

<« 1.Itisimportant for us to introduce

step is to bound such a matrix by J (r%) in (6.40) which can be diagonalized
as J(rt) = P~!AP, with a diagonal matrix A. Based on the crucial can-
cellation property (6.46), we can extract a crucial second order of r¢ « 1
appeared in J(r%). Therefore, over the interval 7|v| ~ 1, we are able to esti-

mate l'I 7 ) < f Together with —= f from the initial bounce, we expect

é—singularlty for both V, , Xa(s; ¢, x, v) and V, , Ve (s; ¢, x, v) as in (6.59).
Even though such estimate is too singular for our purpose we can improve it.
Upon a closed inspection,
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1

~ ﬁ’

for the normal component of Xj(s). This is based on the fact vi ~ /o via the
Velocity lemma [9, Lemma 1]. Unfortunately, the estimate of V, X (s; , x, v)
is like é which is still too singular.

ODE method for tangential parts of Vy yXa(s) and Vy , Ve (s): To improve
such an estimate, we observe that given the estimates for the normal parts
X (s;t,x,0), Vi(s;t,x,v)], the sub-system of ODE for [X|(s; 1, x, v),
V| (s; t, x, v)], enjoys much better property. In fact, at each specular reflec-
tion, [X (s; #, x, v), V| (s; 7, x, v)] are continuous, unlike the normal velocity
Vi(s;t,x,v). Upon integrating over time as V (s; ¢, x,v) = XL(s; 1, Xx,0)
(position X (s; ¢, x, v) is still continuous at specular reflection), we are able
to derive an integral equations of [X(s; 7, x, v), V| (s; ¢, x, v)] without bro-
ken into small discontinuous pieces (6.67) at each specular reflection. In other
words, we can use the standard ODE theory to estimate these tangential parts.
Our ODE method refers such ODE (Gronwall) estimates (6.63) which lead to
the final conclusion of the theorem.

With such crucial estimates, we are able to design anisotropic norms in

—p+1/2
P G aP and

o~Colv—ul? 1

terms of singularity of é Thanks to [; [,

2
fot fu i}?’zg—i a(X(s)lu)ﬂ—l/Z < a~P*! from the dynamical non-local to local
estimates for 8 > 1, we have exact cancellations of the power of « in the
coefficients on the right hand side, and we are able to close the estimates. For
|v| either small or large, more careful analysis is needed. In particular, it is
important to use the weight function of e~ (") in (1.22) to control both the
growth in Theorem 5 as well as |v]| in front of VX and V,V to control

singularity of |v| in (1.35).

1.4 Bounce-back reflection BC

We recall the bounce-back reflection boundary condition (1.12) and the
bounce-back cycles in Definition 2.
We define

3 f(0) = 9 fo := —v - Vi fo + Cgain(f0, fo) — v(/t f0) fo- (1.36)

Theorem 6 Assume fo € WH®(Q x R3) and0 <k <1in0 <6 < }1,

2 2
1{v) Vy folloo + IVu folloo + 1677178, folloo + 116”71 folloo < +o0,
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and the compatibility conditions
fo(x,v) = folx, —v), v-Vyfolx,v) =—v-V,folx,—v) on y_. (1.37)

Then there is T = T (||”"*F folloo) > O 50 that for all0 <t < T

_ o _ |v|ocl/2 2
le “’“”vafmuoo + [lem 7 o VoS Olleo + 1”18, £ ()l oo
< Olvf? olvf?
Ser 10) Ve folloo + 1V folloo + P(U1e1"70; folloo) + P11 folloo).
(1.38)

for some polynomial P.

Moreover; if fo € C! then f € C' away from the grazing set yy. Further-
more, if Fy = u + /iugo with ||69|”‘2go||0O & 1, then the unique bounded
global-in-time solution g(t) constructed in [9] satisfying (1.38), by changing
f, fo to g, go for any finite t > 0.

There can be no size restriction on initial data Fy = ,/u fo. We remark
that the bounce-back case enjoys explicit expressions of de X1 (s; £, x, v) and
3eVal(s; t, x, v) for 3 € {9;, Vy, V,}. Since 3¢ < é and 9, x* < Ji&, anew
difficulty arises in the estimate

N Xals;t,x,v) S

’

R =

which is too singular to control by our non-local to local estimates (Lemma
1). Roughly speaking, the new difficulty is exactly the opposite to the specular
case : x¢ and dv? are in desired form but not dx Xe(s; t, x, v)! The key idea
is to make a change of variable to transform (see (7.1))

Xals:t, x,v) <vhoert + 0.xt,

while 9,1¢ captures the worst singularity of é Fortunately, 3,¢¢ is paired with
d; f, which is bounded, from the time-invariance of the problem and we are
able to close the estimate.

1.5 Non-existence of V2 f up to the boundary
In the appendix, we demonstrate that, our estimates can not be valid for higher

order derivatives. Otherwise, if 3% f were to exist up to the boundary, we
observe that from taking second derivatives of the Boltzmann equation:
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2
V0 f = —0nf — @uv)On f — D On(vr)d, f

i=1

2
=D Vi S = V(E)u f + 0,K (f) + 9 Tgain(f: )
i=1

If |0, f] = and oK (f) behaves as K (9, f) then at the boundary, we have

19, f1 =

¢ L, (R,

_|n|

so that 9, K (f) is not defined. Since |3, f| is expected to behave, from (1.19),
as bad as % for all diffusive, specular and bounce-back cases, we are able to

identify initial conditions such that |9, f| > ‘ for some future time.

2 Preliminary

Before the trajectory hits the boundary, t+ — s < f(x,v), we have
[X(s;t,x,v), V(s;t,x,v)] = [x — (t — s)v, v] with the initial condition
[X(t;t,x,v), V(t; t,x,v)] = [x, v]. On the other hand, when the trajectory
hits the boundary we define the generalized characteristics as follows:

Definition 2 [9]
Let (x,v) ¢ yo and (12, x°,0%) = (¢, x, v).

(i) Define the specular cycles, £ > 1,

@ ) = (e (68, 08, i (68 09, v —2n () (08 - n(xh))).

(i) Define the bounce-back cycles, £ > 1,

(tZ+l’xZ+1 UK-H) — (Z‘Z

9’

— 1y (x%, 0, xp (", v, —v).

Then for £ > 1

1 —(=1)¢
=1 — (- Dx', v, xf= %xl
V4
LIECEDT o e ey,

X,
2
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(iii) For both specular and bounce-back cycles we define the backward trajec-
tory as

Xa(s;t,x,v) = Zl[tul,,é)(s) {x‘v’ _ (ﬂ — s)vé} ’

14
Vals: £,x,0) = D et o ().
14

Note thatif G (¢, x, v) solves 9;G + v - V, G = 0 with a boundary condition
(either specular, or bounce-back boundary condition) then

G(tv X, U) = G(S7 Xcl(s; ts X, U), VC](S; tv X, v))9

where [Xa(s), Ve (s)] is defined respectively [9].
The following crucial invariant property of « under operator v - V, is the
key for our analysis.

Lemma 2 (Velocity lemma, Lemma 1 of [9]) Along the backward trajectory
we define

a(s9 t? -x, v) = a(XCl(s; t5 x? U), VCl(s’ ta x’ U))
Then there exists C = C(§) > 0 such that, for all 0 < s1, 53 < t,
e—Clvllsl—szla(sl; t,x,v) <alsyt,x,v) < eC|U||Sl—sz|a(Sl; t,x,0).

Proof The proof is basically same as the proof of Lemma 1 of [9] but the
definition of « is slightly different. By an explicit computation, we have

v-Via =2v- - VEWX)[v - V2§ -v] —2v - VEWX)[v - Vzé - v]
—2v{v - V2E() - v} (x)

= —2v{v - V2E(x) - v}E(x) = Og(D|v]|E(x)|
= Og(D|va(x, v),

2.1

where we used {v - V2£(x) - v} =~ |v|? from (1.13). Therefore there exists
C = C¢ > O such that

—Clv|a(x,v) < v- Via(x,v) <Cluja(x, v).
Since

d

d_a(XCl(s’ ta X, U), VCl(s7 t’ X, U)) =V vxa(Xcl(Ss t? X, U), VC](S5 ta X, v))v
S

we conclude the lemma. O
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Lemma 3 Let Q be convex as in (1.13). Then for (x, v) € y4+

Ja(x, v)

P (2.2)

h(x,v) 20

and
Ja(x, v)

NE (2.3)

1h(x,v) Se
Proof Recall Lemma 2. For (2.2) it suffices to prove i, (x, v) 2 % For
x € 0%2 there exists 0 < § < 1 such that

(=) n @)l _

yesQ Ix — yI?
lx—yl<8 le—yl<é

V2 .
rrelgél &(x)|

Iflx—y| > 5then|(xy_—);72(x)| <87 2|(x—y)-n(x)| $s.q 1.Bythe compactness

|x
of  and 92, we have |(x — y) - n(x)| < |x — y|? for all x, y € 9Q. Taking
the inner product of x — xp(x, v) = fp(x, v)v with n(x), we have

1y (x, V)|V - n(x)| = [(x — xp(x, v)) - n(x)]
< Jx = xp(x, v) 2 = Calv* 1y (x, v) |2,

and this proves (2.2).
For (2.3) it suffices to show 7 (x, v) Se n)-v] §ince ExX)=0=¢&(x —

lv]?
tp(x, v)v) for (x, v) € y4+, we have

ty(x,v)
0 = E(x — ty(x, v)V) = £(x) + / T v VeE(r — su)lds
0

th(x,v) ps
= [—U-Vxé(x)]tb(x,v)—{—/b / {v-V2E(x — Tv) - v)drds.
0 0

By the convexity of £ in (1.13) we have [v- V& (x) ]y (x, v) > Mcg lv|2,
and therefore this proves (2.3). |

We need a version of Gronwall’s inequality for matrices:

Lemma4 Leta(t), b(t), f(r), g(r) = 0forall 0 <t <t, and satisfy

a@m)y| [ 0 1 frta(r/)dr’ N gt —1)
b |~ Ll I ][ [fbhdr | [kt —1)
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then

a(t) < ,CE-D) 1 |t —1] || g(0)
b(t) |~ WP —t 1 h(0)
f C(r—1") 1 It — 7’| gt — 1) ’
+[ ‘ [|v|2|r—r’| ! Hhﬁ—f/)]df' 24

Proof First we consider A®, B solving, for ¢ > 0,

A _ [0 ][ [lAs)dr gt —1) e

[Bf(r)]—c[w |v|][f;BE(f')df/]+[h(z—r)]+[e]' 25
We claim that

A% (1) < ,C=1) 1 lt—1t] || g0)+e

Be(t) |~ it —t] 1 h(0) + ¢

t _y 1 |t — 7/ t—1)+e¢
Cr—1') g /
+/, ¢ |:|v|2|t—t/| 1 Wit — 1)+ |97

(2.6)
. . 1 0 0 1 0 1
We consider the matrix = . Denote
[0 1][|v|2 Ivl} [Ivl2 Ivl]
1++/5 1-+/5 1
ry = , Iy = , 13 = —.
1 5 2 5 3 7

Then we diagonalize this matrix as

0 17 [ 1 1 7[rnkl 0 |- ngy
w2 vl |~ Ll ralvl 0 rvl 173 _r3ﬁ .

A | —rrs nnp | A
B(t) | B*(7)

Denote [ } and rewrite the equations

1
rir3 —r3m
as

ATA@)_[rll 0 J[A@], | rnr | [e—0)+e
dt [ B (t) |~ 0 vl || B() riry =y | LhG@=0)+e |
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Directly we compute

AS(T) . ecrl|v‘(7_t)“48(t)
Bé(r) | | eCer2lviT=n e p)

ralul(r—7’ - L
N T [ Cralvl(z=1") 0 - r3 r3|U|1 g(t—f:)+8 dr’.
. 0 eCralvl(z=1") FIrs =3 ht—1t")+e¢
Then
Af(T) | _ 1 1 A% (1)
B(tr) | | rilvl rafvl || B(7)
1 1 ][eCnie—n 0 —rry nny | [A%@)
= Ll bl 0 e |1y [ [ BRO)
N T 1 1 Crilvl(t—1) 0
. Lrilvl ralvl 0 eCravl=7)
1 /
—rry nyg gt—1H)+e¢ a7’
X|: rirs —mﬁ}[fl(f—f/)-ﬂ? T
Directly, the RHS equals

3 (rleCrz\vl(rft) _ rzeCrllul(rfl)) \% (eCrl\v\(Ift) _ eCrzlvl(rfl)) AS(I)
—rirarsfo] (eCTIIMIE=D — gCra@=D) o (y oCralbl@=0) _ po o Crilole=n) | | B (1)

T r3 (rlec’-"”‘(z z,)_rzec’”v‘(z I,)) ‘73‘ (eCFl‘U‘(I I’)_eCF_)"U‘(Z Z))
+/
t

—rirars|v| (eCr1|u|<rfr’> - ecmv\(r—ﬂ) rs (,1eCrz|v|<r—r’)_,zeCm|v|<r—r’))

g(l_f/)+8 ’
X|:h(t—r/)+8i|df'

By expansion we have [¢CT11VI(T=1) _ oCralvl(z=1)) Sces vllt— t]eCeslVlT=0)
Therefore we conclude (2.6).
Now we claim

a(t) < A(t), b(r) < B(tr), forall t <t. 2.7)

First we claim that a(t) < A®(t) and b(t) < Bf(t) for all . Otherwise, we
should have at least for some time g suchthata(t) < A®(r) andb(t) < B®(7)
for tp < T < t but either a(zr) > A®(r) or b(r) > Bé(r) for a small
neighborhood of t© > 7. Especially either a(tg) = A®(1g) or b(t9) = B®(1p).
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But this is impossible. Since

0 JL (A (x") —a(z)))dr’ P
= ¢ [|v|2 |v|} [fr(Bé"(r/) b(r'))dr’ ] " [8]
Af(t) —a(t)
Bé(t) — b(7)

inequalities (2.7) by letting ¢ — 0.
Finally we prove the claim (2.4) from (2.6) and (2.7) and letting ¢ — 0. O

Af(t) —a(1)
Bé(t) — b(7)

e
we have > |:8] > 0as 1t — to Then we prove the

Recall the expression of I'gyin and v in (1.7) and (1.8). Due to the Grad
estimate in [4]

Fgain(«/ﬁa g)+ 1_‘Igain(g7 «/ﬁ) = /R3 k2 (v, u)g(u)du,

v(y/1g) = /3k1(v,u)g(u)du, (2.8)
R
where
o — P
Ki(u,v) = [u—vl|"e” 2 qo(lv al w)dw,
Hu—f2— 1<\u\2—|v|2)2

lu—v|2

Ko(u,v) =

|u — v|2

u—uv u—v
X/ q0 . e_|w+§|2
w-(u—)=0 Vi —v?+ w2 lu—v]

(lw)® + |u — v[*)2dw, (2.9)

and ¢ := (% |w|) Tl See page 315 of [8] for details.

Lemmas ForO <k <1,
2 1(\v\2 lu|2)?

1
—g|v—Uu
g [v—ul

ki@, v)| + Ko (u, 0)| S {lv — ul® + v —u| > }e
IM

Iv ul?>—
[v—ul

v — u|>*
Foro > 0and =20 <0 <2pand ¢ € R, we have for0 <k <1,

(W22 ()¢ IV

_ _yl2_
(v —ul + v —u| 2 P mr W g, <y
R3 (u){ee|u|2 ~
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Proof The proof is based on [9]. Note that

2
(v)¢ el S o2t
()¢ el S L+ o —uf?]2e U=,

Set v —u = nand u = v — 7 in the integration. Now we compute the total
exponent of the integrand as

Inl? — 2v - nf?

—olnl* —o———— —0{lv—nl* = |v|*)
In|?
5 lv-nl?
= —20|nl* +4o{v - n} — 40 TE —0{Inl> —2v - n)
) lv-nl?
= (=0 —20)Inl"+ 4o +20)v-n—4o e

Since —20 < 6 < 29, the discriminant of the above quadratic form of |n| and
Y1 is negative: (40 4 20)% + 160(—0 —20) = 46% — 160% < 0. We thus have

nl
In> —2v -y In|?
—anlz—QT—Qﬂv— nl* =P} Seo — (vl

Hence, for 0 < k < 1 the integration is bounded by
_ _ 2
[ 2y e Cer S, 1.
R

Therefore in order to prove Lemma 5 it suffices to consider the case |v| > 1.
We make another change of variables 7 = {77 |U|} Tl andn, =n—n|, so

that |v -2n| = |vlny| and [v — u| > |nL|. We can absorb (1), |n|*(n)¢ by
e~ Ceol” and bound the integration by, for 0 < x <1,

B -C ,e{'"‘ +|vn|]
/R3{1+|n| 2+K}e ¢ dn

24y = &L 2 ,—Coslven)
< {1+ |7 e 72 M= Cetlvnlgy
R3

C
5/ (14 | 2¥*)e 5 P [/ e‘Cg,MIXI’“dImH] dny
R

o0
< (o) / (1 + o2 w[ /0 e_CQ’”dy]dm

S
where y = |v]|n]. |
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We define

[gain,v (81, g2)(v) = /11@3 /§2 B(v —u, w)Vy () (u)g1(u") g (v)dwdu,
(2.10)
where ' =u — [(u —v) - w]lwand v = v + [(u — V) - w]w.

Lemma 6 (i) For0 < 0 < }1 and 0 < k < 1, there exists Cy > 0 such that,
Jor (i, j) = (1,2) or (i, j) = (2, 1),

—Cylv—ul?

2 e
Paain(g1, 82) ()] Ko 11" gilloo / o apw e @ldu, @1
s To =

and

_ 2 2 2
| Tain (g1, 22) ()] Zo () e P 1/ g1l l1e”F g2l oo,

—0|v|? 2 2
Ko Olv] “eGIUI O|v]

T gain,v (g1, 82) ()| Ko (v) gilloolle”™ g2 100,
—Cplv—ul?

2
v(/rgnga )] So e’ galloo / o e g1l
s o=

(i) For p € [1,00) and 0 < 6 < 1, and for (i, j) = (1,2) or (i, j) =
(2, 1),

olv|?

ITgain(g1, 82)llp So.p 1€ gilloollgjll ps

2
Iv(vrg)ell, So.p 197 galloollgrllp,

'//Q - I gain (81, 82)g3dvdx
X

' / / v(/1ng1)g283dvdx
QxR3

0 2
<o.p 19" gillsollg;llpllgsllys

0 2
<o.p 19" galloollgnlipligslly-

(iii) For p € [1,00) and 0 < 6 < 41'1’ and for (i, j) = (1,2) or (i, j) =
2, 1),

2
IVulCeain(g1. 8201 p So.p D 1" gillooll Vugll -
()]
2
(VgD eally So.p 1€7" g2llool Vgt ll s

2
‘ T 9eainten gaduds| Sop 31 gl 90 sl
QxR

(i\))
‘ / / v(/IVyg1)8283dvdx
QxR3

0 2
<o.p 1€7" @2ll00 I Vg1l pllg3ll4-
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(iv) Let [Y, W] = [Y(x,v), W(x,v)] € Q x R3. For0 < 6 < }T and
ae € {atv VXa Vv}a

|8ergain(g’ )Y, W)

olof? e~ Colu=W[>
< [0eYllle g||oo/Ra e Ve wlds
—Colu—W|?
+ 19eW glloe [ S |Vyg(Y, 1) |du
R3 |l/l —_ le_K

_ 2 2
+ ()< 3w g 12

-
Proof (1) First we show (2.11) for (i, j) = (1, 2). Clearly

—0v|? olv|?

|Fgain(gl,g2)| S |Fgain(e ;182D x [le g1lloo-

By the Grad estimate, (page 315, [8]) we bound |Fgain(e_9‘”|2, lg2D]
by fR2 ko (v, u)|g2(u)|du with different exponent of ks (v, u). Then we use
Lemma 5 to conclude (2.11).

For the second estimate we use (1.9)

_ 2 _ 2 2 2
T gain (g1, 82) ()] < Tgain(e 71V, 7110 5 11 g 100 116711 g2

— P // B(v —u, w)/ u(u =014 dopdu

olv|? olv|?

x [[e” gilloolle™™ g2llco

—0v|? .0|v? ov|?
< (e M1 g oo 1?1 g2 oo

~

where we have used |u’|?> + |v/|*> = |u|?> + |v|?. The third estimate follows
similarly with V,, (/i) (u) < w(u)'/?>=3% for any 8 > 0. The fourth estimate
follows from

—9|v)? —0lvl?
e v(\/ﬁgl)(v)ﬁ/glv—ulke TV 1w)lg1 (o) ldu
IR
¢—Colv—ul®
S/M mlgl(u)ldu,

o2 ~Clv—ul?
and e~ |y —ul* ) < S
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(i1) The first two estimates are a direct consequence of (i):

0lv|? o—Colv—ul? /4 o—Colv—ul? /p
”Fgam(gl g2)lp S lle 8illoo W ﬁh&’/(uﬂp

u lv
ool o—Colul? o—Colv—ul?
< 1P giloe ([ S /|g1<u>| [
u ul v —ul
—Colul?
0 2 e
S gilloo | [ =5 )llg;llp
u |ul

) 2
Sl g

Ly

|oo||gj||p~

From the fourth estimate of (i), the same proof holds for

2
Iv(/mgngzlly So.p 1€ g2lloollgillp-
For the third estimate we use (2.11) in order to bound it as

olf2 e~ Colv— ul?
e’ g1 loo ///Q s o a8l v dudud
XR7 xR-

(///|_C9|U|2ulk o u)|p) (/// |_Cglv|zul,( 183 (x, u>|Q)l/q

S lgjllpligslly-

The same proof holds when exchanging i and j. Using the fourth estimate of
(1), we conclude (ii).

(iii) We compute the velocity derivative of I'gain after the change of variable
ui=v-—u

vFgain(gls 82)
— v, [ [, [ B oieae - a-ows+ o w)w)dwdu]
R3 Jg
= Iﬂgain(gl, Vug2) + Fgain(vvgla g) + 1—‘gain,v(gl’ 82).
The two first terms are estimated directly by (ii). For Igain,», we use the fact
V(i) (v —u)| < Cu(v — u)'/* and then apply (ii). The other estimates
are direct consequence of the previous estimates.

(iv) It suffices to show the following computation: For 0 < 6 < % and
ae € {8t$ VXs vv}s

@ Springer
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|0eI"gain (g, ) (Y, W)|

u _utw?
= ae |u|KqO(_ .a))e 4 g(Y’ W+[u CL)]CL))
s? JR3 |ul

xg¥Y, WH+u—(u- a))a))da)du}

= |Fgain(8eY Vg, Y, W)l + |Fgain(g’ deY - Vig)(Y, W)|
+|Fgain(aeW - Vg, g)(Y W)l + |Fgain(g7 0eW - Vyg)(Y, W)|

+(/§2/ |u|qu “ a))(—)(u+W) W/ 12t + W)

xg(Y, W+lu- - olwg¥,W+u— (u- a))a))da)du‘

) —Colu—W/?
< (Y [l]e" g||oo/R3 sl
) e~ Colu=WF?
W gl |l (Y )l
He W (v)<e 1?10 g 2, (2.12)
where we have used the change of variables u — V +— u. O

Lemma 7 (Local Existence) For 0 < 6 < 1/4, if [?*F folloo < +00 then
there exists T > 0 depending on ||€9|U|2 Jolloo, Such that there exists a unique
F = p+ /if which solves the Boltzmann equation (1.1) in [0, T] and
satisfies the initial condition and boundary conditions (1.10), (1.11), (1.12)
respectively. In addition F(t,x,v) > 00on [0, T] x Q x R3 and f satisfies,
forsome 0 < 0’ <0,

/ 2 2
sup [le” " F(D)lloo S P U follo), (2.13)
0<t<T

for some polynomial P. If fy is continuous and satisfies the compatibility
conditions (1.14), (1.30), (1.37) respectively, then f is continuous away from
the grazing set yy.

Moreover, for(Q < 0 < %L» if||eé|”|28tf0||oo = Heélvl2 —v~VxFo:/rﬁQ(Fo,Fo) -
o
400 and compatibility conditions (1.14), (1.30), (1.37) hold respectively, then

sup
0<r<T*

Ay, £ () “oo SP (”eé'”'zazfouoo) TP (Hee'“'szHOO) ’
(2.14)

for some polynomial P.
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Furthermore for the diffuse and bounce-back boundary conditions, if Fy =

w+ /igo with ||69|v‘2go||OO L 1lfor0 <6 < 411 then the results hold for
all t > 0. For the specular reflection boundary condition, if & is real analytic,

and if 1?1 golloo < 1 for0 < 6 < 1 then the results hold for all t > 0.

Note that we only need the real analyticity assumption for the global-in-time
solvability in the specular BC which is crucial to bootstrap L°°—bound using
L?>—bound. (L? — L*® interpolation argument in [9])

Proof We use the positive preserving iteration of [9,12]

O F" vV F"H o (F™M P = Quain (F™, ™), F"* =9 = Fo = 0,
(2.15)
which is equivalent to the following equation when posing F"™ := /i ™,

O S v Vi U (E) U = Taain (17 ™) " =0 = fo-
(2.16)
We use the Duhamel formula (ignoring the boundary condition):

e, x, v) = e Jo VRS Xa) Va)ds g x 0, Vg (0))

t
+/O €_f5t U(\/ﬁfm)(f’xcl(t)’Vc'(r))dtrgain(fm, fm)(sa Xc](S), Vcl(S))dS.

The local existence theorem without boundary is standard:

|e(9_’)|”|2fm+1(t, x, )|
) t
e @D £y +/0 ICgain (f™", f™) (s, Xa(s), Va(s))|ds
t
1" ol 4[] BVaG) = w00t
0 R3xS§?
X (s, Xa(s), u)|| " (s, Xa(s), V)]

2
2 e 2
< fle?!! fo||oo+(sup @] f’"<s>||oo)

0<s<t

t
x/ // B(v — u, w)/ju(u)e@=DWE = @=9)' P ,=O=9)V'?
0

N

N
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0<s<t

t
x/ e(ts)vlz/lv—ul'(\/u(u)
0 u

2
2 _ 2
< Jlef! fo||oo+( sup [ f’"(s)HOO)

2
2 e 2
< flef!! fo||oo+(sup @] f’“<s>||oo)

0<s<t

t
_(_ 2
X/ eI 1o + 1< )ds
0
? 1
2 e 2
S llef! folloo+(sup le@= v fm(s)||oo) {—z—i—Nt}.
0<s<t N

Now we choose sufficiently large N > 1 and then small 0 < 7 < 6 to
obtain the uniform-in-m estimate

/ 2 2
sup [le” P @) oo S 1€ foll oo, (2.17)
0<t<T

for some 0 < 0’ < 6.

With a boundary condition the Duhamel formula takes the form accordingly:
(1) Diffuse reflection boundary condition, on (x, v) € y_,

0 = /) S x, W @ {n(x) - uydu.

n(x)-u>0
(2.18)
(i1) Specular reflection boundary condition, on (x, v) € y_,

e x,v) = ™, x, Ryev), (2.19)

where Ryv = v — 2n(x)(n(x) - v).
(iii) Bounce-back reflection boundary condition, on (x, v) € y_,

@ x,v) = (@, x, —v). (2.20)

We then follow the proof of [9,12] to obtain the same estimates of (2.17). O

3 Traces and the in-flow problems

Recall the phase boundary in (1.3) and the almost grazing set y{ defined in
(1.21). We first estimate the outgoing trace on y \y{. We remark that for the
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outgoing part, our estimate is global in time without the need to use cut-off
functions, in contrast to the general trace theorem.

Lemma 8 Assume that ¢ = ¢ (v) is Lloc(R3)‘ For any ¢ > 0, there exists
a constant Cg 7. > 0 such that for any h in L! ([0, T, LI(Q X ]R3)) with
dh+v-Vih+ohisin L'([0, T], L' (Q x R?)), we have forall0 <t < T,

t
/ / |h|dyds
0 Jys\yi

t
= Cor.0 [ 7ol +/0 {Ir) I+ 108 + v - Vi +<p]h(S)|1}dS] :

Furthermore, for (s, x, v) in [0, T1x 2 xR3, h(s+s’, x+5'v, v) is absolutely
continuous in s’ € [—min{f(x, v), s}, min{ty(x, —v), T — s}].

Proof With a proper change of variables (e.g. Page 247 in [1]) we have

/ // h(t, x,v)dvdxdt
QxR3
= / // h(T 4+ s, x 4+ sv, v)dvdxds
min{T,#,(x,v)} QxR3

min{7,tp(x,—v)}
+/ // h(O—+s,x + sv, v)dvdxds
0 QxR3

T 0
—I—/ / / h(t + s, x + sv, v)dsdydt
0 v+ J —min{t, 1 (x,v)}

T min{7 —¢,t(x,—v)}
—I—/ / / h(t +s,x +sv,v)dsdydt. (3.1)
0 0

For (¢t,x,v) € [0, T] X y4+ and 0 < s < min{¢, i, (x, v)},

h(t,x,v) = h(t —s,x — sv, v)e ?WS

0
+/ e(ﬂ(v)l’[ath +v-Vih+oW)h](t+ 1, x 4+ tv, v)dT.
—s

. T 0
Now for (1, x, v) € [e1, TIxy4\vi, wemtegrateoverfs1 fV+\J’i fmin{t,tb(x,v)}
to get
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T

min{81,83}x// |h(t, x, v)|dyds
er Jy+\vi

T
S min {t,tb(x,v)}X// |h(t, x, v)|dydt
le1, TIx[y+\vi] e Jys\vi

T 0
5/ / / \h(t + s, x + sv, v)|dsdydr
0 Jy+ J—min{t,1p(x,v)}

T 0
+T/ / / |0:h4v - Vih + oh|(t + T, x + Tv, v)dTrdyds
0 v+ J —min{t,ty(x,v)}

T T
S/ A ()]l1dr +/ [10; + v - Vi + @lh(?)|l1d2,
0 0

where we have used the integration identity (3.1), and (40) of [9] to obtain
th(x,v) > Cqln(x) - v|/|v|2 > Cgqed for (x,v) € Y+ \vi. Now we choose
g1 =¢€1(82,¢) as

&1 < C983 < inf tp(x, v).
(x,v)ey+\vi

We only need to show, for ey < C 983 , that
€1 €1

/ / |h(t, x, v)|dydt Sq e ||h0||1+/ 1[0:+v - Vx+@lh(2)|1dz.
0 Jyp\yi 0

Because of our choice ¢ and &1, fp(x, v) > ¢ forall (¢, x, v) € [0, &1] x Y4\ Y.
Then

t
h(t, %, 0)] < hoGi—tv, v>|+/ [4v - Vet o)A (s, x—(t — 5)v, v)] ds,
0

where the second contribution is bounded, from (3.1), by
£1 t
/ / / [[0; +v - Vi +@@)]h(s, x — (t —s)v, v)|dsdydt
0 Jyp\yiJo

1
S /0 I[0; +v- Vx +@)]h()|1dt.

Consider the initial datum contribution |hg(x — fv, v)|: We may assume
036 (x0) # 0. By the implicit function theorem, 9€2 can be represented
locally by the graph n = n(x1, x2) satisfying &(x1, x2, n(x1,x2)) = 0
and (3, 7(x1, x2), d,n(x1, 12) = (—3,6/,E, —0,€/0:8) at (x1, 2,
n(x1, x2)). We define the change of variables
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(x,0) e{x e dQ:|x —xol K1} x[0,e1] = y=x—1veEQ,

By B
where ‘_a(iy,z) = —Ulﬁ ) 8,;; —v3.
Therefore
1/2
0 ENT  [(9nE)°
In(x) - v|dSydt = (n(x) -v) | 1 + ()‘—‘5) + (x—zf) dx dxodt
0x36 0x3&
d d
= [—vl xi8 ) X8 — v3:| dxidxpdr = dy,
0x36 0x36

&
andfol fy+\yjﬁ{|x—x()|<<l} |ho(x—tv, v)|dyds ge,sl,xo fox]R3 lho(y, v)|dydv.
Since 02 is compact we can choose finite covers of d€2 and repeat the same
argument for each piece to conclude

£l
/ / Iho(r — v, V)ldyds Soee, // lho(y, v)ldydv,
0 Jy\rf QxR3

O
Lemma 9 (Green’s Identity) For p € [1,00) assume f,0:f +v -V, f €

LP([0,T]; LP(Q xR¥)) and f,, € LP([0, T1; LP(y)). Then f € C°([0, T1;
LP (2 x R3)) and fyy € LP([0, TT; LP(y)) and for almost every t € [0, T] :

t t
IIf(t)Ilﬁ-l-/O f1yep = ||f(0)||§+/0 | f1y-p

+/0t/./QXR3{atf+v'fo}|f|p_2f.

See [9] for the proof. Now we state and prove following propositions for
the in-flow problems:

{0, +v-Vi+vlif =H, [f(0,x,v)= folx,v), [, x,0)],_ =g x,v),
3.2)
where v(¢, x, v) > 0. For notational simplicity, we define

athE—U‘foO_VfO‘i‘H(O,x’U)’ (33)

2 2
n
Vyg=——1-0,8 — < Tj)0p. 8 — H 0. 8. 34
X n'v[ t8 Z(U 7;)0;8 —vg + ]+Zfl 78 (3.4)

i=1 i=1
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We remark that 9, fj is obtained from formally solving (3.2), and (3.3), which
leads to the usual tangential derivatives of d, g, and new ‘normal derivative’
dn g through the equation (3.2).

Proposition 1 Assume the compatibility condition

Jo(x,v) =g(0,x,v) for (x,v) € y_. (3.5)
Let p € [1,00)and 0 < 6 < 1/4. Assume

Vi fo, Vo fo, —v - Vi fo — v(0, -, ) fo + H(O, -, -) € LP(Q2 x R?),
8lg, Vl)gv al’ig € Lp([07 T] X y_)a

(=g — D (v-T)dyg —vg+ H} € LP([0,T] x y-),

n(x)-v
&H, ViH, VyH, € LP([0, T] x Q x R?),
—0Jv|? —0|v|? —0Jv)? P 3
e o0V, e Vyv, e Vv e LP([0, T] x 2 x R7),
A fo e LY@ x BY), 1P g e L0, T] x o),
AP H € L0, T] x @ x RY).

