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Abstract

We establish the global well-posedness and stability of the Boltzmann equation
with the specular reflection boundary condition in general smooth convex do-
mains when an initial datum is close to the Maxwellian with or without a small
external potential. In particular, we have completely solved the longstanding
open problem after an announcement by Shizuta and Asano in 1977. © 2017 Wi-
ley Periodicals, Inc.
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1 Introduction
Kinetic theory describes the dynamics of any system made up of a large num-

ber of particles (e.g., gas or plasma) by a distribution function that is defined in
the phase space. Among others, one of the fundamental models is the Boltzmann
equation. This equation describes the dynamics of dilute collections of gas parti-
cles undergoing elastic binary collisions. In the presence of an external potential
�rx.�.t; x/Cˆ.x//, a density of dilute charged gas particles is governed by the
Boltzmann equation

(1.1)
@tF C v � rxF � rx.�.t; x/Cˆ.x// � rvF D Q.F; F /;

F.0; x; v/ D F0.x; v/;
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where F.t; x; v/ is a distribution function of the gas particles at a time t � 0; a
position x 2 � � R3, and a velocity v 2 R3. Here the collision operator Q takes
the form of

Q.F1; F2/ WD QC.F1; F2/ �Q�.F1; F2/

WD

Z
R3

Z
S2
B.v � u; !/

�
F1.u

0/F2.v
0/ � F1.u/F2.v/

�
d! du;

where u0 D uCŒ.v�u/�!�!, v0 D v�Œ.v�u/�!�!, andB.v�u; !/ D j.v�u/�!j
(hard sphere). It is well-known (see [16]) that the following local Maxwellian is an
equilibrium solution to (1.1):

(1.2) �E .x; v/ D �.v/e
�ˆ.x/;

where �.v/ D e�jvj
2=2 is a standard global Maxwellian.

In many physical applications, e.g., dilute gases passing objects or charged par-
ticles inside tokamak devices, particles are interacting not only with each other
but also with the boundary. Various interesting phenomena occur when gas parti-
cles interact with the boundary, such as a formation and propagation of singulari-
ties [13–15]. In the presence of the boundary, a kinetic equation has to be supple-
mented with boundary conditions modeling the interaction between the particles
and the boundary. Among other boundary conditions (see [2,12]), in this paper we
focus on one of the most basic boundary conditions, a so-called specular reflection
boundary condition. This boundary condition takes into account a case that if a gas
particle hits a boundary, then it bounces back with the opposite normal velocity and
the same tangential velocity, as a billiard ball hits a boundary and bounces back:

(1.3) F.t; x; v/ D F.t; x;Rxv/ for x 2 @�;

whereRxv D v�2.n.x/ �v/n.x/. We note that the local Maxwellian (1.2) satisfies
the boundary condition (1.3).

Despite extensive developments in the study of the Boltzmann theory, many ba-
sic boundary problems, especially regarding the specular reflection boundary con-
dition (BC) with general domains, have remained open. In a landmark paper [21]
of 1974, Ukai constructed the first global-in-time solutions near Maxwellians to
the Boltzmann equation with nontrivial spatial dependence in a periodic box (no
boundary). Not long after, in 1977, Shizuta and Asano announced the construc-
tion of global solutions to the Boltzmann equation (1.1) with no external potential
(� � 0 � ˆ) near Maxwellians in smooth convex domains with specular reflec-
tion BC [20], but without mathematical proofs. It took more than 30 years to
encounter the first mathematical resolution: Guo, in [12], developed a novel L2-
L1 argument to construct a unique solution to the Boltzmann equation (1.1) with
no external potential for the specular reflection boundary condition. An asymptotic
stability of the global Maxwellian � is proven when an initial datum is close to �.
However, such results in [12] are established under an extra condition; namely, the
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boundary is a level set of a real analytic function. Indeed, this analyticity condi-
tion is crucially used to verify a key part of the proof in [12]. Eventually, in this
paper, we are able to establish the global well-posedness and stability of the Boltz-
mann equation for the specular reflection BC without the analyticity, and thereby
we completely settle a long-standing (40 years) open question in the Boltzmann
theory in the affirmative! In fact, our results even go beyond the original open
question in [20]: nontrivial external potentials �.t; x/ and ˆ.x/ can be allowed.
We discuss more on the external potential issue later.

Here we only mention some other relevant works briefly. In [1, 18], the well-
posedness and asymptotic stability of the global Maxwellian are studied when the
boundary condition is any convex combination of the specular reflection BC and
a diffusive BC except the pure specular reflection boundary condition. For large-
amplitude solutions, an asymptotic stability of the global Maxwellian is established
in [4] with or without the boundary, provided certain a priori strong Sobolev esti-
mates can be verified. Recently boundary regularity and singularity of solutions are
extensively studied in [13–15]. We refer [19] among others for the weak solution
contents.

Mathematical problems on the Boltzmann equation with an external potential
have also drawn lots of attention. In [16], the stability of the Maxwellian �E in
(1.2) is established with a time-dependent external potential ˆ.x/, which can be
large, in a periodic box. The Vlasov-Poisson-Boltzmann system (VPB), which
takes account of self-consistent electric fields by charged particles, is studied in
[10] when solutions and fields are small perturbations in a periodic box. However,
in many important physical applications (e.g., semiconductor and tokamak), the
charged dilute gas interacts with the boundary. One major difficulty is that trajec-
tories are curved and behave in a very complicated way when they hit the boundary.
As the first step toward studying models of dilute charged gases interacting with
a self-consistent field and boundary, in this paper we establish the global well-
posedness of the Boltzmann equation coupled with small external potentials and
the specular reflection BC.

An external potential and a boundary condition play an important role in the
evolution of macroscopic quantities such as the total mass, total momentum, and
total energy. Let F be a solution to (1.1) satisfying the specular reflection boundary
condition (1.3). We have the total mass conservation and the evolution of the total
energy as “

��R3
F.t/ D

“
��R3

F0;(1.4)

“
��R3

�
jvj2

2
Cˆ

�
F.t/C

Z t

0

“
��R3

F.s/v � rx�.s/

D

“
��R3

�
jvj2

2
Cˆ

�
F0:

(1.5)
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By normalization, without loss of generality, we assume that

(1.6)

“
��R3

F0.x; v/ D

“
��R3

�E .x; v/;“
��R3

�
jvj2

2
Cˆ.x/

�
F0.x; v/ D

“
��R3

�
jvj2

2
Cˆ.x/

�
�E .x; v/:

We consider a momentum for a special case: a domain � is axis-symmetric if
there are vectors x0 2 R3 and $ 2 R3 such that

(1.7) f.x � x0/ �$g � n.x/ D 0 for all x 2 @�:

In the case of an axis-symmetric domain, we assume a degenerate condition for the
external fields as

(1.8) f.x � x0/ �$g � rx.�.t; x/Cˆ.x// D 0 for all t � 0 and x 2 �:

Then, assuming both (1.7) and (1.8), we have an evolution of an angular momen-
tum as

(1.9)
“
��R3

f.x � x0/ �$g � vF.t/ D

“
��R3

f.x � x0/ �$g � vF0:

In this case, we set

(1.10)
“
��R3

f.x � x0/ �$g � vF0.x; v/ D 0:

Furthermore, the entropy

H .F / WD

“
��R3

F lnF

satisfies the following inequality (H-theorem)

(1.11) H .F.t// �H .�E / �H .F0/ �H .�E /:

Now we are ready to state our main theorems.

