Downloaded 06/01/19 to 128.104.46.196. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. MATH. ANAL. (© 2017 Society for Industrial and Applied Mathematics
Vol. 49, No. 2, pp. 1205-1332

DYNAMICS AND STABILITY OF SURFACE WAVES WITH
SURFACTANTS*

CHANWOO KIM!' AND IAN TICE#

Abstract. In this paper we consider a layer of incompressible viscous fluid lying above a flat
periodic surface in a uniform gravitational field. The upper boundary of the fluid is free and evolves
in time. We assume that a mass of surfactants resides on the free surface and evolves in time with
the fluid. The surfactants dynamics couple to the fluid dynamics by adjusting the surface tension
coefficient on the interface and also through tangential Marangoni stresses caused by gradients in
surfactant concentration. We prove that small perturbations of equilibria give rise to global-in-time
solutions in an appropriate functional space, and we prove that the solutions return to equilibrium
exponentially fast. In particular, this proves the asymptotic stability of equilibria.
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1. Introduction.

1.1. Surfactant-driven flows. Surfactants are chemical agents that, when
added to a fluid, collect at free interfaces, thereby reducing the surface tension. Varia-
tions in the surfactant concentration on the surface also give rise to tangential surface
forces called Marangoni forces, which can have a dramatic effect on the surface. The
surfactant dynamics are driven by several effects: absorption and desorption from the
free surface, fluid transport along the surface and in the bulk, and both bulk and
surface diffusion. We refer the reader to the books [5, 10] and the review [15] for
a more thorough discussion of surfactant physics. In manufacturing and industrial
applications, surfactants are a fundamental tool for stabilizing bubble formation in
processes such as foaming, emulsifying, and coating (see the books [12, 14] for an
exhaustive list of surfactant applications). Surfactants also play a critical role in pre-
venting the collapse of the lungs during breathing (see [8] and the references therein)
and are currently being developed as tools to aid in drug delivery in the lungs (see,
for example, [2, 11]).

In this paper we consider a simple model of surfactants in which a single layer of
fluid occupies the three-dimensional domain Q(¢) with free boundary surface I'(¢). We
neglect the effects of absorption and desorption and assume that all of the surfactant
is concentrated on T'(t) with density é(-,t) : I'(t) — [0,00). The coefficient of surface
tension depends on the surfactant concentration ¢ via a relation o = o(¢é), where we
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assume that the surface tension function satisfies the following:

{0 € C3([0,00)),

o is strictly decreasing.

(1.1)

The latter assumption comes from the fact that surfactants decrease the surface
tension in higher concentration, and the former assumption is merely a technical
assumption needed for our PDE analysis.

We will assume that the fluid is viscous and incompressible and that a uniform
gravitational field —gez = (0,0, —g) € R? is applied to the fluid. The fluid and
surfactant dynamics then couple through the following system of equations (see [5, 10]
for derivations and precise definitions of the operators; we will soon reformulate these
equations and thus do not fully define the operators here):

Oy + u - Vu + Vp = pAu — geg and divu =0 in Q(t),
(1.2) pv — pu(Vu+ Vul v = —o(&)Hr@v — Vre (o(é)) on I(t),
Dyié + edivpyy u = yArpeé on I'(t),

where V() denotes the surface gradient on I'(t), D; is a temporal derivative along the
flowing surface, divr() is the surface divergence, Ar(y) is the surface Laplacian, v > 0
is the surfactant diffusion constant, and Hp is twice the mean-curvature operator
on I'(¢). The first two equations in (1.2) are the usual incompressible Navier—Stokes
equations. The third equation is the balance of stress on the free surface, and the right-
hand side shows that two stresses are generated by the surfactants. The first term
is a normal stress caused by surface curvature, and the second is a tangential stress,
known as the Marangoni stress, caused by gradients in the surfactant concentration
on the surface. The fourth equation in (1.2) shows that the surfactant concentration
changes due to flow on the surface and diffusion.

Although surfactant-driven fluid dynamics have been studied numerically by
Kwan, Park, and Shen [9] and Xu et al. [19], there are few rigorous results avail-
able in the literature. The local well-posedness of a two-phase bubble model without
gravity and with absorption was proved by Bothe, Priiss, and Simonett [4]. The lin-
ear stability of the same model was studied by Bothe and Priiss [3]. The purpose of
this paper is to provide rigorous analysis of the model (1.2) for gravity-driven one-
phase stratified flows without absorption, which is an important component in the
understanding of surfactant-driven flows.

1.2. Formulation of equations. We now specify the equations of motion more
precisely. We will assume that the fluid is horizontally periodic and lies above a flat
rigid interface, i.e., that the moving domain Q(t) is of the form

Qt) = {ye T xR| —b<ys <ny1,y2,1)},

where we assume that 3 := (L1 T) x (LoT) for T = R/Z and Ly, Ly > 0 are periodicity
lengths. The depth of the lower boundary b > 0 is assumed to be fixed constant,
but the upper boundary is a free surface that is the graph of the unknown function
n: X xRy — R. We will write I'(t) = {ys = n(y1,y2,t)} for the free surface of the
fluid and 3, = {y3 = —b} for the fixed bottom surface of the fluid.

Since T'(¢) is specified as the graph of n(-,t), it is more convenient to redefine the
surfactant concentration as a function defined on the cross-section ¥ rather than on
I'(t). To this end we define the surfactant density function ¢ : ¥ x Ry — [0, 00) via
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(X, t) := (s, (x4, t),t). In what follows we will employ the “horizontal” differential
operators V., div,, and A, (along with writing z, = (21,22) for € R?), as well
as the versions of the surface differential operators Vr, divr, and Ar as described in
Appendix A.

For each t, the fluid is described by its velocity and pressure functions (u(-, ), p(-, t)):
Q(t) — R3 x R. Then (u,p,n,¢) satisfy the following system of equations Q(t) for
t>0:

Owu+u-Vu+ Vp = pAu in Q(t),
divu=0 in Q(t),
O = uz — 10y, N — U20y,7M on I'(t),
(1.3) (pI — iD(w))v = gv — (GH(n)v + Vro(@) on T(1),
06+ u-Vié+ é divpu = yAré on I'(t),
u=0 on Xy,

U(,O) = Uoﬂ?('ao) = WOaE('aO) = Cgp-

Here, we write

_ (_82111777 _81112777 1)

VIVl

for the outward unit normal on I'(t), I for the 3 x 3 identity matrix, (Du);; = d;u; +
Oju; for the symmetric gradient of u, g > 0 for the strength of gravity, and p > 0
for the viscosity. Notice also that we have shifted the gravitational forcing to the
boundary by redefining the pressure p — p 4+ gxs. The tensor (pI — uD(u)) is known
as the viscous stress tensor. The mean curvature is denoted by H(n) and is given by

. V.n
1.4 H =divy | ——|.
(.4) () < 1+|V*n|2>

For the sake of convenience we will reduce the number of physical parameters
we must keep track of in (1.3) by rescaling in space and time. By doing so we may
assume that = g = 1 at the cost of relabeling Ly, Ly,b > 0, and v > 0. Throughout
the rest of the paper we assume that this scaling has been done in (1.3).

We assume that the initial surface function 7y satisfies the “zero-average” condi-
tion

1
1. =0.
(15) o fom=o

If it happens that 7y does not satisfy (1.5) but does satisfy the extra condition that
—b+ (n9) > 0, where we have written (n) for the left-hand side of (1.5), then it is
possible to shift the problem to obtain a solution to (1.3) with 7y satisfying (1.5).
Indeed, we may change

ys = ys— (o), m>n—{(m), b—=b+{(n), andpp—(no)

to find a new solution with the initial surface function satisfying (1.5). The data
ug, Co, and g — (np) will satisfy the same compatibility conditions as wg, ¢, 1o, and
b+ (no) > 0, so after renaming we arrive at the above problem with ng satisfying (1.5).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/01/19 to 128.104.46.196. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1298 CHANWOO KIM AND IAN TICE

Note that for sufficiently regular solutions to the periodic problem, the condition (1.5)

persists in time as follows, since 0yn = u - v4/1 + |V*77|2:
d .
— [ n=[] o= u-v= divu = 0.
dt Js 5 T(t) Q1)

1.3. Energy-dissipation structure, equilibria, and conservation of sur-
factant mass. Upon taking the dot product of the first equation in (1.3) with wu,
integrating by parts over 2, and employing all but the fifth equation in (1.3), we may
deduce (see Proposition 3.1 for details of a similar calculation) the energy-dissipation
equation

d / 1, - /1 2 / 1 2 / . -
— —|ul"+ [ =In|" | + —|Dul” = o(¢c)Hu-v+ Vro(c) - u.
dt<9(t)2|| 22|> 2P = [ @ @

Now we use the fact that I'(¢t) = {x3 = n(z«,t)} in conjunction with Proposition A.2
to write

/m) (&) Hu- v+ Vio(d) - u = / (0(&)Hu - v+ Vro(@) - u) \/1+ |Van)?

b
:/E—U(E)divr(u)m~

From this we conclude that

d / 1, 2 / 1, / 1 2 / o 2
1.6) — — lul” + — + — |Dul” = —o(¢)divr(u)\/1 + |Venl”.
(1.6) dt<9(t)2 | 22|77|> Q(t)2| | . (€) divr(u)y/ 1+ V.|

The term on the right does not admit a good sign and in fact shows that energy is
exchanged between the fluid and the surfactant.
Given the parabolic form of the ¢ equation in (1.3), we might expect to find a

good energy-dissipation relation for ¢ by multiplying the equation by ¢é/1 + |V*77|2

and integrating by parts. Proposition A.3 applied with f(z) = 22/2 shows that this
yields the equation
(1.7

)
d 1 9 2 ~2\/72 1 9. \/72
& [ 3R e 19l *LWFC' LIVl = [ =5 lel” diveuy/1+ |V

Once again we see that the term on the right does not admit a good sign and shows
that energy is transferred from the fluid to the surfactant. We might hope initially
that the same interaction term with different signs would appear in both (1.6) and
(1.7), so that upon summing we would get a clean energy-dissipation relation for
the total system including the fluid and the surfactant. Evidently, though, this is
not the case, so it is not immediately clear that the problem (1.3) admits a useful
energy-dissipation structure.