Then for sufficiently small T > 0, there exists a unique solution f to (3.2) such
that f,8; f, Vi f, Vo f € C%([0, T1; LP (2 x R3)) and their traces satisfy

al‘f|)/7 = atg’ vvf|]/7 = vav V)Cf|y7 = v)cg’ on y—,
Vi f(0,x,v) = Vi fo, Vo f(0,x,v) =Vyfo, in Qx ]R3, (3.6)
¥ fO,x,v) =8 fo, in QxR

where 0; fo and V. g are given by (3.3) and (3.3). Moreover for de € {0;, 0y, 0y}
t t
eSO+ [ 10618, = ol + [ 10csl

t
+p / / / (BeH — [0e0]V, f — [Bev] e 17206 S, GB.T)
0 QxR3

Proof We apply the trace theorem to the derivatives of f by explicit computa-
tions. Denote v(s) = v(s, x — (¢t — s)v, v). First we assume fy, g and H have
compact supports in v € R3. We integrate the Eq. (3.2) along the backward
trajectories. If the initial condition is reached before hitting the boundary (case
t < tp), we have

t A
f(t,x,v) = e_fé”fo(x — v, v) +/ e~ Jo YVH(t — s, x — vs, v)ds,
0
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where we used the simplified notation fot V= f(; v(t — 1, x —tv, v)dr. If the
boundary has been reached before (case > 13,), we have

0 b 5
f(t, x,v) = eI Yg(t — ty, xp, V) —I—/ e Jo VH(t — s, x — vs, v)ds,
0

where fot" V= 0’" v(t — 1, x — Tv, v)dt.
Let us rewrite it as

_ [t _
[, x,v) = 1<y e b fox — rv,v) + | FPRY Vet — ty, xp, v)

min(z,1) "
n / e B VH@ =5, x — vs, v)ds. (3.8)
0

We take the derivative of f with respect to time, space and velocity for ¢ # ty,.
Recall the following derivatives of xp and #, (see lemma 2 in [9]):

f
Vot = n(xp) V= — b7 (xp) ’
v - n()Cb) v - ”l(Xb) (3 9)
n(xp) tpn (xp) '
Vixp=1———Qv, Vyxp=—-tl+—
v - n(xp) v - n(xp)

Since g is defined on a surface, we cannot define its space gradient. Regarding
g(t — tp, xp(x, v), v) as function on [0, T] x © X R3, we obtain from (3.9)

Velg(t —ty, xp, V)] = =Vith0;g + VixpVe g

n(x nYu
=—&8;g+ I — Veg
v - n(xp) n-v

= Tlang + 728r2g
n(xp)
- vn—(xb) {318 +v-1108 + V- Tzarzg} ,

Vulg(t — ty, xp, V)] = =t Vi[g(t — 1y, xp, V)] + Vog,
where 71 (x) and 72 (x) are unit vectors satisfying t; (x)-n(x) = 0 = 12(x)-n(x)

and 71(x) X T (x) = n(x).
Therefore by direct computation for ¢ # t,, we deduce

O f(t, x, V)24

; t
= —1{r<tb}€7f° Y [vfo +v-Vyfo—Hi=o +/ 0V X fo] (x —tv,v)
0

@ Springer



Regularity of the Boltzmann equation in convex domains 151

1 v
+1{z>zb}€_f°b” [318 —/ drv X g} (t — ty, Xp, V)
0

min(z,ty) 5 K
+/ e_f0”|:8tH—/ 8,1)><Hi| (t —s,x — vs, v)ds, (3.10)
0 0
Vi f(t, x, V) r4,)

. t
= 1{l<fb}e_j(;v|:vxf0 —/ Vv x fo](x —tv,v)
0

2 5
N b
+ 1{z>zb}€_f0 ”{ E 7,058 —/ Viv X g
. 0
i=1

2
n(xp)
. nCn) {a,g + ;(v - T;)0;8 +vg — H}}(r — b, Xb, V)

min(z,tp) s s
+/ e—fo"[va_/ vaxH](t—s,x—vs,v)ds,
0 0
3.11)
Vo f(t, x, v) 1)

t
t
=1ypye” Jo "[—tVy fo+ Vy fo —/ (=tVyiv + Vyu) x fol(x —tv, v)
0

2
_ (b
_1{t>th}tbe Jo U{Zfiafig
i=1

n(xp)
v - n(xp)

2
{org + (0 w8+ vg = H} (¢ = o 00, v)

i=1

_
+loy e o V{va(t — Iy, Xp, V)
Iy
—/ (=tVyv 4+ Vyv) x g(t — ty, xp, v)}
0
min(z,ty) 5
+/ e—fo”{va—sva
0

S
—(/ —tVyv + V) X H}(l —8,x —vs,v)ds.
0
(3.12)
Here we have abbreviated the notations as f(; DeV = fot deV(t —T, x —TV, v)dT
and fot" deV = fé" deV(t — 7, x — TV, v)dT.

First we show that df1(;~4) € L? and d9f1j;-4) € L? separately. Then
we take the L” norms above with the changes of variables in Lemma 2.1 of
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[7] and we use Jensen’s inequality in [0, #]. More precisely, for ¢ € L! with
¢ Z 07

// 1 —rve@(x — v, v)
QxR3
=/ [/ 1{x_,vem¢<x—zv,v)dx]dvs// b, v),
R3 LJQ QxR3
// 1>n)0 (t — tp(x, V), xp(x, V), V)
{Q@xR3}NB((x0,v0);8)

t
< / / ¢ (s, x, V)[n(x) - v]dScduds,
0 JIQxR3

where for the second inequality we have used the change of variables for fixed
t,v,

(3.13)

X = (t —tp(x,v), xp(x, v)). (3.14)

In fact, without loss of generality we may assume 0y,&(xp(x,v)) # O for
(x,v) € B((x0,v0); ) so that xp(x,v) = (xb,1, Xp,2, 7(xXp,1, *p,2)). Using
(3.9), we compute the Jacobian

—V,ip —(v -n)_ln 3 9 1
det —Vxbe = det _Vxbe — ‘_vl XIS — ng + 3
—Vyixp2 —ViXp2 8X3$ aX3§
— axls axzs _ _
Therefore dxdv = —Vig — V25, T U3 dx1dxpdvdt = |n - v|dS,dvdr =
X3 X3

dydr. Using these changes of variables, we obtain

t 1/p t 1/p
IfF Oz llp St N follp + [/0 Igl”dde} + [/O ||H||§dS} ,
)/_

and

10z f () Lz |l p
Sellve Ve fo+vfo—HO, - )llp

t 1/p t 1/p
+ [/ |8,g|pdyds] + [/ ||3zH|I§}
0 Jy_ 0

2 2 2 ? 2 l/p
+ {17 folloo + 11”1 Hloo + 1€ g1 00) [/ (B a,vui} :
0
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and

Vi f (Ol p

t 1/p
S Ve follp + [/0 ”VxH”§i|

2 2 2 ! _ 2 1/p
+ (1€ folloo + 11?1V Hlloo + 171" glo0) [/O le= 01! vxvnﬁ}

t 2
+ [/ / dyds‘ Z T; 07, 8 (t — th, Xp, V)
0 Jy- i=1

n(xp) 2 p/P
——{a,g+Z(v-mar,-g+vg—H}(r—rb,xb,w\] ,
v - n(xp) P

and

Vo f (Ol p

t 1/p
S IV follp + 1V follp + Cll follp + [/0 / |va|pd)/ds}
y_
t 1/p
+ [/ IV H |} + ||VxH||5dS]
0

t 2
+[// dyds| > Ti0q gt = th, 3p, v)
0 Jy- i=1

n(xp)
v - n(xp)

2 VP
{3tg + Z(v " Ti)08 +vg — H}(t — Ip, Xb, v)) }

i=1

2 2 2
+ (1€ folloo + 11?11 Hlloo + 1€ g |00}
t P ool 1/p
X [/0 le PV |h + [le 01! vvvuﬁ} :

From our hypothesis and assumption on fy, ¢ and H with compact supports,
these terms are bounded, therefore

Of Vet = [0 f Vit Ve f ity Vo f Lsty | € L([0, T1; LP (2 xRY)).

On the other hand, thanks to the compatibility condition, we need to show
f has the same trace on the set

M= {t = tp(x,v)} = {(1p(x, v), x,v) € [0, T] x Q x R3}. (3.15)
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We claim the following fact: Let ¢ (¢, x, v) € C2°((0, T) x Q x R3) then we

have . .
/ // 100 = _/ // 0f L) (3.16)
0 QxR3 0 QxR3

so that f € WP with weak derivatives given by Of Lir 24y

Proof of claim. We first fix the test function ¢ (¢, x, v). There exists § = 64 > 0
such that ¢ = 0 fort > §, or dist(x, Q) < &, or |[v] > +. Let ¢(f,x,v) #0
and (¢, x,v) € M. By (3.15) and (1.27), t = tp(x,v),xp = x — tpv, and
|x — xp| = tp|v]|, and

dist(x, Q) < |x — xp| = tp|v].

Since 1 < %, this implies that |v| > % > §2.

Otherwise dist(x, d2) < § so that ¢ (¢, x, v) = 0. Furthermore, by the
Velocity lemma and this lower bound for |v|, we conclude that there exists
8'(8, ) > 0 such that

v nm)> Za v - Vi) * = alt — m; 1, x, v)
> e @Wa(r; 1, x, v) = eI Ce v £ ()

>e €705t min |E(x)| = 26(5, Q) > 0.
dist(x,092)>48

In particular, this lower bound and a direct computation of (3.9) imply that
{¢ # 0} N M is a smooth 6D hypersurface.

We next take a C! approximation of fé, H!, and g’ (by partition of unity
and localization) such that

! [
”f() - fO”Wl«P -0, g — g”Wl’I’([O,T]X)/,\)/E,) — 0,

IH' — Hllwipqo,11x@xr3) = 0,

where W17 ([0, T]x y_\yf/) is the standard Sobolev space in [0, T] x y_ \yf/.
This implies, from the trace theorem, that

flx.v) > fox,v) and g'(0,x,v) > g0, x,v) in L'(y_\y®).

We define accordingly, for (¢, x, v) € [0, T] x  x R3,

1 — [Ty 4l — by i
[ x,v) =1qye 07 fo(x —tv,v) + Lysgyye” /0 g (t — ty, xp, V)

min{z, 1} 5
+/ e BVH! (t — 5, x — sv, v)ds, (3.17)
0
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and fi(t, X,v) = l{tz,b}fl. Therefore for all (x, v) € y_,

fi(s, x +sv,0) — fLs,x +sv,0) = e~ do Vg0, x, v) — e~ ho 1)fé()c, v).

Since {¢ # 0} N M is a smooth hypersurface, we apply the Gauss theorem to
f! to obtain

/// de¢ f dxduvds ://[fi — fLige - npd M
— { / / ¢de fLdxdvdr + / / $e fidxdvdt’,
1>ty 1<ty

Where ae = [atv VX9 VU] = [alv a.XI ) 8X27 ax3’ al)] ) avz’ al}’g] and

(3.18)

1
T+ Vet 2 + Vot

n (1, —Vyty, —Vytp) € R,

We have used also (s, x + sv, v) and (x, v) € y_ as our parametrization for
the manifold M N {¢ # 0}, so that n(xp(x, v)) - v > 28’ is equivalent to
n(x) - v > 28'. Therefore the above hypersurface integration over {¢t # 1y} is
bounded by

1
35
5(,,,5/ / | f2 (s, x +sv,0) — fL(s, x + sv, v)[dS,dvds
0 n(x)-v>28
qu,a/ 1810, x,v) — fi(s, v)|dSxdv — 0, asl — oo,
n(x)-v>=28"

due to the compatibility condition fo(x,v) = g(0, x,v) for (x,v) € y_.
Clearly, taking difference of (3.17) and (3.8), we deduce f/ — f strongly in
L?({¢ # 0}) due to the first estimate of (3.15). Furthermore, due to (3.15), we
have a uniform-in-/ bound of fi in WhP({z 2 tp, @ # 0}) such that, up to a
subsequence,

ae:fi — e fLir>1,), 8efi — O fl{r<n), weaklyin LP({¢ # O}).

Finally we conclude the claim (3.16) by letting / — oo in (3.18).

Now, notice that from its explicit form (3.8), and since all the data are
compactly supported in the velocity space, f is itself compactly supported in
the velocity space. Recall 0 = [9;, Vi, V,]. From this and from the L? bounds
above, we conclude

(8 +v-Vy+v}df =3H —dv -V, f —dvf e LP. (3.19)
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By the trace theorem (Lemma 8), the traces of 9; f, Vi f, V, f exist. To evaluate
these traces, we take derivatives along characteristics. Letting + — #, and
t — 0, we deduce (3.6). From the Green’s identity, Lemma 9, we have (3.7)
and therefore we conclude 3f € C°([0, T1; L?).

In order to remove the compact support assumption we employ the cut-off
function x used in (1.22). Define f* = x(Jv|/m) f then f™ satisfies

{0 + v Ve + x(vl/mw} ™ = x(jvl/m)H,
7O, x,0) = x(vl/m) fo, f™ly- = x(lvl/m)g. (3.20)

Note that Vy[x ([v|/m)g]l = x(lvl/m)Vyg + gVyx(lv|/m) and x(v|/m)
Jox,v) = x(v|/m)g(0, x, v) for (x,v) € y_. Apply the previous result
to compute the traces of the derivatives of f”. It is standard (using Green’s
identity) to show that d; f*, V, f™ and V, f™ are Cauchy sequences and we
can pass to the desired limits. |

We now study the weighted W17 estimate. Recall (1.22). We first define an
effective collision frequency:

Ve p(t, X, 0) = v(v) + @ (v) — Ba " [v - Vyal, (3.21)
and
[0 +v-Vi+vg gl el £) = e 7Pl f vV f+0f]. (3.22)

Dueto (2.1)and @ > 1, v5 g(t, x,v) S B(v).

Proposition 2 Let f be a solution of (3.2). Assume (3.5) and (v)g €
L®(0,T] x y_), and v, (vV)H € L*®([0,T] x Q x R3). For any fixed
pel2,00],0<6<1/4andp > 0, assume

aPVy fo, aPVy fo, aP[—v - Vi fo —v(0, -, ) fo + H(O, -, )] € LP(Q2 x RY),
UL WP RLACURA VAP S eiW(U)totﬁarig e LP([0,T] x y-),

e—w(v)taﬂ {

S —dg— Z(v 1), 8 —vg + H} e LP([0, T] x y_),

1
e TWGBYH, eGPV H, e TPV H € LP([0, T] x Q@ x R?),
efe‘”‘zefww)’aﬂ@,v, efglvlzefww)’aﬁvxv, efelv‘zefw(waﬁvvv e LP([0, TIxQxR?),

P e LP@xR3), 1M g € L0, T1xy.), /PP H € L®([0, TIx2xR3).

Then f(t, x, v) satisfies

t
1Ol < 1folloo + 5up 11265)loo + “/0 H(s)ds

O<s<t o]
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For ae € {31‘7 V)C9 v1.1}9

{0, +v - Vx-i-vw,ﬁ}[e_w(v)taﬂaef] = e 7P [—0ev - Vi f—Bevf+0eH],
e 7ol Yo fli—o = e NP B fo,
e_m”)taﬁaeﬂy_ = e_w<v>t0lﬂ[3eg|y—]’

where [0egly_] is given in (3.6). Moreover, recalling (3.3) and (3.4), we have
for2 < p < oo,

t
/ |e—w(v)taﬁaef(t)|l7+// vwﬂ|e—w(v)1aﬂaef|l7
QxR3 0 Jaxr:
t
+ / / e W al g f17
0 Jyy

t
< / e~ W Ba, fol? + / / o7 B, g1?
QxR3 0 Jy_

t
+/ / le WP H — e W gPdev - Vi f — deve P WP 7|
0 JQxR3

x|e” @ WPy fIP71,
lle™™ " aP 3o f (1)]] 0o
< lem W aP 3 folloo + 1le™™ P aP Beglloo

t
—|—/ lle™ M aPdeH — 8ev - e W aPV, f — 8eve™™ V0P £|n0.
0

(3.23)

Proof First we assume f, g and H have compact supports in {v € R3 : |v| <
m}. We estimate df in the bulk. From Lemma 2, we have

e_w-(vﬂaﬁ(x’ U) e_w<v>ta/3
sup —————— < CmB . sup < eCmpth,
1<ty aP(x —1tv,v) =1, €@ W= B (xp, v)
e—w(v)laﬂ
sup < eCmpS

max{t—ty,0}<s<t e_w<v>(t_s)0!(x — SV, l))le -

Multiplying e~@ "V af to the direct computations (3.10), (3.11), and (3.12)
and then using the change of variables (3.13) and (3.14), we get

||€_w<v>t06/33tf(f)||p Stom.p la’[v - Ve fo + vfo — H(O, -, iy

t 1/p
+ [ / le™™WsaPy,g(s)1D, + ||e_w<”>sa’38¢H(s)||§ds]
0
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1/p
[ / le 0 e Saﬁatvus} ,

le™ Y aPV, FOll ) Semp laP Vi follp

+[/fe Vigh

1/p
[/ Z|e—w oo g1, + e al v, H<s>||p}

1
bol —0v)? —w(v)s B p v
IIe e a” Vvl ,
0

le™™ W aPV, f Dl Stmp e’ Vi follp

r ot
U
0

_ 1/p
12
+ / S |e—w<">*‘oeﬁar,.g<s>|5,p+|e—w<”>saﬂvvg<s>|5,p}
0~
i=1

- rt 1/p
+ / ||e—w<”>saﬂvx,vH<s>||Z]
LJ0

1
’ ! —0)? —w(v)s B P /v
c lle e (04 v)c,v‘)”p s
0

where C' = (""" folloo + le?P H oo + [e”1" g o).

By the hypotheses of Proposition 2 and the assumption on fy, g and
H with compact supports the right hand sides are bounded and hence
e @By, £, e WPV, f and e P WPV, farein L®([0, T]; LP (22 x
R3)).

Since fy, g and H are compactly supported inside {v € R? : |v| < m}, the
derivatives e =@ W qPy, f, e WPV, f and e~ VPV, f are compactly
supported inside {v € R? : |v| < m} and hence from (3.22) and (3.19)

/p
g+ (v rz)81g+vg—H}‘ ]

e~ @ Wigh P /p
{08 + Z(v T;)0, 8 +vg — H}‘y pds]

{0 +v-Vy + vy plle @ Valif] = e WaPyH
—0v - e TGP F — dv()e TP F.

Moreover, from the general definition of traces, by choosing a test func-
tion multiplied by e~ V) a# we deduce e~V aP 3 f has the same trace as
e~ WaPaf],].
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Now we can apply Lemma 9 to establish (3.23) which does not depend on
the velocity cut-off. Therefore, for the general case, we use (3.20) and pass to
the limit to conclude the proof. O

4 Dynamical Non-local to Local Estimate

The main purpose of this section is to prove Lemma 1 and its variants (Lemma
11).

Lemma 10 ForyeS_Z,%</3<%,0<K§1,and0>0,

e-ew—uﬁ 1
/ 5 du < R (4.1)
s v —ul>~[a(y, ) lw26=11E(y) P2

Proof Firstly, we consider the case of |£(y)| < 8 < 1. From the assumption,

we have V&(y) # 0 and therefore there is a uniquely determined unit vector

n(y) = |§§8;\' We choose two unit vector 71 and 72 so that {71, 72, n(y)} is

an orthonormal basis of R.
We decompose the velocity variables u € R as
2

= upn(y) + ttr - T = wpn(y) + D UriTi.
i=1
We note that u, € R? and u,, € R are completely free coordinates. Therefore

using the Fubini’s theorem we can rearrange the order of integration freely.
Now we split

e—Olv—ul? 1
du
/]R3 v —ul?=* [a(y, u)]?
e—9|v—u|2
SJ/ / ﬂdunduf
R2JR v — ul> [lunl? + 1EO) ul?]

— / + / + / = (I) 4+ (I) + (IID).
|u|>5v] luj <18 Bl <ju|<5p0]

For the first term (I) we use, for |u| > 5|v| (therefore |v| < “g—‘),

lu—v)*  Ju—vl
2 = 2 2

23 23
> 7|v|2 + ITOW > ol + Jul,

2 2
P L e sl

lu—v|* =

and we use [Ju, |2 + Elu?]” = [lunl? +251E1112]° = [lual? + €02
for |u| > 5|v| to have
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—Clu|? —Clu,|?
2 e e
@) < e CMl / du,—H/dun 5
R e —ucl TSR [uy 2 + 1€ 0]

- € Lig(fur € R?)) for >0, 4.2)

Since
vy — ut|27

the integral over u. is finite. Then

—C|u”|2
I < ¢=CIvP ¢ duy,
~ 2 218
R [lunl? + 1§ v]?]

, 00 o—Clun|? 10 dlu
< e / Zﬁ—d|u”|+/ S
10 unl* 1, 1= 10) 0 [lunl2+ 1&1v]2]

10
5 (1+ d|un| ﬂ)e_cl’”z

0 [lunl? + 15 ]017]

1
< ,~ChP /10 d[|£|2 |v| tan 6]
~ € 1+
o |€1P1v|2P(1 + tan? 0)F
1 1 /2

< o ClvP? 262
J e (1 + PEa |§|ﬂ—1/2/0 (cosB) d@)

1 1
< ,—Clv|?
~¢ (1 T |§|ﬂ—1/2)

e~ Colvl? 1
2= g ()IP=1/2

where we have used a change of variables: |u,| = |.§|%|v| tan 6 and d|u,| =
€12 |v] sec 0dO and (cos )22 ¢ Ll.({6 €0, Z1}) for p > 1.

For the second term (II), we use |v — u| > |v| — |u| = |v| — % > % from

lu| < [l and apply the change of variables u — |v|u to have

an < 1 / S
B PR PRES U [T e [
1 ~CIoP || du, v 2du,
P /v|(un|+|uf|><'”' [0 enl? + £ 0Pl 2]

—C|v| / / 1
T3 B—r—1 3dundut.
|L| =l luc|< lun|< <1 |Mn|2 |$”M‘[| ]

2
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Now we apply the change of variables |u,| = |S|% |u,| tan @ for 6 € [0, %]
with du, = |£]2 |ur|sec 0d6 to have

- 1
an < / du /2 €1 e s 600
N — T
WP <t Jo [l ucl? tan? 6 + (8 |Ju 2]

—C|v)? d /2
S —_— (cosB)“"~=dbO
lu[2—k=1ig|p=1/2 /uT|< |ur 2P~ 1/o

e~ ClvP?
~ |v|2,6—/c—1|;§|,3—1/2’

where we have used IMI% € Llloc({u, € Rz}) for 8 < % and (cos0)2P—2 ¢

LL.({6 € [0, Z1)) for B > L. We note [v[<e~ €I < 1, and (4.1) is valid in
this case.
For the last term (III), we use the lower bound of |u| (Ju| > %) to have

218
[laal? + 11?2 [l + 16155 | 2 [ + i 110P]” and

e~ Svr—ucl? 50l 1
/ ,S/ —Hd”f/ g ditn
W <jul=siol "~ Jo<iugi=sivl (Ve =tz 0 [lunl?® + 1£(v]?]

5] 1
,§/ ﬂdun,
0 [|Mn|2 + |§||U|2]

where we have used |2 —elL]

(R?) for k > 0. We apply a change of vari-

loc

ables: |u,| = |g|1/2|v|tan9 for 6 € [0, /2] with djun| = |£]7|v] sec 6d6.
Hence

5|v| 1 % 0 26-2
() < / du, = / (CosOT 7 4
0 [lual? + IEv]?] 0 |&|Pm2 |21

< U
~gpor Y
where we used (cos9)?#—2 ¢ Llloc({e e [0, %]}) for B > % Overall, we
combine the estimates of (I), (II) and (IIT) to conclude ( 4.1).
Secondly, we consider the case of |£(y)| > §q. Then we can choose any
orthonormal basis, for example the standard basis {11, 172, n} = (ey, €2, €3),
to decompose the velocity variables u € R3asu = uje; + usrer + uzes :=
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ur1€1 + ur2e2 + uyes. Then
aly,u) = u-VEWI? = 260 u - V2EW) - u} > 2160 {u - VZE(Q) - u)
= 8aClul* + [EWu - VZEQ) - u} 2 lua|* + [EG) lul®.

Then we follow all the proof with the same decomposition for v := v je1 +
vz .2€2 4 vye3 to conclude (4.1) for |£(y)| > dq. O

We now prove the dynamical non-local to local estimates:

Proof of (1) of Lemma 1 Since ggg: < {1+ |v — ul?}2, it suffices to consider
the case r = 0. We prove (1.28).
We first assume v - VE(x) > 0 and x € 992. There exist o1, 0o > 0 such

that

v+ VEX — (p(x, ) — $)V)| 2 Vealx — (ty(x,v) — 5)v, v)

4.3)
forall s € [0, o1] U [tp(x, v) — 02, tp(x, V)],

and |v|/—&(x — (tp(x, v) —s)v) = Ja(x — (tp(x,v) —s)v,v) foralls €
o1, th(x, v) —o02]. The mapping s — &(x — (tp(x, v) —s)v) is one-to-one and
ontoons € [0,o01]orons € [fy(x, v) — 02, th(x, v)]. Moreover this mapping
s = &(x — (tp(x,v) — s)v) is a diffeomorphism and we have a change of
variables on s € [0, o] or s € [tp(x, v) — 07, th(x, V)],

_ d|&| - d|&|
IVE(x — (tp(x,v) — V) - v| ™~ Jalx — (tp(x, v) — $)v)

ds 4.4)

Step 1 First we establish (4.3) and (4.4).
Firstly we prove (4.3). Recall the definition of « in Definition 1. It suffices
to show

v VE( — (y(x, v) — $)v)| = [vly/—E(x — (p(x, v) — $)v),

s € [0,01]U [1p(x, v) — 02, iy (x, V)],

v VE(x — (y(x, v) — $)v)| < [vlV/—E(x — (p(x, v) — $)v),

s € [o1, tp(x,v) — 02].

Ifv = 0orv-VE&(x) = Othen (4.3) holds clearly. Therefore we may assume

v # 0and v - VE(x) > 0. Due to the Velocity lemma, v - YW~ 0 and

[VE(x)]
. % < 0. By the mean value theorem we choose t* € (0, 1, (x, v))

solving v - VE(x — (p(x, v) — t*)v) = 0. Moreover due to the convexity of &
we have

v
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d
—- (W VEQ = ((x, v) = $)v) = v VE(Xa(s)) v = Celvl,
and therefore * € (0, 1, (x, v)) is uniquely determined. Clearly we have

v- VE(X — (th(x,v) —s)v) > 0 fors € [tF, mp(x, V)],
v-VE(x — (th(x,v) —s)v) <Ofors € [0, ].

Define ®(s) = {|v - VE(x—(tn(x, v)—5)v) > +[v]2E (x— (1 (x, v)—s)V) } .
Since 2 (v . V2$(x — (tp(x,v) —$)V) - v) + [v|> > 0 we have

d

20 = (v- VEQ = (m(x,v) = 5)V))

X{Z(v V2E(x — (tp(x,v) — 5)v) - v) + |v|2},

is strictly negative for s € [0, r*] and is strictly positive for s € [t*, 1 (x, v)].
Note that ®(0) > 0 and ®(p(x,v)) > O from v - ¥ =~ ( and

[VE(x)|
VE(xp (x,v)) ; ; ; ;
V' Wi < 0. Note that ® is continuous function on the interval

[0, ty(x, v)] so that it has a minimum. If minfg 4 (x,»)] P(s) < 0, there exist
o1, oo > 0 satisfying

ol
¢%@wﬂwﬂ=¢%@wn+/ %@@mza
0

tp(x,v)

D (1 (x,v) —02) = P(tp(x,v)) —/ did>(S)ds =0,

h(x,v)—0oy A4S

then oy < t* and t(x, v) — oo > t* and there is no other s € [0, 1, (x, v)]
satisfying ®(s) = 0. Moreover we have ®(s) < 0 for s € [o1, fp(x, V) — 02].
If mingo g (x,v)] P (s) > 0, there do not exist such o1 and o> then we let oy = ¢*
and oy = 1, (x, v) — t*. This proves (4.3).

Secondly we prove (4.4). By the proof of (4.3), and the fact

gl d B
i ——&(x — (p(x,v) —5)v) = —v - Vi §(x — (Ip(x, v) — $)v),
) ds

as well as the inverse function theorem we deduce (4.4).

Step 2 For small 0 < 5 < 1, we define

~«/oz(x,v)] N . I ~«/oe(x,v)]
~— 21, §7:=min — .

51:=minlal,8 NE 02,6 e 4.5)

@ Springer



164 Y. Guo et al.

Actually, thanks to the fact o; < t, < _W’ by Lemma 3, we have 6; :=
§/a(x, v)/|v|%

Then both of (4.3) and (4.4) hold for s € [0, 61] U [t (x, v) — 672, tp(x, V)]
without changing the constant. Moreover, if s € [0,01] U [tp(x,v) —
a7, tp(x, v)] then by the Velocity lemma

~a(x,v)
max{|§|} ;= 3 max E(x—(tpb—5)v)| S 6 7
5€[0,611U[t (x,v) =62, (x,v)] [v]

(4.6)

For s € [o1, tp(x, v) — 62] we have the following estimate with § —dependent
constant:

IV =E( — (m(x, v) —$)v) 2,5 Vo — @&, v) —s)v,v).  @7)

The proof of (4.6) is due to, for s € [0, 71],
1E(x — (Ip(x, v) —5)v)| < /0 lv- VE(x — (Ih(x, v) — T)v)|dT

5
< Vanv)ls| £ mini«/&tz, %] = B,
1)

4.8)

where t7 is defined in (1.28) and a(x — (1p — T)v, v) g a(x, v) from the
Velocity lemma (Lemma 2). The proof for s € [m(x,v) — &2, th(x, v)] is
exactly same.

Now we prove (4.7). Recall that for t* € [0, #,(x, v)] in the previous step
we proved: v - VE(x — (tp(x, v) — t*)v) = 0. Clearly |&(x — (fp — s)v)| is an
increasing function on [0, #*] and a decreasing function on [¢*, ,(x, v)]. This
is due to the convexity of &:

d2
— =G = @ (x, v) = DV = v VEEC = (@, v) = 9)v) v 2 ol
andv-VE&(x) > 0and v - VE(xp(x, v)) < 0.

Therefore, from £(x) = 0 = £(xyp),

—§(x — (p(x, v) —5)v) = —§(x) —/ v VE(x — (hp(x,v) — T)v)dr

th(x,v)
tp(x,v)
= / v-V&x — (tp(x,v) — T)v)dT
S

> (tp(x, v) — s)(v - VE(x — (tp(x, v) — 5)V))
> 0s|v - VE(x — aov)| for s € [t*, tp(x, v) — 62],
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and
—&(x — (ip(x, v) — 5)v) = =& (wp(x, v))
— /S v-VEUX — (tp(x,v) — T)v)dT
0

> slv-VE(x — (tp — 5)v)|
> op|v - VE(xp(x, v) + ov)| for s € [0, o1].

Hence, for s € [0, tp(x, v) — 072],

1§(x — ( — $)v)| = min {[§(x — G2V)], [§(xp(x, v) + o1V)[}
> min {o2|v - VE(x—020)], 01|v - VE(xp(x, v)+01v)} .

From the definition of &7 and &7 in (4.5) we have

W EC — (p(x, v) — V)| = §/alx, v)
x min {|v - VE(x — apv)]|, |v - VE(xp(x, v) + o1v)|}.

Without loss of generality we may assume

lv- V&(x — o2v)| = min{|v - VE(x — a20)|, [v - VE(xp(x, v) + F1v) |}
Then by the Velocity lemma we have /o (x, v) J¢ |v||$(x — 62v)|'/2. Then
we choose s = 1, (x, v) — 62 to have |[v|2|€(x — G2v)| > §|v||E(x — 620)|1/2 x
|v- V&(x — opv)| and

v[|E(x — 520)'? 2 8 x [v- VEMX — Ga0)|.

The left hand side is the lower bound of |v|?|E(x — (1p(x,v) — s)v)| for
s € [o1, th(x, v) —02] and the right hand side is bounded below by the Velocity
lemma: e ClIBEV) (5 v) Ze a(x, v). Therefore we conclude (4.7).

Step 3 We prove (1.28). From (4.1) with y = x — (fp(x, v) — s)v

th(x,v) —0lv—ul?
/ / v)(t=$) Z(s, x, v)duds
R3 v —ul“a(x — (ip(x, v) — s)v, u)

ip(x, v) 1
N/ —Hv) = 5)—IZ(s,x,v)ds.
0 lv[2P=1|g|F2
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According to (4.5) we split the time integration as

flb(x W lvit=9) 175 x v)ds
o281 jg#~ 2
tp(x,v) 1p(x,v)—02
/ /t(x v)—07 / ‘
(Iv) V)

For the first two terms (IV), we use the mapping of (4.4)
NS [05 51] U [tb(-x’ U) - 6-29 tb(x’ U)] = |‘§('x - (tb(x5 U) - S)U)| € [Oa B)a

where the range of || has been bounded in (4.6), and B is given by (4.8). By
the change of variables of (4.4)

1o djE|

AV)S  sup (eI Z(s, x, 0)) 5 /
0<s <ty (x,v) lv[2=1 Jo 1E1A=12 Ja(x, v)
1 1 31l6|=B
S swp (TOOZ(s,x 0)) —— [le 3]
OSSSI]R)C,U) |U|2/3_1 ax,v) |£1=0

where we have used 8 < § . The lemma follows with B given by (4.8).
For (V) we use /a(x — (fp — s)v) <€ 5 lvlv/—=&(x — (tp — s)v) for s €
[61, ty(x, v) — 02], from (4.3), to have

1 1 . 1

T

RREUEE S (ol =E )PP T a0l

Finally

1 i (xv) —1{(v)(t—s)
VS g f, R0

ouh
S v)(t—s)
~ (W)la(x, v)]F172 oi‘?i,{e Z(s, x, v)}.

Now we assume x ¢ d2. We find X € 92 and #, so that
x — (tp(x,v) —s)v =% — (I, — $)v.
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Therefore, by Step 1 and the fact x € 92, we have

—0|v—ul?
/ / v)(t=$) - ﬂZ(s,x, v)duds
R3 v —u>* [a(x — (1y — 5)v, u)]

—C|v—u|2
< / etV = S)—IZ(s,x,v)ds.
0 lv2A=11g P2

We then deduce our lemma since a(x, v) >~ a(x, v) via the Velocity Lemma
and the fact 7p|v| <gq 1. O

Proof of (2) Lemma 1 1t suffices to consider r = 0. For the specular cycles
and the bounce-back cycles it is important to control the number of bounces,

Ly(s) = Ly(s;t,x,v) € N such that bl <s5 < b
An important consequence of Velocity lemma is that for the specular cycles
a(Xals: t, x,v), Va(s; 1, x, v)) = e CVI=slg(x, v),
and therefore for the specular cycles

t— t—
= _ £ —s|

e*(ss t7 xa v) _<
min . tt— bt~ alxt, vt
0=<€=<Ly(s51,x,v) | | MiNg<g<¢, (s:t,x,0) |1(1)‘§|2 )

2
< = SIE epie—s).