THEOREM 1.1. Letw D .1Cjvj/ˇ for ˇ > 5
2

. Assume that the domain� � R3 is
C 3 and convex in (1.15). Assume that �.t; x/ 2 C 2;
t;x and ˆ.x/ 2 C 2;
x for some
0 < 
 , k� CˆkC2 � 1, and for �� > 0 and ı� > 0,

(1.12) sup
t�0

e�� tk�.t/kC1 < ı� < C1:

Assume (1.6). If F0 D �E C
p
�Ef0 � 0 and kwf0k1C jH .F0/�H .�E /j C

ı� C ı�=�� � 1, then there exists a unique global-in-time solution

(1.13) F.t/ D �E C
p
�Ef .t/ � 0

to (1.1) satisfying the specular reflection boundary condition (1.3). Moreover,

(1.14) sup
t�0

kwf .t/k1 . kwf0k1 C jH .F0/ �H .�E /j C ı� C ı�=�� :

Furthermore, (1.4), (1.5), and (1.11) hold for all t � 0.
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Here, a C 3 domain means that for any boundary point p 2 @�, locally there
exists a one-to-one and onto C 3 function �p such that �p.xp;1; xp;2; xp;3/ 2 @� if
and only if xp;3 D 0 (see (2.6)). The convexity is defined as follows: for C� > 0,

(1.15)

2X
i;jD1

�i�j @i@j�p.xp;1; xp;2; 0/ � @3�p.xp;1; xp;2; 0/ � �C�j�j2

for � 2 R2:

The notation C ˛;
 stands for the standard Hölder space in t and x.
In the presence of a time-independent external potential (� � 0), the asymptot-

ical stability of the local Maxwellian �E is studied.

THEOREM 1.2. Assume the same conditions in Theorem 1.1 before (1.12). Let

(1.16) � � 0:

Assume (1.6). If both (1.7) and (1.8) hold, then we assume (1.10). If kwf0k1 � 1,
then there exists a unique global-in-time solution F D �E C

p
�Ef � 0 to (1.1)

with (1.3). Moreover, there exists � D �.�;ˆ/ > 0 such that

(1.17) sup
t�0

e�tkwf .t/k1 . kwf0k1:

Furthermore, the total mass and energy are conserved as (1.4) and (1.5) with � �
0, and the total angular momentum is conserved as (1.9) if both (1.7) and (1.8)
hold.

Note that we do not have a quantitative bound of � in (1.17). The main reason
is that we use a nonconstructive method to prove L2 coercivity in Proposition 1.4.

We remark that in both theorems we only need that the domain � is smooth
and convex but not real analytic. We also note that in [16] we need a stronger
C 3 assumption for the time-independent external potential to establish the well-
posedness.

To illustrate the main ideas of the paper, it is convenient to play with the pertur-
bation f . The function f in (1.13) solves

(1.18) @tf C v � rxf � rx.� Cˆ/ � rvf C e
�ˆLf D

�

�
1

2
f C
p
�E

�
v � rx� C e

�ˆ
2 �.f; f /;

and satisfies

(1.19) f .t; x; v/ D f .t; x; Rxv/ for x 2 @�:

We recall the definition of the linearized collision operator (see [2]),

(1.20) Lf D �
1
p
�
ŒQ.�;

p
�f /CQ.

p
�f;�/�;
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and the nonlinear collision operator,

�.f; g/ D
1

2
p
�
ŒQ.
p
�f;
p
�g/CQ.

p
�g;
p
�f /�:

It is well-known that (see [8])

Lf D �f �Kf;

where the collision frequency is defined as

�.v/ WD

Z
R3

Z
S2
j.v � u/ � wj�.u/dw du:

For this hard sphere case, there are positive numbers C0 and C1 such that, for
hvi WD

p
1C jvj2,

(1.21) C0hvi � �.v/ � C1hvi:

Moreover, the compact operator K in L2.fv 2 R3g/ is defined as

Kf D
1
p
�
ŒQC.�;

p
�f /CQC.

p
�f;�/ �Q�.

p
�f;�/�

D

Z
R3

k.v; u/f .u/du:

1.1 Lp-L1 Bootstrap Argument via the Triple Iterations
In order to handle the quadratic nonlinearity of �.f; f /, it is important to derive

an L1-control of the solutions of (1.18). To illustrate the main idea, we consider
a simplified linear problem

(1.22) @tf C v � rxf � rxˆ.t; x/ � rvf C f D

Z
juj�N

f .u/du:

Here, ˆ.t; x/ is a time-dependent potential and we can regard �.t; x/ C ˆ.x/ in
(1.1) as ˆ.t; x/.

We note that due to the boundary condition (1.19), the trajectory .X.sI t; x; v/;
V .sI t; x; v// is defined as the backward billiard trajectory that is curved by the
external field (or force) �rˆ. Let t1 and x1 be the first backward bouncing
time and position of the trajectory sitting on a position x with a velocity v at
time t . Then we define v1 D Rx1v where Rx1v is defined in (1.3). Induc-
tively we can define the cycles .t`; x`; v`/ and Xcl.sI t; x; v/ D X.sI t`; x`; v`/

and Vcl.sI t; x; v/ D V.sI t`; x`; v`/ for s 2 Œt`C1; t`�. The Duhamel formula of
(1.22) along this trajectory is given by

f .t; x; v/ D e�tf0.Xcl.0I t; x; v/; Vcl.0I t; x; v//

C

Z t

0

e�.t�s/
Z
juj�N

f .s; Xcl.sI t; x; v/; u/du ds:
(1.23)



BOLTZMANN EQUATION WITH THE SPECULAR BC 417

Plugging the Duhamel formula into the integrand f .s; X.sI t; x; v/; u/, we get

(1.24)

f .t; x; v/ D

Z t

0

e�.t�s/
Z s�"

0

e�.s�s
0/

�

“
juj�N;ju0j�N

f .s0; Xcl.s
0
I s; Xcl.sI t; x; v/; u/; u

0/du0 du ds0 ds

C initial datum’s contributionsCO."/:

Throughout this paper, we use Oa.A/ for some function that depends on a and is
size of A.

In the absence of a boundary and an external potential, the trajectoryX.sI t; x; v/
is a straight line, and we can explicitly compute the Jacobian of

u 7! X.s0I s; X.sI t; x; v/; u/;

which has a positive lower bound away from a small set of s. Therefore we obtain,
via a change of variables,

(1.25) kf kL1 . kf kLp C dataC small terms:

Unfortunately, trajectories are very complicated when the specular reflection BC is
imposed. In fact, in the case of the specular reflection BC, such a lower bound of
Jacobian is only known when the domain is convex and real analytic in the absence
of an external potential [12].

The main contribution of this paper is to establish an Lp-L1 bootstrap estimate
as (1.25), when the domain is smooth and convex and the external potential is C 2;


and small in C 2. For the readers’ convenience, we write a rough version of this
result:

A ROUGH VERSION OF THEOREM 3.9. Applying the Duhamel formula once
again to (1.24) (triple iterations), we have

(1.26)

f .t; x; v/

D

Z t

0

e�.t�s/
Z s

0

e�.s�s
0/

Z s0�"

0

e�.s
0�s00/

•
juj�N;ju1j�N;ju00j�N

� f .s00; Xcl.s
00
I s0; Xcl.s

0
I s; Xcl.sI t; x; v/; u/; u

0/; u00/du00 du0 du ds00 ds0 ds

C initial datum’s contributionsCO."/:

Let .yu1; yu2/ and .yu01; yu
0
2/ be the spherical coordinate of yu D u=juj 2 S2 and

yu0 D u0=ju0j 2 S2, respectively. Then, if s0 and s00 are away from some local
C 0;
 -functions, then locally we can choose two distinct variables f�1; �2g among
fjuj; yu1; yu

0
1; yu
0
2g such that

(1.27)

ˇ̌̌̌
det
�
@Xcl.s

00I s0; Xcl.s
0I s; Xcl.sI t; x; v/; u/; u

0/

@.ju0j; �1; �2/

�ˇ̌̌̌
has a positive lower bound:

As a consequence we achieve (1.25).
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We remark that the regularity of such C 0;
 -functions is determined and re-
stricted crucially by the regularity of the external potential ˆ 2 C 2;
 . Moreover,
this C 0;
 -regularity is a (minimal) condition to guarantee that we can construct
small "-neighborhooods of the graph of them.

There are several key ingredients in the proof of Theorem 3.9:
Specular Basis and Geometric Decomposition. Assume that t`C1 < s0 < t`

and hence Xcl.s
0I s; Xcl.sI t; x; v/; u/ is in between `-bounce and .`C 1/-bounce.