To get around this problem, we will look at the evolution of a more complicated
quantity than |¢|°. For any r € (0, 00) we define the function &, : [0,00) — R via

(1.8) (x) = ("Sf) _ /x Uz(j)dz> .
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The inclusion o € C? from (1.1) tells us that & € C*. Integration by parts and
differentiation reveal that

& (x) :a(x)—x/j @dz and € (z) = —/j AP

z

From these and the fact that o > 0 is strictly decreasing, we deduce that &, obeys
the following properties:

£.(x) — 2€,(x) = o(x) for z € [0,00),
& (x) = —0o'(x)/z >0 for x € [0, 00),
&, is strictly convex on [0, 00),

(1.9) &, is strictly decreasing on [0, r),

&, is strictly increasing on (r, 00),
&-(z) > o(r) >0 for x € [0, 00),
&(x)=o(r)ez=r

Now that we have introduced &, in (1.8), we employ Proposition A.3 and the first
equation in (1.9) to see that

) G [ @V val+ [ g @ Vi i+ 9P
= [ 6@ =@ dive /14 9.
:/Ea(é)dinu\/1+|V*77\2.
Thus, upon summing (1.6) and (1.10) we find that
(111) Z( st ;|n|2+@<a>\/1+|v*n|2)
#3104 [ €@ e 149 <0

Since &, & > 0, this reveals that the problem (1.3) does in fact admit a nice energy-
dissipation equation in which all of the energy functionals are nonnegative. It is worth
pointing out that (1.11) can be rewritten in a form that replaces the integrals over ¥
with integrals over the moving boundary I'(¢). Indeed, we have the identity

d d (@) d 1,5 1 d [ 1, o
— =— drsdr, = — —Inl® =0 )dov.=— [ =n|°.
dt Q(t)x3 dt/z/_b Tadtsdy dt/2<2|77| 2 ) * dt/EQW

A change of variables shows that

/fr 1+ |V.nl® / &n(e

where in the last equality we have used the fact that ¢(z.,t) = é(z«,n(z«,t),1).

Similarly,
/E 2€(&) (Ve /14 [V = / 6
I'(t
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Thus, (1.11) may be reformulated as

d 1 R
dt [/fl(t) (2 lu +x3) - /F(t) &(6)

which may be seen to be in agreement with the energy-dissipation equation derived
in [3] for a model with bulk surfactant.

We can employ (1.11) to find the equilibria of the problem (1.3). Indeed, if we
assume a time-independent ansatz in (1.3), then (1.11) tells us that Du = 0 and
€(&) |Vpé)* = 0. Since u = 0 on ¥, we deduce that u = 0 in €, and since o/ < 0
(due to (1.1)) and &¢"(z) = —o'(x)/z, we deduce that ¢ = ¢g € (0, 00), where we avoid
nonpositive solutions for obvious physical reasons. Plugging these into the first and
fourth equations in (1.3) then shows that

1 . 12
+/ 5 |DU\2 +/ V€ (€) |Vr(t)0‘ =0,
Q(t) r(t)

Vp=0 inQ andp=n onl={z3=n(z.)}

The first of these equations requires that p = C is constant, and the second then
requires that 7 = C as well. However, the zero-average condition (1.5) requires that
C =0, and so we find that p = 0 and n = 0. We thus deduce that (1.3) admits a one-
parameter family of equilibrium solutions © =0, p =0, n =0, and é = ¢y € (0,00).
The parameter ¢y may be chosen, for instance, by assuming that there is a fixed
surfactant mass Mgy,r > 0:

Msurf = / cy/ 1+ |V7’]|2 = / Co = |Z‘ co = L1 Lacy.
= =

In this way we may view the equilibrium solution as being uniquely determined by
the mass of surfactant present on the flat equilibrium surface.

The identity (1.11) is valid for any choice of r € (0,00), but when we wish to
consider solutions near the equilibrium configuration u =0, p =0, 7 =10, ¢ = ¢y €
(0,00), we should choose r = ¢p. In this case, (1.11) implies that the energy (the
term in the time derivative) does not increase in time, which already suggests that
the problem (1.3) should admit stable equilibria. However, it is not at all obvious
from the form of the dissipation functional (the terms outside the time derivative
in (1.11)) that the dissipation functional is coercive over the energy functional, and
thus it is not clear from the energy-dissipation relation (1.11) that the equilibrium is
asymptotically stable.

Proposition A.3 also allows us to deduce a basic conservation law for ¢. Indeed,
we use f(z) = z in Proposition A.3 to find that

d [ . 2
= &1+ |Van)? =o.
i ) © + V.|

The physical interpretation of this is that the overall surfactant mass present on the
moving interface does not change in time. We will always assume that the initial data
¢o = ¢(+,0) and 19 = n(-,0) are related to the equilibrium surfactant concentration ¢
via

1
(1.12) o ::7/50\/1+|v*n0|2.
2] Js

In other words, the initial data 7g, ¢y uniquely determine which equilibrium solution
is a possible candidate for the limit as ¢ — oo to solutions to (1.3).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/01/19 to 128.104.46.196. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SURFACTANT-DRIVEN FLOWS 1301

1.4. Reformulation. In order to work in a fixed domain, we employ a frequently
used transformation; see [1, 6, 7, 17]. We consider the fixed equilibrium domain

Q:={xeXxR| —b<z3 <0},
for which we will write the coordinates as x € ). We will think of ¥ as the upper
boundary of €2, and we will write ¥}, := {z3 = —b} for the lower boundary. We
continue to view 7 as a function on ¥ x RT. We then define

7 := Pn = harmonic extension of 7 into the lower half space,

where P is as defined by (B.1). The harmonic extension 7 allows us to flatten the
coordinate domain via the mapping

(1.13) @3z (21,29, 23+ 7(x,t)(1+z3/b(x1,22))) = O(x,t) = (y1,Y2,y3) € Q2).

Note that ©(2,¢) = {y5 = n(y1,y2,t)} = T'(t) and O(-,t)|g, = Ids,; i.e., © maps &
to the free surface and keeps the lower surface fixed. We have

1 0 0 1 0 —AK
ve=10 1 0 and A:=(VeoHT=[(0 1 -BK
A B J 00 K

for

A= 8177?) — (1‘377(91())/[)2, B = 8217]6 — ((17377]82[))/[)2,
J=1+17/b+8sib, K=J1,
b= (1+x3/b).

Here J = detVO is the Jacobian of the coordinate transformation.
Now we define the transformed quantities as (abusing notation slightly)

u(t,z) == u(t,0(t, z)), p(t,z) :=p(t,0(t, x)), é(t,x.) = é(t,O.(t, x4, 0)).

In the new coordinates we rewrite (1.3) as

Ay — Oyib K B3t + u - V qu + divaSa(p,u) = 0 in Q,
divgqu =0 in Q,
(1.14) on—u-N=0 on X,
SA(p, N =N — o(&)HN — /1 + V.20’ (6)Vré on X,
06+ u-Vié+ édivpu — yAré =0 on X,
u=20 on Y.

Here we have written the differential operators V 4, div4, and A4 with their
actions given by (Vaf); = Ai;0;f, divaX = A;;0;X;, and Aaf = divgVaf
for appropriate f and X; for u -V 4u we mean (u -V 4u); := u;A;,0ku;. We have
also written Sa(p,u) = (pI — Dyu) for (Dau)i; = >, (AiOru; + AjrOku;). Also,
N = (=V.n,1) denotes the nonunit normal on I'(t), and Vr, V., and divr are the
differential operators defined in Appendix A, and H is still of the form (1.4).
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1.5. Perturbation form. It will be convenient to reformulate (1.14) in a per-
turbative form for the surfactant concentration, i.e., to view the solution as perturbed
around the equilibrium configuration. To this end we define the perturbation

(1.15) c=2¢—cp.

Then (u,p,n, c) satisfy

Opu — QDK B3t + u - V qu + div 4 S4(p,u) = 0 in Q,
divqu =0 in Q,
(1.16) on—u-N=0 on X,
SAp, N =N —o(c+ co)HN — /1 + V.20’ (c + ¢)Vre on X,
Oc+u-Viec+ (¢ + ¢o) diviu — yAre =0 on X,
u=>0 on Y.

Throughout the rest of the paper we will employ the notation
(1.17) oo =o0(cy) and oy =0(co).

2. Main results and discussion.

2.1. Main results. In order to state our main results we first define the energy
and dissipation functionals that we will use in our analysis. We define the energy via

(2.1)

&= ||U||?{2(Q) + Hatu”?{"(ﬂ) + Hp||2Hl(Q) + ||77||§13(2) + ||6t77||2g(2) + ||3t277||27%(2)

+lellrz s + 10cl o),
and we define the dissipation as

D 1= [l + NOrulls @y + Il 5 o) + 19012, o + 0PIy

H2 (%) )

2 2 2
+ 1pllz20) + el s + 10l (s
Here the spaces H® denote the usual L2-based Sobolev spaces of order s.
Our main result is an a priori estimate for solutions to (1.16).

THEOREM 2.1 (proved later in Theorem 6.1).  Suppose that (u,p,n,c) solve
(1.16) on the temporal interval [0,T]. Let £ and D be as defined in (2.1) and (2.2),
respectively. Then there exists a universal constant 0 < d, (independent of T') such
that if

T
sup E(t) <4, and / D(t)dt < o0,
0<t<T 0

then
T
sup e ME(t) +/ D(t)dt < E(0)
0<t<T 0

for allt € [0, T], where A\ > 0 is a universal constant.
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This result says that if solutions exist for which the energy functional £ remains
small and the dissipation functional is integrable in time, then in fact we have the
following much stronger information: the energy decays exponentially and the integral
of the dissipation is controlled by the initial energy. In order for this result to be useful
we must couple it with a local existence result. By now it is well understood how to
construct local-in-time solutions for solutions to problems of the form (1.16) once the
corresponding a priori estimates are understood; we refer the reader to, for instance,
[6, 17, 18] for local existence results in spaces determined by energies and dissipations
of the form (2.1) and (2.2), and to [4] for results that employ LP-maximal regularity
techniques. Consequently, in the interest of brevity, we will not attempt to prove a
local existence result in the present paper. Instead, we will simply state the result
that one can prove by modifying the known methods in straightforward ways.