~ Jalx,v)
4.9)

Remark that for the bounce-back cycles we do not have the growth factor
eCIV1=5) "Thig is because of the fact oz(Xcl(s) Vcl(s)) is either a(x!, v1) or
a(x2, v?), and the fact |t — 2| < 2|t} — £ 5 Tt £ for the bounded domain.
We consider the specular BC case first. For fixed (x, v) we use the following
notation & (s) 1= a(s; t, x,v) := a(Xa(s; t, x,v), Vals; t, x, v)).
Firstly we consider the estimate (1.29) for [v| < . Using (4.9),

t —0|Va(s)—ul
1{|v|<8}// S 25 v duds
= IVa(s) — ul>= [a(Xa(s; 1, x, v), u)]P
£4(051,x,v) —0vt—ul? Z(s, x,v)

< v)(t= s) ¢ . duds
~ Z /tul /u@ vl —uP [ (xt — (18 — sy, w)]”
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—l{v)(t—s)
su e Z(s,x,v
Pl T P! (5. %, v)}

tlleeCtb‘ O(S)eCIS
Su
S a2y

14

C;et" L s
—L(V)(t—s
+W/,me Z(s, x,v)ds ¢,

where we have used (1.28). By (2 2) and (2.3) and the Velocity lemma (Lemma
2), we have [t¢—tH1] < 25U @) Cofl <, o VX V) “(x V) ,Ct8 and hence we deduce

P2 5.9
(1.29) for |v| < é by

O(8 + 171
1{|v|<8}/"' St —— sup {e 1= 75 x, v)}
[a(x,v)]ﬂ 2 0<s<t

Now we consider [v]| > §. We split the time interval as

[tlv]]+1

1
0.6 clt——. 00 |J r=G+ Dl r—js1 @0

Pt T M ol ol
Consider the first time section [t — Il | , t]. Due to (4.9), we bound the number
of bounces within by

2 Ll
|U||U| e |U|€C

[a(x, v)]V/2 ™~ [a(x, v)]V/?’

sup Ci(s;t,x,v) Sg
SE[t— M ,t]

and for s € [t — |v|,t], e Cax,v) $ aXals;t,x,v), Vals; t,x,v) <

1/2,C .
eCa(x, v), and |t — 1) < [O’(Xl"% due to the Velocity lemma. Then we
use (1.28) to have

2
/ / sy €O ';I_ Z(s, x,v) duds
t—1/lv| JR3 |Vcl(5) —ulT e (Xals; 1, x, ), u)]

Ly (Ot ) ol 2
) / / B e S duds
tt+1 JR3 —ul>* [ot()cZ — (tt — st u)]ﬁ

Celv 0@ eCs
~ SI |1 2 2 ( ) _l Sup {e_l<v>(t_S)Z(Sv -xv v)}
[a(x’ v)] / I4 |U| [(X(x, v)]'g tl+1§5~§[@
£4(0,t,x,v) Cgecf £t

+ / e =) 7 (5 X, v)ds

[a(x, v)]B~V2 Jien
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0(9) I
~ Ivl[a(x v)]ﬂfl/z Osup {e Cl(v)(t S)Z(S, X, ’U)}
’ <s<t

C:

t
_ TeE ~Cl)(t-5) 5 q
+[Ol(x,v)]ﬁ—1/2/0 ¢ (s, x,v)ds

- o0& Ch.s
S\ ellet )IF=172 7 1)latx, v))712

x sup {e I M=) 75 x v)).

0<s<t

Now we consider time sections [t — (j + l)ﬁ, t—j ﬁ] for j > 1. Assume
that

1 ,
|: (.]+1)ﬁ t_.]ﬂi| C[t€j+l—1 £/+1]U [Ej-‘rl’t(fj]’
and [t — (j + Dy £ = j ] N 72 0= = Band [ — (G + Dyt
Nttt =0,

Note that for all s € [t — (j + 1)|—11)|, t — jﬁ]

e o) Sals) S ea),
and X .
GA DR —Jng o 1ol

Civ1 —4; S S
al ’ Jet—inp No(t)

vf?

eCsJ

and for € € [€j41 — 1, €]

_ < Ve J|”|) Vel cj.

|v|2 S vf?

From (1.28), forall £ € [ 1 — 1, ¢]

v)(t—s)
su e Z
|U|205(t - J/|U|)ﬁ_ [ tZPH]{ }

t@+l

duds

/ V) (t—s) € ~OlValo)—ul Z(s,x,v)
R3 |Var(s) — ul>=« [a(Xcl(s; t,x,v), u)]ﬂ

#t

C~
5 —I(v)(t—s)
+ Z,
a(t — j/ o)) 172 / ¢
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is bounded by
S Ctj , Cej ot
—fe le_éf sup fe 1w zy © lze_éf/ e 1= 7
|U| (X(Z)ﬁ_ TG (l‘)ﬁ_ / ey
—Clj
e

v)(t—s)
_— u e 2 Z S
S ToPap T P! )}

where we have used the factt — s > j|lT| forselt—(j+ l)ﬁ, t— jﬁ].
Therefore

—j —6| Ve (s)—ul?
/’ T / o la—s) _© tat Z(s, x, v) duds
G Va(s) = ul>™ [a(Xa(ss 1, x, v), w)]’

el

Ste—t sy [

Ljp1=<t<t;
]

—1j/4
L GGl L sup {e” L) - D7Z(s, x,v))
o (t) [v2a ()P <5<

—lj/4
e _L —
O<s<t

<

Now we sum up all contributions of [t — (j + 1)|17|, t— jﬁ] for j > 1:

1|v|

i—j/ Ml ol —1j/8
<) ————= sup {e T 75, x, v)}
/t—<‘/+1>/|v| jzz; Pl P12 g<5<

o—l/8

j=1

(v)(t—s)
S Tolla, P12 gok, {26 )

where we used thli'l e li/8 = ¢=1/16 Z;lilz e=Cl < 7110,
We conclude (1.29). For the bounce-back case we set C = 0 and we have
the same conclusion. O

Lemma 11 Let (2, x, v) € [0, 00) x QxR3. Let Z(s, x, v) > 0bean arbitrary
non-negative function defined in the phase space.
(D For0<e< 1,4 <B <1land0 <k <1, we have

/l‘b(x v)/ W)= v) e—9|u—u|2 M <u>r
R3 —ul>~*la(x — (tp(x, v) = $)v, u)]P |ul (v)"
xZ(s, x, v)duds
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O(¢) ) (—
[v|2[ae(x, v)]A~] sup (e "WIIZ (s, x, )
’ s€[0,1p(x,v)]

Ce vy —Cl(v)(t—9) 7 d 4.11
+W 0 ¢ (s, x, v)ds. 4.11)

Ngvr

(2) Let [Xa(s; t, x, v), Va(s; t, x, v)] be either the specular backward tra-
Jjectory or the bounce-back backward trajectory in Definition 2. For(Q < ¢ < 1,
< B <1land0 < k < 1landr € R, there exists | >¢ 1 and
= Cy ge,r > 0 such that

2
/ / sy ¢ MO i) Zsxw)
R3 [V (s) — ul®> Jul ()" [a(Xals; 1, x, v), u)]P

0 K,r _ _
W) [ (ﬁ ;9; 72 sup {e Cip.e,r (V) S)Z(S, x, v)} . 4.12)
lx, v O<s<t

ayI—

er

Proof of Lemma 11 We prove (4.11). Due to Step 2 and Step 3 in the proof of
(1) of Lemma 1, it suffices to show

/ [v|e~f1v—ul"dy
B v — > ul [a(x — (t(x, v) — s)v, u)]P
1
< - (4.13)
[0|2P=11E(x — (tp(x, v) — s)v)[f~2

As Step 1 in the proof of (1), for fixed s and x — (tp (x, v) —s)v, we decompose
U =ur 171 + U272 + uyn where {1, 12, n} is the orthonormal basis that we
chose in the proof of (1).

Now we split as

/ [v|e flv—ul"dy
R3 |v — w2 ullo(x — (tp(x, v) — s)v, u)]P

/ / lule=?1v =" du, du, / /
< r2 Jr 1V — ul> 7 |ul{|un|* + 1§ (Xa(s)) |ul?}P u|> lu|<

For the first term, we have 2 Tl ‘ < 5 so we reduce it to the previous case (4.1)

/ / e = ul? du,du,
iz B o — u P {2+ 1§ (Xa(s) ul?}?
which is bounded by W
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Now we consider the case of |u| < |5ﬂ For fixed0 <« <1

ol
2—k 2—k vl ’
v —ul vl

2 v—u|? v—ul? 42 2, 42, 2
and we have, from |v — u|” = %4_% > Sl + L ul?,

_ 12 _ 2 _ 2
e tlv=ul? . ,=Colvl ,=Colul?,

We SPlit [ die = [l 1 1210, F Juy <ter12,) 10 have (note3 < B < 1)

—C|? —Coluc*  fvl/5

e e _ _ 2
/ S 1_,C/ / I e [P
lun|> €1 2ur] (V] r2 el Jig 2y

o—Clv? o—Coluz >, du,,
< - _n
~ |v|1—K/ o ] /uz PP
el<lh el Jig2 g, lun

—Cvf? d

e u
S T Iv|+|v|—2ﬁ“/ -
] lue| <18l [tz ]

[ el P du
€172 Sy

1 1
Se P E 4 —— (1 + —)
W1 g

_ 2
o—Clvl

S———
oAt jg 1P

o~ Clol? e~ Coluz|?
/ S 1—x/ Blu. 2B dundu
lun|<IE12ur] (V] el <2 1E Pl [P luc] Jiu, 1 <ig)1/2)u

e—ClvP / e—Colucl?
< E— —dut
I S <l [E1P 12 e 2P

_ |v|—2/3+/<+le—C|v|2 e—Clv?

< .
- |§(P=1/2 ™ B-1g|fr

Therefore, combining the cases of |u| < |5i| and |u| > |5i| we conclude (4.13).

The proof of (4.12), (2) of Lemma 11 is a direct consequence of (4.13) and
the proof of (1.29). O
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5 Diffuse reflection BC
51 WLP1 < p < 2) Estimate

Consider the iteration (2.16) with (2.18), and the compatibility condition for the
v12

initial datum (1.14). Remark that the normalized Maxwellian u(v) = e_%.

From Lemma 7, we have a uniform bound (2.13) for 0 < T" < 1. We apply

Proposition 1 form = 1,2, ... with

V= V(\/ﬁfm) >0, H= Fgain(fmv ™,
g =i [ i - ud

n-u>0
For 0 = [0y, 0y], df ™ satisfies
{8 +v- Vet (Jrf™iafmt =gm, a0, x, v) = dfo(x, v), (5.1)
where
G" = —[9v] - Vi f" T = av (/™M1 + 0T gain (f™ f™)],
1G] S IV £ 4 e 2 o120 4+ P (e folloo)

e—Colv—ul®
x/ ————19f" (u)|du, (5.2)
R

3 v —ul?x

where we have used (iv) of Lemma 6 and (2.13) of Lemma 7.

We summarize boundary conditions (1.16), (1.17), (1.18) and (1.20) for
£™+1in (2.16). Now the boundary conditions for 3™ *! for 8 = [V, V,]is
bounded by

9™t x, V)|
< Jiw (1+L) / 1977 1, )| x) - udu
In(x) - vl n(x)-u>0
e_%lvl2 2
+———— P17 follo0)- (5.3)
[n(x) - v

Now we are ready to prove Theorem 1:

Proof of Thoerem 1 We claim that for 1 < p < 2,if0 < T < 1 (therefore,
(2.13) and (2.14) hold for 0 < 6 < }1 from Lemma 7), and the compatibility
condition (1.14), then uniformly-in-m,
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2
sup ||af'"||£+/O 1310, Sar 18follh + P! folloo),  (5.4)

0<t<T,

for 0 = [V, V,] and some polynomial P.

We remark that the sequence (2.16) is the one used in Lemma 7 and shown to
be a Cauchy sequence in L°°. Therefore the limit function f is a solution of the
Boltzmann equation with the diffuse boundary condition. On the other hand,
due to the weak lower semi-continuity for L” in case of p > 1, once we have
(5.4), then we pass alimit 9f™ — 9 f weakly insup, (o 7,; Il - ||Z and of™ |, —

af |, in fO - |,’;, p (up to a subsequence) to conclude that 9 f satisfies the same
estimate of (5.4). Repeat the same procedure for [T, 274], [2T, 3T4], ..., to
conclude Theorem 1.

We prove the claim (5.4) by induction. From Proposition 1, 3f! exists.
Because of our choice df 0 the estimate (5.4) is valid for m = 1. Now assume
that 9f" exists and (5.4) is valid forall i = 1,2, ..., m. Applying Proposition
1 to show that 8f’”+1 exists and to get (3.7), we have

t
sup 113 ()L + / FmHE,
O0<s<t 0

- t t
staply+ [+ [ igmiamse
X

t
2
< l9foll? +/ D 4 P fylloo)
0

t t
x {/0 IIc'iferl(S)llﬁ-l-/0 ||3fm(S)II§}, (5.5)

where we have used (5.2), Lemma 6 and the Holder inequality.
Now we consider the boundary contributions. We use (5.3) to obtain

t
/ B+ (5))?
y—
Sp osup (/ v () (ln v| + w)? 1)dv)
xedQ |n - v|P~

)4
x// [/ Iafm(s,x,u)lul/4(u){n-u}du] dS.ds
0 JoQ LJu-n(x)>0

+ sup (/ ()" PPn - v|1—f’dv) s 1)1 fol12%,

x€a2

t p
Sp / / [/ Iaf’”(s,x,u)lul/4(u){n-u}du} dS.ds
0 JoQ u-n(x)>0

2
+1P (1”1 folloo)-
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P
Now we focus on [! [, [fu.n(mo 1™ (s, x, )|/ ) {n - u}du] ds,ds.
Recall (1.21). We split the {u € R3 : n(x) - u > 0} as

// [/nu>o|8fm|“1/4{” M}du]
/ / |:/(x weri\vi d”} +/0t /BQ |:/(x,u)€yfr du:|p. (5.6)

We use Holder’s inequality to bound

p , p—1
/ du| < / w*»=b{n - u}du
(x,u)eyf (x,u)eyy

« [/ 1™ (s, x, 1) P (1 (x) - u}du} ,
(x.u)eys

and hence the second term of (5.6) can be bounded by

t
// [/ ”} Sp /Iaf ()|, pds (5.7)
0 JoQ (x,u)ey+

For the first term (non-grazing part) of (5.6) we use the Holder’s inequality,
Lemma 8, Lemma 5, and Lemma 6 for f™ to estimate

¢ P
[T
0 J3aQ | J(xauweyr\yvi
t t
< ||afo||§+/ ||af’"(s>||§ds+/// g™ | o™ P!
0 0 QxR3

2
e 13f0llh + P follo

x> / 18" ()15 +zP<||e9'"' foll%).- (5.8)

i=m,m—1

Putting together estimates (5.5), (5.7), (5.8), and choosing sufficiently small
0<e«k1,0<T <« 1, we deduce that
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T
sup 10" (0|12 + /0 FmE,

0<t<T

2
<r.o 19follh + Ple™" folloo)

8 i=m,m— 0<t<T,

1 i P L i
+ 5 max sup [laf " (DIp + A 10f lyept -

To conclude the proof we use the following fact from [3]: Suppose a; >
0,D > 0and A; = max{a;,a;_1, ..., a;j—k-1)} for fixed k € N.

1 1 8\
If a1 < gAn+ D then Ay < SAo+ (5) D, for% > 1. (5.9)

Proof of (5.9): In fact, we can iterate form,m — 1, ... to get

1 1 1 1
am < gmax {gAm_Q + D, Am—2] + D < gAm_z + (1 + g) D

1 1 1 1 1 1
= g max {gAm—3+D, Am—3} + <1+§) ngAm—3+ (1+§+8_2) D
< i+ 2D
=3 m—k 77"

Similarly a,,—; < %Am_k + %D foralli = 0,1,...,k — 1. Therefore if
l<m/k eN,

8
Ap = max{ay, am—1, - - -, am—(k—l)} = gAm—k + ?D

1 8 1 1
=< ?Am—Zk‘i‘? 1+§ D < gAm—Sk
+8 1+1—|— : D
7 8 82

1\[#] 8> 1\ % 8\2 1 82
<l=) A, _» —) D<{-=) Ap+|=) D<=-Ap+\|=) D.
<(5) "ttt (5) 2= (5) e (5) o= ()
This completes the proof of (5.9).
Setting k = 2 and

aj = sup ||8f’(t)I|5+/O 015, p» D = Cr, 0 {l3foll;+PU(v) follo)},

0<t<T,

and applying (5.9), we complete the proof of the theorem. O
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The following result indicates that Theorem 1 is optimal :

Lemma 12 Let Q = B(0; 1) with B(0; 1) = {x € R : |x| < 1}. There exists
a smooth initial datum with the support of contained fy in B(0; 1) x B(0; 1)
so that the solution f to

hf+v-Vif =0, fli=o= fo,
5.10
£t x50, = /5@ / £t x 0y m@ne) - wdu, OO

(x)-u>0

satisfies

1
/ / |V)Cf(s7-xa U)Izdyds = —I-OO,
0 Jy_

hence the estimate (1.15) of Theorem 1 fails for p = 2.

Proof We can prove the existence and uniqueness from [9]. We prove this
blow-up result by contradiction. Suppose fol fy_ |0f (s, x, v)|>dyds < +oo.
Then

1
O f(1,x,0) = P {=0f = (@ - 0oy [ — (12~ v)dr, [}, for (x,v) € y—.

We use the boundary condition to define:

0 ft,x, ), =cuv/ A, x) = C/L\/ﬁ/ . o f/pfn - uydu,
O, f(t, x, )]y = cuv/ 1(V)Bi(t, x)
=cu /1t Oy, fo/in - u}du

n-u>0

AT
eI vaET Yu/ia{n - u)du.
l

n-u>0

We make a change of variables v, = v-n(x), vy, =v-11(x), v, = V- 72(x)
to compute

o0
/ de/ dv, // dve, dug,
Q2 0 R2

x%}){m)z + (02 (B))? + (v2,)(B)?
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—|—2UT] AB1 + ZUTZABQ + 2v,1 UQBl Bz}

_lul?

:/ dv, & / dSy {(A)? + 271 (B1)* +27(B2)?}.
0 Un 09

Note that the integration over 9€2 is a function of ¢ only (independent of v).
Since f o° v”" = 00, we conclude that A = B = = 0 for (t,x) €
[0, 00) x 9$2. In particular from A(¢, x) = 0 we have for all t>0

/( : Of(t,x, u)y/ p(){n(x) - ujdu
=/() Of(O,x,u)\/u(u){n(x)-u}du. (5.11)

We now choose an initial datum that vanishes near 02:

Jo(x, v) = ¢(xDe(v]),

where ¢ € C*°([0, o0)) and ¢ > 0 and supp¢ CC [0, 1) and ¢ = 1 on [0, %].
Clearly

Cuv (V) Jo(x, u)v/ () {n(x) - uydu = 0.

n(x)-u>0

Hence f (¢, x, v) > Osince fy > 0, and satisfies the zero inflow boundary con-
dition from (5.11) and the above equality. Moreover following the backward
trajectory to the initial plane for ¢ € [é, 411] and (x,v) € yyand |[v— |§—|| < é,

and |v| € [%, %],
[, x,v) = folx —tv,v) =1,

which contradicts to ¢,/ (v) fn~u>0 ft, x,u)/u(u){n(x) - u}du = 0 for
(t,x,v) € [0,00) x y_in(5.11). m|

5.2 Weighted W7 (2 < p < 00) Estimate

We now establish the weighted W7 estimate for 2 < p < oo with the
same iteration (2.16). From Lemma 7 for 0 < 6 < le’ we have the uni-
form bounds (2.13) and (2.14). Recall the notation 9 = [V,, V,]. Then
e~ [ (x, v)]Paf™ satisfies
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(8 + v Vi + Ve g + (/™7 a(x, v)Pafmth
= e Wy (x, 0)PG", (5.12)
a(x, v)ﬁame(O, x,v) = a(x, v)ﬂafo(x, v).

Here v g is defined in (3.21) and G™ is defined in (5.2). Recall from (5.2)

e "Wl (x, 0)P1G"|
S e T Wia e, 01V, |

—Colv—ul?

olvf? ~5hP? ¢ m
+ P foll[e 8+ [ o ]

For (x, v) € y, from (5.3), the boundary condition is bounded for 8 < p-1

2p
by

e WM a(x, v)1P1af " (e, x, v))|
Se "W ax, v)]’sx/M(1 + L)

In(x) - vl

5.13
x/ 0|8f”1(t,x,u)|(u)ﬂ{n-u}du (5-13)

+ e_w<v>t[a(x, U)]ﬂ e_%|v|2P(||eO|v|2f0||oo)
In(x) - vl

The main estimate is the following:

Proof of Theorem 2 Fix p > 2, ”2—;2 < B < Zlandw »q 1. We claim
that there exists 0 < T, <« 1 such that we have the following estimates
uniformly-in-m ,

T,
sup [le” "W aPyFm )b + / lemmWsgByrmb <o 1,
0<r<T, 0

2
P11 folloo) + llP afollh,

(5.14)

for 0 = [V, V,] and some polynomial P.
Once we have (5.14) then we pass to the limit, e~@WgPyfm —

e~ WPy f weakly with norms sup, i,z Il - |5 and e=@ WaPofm), —
e~ WiaPyf, in fOT* | -1V, and e WaP3f satisfies (5.14). Repeat the
same procedure for [T, 27T4], [2T, 3T4], . .., up to the local existence time

interval [0, 7] in Lemma 7 to conclude Theorem 2.
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We prove (5.14) by induction. From Proposition 2, 3f! exists. More pre-
cisely we construct 3; !, V, f! first and then V, f!. Because of our choice
of 3f°, the estimate (5.14) is valid for m = 1. Now assume that 37 exists
and (5.14) is valid for alli =1, 2, ..., m. Applying the weighted inflow esti-
mate (Proposition 2) we deduce that 3! exists. From the Green’s identity
(Lemma 9) we have

t
sup ||€_w<v>saﬁafm+l(5')”§+/ |e—w(v)saﬁafm+l|][/7+’p
0

0<s<t

t
1/p — s +1P
+ /0 () /Pem R ala ety

t
2 _ .
S Neafollp + P folloo) + /O le~@ WisgPypmtlib

4t sup ”e—w(v)saﬁafm-i-l(s)”g

0<s<t

t
+ / / / [ W5 B1P|G,, 107 P!
0 QxR3

t
2 _
< 1ePafoll, + P folloo) + /O e~ WsgBy e

+t sup [le” TPyt

0<s<t

2 t B B
+P (" fO”oo)/ // e @ WsghP|gpmp=t
0 QxR3

e—Cg|v—u|2
X/R 3" (5.15)

3 v —ul**

Step 1. Estimate for the nonlocal term: The key estimate is the following: For
0<p<21o0<6< 1. and some Cpy g, > 0,

2p
e~ Colv—ul? [e_%(wsoz(x, v)]% Br 2
Sup/ 2— @ Bp du 59,9 (U) pilecw'ﬂ’ps . (516)
xeQJR3 [V —ul"™* [e_F(Wsa(x, u)] T
First we assume |£(x)| < dq so that n(x) := |§§g; is well-defined. We
decompose u, = u -n(x) = u - éggﬁ;l and u; = u — u,n(x). We note
a(x,v) < |v|land a(x, v) > |u - VE(x)|. For 0 < k < 1, we have the bound
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@p
— =g (vt
1
pﬂf] 1 7C‘9|U7M‘2e P 1
[v] ——¢ du
RS [v —ul>7x =y 2p
e’ lu - VE(x)| T

br _ _ Colv—u® wmp —28p
Sa |v[PT /3 W —u| 2 e 7 e 1Ty | T du
R

Lr 2 gk _Co—ul® o 26p
Sa [ofrtefor! /2d”f/d“n|v—u| P g
R R

Br_ 2
Sa Celv|pTeCmpnt,

where we have used

wpp _ 2 _C9|v—u|2
er1IVTUl < Coppt™ y o= - (5.17)

’

for some Cy g, , > 0. Furthermore we split the last integration as flun |/2< vn—it
+ f‘ /22 |0 —ttn] Both terms can be bounded together in this way

_Ce\”n\z _C9|Un—lln|2

e 8 e 3
C /—ﬂpdun+/—ﬂpdun <.

[ty | P [vp — up| P71

If |E(x)| > 8¢ then
a(x, v) > 2|E)|{v - V() - v} = 8alv]* = Salvsl?,

where v = (vy, vp, v3) is the standard Euclidian coordinate. We set v3 =
v, and v; = (v1, v2) and follow the exactly the same proof. Therefore we

conclude (5.16).
Therefore

—w (v)s B e—C9|v—u|2 m
e o ———3df" (u)du
R

3 v —u|**

du

_ / e~ Colv—ul® [~ 5 (3 4 1Bq
e e T N P ALY

e_ce‘v_ulz P
« / e g o™ ) Pdu
RS |v — ul?7x

o2 e—c9|v—u|2 »
o (v)Pe / Ww—w“”aﬂafm(unpdu :
R3[|V —U

where at the last line we used ”2—;2 <B < ”2—;1 so that (v)? < (v).
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Finally we use the Holder’s estimate to bound the last term (nonlocal term)
of (5.15) by

Ctem 0" P(|!1" folloo) sup / / e~ W3 By pm
QxR3

0<s<t

t
+ 6+ 0P folloo) max / // (e abafi|P.
i=m,m+1 Jq QxR3

(5.18)
Step 2. Boundary Estimate: Recall (1.21). We use (5.13) to estimate the
contribution of y_

t
/ / e~ W3a e, )P (s, x, )P
0 _
t B (U) )4
5,,/ / [e™™ S a(x, v)f1P YR’ (1+—)
0 Jy_

In(x) - vl

p
X [/ |8fm(s,x,u)|,u1/4{n-u}dui|
n(x)u>0

t —w (v)s Bip
+P(||egv|2f0||oo)/ / [e C((X, U) ] e_%‘vlzdyds‘ (519)
0 Jy- In(x) - v|P

Bye @ (x,v) < e‘#swxg(x)-vl2 for x € 0L, the last term is bounded
by

4 Op
CaP 1™ folloo) / / / () - o PEP-P e~ B g, ds
0 JaQ JR3
2
Sa.p.c 1P folloo),

for B > pz_;z sothat28p — p+1 > —1.
For the first term in (5.19) we split as

P p p
n(x)-u>0 (x,u)eyi (rou)ey+\vs

By the Holder’s inequality in u, the y{ contribution (grazing part) of (5.19) is
bounded as
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c /t/ [e=™ WS gy (x, )PP it (|n~v|+—<v>p )
"Jo Jy. e ol

/g 174
/ TS g B gV T
(x,uw)eys e Wsq(x, u)p

t
Sﬂ,p / / [e—w(v)sa(x’ v)ﬂ]l’ (|l’l S|+ (v) 1) \/—p
0 Sy n-olP
x [ [ e e e u}du:|
(x,u)ey4

pla
X / e S q(x, w)P 17914 *n - u)du dvdS,ds,
(x,uw)eys

183

p

X dvdS,ds

t
2
SQ,p,w,ﬂ 8a€Cw.ﬂ,pt / |e—w(v)saﬁ8fm(s)|{/J+’pds’
0

where we used [e~ P a(x,v)] < |[VE®X) - v]? <q |n(x) - v)?

and, for
B>LE20Bp—p+1>-),

[e=7 M a(x, v)P)? (|n-v|+| w NTE 1)f”

<o (In) - o[22 4 ()P |n(x) - PP ) e L (v e R?Y),

B

and, here, a > 0 is determined via , with prl =1

—Z () 2ﬂl’
[e 7 oz(x u)] r-1 ,u4<!’ A-D{n - uldu
,}/8

+

@ 28p
F(M)s p—l 7L|u|2
SQ/ e 2 |MV§(X)| e 4(p-D |n-u|du
vi
_28p  _wp_ P 2
SQ / |u N n|1 p—1 e(!’*l) (M).Se 4(p—])|u‘ du
vi

2 _26p __ P 1,2
<a eCm.p.pS / |u-n|1 P—Te s Ul du
vi
C 12
SQ,p Sae @.B.p ’

_ : 28
for some a = 2(1 —ﬂ%) > 0 since 1 — p—_’i > —1.
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On the other hand, for the non-grazing contribution y \ y{, we use a similar
estimate to get

t _ <U> P
/ [e= WS (x, v)P1P /ii” (l—i——)
0 Jy_

In(x) - vl

p
X |:/ 10" (s, x, u) () *Hn(x) - u}dui| dyds
r+\rs

< /t/ ™" a(x, v)f)” (| W )f”
Se e alx,v n-vl+——\|J/u
0 Joo Jr3 In-v|P-!
X[/ e~ WS (x, )P 1af™ (s, x, w)|{n - u)/P
r+\vi

{n - u}e )t/
X
[e_LU(”)Sa(x, M)]/S

<q /t/ [e’w“’)sa(x, v)ﬁ]p (|n v| + HL) ﬁp
0 Jy_

n-v|P-1

p
du:| dvdS,ds

X [/ [e= ™ WS (x, u)P1P10f™ 1P {n - u}du:|
Y+\vs
rlq
X [ e ™S (x, u)P179 9/ (n - u}du] dvdS,ds
Y+
t
<q eCmtot / / e~ e (x, )73 (5)|Pdyds,
0 Jyp\rs

where we have used

e “Sa(x, u)P 17 () *{n(x) - u}du
Y+
=/ ™™ e, P17 ()T {n - uydu S e €SB0
Y+

By Lemma 8, (5.12), and (5.18), the non-grazing part is further bounded by

t t t
/ / e / laP dfollh + / le™@ Wsg Py fm b
0 Jyp\vi 0 0
t
+/ // |gm|[efzzr<v)sa,3]p|afm|p71
0 QxR3

t t
< /O laPafollh + /0 le™@ Wsg Py rm b
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_ 2
+1 sup [le”7 P (s) 15 4 (1 + )P folloo)

0<s<t

+Cteo i P(M folloo) sup // e alarm
QxR3

0<s<t

+G+ )P folloo)

t
X max /// ()|e~ WPy riip. (5.20)
i=m,m+1 Jq QxR3

In summary, the boundary contribution of (5.15) is controlled by, for all 0 <
t<T,

t
/O|e—w<”>saﬂafm(s)|5,pds

T T
< / la ()P afollh + & / lem 7 WsaPyrmb
0 0

: 2
+T max sup [e" WP )5+ P folloo)

i=m—1,m 0<t<T,

+C1eCm 807 P(e?F folloo) sup / / e~ (V3B pm
QxR3

O<s<t

t
+G 4+ )P folloe)  max / // (W)le TS aBafi|P.
i=m,m+1 Jq QxR3
(5.21)

Finally we collect the terms to deduce

T
sup ||e_w(v)laﬂafm+l(t)||z+/ ||<v>1/l7€—w(v)saﬁafm+1”g
0<t<T 0

T
+/0 e WPt ds

2
= Cra{lef0foll) + PU™ follo) |

2 2
+ {s 48+ TeCopn(@) } P(11e"" folloo)

T
X max [ sup ||aﬂ8f’(t)||§+/ L T
i=m,m—1 0<t<T 0
T .
+ / [{w)!/Pe=7 ooy Ili}-
0
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Recall Cy g, from (5.16). Choose 0 < T < 1, and0 < e < 1, 0 <6 K 1
and hence

T
sup ”e*w(vﬂaﬂafﬂkkl(t)llg +/ |efw'(v)l‘aﬂafm+1|7l/7+’p
0=<t=<T 0

2
= Cra{lefofoll + P folloo) |

8 i=m,m—1 0<t<T

1 . T _
+ - max I sup Jle= ¢ aﬂaf’(t)||§+/ |e—w<”>’aﬁaf’|5+,p].
0

Set

T
ai= sup [e"™WaPormt )b + / e~ WigPapmtth
0

0<t<Ty

2
D =Cra{llefafollh + PUe™ follo)}

Applying (5.9) with k = 2, we complete the proof. m|

5.3 Weighted C! estimate

We start with the same iterative sequences (5.12) with g = % For (x,v) € y,
note that \/a(x, v) = |n(x) - v|. Recall G™ in (5.2). We define

N, x,v) i = e TV Ja(x, )G (1, x, V). (5.22)

From (5.13) with 8 = 5, we have, for (x, v) € y_,

_2’

W o, v)af ™1, x, v)|
S W)/ ) / Wt e (e, w)af™ (¢, x, w)|e™ " (u)/ p(u)du

(x)- u>0

+e PP folloo),

(5.23)
for 0 = [Vy, Vy .

Let (x, v) ¢ yo and (12, x9, v%) = (¢, x, v). Define the stochastic (diffuse)
cycles ast! = t—mp(x, v),x! = x—tp(x, v)v,and v! € R3withn(x!)-v! > 0.
For¢ > 1,

A= v, 1 = (v,
v e R with n(x™) v > 0.
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Lemma 13 Ift! < 0 then
le= Wl (e, )20 (1, x, 0)] < llax, 1) ol

t
+/ IN™ (s, x — (t — s)v, v)|ds. (5.24)
0

Ift' > 0 then
le™ g (x, ) 2o (¢, x, v)|

t
< / N (s, x — (t — $)v, v)|ds + e~ 7 P! fol00)
tl

-1

/“ D Lyest ooty ! 2afm 00, x = o' o) A

Jtl

w(v)

Zl ,,+1<0<,,}/0 IV (s, 5! — (1 = sy, v ds dEF!

w(v) Iz ‘v,l ;

/5 1 1,,+1<0}/_ IV (s, x — (1 — s)vl, v ds dzf !
VJ: 1 "

w(v)
Zl e PP flloo) dBE)
w(v) nzivi =
—w (vt 0 0—1N1/2q0 rm+1—€ 0 s
U)(U) Hﬁ;llv l{tﬁ>0}|e a(x , U ) 8f ([ ,)C )|dzg 12

(5.25)

where V; = (v eR3:n(x?) v/ > 0} and

Cu

V@)’

w) =
and
dEZ ! {1'[Z l+1u(vj)cu|n(xj) . vj|dvj} {w(vi)ew<vi>’i(vi)zcuu(vi)dvi}
{H’]._:llew<”j)’j (vj)zcﬂu(vj)dvj} .
Remark that dEf_l is not a probability measure!
Proof Fort' < 0 we use (5.12) with 8 = 1 to obtain

e T Wl (x, )2 e, x, v) S alx — 1, v) 2o (x — tv, v)

t
+/ eV WA\~ )y, v)ds.
0
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Consider the case of ! > 0. We prove by the induction on ¢, the number of
iterations. First for £ = 1, along the characteristics, for ! > 0, we have

e_w(v>toll/28fm+l(t, X, U)
< e—vm,l(v)(t—tl)e—ZU(v)tlal/Zafm-H(tl’xl’ v)

t
+/ eV =AM (1~ ), v)ds.
l’]

Now we apply (5.23) to the first term above to further estimate
efzzr(v)tal/2|afm+l (t, X, ,U)l

< e Vma@=th =GP p Ol gy

t
+/ e VI WU N (g v — (t — s)v, v)|ds
t

1

_i_e_vw,l(v)(t_tl)(v)cu /M(U)/ e_w<vl>t10ll/2|8fm(tl,xl,v1)|
Vi
xe® W 1!

t
< e—i'vlzP(||e9'”'2fo||oo>+/ N (s, x =t = s)v, v)
11

C
M e_w(vl>tlal/2|8fm(tl, Xl, Ul)|€w(vl>tlw(vl)(vl>2,bb(vl)dvl.

UJ(U) A%
(5.26)

Now we continue to express 9/ (¢!, x!, v!) via backward trajectory to get
1y41
e—w(v N3 Ol(xl, Ul)l/Zlafm(ll,xl, vl)l

< Locgem @057 0,61 = 110!, oY)
1

t
—i—/ INT (s, xt = (! = sl v1)|ds}
0

gy [ a2, 42, 01
1

t
+/ INT s, xt = (! = sl v1)|ds}.
12

Therefore we conclude from (5.26) that
e Ma(x, v) 2o, x, )|

t
5/ N (s, x — (t — 5)v, v)|ds + e 5P P (1?1 fo]00)
ll
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1

+w(

/ 1{,z<0<t1}a(x1 — 1l vl)]/zlafo(x1 —thl, vl)
'U) Vi

e @D ) (1) 2e, (v do!

1

t
/ 1{t2<0<t1}/ N, x = (¢! — s)vl, vl)|ds
Vi 0

e N (1) 2e, () do!