Then we know that

(1.28) @jujXcl.s
0
I s; Xcl.sI t; x; v/; u/ D v

`=jv`j CO.kˆkC2/:

On the other hand, for yu D .yu1; yu2/ 2 S2, we have

ryuXcl.s
0
I s; Xcl.sI t; x; v/; u/ D ryux

`
� .t` � s0/ryuv

`

� ryut
`v` CO.kˆkC2/:

(1.29)

Among other terms, @yut` is the most delicate term to control since t` depends
on all the cycles .xl ; vl/ for l D 1; 2; : : : ; ` � 1. Fortunately, this harmful term
appears only in the direction of v`=jv`j! Inspired by this observation we define the
specular basis fe`0; e

`
?;1; e

`
?;2g, which is an orthonormal basis with e`0 D v`=jv`j

and e`
?;i perpendicular to e`0. See (3.14).

Now we decompose rjuj;yu1;yu2Xcl.s
0I s; Xcl.sI t; x; v/; u/ into

(1.30) rXcl D
�
rXcl

�
k
C
�
rXcl

�
?
WD
�
rXcl � e`0

�
e`0 CrXcl �

�
rXcl

�
k
:

Then we have the following similarity relations, from (1.28) and (1.29):

@Xcl

@.juj; yu/
�

0@� @Xcl
@.juj;yu/

�
k�

@Xcl
@.juj;yu/

�
?

1A
�

0B@ �.s � s
0/ � � jv`jryu1;yu2 t

`

02�1
�
ryu1;yu2x

` � .t` � s0/ryu1;yu2v
`
�
� e`
?;1�

ryu1;yu2x
` � .t` � s0/ryu1;yu2v

`
�
� e`
?;2

1CA
CO�.kˆkC2/:

(1.31)

See (3.32) for the precise form. Note that an upper right block containing @yut`

would have small contribution in the determinant of the full matrix since the lower
left block is a zero matrix.

Due to this geometric decomposition, we are able to relate @Xcl=@.juj; yu/ to the
mapping

(1.32) .juj; yu1; yu2/ 7! .x`; v`/:

Note that the map (1.32) is closely related to the billiard map [3], which turns out to
be more “controllable” than @Xcl=@.juj; yu/. Moreover, the form of the first column
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of (1.31) clearly guarantees that this Jacobian matrix is at least rank 1 for a small
kˆkC2 .

Diffeomorphism and Specular Matrix. By the chain rule, we can view (1.32) as
the compositions of

(1.33) .juj; yu1; yu2/ 7! .x1; v1/ 7! .x2; v2/ 7! � � � 7! .x`; v`/:

In the absence of external potentials, the map .xl ; vl/ 7! .xlC1; vlC1/ is the bil-
liard table and it is well-known that this map is diffeomorphic [3].

The quantitative study of such a map, especially in 3D domains, is performed
recently in the work [14] by the first author with his other collaborators when the
trajectories are very close to the boundary (grazing trajectories) in the absence of
external potentials. However, these estimates cannot be sufficient for our purpose
since it only can provide the information for the grazing trajectories. Moreover,
the proof of [14] heavily relies on the fact that the ODE of the trajectory is au-
tonomous. In the presence of a time-dependent external potential, however, the
ODE of .Xcl; Vcl/ becomes nonautonomous, which obstructs generalizing the re-
sult of [14] to the time-dependent external potential case.

We are able to overcome this difficulty by a new advance of our understanding to
the derivatives of trajectories .Xcl; Vcl/. In this paper, we succeed in performing the
(almost) explicit computations of the Jacobian matrix of a (1.33) in the presence
of a small time-dependent external potential. This also allows us to understand
the role of the regularity of the external potential in (1.27). We expect that this
technical improvement will allow us to generalize the work of [14].

Equipped with this quantitative estimate, we study the lower right 2 � 2 subma-
trix of (1.31). In order to use the diffeomorphism property of (1.33), we employ
the specular matrix R, which is a 4 � 4 full-rank matrix and essentially equals the
Jacobian matrix of (1.33) expressed with the specular basis. The precise form can
be computed as in (3.16), and the entries are C 0;
 if the external potential is C 2;
 .
Indeed, the lower right 2 � 2 submatrix of (1.31) can be written as in (3.32),

right upper 2 � 2 submatrix of R � .t` � s0/

� right lower 2 � 2 submatrix of R:
(1.34)

Since at least one entry of the right 4 � 2 submatrix of R should not be zero as a
polynomial of s, we are able to show that .juj; yu1/ 7! X is at least rank 2 if s is
away from some C 0;
 -function of .t; x; v/ in Lemma 3.6.

Triple Iterations. Unfortunately, this rank 2 is still not sufficient for our purpose.
The key idea to overcome this difficulty is the triple iterations in (1.26), apply-
ing the Duhamel formula (1.23) once again to (1.24). One more iteration makes
the game more feasible since now we have more free parameters to play with:
fjuj; yu1; ju

0j; yu01; yu
0
2g 2 R5: Due to the observation (1.28), we need to choose ju0j

and two other free parameters f�1; �2g so that the following map is rank 3,

(1.35) .ju0j; �1; �2/ 7! X.s00I s0; X.s0I s; X.sI t; x; v/; u/; u0/:
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We use the full structure of the specular matrix and carefully study the quadratic
polynomial (Lemma 3.5) to achieve a positive lower bound of the Jacobian of
(1.35) in Lemma 3.7. The convexity of the domain (1.15) is used crucially to
control the number of bounces in Lemma 3.8.

1.2 Lp-Bounds
Now we illustrate the Lp control of the Boltzmann solution. Due to the Lp-L1

bootstrap estimate (1.25), such Lp estimates would provide L1 control.
L1-bound in the case of a time-dependent potential. In order to show the stabil-

ity of �E in the presence of time-dependent potential �, we utilize the following
bound of [11, 15].

LEMMA 1.3.
jF � �E j1jF��E j�xı�E

�
4

xı

�
.F lnF � �E ln�E / � .F � �E /

C

�
jvj2

2
Cˆ.x/

�
.F � �E /

�
:

Applying the Lp-L1 bootstrap argument via the triple iteration, the L1-norm
of the solution is mainly bounded by the L1-norm of jF � �E j1jF��E j�xı�E .
By Lemma 1.3, we further bound it by the differences in the entropy, total mass,
total energy of the solution, and �E . A new difficulty in the presence of the time-
dependent potential �.t; x/ is that the total energy is not preserved anymore (1.5).
Via Gronwall’s inequality, we are able to prove that kwf .t/k1 can grow in time
at most as eC.k�k1Ckwf k1/t . Using the decay of potential and f , we can prove
that the total energy is close to the initial total energy for all time. This weighted
L1-bound is sufficient to prove the existence, uniqueness, and the stability of �E
in Theorem 1.1.
L2-decay in the case of a time-independent potential. It is well-known [2] that

the linear operator L is only semipositive,

(1.36)
Z

R3
Lff dv � ıLk

p
�.I � P/f k2

L2.R3/;

where k � k� D k�1=2 � kL2 . The null space of L is a five-dimensional subspace of
L2.R3/ spanned by

˚p
�E ; v

p
�E ; jvj

2p�E
	

and the projection of f onto such
null space is denoted by

(1.37) Pf .t; x; v/ WD fa.t; x/C v � b.t; x/C jvj2c.t; x/g
p
�E :

Due to this missing term in the lower bound of (1.36), the Boltzmann equation is
degenerated dissipative. In order to prove L2-decay, we need a coercivity estimate.
Following the argument of [12, 16] we first consider

(1.38) @tf C v � rxf � rxˆ.x/ � rvf C e
�ˆ.x/Lf D 0:
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PROPOSITION 1.4. Let ˆ.x/ 2 C 1. Assume that f solves (1.38) and satisfies
the specular reflection BC and (1.4)–(1.5) with � � 0 for F D �E C

p
�Ef .