Given the initial data wg, 0, ¢, we need to construct the initial data Oyu(-,0),
0 (-,0), d¢c(+,0), and p(-,0). To construct these we require a compatibility condition
for the data. To state this properly we define the orthogonal projection onto the
tangent space of the surface I'(0) = {x3 = no(x«)} according to

oo = v — (v - No)Np [No| 2

for Ny = (—01m0, —O2m0,1). Then the compatibility conditions for the data read

o (D4, uoNo) — 1/ 1+ |Vano|*0’ (é0)Vi,éo = 0 on X,

(2.3) div 4, up =0 in €,
ug =0 on X,

where Ay and I'y are determined by 7y. To state the local result we will also need to
define o H(Q2) := {u € HY(Q) | u|x, = 0} and

(2.4) Xr = {ue L*([0,T);0H' (Q)) | div.agyu(t) =0 for a.e. t}.
Having stated the compatibility conditions, we can now state the local existence

result.

THEOREM 2.2. Let ug € H*(Q), no € H3(X), and & € H*(X), and assume that
no and &y satisfy (1.5) and (1.12), where ¢y € (0,00) is a fized equilibrium surfactant
concentration. Further assume that the initial data satisfy the compatibility conditions
of (2.3). Let T > 0. Then there exists a universal constant k > 0 such that if

2 2 ~ 2
l[uollzr2(0y + 1m0l 73 sy + lléo = collz(s) < 5,

then there exists a unique (strong) solution (u, p,n,c) to (1.16) on the temporal interval
[0,T] satisfying the estimate

T T
2 2
23 s £+ /O D(t)dt + /0 [2et)]? - g dt + [[62u], . S ECO).

Moreover, 1 is such that the mapping ©(-,t), defined by (1.13), is a C' diffeomorphism
for each t € 10,T].

Remark 2.3. All of the computations involved in the a priori estimates that we
develop in this paper are justified by Theorem 2.2.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/01/19 to 128.104.46.196. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1304 CHANWOO KIM AND IAN TICE

With local existence (Theorem 2.2) and a priori estimates (Theorem 2.1) in hand,
we may couple them to deduce a global existence and decay result.

THEOREM 2.4 (proved later in section 6). Let ug € H*(Q), no € H3*(X), and
¢o € HX(X), and assume that ng and ¢y satisfy (1.5) and (1.12), where co € (0, 00)
is a fized equilibrium surfactant concentration. Further assume that the initial data
satisfy the compatibility conditions of (2.3). Then there exists a universal constant
Kk > 0 such that if

2 2 ~ 2
(2.6) lwoll 20y + 701l 7r3 sy + léo = collzpz(s) < 5,

then there exists a unique (strong) solution (u, p,n,c) to (1.16) on the temporal interval
[0,00) satisfying the estimate

(2.7) sup e ME(t) + /0 h D(t)dt < £(0),

t>0

where A > 0 is a universal constant.

Remark 2.5. Theorem 2.4 can be interpreted as an asymptotic stability result in
the following way: the equilibria u = 0, p = 0, n = 0, ¢ = ¢ are asymptotically stable,
and solutions return to equilibrium exponentially fast.

Remark 2.6. The surface function 7 is sufficiently small to guarantee that the
mapping ©O(-,t), defined in (1.13), is a diffeomorphism for each ¢ > 0. As such, we
may change coordinates to y € €(t) to produce a global-in-time, decaying solution to
(1.3).

It is worth comparing the result of Theorem 2.4 to what is known about
horizontally periodic surfactant-free viscous surface waves with and without surface
tension. Without surfactants but with a fixed surface tension ¢ > 0, the problem
(1.16) admits small-data global-in-time solutions that decay to equilibrium exponen-
tially fast, as was proved in [13]. If surface tension is neglected, i.e., o = 0, then again
small-data solutions exist for all time, but they decay at an algebraic rate determined
by the regularity of the data, as proved in [7]. Thus, we see that although surfactants
dynamically adjust the surface tension, the behavior of solutions is comparable to
solutions to the problem with a fixed surface tension.

2.2. Summary of methods and plan of paper. Our analysis employs a non-
linear energy method based on a higher-regularity modification of the basic energy-
dissipation equation (1.11) for solutions to (1.16). Below we will summarize the steps
needed to implement this method and how they relate to the organization of the
paper.

Horizontal energy estimates. Certainly the form of (1.11) is tied to the
choice of boundary conditions in (1.16), and so we can only appeal to (1.11) to gain
control of derivatives of solutions in directions that are compatible with the boundary
conditions. The choice of €2 dictates that these are precisely the horizontal spatial
directions, corresponding to the operators 0; and 0,, and the temporal direction,
corresponding to 9;. We will get estimates for one temporal and up to two spatial
horizontal derivatives; this choice comes from the parabolic scaling of the Navier—
Stokes equations, which dictates that each temporal derivative behaves like two spatial
derivatives. Our choice for this number of derivatives comes from the ability to close
our energy method: we cannot close with fewer than one temporal derivative, and we
get no improvement with more.
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The differential operators in (1.16) do not commute with the operators 9y, 9z, 0,
so we do not arrive at a “horizontal” energy-dissipation equation of exactly the same
form as (1.11). Indeed, there are nonlinear interaction terms that lead us to an
equation of the form (roughly speaking)

| =

(2.8) E+D=1,

IS

t

where £ and D are the “horizontal” energy and dissipation, respectively, and Z denotes
the nonlinear interaction term.

In order to make Z manageable within our functional framework, in dealing with
spatial derivatives we are forced to employ different strategies than those used in
dealing with temporal derivatives. Indeed, for temporal derivatives we must take
advantage of certain “geometric” identities related to the operators in (1.16), whereas
for spatial derivatives it is more convenient to shift to constant-coefficient operators
for which the connection to the boundary geometry is obfuscated. These strategies
are developed in section 3, and it is here that we make precise the form of the terms
appearing in Z.

Nonlinear estimates. The next step in our nonlinear energy method is to
estimate the terms appearing in the nonlinearity Z. It is not enough for us to be able
to control Z within our functional setting: we must have estimates of a particular
structural form in order to effectively combine the estimates with (2.8). This structure
roughly requires that we be able to “absorb” Z into the dissipation on the left-hand
side of (2.8). More precisely, we seek to prove that (again, roughly speaking)

(2.9) 17| < VED.

Note here that €& and D are the full energy and dissipation given by (2.1) and (2.2),
and not their horizontal counterparts £ and D. This is by necessity: the nonlinear
terms in Z cannot be controlled simply in terms of £ and D. Structural estimates of
the form (2.9) are derived in section 4.

Enhanced estimates. The next step is to show that, at least in a small energy
context, control of the horizontal energy and dissipation actually provides control
of nonhorizontal derivatives and of the pressure. More precisely, we aim to prove
estimates of the form

(2.10) ELE and DD

by employing a variety of elliptic estimates and auxiliary estimates. It is here that
the “nongeometric” form of (1.16) becomes particularly useful, as it allows us to
apply elliptic theory for the standard constant-coefficient Stokes problem rather than
deal with the Stokes problem with coefficients in Sobolev spaces. It is also worth
noting that in this analysis the horizontal derivatives and the temporal derivatives
play distinct and important roles. In particular, the use of horizontal derivatives,
along with trace theory and Stokes estimates with Dirichlet boundary conditions, is
crucial to decoupling certain bulk estimates for u and p from estimates for n and c.
The details of these enhanced estimates are developed in section 5.

Bounds and decay. The final step of our nonlinear energy method combines
the above techniques to deduce a closed system of a priori estimates that yield both
bounds and decay information. In particular, we use (2.8), (2.9), and (2.10) together
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with the coercivity estimate £ < £ < D to show that (again in a small energy context)

T
%5‘ FAE<0  and / D(t)dt < £(0)
0

for some universal constant A. Upon integrating the first differential inequality and
again appealing to (2.10), we find that £ decays exponentially. The latter inequality
tells us that the dissipation is integrable. We complete this argument and develop the
proofs of Theorems 2.1 and 2.4 in section 6.

2.3. Definitions and terminology. We now mention the definitions, notation,
and conventions that we will use throughout the paper.

Einstein summation and constants. We will employ the Einstein convention
of summing over repeated indices for vector and tensor operations. Throughout the
paper, C' > 0 will denote a generic constant that can depend on the parameters of the
problem and on €2 but that does not depend on the data. We refer to such constants
as “universal.” They are allowed to change from one inequality to the next. We will
employ the notation a < b to mean that a < Cb for a universal constant C > 0.

Norms. We write H*(Q) with k > 0 and H*(X) with s € R for the usual Sobolev
spaces. We will typically write H® = L2. To avoid notational clutter, we will avoid
writing H*(2) or H*(X) in our norms and will typically write only ||-||, for H*(Q)
norms and |-y, ; for H*(X) norms.

3. Energy-dissipation equations. In this section we present two forms of the
energy-dissipation equation for solutions to (1.16). The two forms are determined by
different ways of linearizing (1.16). The first form is ideal for estimating temporal
derivatives, while the second form is ideal for estimating horizontal spatial derivatives
and for elliptic regularity. Finally, we conclude the section with a key lemma for
handling nonlinearities.

3.1. Geometric form. Here we consider a linear formulation of (1.16) that is
faithful to the geometric significance of the coefficients in (1.3). We assume that u
and 7 are given and that A, N, J, etc., are given in terms of n as in (1.16). We then
consider the following system for (v, g, ¢, h):

v — OyibKdsv + u - V 40 + divaSa(q,v) = F'  in Q,
divgv = F? in Q,
(3.1) SA(q, V)N = (N — 00ALCN — o) Vih + F3 on X,
0 —v-N=F* on X,
O¢h + co divev — YA = FP on %,
u=0 on X,

where oy and o, are as defined in (1.17).
We now record the energy-dissipation equality associated to solutions to (3.1).