1

+w(v)

1

1 t
+— 12 / INT s, xt = (! = st vh)|ds
w(v) Jy, {r=>0} 2

sce® 0y (1) e, (v do!
1

w(v) %

1{12>0}e—w(v1)t2a(x2’ oDV235m (12, %2, uh)|
xe” O wh ") e phdv!,

and it equals (5.25) for £ = 2.
Assume (5.25) is valid for £ € N. We use (5.23) and express the last term
of (5.25) as

Lyeage™™ @ et vl Gl 1t vt

— / _ Oy _
5 (U[ l>ch M(UE—I)/ 1{[l>()}e W<U )I 061/2|3fm+1 (k+1)(t€’x€’ U[)l
Ve

xe® W Wl [ @O do’ + e 5P P flloo). (5.27)

Then we decompose 10 gy = 1je1 g4ty + Lyer1- gy, Where the first part
hits the initial plane as

— Lyt —
B e L G ]

< o Paf(xt = vt vh|
4

t
—|—/ INTH=ED (6 xb — (18 = s)v, vY)|ds, (5.28)
0

and the second part hits the boundary as

1{tl+l>0}e—w'<l))tal/zlafm-i-l—(e-i-l)(te’ XZ, vﬁ)|
< e—w(vl)t”la1/2|8fm+1—(8+1)(té-i-l’ xe+1’ ve)l

(5.29)

14

t
+/ NI (6 b (b — )b, vh)|ds.
t

£+1
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To summarize, from (5.27) upon integrating over H‘;;ll V), we obtain a bound
for the last term of (5.25) as

1 =1yt _ _ _
w(v) Lyeogyle ™ 0 g =ttt vt dzlT]
1 J
_ 012 _
<P(||e9'”' folloo) (U) oy, e A D
(
w(v) /n T Sl Gt oz,
j=1Y]

where by (5.28) and (5.29), the last term is bounded by

: " A<vf‘1>cu/u(vﬂ—l>Ju<vﬂ><vf>ew<”‘>’zdv‘f

w(v)

]:[ { 2 M(vf)dv]}
Jj=

Z 1>tl 1

{ Ve (v e—1>2u(v5—1)dve—1}
{1{,M<O<ﬂ /|af(0 xt =t vh)

+/ N2, xz—(tz—s)vg,vz)lds]
0

+1{t2+1>0}[ o 0yt 1/2|3fm Bt e T

€

t
+/ INT 25, xb = (18 — st vz)lds”.
s

Now we use (5.26) to conclude Lemma 13. O

Lemma !4 There exists £o(e) > O such that for £ > £y and for all (t, x, v) €
[0, 1] x Q x R3, we have

1 —L£/5
/f=11 v, l{te(l,x,v,vl. b= l)>O}dzg 1 Se (5) .

Proof The similar result with different weight is proven in Lemma 23 of [9].
We note that, for some fixed constant Co > 0,
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_ _ C—1y -1 _ _
dzg_ll < w(vé 1) w (v )"t (v@ l)ZCMM(v(Z l)
X1, _fe™! I i 2e wydo! L dt !

< H(“;.:%{C/eclt ,u(vj)%} dv!...d ! < {Co}ené;%u(vj)%dvj.
Choose a sufficiently small § = §(Cp) > 0. Define

Vi={/ eV vl n@xd) =8, pl| <571,

where we have fvj\V‘? Cou(vf)% < § for some C > 0.
j . . .
On the other hand if v/ € V‘3 then by Lemma 6 of [9], (¢/ —t/ 1) > 83 /Cq.

Therefore if t* > 0 then there can be at most { [ ] +1 } numbers of v € V2

Co
§3

Vi e Vmi\Vii- Hence from {Co}‘~! = {Co}" x {Co}~!~™, we have

for 1 <m < ¢ — 1. Equivalently there are at least £ — 2 — [ ] numbers of

—1
/ —1 1{tz(t x,v,vl, vl l)>0}dzﬂ 1
Vi

j=1Yi
[52]+ -1
/44,7
= Z / there are exactly m of v,,, € V2 H Cop(v!) "dv
m=1 and E—l—mofvmle]/ml\V‘S -
C
[S8]+ m -
= > (L) Lemwral | [ ool
— 1% V\V?

m=1

IA

Q Cgo Cfgz +1

(5] 157151 v

A
S N{Ck}N (ﬁ)
et (3) () = ()

N N N

| S 1\

< — <[z

() =()
where we have chosen £ = N x ([%2] + 1) and N = ([i—?] + 1) > C > 1.
O

)

-5+

2~
=z~

IA
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Now we are ready to prove the weighted C! part of the main theorem:

Proof of weighted C' part in Theorem 2 First we show the W1 estimate.
Recall that we use the same sequences (5.12) with 8 = % used for the weighted
WP estimate (2 < p < 00). We estimate along the stochastic cycles with
(5.24) and (5.25). For t' < 0, the backward trajectory first hits # = 0. From
Lemmas 13 and 6 for (5.22), we deduce, for 0 = [V,, V,1,

sup [ 1g <oje” a2 (1) oo
0<t<T

2 _
SN 2dfolloe + PUIET folloo) + T sup Jle™ W29 (1) |00
0<t<T

/ / V) (t—s) e—Colv—ul? a(x — (t — s)v,v)l/zduds
R’i

v —u|?>*a(x — (t —s)v, u)l/?

2 _
x P(]le?!! folloo)maXOSUP le™™ e 29 (1) oo
<t<T;

where we have used an elementary fact (6.75) with bounded time. Note that,
for any 8 > %,

1 < 1
ax —({t —s)v, )2~ alx — (t —s)v, u)P

+1 (5.30)

We apply (1.28) to bound the underbrace term as, for 1 > g > %,

3_B 3— 3
1 oz(x,v)%"’%_?t% ﬂ+ 8%_50(()(,1))% oz(x,v)%
<1 >1
PR A R PG, P T o ) e2ae, 0
3_ 1
L I S A rp— (5.31)
E“w

where we used a(x, v) < |v|2 and 7 is define in (1.28).
If r1(z, x, v) > 0, the backward trajectory first hits the boundary, then from
(5.25) we have the following line-by-line estimate

1L =ope™ 7 Wl 2a (1, x, v))

sy € IO (X (s), Va(s)?
<) /Ra

duds
|Var(s) — ul?* a(Xals), u)2

x[le™™ W alZaf" (5)llg
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FPU folloe) +E(Ce™)! max Jazafy™
si=t—
+(Ce) )u()

i _ —ColVar(s)—ul? 7
e[| [ e it o,
i 0 R3 |VC1(S) - ul « a(Xcl(S)a u)f

x max sup [le”® a2 () || 0o
1<i<l—10<5<

2 2 1 - -
HL(CEY P folloo)+ (5) sup fle=7 P arl2a "I (s) oo,

0<s<t

s

where we have used (5.12), Lemma 14, and Lemma 6 for (5.22) and (6.75).
For the underbraced terms we apply (5.30) and (5.31). Therefore

1 =0pe™ Ve ot (e, x, v)
1 .
< ccct? [riﬂ +er B4 2—] x max sup [le"" 295 (5)]00
E“w

O<i=m<s<;
4 1\ 75 .
+ CgCCU2 max ||ot1/28f6 loo + (—) max  sup [le”Z 297 (5)] 0o-
0<i<m 2 0<i<m g<g<;
We choose a large ¢ then small ¢ then small ¢ and then finally large @ to
conclude

1 .
sup Jle" "W a2 (1))l < = max  sup lem T2 (1) 0o
0<t<T, 8 m—t<i<m 0<t<T,

2
+la 28 follco + P8 f0]100)-
2
Set D = [|a'28folloo + P (11”1180 ]l00),

ai = sup [le” 7 29 (1) 0o, Aj = max{a;, ai-1, ..., ai—@—1)},
0<t<T,

then we have a,,41 < %Am + D. Use (5.9) to conclude

_ 2
sup [le” a2 (1)]loo < lla?8f0lloe + P folloo)-

0<t<T,

The existence and uniqueness and the estimate in Theorem 2 are valid for a
small time 7, > 0. We follow the same procedure for ¢ € [T, 2T ] to conclude

_ _ 2
sup  Nle” ™ 29f () loo Saur e F (T lloo+P 1”1 folloo)-
T <t<2T,
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194 Y. Guo et al.

Then we conclude the weighted W1 part of Theorem 2 following the
same procedure for [Ty, 2T, ], [2Ty, 3T4], . . ..

Now we consider the continuity of e~ q!/25f. Remark that for
each step e~ @V !/29f™ satisfies the condition of Proposition 2. There-
fore we conclude from (1.26), (3.4) and [9] that e~ @™igl/25fm ¢
CO(10, .1 x (2 x R¥) \ p). Now we follow W' estimate part for
e~ Wi 12[5 Fmtl 5 ™M to show that e~ (V¢ 1/25 ™ is a Cauchy sequence
in L. Then e~ Wig!/29fm — =@ 0igl/25f strongly in L™ so that
e~ Wigl29f € CY([0, Te] x (@ x R¥) \ ). O

6 Specular reflection BC

We denote the standard spherical coordinate x| = x| (@) = (x|,1, X|,2) for
weS?

w = (COS X||,1(a)) sin X||,2(a)), sin X|,1 (w) sin X\I,Z(w)v Ccos X||,2(a))),

where x| 1 (w) € [0, 27) is the azimuth and X > (w) € [0, 7) is the inclination.
We define an orthonormal basis of R, {F(w), ¢(w), 8 (w)}, with 7 () := @
and
q@(a)) = (cosx|,1(w)cosX| 2(w), sinX| 1 (w) cosX| 2(w), — sinX| 2(w)),

0(w) = (—sinx| 1(w), cosx.1(®),0).

A

x 7 = ¢, and

>

Moreover, 7 x ¢ =0, ¢ x 6 = F,
axl\,lf = sinx 2 0, axn,zf = ¢, (6.1)

where dy |7 does not vanish (non-degenerate) away from x> = 0 or 7.
Without loss of generality we assume 0 = (0, 0, 0) € 2. For

pP=(z,w) €I xS* with n(z)-w =0,

we define the north pole AV, € 92 and the south pole S, € 92 as
Np = [Npl(n(2) x w) € 92, Sp 1= —|Spl(n(z) x w) € 9L,

where dy |7 is degenerate. We define the straight-line £, passing both poles
Ly:={tNp+(1—-1)Sp:7€R}L

Lemma 15 Assume Q2 is convex (1.13). Fix p = (z,w) € 9IQ X S? with
n(z) - w=0.
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(1) There exists a smooth map (spherical-type coordinate)
np : [0, 21) x (0, 1) = IQ\{Np, Sp},
X, = (X|p.15 X],.2) > Mp(X),)s (6.2)
which is one-to-one and onto. Here on [0, 21r) x (0, ) we have 9;np :=
dnp
TX1p # 0 and ) 8
Ui Ui
5 P (x),) x —2=(xy,) # 0. (6.3)
X|lp,1 IX|lp,2
We define

n, :=nonp:[0,27) x(0,7) — S2.
(ii) We define the p—spherical coordinate in the tubular neighborhood of the
boundary:

Fors >0, 81 >0, C > 0, we have a smooth one-to-one and onto map

@y : [0, C8) x [0,27) x (51,7 —81) x Rx R? — {x € Q:|&(x)| < 8)\Bcs, (Lp) x R,

(X Lps X|ip, 15 X[lp,25 Vg, Viip, 15 Vip.2) > (Xt X|ip 15 X|15,2, Vs Vip, 15 Vp,2),

where Bcs (Lp) = {x € R3 : |x — y| < C8; for some y € Lp}.
Explicitly,

Op (X1, Xps Vips Vi)

- [ XL, [=0p(x),)] 4 7p(x),) }
T LV [ ()T 4 vy, - Ve (Xg,) X0, vy, - VIEnp(x)] |7

(6.4)

where Vinp = (amp, 8217p) = ( dup_ _Omp ) and Vny = (d1np, 0onp) =

3X||p,1 ’ 8XHP,2
onp onp
BXHIL1 ’ E)X”R2 :

The Jacobian matrix is

0P (XL, X, VL, V)
XL, X, VL, V)

—n(x) w0 L 0
I - 3’?”,1 x)) —XL%(XHJ >3
= a1 s S0 )
vV nxg) Y afﬁ(x”) +¥) Y, a»?ﬁ("\\) —n(x)) 8""~;,, L axj 2l

n
5 ; —X] - (xH) —X (x”)
on on X, 1 X 2
=XV Vx) T X)) =XV Vx) )2 X)) I I

(6.5)
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We fix an inverse map

@, {x € Q1 ()] < 8)\Bey (Lp) x R® — [0, C8)
x[0,27) x (81, — 8;) x R x R

In general this choice is not unique but once we fix the range as above
then an inverse map is uniquely determined.
We denote, for (x,v) € {x € Q: |§(x)] < §}\Bcy (Lyp) X R3

(XLps X 15 X[p.25 VAps V.15 V][p.2) = q);l(x, V).
(iii) Letq = (y,u) € 3Q x S withn(y) -u = 0 and |p — q| < 1 and

@p (X1 X||p» Vs V) = (X, 1) = Pg(X Ly, X|gs Vigs Viig)-

Then
00X ,X|.,V] ,V
(X 1Lys X|lq> Viigs Viig)
[0 0 0 ]
0o 1 1 033
0 1 1
=1Idg 6 + Oc(Ip — q) 00 o0lo 0 o
0 |vl Jv|]l0 T 1
O vl vlj0 1 1
(6.6)

We remark that the purpose of change of chart (6.4) is designed such that

dx _ i ax _
the flow & = v is preserved to ;- = V.

Proof of (i) in Lemma 15 We define the orthonormal matrix for p = (z, w) €
Q2 x S? which maps {e1, e3, e3} — {n(z), w,n(z) x w}:
Op =[n) w n() x w]3TX3.
For x € 0Q with x # A} and x # Sp we define
(X||p,1, X||p72) € [0,2m) x (0, ), such that ?(x”p,l, X||p,2) = (’)p|i—|.
Now we define Ry, : [0, 27r) x [0, w) — (0, 00) such that

E(Rp(X|p.1. X),.2) Op 'F(X),.1. X,.2)) = 0. (6.7)
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We also define np : [0, 27) x [0, w) — 92 such that

_ —1n
Mp (X, 15 X]p,2) = Rp(X|py, 1, X,2) Op 7 (X, 1, X|l,2)-

Directly, from (6.1) and (6.7), with fixed p = (z, w),

By 1. x1,.2) = _Sin(x”l”Z)RPVS(”P(XIIp,1’X”"’_Z))A'Oﬁlé(xnp,l’xup,z)

s V& (p (Xl 1. X1, 2)) - Op (Xl 1. X),.2)
_Sln(XHp 2)[Rp(X\|p1 X|p. 2)] Vg(np(x”p1 X||p, 2) - O 0(X||p1 X|lp, 2)

= Vf(’?p(xl\pl Xllp, 2)) - nP(Xle X||,. 2)

IRy (X|. 15 X[y.2) = RP(X”P’l’x”p»2)vg(np(x\|p,19X||i,2,)\)'Ol;lqg(xupyl,X”p’z)

P2 VE I (X1 X.2)) - Op (X1, X]p.2)
—[Rp(Xp,1, XHp»Z)FVS(Tlp(Xup,L X|p.2)) - Oglqg(x”p’l, X[p.2)

VEp (X|ip. 15 Xp,2)) - Mp(Xp. 15 X||p.2)

Here Vé(np(x”p,l, X[,.2))  Mp (X, 15 X||,.2) # 0 due to the convexity.
And by (6.1)

P_xy 1,x.2) = IRy O-'% + sin(xy. 2)R 019
8X” ”p ’ Hp aXH P ”pa P~p ’
91p 1a
, (9 RO,
71,2 (X|p.15 X||p.2) = 3Xup F+ RyO, .

Directly we check a non-degenerate condition (6.3)

onp dnp
(X” )X (X“ )
Xjp1 P OXp2
8R 1p 3R _1A . 2 A—1nr
= Rp oxp, 1 P 20,10 + sin(x), 2) Ry ——2- Paxy, 2 Op ¢ —sin(x),2) RO, 7 # 0.

Proof of (ii) of Lemma 15. We fix p = (z, w) and drop p—index (for the chart)
in this step. Define

@1 : [0, 00)x[0, 2) x (0, m) — Q\Lp, P1(x1, X)) = n(x))+x1[—n(x)].

(6.8)
Note that this mapping is surjective: For any x € Q\Ep, there exists (could
be several) yo € 9€2 satisfying |x — yo| = minyeyq [x — y| (0€2 is compact).
Now we choose p = (Z, ) € 92 x S? such that yg ¢ L. Note that this
spherical-type coordinate np @ (X|;1,X52) = np(X);) € IQ\{NG, Spl-
Denote nf,(xﬁﬁ) = yp. Since yg is a minimizer of |[x — y| we have (x — yp) -
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aax?,- (XTI}) =0fori =1, 2. Since an,(xuﬁ) # 0 from (6.3) and £ (n(x))) = 0,
’ x—nﬁ(x;ff))

emp )1

we have 0 = VS(MXT[;,)) . aax?,« (X‘Tﬁ). Due to (6.3), we conclude

[—n(yp)]. This implies nf,(xﬁ‘ﬁ) ¢ Lp and hence we can choose p = p. Finally
we write

x = mp(Xp ) + (x = n(x ) = p(x] ) + Ix — np(Xf ) [-n(x} )]

Since 1 and & (therefore n and n) are smooth, the ®; is smooth. Directly
we compute the Jacobian matrix

AP (XL, X)) T &) o ()

—n(x , 6.9
d(XL, X)) ) xu (=] x5 ()] (63

3x3

i ) a5 K1) .
where [—n(x”)] , : , : are column vectors in

+n[—3,§"ﬂl(xun +xl[—a,§ﬁ(xu>]
R3,
By the basic linear algebra, the Jacobian (a determinant of the Jacobian
matrix) equals

(817 377) (8n 817) (an 87])
-n- X +x.n- X —X|n- X
OX|,1  0X)2 X1 0X)2 X2 0X|1

5 on on
—|x/|"n- X .
OX|,1 0|2

We use the facts Vn(x)) # 0 and §(n(x))) = 0 and

an
8X||’,'

0=VEmx)) -

ad
x)) = [VEM X)) (H(X) : BXZ : (x||)) .

Therefore

a a
—n(x)) - (8x|]|71 (x)) x 8X|7|72(X||)) #0, forallx) €[0,27) x (0, m).

We conclude that there exists a small § > 0 such thatif [x || < § and x| €
[0,2m) x (0, ) then

M _ ) an an
det( 9(xL, X)) ) = —n(x)) (8X”’1(x||) X 8X”’z(xp) + O:(Ix1|) # 0.
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We use the inverse function theorem and we choose an inverse map
o Q\Lp — [0,8) x [0,27) x (0, 7).
If x € ®,(]0,6) x [0,27) x (0, 7)) then
oM (x) == (x1,x)) and x = n(x) +x,[—n(x))].
Since @ is surjective onto Q\Ep, forx € Q\Ep andx| >0,

E(x) =EMx)) +x[—nx)])
X | d
=&Mmx))) +/ d—é(n(Xu) + s[—n(x))]ds
0 S

x|
=/o [-n(xp] - VEM (X)) + s[—n(x))])ds
=/0 {[—H(X)]-V-‘E(U(Xu))Jr/o n(X||)'V2§(77(X||)
+r[—n(x))D - n(X||)df} ds,

Then by the convexity of £ in (1.13), we have the following equivalent relation:
Recall (6.4) and assume @,(x1p, X|p, Vip, Vjp) = (x,v). Assume
dist(x, 02) < § < 1, then from the argument in the proof of (ii) of Lemma
15, we know that (x Lps x||p) is uniquely determined. Now we focus on v Lps Vllp
in (6.4). Since both 9, n and 9y n are perpendicular to n, it follows that
vip, = —(n(x))) - v is uniquely defined. Since dy;n and dy,n are linearly
independent for dist(x, 9€2) < § < 1, v} ; are uniquely determined as well.

Proof of (iii) of Lemma 15. Let q = (y, u) € 3Q x S? with n(y) - u = 0 and
|p — q| < 1. First we claim

X1, =Xl
np(X|,) = nq(X|,),
Vi, = Vi,
Vip * Viip(Xj)p) = X1,V), - VIp (X)) = Vi - Viig(X)q) — X1Vl - Vg(X]y)-

10)

Once we show the first two equalities then the third and fourth equalities

are clearly valid becausenp L v - Vx, 1p andnp L v - Vx Dp forallv| € R2,

(Since & (np) = 0 we have vy ; dx , [§(mp (X1, X.2))] = v|.idx ;7p- Vx,§ =0,
and since np - np = 1 we have np - [v - Vx pl = 0).
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Now we prove the first two equalities of (6.10) and it suffices to prove
np(X),) = nq(x),)- And it suffices to show that for x € Q with [§(x)| < 1
there exists a unique x* € 92 N B(x, §) for some 0 < § < 1 such that

Ix —x*>’= min  |x—y|* (6.11)
Y€, [y—x|K1

By the definition of (6.8) the uniqueness of such x* in (6.11) implies 7, (x”p) =
X" = ng(X|,)-

The existence of such x* € 92 is clear from the compactness of 92. Without
loss of generality (up to rotation) we may assume 9y, £ (y) # Ofor |y —x™*| < 1
and 9y, £(x*) = 0 = 9,,&(x*). Then we can find the graph a : (x1, x2) — R
but £(x1, x2, a(xy, x2)) = 0 when x* = (x}, x3, a(x], x3)) € 0Q2. By the
implicit function theorem,

axla == —8x1§/3x3§, axza — —3x25/3x35a

and 0y, a(x}, x3) = 0 = dy,a(xy, x3).
Clearly x* = (x}, x5, a(x], x3)) satisfies |(x1, x2, x3)—(x], x5, a(xy, x;‘))|
<« 1 and

2
o |(x1, x2, x3) — (xf, x5, a(x}, x3))|
1

da

ax_?k(xik,xf)} =0, for i=1,2,
1

_ {m S+ (x5 — ale, xD)

if and only if (6.11) holds. We take x;"—derivative to get

da 2 9%a

1+ (a—ﬁ(ﬁ,x;")) — (x3 — a(Xi",x;k))W(Xi",x;)
—_ 1 * ES 8261 3 % 0
=1-(x3 —a(Xl,Xz))W(Xl,Xz) #0,

for |x3 — a(x},x3)| K¢ 1. Using the inverse function theorem we have a
uniquely determined x* : {y € Q : |y — x| < 1} — 3 N B(x, §). This
proves our claim (uniqueness of x* in (6.11)) and therefore (6.10).

From the second equality of (6.10) and (6.2)

~ 1A
F(X|q,15 X]lg,2) = OqOp T (X1, X||;,2)-
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Therefore fori =1, 2,

or 0X|q, j _ 0
> (Xjy) 5> = 0g0p ' - ——(x),),

Xilq
T X, OX|lp,i

and from (6.1)

A . . 01012
— sin(X“q?z)r(XHq) Sin(X”q’z)o(X”q) ¢(X||q) 0, 1 #
’ p d3x3
= OqOIjl 05,1 Sin(X”p,z)é(X”p) qAS(X”p) ,

where we used 6 x ¢ =—F.
For x|, 2, X,.2 ¢ {0, 7},

0 0 0 [ VY &
IX)jg,1 IX|q,1 “"(Xn B F(x)q) ) A
0 Np1  WXjpa | = qm(xH 2)0(Xllq) Oqu;l 03,1 |sin(x), )0 (x),) | (x|,) | -
0 dXHq.Z dXHq-Z T
b(x),)

OX|p.1 X2

Here Oq = Op + Og(|p —q|), and Sin(X”p’z)é(XHp) = Sin(X”q’z)é(X”q) +

Os(Ip — ql) and ¢(x),) = d(x),) + O (Ip — q)).
Therefore for X||p.25 X[q.2 ¢ {0, }

0x
Tha | < Tdyy + 0:(Ip — q). 6.12)
L

From the third equality of (6.10)

0 101>
B 3nq(Xq) 92nq(X)1q) ] = |
[ ng(xy,) —X1 4 01mq(X|q) | =X Lq D20 (X|q) 02,131_::2 —[03,1|Zl|22],
and

0x
hm)<0anmm ql.

2 2
7 = Zv“p,, Z (813 np—X.L, 8D mp) (5,,1,-— "
j=l1 m=1 P>

where we have used (6.12).
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Therefore

01012 1
M =
021|535, | [-ngl- ([B1nq — X1, ding] X [8211q — X1, 3204])

(d1nq — XJ_qalnq) x (O2mq — XJ_q32nq)
X (02nq — X1 4021q) X (—Nng) [05.1]21]22].
(—ngq) X (d1nq — XJ_qalnq)

and hence from the above estimate of Z; we have

ov
la | <, jollp — ql.
Xy |50

Again from the fourth equality of (6.10) and ng (x| q) =np (X||p),

—ng(xy.) d1nq(X|q) 9219 (X)1q) ! ?
NqXilg) | —x 1 d1ng (x)q) | —x140mqx1¢) | | 0 mﬂ
lp
. A1 mp(X||p) 921p (X||p)
- [_nP(X”p) —lealnp(xnp) —prE)znp(pr) .
Since
911p (X|p) 921p (X|p)
[—np(xllp) —X 1 91mp (X)) | —X1p B2mp (X))
Y d11q(X|q) 9219 (X)q) + 0:(lp — q))
- q3Xq 7XJ_q81nq(X”q) 7XJ_q82nq(X“q) eUP —4ql),
we have

3V\|q,1 3V||q,1

™y a2 | =1dos + 0:(1p — a)).

3V‘|q,2 3V||q,2
aVprl BV”p‘z

O

Lemma 16 Assume ‘fi—x =0, ‘fl—’t’ = 0 and let Pp(X1,, X|,, V1,, V|,) = (x, V).
(1) For [E(Xa(s; t,x,v))| < and | Xa(s; t, x,v) — Lp| > C8y we define

Xp(s; t,x,v), Vp(s;1,x,0)) := <1>;1(Xc1(S; t,x,0), Va(s; t, x, v))
= (X1, (531, x,0), X),(s3 £, x, V),

Vi, (832, x,0), V), (552, x, v)).
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Then |v| > |Vp| and
X1, Vi,
X”" it v) = Viip it v 6.13
":'J_p (Sa ’x’ ) Fj_p(xp, Vp) (S, ’x’ ) ( . )
Viip Fjj, (Xp, Vp)
Here
Fi,=Fi,(X1,,X|,, V[,)
2
= Z VipkVilp.j 0 Oknp (X)) - Mp (X))
jk=1
2
—XJ_p Z Vllp,k(Vllp . V)aknp(x”p) . np(x”p), (6.14)
k=1
where
2
2
D VipkVip.j 9 kmp (X)) - mp(x,) e — vyl
k=1
and
Fiy = Fipy (XL X)jp0 V0 Vi)
= 2 Gpij(X1,. %)) Cu
= p.ij )
ey P mp(x),) - (Qmp (X)) X O2mp (X))
X {ZVJ_pV”p . Vnp(x”p) — V- Vznp(X”p) “Vip (6.15)

XLVl - V(1) - Vi, | - {mp(xi,) X 0 1mp(x1,)),

where a smooth bounded function Gp ;;j (X Ly X||p) is specified in (6.22).
(i) For t € (t'T1, 1Y), if the p*—spherical coordinate is well-defined in
[z, t%) then
[Xe(T5 7, x,0), Ve(Ts 8, x, v)]

— . L 12 12 l e l l 12
= [XZ(T,t ,O’X”l’ VJ—Z’VHZ)’ VZ(T9I ’O’XHZ’ VJ—Z’VIIZ)]

and, for avﬁ = [avﬂ ,0.0 ],
L

v
le

|:|3X6[Xe(f)| |8V5Xz(f)|}<[ 1 |r—t‘5|]

|3xﬁ€V€(f)| |0y Ve (D) w27 — t¢] 1 (6.16)
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Fort'™ <t <5 <% then

Xe(r;t,x,v) = Xp(t5 5, Xe(s3 1, x,0), Ve(s; £, x, 0)),
Vo(rst,x,v) = V(s s, Xe(s; 1, x,v), Vels; £, x, v)),

and

N

|:|8XZ(S)X€(T)| |8V5(S)X€(T)|i|
10x,(s) Ve(T)| 10v,(5) Ve (T)]

1 T — ]
[Ivlzlr—sl : } (6.17)

Moreover, for either [0x, dy] = [ale, 8ve£, 8vel] or[0x, dv] = [0X,(s), OV, (s)]
I L I

[ l0xF(T)]  [0vF (1) ]< [lle Ivl] 6.18)

e F@O [fEovE@] [~ [P o
Proof From v = 0 and the second equation of (6.4) equals

0 =vi)[—n& ()] —2vi(s)v) - Vn(x)(s)) + v (s) - Vnx(s))
—f—VH . VZU(X”) V| — XL\'I” . VH(XH) — X1V Vzn(x”) A (6.19)

We take the inner product with n(x(s)) to the above equation to have

vi(s) = [vy- VZU(XH) v - nx)—x_[v) - VZ11(X||) vy ] - n(x))
=FiL(vi, v, X)), (6.20)

where we have used the fact Vn 1 n and Vn L n.
Since 0 = £(n(x))) we take x| ; and x| ; derivatives to have

0=dy,, [Z aksaxl,mk} =" hdnEd Mmd Mk + D 01D Oy M
k

k,m k

and from the convexity (1.13) and n = V§/|V§|,
V).i0kE0; 0 inkv . j
[vi- V20 -w]-n =3 et
IVl

. (V)i i1} 0k Bm &8 V115
IVE] ~

2
g —lvyl™
i,j.k.m
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Define a;;(x) via

ajr apy | _ [0m-om 9m-opm || dyn-d1n 011 - 02n -
al axn dn-0n on-oon || dan-91n om-am |
where det(9;n - 9;n) = [d1n x 8217|2 # 0 due to (6.3). Then Vn is generated

by Vn :

—oin(x)) = Zaik(x||)3kﬂ(x||)-
k

We take the inner product (6.19) with (=1)it! (n(x)) x d;n(x)) to have

Z(&a‘ + X ari) V) k
A

B (—1)it!
T —n(x)) - (in(x)) x dn(x)))
X {—2VJ_V|| -Vn(x)) + v - Vzn(XH) SV = X1V - Vzn(X”) . V||}
~(=n(xy) X dip1n(x))),

where we used the notational convention for 9; 17, the index i + 1 mod 2 . For
|€(x)| < 1(and therefore |x | < 1) the matrix 8; 4+ X ag; is invertible: there
exists the inverse matrix G;; such that >, (8x; +X 1 ax; (X)) Gij (XL, X)) = &;.
Therefore we have

(_ l)i—l—l
—n(x)) - (d1n(x)) X d2n(x)))
x {=2vLvy - V) + v - Vi) - vy = X0y - Vi) - vy

< (=n(x)) x 911 (x)))
= F)j (XL, X, VL, v)).

Vi =D Gij(xi,x))
i

6.21)
Here
[Gll G12j| _ 1 [1 +x1an —Xxiap2 }
G2 G L+xi (a1 +an) + x1)*(ai1an — aipaz) | —xrazr 1+xpan |’

[011 a12} _ 1
a1 axp 101712192112 — (3177 - 92m)?
[|aln|2|azn|2 — @m - »n)(@17n - &) —[3m|*(@1n - dan) + (31n'32n)|3177|2:|
(31m - 3m)|32m]? — [32m]2 (317 - D21) —(@im - o) (@17 - D) + |dom[* (317 |
(6.22)
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To complete the proof of (6.13), from x = v and v = 0, we have

v=—vin+v| - Vn+x [-Vnx)lx|
= X1 (—n(x))) +x1 [-Vn(x))Ix) + Vx|
0 = v (—n(x))) — v, Vnx + v Vi + v V21X
+%0 vy [=V(x)] + x10 V) [=Vnx))] + x0 v [ V2nlx.

We therefore conclude that x| = v, and X = v from d>; . We then solve
v and v to obtain (6.13).

Now we prove (6.16) and (6.17). From (6.14) and (6.15), X, = v|,, X1, =
vi,and v;, = F, and v|, = Fj,. Denote 9 = [ 0 9

oxt ’E
(6.14) and (6.15), ’

Ile
[|am]<[ v {1ax L] + 18x 1} + [v]| 3| ] 6.23)

ad
, —r]. From
8V”é

1OF| |~ [ JolP{1axL] + 9%y} + [vI{|dvL| + [avy [}

Now we use a single (rough) bound of [0 F | [+]0 F)| S |v|2{|aXJ_|+|8X|||}—}—
[v[{]dv 1| + |3V} to have

d

d—{laul(f)l + [9vy, (D}
T

S 0FL (D) + [0F), (2]
<

|
I*{1ox L, ()] + 10x), (D)1} + [v{18vL, (D] + vy, (D)1},

Combining with %[xlz (t), x), ()] = [vL,(r), v, (7)] yields

i|:|aXJ_((r)|+|8X||((r)|:| < [ 0 1 }[I3X¢[(f)|+|8Xu[(f)l]
dr [10ve, @]+ 10vy, (1 ]~ [P Jol | [19ve, @] + vy, (@] |

By Lemma 4 we prove our claim (6.16). The proof of (6.17) is exactly same

but we use 9 = [dx,(s), dv,(s)] to conclude the proof.
We prove the first row of (6.18) by (6.23). By taking the time derivative to
(6.14), (6.15) and applying (6.13), we prove the second row of row of (6.18).
O

We are ready to prove Theorem 5:

Proof of Theorem 5 First we consider the case of r < i, (x, v). In this case
(XCI(S’ ta x7 U), VCI(S; ta xs U)) = (x - (t - S)vv U)-
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Directly

8(Xcl(s7 t9 X, U), VC](Sv tv X, U)) _ —V Id3’3 _(t - S)Id373
a(t, x, v) C 031 033 Ids 3 6x7

where Id,, ,, is the m by m identity matrix and 0,, , is the m by n zero matrix.
Now we consider the case of t > f,(x, v). We split our proof into 10 steps.

Step 1. Moving frames and grouping with respect to the scaling t|v| = Lg,
with fixed 0 < Lg < 1.

Fix (1, x, v) € [0, 00) x § x R3. Also we fix small constant § = 8¢ >0
which depends on the domain. We define, at the boundary,

o VUL oen®) [Vaets e x,v) o n(Xa(ehs 1, x,v)
== = = . (6.24)
[ve| [v] [v]
Bounces £(and (¢¢, x¢, v*)) are categorized as Type I or Type II:
abounce ¢ is Type I (almost grazing) if and only if r’ <3, 6.25)

abounce £ is Type Il (non-grazing) if and only if rf > V.
Let s, € [t¢t!, #] such that

EXa(sa 125 v = max  [§(Xa(rs 1 b v,
t

£+ <t<t

Since

d2 d2
——=EXals; 15 x5 0)) = —5EG" = (F =) =" VEEG" = (F =) v >0
ds? ds?

there exists a unique s, solving

d
—E(Xalsy; 1%, x5 0h) = v VeE(Xa (s 16, x5 0h)) = 0.
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Note that v - VE(xt — (+* — s)v%) is monotone in either one of the interval
(1%, 5,) or (54, t%). Without of generality we may assume |1 —s.| > % e+ —
t*]. Then

t

/ vt Vé‘(x‘Z — (t‘Z — s)vz, ve)ds

s

o prt
/ / vt Vzé(x[ — (tz — ‘L')UZ, vz) -vldrds
Sx Js

2
WP = sl ( o’ - n(xc1<s>>|)

1E(Xa(ss; 18 x5 0| =

sup ;
se[rtt! 1] |v |

2

where we used (2.2) and (2.3) and the Velocity lemma (Lemma 2).