Furthermore, for an axis-symmetric domain (1.7) with a degenerate potential (1.8),
we assume (1.9). Then there exists C > 0 such that, for all N 2 N,

(1.39)
Z NC1

N

kPf .t/k22 dt � C
Z NC1

N

k.I � P/f .t/k2� dt;

where Pf is defined in (1.37).

We remark that we do not need any smallness of ˆ in this linear theorem. A
direct consequence of (1.39) is an exponential decay in time of kf .t/kL2.��R3/.
Then following the argument of [12], we are able to show an exponential decay in
time of kwf .t/kL1.��R3/.

The proof of this proposition is based on the contradiction argument of [12,16].
As a consequence, we do not have any quantitative estimates of C in (1.39) and
the decay rate. By negating the coercivity of (1.39) and some normalization of
(5.15), we obtain a weakly convergent sequence Zm whose component orthogonal
to the null space of L is vanishing as m ! 1. The weak limit Z satisfies the
conservation laws as (5.1)–(5.3) and the specular reflection BC (step 7 in the proof
of Proposition 1.4) and

(1.40) b.t; x/ � n.x/ D 0 for almost all x 2 @�:

Moreover,Z remains in the null space ofL and solves the transport equation (5.24)
without e�ˆLZ. As a consequence, the components a, b, and c of (1.37) solve the
systems of [16]

@ic D 0;

@tc C @ibi D 0;

@ibj C @j bi D 0; i ¤ j:

@tbi C @ia � 2c@iˆ D 0;

@ta � rxˆ � b D 0;

(1.41)

Unlike the case of ˆ � 0 in [12], explicit forms of a, b, and c cannot be ob-
tained. We use the boundary condition (1.40) and the conservation laws carefully
and conclude that

(1.42) Z.t; x; v/ D 0 almost all t; x; v:

On the other hand, due to the normalization (5.15), the L2-norm of PZm is
always 1 identically. Away from the boundary @�, the weak convergence is ac-
tually strong convergence due to the velocity average lemma. For the shell-like
subset of �, using the Duhamel form along the trajectory, we are able to bound
the integration over this shell-like subset by the interior integration (Lemma 5.1).
Therefore, Zm ! Z strongly and the L2-norm of Z equals 1, which is a contra-
diction to (1.42).
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2 Specular Trajectories with a Small Time-Dependent Potential
In (1.1), a time-dependent potential is given by ˆ.x/C �.t; x/. In this section,

we write this potential as ˆ.t; x/ for convenience. The corresponding characteris-
tic equation is

d

ds
X.sI t; x; v/ D V.sI t; x; v/;

d

ds
V .sI t; x; v/ D �rxˆ.s;X.sI t; x; v//:

(2.1)

DEFINITION 2.1. We recall the standard notations from [14]. We define

(2.2)

tb.t; x; v/ WD supfs � 0 W X.� I t; x; v/ 2 � for all � 2 .t � s; t/g;

xb.t; x; v/ WD X.t � tb.t; x; v/I t; x; v/;

vb.t; x; v/ WD V.t � tb.t; x; v/I t; x; v/;

and similarly,

tf.t; x; v/ WD sup
˚
s � 0 W X.� I t; x; v/ 2 � for all � 2 .t; t C s/

	
;

xf.t; x; v/ WD X.t C tf.t; x; v/I t; x; v/;

vf.t; x; v/ WD V.t C tf.t; x; v/I t; x; v/:

(2.3)

Here, tb and tf are called the backward exit time and the forward exit time, respec-
tively. We also define the specular cycle as in [14]. We set .t0; x0; v0/ D .t; x; v/.
Inductively, we define

tk D tk�1 � tb.t
k�1; xk�1; vk�1/;

xk D X.tkI tk�1; xk�1; vk�1/;

vk D RxkV.t
k
I tk�1; xk�1; vk�1/;

(2.4)

where

RxkV.t
k
I tk�1; xk�1; vk�1/ D V.tkI tk�1; xk�1; vk�1/

� 2.n.xk/ � V.tkI tk�1; xk�1; vk�1//n.xk/:

We define the specular characteristics as

Xcl.sI t; x; v/ D
X
k

1s2.tkC1;tk�X.sI t
k; xk; vk/;

Vcl.sI t; x; v/ D
X
k

1s2.tkC1;tk�V.sI t
k; xk; vk/:

(2.5)

For the sake of simplicity we abuse the notation of (2.5) by dropping the subscript
cl in this section.



BOLTZMANN EQUATION WITH THE SPECULAR BC 423

From the assumptions of Theorem 1.1 and Theorem 1.2, for any p 2 @�, there
exists sufficiently small ı1 > 0 and ı2 > 0, and a 1-to-1 and onto C 3-function

�p W fxp 2 R3 W xp;3 < 0g \ B.0I ı1/ ! � \ B.pI ı2/;

xp D .xp;1; xp;2; xp;3/ 7! .x1; x2; x3/

D �p.xp;1; xp;2; xp;3/;
(2.6)

and �p.xp;1; xp;2; xp;3/ 2 @� if and only if xp;3 D 0. We define the transformed
velocity field at �p.xp/ as

(2.7) vi .xp/ WD
@i�p.xp/p
gp;i i .xp/

� v:

For any two-dimensional smooth manifold S , we can find a local orthogonal
parametrization from R2 to @S . (See [5, cor. 2, p. 183], for example.) Therefore,
we assume

(2.8)
�
@1�p
p
gp;11

;
@2�p
p
gp;22

;
@3�p
p
gp;33

�
is orthonormal at xp;3 D 0;

where gp;ij WD h@i�p; @j�pi.

For second derivative @i@j�p, we define the Christoffel symbol �kp;ij by

(2.9) @ij�p D
X
k

�kp;ij @k�p:

Moreover, by reparametrization, we may assume that gp;33.xp;1; xp;2; xp;3/ D
1 whenever it is defined. Without loss of generality, the outward normal at the
boundary is, for x D �p.xp;1; xp;2; 0/ 2 @�,

n.x/ D n.�p.xp;1; xp;2; 0// D @3�p.xp;1; xp;2; 0/

D
@1�p
p
gp;11

�
@2�p
p
gp;22

ˇ̌̌̌
.xp;1;xp;2;0/

:
(2.10)

For each k D 0; 1; 2; : : : ; we assume that pk 2 @� is chosen to be close to xk

as in (2.6). Then we define

xk
pk
WD .xk

pk ;1
; xk
pk ;2

; 0/ such that xk D �pk .x
k
pk
/;

vk
pk ;i
WD vki .x

k
pk
/ D

@i�pk .xkpk /q
gpk ;i i .xkpk /

� vk :
(2.11)

Note that, due to (2.8), at the boundary,

(2.12) vki D

3X
`D1

vk
pk ;`

@`�pk ;i
p
gpk ;``

ˇ̌̌̌
xk
:
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LEMMA 2.2. Assume that � and ˆ are C 2. Consider .tkC1; xkC1
pkC1

; vkC1
pkC1

/ as a

function of .tk; xk
pk
; vk
pk
/. Then for i; j D 1; 2;

(2.13)

@.tk � tkC1/

@xk
pk ;j

D
�1

vkC1
pkC1;3

@3�pkC1.x
kC1/q

gpkC1;33.x
kC1/

�

"
@j�pk .x

k
pk ;1

; xk
pk ;2

; 0/ � .tk � tkC1/
@vk

@xk
pk ;j

#

CO�.kˆkC2/
.tk � tkC1/2

jvkC1
pkC1;3

j

�
1C .tk � tkC1/jvk

pk
j
�
ekˆkC2 .t

k�tkC1/2 ;

(2.14)

@xkC1
pkC1;i

@xk
pk ;j

D
1q

gpk ;i i .x
kC1/

"
@i�pkC1.x

kC1/q
gpk ;i i .x

kC1/
C

vkC1
pkC1;i

vkC1
pkC1;3

@3�pkC1.x
kC1/q

gpkC1;33.x
kC1/

#

�

"
@j�pk .x

k/ � .tk � tkC1/
@vk

@xk
pk ;j

#

CO�.kˆkC2/

(
1C
jvkC1
pkC1;i

j

jvkC1
pkC1;3

j

)
.tk � tkC1/2

�
�
1C .tk � tkC1/jvk

pk
j
�
ekˆkC2 .t

k�tkC1/2 ;

(2.15)

@vkC1
pkC1;i

@xk
pk ;j

D
@vk

@xk
pk ;j

�
@i�pkC1.x

kC1/q
gpkC1;i i .x

kC1/

C vk �

2X
`D1

@xkC1
pkC1;`

@xk
pk ;j

@

@xkC1
pkC1;`

 
@i�pkC1.x

kC1/q
gpkC1;i i .x

kC1/

!