PROPOSITION 3.1. Letu andn be given and solve (1.16). If (v,q, ¢, h) solve (3.1),
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then

d v |C|2 |Vl | —op [ [RI?

dt (/ I / 2 e / >
2

/ |DAU‘ J+ 70'0/ ‘V h|2

:/(U~F1+qF2)J+/7v~F3+/(<700A*C)F4+;00/h'FS.
Q b b b

Co

Proof. We take the dot product of the first equation in (3.1) with Jv and integrate
over {2 to find that

I+ITI=1I1

for

1= / Owv; Ju; — 81&775837}1‘711‘ + Uj.Ajkak’UiJ’Ui,
Q

II:/AjkékSij(v,q)Jvi, 111 = Fl-’UJ.
Q Q

A simple computation (for details see, for instance, Lemma 2.1 of [7]) shows that

[
dt Jo 2

To handle the term I1 we first integrate by parts as follows:
Il = / —Aijij(v,q)Jakv,- + / JAjgsij(v,q)vi
Q )
D 2
=/ —qAiOpvid + Jﬂ +/ Sij (v, QN vs
Q b

2
/ qJF2+J| g“' /(CN—UOA*CJ\/—U{)V*h)m—&-F?’-v
Q b))

From the fourth equation of (3.1) we may compute

eV = ann o / (C = 00ALC)(OC — FY)

(G [ ason

Now we multiply the fifth equation of (3.1) by — % h and integrate over X to see that

d ‘h|2 7‘70/ 2 06/ 5
— h h F*h.
dt ( Co /z: 2 > +UO/ Vbt Co IV-hI" = co Jx

The equality (3.2) then follows by combining the above computations of I and IT
with the definition of I71. 0
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We will employ the form (3.1) to study the temporal derivative of solutions to
(1.16). That is, we will apply 9; to (1.16) to deduce that (v, g, {, h) = (Osu, Isp, i1, Osc)
satisfy (3.1) for certain terms F'. Below, we record the form of these forcing terms
Fi i=1,...,5, for this particular problem. For brevity we will use ¢ in these even
though c¢ is the unknown of interest; recall that they are related via (1.15).

We have that F' =" | F17 for

Fil’1 1= 0y(9,bK ) D3,
F? = =0y (uj A1) Oku; + 0 AiOep,

(3.3) 1,3
F = 00Aj000(Aim Oty + Ajin Omi),
FM* o= A0 (03 Aiedeuj + 0 Ajedgus),
(3.4 = oAb

F3 = F3! 4 32 4 33, where for i = 1, 2,3 we have

(3.5)
Fi371 = (77 — p)atM + (.Aikakuj' + Ajkakui) 8th + ((r“)tAik(r“)ku]‘ + atAjkakui)./\/‘]‘7
F>? .= —0/(8)8,cHN; — (0(¢) — 00)0 HN; — (000, H — 008, Au))N; — 0(E)HING,

v* : *6 ~ ~ ~ ~ ~
B39 = —mo%c)(vrc» — TH Vo (9)0E(V o),
*7]

+V1+|V.n|20' (€)v; (V- Vi) Ore — \/1+|Vun|20" () {0 (Vs Vi) et v (Opvs - Vi )E},

(3.6) F*:=0,Dn-u,
and
(3.7 F? =0y {—u-V.c—cdivru+ y[Arc — A.c] — co[divr u — div,u]} .

3.2. Perturbed linear form. Next we consider an alternate way of linearizing
(1.16) that eliminates the A coefficients in favor of constant coefficients. This is
advantageous for applying elliptic regularity results and is the context in which we
will derive estimates for horizontal spatial derivatives. We may rewrite (1.16) as

0w — Au+ Vp =Gt in Q,
div u = G2 in Q,
(3.8) (pI —Du—nl + ooA.n)es +o4Vice =G> on X,
I —uz = G* on %,
Osc + codiviu — yA,e = G on X,
u=0 on Xy,
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where g and o(, are as defined in (1.17). Here we have written the nonlinear terms
G' for i =1,...,5 as follows. We write G := G1! + G124+ G132 + G4 + G for
Gyt = (85 — Aij)Oip,
G? = u; A O,
39) Gii = [K%(1 + A% + B?) — 1)033u; — 2AKd13u; — 2BK do3u;,
Gt = [—K3(1+ A% 4+ B?)03J + AK?(0,J + 03A)
+ BK?(9yJ + 3B) — K(8,1 A + 9,B)d3us,
G;° = 07(1 + 23 /b) K Dz,

(3.10) G? := AKdsu; + BKdsuy + (1 — K)dsus
and write G2 = G + G32 + G33 + G3* for
(3.11)

p—n— 2(6111,1 — AKagul)
G3’1 = 8177 —Oouy — O1ug + BK(93U1 + AK@gUg
—Ohug — KOsuy + AKOsus3

—0Oou1 — O1us + BKO3u; + AKO3us (K - 1)6311,1 + AKd3us3
+ 8277 p—n— 2(82?1,2 - BKaSUQ) + (K - 1)83?1,2 + BK83u3 s
—0Oougz — KOsus + BKO3us 2(K - 1)83U3

G*%:=(0(co + ¢) — o(co)) Aunes +a(co + ) (H(n) — AN + o (co + ) AN — e3),
G*3 = (V14 V|2 = 1)o’ (co + ) Vic + (0'(co + ¢) — 0) Ve
+v 1+ |V.n2o'(c)(Vre — Vie),

G3* =o' (co + ¢)vy - V,ces,

(3.12) G* := —01muy — Oanug,
and
(3.13) G® := —u-V,c—c divpu+ y[Arc — A.c] — ¢oldivy u — div,u).

Next we consider the energy-dissipation evolution equation for solutions to prob-
lems of the form (3.8).

PROPOSITION 3.2. Suppose (v,q,(, h) solve

0w — Av + Vg = ! in Q,

div v = ®2 in Q,
(3.14) (¢ =D — (I +00Al)es + o) Vih = @3 on X,

¢ —vs = on X,

Oph + codiviyv — yALh = B° on %,

v="0 on Xyp.
Then

d |U|2 |C|2 g0 2, —00 ;2 |DU‘2 —0p 2
3.15) — —_— —-— + —|V. —|h —_— ——|V.h
( )dt</92+/22+2|v<|+200|| */g 2 +/2 o |V

/

= / v- (B! + VO?) + ¢®2 — v - VO? +/ 0 B3 4 (Dt — 0@t AL — D00,
Q = Co
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Proof. From the first equation in (3.14) we compute
Opv; + (divS(q,v)); = Opv; + 9iq — Av; — 0,0 = &} — 9,0
By the usual energy estimates (see, for instance, Lemma 2.3 in [7]) we may compute

d 2 D 2
Al +/ [Dv] +/vgc+/—aov3A*g+/—agv-v*h
dt Jo 2 o 2 ) ) )

—

I 11 117

z/v-(<I>1+V(I>2)+q<I)2—U-V(I’3.
Q

We compute I by integrating by parts and using (3.14) as follows:

1= [coc-cor=4 [EE- [ can

g / {0, — DAL = 0 / OVLC Vol + 0gBIALC
> >

_ d |v*<‘2 4
700%/2 9 +UOL@ A*C

Similarly,

Finally, for 111 we compute
h
I :/ obh divew = / oy —{—0ih +yA.h + ®°}
by s C

d e, A /
_¢ 00|h|2+/ —700|v*h|2+/ 207,
dt Js 2co s Co s Co

The equality (3.15) then follows by combining the above computations. ]

4. Estimates of the nonlinearities. In this section we record estimates for
the nonlinearities that appear in (3.1) and (3.8). Throughout this section we will
repeatedly use the estimates of Lemmas B.1 and B.2 to estimate 7 and use Lemma
B.3 as well to estimate various nonlinearities. For the sake of brevity we will use these
lemmas without explicit reference.

4.1. Useful L*° estimates. We begin the section by recording the following
result, which is useful for removing the appearance of J and A factors.

LEMMA 4.1. There exists a universal 0 < § < 1 so that ianHg/Q <0 and ||cH§ <9,
then the following hold:
1. We have the estimate

2 2
and K|~ + [AllL~ S 1.

N | =

I = U + AN~ + 1Bl <
2. The map O defined by (1.13) is a diffeomorphism.

3. There exists a universal constant C' > 0 such that for allv € H*(Q) such that
v =0 on Xy we have that

/|Dv|2g/J\DAv\2+C¢E/ IDv|?.
Q Q Q
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4. We have the estimates

and

C—O<C<C—0 @<5<3ﬂ.
2 == 7 2 == 7

Proof. See Lemma 2.4 in [7] for a proof of items 1 and 2. The proof of item 3 can
be found in the proof of Proposition 4.3 in [7]. To prove item 4 we use the Sobolev
embedding and the identity (1.15) to bound

- Co
&= coll o = llellw < Clell s < C5 < 2

if ¢ is taken to be smaller than the universal constant cy/(2C). |

4.2. Nonlinearities in (3.1). Our goal now is to estimate the nonlinear terms
Fifori=1,...,5, as defined in (3.3)—(3.7). These estimates will be used principally
to estimate the interaction terms on the right-hand side of (3.2).