Therefore if a bounce £ is Type I then max,e+1 ., <,¢ |E(Xa(7; 1, x, v))| <
C§. If a bounce £ is Type II then |&(X(7; t,x,v))] > C8forsomet €
[7¢FL, 141 We always assume that v # 0.

Now we assign a coordinate chart for each bounce ¢ (moving frames).
For Type I bounce £ in (6.25), we assign p* € 9Q x S? and p’—spherical
coordinates in Lemma 15 and (6.4): we choose p* := (z¢, w’) on 9Q x S?
with n(z%) - w* =0

l 12 14 12
e _ ¢ ¢ V= -n(@)n(z)
E N R HeD T (620

Note that, by the definition of Type I bounce, vt — (vt - n(ze)n(ze))|2 =
lv]? — |V‘i|2 > [v]2(1 = 8) =5 |v|? and hence w' is well-defined.
Moreover
| Xaa(s; 2, x,v) — Lyl = Cs >0, (6.27)

for |v||tt — 5| < 1% minyeyq |x|. This is due to the fact that the projection of
Ve (s) on the plane passing z¢ and perpendicular to n(z% x wt is at most |v|
magnitude but the distance from z¢ to the origin(the projection of poles ./\/pz
and Spy) has lower bound 11—0 minyeyo |x], |s — ¢ < 1.

For Type Il bounce 2(t, x*, vt), we choose pZ = (z¢, wb) with |z — x¥| <
V/8 but we choose arbitrary w’ € S? satisfying n(z¢) - w® = 0. We choose
p’—spherical coordinate in Lemma 15 and (6.4) with this p¢. Note that unlike
Type I, this p®—spherical coordinate might not be defined for s e [r‘+!, r¢]
but only defined near the boundary.
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Whenever the moving frame is defined (forall 7 € (1, 1] when € is Type
I, and |t — t*| < 1 when ¢ is Type 1) we denote, by (6.4) and (6.10),

Xe(1), V(1) = (X1, (1), X (), VL, (7), V) (7)) = <I>;zl (Xa (1), Va(1)).
Especially at the boundary we denote

(x,. xf,. v, V) = yTrg(Xe(r),w(r)), withx{, =0, v{, > 0.

Then we define

E—H E—H {+1

XLy X Vi ):riiﬂfﬁl(xu(f),Xuz(f),Vnz(r)),
e == 1im vy, (o). (6.28)
VLZ = 11‘115111 vy, (T .

Now we regroup the indices of the specular cycles, without order changing,
as

{0,1,2, ..., 4, — 1, £, ={0}UGIUGU---U g[\tfsum] Ug[\tfsl\v\]_i_l,
Lg Lg

where [a] € N is the greatest integer less than or equal to a. Each group is

gl :{17-"561_1961}’
={,l1+1,...,0,—1, 4},

G- el = = el 1 Lpli=sinl el L b — l,f[wzsng\]},

Lg
g[\zzv;\v\]+1 = {f[n—énv\], f[\zzvgnv\] +1, ..., 4,

(6.29)
where €1 = inf{¢ e N : |v| x [0 — 91| > Lg} and inductively

=inf{€ e N : || x |5 —t%+1| > Lg), (6.30)

and we have denoted £, = £[|t—s|\v\ e
Lg

Our analysis is carried out in each group G;. We note that within each
G, |th — ttiv1|y] < L¢ by our design, so from the velocity lemma, ry; is
comparable to each other, so is |vt|. We can also cover the entire G; via a
single chart in Section 8. By the chain rule, with the assigned p®—spherical
coordinate (moving frame), we have for fixed 0 <s <t ands € (11 1)
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210 Y. Guo et al.

d(Xa(s; t, x,v), Va(s; t, x,v))
a(t, x,v)
(Xa(s), Var(s))
3t xt* Vi vﬁz)

Iles

from the last bounce to the s-plane

lt=sllv| ¢ Vi 0 . .
[ 3(1&“ xtit i VLAH yhit ) a(l‘l +1 Z +1 4+l 7 Z,‘Jrl)
e Gy’ ey He +17 L Vg4
x PR R B e RIS e x [T
. il — i+ i+ i+1— i xi vl i
i=1 O X Y 1 Vi, 1) AT Xy VL, Yyy,)
i—th intermediate group
whole intermediate groups
1 1
GRE TEAAREAITY

a(t, x,v)
from the 7-plane to the first bounce

(6.31)
Step 2. From the last bounce U, to the s— plane

We choose s ¢ (’&%, t%) C (s, t%) such that vt — s%| « 1 and
the £.-spherical coordinate (X, (s%), Ve, (s%)) is well-defined regardless of
types of £, in (6.25). Notice that s is independent of % and s so that 2

3
0= gs :
We first follow the flow in (x, v) co-ordinate to near the boundary at = st

change to the chart to (X, V), then follow the flow in (X, V). Regarding st
as a free variable, by the chain rule,

tl* -

(Xals), Vcl(S))
B(IZ*,xﬁ VJ_Z VH*)

d(Xals), Vals))  a(st, x1,, (s, Xug* (s%), v, (55, vy, (s%)

= £y Ly Ly Ly Ly Ly Ly
05T, X, (5, Vi, (s7)) Dt Xt Ve V)

o Xa(s), Va(s) s, Xa(sh), va(s‘f*))
T A, Xa(sh), Va(st)) 8(st, X, (s¢), Vi, (s5))
5 At X1, (s, xne* (s *) m* (s%), v”(s‘*»

3l xt

e Vi)
Firstly, we claim

9(Xa(s), Va(s))
A(st, Xo, (s%), Vi, (s%))

[ =Vaes®™) 0:(HA + [vls™ —s) O (1)]sh — S|]
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Since

Xa(s) = Xa(s™) — (s% —)Vas™), Vals) = Va(s™),

and s is independent of s, we have

d(Xa(s), Vals)) [ Va(s™) Idsz —(s% —s)Ids, 3]
A(st, Xa(sh), Va(st)) 03 053 Id3 3

Furthermore due to Lemma 15, we conclude

A(sY, Xa(s™), Va(s™))
A(st, Xy, (s%%), Vo, (s%))

1 01,3 01,3
EIET™ 214y
03,1 —ng, —XLZ* 81“2* —XLZ* dng, 033
= v”(/ Voying, V”é Vg, s r ,
03 1|-v .Vx; m vy, dng, —v), dnlx n 1My 270
3,1 Iley llg, ™ex O v Ly v s X1, g, X1, 82“43
XLy, Vi, VOIne, XLy Vi, Vi2ne, *

where all entries are evaluated at (X, (s%), Ve, (s%)). The multiplication of
the above two matrices gives (6.32).

Secondly, we claim that whenever p’—spherical coordinate is defined for
all T € [s%, r], we have the following 7 x 6 matrix

ast, x1, (s, xwf) v, (59, vy, (s9)

A, x " vﬁ vﬁ[)
0 () 0 012
—vi(sH O: (D[Pt — st O: (D]t — s O (D)|wl[t* = s°?
=| —viY [Idao + 0Dt — 5P| Oe(D]ltt = s 0 (D)|e" — s Adan + [1£¢ — 5°))
O:(MPP| 0Pt =5t |14 0e(Dv]lt — s O (D" — s
O:(MW| 0Dt — s O:(Dvllt — 5| Iy + Oz (D)]v]ir* — 5|

(6.33)
In this step we just need (6.33) for £ = £, but we need (6.33) for general £ in
Step 8.
Clearly the first raw is identically zero since s* is chosen to be independent
of (¢¢, x ﬁ , Vﬁ_ ,V z) The first column (temporal derivatives) holds due to the
fact that the characterlstlcs ODE (6.13) is autonomous. Moreover,
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212 Y. Guo et al.

9
W(Xe(sﬁ; tf, x8 0h), Vst 16, xb vh))
9
= W(Xe(se —1%0,x5 09, Vst — 1550, x5, 0Y)

0
- _W(Xe(se; 1t xb 00, Vst 1f, xb oY)
= —(Vo(s 15, x5 00, FXo(s® 15, x5, 00, Vesh 18, xb o)

= (=v1(sY), = (sY), O (Dv[*, O (D).

Now we turn to other entries in (6.33). From the characteristics ODE (6.13)
in the pZ —spherical coordinate (6.16), (6.17), and (6.18), we deduce (6.33) for
ols® =1 S 1.

Step 3. From t— plane to the first bounce

We choose s! € (¢!, ﬂ%) C (t1, 1) such that |[v||#! — s!| <« 1 and the polar
coordinate (X; (s), V; (s1)) is well-defined. More precisely we choose 0 < A
such that |v||f — A —t'| <« 1 and define

sli=t— A, (6.34)

We first follow the flow in the cartesian coordinate to near the boundary at
s!, change to the chart to p‘-spherical coordinate, then follow the flow in that
coordinate.

Then, by the chain rule,

1 1 1 1
A, Xy v vy
(1, x, v)
1 1 1 1

@ x v L) oGt Xa(s!), Va(sh)

3(s1,Xc|(s1), VCl(sl)) 8(t7xa U)

1 1 1 1
I X Vs V) As', X1 (s, Vieshy)

T a6 xy, 5D, X (D), v, (81, vy 51) 36T, Xa(sh, Valsh)
st Xash), Va(sh)
a(t, x,v) ’

We fix p' —spherical coordinate and drop the index of the chart.
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Firstly, we claim
B(tl, xll‘, le v‘]‘
3(S1, XL(SI), X”(Sl), VL(SI), V” (Sl))

1 e loPls! —1! 2 ls' ] lolls' !
Ivi| Iv) | Ivi| v} |
_ | e "%I{"Hv\z\slfth Moo+ folls' — e | B s — 2 gt -
~Q 7
0 [ +10R1s" — e B P o] 1 s’ =) Julls" —1']
Ivi]
02,1 iy + IoPls' '] |v| Ist '] Lt lolls' =o' Tdy + Jolls’ = o']
L
(6.35)
1yl
Note that since ODE is autonomous we have 3= = 1, 2&-¥) — ¢,

as!
The 7! is determined via x; (') = 0, i.e.

Sl Sl
0=x1(s) —vi(sH(s' =)+ / / FL(X(2), Va(e))deds, (636)
tl S

where X(7) = X(t;s', X(s' 7, x,v), Vst 1, x,v),V(r) = V(r;s!,
X(Sl; t, X, U), V(Sl; t, x, U)) For o € {8”(31), 8XH(51), 8Vl(s1), BVH(SI)}’
1

vi(shHar! — ar! /s FL(X(7), V(©)dt + ax, (s — av (sHs! =1
tl

1 1
+ /S /S (0X(1) - VxF| 4+ 9V(7) - VwF }(X(1), V(1))dzds = 0.
o (6.37)
Butv) = —limg 1 vi(s) = —vi(sh + ffil F| (X(7), V())dt, we apply
Lemma 16 and |s! —¢!] <¢ min{llj)—l‘izl, t} and (2.2) and (2.3), to obtain

— 1 —_ - 1 1 _
3Xit(sl) vl {1 +£S1 fs X, (sl)FJ_(X(T) V(‘L’))d‘cds}
or! 1 LIS
ox(sh | qft' j; dX”(s FL(X(‘[) V(t))dzds
ol -
. %{(Il_sl)qtf,l [ i FLX(@), V(D)drds)
ot! 1 sy s 3
Lauehd TR e FLX(@), V(o)drds |
- LT
vl
lw2ls! =12
vl
<
~ &t Ry
vl
lo]ls'—¢1)2
L v
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Taking (x(s!), v(s")) derivatives of the characteristic equations

1

N
Vi = —limy (9 = i)+ [ FLao), Vato)dr
syt t

1

xﬁ:x”(sl)—/ v (s)ds,
tl

vﬁ =v||(s‘)—/1 Fy(Xa(7), Va(r))dr.
t

and using the above estimates, (6.37) and Lemma 16 yields

and

l -
8x”

axy (sh)

ael
x|

x| sh

axll‘

avy(sh

ool
dx”

av| (sh

1
vy

ax, (s1)

avj_

x| sh

3VL

avi(sh

1
v

[ avysh |

1
8v”

axy (sh)

8v”
3X“ (S )

8v”
ov | (Sl)

avﬁ

av| sh _

Secondly, we claim

AX1(sh, Vish)

Se

€t

Ser

Pt =o'
Vil

Iy + [vllst — ¢!

|s —t ||U| 4 |S tl|2|v|
vl
st — 1!

[ oRrst = o)
'”' Pt =]

1+|v||s —t!]

lufls' —#1]

ﬂ
‘VJ_l
lo|?|s! — ¢!
1+ |vls' =1
Iy + |vls' — ¢!

+ [v?|s! — 1]

IXi(sh), Vish) aXa(sh), Vash)

3(t, x, v)
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[ [Ty o (il —sT)) O (It — ')
03,1722 1 O (ullr —s')) O (It — ')
| R + Ol — s 0 (1t = 5'))
Ot (Jv]) %Jroguvnz—slp ’
03, O¢(Jv) %-{—Ogﬂﬂh —shp
L O¢ (Jvl) O (ol — 5" ],
(6.38)

where the entries are evaluated at (X; (s!), V{(s')). Note that [v||z' —s!| Se L
From (6.5)

I(Xa(s"), Va(sh))  a0X(s), V() [A|03,3] iy [03,3 03,3}
IX(s1), V(sh) — aX(s),V(s)) ~ | Bl A LU D0s5 |

Note that, from (6.9) and (6.3),

det(A) = det[ [—n(X”)] 3x”,177(X||) 3x”,27)(X||)]
= [—n(x))] - (@x ; n(x)) x 9 ,n(x))) # 0,
1
[_n] : (3x“,177 X 3x”,277)
x [(3x,1 1 X By ,m7 By m x [=nD)7, ([—n] x 35, M1

Al =

From basic linear algebra

d(Xa(s"), VaGs" ) _ A 054
det(a(xd<s1>,vcl<sl>)) _det[mxw A‘}

= {det(A))? = {[—n] - (319 x dam)}?,

IXa(sh,Va(sh)

I Xa(s"), Va(s')) [3(Xcl(sl), Vcl(sl))i|_1 . [ A 03,3}_1
A(Xal(sh), Va(sh)) — [aXa(sh), Valsh) - |B+x.D| A

_ Al 10557 A7 (x)) 033

= [—A_I(B+XLD)A_1|A_1] = |:|U|+05(XL) A*(xp]’ (6:39)

1 1
and (M) is invertible. From basic linear algebra
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and we obtain

_@unxipn)” ]
[—n]-(d1nxd21)
_(@pnx[-nD" 0
-l G 33
dXa(s). Vas) | L
— T
IXaGD.VaG") ~ | 0 (1)l |t
(nx[-nD)T"
Os (YD | EaiGixomp
([—n]xd17)
L O:(D(D) | aomesn

From Xq(s1; ¢, x,v) =x—(—s1)v =x—A xvand Vy(si; t, x,v) = v,

d(Xe(s1), Vcl(sl)) 037 Idz33 —( — Sl)Id3 3
a(t, x,v) 0317 033 Id3 3

Finally we multiply the above two matrices and use |x | (s!)] <lv ! — s to
conclude the second claim (6.38).
O+l gL T e gl gt gt
Step 4. Estimate of 0(t X Vi IIHI)/a(t X[, V1, V”[)
Recall r¢ from (6.24). We show that there exists M = M¢ ; > 1, which only
depends on €2, such that for all £ €N and 0 < <t <t and v € R3,

J€+1, ||z+1 Lot e+t
J4 : - b4 b4
ot ’Xllz’vlz’vlle)
m1 M e+l M 0+1 M M 0+1 M e+1 )
[v] Dk lv|2 [v]? [v[?
0 1+Mr13+1 Mrf-l—l |M IMI.E-H erZ—H
v v v
- 0 Mrﬁ-i—l 1+Mr€+l lﬁ ‘r€+l l_rZ-H
U U
0 M|U|(r€+l)2 M|U|(r€+l)2 1+ Mrlf-l—l M(r€+l)2 M(r£+l)2
0| Mrt'  Mvrtt! M 1+ Mrttt pmrtt!
L 0| Mvrtt! Mvjrtt! M Mrtth 14 et
= Jath . (6.40)
——

Definition of J (rt+!)

We also denote the Jacobian matrix within a single p¢ — spherical coordinate:

3(tf+1 +1 41 Z-H)

S04l . H Vi oY,
o= A, xt vt vh)
IIz Lo Ve

Note this bound (6.40) holds for both Type I and Type II in (6.25). We split
the proof for each Type:
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Proof of (6.40) when r* < /8§ and r'*! < /§: Note that p*—spherical
coordinate is well-defined of all T € [T, t*]. Due to the chart changing

2y Vi Vi)
9(°,x IIz VZL@ Vﬁz)
o e | o i
S T 001", 0.x),, VL, vj,)
:jé/:+1

A(x +1 Z+1 +1

where ”“1 L‘“ 141”5 the 5 x 5 right lower submatrix of (6.6).

DX, Vi),
Note that |pt — pt*!]| Se r! from rf < C/§, (6.26) and (2.2). In order to
show (6.40) it suffices to show that J f +1is bounded as (6.40):

I < g, (6.41)
This is due to the following matrix multiplication

1 | 05
<] e+1 T+T 7e+1
051 Ix Hz+1 ie+1 Vlle+1) J
7
d(x”l VLK Vi, )

1 0> 03
0271 1+Crﬁ+1 Crﬁ+1 03’3
Crtt! 1+Cr5+1 ot
= 0 0 10 0 JE
05| Cr*ljw| Crt*lpp| o1+ Ccrtt!t crtt!
i critltyl ol |0 crt! 14 crtt! ]
< J(crtth,

where we used (6.6) with an adjusted constant C > 0.

Now we prove the claim (6.41). We fix the p¢—spherical coordinate and
drop the index ¢ for the chart.

If v{ = 0 then t“F! = ¢, Otherwise if v{ # 0 then **! is determined
through

t
0=vi " -9 +/ / Fi(Xe(t; 4, x5, 0%, Vo(r; 14, x*, v9))deds.
41,
S (6.42)
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Since the ODE for [X;(7; t, x, v), Ve(T; t, x, v)] is autonomous,

0=vi@"" 1%

t(i t£+l
+/
0

We take t¢-derivative to have

P t(-‘rl _ te
SRV
ot 0
t[

8(z€+1_tz) , L o
:T VJ__ L FJ_(XE(S;I , X,V ),V@(S;[ , X5, v ))dS

a(tﬂ-i-l _ t@)
= T(—Vﬁ_ﬂ),

/ Fi(Xe(t; 0, x5 09, Vi(2: 0, x4, v))drds.
UAS RV

bt

FL(Xp, Vo (et — ¢t 4+ 5,0, x°, ve)ds},

where we used the definition

tl
vitl=— lim vi(s) = —v‘i+/ Fi(X(t;1,x,v),V(t; 1, x,v))dt.
sltttl 1
(6.43)

+
Therefore we conclude Bt

ﬁH—XﬁJr/
0

we conclude

= 1. Then combining with

gt gt

v (s; 0, x*, vh)ds, viT! =v€+/ F(s; 0, x¢, v9)ds,
0
(6.44)

l+1 3Vﬁ+l avzf_l

dtl — oat T At =0.
Taklng derivatives of (6.42) as before and using |t — ¢t Ser

min{ lvilz , 1}, from (2.3), and Lemma 16, we obtain

art+ Al F X, (1), Vo(7))drd |
v z+1 i zf J_( Z(T) @(T)) Tas
X
atzL 1 0+1 ¢
| = | @ =t )+f,z ftz FJ_(XE(T) Vi(t))drds
grtt! + ¢ ¢
v, i Jien mem),vz(f)mfds
| L i
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1
e e . (6.45)

Taking (x(t%), v(t%)) derivatives of the characteristic equations (6.44), by
Lemma 16 and (6.45), we estimate directly

B 8xﬁ+1 ] B (’)vﬁ+1 ] il
PR | — ¢ 1
ox| Id, » + vl ox| |VJ_+ |
041 ’ [v] 0+1 £+1
x| < 1 v, < 1+ v |
| 6t Tol ) vl | 6 vl
vy | LLI vy ! |z+1
8xﬁ+1 ﬁlvllv| | 8vﬁ+1 Id,, + |
Bvﬁ ] 8vﬁ ]
Now we move to Dv‘iJrl estimates. First we claim the crucial estimate of
(L L
" =t FLE v = 2viT 0 (D)t — PP (6.46)
As (6.42), we use the fact Xﬁ_ =0 = Xﬁ_—H and the definition Vﬁ__H =

— limge41 vy (s) and

Vi(s) = FLXe(s; 18 x5 vh), Viis; 18, x5, vh))
= FL(Xo(s; e x5 v vy (55 e x D yiHD),

to conclude the similar identity of (6.42)

0 _ £+1 (t €+1)

/ / FLXe(r: 1 x v h v ¢4 xH vy deds.
tl+l tl—H
(6.47)

By Lemma 16, FiXp(r; t4 xE v, V(s e, xE vh)) = FLxb, vh +
O ()t — t*||v]3. Plugging this into (6.47) we have

1
0= E—H(t tZ-H) + E(IE _ IE—H)ZFJ_(XE, VZ) + 05(1)“6 _ tl+1 |3|U|3,
and this proves our claim (6.46).
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Taking derivatives in (6.43), from the extra cancellation in terms of order
of t* — t*+1 in (6.46), by (6.45), we obtain

E)V‘iJrl B FJ_(X VZ)
axﬁ - Z+1

/ / —FJ_(Xg(r) Vi(t))drds

g
_|_/ —FJ_(X@(T) VZ(T))dr
$0+1 axt

_ [(r‘Z —tHl)Fl(xe,vz) N

0+1
—2v|

1](;‘Z “1) SF) (x',vY)
BX”

L Oe() L 1rt = 2t I t£+1||v|3_ ¢
(Dl =7 1T+ V| |8x L VY|
Il

|t€ _t€+1|2|vﬂl3 ' E—H
S 1—1+ 0:(D) T + 11—
v "

£ L+1.,£12
t t v
+|zf—t‘f+1|2|vf|3il+—| v ]

| €+1|
= et
Se 1t — 1P ( R——zT Se ltf = PRSP
1
|V€+1|2
SR
avit! art+! 9
M FL, v>+/ " FL(Xe (@), Ve(r))dr
8VL 8VJ_ 10+1 8VJ_
FiL(xt,vh Fi(xtvH
41 41
s rt 9
/ / o X0, VaCepdeds / L FL(Xe(). Ve(r)dr
£+1 aVL
68— 23 FLx, vl (@ — rtH)?
=—14+2+ 0:(1) -
& Vli+1 Vfi+1 2

. d
x 1 1lim —-F 1 (X (1), V() + 05(1)|fZ 2
sttt aVJ_
. 0
+(tt =t IIEW“(X“’)’V“’” + Og (D] =t ]
STt J_
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£ £+1121,,£,3
-t v
S N{ ] s E L TN
+1
|VL |
|[€_ €+1|3 3
+——— WP lim — FL(X¢(7), Ve(T))
vt st v
£ 0 C+1),,£12 {41
(_erip it = vt
§1+|t ||U| [1+|€+1|+ |VZ+1| Stl'i_ |U€| )

v —Fi(xt0
8Vﬁ - Z«H

/ / —mxe(r) Ve(o)deds
s
Y4

©a
_/Z la—FJ_(Xg(‘E) VZ(T))dT
Yi

_ [ (tﬁ o l€+l)FL(X€, VZ) N

+1
—2VJ_

1]0‘Z ”1) F(x vH)
8VH

o+1
vl

2 |1t — “lnv 2 | ”1|2
e It — PP 1+ Se . (6.48)

Frxt vO [t — 0+
+05<1>|#—r“1|2|vﬁ|2[' SRl L1

These estimates complete the proof of the claims (6.40) and (6.41) when
§and rtt! < /5.

Proof of (6.40) for eitherr® > /8 orrt*! > \/§: Without loss of generality we
assume r’ > C+/8 in (6.25). Recall that we chose a p¢—spherical coordinate
as pt = (z¢, wb) with |z¢ — x*| < /8 and any w’ € S? with n(z%) - w* = 0.

Fix £. Let us choose fixed numbers A, A, > 0 such that |[v|]A; < 1 as
well as also |v|rt! — (1Y — A] — Ay)| <« 1 so that

SZEtZ—Al, SE—HESZ—Az:te—Al—Az,

satisfying |v|tt! — st = [u|r — (1f — A — Ar)| <« 1 as well as also
vt — st = |v||A1| < 1 so that the spherical coordinates are well-defined
fors e [+, st 1 and s € [s¢, 1.
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Notice that

8t6+1 B a(SZ-H 4 Al + AZ _ tb(xz, vE)) _ 8S€+1 _ a(Se - A1) -1
sl = 95l T ast T ast T 7
o5 _ oGt —Ap _
art et

We first follow the flow in p‘—spherical coordinate, then change to the
Euclidian coordinate to near the boundary st, follow the flow until s¢*!, and
then change to the chart to p‘*! —spherical coordinate. By the chain rule,

E—H E+1 £+1 +1
a( ||zz+1 VJ—e+1 VHZH)
¢ l Z

d(tt. x|, v, vj,)
ZJrl g+1 +1 £+1

I X Vi Vi)

a CICERRS TP Cias )’X||Z+l (&), Vien (sth), Vet (s¢F1))
At Xprar (571, Ve (s411))
8(5“_1, Xcl(SZ—H), Vcl(se—H))
06 Xas™h, Vas™h)
8(5Z Xcl(sz) Vcl(sﬁ))
3( L Xa(s9), Vals9) a6st, xu, (9, xy, (59, v, (s9), V||@(SZ))
a(s Xpe (s9), Ve (s9) A x|, v, Vi)

We can express that 11 = ¢ — 1, (x%, v8) = s A4+ Ay — 1 (2%, v9).
Let us regard t*1 as ! and s¢*! as s! and A + Aj as A in (6.34). Then we
use (6.35) and (2.3) to have

0+1 @-i—l +1 _f+1
IR X, v v

AL, xy (D), x (D), v (s, v (s¢H1))

1 0561|056 (D

< | 021] 056(1) | 056Dy
03,1|O0s.6(1)|v]| Os.e(1)

From (6.39)

a(sHI,sz+1(se+1),sz+1(se+1)) 1 01,3 01,3

S 03!1 [0) (1) 03,3 s
AT, Xa(stHD), Va(stHhy) y 05 Og(fl)lv| O¢(1)
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andfrongs‘Z+l =s'— A2, XaGs!) = XasH) =" —sHVa(sh), Vasth
= Vcl(s )7

A, XY, Va(stHh) I 03 013
Se | 031 Id33 [s1 —s2/lds3 |,
3GL XaGh), Vaish) | o ’ ’
y Acl s Vel 03’1 03,3 Id3,3
and from (6.5)
I 013 03

8( Xcl(s ), Vcl(se))
0 O (1 0
(st Xpe(sH. V z(Se)) 0;1 |Ev(| : 0;8)

Recalling (6.33), we have

1 0 0
N KOl KX DN O
DGt x|, VY, V) 0: (D0 (]| 0e(D)

By a direct matrix multiplication

1 1

d(H! x{HL il el 1 i
||e+1 Ler? e’ 1
alxt v vy |2
IIe Le> Tle 031 [|v]] 1

Note that for Type IT we have r*T! > \/§ so that from (6.40)

1 % s %min{l V8)
Jaeth 2 0| MYS |l,lmm{l V5)
051 |M|v| min{8, ~/8}| M min{8, v/5}

CHL gl il e
At ||e+1 Vi View)

l l L
. x(,. v, v],)

6.1,k

This proves our claim (6.40) for Type II.

Step 5. Eigenvalues and diagonalization of (6.40)
By a basic linear algebra (row and column operations), the characteristic
polynomial of (6.40) equals, with r = r‘*!,
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1—A |MT|r |MT|r % %r %r
0O 1+Mr—2A Mr % %r %r
det 0 Mr 14+ Mr— A % %r %r
0 M|v|r? Mvr*> 14+ Mr—xr  Mr? Mr?
0 M|v|r M|v|r M 1+ Mr— X Mr
0 M|v|r M|v|r M Mr I+ Mr— 2 |

=0 —1’A—(1+5Mr)].
Therefore eigenvalues are

M=A=A=A =As =1,

£+1 (6.49)
_ 41 _ vyl
re =14+ 5SMr _1+5M|U€+1|.
Corresponding eigenvectors are
1 0 0 0 0 1
0 1 1 1 1 [v]
0 -1 0 0 0 [v]
o'l o || =il 0 '] o |"']vPr
0 0 0 —|v| 0 lv]?
0 0 0 0 —|v] lv|?

Write P = P (r%) as a block matrix of above column eigenvectors. Then

1 0 0 0 0 1]
0 1 1 1 1 |l
P 0 -1 0 0 0 |l
10 0 —pr O 0 |fr |
00 0 —jv 0 |?
(0 0 0 0 —vl |v?
rp =L =1 =l —1 o
Sl SPl 5lviPr Sp2 5|v)?
o 1 =4 1 1 1
5 5 5|vir 5 3l
|0 5 s sE sy osw
Pl=1, 1 1 N n oW (6.50)
5 5 S5lvlr 5|v| 5|v|
o 1 1 1 4
5 5 Slvlr S|v| Sv|
o L _L 1 1 1
L Sl Sl SpPPr S Sp2

Therefore
J(r) =PmOA®P (1),
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and
A(r) :=diag[1,1,1,1,1, 1+ 5Mr],
where the notation diag[ay, ..., an,] is a m x m—matrix with a;; = a; and
a;jj =0foralli # j.
Step 6. The i-th intermediate group

We claim that, fori =1, 2, . [If—vHvl]

Liv1 Li+1
o1 X Xy,
R I

L1 Lt Lt iy b+l
_ o ’X\Izzi VJ-z,+1 VIIz,~+1) « (™ H( +1° VLe +17 e+
B Ci—1 liri—1 lipi—=1 lipi—1 6 ol ol ¢
(et ’XI\zH VJ-z,H 1’ VHziH—l) (s, X VLZ Vl\e,-
Ce
< P)A@) T P~ (r).
(6.51)

By the definition of the group, L < lv||ltti — tfi+1] < Cy < +oo for all i.
By the Velocity lemma (Lemma 2),

lit liv1—1 Li+1
e 2C1pti < plit M |, =t = VL l, ritl = A |,
1 [v] ] ]
v | c
rli = L& < Clezcll'gi
vl
and define
r; = Cre2Cipti
Then we have
U ¢ j ,
——e ri <r <r forall ¢4 <j<U¥;. (6.52)

(C1)?

From (6.40), we have a uniform bound for all ¢; | < j < ¥;
JH S0 = Pa) AP @),
Therefore

T e I < P A )] P ().
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Now we only left to.prove |£,-+1. — E,-.| §Q % Eor any £ip1 < j 5 L, we
have E(x/) = 0 = e(x/ 1) = e(x/ — (¢t/ —t/t1)v)). We expand & (x/ — (t/ —

t/t1Hv7) in time to have

(it

(0t =g + |

t]

£§(Xcl(5))d5
it

s 2
= £+ - VEQ)) (T =)+ / / ‘ dd?axd(r»drds,
t t)

and

0=/ Ve —1)) + - V2E(Xa(z) - v)),

for some 7, € [tj'H, tj].

Therefore

W VEGD) ey VZS(XdZ(r*» v/
[v] 2|v|

From the convexity (1.13), there exists Co > 1

o W i vERd)
— |t/ =] < vl = il _| se)|

< Colt! =t/ |v). (6.53)
Cy [v] v

Therefore we have a lower bound of

. . . . 1 .
e/ =7l = > e > ey,
C (GIN®)

where we have used (6.52). Finally, using the definition of one group(l <
lv]|t% — t%i+1] < C}), we have the following upper bound of the number of
bounces in this one group(i —th intermediate group)

vllef — 151 Ci 1
. T S T e NS¢ T
ming, <j<¢;,, [v[[t) — /1] @5° Ir; r;

i —Liv1] <

’

and this completes our claim (6.51).
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Step 7. Whole intermediate groups
Recall P and P! from (6.50). We claim that, there exists C3 > 0 such that

[|f—S”U\]
H J 11:11_1 X% Jéﬂ-] < (C3)|I—S||U|7) (r[h_L‘!”]) 77_1(1‘1).
(6.54)
From the one group estimate (6.51),

[‘[_LSE”U‘]
L li+1
H J +11_1 X x TS P(r[\t—sl\v\])
1 LE

[|722|U|]_1

e e -
< |1 [(1\(ri+1))”+1 P(riq1) x P(I‘i)} X (A(rp) P (r).

i=1

Now we focus on the underbraced matrix multiplication. Directly

+ -
i+1 Titl
10— 00  —5+
r; 1 l‘l‘

01 —& 00 |u—s

i

r-ri 1=
00 —HL 0 0 4jv]—tt

P i )P(ry) = . .
Ay e
00 —=* 10 Jy—s5=t

N —1 ry

_ i 4+

00 ! Titl 00 Titl
L S| 5 .

Due to the choice of r; = Cie?2 Clr i in (6.52) we have | —— +1 4+1 < C¢,

S
where we have used the Velocity lemma and (2.2) and (2.3): 1 Clrﬁl+1 <
cle_j\fll—t i1 < pli < C162 [eti —rbi+1 [plit1 < Clezclrewl'

. =< =< =<
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Therefore for sufficiently large C¢ > 0, for all i

_ Ce -

L0 o 00 Ce

01 C: 00 Celo

1 00 Ce 00 Celv]
P-l(r P < Q= , 6.55
(rig)P(r;) Q 00 Ce 10 Cell (6.55)

00 Ce 01 Celv]

C,
_ooﬁoo Ce |

where we use a notation: For a m%rix A, the entries of a matrix A are absolute
values of the entries of A, i.e. (A);; = |(A);;|. In particular, the entries of
P~ (x;71)P(r;) are absolute values of the entries of the matrix multiplication
P riy)P(x).

Again we diagonalize Q as

Q=FAF!
(1000 0o 2% | .
0100 0 3 1 0
0000 —o v 1
oot o o = 1
0001 0 3 0 0
oooo 1 1 |L 2C |
(10 25551 |11;| 00 25551
01 sy 00
00 st 10 5650
oo g ooy |
00 5 00 3
00 55 00 3
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and directly
lr=s]v| SHv\ Jt=s|v| sHu\
ol ke o FA e Tp
lt= AHv\
—fdlag[l 1,1,1,0, 2Co)" ¢ } 7!
r IILYHU\] IILVHL\] T
10 |v|2C§ 1((2CE) ¢ —-D 00O 2c§ 1((2Cg) £ =1
[‘t 5””] [‘f 5””‘]
01 2(;5 37 ((2C¢) -1 00 |v|2 - ((2C¢) -1
l1=sllv] l1=sllv]
L L
00 @c) _* 00 v &S
= [l=sivly rk sHv\]
00 zcg e - 10 |v|zc (2 )
[‘f r|\v|] [‘f YHU‘]
00 2Cg 301 ((2C¢) -1 01 |”|2cg ((2Ce) 1
lt=s|lv| le=slvl,
1 (2C¢) Lg QCe) Lg
00 P2 00 — i
(6.56)
Notice that from (6.49)
CE C%‘

[A(r)]% < (1+5Mr;) " Idee < Cg Idg 6.