CO�.kˆkC2/

(X
j

ˇ̌̌̌
ˇ@.tk � tkC1/@xk

pk ;j

ˇ̌̌̌
ˇ

C .tk � tkC1/.1C jvk
pk
j.tk � tkC1//ekˆkC2 .t

k�tkC1/2

C

X
`

ˇ̌̌̌
ˇ@xkC1

pkC1;`

@xk
pk ;j

ˇ̌̌̌)
;
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(2.16)

@vkC1
pkC1;3

@xk
pk ;j

D �
@vk

@xk
pk ;j

�
@3�pkC1.x

kC1/q
gpkC1;33.x

kC1/

� vk �

2X
`D1

@xkC1
pkC1;`

@xk
pk ;j

@

@xkC1
pkC1;`

 
@3�pkC1.x

kC1/q
gpkC1;33.x

kC1/

!

CO�.kˆkC2/

(X
j

ˇ̌̌̌
ˇ@.tk � tkC1/@xk

pk ;j

ˇ̌̌̌
ˇ

C .tk � tkC1/.1C jvk
pk
j.tk � tkC1//ekˆkC2 .t

k�tkC1/2
C

X
`

ˇ̌̌̌
ˇ@xkC1

pkC1;`

@xk
pk ;j

ˇ̌̌̌
ˇ
)
;

where

(2.17)
@vki

@xk
pk ;j

D

3X
`D1

vk
pk ;`

X
r.¤`/

q
gpk ;rr.x

k/q
gpk ;``.x

k/
�r
pk ; j̀

.xk/
@r�pk ;i .x

k/q
gpk ;rr.x

k/
:

For i D 1; 2 and j D 1; 2; 3;

(2.18)

@.tk � tkC1/

@vk
pk ;j

D
.tk � tkC1/

vkC1
pkC1;3

"
@j�pk .x

k/q
gpk ;jj .x

k/

CO�.kˆkC2/.t
k
� tkC1/2ekr

2
xˆk1jt

k�tkC1j2

#

�
@3�pkC1.x

kC1/q
gpkC1;33.x

kC1/
;

(2.19)

@xkC1
pkC1;i

@vk
pk ;j

D �.tk � tkC1/
@j�pk .x

k/q
gpk ;jj .x

k/

�
1q

gpkC1;i i .x
kC1/

"
@i�pkC1.x

kC1/q
gpkC1;i i .x

kC1/

C

vkC1
pkC1;i

vkC1
pkC1;3

@3�pkC1.x
kC1/

p
gpkC1;33.x

kC1/

#

CO�.kˆkC2/

 
1C
jvkC1
pkC1;i

j

jvkC1
pkC1;3

j

!
.tk � tkC1/3ekˆkC2 .t

k�tkC1/2 ;
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(2.20)

@vkC1
pkC1;i

@vk
pk ;j

D

2X
`D1

@xkC1
pkC1;`

@vk
pk ;j

@`

 
@i�pkC1
p
gpkC1;i i

!ˇ̌̌̌
ˇ
xkC1

� vk

C
@i�pkC1.x

kC1/q
gpkC1;i i .x

kC1/
�
@j�pk .x

k/q
gpk ;jj .x

k/

CO�.kˆkC2/.t
k
� tkC1/2

 
1C
jvkC1
pkC1;i

j

jvkC1
pkC1;3

j

!

�
�
1CO�.kˆkC2/.t

k
� tkC1/2

�
ekˆkC2 .t

k�tkC1/2

CO�.kˆkC2/
jtk � tkC1j

jvkC1
pkC1;3

j

�
�
1CO�.kˆkC2/.t

k
� tkC1/2ekˆkC2 .t

k�tkC1/2
�
;

(2.21)

@vkC1
pkC1;3

@vk
pk ;j

D �

2X
`D1

@xkC1
pkC1;`

@vk
pk ;j

@`

 
@3�pkC1
p
gpkC1;33

!ˇ̌̌̌
ˇ
xkC1

� vk

�
@3�pkC1.x

kC1/q
gpkC1;33.x

kC1/
�
@j�pk .x

k/q
gpk ;jj .x

k/

CO�.kˆkC2/.t
k
� tkC1/2

�
1CO�.kˆkC2/.t

k
� tkC1/2

�
� ekˆkC2 .t

k�tkC1/2

CO�.kˆkC2/
jtk � tkC1j

jvkC1
pkC1;3

j

�
1CO�.kˆkC2/.t

k
� tkC1/2

� ekˆkC2 .t
k�tkC1/2

�
:

Remark 2.3. Note that we do not need the convexity (1.15) or the smallness of the
size of ˆ in Lemma 2.2 .

PROOF OF LEMMA 2.2. First we prove (2.13). By the definitions (2.6), (2.4),
and our setting (2.11) and (2.1),

�pkC1
�
xkC1
pkC1;1

; xkC1
pkC1;2

; 0
�

D �pk
�
xk
pk ;1

; xk
pk ;2

; 0
�
C

Z tkC1

tk
vk

�

Z tkC1

tk

Z s

tk
rˆ.�;X.� I tk; xk; vk//d� ds:

(2.22)
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We apply @

@xk
pk;j

to the above equality for j D 1; 2 to get

(2.23)

X
lD1;2

@xkC1
pkC1;l

@xk
pk ;j

@�pkC1

@xkC1
pkC1;l

ˇ̌̌̌
ˇ
xkC1

D �.tk � tkC1/
@vk

@xk
pk ;j

�
@.tk � tkC1/

@xk
pk ;j

�
vk �

Z tkC1

tk
rˆ.s;X.sI tk; xk; vk//ds

�

C

(
@j�pk

�
xk
pk ;1

; xk
pk ;2

; 0
�
�

Z tkC1

tk
ds
Z s

tk
d�

 
@X.�/

@xk
pk ;j

� rx

!
.rxˆ.�//

)
;

and then take an inner product with
@3�pkC1p
g
pkC1;33

ˇ̌̌̌
xkC1

to have

(2.24)

X
lD1;2

@xkC1
pkC1;l

@xk
pk ;j

@�pkC1

@xkC1
pkC1;l

ˇ̌̌̌
ˇ
xkC1

�
@3�pkC1
p
gpkC1;33

ˇ̌̌̌
ˇ
xkC1

D �.tk � tkC1/
@vk

@xk
pk ;j

�
@3�pkC1
p
gpkC1;33

ˇ̌̌̌
ˇ
xkC1

�
@.tk � tkC1/

@xk
pk ;j

�
vk �

Z tkC1

tk
rˆ.s;X.sI tk; xk; vk//ds

�
�
@3�pkC1
p
gpkC1;33

ˇ̌̌̌
xkC1

C

�
@j�pk

�
xk
pk ;1

; xk
pk ;2

; 0
�
�

Z tkC1

tk
ds
Z s

tk
d�
�
@X.�/

@xk
pk ;j

� rx

��
rxˆ.�/

��

�
@3�pkC1
p
gpkC1;33

ˇ̌̌̌
ˇ
xkC1

;

where we abbreviated X.s/ D X.sI tk; xk; vk/, V.s/ D V.sI tk; xk; vk/, and
ˆ.s/ D ˆ.s;X.sI tk; xk; vk//. Due to (2.8) the left-hand side equals 0.