THEOREM 4.2. Let F',... F® be as defined in (3.3)~(3.7). Let & and D be as
defined in (2.1) and (2.2). Suppose that £ < 0, where 6 € (0,1) is the universal
constant given in Lemma 4.1, and that D < co. Then

(4.1) 1 ]l + 172l + 1|5, < VEVD,
(4.2) /@pFZJ—d/pFZJ‘ <VED and /pF2J‘ < g3/,
Q dt Jo Q
and
(4.3) dcF°| <VED.
Q

Proof. We divide the proof into several steps. Throughout the proof we will
employ Hélder’s inequality, Sobolev embeddings, trace theory, and Lemma 4.1.
Step 1. F1,F3! and F* estimates. The estimate

(4-4) 1l + 12 ] o + 1] o S VEVD

I

is proved in [17].
Step 2. F32 estimate. We bound the first term in F32 via

||U/(5)3tCHNHE,0 S ||3t0||L4(2)||Vz77||L4(2)(1 + ||V*77||Lm(2))2

Sloscllsalnllss(+ Inlls24)?
SVDVEQL+E).
To bound the second term we first write
1 ;0;m0in0;
H(n) = Ay + Auy 1] = _0:9m9m3;n

1+ IVl (1+ [V.n)3/2
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in order to bound

10:(H (1) — Al 12z
S ANV 2y [ Vanl oo sy + 10:Van o sy V20N 12 (s

V.1
' (1 i ‘ [14[V.nl?]3/2 L°°(E)>
<{VDVE +VDVEI1 + VE).

Next, we employ the simple identity

o(¢é) —og = /C o’(s)ds

co
in conjunction with (1.15) to estimate
o(€) = ool e sy S lloller 1€ = coll poo () = llollen llell Lo sy -
Combining these, we deduce that
((¢) — 00)0:HN ||50
Sllo@) - 00||L<x>(z)HatHHL?(E)HNHLOO(Z)
S llolletllels2llomls o + VED(L + VE)]
<VEVD.
Similarly, we bound the third term in F32 via
loo(0:H — 8 Axm)N 2,0
SN0H — 0:Aunl| 25y [N | poe ()
<S{VDVE +VDVEY(1 + VEWE,
and we bound the fourth by
|o(&)HON || L2 (x)
S ol ) 10:Vanll o () [ Hl 2 ()
S 0l 52+ sy ] 272 () (1 + ||v*77HL°°(E))2
<VDVE(L +VE).

Combining the above estimates and again using the fact that £ < 1, we deduce
that

(4.5) |F*2||, , S VEVD.
Step 3. F33 estimate. According to the usual Sobolev embedding H'T (%) —
L>(X), we may estimate
175320
S IVanll o () [[ Va0l 2 [V (o) Lo ()
+ (1L +[[Vanllzoe @) 10:éll L2 () [V (co) [ L ()
+ A+ IVanllpe () ol |V 20l 2 sy
+ (L4 IVanlle )l ll o [10:Vanll oo () | V(€ = co) 225
< (14+VEWEVD.
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Again since £ < 1, we find that
(4.6) 17530 S VEVD.

Then by combining (4.4), (4.5), and (4.6) we deduce that (4.1) holds.
Step 4. F? estimate. We have that

d
/athF2 = —/pJFQ—/p(atJF2+J8tF2).
Q dt Jo Q

We may then use the definition of F? and .J to estimate

/ p(Or JF? 4 JOF?)
Q

S POV Vu(l + 7] + [Vl @) + 1p8: VgV u(|8:7] + |8: V7)) || 1 e

+ [[pV70:Vu(|0:7] + 10: V7)) | 1 ()
S Pl e @ 107 Vil 2o | Vull ooy Vil Lo

+ [Ipll o @ 107l 21 ) {N0: VTl Loy IV Ul La gy + [Vl oo () 10 V]| L2y }
S lplzllull{10200s, 1 Inlls,s + 10l 1 118enlls,3 } + [Pl 0nlls, 1 [1nlls 3] 0wl
< VEVED,

where we have used the embeddings H'(Q2) — L*(Q) and H3/?>*(Q) < L>(Q).
Similarly,

/ pJEF?
Q

Sl s IF? 1 pars @17l L)

S Ipll e @ IVull e [[(L+ VA (19:7] + 10:Va) | L2 17l g3/2+ (o)
S pllllull2(T+ [Inlls3)10nlls,1 (1 + [n]]s,3)

< g3/2,

By combining the above estimates, we then deduce that (4.2) holds.
Step 5. F° estimate. To begin we note that
F®:= —0uu - V.c—u-V.0ic — cdivr dyu + [cdivr dpu — 0 (cdivp u)]
+ 0 [Arc — Ac] + coO[divr u — div,u).
We will handle each of these terms separately.
For the first two, we use trace theory and the Sobolev embedding to estimate
10w - Vie|ls,0 + |lu- V.0
S 0sull pasy I VacllLacsy + 1wl Lo ()| VaOicl L2 (s)
S 10wl s llells 3 + lull s Beclls

< VEVD.

5,0

Thus,

|(=0u - Ve —u-V.0ic,010) o) | S VEVD |0clls o S VED.
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For the third term, we integrate by parts to see that
(= edivr dyu, dyc) HO(S)
= (Owui, 0; [c@tc])HO(E) + (Opus, 0, [catcyiuj])Ho(z) + (8tu3,c’)i[yiugcatc])HO(z).
Therefore,

‘ (— cdivr Oy, Orc) HO(Z)‘

< 10l 0lV elloo [Brcll .0+ el ollelloo [V < Otclls.0+ [Prull s ollelloc Peclls.ol Vil oo
S 10sully 1 llells, s 19ecllz.0 + 10l s+ lells, 2 [10ecls 0 + 18sull s 1 llell2[|Occl 2 ollmlls, 2

< VED.

For the fourth term, we have

ledivr Opu — O¢(cdivr w)||s,0 = ||Orcdivru + O - (Vi - Vi)u + v - (O - Vi)ullz o
S 0| pasy IVeul iy + 10:Vanl Las) I Vaul zas)
SAlloeellsa + 19mlls 3 Hlulle S VEVD.

Hence,
‘(c divp dyu — 9y (cdivr u), dyc) HO(E)‘ <VEVD [0ccllss o S VED.
Now we consider the fifth term. Direct computation reveals that
Arc = Ayc —v3v, -V, 0jn(6:5 — viv5)05¢ — [v;05v; + v;0;v]0ic.
Therefore,

70 [Are — Asd|s0

SIV30mV.aclzo + [V.0nVinV.clso + [VinV.diclso

S IVE0m| o) |V acll Lamyll0eel L2 ) + 11V 0inlloo [V 301 2(5) | ViClloo | Or¢l L2 (5
+ VNl oIV 8sell L2 () 195l L2 ()

S 0mls s llells,z 0cls.0 + 110mlls, s [Inlls 2l

S VED,

.3 10ecllz,0 + Inll5,z [Occll =1l Oecl 50

where we have used the Holder inequality (% + i +% = 1) and the Sobolev embeddings
Hz () < L4(2) and H*(X) < L>(X). Hence,

|(¥0u(Are — Avc), 00 ros) | S VED ||Osclly o S ED < VED.
For the sixth term we note that
divru — diveu = —v; (Vs - Vi) u.
Therefore,
(coﬁt [divp u — div,ul, 8tc) HO(S)

= —(l/l'(l/* . V*)atui, 5‘,50) HO(S) - (8tVi(1/* . V*)ul + l/l'(atl/* . V*)’LLZ, atC)HO(E)'
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Clearly,

HO(E)‘
S0V nll L IV sull 2 oy el oy S 10l 2llull2lDecllzn S VED.

‘((‘%Vi(y* - Vau; + v (0w - Vi )ug, 8tc)

On the other hand, we may integrate by parts to obtain

(- T, 00)

8]-1/2-1/j3tui, atC) HO(E) + (Viajuj&gui, 8tc) HO(E)‘

HO(E)‘ = ‘(
S ”vzn”Lw(E)||8tuHL2(Z)||atCHL2(Z) S ||77||z,gHatUHlHatCH&O

< VED.

Thus,

‘ (coat [divr v — div,ul, (9tc) VED.

‘ <
HO(Z) ~
We have now estimated all of the terms appearing in F°, and we conclude that

(4.3) holds. 0

4.3. Nonlinearities in (3.8). Now we turn our attention to the nonlinear terms
G' for i =1,...,5, as defined in (3.9)—(3.13).

THEOREM 4.3. Let G, ... G® be as defined in (3.9)~(3.13). Let £ and D be as
defined in (2.1) and (2.2). Suppose that & < 0, where 6 € (0,1) is the universal
constant given in Lemma 4.1, and that D < co. Then

@7 NG+ IG s + G s + 1G 55 + 10:G 51 + 1GPllsa S VEVD
and
(4.8) 1G o + 1G] + 1G® [l 1 + 1G53+ S €

Proof. We again divide the proof into several steps. Throughout the lemma we
will employ Holder’s inequality, Sobolev embeddings, trace theory, and Lemma 4.1.
Step 1. G1,G?,G>, and G* estimates. The estimates

IGH, G2 1, + 1G% g 50 + 1G s 52 + 110G 153 S VEVD
and
G o +1G% ], + 1165 g1 o + 1G5 5/0 S €

are proved in [17]. Thus, in order to prove (4.7) and (4.8) it suffices to prove

(4.9) 1G%2 570 + 6% 550 + 163 550 + 6%, S VEVD
and
(4.10) ||G3’2H2,1/2 + ||G3’3||2,1/2 + HG3’4H271/2 Sé€

Step 2. G*?2 estimates. Our goal now is to prove the G*? estimates in (4.9) and
(4.10). We will estimate each of the three terms in G2 separately.
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We begin by writing
o(co+c¢)—o(co) = /c a'(co + s)ds.
0
We then use the estimate (B.2) with r = s; = so = 2 to bound

3
3,5

I(o(co +¢) = oco) Aunlls s < || /0 o'(co + s)ds|y; 5 [|Asn]

S lloliesllells, g lnlls, 2
< VEVD.

Similarly, (B.3) with 7 = s; = 1 and s = 3+ provides the estimate

l(o(co+¢) = olco))Autllsy < | / o' (o +5)ds]|. y , 1Al

S lloliesllells, s+ l1nlls, 5

<VEVELE.

We now turn our attention to the second term in G>?2 by expanding

1 V.0 V.V -V,
H(n)—Am=A*n< 1)_( n-V.)Vin - Vin

VItV 1+ [V.n2]?/2
Then we use the estimate (B.2) with r = 81 = s9 = % to bound
llo(co + c)(H(n) — AN s, 2
< lollea el g VPl 1927l 4 [ Vo1l 3

SVEVD.