Now we use (6.51) and take the absolute value of the entries and then use
(6.55) and (6.56), fort :=1t — s,

[I‘U|] [f|U|]
H Jel’:ll - X J[ <P rIvI]) H [(1 +5Mr;) i Q] Q™ 'Pl(ry)
i=1 i=1

[T\U|] o t\vl —~

<(Ch " x P(r[m])}"/l L )
Le

Now we use the explicit form of (6.56) to bound

—1 (Cg)ﬂv\ (Cg)’"‘”‘ (Cs)ﬂv\ e (Cg)’"‘”‘ (CE)I-M T
] lo] o7 Tl o2 o2
1ol ol (I (€ (€)™
0 (Ce) (Ce) LTl o o
7l 7 (! (Ce)'™ (Ce)'™
o o™ (€)™ W Il m fo
cCil
o [Fidy
0lvl(Ce)™ |r i) lvl(Ce)! m\]‘ (Ce)M! ‘,j (Ce)l?! Y ‘ (o)l m]‘
of  Jvl(Ce)! [ul(Ce)M! (Cs)’-'"' (Ce)M! (Ce)l
O] Jvl(Ce)™M! [u](Ce)MI (Ceylvl L I (e (Ce)M!
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1 1 1
i IO A B
1 1
< cCli=sll 02.119:(D| 71y bl ’ (6.57)
0 | il o] T
01| Il | b [0:(D)
1

6x6

where we have used (6.53) and the Velocity lemma (Lemma 2) and (2.2), (2.3)
and

lt=sllv| sHvI
[ ]
—Clezcll’l <e Clt— s||v|| J_l n

vl

Iy
[|t22|v\]

< Cresvli=s]
r! - '

1
vl

Step 8. Intermediate summary for the matrix method and the final estimate for
Type 11

Recall from (6.31) and (6.33), (6.57), (6.35)

D05, X, (59, Ve (s)) _ DG, X1, %), %), %), Vi, %), vy, )
s, X(shH, Vishy)

8(51, XJ_l(sl)’ XHl(sl)’ VJ_I(SI), VHI(SI))
A(sb, x1, (55, x,, (5%, Vig* (%), vy, (s%))

Ly Ly Ly
a(t ,X” VJ_K i )
[|t—LSHU,‘] 8([£l+1 XZHFI Ciy1 lit
“ J—K i1 ’ ”(/’i+1
X T -1 i1
! Cip1—1 i+1— i+ i+1—
i=1 90t X, 411 VJ—z,H 1 ey -1
3(té"+1 Xé i+1 VE i+1 VK,'—H)
« « lle;+17 " Lej+17 " lle;+1
Y4 4 %
Bt Xy, VY, Vi)
8([ 1 1

X, VL)
ot X1, (D, xp (D, v, (s, vy, (1))
< (6.33) x (6.57) x (6.35).
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Then directly we bound it by

< (6.33) x CCli=slvl

1 ] 1_ 1 1 [v] 1_ 1 1 112 1 lst=e! ]
st Tl oS A grg s RGO g+
[v[” [v] 1_ 1 [ 1 1_ .1 1
+ -+ |ullst —¢ 1+ o tlsT =1 Tl
BRI | WP it | o
w2 vl 1,1 v]? 1 1_ .1 1
X[ wiE T s o r T A R |
v 1y P M
o+ ol Ivh I+ o 0:(1) o
Tt 2[R [ e L pllsi =o' 0e()
L VI T e V] § i
(6.58)

where we have used the Velocity lemma (Lemma 2) and (6.53), (2.2), (2.3)
and

lwlit! — s < min{[v|(ty(x, v) + 1 (x, —0)), (¢ — 5)|v]}

1
|VJ_|

.1
vl

v _ .
<gmin{ —=, (¢t —s)|v|t <q CC51" min

Sa
v

Again we use the velocity lemma (Lemma 2) and (6.53), (2.2), (2.3) and
ol — s < min{Jo[l/ — %+, |1 — sJv])

¢
v
1 1%

1
_ v
= sllvl} Sq €CISIV min § —L

<@ min ,
|v] |v]

and v, (s%)] Sq CEPMIT=9|v] | to have, from (6.58)

0 [013] 0 092
VLI AT

06" X0, 5. Ve, 6)) _ ccpmapt | P |37 |51 m
o6 X1(sD), Vi)~

2| wl” [ vl
o s |t 05 (D)
L —7x7
(6.59)
We consider the following case:
There exists £ € [£4(s; t, x, v), 0] such that rt > V3. (6.60)
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Therefore ¢ is Type II in (6.25). Equivalently T € [¢¢+1, r¢] for some £, <
¢ < 0and |E(Xa(t;t, x,v))| > C§. By the Velocity lemma (Lemma 2), for
alll <i < L.(s; 1, x,v),

. Vi .
|rl| = g >s e—Cglvllt’—te||r€| Zf e—Cglv\(l‘—s)\/S.

| | ~

Especially, forall 1 <i < €,(s; ¢, x,v),

Ce|v|(t—s)
It!| ¢ e~ CelIt=9) /5, 1 < ¢
L Vs
Note that £,(s; ¢, x, v) < max; “’”i—,_sl <5 CCIvI=sl,
Therefore in the case of (6.60), from (6.59),
0 0 01,2 0 0172 ]
vl L L L L
¢ ¢ ¢ . \1[S {5 1“}'1 llf'
d(s™, Xg, (57), Vg, (s7)) < cC=s)l |5 35 /s T
s, Xy (sh, Vish)) ~
201,01 1,01 1
v |U|§|U|§ 7 1
0 101303
Clv|(t— T
<sC PIE=) 1 || 1 o
ll*| vl | 1

From (6.32) and (6.38) we conclude

0(Xa(s; t,x,v), Vals; t, x,v))
at, x, v)

0 1013]013
<8 Cclvl(t_s) 8(Xc](s), Vcl(s)) |U| 1 1
~8.§ A(sb, X, (%), Vg, (s%)) o[ |11;\

v

y At x 1, (sH, X, D, v, Y, vy 1)
a(t, x,v)

Wl 1 st —s| 0 013 013 1013] 013
Sag € |:03 1 vl 1 } . ﬁ Qo) 1l =
' P> ol 1 03,1 |v] 1

ol 1 L
Soe € S)[|v|2 ol 1 o,
o6x7

(6.61)
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We remark dx, and dv,, have desired bounds but 9%, and dvj,_still have
undesired bounds in (6.59). We only need to consider the remaining case of
(6.60), i.e.

Forall £ € [£.(s; t, x,v),0], wehaver; < /3. (6.62)

Note that in this case the moving frame (p‘—spherical coordinate) is well-
defined for all T € [s, ¢]. In next two step we use the ODE method to refine
the estimates for submatrix of (6.59):

I(x),, (s“), vy, (s5))
d(xL, (s, x, (s, v, (s1), vy, (s1))
x|, () axy, (s axy,, (%) ax),, (s™)

3XJ_1(SI) 3X||1(Sl) 3VJ_1(SI) 3V“1(Sl)
vy, ") dvy, (s vy, %) dvy, ()

3XJ_1(SI) 3X||1(Sl) BVJ_I(SI) 8V“1(Sl) 4%6

Step 9. ODE method within the time scale |t — s||v| >~ Lg
Recall the end points (time) of intermediate groups from (6.29):

' Clmsol, H Lgimstoly £ge=sivl . o
s <tr<t Lt <t e <t << tho<gtiat o
——————
[t=slvly 4 g lt=s]lv] i
el [

<1 < Bt ol oy
— —
2 1
where the underbraced numbering indicates the index of the intermediate

group. We further choose points independently on (¢, x,v) for all i =
1,2,..., (=l

Lg
i+l < g2 b
thtl g3 < 1l
ptl < it ot o il gl gl

i —intermediate group

£ ji—s|v|, F1 £ ji—s|v| F1 € Ji—s]v]
S S ol

t <t

We claim the following estimate at s'*! via s'. Within the i-th intermediate
group, we fix p% -spherical coordinate in Step 9. The goal is to estimate deriva-
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tives with respect to initial (x1, vy) at sit1in terms of s'. This is a bit different
from previous steps.

oxy, (s'th 0x,, (s'th 0x,, (s" oxy, (s%)
ox1,(sh axy, (sh 1 L ox1, (sD | | oxy, (sh)

: - Sog | - :
BV”Zi (SH_]) BVHZi (Sl+1) ’ |U| 1 GVHZi (Sl) 3V||€i (Sl)
3XL1(S1) BX”I(SI) 3XL1(S1) 3X”1(Sl)

choe—si [ 1 ] 0 0
+e v||t—S |U| ,
[|v| UL i+ 5 ) w1+ Bk
vil vyl
aX”Z' (SH-I) BXH[. (si+1)
3VL1(S1) BV”I(SI)
3VHzi (SH—I) 3"\\@[ (si+1)
v, (sh vy, (D
oxy, (s" ‘ oxy, (s
1 F) I ] I ; 1
<5 £ 1 [v] Vll(s_) e A) + eC|UHt—S’| 1 [v] 00 .
~E ) 1 vy, (1) | | 0vy,, (57 lv| 1 11
8VJ_1 (sh 3V”1 sh
(6.63)
For the sake of simplicity we drop the index ¢;.
Denote, from (6.15),

Fy(xy, X, vy, vy) := DXL, x), V) + E(X1, X, V)V, (6.64)

where D is ar3-vector-valued function and E is a 3 x 3 matrix-valued function:

B ) (_1)i+1
DL X YD = Z Gl O XD G @) = k)

< {v - VEn(xp) - vy —x0v - VAneg) vy} () x digm(x))),

and

_ B (_l)i-H
E(xL, x|, V) = Zi:Gu(XL D ) G x ey

x Vn(x)) - (—n(x)) x 9;4+1n(X))).

Note that E is linear in v|. Here G;; (-, -) is a smooth bounded function defined
in (6.22) and we used the notational convention i = i mod 2.
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From Lemma 15 we take the time integration of (6.13) along the character-
istics to have

Sl

X (") = x) (s") —/.

sit

V| (‘[)d‘L’,
1

vy (s = v (sh) — / . {ExL(D), x) (1), v (D)VL (D)
+D(x1 (1), X (1), v (1) } dt.

Note that v (7) is not continuous with respect to the time 7. Using (6.13) we
rewrite this time integration as

i s Ci—1+1

P 1t thi
/Sm E(xy (1), x)(7), vj()vi(r)dr = /,eim +ezez,-:_1/f”' +/Sl_+],

then we use v, (r) = x4 (7) and the integration by parts to have

[, B 300 @)k (e
thi—1+

i—1+1

¢ r
- z /tz+1 E(x (1), x) (), vy (r)x1(v)dT

=(;—1

tli
- /i+1 Ex (1), x) (1), v ()X L(T)d7

= E(DxL6) — E@ x5t
—
=0

i

—/K 1 [Vi(D), vj(D), Fj(v)] - VE(D)xL(7)dT
-1t

Ci—1+1
+ D> {EC)x () —EC T x (¢
=;—1 -0 -0

tl
—/ [VJ_(‘L'), v (), F) (r)] . VE(‘L’)XJ_(‘L’)d‘E]
tl+l

+E@ ) x (%) —E(s"THx (5"t
—_————

=0
l:

thi
_/m [VJ_(‘L'), v (T), F) (r)] -VE(7)x (t)dt
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= ExL,x, vPHxL(s) — EGThx s
Si+l
- / VL@ v, Fy(@)] - VE@x L (1)dr,
where we have used the fact Xq (+%) € 92 (therefore x| (t¢) = 0) and the
notation E(t) = E(X1 (1), x(7), v|(1)), D(r) = D(x1(7),x)(7), v (1)),

Fi(t) = F(xL(7), x)(7), vi(r), v|(T)).
Overall we have

i

X|| (Si+1) =X (Si) — /i+1 v (T)dr,

V(s = v (s — E(sHxL(s") + E(s"ThHx (57T

+/;+1 [vi(D), vi(0), Fj()] - VE(r)x 1 (v)dt —/i+1 D(z)dr.
S (6.65)

4

Denote

I = [axml)’ Ay (s vy (s 3v“<s1>]

B 3 9 d 3 ]
B |:8XL(s1)’ ax(sh)” dvy(sh dvyshH ]

We claim that, in a sense of distribution on (s', x| (s!), X|| (s1), vi(sh, \ )
€[0,00) x (0,C¢) x (0,27] x (8, — &) x R x R2,

[axL(si’Ll; shox(sh, vish), ax) (s st x (s, vis?)),
avi s x(sh, Vi)

i+1
- ; Lo oy (s [0x 1, 0, 8vy ], (6.66)

) [u(s"“; shx(sh) vis XL st x(s D), v(sl»]

= Z 1[,z+17tz)(si+1) {ovix, +vi0x},
b4

i.e. the distributional derivatives of [x [, x|, v|] and v x| equal the piecewise
derivatives.

Proof of (6.66). Let ¢ (t/, X1, x|, V., V) € C2([0, 00) x (0, Cg) x S x R x
]Rz). Therefore ¢ = 0 when x| < 4. For x; > § we use the proof of Lemma
15: For x = n(x)) + x 1 [—n(x))],
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IX1| Se §(x) =EMmE) +x [—nxPD Se xi,

and therefore £(x) Z¢ 6 and a(x, v) ¢ IE(xX)||v]? 2 |v|%8. Since we are
cons1der1ng the case t — s > tp(x, v), from |v|m(x,v) = X1 > & we have

—|2>0By

lv| Z¢ t— and finally we obtain the lower bound «(x, v) 2¢ 7

the Velocity lemma, for (x, v) € supp(¢)

3
1 ,e 1)
a(xb, vt 2 e CIN g (x, v) > e CII0S) i’

512 Zedi—sl.sp 1 >0,

where we used the fact that ¢ vanishes away from a compact subset
supp(¢). Therefore r(z, x, v) = r'(r,x, , X|, V., v|) is smooth with respect to
X1, X||, v, v| locally on supp(¢) and therefore M = {(z/, X, V) € supp(¢) :
' = t*(, x, v)} is a smooth manifold.

It suffices to consider the case |t/ — tf(f,x,v)| <« 1. Denote d¢ €
{0, Ox 1> Ox 05 Ov,, Dy 5 Oy ,} and npg = ej to have

/ [anJ_(T/; t’ X, V)7 an” (T/; ts X, V)7 aevll (‘E/; t7 X, V)]
{(z’.x,v)esupp(¢)}

x¢ (7', x, v)dxdvdz’

= / +/
/<1t />t

=/ (1im [x1 (7)), x(z), vj(z)] — lim [XJ_(T/),X(T/),VH(T/)])
M \t/pet T/t
x ¢(t/, x, v){e - ny}dxdv

— / [xL(T). X (). V()]0 (', X, v)d dvdx
{T/#14(1,x,v))

= —/ [x1(7"), x(z), v ()13 (', x, v)d7'dvdx,
{r/#t4(t.x,v)}

where we used the continuity of [x | (7/; 7, X, V), x (/s £, X, V), V| (T/; 1, X, V)]
in terms of ¢’ near t*(¢, X, V).

Notethat v (t'; ¢, X, v) is discontinuous around |t/ —¢| < 1(dim,, e vy (')
= — limr/th v, (t)). However with crucial x| (t/)—multiplication, we have
x| (19 v (%) = 0 and therefore

/ delx 1 (t/5 1, x, V)V (T/; 1, X, V)] (7', X, v)dxdvdr'
(¢ x.v)esupp($))

/r<t4 //>z‘f
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_ / (nm XL (v (x)] - lim [xm/)mr’)])
M T/t

/4t

x ¢(1/, X, v){e - np}dxdv

— / [x 1 (v (t)]0ep (', x, v)dr'dvdx
{t/#1(2.x,v)}
= —/ [x (t/;t,x, v)v (T t,x, v)]0ed (T/, x, v)dT'dvdx.
{T/#t8(t,x,v)}

This completes the proof of (6.66).
Since v always is multiplied with x in (6.65), we may apply (6.66) and

1
take derivative inside each f;§+1 of (6.65), separating the main terms with deX||
and de v, and treating the rest (underbraced terms) as forcing terms to obtain,
fOf ae S {8XJ_7 aX“J ) 8Xuy27 aVJ_7 8V”A’1 ) aquz}s

st

3ex|(s"+1) = dex) (s") —/ dev| (7)dr,
sitl
V(™) = B EGTx (57 + BT fex 1 (57! +0ev (s
S~——
—8e[E(x1, x), v)x 1 1(s"T1)

+/‘ 0eV1 (7) 0x, E(T)x (1) + 3V () - Vx E(T)x1(7)dT
gitl ——
+/ | |:8eXJ_(T) Ox, E(T) + 0ex(7) - Vx E(7) + 3V (T) - Vy, E(T)] vi(7)
gi+l ——
+E(7) 0eVL(T) + 0eX1(T) Ox) D(T) + 8eX|(T) - Vx, D(T) + 9V () Vy, D(‘L’)}
—— N——

Vy, E(r)x 1 (7)dT

1

~I—/v {VL(T)[anL(T), 0eX)|(T), deV)(T)] - Vix, E(T)
sitl ——
+v(7) - [0eXL(T), BeX| (T), BeV| (T)] - VVy, E(T)

— —

+F)(7) - [0eX1(T), 3eX|(T), DV (T)] - VVvE(T)} x1 (t)dt
——

+ / VL@, E() 4 v (0) - Vi E() + F(0) - Yy, E(1)} 8ex 1. (2) de
sitl S——

— /X [BexL(t), 96X (1), 0eV| (‘L’):| - VD(7)dr. (6.67)
sitl | ~—~—

Now we use (6.59) to control the underbraced term of (6.67). Notice that we
cannot directly use (6.59) since now we fix the chart for whole i -th intermediate
group but the estimate (6.59) is for the moving frame. (For clarity, we write
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the index for the chart for this part.) Note the time of bounces within the i-th
intermediate group (|t%-1 — ¢% ||v| ~ Lg) are

R L P S L R L
Now we apply (6.6) and (6.59) to bound, for T € (s't1 styand € € {¢;, £; —
..., 61 +2,6; 1+ 1,41}
(XL, (7), X, (1), Vi, (T), v, (D))
AL, (s, xp, (1), v, (s, vy, (1)
d(x1, (), x|, (1), V1, (x), vy, (v)) (XL, (7). X, (T), VL, (T), V), (T))

T L, (D). x), (1), VL, (). vy, (D) 3L, (1), xp, 5D, vi, D). vy, 1)

0 0 O T
0 1 1 033
_ 1o 1 1
< I e 6+ 0: (0 2D | 501000
0 vl v]l0 1 1
L0 [v] ][0 1 1]
LI T T E 1
Wb i Tl [v] o]
IvT2 \UTZ \UJP 1 1 1
WL2oowiE Wiz il El
T T [ S BN 1
« \lvilf I\vi\f ||v1‘|32 ||vi|\ o] o]
V| V| v v
VP ME E QD 0D
P P P L g1y 0p(1)
VIE NP VPR N §
S T LS TN 1) 0:(1)
LvIE NP RE RS SR
LI I T R ' S U 17
whowh i Tl [v] ]
ﬁ IUJI2 IvT2 11 1
WLz wiE v Rl vl
w2 2 w1 1 1
< (Clr=slv] V2oowiE WLz ol o] 6.68)

S T T N ’

Vg wip wip i %) O

L L T T N O 2 0D
I |2 1 | & §

1 1
|VL|2 |VL‘2 |VL

QP Wl P bl g, () 0:(1) |

1 1 1
L |VJ_|2 IVJ_‘Z |VJ_|2 |VJ_

where we have used [p¢ — pti| < 1.

We plug in (6.67) with (6.68) respectively, collecting terms with tedious but
straightforward bounds (E is linear in v|). We summarize the results as: for
s e [SH-], si]
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| 0x (s) | | ax (s") |
0X | < ) 0X | )
avys), | ~§ | v (s' ax) (s)

)
|aXJ_ | X |+|U|| XL |

I 0
ot + | cple—si v |
| ¢ ]

s 0 d
I5 P ekl + vl 5t

Bxl 3XL |VL|
| x| (s) | | 0% (s") |
[ iy i| <6 | e " )
I ~ vy (s x| (s
Zox | o R Ul ol

st Ay
St 0
s 19x 2
x| oy T | eClole=si o2 |

st 2,0
F P + vl ]

| ax)(s) | | 9% (s") |
v av
|—3V||<l5) e 12% 6L A

ol av |+ vl

st ov
IR +[ 0 }
|

3 X v Clvl|jt—s]|
FOwPIRE A+ oliggty | L
3X||(s) 3X||(si)
| 3V” | < | BV” | A
| v (s) | ~§ vy (s’ axy (")
aV” | BVH |+|U|| av” |
Sy 0
$ Vil
st 00X v + |:eC|vt—s|v|i|- (6.69)
PR+ ol

We apply Lemma 4 to (6.69) and we prove the claim (6.63).

Step 10. ODE method within the time scale |t — s| ~ 1: Refinement of the
estimate (6.59)
We claim that

X (s) o 0x);(s) o 3x)(s) - BX);(9) vl 1 1

[ —I | | | | T T Tl Tl
1 x|y vy av) < Clolr—s| | v Ivy]
SVHZ(S) HVHZ(A‘) BVHZ&‘) aV”ZZS) ~ C ‘vjrz |UJ‘2 1 1 b
| BXLI | | 3X“1 | | BVL1 | | 3VHl | |Vl| |V1l|

(6.70)

where ¢ = [%] .
Proof of the claim (6.70). By the chain rule

|:DXX||i DvXn,} Xy, vy [Dxxnl-l DVX|iIi|

Dxvy, Dyvy, | a(x)_y, Vi_y) LDxVIiee Dvvy,
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Note, from (6.6)

—B(X”i’vlli) < C|: ! 0:| < C|: %] := CB.
A, vi—) — LI T T Ll] ]

Denote
0 0
| Dxx; (5)] IDvX||»(S)|]
D;(s) = ! ! , G:= 2 .
1) [|va”,.(s>| Dy, (5)] el
Note that from (6.63)

D;(s'*!) < CBD;(s') + CBG.

Therefore, by induction,

\t—SHv\]

D[\tfs\|v|](s) < CD[\zﬂ-Hm](s[ L& Y+ CBG
Lg Lg

Jt—s|lv|
< CZBD[\;—SHU\]_l(S[ Le ]) + CBG
Lg

le=slvly_q
< C2BDy ' % )+ CPBG + CBG
Lg

lt=sllvly_»
e

< c3132D[|t_s”m]f1 (s ) + {C’B + Id}CBG
Lg

le=slvl

< C4B3D[ |;—L;||U\ -2 (s Lg

-2
) + {C°B? + C’B + Id}CBG

Cllt—sllvl]
< CC|t—s||v|BC[|t—s||v|]D1(sl) + Z C'HBBG.
i=0

By a direct computation yields B/ < 2/B. Therefore

D=y (5) § CUIIBDy 51) + BG
§

From (6.16) we have Dy (s!) < [ !

1
ol ’1’ ] and we conclude our claim (6.70).
v
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With these estimates, we refine (6.59) to give a final estimate for the case
that |§(Xq(T; 1, x,v))| < S forall T € [s, 1]:

(st x 1 (s5), x(s5), v (%), vy (s9))

s, x (sh), x(sh), vi(sh, vy(sh))

[ 0 0 01’2 0 01,2
Wi BC L T T
L |va| |va\ vl vl (6.71)
< cChla=9 | 1| ﬁ |'— e =slle—=sl |
2| vl vl vl
e gl v 95D
o | B 1 0:(1) 06 ()
i i vl _
and from (6.32) and (6.38)
d(Xer(s; 1, x,v), Vals; 1, x,v))
at, x, v)
01013013
<CC|UW_S) d(Xea(s), Va(s)) |v] % ﬁ
~ (s, Xa(sh), Va(st)) NE TR
VIV
Xa(sl,xusl),x”<s1),u(s1),v“(sl))
at, x, v)
0 (013013
Sccw(r—s)[(lvl 1 ISZ*I—SI] v % ﬁ
S P || T
VIV
I 013 013
x| 051 1 |t—s'
031 v 1
< cePle=s) (6.72)

8(Xcl(S, t’ X, v)’ VC](S9 t7 X, v)) S CeClvl(t_S)
a(t,x,v)
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From the Velocity lemma (Lemma 2),

Wi =l [=nGeD)] = Va1, x, v) - n(Xa(t's 1, x, 0)
= Va(Xa@th), Va@h) = I Ja(x, v) > Valx, v),

and this completes the proof for the case (6.60). O

Proof of Theorem 3 We use the approximation sequence (2.16) with (2.19).
Due to Lemma 7 we have sup,, supg—,<r ||ee|”|2fm Do Ser
714,12 -
P(lle” ™" folloo)-
Now we claim that the distributional derivatives coincide with the piecewise
derivatives. This is due to Proposition 1 and Proposition 2 together with an

invariant property of I'(f, f) = Lgain(f, f) —v(/u f) f : Assume ™ (v) =

fm ~1(Ov) holds for some orthonormal matrix. Then

T, f™@) =T o). (6.73)

Using (6.73), we apply Proposition 1 to have

™t x,v)
_ m—~{
—e fo z o [r/f+1 ,z)(S)v(ff )(S)défO(XCl(O) Ve (0))
¢+ £:(0) m—j
+/ z ltl+1 ;Z)(S)e f Z [r/+1,f-f)(r)v(F D@z
0
=0

X Taain(f™ 7 £ (s, Xa(s), Va(s))ds.

Now we consider the spatial and velocity derivatives. In the sense of distri-
butions, we have for de € {Vy, Vy}

de f™ (1, x, V) = Io + Ile + Il,. (6.74)
Here

O) m—
le = o Jo 20" fyeer ) @PEOS 5 1 0), Ver(O)] - Vo fo(Xa(0), Vea (0)),

and

 4(0) } A
I, _/ Z et g0y (s)e G gy @0 (P e

xde [Taain (17, 755, Xa(s), Va(s) | ds
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; £:(0)
/0 Zl[zm O Ji 25 1, @V E (@)

¢ Lils)

/ Zl[,m oy (@B (F" ) (x, Xa (1), Va(r)]dr

xrgainum—@, ™9, Xa(s), Ve(s))ds

_ m—A_
o z 0 Lyeer i GVFT D) (s)ds Jo(Xa(0), Va(0))
; £(0)

x / > ety [V(F" 5, Xa o), Va(s) | ds

=0

and
£4(0)

e = > [—ae# lim VWIS (s, Xals), Vals)

=0
+ 9ttt illl;zril w5 (s, Xals), Vcl(s))i|

o™ o T Vet o, VRSO 6)
€.(0) ) _
+ Z |:1im e~ I Zi Lt iy @OvE"T)(@)de
=0 sTtl

X Caain (F™ 5 £ (s, Xa(s), Va(s))

— lim e fsr Zj 1[[j+1,,j)(f)v(F”’_j)(t)dr

sit“‘l

X Caain (f™ 75, £ (s, Xa(s), Va(s))

Ly (s)
/ ZI[ﬂ+1 10 ($) Z [— hﬁlj V(F")(z, Xa(®), Va(o)

+ lim v(F" ) (z, Xa(1), Vcl(T))i|

-[th+l

o BT ey OvE (@)

X Caain (f™ 5, 75 (s, Xa(s), Va(s)).
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For III, we rearrange the summation, use (6.28) and apply (6.73) to get

£+(0)

e = > [_”(«/ﬁf"”“)(te, x4 00 (VB X szv‘f)]
=0
X Oe tte —Io Zf* 5 l[r“l,rl)(s)v(\/ﬁf’"")(S)

£:(0) .
+ Z e_fttl Z_/ 1[;j+1,[j)(f)\)(«/ﬁfm N (r)dr [Fgain(fm_g, fm—é)(té’ .X'Z, vf)

—Tain (S At Rxwg)]

t ot l*(s)l . '(T)V(Fm_j)(r)dr
+/ 1041 40y (s) Js 2550 Vit 4

0 Zez [t

X Taain (f" 75 f" 79 (s, Xa(s). Va(s)
Ly (s)

% Z I:_V(\/ﬁfm_e)(tga XZ, Uﬁ) + v(\/ﬁfm_“_l)(tg,xg, RXEUZ):I
=0

=0.
Proof of (6.73). The proof is due to the change of variables
u=0u, ow=0w, du=du, do=do.
Note
L™, ™)
=/ v —ulqo ( - w) Vi)
R3 J§? [v—ul
< { " — [ =) olo) f"(v+ [ —v) - olo) = f"w)f" )} dodu

Ov — Ou
= /R3 - |Ov — Oul“qo (W (’)a)) Vi (Ou)

x [ /"1 (O = [(Ou = Ov) - 06]0w) f"~1 (O +[(Ou — Ov) - O] Ow)

oY (Ov)} dodu

//|Ov—u| qo( ca)ma)
R3 Js2 |Ov — u|

N — @ = Ov) - @1@) "1 (Ov + [ — O)] - @)@
— f’” L) "1 (Ov) }dadi
=T, o).
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This proves (6.73). Especially we can apply (6.73) for the specular reflection
BC (2.19) with Ov = R, v as well as the bounce-back reflection BC (2.20)
with Ov = —

Using Lemma 6 and (2.12), we obtain for de € {V,, V,}

; 6:0)

2
e S P folloo) /0 S 1oy ()0eXa(s)]
=0

—ColVar(s)—ul? L
- Vae) —ap—=V (s, Xa(s), u)|duds
/R3 |Vcl(S)—u|2_K| (s, Xa(s), u)|du

£ 4:(0)

P o) / 2 Ty OBVl

3 [Va(s) — ul>«
2 2
+ P (1?1 folloo) () e 1" sup 3V (s; 1, x, v)].

0<s<t

ColVa(s)—ul?
X/ — Vo f" s, Xals), u)|duds
R

We shall estimate the following:

[a(x, v)]? |vl[a(x, v)]P~
o o 0 £ (2, x, V)], e~ me o F (%, )]

From (1.35), the Velocity lemma (Lemma 2), Lemma 7, and F™ > 0 for
all m, withw > 1

e~ a(x, v)]P Iy

(v >b+1[

1
S%’,t e~ @ (vt ——[a(Xa(0), Vcl(o))]'B 2€le

(v >b+1
x[—_'”' 0 fo(Xa0), Va )]+~ 1o, fo(Xa(0) vcl(om}
a(x, v) ’ o(x,v) ’
3
e (ngblHOlﬁ_zaxfo H |b|+1 B- 18 fo N
,B—l 2 .,B—1
e %axf H "Lavfo ,
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and
[<| >| [(X(-x v)].B 2 IV
Seqoe |_>|[o¢(Xd(0) Vcl(()))]ﬁ 2620\v|r
{mw FoCXa0) VaO)]+ sl fo(XaO), vcl(om}
Ser | tnho | H e |

where we have used o (x, v) g |v|? and the choice of @ > 1.
From Lemma 5, Lemma 6, and Lemma 7,

£:(0) o—Colu—=Va(s)?

Il Si PAIE™" S °”°°)/ as Z Tuest, ’“(s)/ Y VeGP~
x ||aexc1<s>||axf'"—f (s, Xea(9), u)] 4 10 Vea ()|
x (1 100" (s Xas),w)) }
Now we use (1.35) to have

% I See P folloo)

e—ColVa(s)—ul® B— b+1
[/ / olrats— —@ V)t o w)s ,Clollt— _s Wl (x, v)] : (u) duds
R?

i = Va)P~* [ (Xa(s), w)]P (v)bt!

o ys [ (Xa(s), w)]?

X sup sup b A [ (s, Xa(s), u)

m 0<s<t

e

o0

/ / S Y ) O ] CZC D)
w Ju— Va®P= ) julle(Xa(s), w1F~2

J

(%) =Cl=ul - (6,75)

B-3 .
o~ s |”|[O‘(X°(‘SZ’ Wiz Ay [ (s, Xa(s), u)

X sup sup
m 0<s<t

We first claim that

_ _ (" y—112
e w(v)tew(u)seC|v|(Z s)e C'lv—ul” <

~
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Using (u) <14 Ju| <14 |v|+|u —v| <1+ (v) + |v— ul|, we bound the
first three exponents as

— (@ = O) )t —5) —({v) — (u))s
<—(w—-C)(v)(t—s5)+w|v—uls+ ws.
Then we have, for0 < o < 1
2 2 2 2

2 S 2 w 2 S
v— — ——[s—owlv— < v— —,
y Ul m ! v —ull” = ==l =l 4 2

w|v—uls =
to bound the whole exponents of (6.75) by

— (@ - —s)+m|lv—uls—C'lv—ul>+ws

2 2
<@ -t -5 —C -T2 —uf+ > + s
2 20
< —(@ — Ot —3) — Comlv —ul* + C, , {s* + s}

Hence we prove the claim (6.75) for w > 1.
Now we use (6.75) to bound

_ 1
iy CIC OIS

2
<re PUIEM"T folloo) x

/ 2 _1
y /t/ T gy € MO @) ), 1P
0 JR3 |Va(s) — ul>=< (0)b+! [a(Xa(s), u)]P

A)

of

e—w(v)s (v)b‘H Ox fm ()

X sup sup
m 0<s<t

o0

t —C)|Va(s)—ul? b 2 B-1
@ (v) e 0 u v|“la(x, v
+// T " Pl vl
0 JR3

1

[Va(s) — ul>™ ()" |y11a(Xals), w)]P~2

®)
|

<U>s|v|ozﬁ_2

(v)P

e—w

avfm(s)

X sup sup
m 0<s<t

] . (6.76)

For (A) we use (1.29) with Z = (v)[a(x, v)]ﬁ_% and/ = G andr =b + 1.
For (B) we use (4.12) with B > B — 3 and Z = (v)[a(x,v)1F ' andl = Z
and r = b. Then
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249
(A), B) < L.
Similarly, but with a different weight e~ |v| 5 la(x, )P 5, we use
(1.35) to have
—w ot <| )' [(x, v)]F~2 1,

e PP folloo)

// —ClVa)-ul? et Il W) [ar(x, v)]P 2 <u>b+1duds
R 1t — Va2~ [a(Xea(s), w)] (v)o+!

Xa(s), )l
X sup sup [e” (")‘Ywaxfm(& Xa(s), u)
m 0<§‘<t < > + o

p— 2 -
/ / O s Clui—s) 107 0Pl v)]ﬁ :
R’ |1 — Va(s)2~ )l (Xas). u))?

i

Again we use (6.75) and (1.29) and (4.12) exactly as (6.76). Therefore for
0<8=5(1e""" folloo) < 1

-3
—w{u)s Iul[oz(Xc:L(;})?, wl 3 (s, Xa(s), u)

X sup sup
m 0<s<t

e

_ 1 . |v] _1
e et P T 7T (e o) L
< 8§ {sup sup e_mv)si@cfm(s)
~ m 0<s<t <U>b+1 00
-3
+sup sup [le”@® s Jole” d [ (5) .
m 0<s<t (v)b o

Collecting all the terms, for 1 < 8 < % and b € R with @w > 1 and
0<d K1, weget

B -1
sup sup e‘ww)t%axfm(t) +sup sup |e” t|v|a 3 fM (t)
m 0<s<t (v)b+ 00 m 0<s<t (v )
B3 24 B-1
S ) I Rt | |
(v)? (v)?