Now we consider the right-hand side. From (2.12), we prove (2.17). We also
note that

(2.25) lim
s#tkC1

V.sI tk; xk; vk/ D vk �

Z tkC1

tk
rˆ.s;X.sI tk; xk; vk//ds:

Therefore, from (2.4) and (2.11),�
vk �

Z tkC1

tk
rˆ.s;X.sI tk; xk; vk//ds

�
�
@3�pkC1
p
gpkC1;33

ˇ̌̌̌
xkC1

D �vkC1
pkC1;3

:
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From (2.24),

(2.26)

@.tk � tkC1/

@xk
pk ;j

D �
1

vkC1
pkC1;3

@3�pkC1.x
kC1/q

gpkC1;33.x
kC1/

�

"
@j�pk

�
xk
pk ;1

; xk
pk ;2

; 0
�

� .tk � tkC1/

3X
`D1

vk
pk ;`

X
r.¤`/

q
gpk ;rr.x

k/q
gpk ;``.x

k/
�r
pk ; j̀

.xk/
@r�pk .x

k/q
gpk ;rr.x

k/

#

C
1

vkC1
pkC1;3

@3�pkC1.x
kC1/q

gpkC1;33.x
kC1/

�

Z tkC1

tk
ds
Z s

tk
d�
�
@X.�/

@xk
pk ;j

� rx

�
.rxˆ.�//:

Now we consider integrand @X.� Itk ;xk ;vk/

@xk
pk;j

. From (2.22) for tkC1 < � � tk ,

X.� I tk; xk; vk/ D �pk
�
xk
pk ;1

; xk
pk ;2

; 0
�
C vk.� � tk/

�

Z �

tk
ds
Z s

tk
ds0rˆ.s0; X.s0I tk; xk; vk//:

(2.27)

By the direct computations, for j D 1; 2;

sup
��s0�tk

ˇ̌̌̌
@X.s0I tk; xk; vk/

@xk
pk ;j

ˇ̌̌̌
�
ˇ̌
@j�pk

�
xk
pk ;1

; xk
pk ;2

; 0
�ˇ̌
C j� � tkj

ˇ̌̌̌
@vk

@xk
pk ;j

ˇ̌̌̌

C

Z �

tk
js � tkjkˆkC2 sup

��s0�tk

ˇ̌̌̌
@X.s0I tk; xk; vk/

@xk
pk ;j

ˇ̌̌̌
ds:

By Gronwall’s inequality and (2.17),

(2.28) sup
�

ˇ̌̌̌
ˇ@X

�
� I tk; xk

pk
; vk
pk

�
@xk
pk ;j

ˇ̌̌̌
ˇ � O�.1/�1C jtk � � jjvkpk j�ekˆkC2 jtk�� j2=2:

Using (2.26) and (2.28), we complete the proof of (2.13).
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To prove (2.14), we take the inner product with
@i�pkC1

g
pkC1;ii

ˇ̌̌
xkC1

to (2.23) to obtain

(2.29)

X
lD1;2

@xkC1
pkC1;l

@xk
pk ;j

@�pkC1

@xkC1
pkC1;l

ˇ̌̌̌
ˇ
xkC1

�
@i�pkC1

gpkC1;i i

ˇ̌̌̌
ˇ
xkC1

D

@xkC1
pkC1;i

@xk
pk ;j

D �.tk � tkC1/
@vk

@xk
pk ;j

�
@i�pkC1

gpkC1;i i

ˇ̌̌̌
ˇ
xkC1

�
@.tk � tkC1/

@xk
pk ;j

�
vk �

Z tkC1

tk
rˆ.s;X.sI tk; xk; vk//ds

�
�
@i�pkC1

gpkC1;i i

ˇ̌̌̌
xkC1

C

�
@j�pk

�
xk
pk ;1

; xk
pk ;2

; 0
�

�

Z tkC1

tk
ds
Z s

tk
d�
�
@X.�/

@xk
pk ;j

� rx

�
.rxˆ.�//

�
�
@i�pkC1

gpkC1;i i

ˇ̌̌̌
xkC1

:

Since

�
vk �

Z tkC1

tk
rˆ.s;X.sI tk; xk; vk//ds

�
�
@i�pkC1

gpkC1;i i

ˇ̌̌̌
xkC1

D �

vkC1
pkC1;i

p
gpkC1;i i

;

from (2.8) and (2.13),

(2.30)

@xkC1
pkC1;i

@xk
pk ;j

D
1

vkC1
pkC1;3

@3�pkC1.x
kC1/q

gpkC1;33.x
kC1/

�

"
@j�pk .x

k/ � .tk � tkC1/
@vk

@xk
pk ;j

#
vkC1
pkC1;i

p
gpkC1;i i

ˇ̌̌̌
ˇ
xkC1

C
@i�pkC1

gpkC1;i i

ˇ̌̌̌
xkC1

�

"
@j�pk .x

k/ � .tk � tkC1/
@vk

@xk
pk ;j

#

CO�.kˆkC2/

ˇ̌
vkC1
pkC1;i

ˇ̌
ˇ̌
vkC1
pkC1;3

ˇ̌.tk � tkC1/2
�
�
1C .tk � tkC1/

ˇ̌
vk
pk

ˇ̌�
ekˆkC2 .t

k�tkC1/2=2

CO�.kˆkC2/.t
k
� tkC1/2

�
1C .tk � tkC1/

ˇ̌
vk
pk

ˇ̌�
� ekˆkC2 .t

k�tkC1/2=2:

This ends the proof of (2.14).
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Now we prove (2.15) and (2.16). From (2.4) and (2.11),

(2.31)

vkC1
pkC1;i

D
@i�pkC1
p
gpkC1;i i

ˇ̌̌̌
xkC1

� lim
s#tkC1

V.sI tk; xk; vk/ for i D 1; 2;

vkC1
pkC1;3

D �
@3�pkC1
p
gpkC1;33

ˇ̌̌̌
xkC1

� lim
s#tkC1

V.sI tk; xk; vk/:

For i; j D 1; 2, from (2.31),

@vkC1
pkC1;i

@xk
pk ;j

D
@i�pkC1.x

kC1/q
gpkC1;i i .x

kC1/

�

"
@vk

@xk
pk ;j

Crxˆ.t
kC1
I tk; xk; vk/

@.tk � tkC1/

@xk
pk ;j

�

Z tkC1

tk

�
@xk
pk;j

X.s/ � rx
�
rxˆ.s;X.sI t

k; xk; vk//ds
�

C

2X
`D1

@xkC1
pkC1;`

@xk
pk ;j

@

@xkC1
pkC1;`

�
@i�pkC1
p
gpkC1;i i

�ˇ̌̌̌
xkC1

� lim
s#tkC1

V.sI tk; xk; vk/:

And for j D 1; 2,

@vkC1
pkC1;3

@xk
pk ;j

D �
@3�pkC1.x

kC1/q
gpkC1;33.x

kC1/

�

"
@vk

@xk
pk ;j

Crxˆ.t
kC1
I tk; xk; vk/

@.tk � tkC1/

@xk
pk ;j

�

Z tkC1

tk

�
@xk
pk;j

X.s/ � rx
�
rxˆ.s;X.sI t

k; xk; vk//ds

#

�

2X
`D1

@xkC1
pkC1;`

@xk
pk ;j

@

@xkC1
pkC1;`

�
@3�pkC1
p
gpkC1;33

�ˇ̌̌̌
xkC1

� lim
s#tkC1

V.sI tk; xk; vk/:

From (2.25) and (2.28), we prove (2.15) and (2.16).
Now we consider (2.18)–(2.21) for v-derivatives.
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To prove (2.18), we take @

@vk
pk;j

to (2.22) for j D 1; 2; 3 to get

(2.32)

X
lD1;2

@xkC1
pkC1;l

@vk
pk ;j

@�pkC1

@xkC1
pkC1;l

ˇ̌̌̌
xkC1

D �.tk � tkC1/
@vk

@vk
pk ;j

�
@.tk � tkC1/

@vk
pk ;j

�
vk �

Z tkC1

tk
rˆ.s;X.sI tk; xk; vk//ds

�

C

�
�

Z tkC1

tk
ds
Z s

tk
d�
�
@X.�/

@vk
pk ;j

� rx

��
rxˆ.�/

��
;

and then take an inner product with
@3�pkC1p
g
pkC1;33

ˇ̌̌
xkC1

to have

(2.33)