Similarly, we use estimate (B.3) with 7 = s; = 3, so = 2+ and (B.2) with r = s; =
Sg = %—i— in order to show that

lo(co +¢)(H(n) — Aap)Nl5,1
Sllollezllells, s 11Vanl?lls, s 1V E0lls, L[|V 0]
S lells s IVanl, s 1Vl 2 2 IV enlls 2 4
SVEVELE.

Now, for the third term in G2 we write N'— e3 = —91ne; — Oanes and then use
(B.2) with r = s; = s = 3 to bound

lo(co + DANWN — es)lls 3 < lollezlells s [1Aunls 3 [ Vanlls, 3 S VEVDVE
< VEVD.

We then use (B.3) with 7 = s; = 1, so = 3+ and (B.2) with r = 53 = s = 3+ to
bound

5,3+

lo(co + ) AN —e3)lls,1 S Az 1llolco +c)Vinlls 24
Slnlisslollezllells s IVanls st S lollo=VEVEVE
<VEVELE.
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The above analysis covers all three terms in G32, and so we deduce that
3,2 3,2
1G*2[lg g S VEVD  and  [|G*2|y, ) S E,

which are the desired G2 estimates in (4.9) and (4.10).
Step 3. G>2 estimates. Now we estimate the three terms appearing in G3-3.
To handle the first term we note that

271 ° T
[1+s%]2 _1—|—/0 [1+72]1/2dT

and
o'(co+c)=0d'(co) + / " (co + s)ds.
0

These combine with the estimate (B.2) with r = s = s9 = % and yield the estimate

I(V1+[Vanl2 =)o’ (co + ) Vacllg 2 S HVanllls zllollosllells 2 1 Vaclls 2
SIVanlly sllollesllells 3 1Vaells s S EVEVD

S VEVD.

We similarly use (B.3) with r = s; = 3, s = 2+ and (B.2) with r = 5, = 5o = 3+
to see that

IV +[Vanl? = 1o’ (co + ) Vaclls 1
SIWV1+[Vanl? = 1Do'(co + 0)lls, 3.4 [Vaclls,
SIVIH VP = Dlis s llo’(eo+ 0)lls 3 Vel 3
SVl 2,%+HUHCS||C||2,%+||V*C| 5,1
Sl s lelSe S InlSsllels, < €€
SE.

To estimate the second term in G2 we use (B.2) with r = 51 = 55 = % as follows:

I(o”(co + ¢) = 0" (c0)) Vclls; 3 S llo’(co + €) = o'(co)]

SVEVD.

Also, we use (B.3) with r = s; = 3 and s2 = 34 to bound

Z,g”CHz,g S HUHC4||C||2,3HC||2,3

I(0’(cot+c)—0'(co))Vicllg, 1 S llo’(cot+c)—a'(co)lls 24 llells 2 Shollczllells 2 1 llells 2
<VEVELE.

For the third term we first write Vg .¢ — Vic = —v, (Vs - Vi)e. Then (B.2) with
r=28] = Sg = % tells us that

L+ |[Vanl?o’(co + €)(Vre = Vie)lls 3 S llo’(co + 0)lls 3 IVan(ve - Vio)lls 3
w2l s llells 5 S VEVD.

S llolies el
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Similarly, (B.3) with 7 = s; = 1, so = 34 and (B.2) with r = s; = s5 = 3+ imply
that

IVIF VanPo (e + o) (Ve = Voo)lls 1 S o' (e + co) Vel 3 Vel 3
< llollcalells, gl 5.4 llells, 3 < VEVE,

The above analysis covers all three terms in G323, and so we deduce that
3,3 3,3
|G H2,3/2 SVEVD  and |G Hz,l/z S€

which are the desired G3 estimates in (4.9) and (4.10).
Step 4. G>* estimates. For G>* we have the estimates

6l SVEVD and [[6¥]s,, 0 5 €

which are the desired estimates in (4.9) and (4.10). These bounds follow from the
same, if not somewhat simpler, arguments used to bound G2 and are thus omitted
for the sake of brevity.
Step 5. G° estimates. There are four terms in G°. We handle the first pair with
the Sobolev embedding and trace theory as follows:
lu- Vic+ cdivrulls 1
S A+ IVanllo) IVl o) [ VacllLacsy + llullpay I Viel s
el Lo ) IVInl Lacsyllull La sy + el poe sy | Vanll Laesy |Vl pa s
< VEVD.
For the third term we use the Sobolev embeddings H!(X) < L*(X) and H'T (%) —
L (%) to bound
21 S IV.anVielsa +IVinVicsa
S lnllszliellss + Inllsslels, s + 1Vinllas Vel i)

S VEVD.

For the fourth term in G® we first note that

lvAre — vA.c]

divr u — diveu = {diveu, — v - (0 - Vi)ue — v3(vs - Vi )ug} — divieu,

= Vs (Vs - Vi)us — v3(vs - Vi)us.
Then trace theory and the Sobolev embedding imply that

lleoldiveu — diveul[lz1 S [VInVullso + [ V.anV2ul
Slnllssllullzy < VEVD.

20 S =3l Vullsa

Combining the above bounds, we deduce that

&, < VEVD,

which is the desired G® estimate in (4.9). 0

Remark 4.4. Tt is in the G® estimates of this result that we need the full power
of the assumption o € C? from (1.1).
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4.4. The average of c¢. We now aim to estimate fz c as a nonlinear term.

PROPOSITION 4.5. Let £ and D be as defined in (2.1) and (2.2). Suppose that
E <6, where § € (0,1) is the universal constant given in Lemma 4.1, and that D < co.

Then
/ ¢
>

Proof. We use (1.12) to compute

/ZCZ/E(—00+5)=—COIZ|+/Eém+é(1—m>
= —co |X]+co |E|+/2(CO+C) (1 — m> — /Z(CO+C) <1 _ m> .

From this and the trivial bound 0 < v/1 4+ 22 — 1 < 22 we deduce that

I

This proves (4.11). 0

(4.11) <SVEVD.

< /2(60 +1e)) [Vanl® S (co + llell ) ImllT S (1 + VE)WEVD S VEVD.

5. A priori estimates. In this section we combine energy-dissipation estimates
with various elliptic estimates and estimates of the nonlinearities in order to deduce
a system of a priori estimates.

5.1. Energy-dissipation estimates. In order to state our energy-dissipation
estimates we must first introduce some notation. Recall that for a multi-index o =
(cvo, a1, az) € N2 we write |a| = 209 + a1 + ag and 9% = 97095 952, For v € N1+2
we set

foim [ glomalt+ [ Glomut+ P w0+ S el
D ;:/Q%m)aam%/E _20”6 IV,0%?.

We then define

(5.2) £ = Z & and D:= Z D,.

(5.1)

We will also need to use the functional
(5.3) F = / pF2J,
Q

where F? is as defined in (3.4). B B
Our next result encodes the energy-dissipation inequality associated to & and D.

THEOREM 5.1. Suppose that (u, p,n, c) solve (1.16) on the temporal interval [0, T.
Let € and D be as defined in (2.1) and (2.2), and suppose that

T
sup £(t) <d§ and / D(t)dt < o0,
0<t<T 0
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where § € (0,1) is the universal constant given in Lemma 4.1. Let £ and D be given
by (5.2) and F be given by (5.3). Then

(5.4)

for allt €10,T7.

Proof. Let a € N'*2 with |a| < 2. We apply 0% to (1.16) to derive an equation
for (0%u, 0*p, 0*n,0%c). We will consider the form of this equation in different ways
depending on a.

Suppose that || = 2 and oy = 1, i.e., that 9% = 9;. Then v = Gyu, ¢ = Osp,
¢ = O, and h = O,c satisfy (3.1) with F1,... F® as given in (3.3)-(3.7). According
to Proposition 3.1 we then have that

@U\ /|5t77| / V. at77| *06/ |0yc”
dt( J+ + Co > 2

D40 —~o!
IDdsl* J+ W0/ IV..0,c|?

Q 2 Co

/(@u F1+8pF2 J+/ —Oyu - F3 +/(8t77700A o) F4 /atc Fo.
Q

b

We then write

d
/3th2J: —/szJ—/p(atF2J+F28tJ)7
Q dt Jo Q

collect the temporal derivative terms, and then apply the estimates (4.1)—(4.3) of
Theorem 4.2, the estimates of Lemma 4.1, and the usual trace estimates to deduce
that

d - _
(5.5) pr (1,00 —F) + Do) S VED,

where 5(1,0’0) and @(1,0’0) are as defined in (5.1).

Next we consider a € N2 with ag = 0, i.e., no temporal derivatives. In
this case we view (u,p,n,c) in terms of (3.8), which then means that (v,q,(,h) =
(0%, 0%p, 0%n, 0%c) satisfy (3.14) with ! = 9*G" for i = 1,...,5, where the nonlin-
earities G are as defined in (3.9)—(3.13). We may then apply Proposition 3.2 to see
that for |a| < 2 and ap = 0 we have the identity

(5.6) %5} + Dy = / O%u - (0°GY + VO“G?) + 8°pd°G? — 0%u - VO*G?
Q

!/
+ / —0%u - 9*G® + 0°no*G* — 090*G* A0 — ?(WGE’BO‘C.
) 0

When |a| = 2 and oy = 0 we write 9% = 99 for |5] = |w| = 1. We then
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integrate by parts in the G!,G*, and G® terms in (5.6) to estimate
RHS (right-hand side) of (5.6):/ —0°T Py G+ V G?)+0°pd°G* —0™u-VO*G?
Q

/
+ / —0% - 9°G® — 8“nd* PG 4 000 TPGAA 0¥ + ?am%“%
> 0
S llulls (IGH +[[G?[],) + 221G 12 + [[ulls| G2ll2 + [ Viulls, 1 VIG5, -1
+IVEGH e _s[IVanlls, 2 + V3]s, 1] + VLGP lIs.0lViels o

SVD{IGH I + 1G22 + G s, 3 + 1G5 5 + 1G] }

5,0

The estimate (4.7) of Theorem 4.3 then tells us that

RHS of (5.6) < VED,

and so we find that for £, and D, as in (5.1) we have the inequality

d _ _
(5.7) o > Ea+ > Do SVED.
|a]=2 |a]=2
ap=0 ap=0

On the other hand, if |o| < 2, then we must have that ag = 0, and we can directly
apply Theorem 4.3 to see that

RHS of (5.6) < VED.