We remark that this sequence f” is Cauchy in L>([0, T] x Q x R3) for
0 < T < 1. Therefore the limit function f is a solution of the Boltzmann
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250 Y. Guo et al.

equation satisfying the specular reflection BC. On the other hand, due to the
weak lower semi-continuity of L”, p > 1, we pass a limit 9f™ — df weakly
in the weighted L°—norm.

Now we consider the continuity of e~ (v)~1afd, f and e~ )|y
aP=29, f. Remark that e~ " (1) ~1aP 3, £ and e~V |v|aP =28, ™ sat-
isfy all the conditions of Proposition 2. Therefore we conclude

e W) laP g, £ e €010, T] x (2 x R\ ),
e plaP 720, £ € €010, T] x (@ x B\ ).

Now we follow W1 estimate proof for e~ @ty 1ghla, f’”Jrl — 0 f™]
and e~ ) p|aP=2[3, 1 — 9] to show that e~ (1) 1B d, f and
e‘w(”)’|v|aﬂ_%8vfm are Cauchy in L. Then we pass a limit e~ (") (p)~1
aPo, fm — e W)y 1ghH, f and e‘mv)tlvlaﬂ_%avfm — e~ @y
a’g_%avf strongly in L™ so that e=@ W ()~ 1afd, f € CO([0, T*] x (2 x
R\ y0)) and e~ [v]af =25, f € CO([0, T] x (@ x R\ ). 0

7 Bounce-back reflection BC

We recall the bounce-back cycles from (iv) of Definition 2: (12, x9, 09 =
(t,x,v)and for £ > 1,

' =1 — (- D', oY,
1—(=1* 14+ (=D*

X,
2 2
vf-l-l — (_1)Z+lv’

where 1, (x, v) is defined in (1.27).
Lemma 17 Forall0 <s <,

minfa(x!, v, @(x?, v?)} S a(Xa(s; 1, x, v), Vals; 1, x, v))
<o max{a(x', v, a(x?, vh).

For U, (s; t, x,v) € N (therefore t£*+1(t, x,v) <s < tz*(t, X, v))

2
t t
[t — s < [t —s|v]

(v 7 Vaix,v)

K*(S, t’xa U) S
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For all 0 < s <t uniformly

@ B P {0 BRI (G (lof?
0y, 1 (t,x,v)l—‘ ZU.Vg(xl) e D—v-Vf(xz) ~alx,v)’
b x vyl IECD |y, 20D
[0y, (2, x, V)| = th(x,v)v.vé(xl)—l-(ﬁ Dip(x, U)—v~V§(x2)
t
Se ;
Va(x,v)
¢ _ 1_(_1)K‘ “_Ujax,f(xl)] 1+(—1)€[ ,A_Ujaxzf(m)”
lax,-xj@"”)'“ > Y vveen [T 2 YT v ve
[v]
<
st ey
1 —(—1)* 0y, §(x1)
|8vl.x§(x, V)| = ‘2(—1‘1,()6, v)) {51']' - vjVe‘,:(xl)}
L D! )
+f(_th(xa _U)) [81] v - vs(xz) ]‘ ’
Se i
[v]
00’ = 0, 19,0 = 1(=D'8;] Sal,
Oy, & (x1) 0y, & (x2) 1
9, (! — 11y = i i ,
9 & = 0 = Ve T o vem) | ~® ot
(A N Z0x 1) _pyust2) o 1
|8v,-(l‘ t )| - tb(xv v)v . Vg()(]) +tb(-x’ v)U . VE(XZ) NQ |U|2'

Proof These are direct consequence of (3.9) and the Velocity lemma (Lemma
2). |

Now we state the key ingredient in the case of the bounce-back BC: In the
sense of distribution,

Ly (s) [j . . . ) '
e Z/ A"z xd — () — o)l v)dr

=0 max({s,t/+1}

L(s) g
= Z/ [aezf, dex + Tdev?, aevf]
=0 max{s,t/ 1}
‘Vt,x,vAm_j (7, Xj — (tj — ‘L')l)j, Uj)d‘L'
La(s)—1
+ Z delt! — 1/71] lim A" (c +1/, %) + vl v))
=0 T} —(@t] =1t

—|—8et£*(s) lim Amfﬁ*(S)(.L. + tﬁ*(S)’ x4 ‘rvz*(‘y), vf*(S))' (7.1)
T — (1t —s)
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Proof of (7.1) For each time intervals [/, #/], we apply the change of vari-
ables

=@ =, te ] > x4, tel—@ =T, 0],
for j=0,1,...,0.(s)— 1,

K () e g s, (O] s )
+7® ) e [=(™ — ), 0]. (7.2)

From (3.16) the piecewise derivatives equal distributional derivatives almost
everywhere. Moreover

/ A"z, x] — (= o), v)dr
ax{s,t/T1}

[Ca(s)=1 i (0x(5)
— | Y / s /
/:O tj+l s
[e.)-1
= 0 Z / A" (e + 4, x + vl v))de
=0 —(t] =i+
T 0
+ ae |:/ Am—E*(s) (_[ + tﬁ*(s)’ xﬁ*(s) + _L,UZ*(S), vﬁ*(s))i|
(146 )
Ly(s)—1
Z / Am T+, x7 + 10/, vf)]
(t/— z/+1)
K*(s)—l

+ Z delt! — /1] lim A" (41, x) 4+ vl v))
T} —(@t) =i+l

0
+/ ae [Am*E*(S)(.L. + tﬁ*(s)’ x[*(s) + TUZ*(S)’ UZ*(y)):l
,([2*(?)75)

+ aet(*(s) hm Am_e*(s)(f + le*(s), Xe*(s) + Tve*(s), vﬂ*(s))‘
)=t —g)

Directly we have

9% [A’"_j(t w1 x4 1, vf')] - [aeﬂ', dex! + 7007, aevfl

-Vt,x,vAm_j(r + ¢/, x4+ vl v,
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Then we apply the inverse of the change of variables in (7.2) to the time
integration terms:

Ly (s)

Z/ [aezf, Bex + Tdev?, aeuf]
=0 max{s,t/+1}
- Vix A" i, x) — () — )/, v))dr.
We collect the terms and conclude (7.1). |

Now we are ready to proof the main theorem:

Proof of Theorem 6 We use the approximation sequence (2.16) with (2.20).
Due to Lemma 7 we have (2.13) and (2.14).

Now we consider the spatial and velocity derivatives. From the iteration
(2.15) and (2.20), for £,(0; ¢, x, v) = £, with t&T1 <0 < ¢,

fm+l(t, X, U)

(*(0) tJ e
= € -]max ¥ians! V(F )(z)dT f (Xe (0) _ [Z (0) O (()) ( (0))
£.(0) 4t
+ /t . Z.Z*(v) fr:ljdx o+ V(F™=J)(1)dt
=0 max{0,7¢+1}

X Tgain (f"" f"7 (s, 6" = (¢ = s)v", vh)ds,
where V(F"~/)(z) = pu(/rf" @ = v(/mf" N x/ — @ -

vl , vl).
From (7.1) and (6.73), in the sense of distribution, for de € {0y, dy},

(t . . m—j
Be (1, %, v) = Te + Tl = ¢ o 2 Tty @OVEDEXa@ Va6 oy 0) v (0))

Il

£4(0)
x [ Z/ N [aezf', dex’ + T0ev’, Sevj] VeV (F" ) (0, x) — (1) — ), v))de
=0 max{0,r/+1}
L4 (0)—1
= D Belt! — T E D@ I ]y = et OO0, 5 — 10l 0],
j=0

ot . X m—j
+e_'[0 205 Vi gy @V (F j)(fvxcl(f)vvcl(f))dfae [xl*(o)_té*(O)vl*(O)’ vl*(O)] Vi fo(Xa(0), Va(0))

e

£ (0)—1 L=ty 0 i oo o
+ 2: e[t — ' 1]e -5 Soaxiet o641 i i ity VE" D@ 0] v])dT

—L —ly o1 1 E
Xrgain(fm S )(t+7x+7v)1

e

0t @ o it OVETDERATR L m—ba0) O (0 5 0) _ 1 0)4(0) o)

e
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t .
+/ 11 g0y (s)e F 7S w1y OvE" ) m)de
0 '

x[9er", Bex + 58ev”, Bev'] - ik Tgain ("~ /" O, 2" — (@ =)', vhds

ot
+ / Test 10y ) gain F" 7O (s, Xaa(s), Vea(5))ds

Cy(s)—1
[ Z delt! — I W (Fm D@ I vy = et v (F O (s, Xa(s), V()

>
=

/ o [Bet’, Bex? + 1807, 8071 - Vyy yo(F" ) (z,x) — (t/ — )0/, v/)dr
max{s,t/

Jj= 1L

(7.3)
We shall estimate the followings:

12
e ¥ U)a £t x, e —Ivla(x V) ftx ).
(v)? (v)2

Firstly, we estimate I.. Using Lemma 17 and Lemma 6 and F” > 0 from
(2.15) and Lemma 7, for some polynomial P,

e 2a(x, v)k
< e W) 2 (x, v) Pl £lloo)
o tVE ( |v] ) vl }
x{e oz(x,v)<v> + 1+o¢(x,v) +o¢(x,v) 19 fol
P 40P = e LV }
oz(x,v)e +te (v) 2. v)
3
< oy a( + I e + (1) 2 S (e follos
a(x, v)
<+ 1) folleo) x P folloo)-
Similarly

e~ N fu|(v) 2/,
3 . 2
< e ) 2ax, )12 Pl £l

~

ol P L —T ] AN
alx,v)l/2 v

I RICIC0 1 DA U/ 10, fol
v BE a(x, v)172 *J0
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Zlvf?
te 2 01,2 t
—5 || K

+ . +t 2 .
a(x,v)1/? ¢ ) Ol(X,U)l/Z}

< A+ {03 follso + 185 folloo) P (U™ folloo)-

Secondly, we estimate Ile. Let ¢e € {¢x, v} With ¢px = e~ @ (v}t % and
172

Py =e W ”—lvlagi)‘)v) We have

T e )l (x, v)e e
S e ge@lat, w1 {1+ (14 ne S | p]

£,(0)
x[/o Z 171,17 (5) 106t | (v)*ds x Heglvlza,fHOO (7.4)

1+ £(0)

/ ZI,/H 0y () {([19ex| + 1106V (/e S~ (s, Xai(s), Va(s))ds (7.5)

hZ

£ £.(0)

ﬂ+1,t,~><s>|aevf| /R WVas) —ul ) £ s, Xa(s), u)duds

(7.6)
/ Zz(mltm oy (5) et

X[ Pean @0 £ 70 4+ [T (£ 8,76 Jas (1.7
/ Zz(mltm ,6)(S)[|3ex |+ 1w |]

X[ Pean @ £ 17O+ [Paan (7 00774 Jas (7.8)

¢ £x(0)

/ thHl 1y(5)]0ev |Hrgam W(FE Z)‘

| Pain ("~ 05| + |Paain @0 "~ f’"*f)\]ds]. (7.9

Firstly, we consider et/ —contribution. Then from Lemma 17 and (2) of
Lemma 6

~o () “E’“)Z (T4 + (1.7))
2
S S e el
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—o a(x V) ojv t|v|2
+e 0?2 — (I +0le fllool—a(x,v)

2
< 14 PP, follso) + P follso)-

_ 6,2 0 2
201178, flloo

Similarly,
12
e M{U 4y + (7.7)x}
(v)?
<, LU -conr [P0, folloo) + P follo) |

(v)?2
1+ P, folloo) + P folloo)-

Secondly, we consider the terms (7.5) and (7.8), which include |9ext| +
119ev?]. We use (2) of Lemmas 6 and 17, [0,x"| + 1]oxv¢| < ——2—, and

Va(x,v)’
(6.75) to estimate
_ a(x V)
{(7.5)x + (1.7)x}
(v)?
2
S [1 + P10 folloo) + P foloc) |
£4(0;t,x,v) | |
v)t 1/2
p2 [ e B
e—C(;lu—v £2 .
Xm"axf’"‘ (s, Xa(s), u)|duds,
2 2
51‘ |:1 +P(||69|U| 8l‘f0||oo)+P(”69|v| fO”oo)]
x max sup |le” 7 @ (v) —8 fm= £ Moo
0<t=mo<s< (v)2
+ £5(0;2,x,0) 5
_zy (u)
/ Z Ljeer, zf)(s)/ 7 (V=) e
lo]er(x, v)?

_ 12
e~ Colv=ulquds.

X
[Var(s) — ul>*a(Xa(s), u)

We use % < (v — u)? and (1.29) to bound it by

S [14 PAST, folloo) + PUE folloo)]

o
X max sup ||e_w(”)s—23xfm_z(s)||oo
Offimoisgt <U>
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(01¢)
XWIUW(X,U)W

S 0@ 1+ P 0 folloo) + U™ folloo) ]

o
x max sup [le”” " ——a, £ (s)]|oo-
O0<l=m(g<g<¢ (v)

Similarly we further use 19,x¢| + 1]3,v| < |17| from Lemma 17 to obtain

(wye [0l 0)!/2
(v)2
Si [1 + P8, follo) + P<||e9'”'2fo||oo>]

Oy (0 t,x,v) |v|
/ / vt + Da(x, v)'/?
1 JR3 | |

—C@\u—v 12

{(7.5)y + (7.7}

e
X—
|u—v£|2—"

i [14+ P 0, folloo) + P folloo) ]

19 ™ (s, Xa(s), u)|duds,

ulo
x max sup [e” 7 (wpe 11 o " (s, Xals), u) oo
0=<l=mp<s<¢ (u )
Oy (Otx v)

/,m L
+ Da(x, v)!/?

2 (L
xe™ 7 (=) o] {u) (Ivl duds.
)2 |Vals) —ul> a(x, u)

From 2552 (v — u)?, the last integration is bounded by
£4(05t,x,v)

/ / F =), 5 (V)a(x, v)!/? e—ClVa(s)—ul?
e 2t > duds.
e+l JR3 a(Xal(s), u) |Val(s) —u|>*

By the dynamical non-local to local estimate (1.29), this is bounded by

0@ [1+ P(||e9'“'2azf||oo> + P flloo)]

a(x V)

e () oo

X max sup |le”?
0=<t=m <5<t (v)?
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Thirdly, we consid¢r 9e v —contribution, (7.6) and (7.9). Note that (7.6)x =
0 = (7.9) since 9,v/ = 0. From Lemma 17 and (3) of Lemma 6,

e [0l )12

(v)?
< [1 + P D, folloo) + P folloo) |

{(7.6)y + (7.9)v}

; 6:0)

_ lle(x, )2 _oe
X/ Zl[t[+]7t€)(s)e w’(v)tTe Clv|
0 ¥=0

—Co|Va(s) I/i|2 -
X | TVats) —apr 005, Xals), u)ldud
/1R3 | Va(s) —u|2—l{| vf (s, Xa(s), u)|duds

S [1+ P 0 folloo) + P<||e0'”'2fo||oo)]
£ £:(0)

- Cepp vl alx, v)!?
X 1041 40 (S)/ vt g=w (u)s ,—Clv|
/0 Z; e ul(v)?a(Xa(s), u)'/?
e—ColVals)—ul?

X—
[Var(s) — ul>=*

duds

1/2
_ ulo(x, u)
x sup max |e” La £ s, x, 1) || oo
0<s<t 0=l=m (u)?

Now we choose B’ € (%, 1) and use a(x, u) < |u|? to have

I i
[a(Xa(s), w)]1/? ™ [a(Xals), u)]f

Now we use (6.75) to bound the integration by

¢ s ) I_
o—s) V1 u o (x, v)!/?
Z l[tl—H tl)(S) 27— /
| [Vea(s) — ul>~*a(Xa(s), u)P

Xe—cmze—cewd(s)—m duds

Now we use |u|2/3,_1 < (v)zﬁ,_1 (u — 11)2/3/_1 and we apply (4.12) to bound
this integration by

0 () P ax, ) < 00),
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Hence
o~ W [vfa(x, U)1/2

(v)?

S [14+ A folloo) + P ™0, folloo)]

o (uys |l )12
X sup max |le —
0<s<t 0=t=m (u)

{(7.6)y + (7.9)v}

3 f™ (s, x, W) oo

x [ <U>[a(xO(U8))]ﬂ,—l/2a('x7 U)l/ze—C9|U|2 n 0(8)]

S [14+ U folloo) + P01 folloo)]

+0®) [ PU™™ folloo) + P10, folloo) |

1/2
uloe(x, u _
« sup max [l @I Ty ot e,
0<s<t 0<t=<m <u>2
Now we gather all the estimates with small 0 < § « 1 to close the esti-
mate. Then we follow the exactly same argument as the specular case and this
complete the proof of Theorem 6. O
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Appendix: Non-existence of second derivatives

In the previous theorem, we consider the first-order derivative of the Boltz-
mann solution with several boundary conditions. Now we show that some
second order spatial derivative does not exist up to the boundary in general so
that our result is quite optimal.

Assume that all the second order spatial derivatives exist away from the
grazing set yp = {(x, v) € IR X R3 : n(x) - v =0} but up to some boundary

Q2 x R3. Taking the normal derivative 9, = n(x) - Vy = Igﬁggl -V, to the
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Boltzmann equation directly yields

V-0, Vyf =—0,0,f — V(\/ﬁf)anf + 8nl—‘gain(fa - anv(\/ﬁf)f .

In this section we show that the underbraced term blows up at the boundary
with any velocity for symmetric domains.

Assume fy < (\/ﬁ)l_6 for some 0 < § < 1. Then there exists K 5, (v, u)
such that

Cgain (f, f0) + Lgain (fo. /) — v/ ) fo := /R3 Ky, (v, u) f (u)du.

First consider the diffuse reflection boundary condition. Theorem 2 plays
an important role in our proof.

Proposition 3 (Diffuse BC) Assume Q = {x € R? : |x| < 1} and &(x) =
|x|? — 1. Assume the initial datum fy satisfies, for some xq € 92,

lim K7 (v, w)u - n(x0) 9, fo(xo, u)du; > C > 0, (8.1)

n(xg)-u=0
where u; = u — (u - n(xg))n(xg). Then for any t > 0 such that for all v € R3,
O gain (f, ), X0, v) — 30 (/1 f) f (£, X0, v) = 00. (3.2)

2 2
We remark that for 0 < 6 < % we have sup, 1717 £ (D)loo < 11677 folloo

due to Lemma 7 or [3,9] and ||ozl/28f(t)||0O < 1for d = [9,, Vy, V,] due to
Theorem 2. The blow-up of (8.2) is due to the interaction between expected

singular behavior La with the non-local collision operator. For the diffuse

reflection, indeed this blow-up happens for any time 0 < ¢ < 1. Our proof
assumes crucially the initial condition is non-zero at the boundary. However,
for initial data vanish near the boundary, it is strongly believed that solutions
will become non-zero at a short time later at the boundary and such a blow-up
will happen generically.

Proof We denote the different quotient

Ag f(t, x,0) := [ x +8[—”(Xi], v) — f(t, x, U)'

Then

Ae{lgain(f, )} — v(iVide )f = LCgain (D¢ f5 f)
+ Fgain(fa Nef) — V(\/ﬁ Ae ).
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Assuming f >~ fo < (/m)! 78 for 0 < § < 1, we have

Fgain(Aefv f) + Fgain(f, Aef) — v(ﬁ Aé‘ f)f
:/3 ks (v, u) A flx, u)du:/3 k, (. u)f(X—en(x), u)—f(x, u)du,
R R

&

(8.3)
where K £, (v, u) >~ K(v, u) in (2.9) with slightly different exponents. For sim-
plicity let us assume K 7, (v, u) is bounded. We split as with 0 < A <1

/3 K, (0, M)f(t,x —en(x),u) — f(t,x, M)du
R

e
:/ +/ +/ . (8.4)
[n(x)-ul<e e<|n(x)-u|l<A A<|n(x)-ul
———
1 I 111

The first term is bounded as T < 0(1)||e6'|”|2 flloo- The last term is bounded
due to Theorem 2. Since &(x) = |x|> — 1, forall0 < r < & < 1,

VEx —rn(x)) -u = VE(X) - u — / {VEx) - V2E(x — r'n(x)) - u}dr’
0

=Vé&X) u— 2/’ VE(x) - udr’
0

=VEW) - u+ 0(&)|VE(x) - ul
= VE(x) - u. (8.5)

Therefore A < |n(x) - u| implies A < /a(x, u) and

ew(u)t
1 §|w—wW”vaLfawai/ (v, w)du
ASva N

CNt
=/ +/ < O+
A<Va,lul<N  JA<Ja,lul=N A

For the second term of (8.4) we use (8.5) to conclude, for0 < r < ¢,
e < |ln(x —rnx)) -ul <A
Therefore f (¢, x — en(x), u) is differentiable so that

B B 1
f(t, x SH(X);M) fa, x,u) :/ O f(t,x —ern(x), u)dr.  (8.6)
0
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We further split II as
I = %sm(stx\ + /vsm(x)-msz\ :
¥ <lul<N |u|< 3. lul=N
1L, 11,

For the second term we use Theorem 2 to have

1
I, < e_N/ dr/ dun/ dur kg, (v, u)0, f(t, x —ern(x), u)
0 e<lun|<A luc|ZN

1
Se_N/ dr/ dun/ du,
0 e <Jun| <A lue|>N

Kz (v, u)

X )
V|un? + CreN?

where we used

8.7)

E(x —ern(x)) =&(x)+ Cer = Cer.

The main term is II,;:

1
11, :/ dr //a'<|u <A durdu, Kgy (v, u)o, f(t, x — ern(x), u).
0 e

L <lul<N

From (2.3), fore < |u,| < A and 4 < [u| <N,

2 2
valx—ern(x), u) _ W < N2/ A2teN2.

t(x—ern(x), u) < 3 S
|ue]

N2

Let x(r) = x — ern(x). For & < |uy| S Aand & < u| < Nandt 2

N2V A2 + eN2,

on f(t, x(r), u)
= n(x()) - Vx[f(t — 1y, Xp, U)

Ip
+/O [Cgain(fs f) — v(F) f1(t — 5, x(r) — su, u)dS}
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2
= > n(x(r) - 7 (xp)dr, f(t — t, X1, 10)
i=1
+n(X(r)) - ”l(xb)u

n(xp) - u
Iy
+/0 n(x(r)) - {Fgain(vxfa S) + Ceain(f5 Vi f)
VRV ) = VROV I — s, x(r) — su, u)ds.

n(xp)0p f(t — ty, Xp, )

Now we expand in time for the underlined term and choose 0 < ¢ < 1

(N?V/ A2 + eN? « 1) so that

u - n(xp)dy, f(t —ty, xp, u)
I—tp
= u - n(xp)dy fo(xp, u) +/O {u - n(xp)}0,0, f (s, xp, u)ds

= 1 - n(xb)dy foxw, 1) + O (e [le=™ W /ad, 0, f (1) ] co-

We remark that d; f can satisfy the same estimate as in Theorem 2. The tan-
gential derivative term is bounded by

[n(x(r)) - 7 (xp(x (r), w)) |3z, f (2 — 1y, X1y, 0))|
S In(xp) - 7i(xp) + O (x(r), u))u - Ven(x () |95, f (£ — 1y, Xp, u)]

< Ao (xp, u)

] Vi f(t — th, Xp, u)]

< Ne” Ve W JavV, f(t, x, v) oo,

Voa(x(r),u)

and the time integration terms are bounded by, from 7, (x (), u) < P

—Clu u'?
”eelvl Fliso / / = ————=— 0 f(t — 5, x(r) — su, u')|du'ds

+ NV M £l ol P a Ve £ () 1o
2 _
S 1T flloolle™ W aVy £(1) ]| oo™ N

—Clu—u'|? /18
u)(t—s) € |u']
/ /3 lu —u'|>—* / i du'ds
R a(x(r) —su,u’)y 2

ew’NtCN

[ (x (r), u) /2

2 _
< !PT flloolle™ VN aVy f ()]0
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Now we plug these estimates into II, to have

I, + 11,

2/ 1
~ Jo eS|un| SA Ja(xg — ern(xg), u)

L <IN

X [/ Kz (v, u)u - n(xo)dy fo(xo, u)duf]
-n(xo)-u;=0

u-n(xg)=0

—{o@e ™M e Jat b, £ O)llos + ™)

1
1
X
/0 /8§|un|§A «/Ol(-xO — 81"7’!(3‘:0)7 M)

¥ Slul <N
— O(DONe™ N em™ W1 oV, £ (1)l oo
— On eV 1 fyllsolle™™ P a Vi £ (1) oo

1 1
. /0 / %S'""'sA [a(xg — ern(xo), u)]¥/2

L <ul<N

Due to (8.1),if 8§ < 1, for N > 1 and 7 < 1 with N2/A2 + eN2 « 1

! 1
I > / / du,du.dr
~ e<|un | SA 3 5 e
0 TSy \/Iunl + Cer|uq|

N2
> Y Quedu
/e§|uan lun| + N "

> N21n—N — On.A(D)

2V
=3

|

|
2
5

|

|
Q
4
>
i
3

For the bounce-back and specular cases we consider small solutions
f=o0g for0<o K 1. (8.8)
where f solves (1.7). Then g solves
g +v-Vig+0ov(/1ng)g = olgin(g, 8-
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Note that for either the bounce-back or specular cases we can express g
along the trajectory

t
g, x,v) =e™° I v(ﬁg)(s,Xcl(s),Vcl(s))dng(Xcl(o; t,x,v), Va(0; 1, x, v))
t
to / o0 J V(IR Xa (1), Va()dr
0

X gain(g, 8)(s, Xai(s: ¢, x, v), Va(s; t, x, v))ds, (8.9)

where the backward trajectories are defined in Definition 2 respectively. We
remark that for 0 < o < 1, g is uniformly bounded in C! away from the
grazing set yp.

Proposition 4 (Bounce-Back BC) Assume Q2 = {x € R3 : x| < 1} and
E(x) = |x|> — 1. Assume the initial datum fo = ogo > 0 supported in
I <lvl<2and

lim Kgo (v, uw)u - Vi go(xo, u)dur, > C > 0, (8.10)

n(xo)-u=0

for some xo € IQ2 and some v € R3 where uy = u — [u -n(xg)In(xo). Then
there exists 0 <t = Co for some C > 0 such that

InTgain (g, &) (1, X0, v) — 0 (/g8 (1, X0, v) = 00. (8.11)

We remark that u - V, go(xo, u) is rather arbitrary for u - n(xg) = 0.

Proof Assuming g ~ go < (/) 7° for 0 < § < 1, we have

Paain(Aegs VI + &) + Dain(V + 8 Ac8) = V(JIE Ac ) (VA +8)
:/ Kgo (v, u) Ag g(x, u)du :/ Kg, (v, u)g(x —éen(x), u) _g(x’u)du
R3 .

’

(8.12)
where Kg, (v, u) >~ K(v, u) in (2.9) with slightly different exponents. For sim-
plicity let us assume Kg, (v, u) is bounded.

We choose (x, v) € 2 x R? so that |x* — xp| < 1 and |v* — +vg| <« 1 for
all £ € N (even or odd). Then

ta - ) - t5 ’
[y A RIET (R Yy S
R3 € [n(x)ul<e  Je<|n(x)-ul

The first term is bounded. Due to (8.5) we have |n(x) - u| > ¢ implies |n(x —
rn(x)) -u| 2 & forall 0 < r < &. Then by Theorem 6, the function g is
differentiable and the second term equals

&
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z, - ) - tv )
/ kgo(v,u)g( x —en(x),u) —g(t, x u)du
[n(x)-u|l>e

&

1
:/ / Ko, (v, u)d,8(t, x — ern(x), u)dudr
[n(x)-u|>e

1 - 1
-1/ ]
0 JeIn(x)-ul<1,|t(x)ul<N 0 Jein(x)ul<1,|t(x)ul=N
1
+// . (8.13)
0 Jn(x)-ul>1

For the third term of (8.13) we use Theorem 6 to have

2
(u) ew(u)t < (u>26w(u)t

— <
|8ng(t9-x 8rn(-x)v M)| ~ a(x _ Srn(x), u) ~

’

and therefore the third term of (8.13) is bounded. For the second term of (8.13)
we use Theorem 6 to bound

3 w'(SNZ
=2 xgmnoox/ dr/ d”"|un|2+cfgzv2/ dutgkgy (v, 1)

N
d dy,——. 8.14
X/o r/g ””|un|2+CrsN2 (8.14)

Now we focus on the first term of (8.13). Using (8.9), (7.3), Theorem 6, and
Lemma 17, we have

ang(t» y’ l/i)
= e~ W@ f, (O g OO 1LY g (Xa(0), Vaa(0))

+v€*(0) - Vugo(Xea(0), Vc](o))}

2 2 2
lul _ep,p 2 t(A+0Dul® _opp2
2l P15, goll oo + —————e~ 714!

a(y.u)” a(y. u)

t
+osup eV adg(0)lloo / /
0<s<t 0 JR3

|v —u \2 |8 xel
n /
Z 1 tz)(s) P ey

+o e golloo {
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Using Lemma 1.29, Lemma 17, and (6.75), we bound the last integration by

2
u)t |M| / / ) (t—s) e g|Vcl(S) u'| 1 du/ds
Vo (y, u) R3 [Va(s) — u/'[>~ a(Xa(s), u)
yelul 1

< ew uyt .
(u) oy, u)

~

Now by the explicit computations in Lemma 17

e fo G IO [ Oy OOV g0(Xa(0), Vaa(0))

+05O LV, 00(Xa(0), Vcl(o))}

ot golloo n(y) - VE(x") () - VEED)
> e 0 [e*m)—v.vg(xl) F0) = DT o o | VaO)
V,80(Xa(0), Ver(0))
e~ 19, g0(Xa(0), Va(0))] = Celull Vugo(Xa(0), Va(0))]
a0y, 1)
2
> ool sl o, (1) Ty 0) - Vago(Xa(0), Va(0)
a(y,u)
 0c(1+1]u])

[u]|Vxgo(Xa1(0), Va(0)| — Celul|Vygo(Xa(0), Va(0))],
a(y, u)

where for the underbraced term we used

n(y).{ nGw) () ’
() v n(y) v

1) VE = 1) (VEG) - ) = n(y) - VEG) (VE( = th0) - v)
(VEG) - 0) (VEG = 1y0) - v)
ty {(1(2) - [0+ VIVEG = 7)) (VEG) - 0) = n(3) - VE) (v V26 — 70) - v) |
(VEG) - 0) (~VE( = 1h0) )
o (v V2E(y — Fv) - v)

Iy -
= — v VIVE(Y —
(Ve w0 -v ey -y ) L VIVED = T0)
= _AWY e, (8.15)
") v

where for some 7 € [0, #], and from (2.2), (2.3), and the Velocity lemma
(Lemma 2) we have A > 0 and

- 1
A v) = Ce— - V2%(y — 1) - — 20 1, B(y,v) ~gq —

|v] vl vl
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Therefore finally the underbraced term has the following explicit lower bound:

£.0) [n@) VERDH () - vs<x2>] n(y) - V&(x?)
* v VE(D) v VE(x2) v VE(x2)
_ Ay, v) 1
= g*(O)l’l(—xl) 0 +£+(0)B(y,v) + O (n(xl) ] U)
tv|? O (1 +t|v])
= 0O¢(1 .
TS STy
Therefore
8ng(t» Yy, M)
_ ol tlu)?
> o=l golloo g (1) Var(0) - Vigo(Xa(0), Va(0))
a(y,u)
Os(1
—M|u||vxgo<xd<0>, Va(0)| — Ce|ul|Vygo(Xa(0), Va(0))|
a(y,u)

20,12 2

- |u t(I+0)|ul” o
I ¢ o P gy gl g — LTI -

aly, u) aly, u)

0 2
—olle?!! gouoo{

1
— sup fle W g, g(1) oo x e 1L ]

0<s<t <M> a(y, M)
(8.16)

Choose y = x —ern(x),t = Co forC > 1,0 <dé < landa(y,u) < 1.
Then the first contribution of (8.13) is bounded below by

1
/o /sfln(x)~u|§8 /r(y>vu|§1v

: 1
Z U/ dr/ dun/ du D — ]
0 e<|uy|<é lug|<N T|“n|2+C7"8N2
xKgo (v, u) Ver(0) - Vi go(Xer(0), Ver(0))

1
du,,
~0 dr/ _ duKe, (v, u)u - Vygo(xo, ).
/o e<lugl<s nl? + CreN? Jyan % ’
(8.17)

Now we use the condition (8.10) for e <« 1 and u,, < 1

/ll Kgo (v, ) Va1 (0) - Vigo(Xa(0), Ve (0))du
Uur|>N

~ / Kgo (v, )u - Vi go(xo, u)du, = C # 0.
n(xp)-ur=0
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We combine this term with the second term of (8.13) to conclude

5 1
d
(8.17) — (8.14) > {Ca—e—N—o(l)}/ dun/ T
. o |un|?+ CreNZ

1 2
1 CeN 11
> In{1+ du, 2 —-.
N/g CeN2 ( |un|2) Hn = N2

Now all the other terms of (8.16) except the first term are bounded by

(8.18)

1 1
1 1 1
du,, + 48 dun—2§|1n8|+8x—.
& 17 s 17 &

Therefore we conclude (8.2) as ¢ — 0. m|

In order to show the non-existence of V2 f up to the boundary for the
specular reflection BC (Proposition 5) we first obtain the explicit lower bound
of (1.35) with a lower dimensional symmetric domain, 2D disk.

Lemma 18 Ler Q = {¥ = (x1,x2) € R? : |x1]2 + |x2|? < 1}. Define

1
ri=./x}+x3€[0,11, 6 €[0,27) suchthat (cosf,sinf) = ﬁm,xz),
X +x2

VU, ;= v;cosl +vys8inf, vg := —v;sinf + vy cosh.
We claim that as o — O (therefore |r — 1| < 1, v, < 1) asymptotically

It —slvgl? |t —s|of?
-2 2N=2 ax,v’
Ji+ - Vet
t—slo* |t —s|of?