X
lD1;2

@xkC1
pkC1;l

@vk
pk ;j

@�pkC1

@xkC1
pkC1;l

ˇ̌̌̌
xkC1

�
@3�pkC1
p
gpkC1;33

ˇ̌̌̌
xkC1

D

�
�.tk � tkC1/

@vk

@vk
pk ;j

�
@.tk � tkC1/

@vk
pk ;j

lim
s#tkC1

V.sI tk; xk; vk/

�

�
@3�pkC1
p
gpkC1;33

ˇ̌̌̌
xkC1

CO�.kˆkC2/jt
k
� tkC1j2 sup

s

ˇ̌̌̌
@X.s/

@vk
pk ;j

ˇ̌̌̌
:

Due to (2.8), the left-hand side equals 0. Now we consider the right-hand side.
From (2.12),

(2.34)
@vk

@vk
pk ;j

D

@j�pk
�
xk
pk ;1

; xk
pk ;2

; 0
�q

gpk ;jj
�
xk
pk ;1

; xk
pk ;2

; 0
� :

Now we consider sups
ˇ̌
X.sItk ;xk ;vk/

@vk
pk;j

ˇ̌
. From (2.27), for j D 1; 2; 3,

ˇ̌̌̌
@X.s/

@vk
pk ;j

ˇ̌̌̌
� jtk � sj

ˇ̌̌̌
@vk

@vk
pk ;j

ˇ̌̌̌
C kr

2
xˆk1

Z tk

s

jtk � � j

ˇ̌̌̌
@X.�/

@vk
pk ;j

ˇ̌̌̌
d�:

By Gronwall’s inequality and (2.34), for tkC1 � s � tk ,

(2.35)

ˇ̌̌̌
@X.sI tk; xk; vk/

@vk
pk ;j

ˇ̌̌̌
� jtk � sj

ˇ̌̌̌
@vk

@vk
pk ;j

ˇ̌̌̌
ekˆkC2 jt

k�sj2=2

.� jtk � sjekˆkC2 jt
k�sj2=2:
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Using (2.31), (2.33), (2.34), and (2.35), we prove (2.18).
The estimate (2.19) is obtained by a similar method. For i D 1; 2 and j D

1; 2; 3, we take the inner product with
@i�pkC1

g
pkC1;ii

ˇ̌̌
xkC1

to (2.32) to obtain

@xkC1
pkC1;i

@vk
pk ;j

D

(
�
@.tk � tkC1/

@vk
pk ;j

lim
s#tkC1

V.sI tk; xk; vk/ � .tk � tkC1/
@vk

@vk
pk ;j

)

�
@i�pkC1

gpkC1;i i

ˇ̌̌̌
xkC1

CO�.kˆkC2/jt
k
� tkC1j2 sup

s

ˇ̌̌̌
@X.s/

@vk
pk ;j

ˇ̌̌̌
:

From (2.34), (2.35), and (2.18), we prove (2.19).
Now, let us prove (2.20) and (2.21). For i D 1; 2 and j D 1; 2; 3, from (2.31),

@vkC1
pkC1;i

@vk
pk ;j

D

2X
`D1

@xkC1
pkC1;`

@vk
pk ;j

@`

�
@i�pkC1
p
gpkC1;i i

�ˇ̌̌̌
xkC1

� lim
s#tkC1

V.sI tk; xk; vk/

C
@i�pkC1.x

kC1/q
gpkC1;i i .x

kC1/
�

�
@vk

@vk
pk ;j

C
@.tk � tkC1/

@vk
pk ;j

rˆ.tkC1; xkC1/

�

Z tkC1

tk

�
@X.s/

@vk
pk ;j

� r

�
rˆ.s;X.s//ds

�

D

2X
`D1

@xkC1
pkC1;`

@vk
pk ;j

@`

�
@i�pkC1
p
gpkC1;i i

�ˇ̌̌̌
xkC1

� vk

C
@i�pkC1.x

kC1/q
gpkC1;i i .x

kC1/
�
@j�pk .x

k/q
gpk ;jj .x

k/

CO�.kˆkC2/.t
k
� tkC1/

ˇ̌̌̌
ˇ@xkC1

pkC1

@vk
pk ;j

ˇ̌̌̌
ˇCO�.kˆkC2/

ˇ̌̌̌
ˇ@.tk � tkC1/@vk

pk ;j

ˇ̌̌̌
ˇ

CO�.kˆkC2/.t
k
� tkC1/ sup

s

ˇ̌̌̌
@X.s/

@vk
pk ;j

ˇ̌̌̌
:

From (2.18), (2.19), and (2.35), we prove (2.20). The proof of (2.21) is also very
similar to the above from (2.31). �
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LEMMA 2.4. Assume that x 2 � (interior point) and xb.t; x; v/ is in the neigh-
borhood of p1 2 @�. Then locally,

(2.36)

@tb

@xj
D

1

v1
p1;3

�
�ej CO�.kˆkC2/jtbj

2ekr
2
xˆk1.tb/

2=2
�

�
@3�p1.x

1/q
gp1;33.x

1/
; j D 1; 2;

(2.37)

@tb

@vj
D

1

v1
p1;3

�
tbej �

Z t�tb

t

Z s

t

�
@X.�/

@vj
� rx

��
rxˆ.�/

�
d�ds

�

�
@3�p1.x

1/q
gp1;33.x

1/

D
tb

v1
p1;3

�
ej CO�.kˆkC2/jtbj

3ekˆkC2 .tb/
2=2
�

�
@3�p1.x

1/q
gp1;33.x

1/
; j D 1; 2; 3;

(2.38)

@x1
p1;i

@xj
D

"
ej CO�.kˆkC2/

 
1C

ˇ̌
v1
p1;i

ˇ̌ˇ̌
v1
p1;3

ˇ̌!jtbj2ekr2xˆk1.tb/2=2#

�
1q

gp1;i i .x
1/

"
@i�p1.x

1/q
gp1;i i .x

1/
C

v1
p1;i

vp1;3

@3�p1.x
1/q

gp1;33.x
1/

#
;

(2.39)

@x1
p1;i

@vj
D

�
�tbej �

Z t�tb

t

Z s

t

�
@X.�/

@vj
� rx

�
rˆx.�/d�ds

�
�

1q
gp1;i i .x

1/

"
@i�p1.x

1/q
gp1;i i .x

1/
C

v1
p1;i

v1
p1;3

@3�p1.x
1/q

gp1;33.x
1/

#

D �tb
�
ej CO�.kˆkC2/jtbj

2ekr
2
xˆk1.tb/

2=2
�

�
1q

gp1;i i .x
1/

"
@i�p1.x

1/q
gp1;i i .x

1/
C

v1
p1;i

v1
p1;3

@3�p1.x
1/q

gp1;33.x
1/

#
;
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(2.40)

@v1
p1;i

@xj
D �

@i�p1.x
1/q

gp1;i i .x
1/
�

� Z t�tb

t

�
@X.s/

@xj
� rx

�
.rxˆ.s//ds

�

C

2X
`D1

@x1
p1;`

@xj
@`

�
@i�p1
p
gp1;i i

�ˇ̌̌̌
x1
� V.t � tb/

D

2X
`D1

@x1
p1;`

@xj
@`

�
@i�p1
p
gp1;i i

�ˇ̌̌̌
x1
� v

CO�.kˆkC2/tb.1C jvjtb/e
kr2xˆk1.tb/

2=2

C krxˆk1jtbj

 
1C
jv1
p1;i
j

jv1
p1;3
j

!
�
�
1CO�.kˆkC2/.1C tbjvj/.tb/

2ekr
2
xˆk1.tb/

2=2
�
;

(2.41)