From this we deduce that

d _ _
(5.8) 7 > fat > Do S VED.
laf<1 laf<1
Now, to deduce (5.4) we simply sum (5.5), (5.7), and (5.8). d

5.2. Enhanced energy estimates. From the energy-dissipation estimate of
Theorem 5.1 we have control of £ and D. Our goal now is to show that these can be
used to control £ and D up to some error terms that we will be able to guarantee are
small. Here we focus on the estimate for the energies, £ and &.

THEOREM 5.2. Let € be as defined in (2.1). Suppose that £ < §, where § € (0,1)
s the universal constant given in Lemma 4.1. Then

(5.9) ESE+ e

Proof. According to the definitions of € and &, in order to prove (5.9) it suffices
to prove that

(5.10) 3 + P17 + 10l 5 + 107mlI5, —y S €+ €2

—1
2

For estimating u and p we recall the standard Stokes estimate as follows (see, for
instance, [7]): for r > 0,

(5.11) [ullr +1pllr—1 S Qlr—2 + [[¥llr-1 + lledls - g
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if

—~Au+Vp=¢c H2(Q),
div o =14 € H(),
(pI — Du)es = a € H~3 (),

u‘gb =0.

Now, according to (3.8) we have that

—Au+Vp=—-0,u+G! in Q,
div u = G2 in Q,
(pI —Du)es = (nI + opAsn)es — oy Vic+ G2 on %,
u=20 on Xy,

and hence we may apply (5.11) and the estimate (4.8) of Theorem 4.3 to see that

lullz + el < I9eullo + 1G o + IG? 11 + (0] + 0Aum)es — 0§ Vacls 1 + [G3lls, 1
SVEH G o +IG2 1 + 11G? 5 3

5\/§+5.

From this we deduce that the u, p estimates in (5.10) hold.

To estimate the Oyn term in (5.10) we use the fourth equation of (3.8) in con-
junction with the estimate (4.8) of Theorem 4.3 and the usual trace estimates to see
that

5.3 Slluslls s + 1G53 < llulla + € S VE+E.

'y

”81577‘

From this we deduce that the 9;n estimate in (5.10) holds.

It remains only to estimate the 9?n term in (5.10). For this we apply a temporal
derivative to the fourth equation of (3.8) and integrate against a function ¢ € H/?(X)
to see that

/ Pnode. = / D, + / 8, G,
> > >

Choose an extension E¢ € H'(Q) with Ed|s = ¢, Ed|s, = 0, and ||E¢|; < lels,1-
Then

/ Druzd = / Oy - VzE¢+/ G2 ES < ([0ullo +118:G%(lo) 15,1
> Q Q

and so again Theorem 4.3 implies that
< VE+eE

From this we deduce that the 921 estimate in (5.10) holds. O

||at277||2,—; < Ndwullo + 110:G? o + ||3tG4||2,—

1
2 2

5.3. Enhanced dissipation estimates. We now complement Theorem 5.2 by
proving a corresponding result for the dissipation.
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THEOREM 5.3. Let £ and D be as defined in (2.1) and (2.2). Suppose that £ < 9,
where § € (0,1) is the universal constant given in Lemma 4.1, and suppose that
D < o0. Then

(5.12) D <D+ED.

Proof. Recall the Stokes elliptic estimate for the Stokes problem with Dirichlet
boundary conditions as follows (see, for instance, [16]): for r > 2,

(5.13) [ullr + IVDllr—2 S [ fllr—2 + 1Bl -1 + [l@1lls g + ll2lls, -1
if

—Au+Vp=f inQ,

divu=nh in Q,
U= on X,
U = Po on Zb.

We know that
lully + 1V 2ull + 1V 2ull S VD,
and so trace theory provides us with the estimate
lullss s < VD.
We also have that [|0yull; < VD, and Theorem 4.3 tells us that
IGH 1+ 1G2(l2 S VEVD.

We may thus apply (5.13) with r = 3 and f = —0,u + G, h = G?, 1 = u|yg, and
p2 = 0 to obtain

(514)  lulls + IVpl S Il = O+ G lx + 1G2l> + llulls 5 S VD + VEVD.

We now turn to the n estimates. For o € N? with |a| = 1 we apply 9° to the
third equation of (3.8) to obtain

(1 —00A,)0%) = 0%p — 930%uz — 0°G3.
Then standard elliptic estimates and the trace estimates imply that

IVenllgs = 32 1070l 5

|a]=1
S D 19 = 850%us — 9°Gills
|a]=1

SVl + llulls + 1G5
<D+ VEVD.
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We know from (1.5) that n has zero average, so the Poincaré inequality tells us that
IMlls.0 S [IVanlls,0 and hence that

(515 lnlls; S Inllso+ [Veanlls 3 S 1Vanlls 5 S VD + VEVD.

To estimate the temporal derivatives of 7 we use the fourth equation in (3.8), the
estimates of Theorem 4.3, and (5.14) as follows:

(5.16)  [9mlls,z < lusllss + 1G53 S lulls + 1G53 S VD + VEVD
and
(5.17) 02nlls,s < I0vuslls, s + 190G sy S IOl + 10:G* sy S VD + VEVD.

Now we complete the estimate of the pressure by obtaining a bound for ||p||o. To
this end we combine the estimates (5.14) and (5.15) with the Stokes estimate of (5.11)
with ¢ = —9yu+ G1,¢ = G?, and a = (n] — ogA.n)es — o V.c+ G3e3 to bound

lulls + llpll2 < | = Gew+ Gl + IG* |2 + | (] — d0Asn)es — oGVie + Geslly 5
S 0wy + 16 1 + 1G22 + llnlls 7 + llells s + 1675

<VD+VEVD.
Thus,

(5.18) Ipll, < VD + VEVD.

Finally, we turn to the ¢ terms in the dissipation. Write

<c>|§1:|/zc.

Then

1
lellso = lle = (@0 +EI1P < lle = (o + 157

[

b

Using this, the Poincaré inequality, and Proposition 4.5, we find that
lells.o < IVsclly o+ VEVD £ VD + VEVD.

On the other hand, the fifth equation in (3.8) allows us to compute

(5.19) /8tc:/G5+A*cfcodiv*u:/G5,
by by b

and so again the Poincaré inequality and Theorem 4.3 tell us that

I
b

1
[0ecllz,0 < ||0pc — <atc>Hz,o + 5

S |IVidellso + ||G°
<D+ VEVD.

ls.0
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Therefore, we obtain
(5.20)

lellsa+110icllsn < liells,o+10e]

sot Y IV.0%s 0+ Vadiclso S VD+VEVD.

o] <2
OCOIO

Now to deduce (5.12) we sum the squares of the estimates (5.14), (5.15), (5.16),
(5.17), (5.18), and (5.20). 0

6. Proof of main results.

6.1. Boundedness and decay. We now combine the estimates of the previous
section in order to deduce our primary a priori estimate for solutions. It shows that
under a smallness condition on the energy and a finiteness condition for the integrated
dissipation, the energy decays exponentially and the dissipation integral is bounded
by the initial data.

THEOREM 6.1. Suppose that (u, p,n, c) solve (1.16) on the temporal interval [0, T.
Let € and D be as defined in (2.1) and (2.2). Then there exists a universal constant
0 < 0, < 8, where § € (0,1) is the universal constant given in Lemma 4.1, such that

if

T
sup £(t) <6, and / D(t)dt < oo,
0

0<t<T
then
T
(6.1) sup eME(t) —|—/ D(t)dt < £(0)
0<t<T 0

for allt € [0,T], where A > 0 is a universal constant.

Proof. According to Theorems 5.2 and 5.3 we have that
ESE+FE* and D<D+ED.

Consequently, if we choose §, sufficiently small, then we may absorb the terms £2 and
ED onto the left to deduce that

(6.2) ESELE andDLDLD onl0,T].
Next we invoke Theorem 5.1, which tells us that on [0,77] we have the inequality
d _ _
a(e—fﬂDg\/EDg\/ED,
where the last inequality follows from (6.2). Upon further restricting d, if necessary,

we may absorb vED onto the left to deduce that

d -
g(é‘*}—)Jr

1
-D<O0
2 — )
which, when combined with the second bound in (6.2), implies that

d -
(6.3) %(5—]-")+CD§0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/01/19 to 128.104.46.196. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1326 CHANWOO KIM AND IAN TICE

on [0,7T], for C' > 0 a universal constant.
Now we turn our attention to F. The second estimate in (4.2) of Theorem 4.2,
together with (6.2), tells us that

[Fl s &2 S EVE,

and so if we further restrict 6, we may conclude that

f<é_F<3e

(6.4) <3

on [0, 7). In particular, this tells us that & — F > 0.
We may then integrate (6.3) in time to deduce that

c /T D()dt < (E(T) — F(T)) + C /T D(t)dt < (£(0) — F(0)),
0 0
from which we deduce that

T
(6.5) / D(t)dt < £(0).
0
On the other hand, we have the obvious bound £ < D, and so (6.4) implies that
0<E-FZESD,

and hence (6.3) tells us that

%@—H+A@—Hgo

for some universal constant A > 0. Gronwall’s inequality and (6.4) then imply that
E(t) S (E(t) = F(1)) S e M(E(0) — F(0)) < e ME(0)
for all ¢ € [0,T], and hence

(6.6) sup eME(t) < £(0).
0<t<T

Now to conclude that the estimate (6.1) holds we simply sum (6.5) and (6.6). O

6.2. Global well-posedness. We now couple to the local well-posedness to
produce global-in-time solutions that decay to equilibrium exponentially fast.