2+ A=)y alxnv)
(8.19)

18, X1 (s £, x, v) - i(Xals; t, x, )| =

|13, Var(s; 2, x, v) - i(Xa(s; 1, x, v))| =

Proof Explicitly x = (rcos@,rsinf, x3), and v = (v, cosf — vy sin6, v,
sin 6 + vg cosf, v3), and
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xt = (cos ', sin 0, x3 — (t — tHv3),

ol = (mcos A msin A v3) ;
1 Ploal + /(1 = r) 57 + 02

02 + U7 ’
, rlonl 4+ 2 — 1)/ (1 — r?)v2 + 02
t - t - - -2 )
vy + vy
and
(t — )0 7| 0n]

1
2/ =)oz + 92 2,/(1 —r?)v} + 02

< ly(s;t,x,v) + 1,

E*(S, t’x, v) S

where, for £ > 1

Y% — (2 —1)cos! _ v ,
Uz + 02 VR + 03

v, cos O — vy sin O _ rvg
L , Y=y —20cosT! | ———
- | =2 - | =2
\ Vr Y N

Therefore, for 1! < s < t¢, we have Xq(s) = xt — (¢t — s)vt, Va(s) = v,
and

00 =0, 6'=0—cos”!

wo = cos™!

r(s) = | Xa(s)| = [x° — (¢ —9)v",

_ - Xa(s) - (0 —1) Xa(s)
Up(s) = Va(s) - —= , vg(s) = Va(s) - —, v3(s) =3
! T Xa)] ¢ L0 ) Xa(s)l
Directly
gV = Vg, Oglg = —Vp,
9, cos™ ! % ve = v

\ 02+02 J2+ (1 —r?)i?
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271

_ ) _ r g ro
Jg COS = =1, dgcos 1 = 1 ,
- =2 - -2 - -2
NS NOPE VU2 + =2y
_ Vo ) _ rUg Vg
d3, cos ! =53 d;, cos ! =5
-y | =2 v: 4 v =2 | =2 v+ v
iRoy) Ut o) Catv
_ Vg — _ Vg —rv
dg, cOS ! == "_ , 0g, COS ! =5 rf ,
/17%4-175 Un+U9 /ﬁ,%'i‘ﬁg Un+U9
5 _1 [ VncosO — vgsin6 Vg
5 COS = —
Up -2 -0
92+ 07 Vi U
9 _1 [ Uncos® — vg sinf Un
5, COS - "
Vg - _9
/ﬁ%_'_ﬁg Un+U9
_ v, cosf — vg sin 6 _ v, cos O — vy sin O
Jg CcOS ! z =0 =9,cos ! a ,
[52 1+ 2 /52 1 2
vy + vy v, + v
and
[Un | ¢ vg rg
35,0t = S+t —s|, 050" =———Q20—1)—5
0 - k) v, - - )
02 ' bl bl
_2 - -
P e Gl I (2¢ — 1)
300" S 555 W = ;
vy + (1 = r9)vp 2+ (1= r2)i2
and
_2 - -
¢ [t — s{lv]*val ¢ 2Lvg
o\ < Y =

Y2+ (1 —-r)u

|t — sl|vnl

Jo2+ (1 —r)os

8179 WE S

~

JU2+ (1 —r)us

<t —s|, o5, ¥ = —2¢

Vg

1
_2 _2
v, + Vg

+ 0 (1)—,
T
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and
_ 22\52 2
te_te+1<2\/(1 r)U§+Un’
02+ U
_2 -
t— 1
by s — L L e,
2,024+ (1 —rHv  2,./02 + (1 —r2)v}
and
= =2
— rv
ot = 10— 0 ,
v + v 1912,/02 + (1 — r1) 5
gprt = _~@L=DOnBpr® = slitglr®
o252+ (=7 \Ja2 (- )i
v 1+ ||t —
B, 1t = —(20— 1) o + o =S
1512,/02 + (1 — r2)i2 vl
1— 25 |01,/ 02 + (1 — r2)0}
g1t < @0 — D= 5oy VT
1512,/52 + (1 — r2)i2 0]
1—r2)v v
Slt—sl_; r)lvzal_2 i Iv_e2|
v, + (1 —r)vy [v|
Ifr < 4 then (1 — r?)v} + 92 > 2|9|* and
41 0 0
B LA LI PR
3|v| V] V]
If r > % and || < || then
t—slv v
eyt < LWy < s
U vl [v]
2 2
If r > % and || > || then
(1 —r)|5g| Dol _ It —s|
aﬁetes |t—S| _ [0g ] [vo] | - |—_er — .
(1 =)ol (B + 5) [v] 0]
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Therefore

r—s
859t€ 5 g

Directly

9, Xai(s) = 0,0" (;j;neie) - 2—’:w| (2’; Zf)
e (22)
2¢ — 1)55 —sin6¢ — cos Yt
151,/92 + (1 —r2)ﬁ§( cos ¢ — sin yt )
(2¢ — D]vgllvn] ¢ — D1 —r)|vgl?

+Og(l)[ +
o1y 03 + (A =rv5 [0/ 57 + (1 =)y

v
" ||§|| e - tm'}’

where Og (1)-remainder is bounded by

_ — = - 52 _ 2V52 -
el ) Y et B A A W 1

Y024 (=) vl |v] v |v]

t—s|v|(1+ |v _ v
| lv](1+ | |)+|t—s||v|+| n|.

J2 4 (1= )2 9]

Now we focus on the first term (most singular term) of 9, Xa(s). We note
that

S

_ rg
wgzwo—%cos =
=2 =2
\/ Uy T Vg
_ v, cosf — vg sin @ _
= — 6 4 cos™!

=0+ {cos —_—
U2+ 03 U2+ 05
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-1 rvg
— Cos —_—
_2 _2
vy + vy
In the limit of » — 1, we have 26080=vsinb ~ _ on(51 cos . Without the

U245
Vp T
loss of generality we assume g > 0. Then for cos 6 # 0, cos™! is decreasing,

and_l v, cos 6 — vg sin O T _ _ T _
cos —9:6+E—avncose—6+0(vn)2E—av,,cos@.

[52 4 52
v; + Vg

for some constant a > 0. In particular, at & = 0, a = 1. Therefore, we have
for the leading order term of v, in d, X is

(— sin6¢ — cos 1//3) B (— sin9¢ — cos(9t + 7 —acos Qvn))

cos B¢ — sin Yt cos 0t —sin(0* + 7 — acosOi,)

—sin 8% + sin(0¢ — a cosHv,) _ [cos*
= B ~ —acosfv,| .
cos 0% — cos(6¢ — acosBv,) sin 0¢

which is parallel to n(Xa(s)). Without loss of generality we now fix 6 = 0
and jv| =1,r =1,
dnXa(s) - A(Xals; 1, x,))

20— 1 It — 1 v
i ( L sllvl( +|v|)+|t_s 51 ol

ri0 |v|,/v2+(1—r)v9 1/v2—|—(1—r 0]

This prove the first estimate of (8.19).
Using the same estimates leads to

- —rvg { —sin6* v cos Y’
05, Xa(s) = (2€—1) T ( cos §° ) + - (sin :ZZ)
v |oly/52 + (1 — r2)5}

1+ vt —s
ro, =
U]
20—1 ( sin®®+ cosy’ 1+ |0t —s| 1
= : 0 (1— I ZS5T o 2
bl (—cos@é—l—sml/f/@ + O:(1) H S

Since r&* ! < 0 < ¢4,
30" = 3, ¥ (—|v| sin ", || cos ¥t 0)
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Regularity of the Boltzmann equation in convex domains 275

_2 -
|t = sllv]~|vg|

Sl = ]
= — —————(—|v|siny", |v|cos ", 0).
6,%+(1—r2)6§( [v|siny™, [v|cos ¥, 0)

Therefore we conclude our claim for 9, V¢ (0). We can easily check

gl

19 Xa ()] S iz —sl,
JU2+ (1 —r)o?
- |o? _
CAZIO]S iz — s,
JU2+ (1 —=r2)o? (8.20)
917 — s

195, Va(s)] S 14 ,
JO2+ (1 —r2)o;

- 1 - _
|05 X1 ()] < I 195, V()| S 1+ [vllt —s].

O

Based on Example 1, we naturally consider the 2D specular problem. We
consider the 2D specular problem for f(¢, x1, x2, v1, v2, v3) solving (1.33)
where v3 is a parameter. Here (x1,x2) € Q = {x € R? : E(x) > 0} and
the convexity (1.13) is valid for all ¢ € R?. We study (1.33) with specular
boundary condition (1.11). Denote v := (v, v3) = (v, v2;v3) € R3. We
define

ax, ) = |0 VE@)[* = 2{0 - VZE(x) - D)E(x).

Note that V&(x) = (0x,&(x), dx,&(x), 0).
The following estimate is crucial to establish the weighted C' estimate
(Theorem 4) and non-existence of V2 f up to the boundary (Proposition 5).

Lemma 19 For6 > O and fori =1, 2,

e~ W1y, Caain (f, )

2 2 B
,S ||69|v| f”oo{”tevl f”oo+||8v3f||oo+ He @ (v)s

al/zv,—,f

|

8.21)

ey
(0) -
(
where v = (v, v3) = (v1, V2, V3).
Proof The key is to split | 3 with respect to the size of [v+ i | [v/o(v +u ).
Recall from [8] that the gain term of the nonlinear Boltzmann operator in
(1.9) equals
1—‘gain (&1, 82)(v)
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:C/ du/ dw gl(v—i-w)gz(v—i-u)q(")‘( lul )
R3 u-w=0 |u+w|

|u + w|"_1 _ lutvtw]?
_— ¢ 4

’

|ue]

= C/ du/ dw g2(v+ w)gi1 (v + u)qy (L)
R3 u-w=0 lu + w]

|u + w|"_1 _ lutvtw?
¢ 4
b

|ue]

u—uv
= C/ du/ dw g1(v + w)ga(u)gg (¥)
R3 (u—v)-w=0 lu — v+ w]

|u —v+w|K_1 jutwf?
LB B 7

9

lu — vl
. |lu — v|
=C [ du dw go(v +w)giw)gy \ ———
R3 (u—v)-w=0 u—v+wl
= vt wl T e (8.22)
lu — v

where gg(cosf) = %. This is due to two change of variables (37),(38)

and page 316 of [8]. Then

8vi Fgain(fv f) = 2Fgain(avi fv f)
+C/ du/ dwf (v +ur) f+uy)
R3 u)-uy =0

Juy | ) g +ug [T gl e
xq*( e 7 (——)-(u +v+uy)
O \luy +ul | 2)

_ 2 2
= 2T guin (B, £, f) + Og(De V1 1VF )2

Denote the standard cutoff function x > 0: x = 1 on [0, 1] and x = O for
[2, c0). We have

Paain(@0, f. f) = / duy f (v + up) Qi1 90, f (0 + 102)
R3 u)-uy =0
xe‘wq*( |uay | )IMMJMMIK_1
O\ Juy 4 u |
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We further split it into, for 0 < ¢ < 1,

b +l/_tJ_|1_£Ol1/2_£
/ dqu(U—I-M“) X(
R3 u)-uy =0 ups3

‘”II+U+“L|2 u u +M Kk—1
Xavif(v‘f‘ui)e_fq()k ( | H| ) I I i du,
|y +ul |y |

|6+IZL|1_SO[1/2_8
+/ duy f(v+uy) {l—x(
R3 uj-up=0 ujp3

‘M||+U+MJ_|2 u uy+u k—1
Xy f+u)e T g ( Juy| ) g+l | .
) +wy | oy |

For the first part, [u) 3] > |v 4 i1 |'"fal/?7¢ and we parametrize u |, on a

plain perpendicular to u € R, asu) 3= — ub‘t'l"uj so that
LI L
du;, = —— = ——du, 1dug o, (8.23)
oy, 3] luay.3]
and the first part equals

_ u)-uy
/Sdullf(U‘FM)/zduJ_avif (U1 +uj 1, v24uso, vi— ” )
R R

uj,3

o w o luyl
|U'i‘l/lJ_|17€Ol1/27‘8 _M q0(|u”+uj_|)
X X e 4

uj,3 o 3l +u |1 ¢

We now integrate by partin u ; fori =1, 2 to get

- _ un - u
_/ d“Ilf(’“run)/ 3v3f(v+lu_,v3— M)
R3 R2 K

o w (gl i

[0+ [Tl 27EY g2 9o (luu+uL|) uy,idid L

<X ¢ N 2 T—x
uj,3 oy, 307wy 4w |

_/ du||f(v+u|)/ f(a+fu,v3—””'“)
R3 R2 uj3

o o gl ) 2
|0+ 'l /278 e ® 9o (|MH+M)M||,1 _
X Oy i1X e 4 du | .
L 1—«
w3 |y 3lleey +uL]
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; S = = \1/2 duy 3 liey |
Directly |0, ;,a(0 +u1)| S a(v+uyr) /2 and ‘dui,i < T Ve conclude
IRIE X,|ﬁ+ﬁi|*5a1/2*8+|ﬁ+m|‘*8a*86,lun+v;w2 llgg llocly |
ot N u3 oy 3y +up]'=*
- - * — iy |
e Clututol llgg llooliy] llggllctla] g lloo ity I (1 + 57 57)
loeg 312 g4 77 Juy 32y 4 up > loey, 3 Moy + up|>*
N L L i
1 [v+ul| fa e Z Jig |
ng l{u”z’—“lﬁﬂh\l"a'/z’” =17 1—«
- [0+ u| [u),3] g 3lluy +udl
loay | (1 + faey ) 1 —Cluj+v+u 2
F1y50 ey 1/2—¢ 1 e~ Clugrvturl”
{loti, |'fa SM”’3}|M\|,3|2|MH +uy |Ix luy +ull?

Note that | £ (v + up)| < e CloHP 1P £l and

'f({, i vy — M)' < e CIHILP=Clos s d) P | 8102

u).3
(8.24)
and
ol FuL+vl® o =Clotuy | ,=Clo+i L P —Clos+ur 3G i)
< o= CWP =C'lur? y=Clotuy
where v := v + v with v = v - u—‘:l and

[u)
2 2 2 2 2 2 2
v +upl”+v+url” =l +uyl”+vr|”+ v +url” + |y~ > v]”.

The 9, ; { } —contribution are bounded by the following three estimates: For
the first term

—luil® 4z

2 0 2 2 e uj _ naan 12 .

e IVl ef1Y! 2 — iy e |o+it | dii
r2 [vtur| Jr

du 2
X/ 13 < ~C'P.
|

s rad 1 13l
up3—|4ia ' a2 |1 11,3

For the second term we use

BLBLy < o Clotusl?y 80 o !

&
U3 iyt
1+ (v3 — |M|,3|)

f+uy, v —
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such that
= = 1l—¢g,,—¢ — ~
o+ui| "o wy -y
f+u)———s—flvs - ——
luj 31 K
|L¢H+MJ_+U\2 _
e+ uyl
R L 1)
u N L
l—e ,—¢€5
<e—|v| —Jv+uy | —|ul|2” 0\v|2f”2 [V+uy| "o uyl
|y +ug|'7*
1 1
luay,3127¢ Juy 31° + [vsuy 3 — ity - i 1]°
o [0+ as] " Fa (v) 1

2 2 2
<e—|v| —lvtuyl” p—lul lle Ov| %

lug +ur |76 Juy s> lag |

where we have used
2 2 2
e Ly | S g + vl + Tolle AP < (1 e Clral,
Now we decompose | = ujq + u)p = uj - |Z— + (uy —uy - |uJ_|) and
2 2
bound e~1VI7||?IV1” £12x

5 = 1l—e_ —¢
_ pplvtul] o
—|Uu
/ u du||’3/ dig eIl . _—
luy 3= [0+ a2~ <1 R? lie 1 [®fuy 3]

= Ul N2 _
—luy p+(—v-= - - - 2
/e ey d”H»b/ dit g 1]
X
~ — - V3U|.3
R it p| 1" R [it),q — 121

o |
_ _ap [0+ "o+ )¢
5/ dii L e |”l/ . duj 3 - 5 ,
R2 luy 3— |+ | a2 0|1 et [ uy 3]°7¢

where we have first integrated u| 3D integral and then changed variables
Ujg > Ujg— V- T The u 3-integration yields

</ dﬁle_lﬁL|2|ﬁ+ﬁJ_|160((17+12J_)8/ duj 3
~ - 1 —
R2 lut|® g a—lo+a [1-ea 2|1 1U),3127¢
= =~ l—e_, (= = \—¢&
s e2lvtug a(v+uyg
5/ dii o] | | ) (8 )
R2 i |
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1 1
X———
[0+ [0790-9) oG 4 7,) G-

_ 5, |Ed—e)
5/ dﬁle—luj_lzlv—i_"fll 1 1 )
R2 loe 1 |® a(@+ig )2 (-ee

Note that e (5-+i 1)2 =079 > [n(x)- (54 )] =20 and |i 1 |* > (i1 )F
and we bound the above by

eIl eIt

il L o= q<
W rRl-ug+n- 6]1_28(1—8)(1[” il R |nt- ﬁﬂsd[” url 5 ().

A

For the third term in 9,,, ; { } we bound it by ||e9|”‘2f||cz>ox

/ du|/ di, [/ e lui3— v3|2du”3]
B Jr szl etz g 32 ’
) 2= ClluyvP—lur ) (1 . )
|u 4 w1« ) +uy|?

</ i / e=Clurl gy | (i) 2e=Cllu+ol?) - 1
~ Jgs I w2 |0 —I—L_u_|1_6061/2_5 |M||+MJ_|1_K |M||+MJ_|2 :

We note that, by separating [§] > § or |§] < §, we can write
a1/27(176)(1+52) > (n-[0+ I/—u_]}lf(lfs)(lJrsz) and |7 + I/—U_llf(lfs)(lhsz) >

{nt-[v+ ﬁL]}I*(I*’E)(ng), where nt = |:(1) _0 ] n, so that the inner 2D

integral are two convergent 1D one

/ —Cluyl du | +/ du |
(it @27 oty <L in (o<1 [0 @' a2
—Clurl”g di
e U Uy
= 1+/ 1/2—¢ +/ 5 7 |l—ey1/2—¢
nt{p+ac<t O nt(prag)i<t [V ULl

2 -
+/ e~ Cluil dii |
i y<1 [0+ a1 ¢

< +00.
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Similarly, the first term is bounded by

2
e~ lva—uy 3l

0 2
nwﬁerMﬂme/dw / ER——
R3 luy 3120+ |1 tal/2e | 3]

* |ul by
CIO ( |v+w‘ )u“,iduJ_ _ \u+u:—w|2

o + g |1

9

and the same argument yields the same bound.
We now turn to

= - l—e, 1/2—¢
e_w<”>s/ duy f(v+ uy) {l—x(|v+w‘| * )]dl/ij_
R3 uy-u=0 uj3

|u]
lutv+w)? C]f)k( [v+w] )
O, f(v+uy)e & —
2 lugllu + w|'=*

In this case,
104+ | a2 > Juy 5.

We now parametrize du | in two different ways.
We decompose

) = i+ iy, =iy n iy nt (8.25)

If |u) 3] > |I/_t||7nJ_ |, then we use the same parametrization as in (8.23) and
absorb the factor (v + b_tl)al/2 in L norm, to get

e~ @ (Vs g (vtuL)s /3 duj f(v+uy)
R

uj-u
X/ dﬁLe—w(tH-uL)savif (l_) +ig,v3— M)
R2 uj3

L * uy]
|U+”J_|l_8a1/2_8 _M 490 (|M|\+ML|)
x[1—x le N 1—«
uj.3 |y 31y 4 uL]
Sol/2

(v)

olv|? - s
s 1€ flloolle™@ WIS

av,-f(s)”oo
e—Clul? ,=Clotuy|?

du |
X du” — — 12 T—x "
R3 it [1ea2=e >y 5 (U u L |oc = Juy 3] fuy 4+ u L
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First we integrate i , to drop TS +u1 %

N singular term for 0 < « <1

|Un+u\|n| |Un+u\|n|
/ du”,n < 00,
lu).n

|M||—lu|1 <4 —ug g|t"

so that we only need to bound, for |v + i\ eal/2E > uj3,

/ di / eVl 1
[l.nt |0+ i 2028 |0+ i |\ 2eal/2-2e luy 3]

M e lilPaz, | el
< 7 — .
l.n |0+ i1 | |2ea2e |u“’3|2—s/4

The inner integral is finite, since > [n-{v+u }| = |v-n+uj ,|, and
the integral is a 1D integral:

P T
/—_ = ’45 < +00.
RIN-V+ Uy gl

Moreover, from |u) 3] > |i) ,1|, the outer integral takes the form

e—lunatusl 1Yy, ﬂL—’_u“,”l'zdu”ﬁdM”’”L
/]R |MH’3|2—8/4
e—lu\|,3+v3Ize_lvl\,ni—’—ull,nilzduH ptduy 3
= / {ly i + oy 313274/

We are done in this case.
We now consider the case |u) 3] < |u ,1|. We now choose a different
parametrization. We define

Ul p:=Uuj-n, uLni Z:uJ_'nJ_.

Ul pU|ntul 3u
Now we choose u | , andu | 3 as parameters so thatu | 1 = ——=tr=tizll

Ut

and

I/l
dl/tj_ = Lduj_ nduJ_ 3,
|t} |
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so that we need to bound

e—ww”/ duy x f(v +u||>/ duy nduy s
R3 R2

UL || ntul3u)3 oy |

avif(v,,—i—ul,n, V,L— , U3+ MJ_,S)

uH,nJ- |1/l||,nJ_|

i |
{ (w + L_tJ_|18a1/28)} et 4 (—mﬂm)
x11—x e 4

w3 oy lloy + up|1*

Directly this is bounded by ||€0|U|2f||oo||e_ @ (v)s Mumx

- - g 12 2
/ du (0 +a)e v duy dug du
|| — _
R3 [0+t 1 | ~f 0 /2 > ) 3] |0+ it |el/? [t Moy + g |15

_ _ 2
- (T+iy) it 1 n]”—lv+uy| 1 _
s du S T e 2eln 4 (1-26,1/2—2¢ it n.
R3 [0ty [ea 2oy 5] [V UL+ 0 |~ oy ptl

eicluls3|2dul3 ~Cluy 3 duj 3
~ fR lu

where we integrate u first to dro —_—
& 1.3 P i IR oy 3Fus 3T

+00.
In the case of |[v + ) | < 1, this is bounded by

2 2
< / du / e T du I
~S — - _
R3 |0+ i |*ea? |MH,ni||”||,3|1 €

el P=lvtu Py | 1
Ss dM” - = |de l—¢
R3 1,0 + Unl ey lluy,3]

I 2

- e liLnl duy , e~ Ivtuyl

~S du” 7 5 |4e 1—¢’
R? i1 n + Unl eyt lluy,31

where the inner integral is 1D which is finite and bounded. On the other hand,
from the assumption [u 3| < |i) ,|, the outer integral is

_ 2 _
/e vtu| d”ll,nidull»nduﬂﬁ

|b_l||,nl ||u||,3|1_8

i ST ST, ST S
lit) L] duy 3 o~ On i al? g =10 Ly 1| ) i
= = 7 diy pdity
0 |MH,3| |u||,nl|

_ - = = 2
e_lvn+u||,n|Ze_‘an-+MH,nJ-| _ _
< = - dity ,1duy,, < o0.
R2 |”||,nL|
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In the case of |[v + ] | > 1 we bound the integration as

_ =2 2

v+uJ_ U+MJ_>178 eiluj_ﬂl e*ll)‘l’ll”‘ _

; T T ey + b
R3 JR |u||3|1 25|U+ML|1 80(2 & u” ALl u,|

U +MJ_n v,L)e —li L p=lvuy | ~
/ du”/ dMJ_’n.
R} |M||3|l % (i1 + Up] 26~ ity ]

iy L1 d - _ 2 . .
Again |, bt S < | nJ_|1 =2z and hence the integration is
Joay 31 1=2
bounded by
// —lia 1 nl? p—lo+ity 2
|M|| 1|1z 2“’|MJ_n+U |1=2¢
< (B0) (B (B,0) T ()12 S 1

Now we prove the main result for 2D specular case.

Proof of Theorem 4 We repeat our proof in 3D for the simpler 2D case, and
we only point out the differences. Lemma 7 is valid with easy adaptations. The
new 0y, f (¢) estimate follows from taking the v3 derivative

{0 + v10x, + V20x,} 003 f + V(F)Ovy f
= 1—‘gain,v3 (fv f) + l_‘gain(8v3 fv f)
+ Lain(fs 3 ) — vos () f — v(/ 11003 ) f.

Since
oy (VI £1 + Cgainos (s HI S P Flloo),

5 —Clv—ul?
V(s f) 14+ Tgain Bos £ I S P Flloo) / fv_umwwf(uﬂdu,

and 9y, f(t, x, v) = 0y, f(t, x, Ryv) for (x, v) € y— then we follow the proof
of Lemma 7 (similar to d; f proof) to conclude ||y, f () lloo S [|0v; folloo +
P(le”"F fl0o)

The Velocity lemma (Lemma 2) is valid with changing v to v. The non-local
to local estimates (1.28) and (1.29) are valid for0 < x < 1forv = (v, v2): In
the proof of (1.28) in Lemma 1, Step 1, the claim (4.1) is valid. In Step 2, (4.3)
and (4.4) are valid with «(x, v). In Step 3 we define 61 and o, by changing
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v to v. Then (4.6), and (4.8) hold by changing v to v. We follow the same
proof of Step 4 to bound fot"(x’") %Z(s v)ds. We use | |v| to
conclude (1.28). For the proof of |(1| 29)|51|n Lemma 1, we use the same time
splitting of (4.10) with changing |v| to |v|. Then all the proofs are followed
and we conclude the proof using ﬁ < m-

The fundamental Theorem 5 is valid with a simpler proof with changing all
v to v. In fact, due to topological advantage, we can use a global chart x| = 6

in R! (such as the polar co-ordinates) for the boundary as
n(x“) = [R(x”) COS X||, R(x”) Sian],

(vector-valued function) with a global ODE for in the polar co-ordinate system
near the boundary! The proof of Theorem 5 follows step by step of the 3D
case but with simpler arguments without changes of charts. The estimate of
e~ V, f(t) exactly as in 3D case, valid for «. The most delicate part

1+|u|2
isto estimate V5 gain(f, f), Where a weight stronger than /o, dueto 8 > 1/2
in (1.29). It is important to know, that we are unable to establish (1.29) in the
2D case with 8§ = 1/2. However, we are able to close the estimate by using
additional bounds on 9y, f.

Basically we follow the Proof of Theorem 3 but we use Lemma 19 when
derivatives acton Vg (s) argument of I"gain ('~ —t , M H(s, Xa(s), Vals), v3).
More precisely we use Lemma 6 for e € {x1, x2, vy, v2}

11, of (6.74)
¢t 40 " -
/0 ds Z L, tf)(s)e ki Z o L+t ) @vF")(T)dT

x {aeffd(s) [ Paain (9 777 775 + Pan (=4, Vi 77|
x(s, Xai(s), Va(s))

+0eVa(s) - Vg [Fgain(f’"‘ﬁ, f’"“)] (s, Xa(s), vcl(s»]

£4(0)
/ ds > Ay oy ()™ B ot an VDI L emet | omt) (5 %4 (5), Ve (s))
=0
R0 _ . _
x/ dr Z 141 1y (T) {ancl(s) (Vi [ (T, Xa(t), Va(r))

Jj=0

+ / 0eTa(s) - V5B — @)/l " (x, Xa(0), u)du
R
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£ £:(0)
_ £5(0) m—{
fn )y [l 6y OVEM ) (s)ds fo(Xa(0), Vcl(O))/ z 11 4y(s)

x {0eXa(s) - V(s ") (@ Ka(®), Va(®)
n / BeVa(s) - VaB© =, 0)yu) " (7, Xa o), u)du] .
R

We repeat the estimates of x and v derivatives with weight (% %J&

respectively. From (1.35),

r alx,v) . - _ _
e W 1832 Vet () 185 T gain (f™ 6, £ 75 |ds
0 (v)?

t ] |5|36C|ﬁ||tfs|
< / T e R G Dgain (7 SN
0 (v)
t -
5/ e~ W= 51ds x { RHS of (8.21)}
0
1 ———l
< =P folloo) 11 + 180, folloo + lle™! a' 285 flloo)-
o < )
From (1.35),

ro v a(x,v) - - —
/ o e D) 1367, £~ ds
0

W
a0 (—s) |1—J|26C|U|It—s|
(v)

/
[ —
5/ e~ @ W=951ds x { RHS of (8.21)}
0
1 —orw)s 11
(v

e 3 85 T gain (F™ 5, ™75 ds

o

< =PI folloo) 11 + 190, folloo +

81

For the term containing 9, Vel (s)- Vi B(v—u, w) we use (1.34). The estimate
for the other terms are same as the proof of Theorem 3. O

Proposition 5 (Specular BC) Recall (8.8). Let Q := {x € R? : |X| < 1} be
2D disk and £(x) = |x|> — 1. Assume the initial datum fo = ogo(|x|, v) >0
supported in % <|v| <2and

lim Kg, (v, )1, 0,80(x0, u)du; > C > 0, (8.26)

n(xp)-u=0

for some xo € 32 and some v € R3. Then there exists 0 < t = Co for some
C > O such that if | Xa(0; t, x, v) — x9| < 1 then we have a blow-up (8.11).
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Remark. We note that the condition (8.26) is compatible with the compatibility
condition of the specular BC (1.32). The specular reflection BC entails, at
x € 0%, g(t,x,v) = g(t,x,v — 2(n(x) - v)n(x)). Now we take a spatial
derivative parallel to the boundary, 9,

0:g(x,v) = 0;2(x,v—2m-v)n) — [2(n - v)9;n + 2(d;n - v)n]
-Vyg(x,v—2(n-v)n)
= 0:8(x, R(x)v) —2(n - v)dy, g(x, R(x)v)
—2(0¢n - v)9y, g(x, R(x)v),

and take 9,
dg(x,v) ={I —n®n}ldyg(x,v—2(n-vn).

The compatibility condition reads v - Vi go(x, v) = R(x)v - Vygo(x, R(x)v)
and hence

Vn0n80(X, v) + v 9rgo(x, v)
= —vpdngo(x, R(x)v) + v d:go(x, R(x)v)
= —V0n80(x, R(x)v) + v79:g0(x, v) + 20,V 9y, go(x, R(x)v)
+2v7 (97 - v) 3y, go(x, R(x)V).

Now from the specular BC we can set 9,,g(x,v) = 0 (oddness) and
dv, 80(x, v) bounded at x € 9$2. Hence in the limit as n(x) - v — 0 with
n(x)-v < 0and x € €2, the compatibility condition reduces to evenness for
the function v, 0, g(x, v) at the grazing set

lim v,,0,8(x, v) = lim (R(x)v),0,g(x, R(x)v)
v, —0 v, —0
= lim (—v,)0,g(x, R(x)v). (8.27)
v, —0
By setting lim,, 0 v,9,g(x, v) = C > 0 we can have (8.26).

Proof of Proposition 5 The crucial ingredients of the proof are a 2D borderline
estimate of Theorem 4 (due to Lemma 19) and the explicit lower bound of
(8.19) in Example 1.

@ Springer



288 Y. Guo et al.

We decompose

g(tvx —8n(.x),l/l) _g(t,.x,l/t)
Kqy (v, 1) _
R3 € In(x)-ul<e

+/ +/ .
e<In(x)-u|<l 1<|n(x)-ul
—

II

By Lemma 7, the first term is bounded by

/ S OMIgloo-
[n(x)-u|<e

Due to (8.5), 1 < |n(x) - u| implies 1 < |n(x —en(x)) -u| for0 < & <« 1.
Therefore we use Theorem 4 to bound the third term as

/ < / @ L o idi x e
1<) ul ™ 1+elal2 5 1+| 14102

< On D le ™™D —Z Ve £(1)so
S OnaeWlle™” M s Ve f (0 oo

Now we focus on the second term II. Due to (8.5), g(¢, x — ern(x), u) is
differentiable for all 0 < r < 1 and we have (8.6). We further decompose

1
I = /5§|n(x)~u|§1 /0 Ko, (v, u)d,g(t, x — ern(x), u)drdu = ‘li‘un‘fl +%Slun|§1 .

luc|<N luz|>N

Set x(r) := x — ern(x). We apply Theorem 4 as (8.14) to bound the second

term as
1 -N -N
e e
[ st
0 Je<uyl<t lunl*+ CerN €

From (8.9), (6.74), and Theorem 4,

1
II >ﬁ<|u,,<1d”/o dr Kgo (v, 1) {3, Xa(0) - Vigo(Xa(0), Va(0))
lus|<N

+3, Var(0) - Vigo(Xa(0), Va(0))}

1
0 2
+o P([le"" fonoo)%smgldu/O dr kg, (v, )
lur|<N
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—Cy|Va(s)— ul2
19n K s )|/ e Veg(s)duds
/ P Jes Vals) — x8

—Cp|Va(s)— u\z
|On Vl(s)|/ | V;g(s)|duds
/ N s [Vals) — ’

Fuy<e M sup 19, Vals: 1. x, v>|] :

O<s<t
From (8.19),

_2
3, Xa(0) - Vigo(Xa(0), Va(0)) =~ MVcl(O)
a(x(r),u)
n(Xe1(0))9,80(Xe1(0), Ve (0)).
If | X (0) — xo| < 1in (8.26), for0 < § < 1

1
s [ 0,100, Xa©) - Vigo(Xa0), Va0
luz|<N

! 1
~t dr/ duy————.
/0 e<iuy|<s  |un|?+ CerN?

From our assumption (Vzgg = 0 for |u| < N) 9, Va(0) - Vi go contribution
vanishes. From Theorem 4, (8.19) and (1.29) all the other contributions with
time integration are bounded by

: 1
o X dr dup———
/0 /ssm,sa "un|? + CerN?

Collecting the terms and using (8.18) yields for t = Co with C > 1

1
1 1
I = t—a—e_N/dr/ duy—————— 2Ny — = +00,
~ ' Jo o<iuy<s " lunl® + CerN2 ~N g

as ¢ — 0 and this proves the proposition. O

References

1. Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. In:
Applied Mathematical Sciences, vol. 106. Springer, New York (1994)

2. Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatial inhomogeneous
kinetic systems: the Boltzmann equation. Invent. Math. 159, 245-316 (2005)

@ Springer



290

Y. Guo et al.

10.

11.

12.

13.

. Esposito, R., Guo, Y., Kim, C., Marra, R.: Non-isothermal boundary in the Boltzmann

theory and Fourier law. Commun. Math. Phys. 323, 177-239 (2013)

. Glassey, R.T.: The Cauchy Problem in Kinetic Theory. Society for Industrial and Applied

Mathematics (SIAM), Philadelphia (1996)

. Guiraud, J.P.: An H-Theorem for a Gas of Rigid Spheres in a Bounded Domain, pp. 29-58.

CNRS, Paris (1975)

. Guo, Y.: Regularity of the Vlasov equations in a half space. Indiana. Math. J. 43, 255-320

(1994)

Guo, Y.: Singular solutions of the Vlasov—Maxwell system on a half line. Arch. Rat. Mech.
Anal. 131, 241-304 (1995)

Guo, Y.: Classical solutions to the Boltzmann equation for molecules with an angular cutoff.
Arch. Rat. Mech. Anal. 169, 305-353 (2003)

Guo, Y.: Decay and continuity of Boltzmann equation in bounded domains. Arch. Rat.
Mech. Anal. 197, 713-809 (2010)

Guo, Y., Kim, C., Tonon, D., Trescases, A.: BV-regularity of the Boltzmann equation in
non-convex domains. Arch. Rat. Mech. Anal. 220, 1045-1093 (2016)

Hwang, H.-J., Velazquez, J.: Global existence for the Vlasov—Poisson system in bounded
domains. Arch. Rat. Mech. Anal. 195, 763-796 (2010)

Kim, C.: Formation and propagation of discontinuity for Boltzmann equation in non-convex
domains. Commun. Math. Phys. 308, 641-701 (2011)

Kim, C., Lee, D.: The Boltzmann equation with specular boundary condition in convex
domains. arXiv:1604.04342 (submitted)

@ Springer


http://arxiv.org/abs/1604.04342

	Regularity of the Boltzmann equation in convex domains
	Abstract
	1 Introduction
	1.1 Diffuse reflection BC
	1.2 Dynamical non-local to local estimates
	1.3 Specular reflection BC
	1.4 Bounce-back reflection BC
	1.5 Non-existence of 2f up to the boundary

	2 Preliminary
	3 Traces and the in-flow problems
	4 Dynamical Non-local to Local Estimate
	5 Diffuse reflection BC
	5.1 W1,p (1< p< 2) Estimate
	5.2 Weighted W1,p  (2leqp< infty) Estimate
	5.3 Weighted C1 estimate

	6 Specular reflection BC
	7 Bounce-back reflection BC
	Acknowledgements
	Appendix: Non-existence of second derivatives
	References