Proof of Theorem 2.4. First, note that given wg, 7, and ¢y, in the local exis-
tence result, Theorem 2.2, we construct the remaining initial data d;u(-,0), dn(-,0),
O¢c(+,0), and p(-,0) in such a way that

2 2 ~ 2
(6.7) £(0) <Gy (||u0||H2(Q) + 1m0/l s sy + 160 — COHH2(E)>
for some universal constant Cy > 0.

Let T'=1 and choose d, > 0 as in Theorem 6.1. Choose £ > 0 as in Theorem
2.2, and let C'; > 0 denote the universal constant appearing on the right-hand side of
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(2.5). Also let C3 > 0 be the universal constant appearing on the right-hand side of
(6.1), and let A > 0 be the universal constant appearing on the left-hand side. Set

1
(1 + Co)(l + Cl)(l + Cg)

Ky = min{k, i, }

and assume that (2.6) is satisfied with k..
Due to (6.7), the unique solution on [0, 1] produced by Theorem 2.2 then satisfies

1 1
2 2
osgfglg(tH/o D(t)dt—i—/o Hafc(t)HH,l(E) dt+”8t2uH(Xl)* < C1E(0) < CoChkiy < 6.

Consequently, we may apply Theorem 6.1 to see that

1
sup eME(t) +/ D(t)dt < C2E(0) < CoCakx
0<t<1 0

which, in particular, means that
(6.8) E(1) < e MCyCoky < K.

Due to (6.8) we may apply Theorem 2.2 with initial data u(-,1),n(-, 1), etc., to
uniquely extend the solution to [1,2] in such a way that

2 2
2 2
1112526(t)+/1 D(t)dt+/1 107 ()| (y dt + (|07, -

< CLE(1) < e CoC1Caky < b,

where X, ; means (2.4) with the temporal interval replaced with [a, b] in place of [0, T'.
We may then apply the a priori estimate of Theorem 6.1 to see that

2
sup eME(t) +/ D(t)dt < C2E(0) < CoCaky
0

0<t<2
and hence that
£(2) < e CyCsk,.

We may continue iterating the above argument to ultimately deduce that the
solution exists on [0, 00) and obeys the estimate (2.7). d

Appendix A. Surface differential operators.

A.1. Basics. Given a vector X € R? we write X, € R? for its horizontal com-
ponent, i.e., X, = Xje; + Xzeo. In the same vein we write

V.f=01fe1+ Oafer

for the “horizontal” gradient. We also write
diV* X = 81X1 + 82X2

for the horizontal divergence operator.
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The unit normal on I'(¢) is defined via

1
V= (~V,,1).

V1+ [V

We define the differential operator Vr via Vr f = Or; fe;, where we define

0 —vi(ve - Vi) fi=1,2
Or,; = e
’ —v3(Vs - V) if i =3.

For a vector field X : ¥ — R® we set
diVF X = 81“71'Xi.

Suppose now that f: I'(t) — R and X : I'(t) — R3. Let Dr denote the intrinsic
surface gradient Drf : I'(t) — R3 such that Drf(x) is perpendicular to T,T'(t) for
each z € T'(t). Also let DivpX denote the intrinsic surface divergence of X. These
quantities are related to the above-defined ones as follows. If we write

fon=f(z,n(zt) and Xon=X(2.,n(zs1)),
then fon:¥ - Rand X on: X — R3 and
Drf(zs,n(x«, 1)) = Vr(fon)(x.) and Divp X (2., n(z.,t)) = divp X (z,) for all z, € X.

In other words, Vi and divr are the manifestations of the surface gradient and diver-
gence when functions and vector fields are pulled back to X.

The operators Dr and Divp are known to satisfy a number of useful identities.
Here we record the versions of these identities for Vi and divp. We begin with some
preliminary calculations.

LEMMA A.1. We have the following identities:

(A].) din V= 511/1 + 821/2 = diV* Vy = — diV* % = 7H,

1+ [Vl
(A.2) O\/1+ |Vun)® = —vs - V. 0in,

/ . V.
(A.3) Ou\/1+ |Van)? = div, 8,5777]2 — omH,

14 |V.n
and
(A4) Vrf-v=0.
Proof. To prove (A.1) we first use the definition of divr to write

diVF V= 811/1 + (921/2 — I/i(l/* . V*Vz)
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We have that |v|> =1 on %, and thus

0=v,-Vil=v,-V, |1/|2 =2vv, - Vi,

Upon combining these two calculations we deduce (A.1).
For (A.2) we compute

a,
o1+ VP = —ZL 5.0,y = —v,;0,0im = —v, - V..0m.
V1+ [Vl

The identity (A.3) follows from a similar computation.
The identity (A.4) follows from the fact that Vrf = V. f —v(v.- V. f), and hence

fo-VZV*f-V—|V|2(V*~V*f)ZV*-V*f—V*-V*fZO. ]
Next we record the key integration by parts identities.

ProPOSITION A.2. We have the following identities for f,g : ¥ — R and X :
¥ — R3:

(A5) /E Orifor/1+ IVanf? = /E (g + forH) 1+ V.

and

(A.6) /diva\/1+|V*n|2:/ —X -vH\/1+ V.|
> b

Proof. The identity (A.6) follows immediately from (A.5), so it suffices to prove
(A.5).
Assume initially that ¢ = 1,2. Standard integration by parts reveals that

/E o ifor/1+ [Vanf = — / o1+ IVanl® = Fod/1+ [Vl
+ fdiv, (V*Vig\/ 1+ |V*77|2>
—— [ g0rsa/ 1+ 9 + g v v/ 1+ (9
>

__ /Z (FOrag + fori\/1 + [Vl

where in the last line we have used the identities of Lemma A.1. This proves (A.5)
when ¢ =1, 2.
Now assume that ¢ = 3. Since dr 3 = —v3(vs - V), we may then compute

[ ovasa/r+ (9P = [ faiv. (u*ugg\/mv*nz): [~ fovagy/1+ (9.
> > >
+/fgdiv* <1/*1/3\/1+|V*T]2> :/ *far,3g\/1+|v*77|2+/ fodiv, (vs)
> > >
=/Z—(f8r,3g+ng3H)\/1+IV*nl2~

This proves (A.5) when ¢ = 3. d
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A.2. A PDE identity. Here we record an important identity for solutions to
certain PDEs.

PROPOSITION A.3. Let f € C*(R). Suppose that ¢ and n satisfy

{&E +u - V,é+ édivpu = yAré,

on=u- ym,
Then
%Lf(é)x/m: /E ((£(@) - /@) dive u— ()| Vrel?) 1+ 1Vl

Proof. We begin by computing

%/Ef(é)m:/Ef/(é)ﬁtém+f(é)atm:=I—|—II.

Note that
Arf(€) = divp (VY f(¢)) = divr(f/(€)Vre) = f(é)Arc + f(¢) |VF6|2 .
Using this, we may compute

(@0 = f(¢) (—u- V¢ — cdivpu + yArc) = —u-V. f(¢)— f(¢) divr u+vAr f(¢)
+(f(@) = £/(&)e) divru—vf"(8) [Vréf.

Consequently, we may rewrite I = I1 + I, for

I = /E (—u- V. f(&) — f(&)divr u + yAr £(¢)) m

and

I = /E ((f(é) — f'(¢)e) divpu — v f"(¢) ‘Vr6|2> m

Thus, to complete the proof it suffices to show that I; + IT = 0.
To this end we first use Proposition A.2 to compute

/E VAR @1+ [T = /E V(@) - vHA 1+ [V =0,

since Lemma A.1 tells us that Vpf(¢) - v = 0. Similarly,

/E—f(é)divFu\/1+|V*n|2:/E(u-fo(é)+f(6)u~uH)\/1+|V*n|2,

and hence

L= / (—u- Vaf(&) +u-Vrf(@) + f(@u-vH)\/1+ V..
P
On the other hand, (A.3) and the equality 9,7 = u - v1/1 + |V,n|? tell us that

II:/f(E) (div*(u~uv*77) —u-vH\/1+4+ |V*77|2> =1L +I1s.
)
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Upon integrating by parts, we may compute

0 b

Thus,

II:/E(u-z/V*f(E)-V* @ vH) 1+ Vel

To conclude we first note that

- V(@) = u- [V (@) - v(v. - V. (@),

Thus upon summing the above expressions for I; and I1 we find that I; + I = 0,
which then yields the desired identity. 0
Appendix B. Analytic tools.
B.1. Poisson integral. Suppose that ¥ = (L1T) X (LT). We define the Poisson
integral in Q_ =3 X (—00,0) by

(B.1) Pfa)= 3 e i),

n€(Ly'Z)x(Ly'7)

where for n € (L7'Z) x (L 'Z) we have written

— 27N T,

f(”)Z/Ef(JU*)eLde*-

It is well known that P : H*(X) — H**1/2(Q_) is a bounded linear operator for
s> 0.

~ LEmMA B.1. Let Pf be the Poisson integral of a function [ that is in either
HY(X) or HI=Y2(X) for ¢ € N. Then

IVIPIS S U W Era-1r2my  and  (IVIPFIG S 1F rags)

Proof. This is proved, for instance, in Lemma A.3 of [7]. d
We will also need L™ estimates.

LEMMA B.2. Let Pf be the Poisson integral of a function f that is in Hq+S(E)
for an integer ¢ > 1 and a real number s > 1. Then

2 2
||vqpf||L°° 5 ||f||Hr1+s .
The same estimate holds for g =0 if f satisfies fE f=0.
Proof. This is proved, for instance, in Lemma A.4 of [7]. |

B.2. Product estimates. The following lemma is key for nonlinear estimates.

LEmMA B.3. The following hold:
1. Let 0 < r < s1 < 89 with sy >n/2. If f € H*and g € H*2, then fg € H"
and

(B.2) 1£gll- < N 1sillglls,-
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2. Let 0 <r < s1 < 89 withse >r+n/2. If f € H**and g € H*2, then fg € H"
and

(B3) 1£gllr < N lsillgllss-

3. Let 0 <r <81 < sy withse>r+n/2. If fe H"(X) and g € H*2(X), then
fge H 1 (X) and

1f9lle—s S Nfls.—rllglls.s-

Proof. See, for instance, the appendix of [7]. ]
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