@v1
p1;i

@vj
D

@i�p1.x
1/q

gp1;i i .x
1/
� ej C

2X
`D1

@x1
p1;`

@vj
@`

�
@i�p1
p
gp1;i i

�ˇ̌̌̌
x1
� V.t � tb/

C
@i�p1.x

1/q
gp1;i i .x1/

�

�
�rxˆ.t � tbIX.t � tbI t; x; v//

@tb

@vj

�

Z t�tb

t

�
@X.s/

@vj
� rx

�
rxˆ.s/ds

�

D
@i�p1.x

1/q
gp1;i i .x

1/
� ej C

2X
`D1

@x1
p1;`

@vj
@`

�
@i�p1
p
gp1;i i

�ˇ̌̌̌
x1
� v

CO�.kˆkC2/

 
1C

jv1
p1
j

jv1
p1;3
j

!
jtbj

�
�
1CO�.kˆkC2/.tb/

2ekr
2
xˆk1.tb/

2=2
�
:

Here, ej is the j th directional unit vector in R3. Moreover,

(2.42)

@jv1
p1
j

@xj
D O�.krxˆk1/

1CO�.kr
2
xˆk1/.1C tbjvj/jtbj

2ekr
2
xˆk1.tb/

2

jv1
p1;3
j

CO�.kˆkC2/tbe
kr2xˆk1.tb/

2=2;
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(2.43)

@jv1
p1
j

@vj
D lim
s#t1

Vj .sI t; x; v/

jV.sI t; x; v/j
CO�.kˆkC2/.tb/

2ekr
2
xˆk1.tb/

2=2

CO�.krxˆk1/
tb

jv1
p1;3
j

˚
1CO�

�
kr

2
x�k1

�
jtbj

3ekr
2
xˆk1.tb/

2	
:

PROOF OF LEMMA 2.4. We have

lim
s#t1

V.sI t; x; v/ D v �

Z t1

t

rˆ.s;X.sI t; x; v//ds;(2.44)

X.� I t; x; v/ D x C v.� � t / �

Z �

t

ds
Z s

t

ds0rˆ.s0; X.s0I t; x; v//:(2.45)

Especially, when � D t1, we get

(2.46) X.t1I t; x; v/ D x C v.t1 � t / �

Z t1

t

ds
Z s

t

ds0rˆ.s0; X.s0I t; x; v//:

From (2.44), we have

(2.47)

lim
s#t1

@V.sI t; x; v/

@xj
D
@tb

@xj
rˆ.t1IX.t1I t; x; v//

�

Z t1

t

�
@X.s/

@xj
� rx

�
rˆ.s/ds;

and from (2.47),

(2.48) sup
��s0�t

ˇ̌̌̌
@X.s0I t; x; v/

@xj

ˇ̌̌̌
� 1C

Z �

t

js � t jkˆkC2 sup
��s0�t

ˇ̌̌̌
@X.s0I t; x; v/

@xj

ˇ̌̌̌
ds:

By Gronwall’s inequality

(2.49) sup
��s0�t

ˇ̌̌̌
@X.s0I t; x; v/

@xj

ˇ̌̌̌
� O�.1/e

kr2ˆk1jt�� j
2=2:

Similarly, from (2.44), we have

(2.50)

lim
s#t1

@V.sI t; x; v/

@vj
D ej C

@tb

@vj
rˆ.t1IX.t1I t; x; v//

�

Z t1

t

�
@X.s/

@vj
� rx

�
rˆ.s/ds;

and from (2.45),

(2.51)

sup
��s0�t

ˇ̌̌̌
@X.s0I t; x; v/

@vj

ˇ̌̌̌
� j� � t j

C

Z �

t

js � t jkˆkC2 sup
��s0�t

ˇ̌̌̌
@X.s0I t; x; v/

@vj

ˇ̌̌̌
ds:
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By Gronwall’s inequality

(2.52) sup
��s0�t

ˇ̌̌̌
@X.s0I t; x; v/

@vj

ˇ̌̌̌
� O�.1/j� � t je

kr2ˆk1jt�� j
2=2:

To prove (2.36)–(2.41), these estimates are very similar to those of Lemma 2.2.
It suffices for us to choose global euclidean coordinates instead of �pk . Therefore
we should replace

(2.53) �pkC1 ! �p1 ; �pk ! x; tk ! t; tkC1 ! t � tb D t
1; @xj x D ej :

Let us prove (2.36). For j D 1; 2; 3, we apply @xj to (2.46) and take an inner

product with
@3�p1p
g
p1;33

ˇ̌̌
x1

. Then we get

(2.54)

@tb

@xj
D �

1

v1
p1;3

@3�p1.x
1/q

gp1;33.x
1/
� ej

C
1

v1
p1;3

@3�p1.x
1/q

gp1;33.x
1/
�

Z t1

t

ds
Z s

t

d�
�
@X.�/

@xp;j
� rx

��
rxˆ.�/

�
:

To prove (2.37), for j D 1; 2; 3, we apply @vj to (2.46) and take �
@3�p1p
g
p1;33

ˇ̌̌
x1

.

Then we get

(2.55)

0 D
X
lD1;2

@x1
p1;l

@vj

@�p1

@xk
p1;l

ˇ̌̌̌
ˇ
x1

�
@3�p1
p
gp1;33

ˇ̌̌̌
ˇ
x1

D

�
�.t � t1/ej �

@.t � t1/

@vj
lim
s#t1

V.sI t; x; v/

�
�
@3�p1
p
gp1;33

ˇ̌̌̌
x1

CO�.kˆkC2/jt � t
1
j
2 sup
s

ˇ̌̌̌
@X.s/

@vj

ˇ̌̌̌
:

To prove (2.38), for i; j D 1; 2, we apply @xj to (2.46) and take �
@i�p1p
g
p1;ii

ˇ̌̌
x1

.

Then we use (2.48) to get

(2.56)

@x1
p1;i

@xj
D

1

v1
p1;3

@3�p1.x
1/q

gp1;33.x
1/
� ej

v1
p1;i

p
gp1;i i

ˇ̌̌̌
ˇ
x1

C
@i�p1

gp1;i i

ˇ̌̌̌
x1
� ej

CO�.kˆkC2/

ˇ̌
v1
p1;i

ˇ̌ˇ̌
v1
p1;3

ˇ̌.t � t1/2ekˆkC2 .t�t1/2=2
CO�.kˆkC2/.t � t

1/2ekˆkC2 .t�t
1/2=2:

This yields (2.38).
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To prove (2.39), for i D 1; 2 and j D 1; 2; 3; we apply @vj to (2.46) and take an

inner product with
@i�p1p
g
p1;ii

ˇ̌̌
x1

:

@x1
p1;i

@vj
D

�
�
@.t � t1/

@vj
lim
s#t1

V.sI t; x; v/ � .t � t1/
@v

@vj

�
�
@i�p1

gp1;i i

ˇ̌̌̌
x1

CO�.kˆkC2/jt � t
1
j
2 sup
s

ˇ̌̌̌
@X.s/

@vk
pk ;j

ˇ̌̌̌
:

Then we use (2.48) to get (2.39).
Let us prove (2.40). For i D 1; 2 and j D 1; 2, we apply @xj to

(2.57)

v1
p1;i
D

@i�p1
p
gp1;i i

ˇ̌̌̌
x1
� lim
s#t1

V.sI t; x; v/ for i D 1; 2;

v1
p1;3
D �

@3�p1
p
gp1;33

ˇ̌̌̌
x1
� lim
s#t1

V.sI t; x; v/:

For i; j D 1; 2, from (2.31),

@v1
p1;i

@xj
D

@i�p1.x
1/q

gp1;i i .x
1/
�

�
rxˆ.t

1
I t; x; v/

@.t � t1/

@xj

�

Z t1

t

�
@xjX.s/ � rx

�
rxˆ.s;X.sI t; x; v//ds

�

C

2X
`D1

@x1
p1;`

@xj

@

@x1
p1;`

�
@i�p1
p
gp1;i i

�ˇ̌̌̌
x1
� lim
s#t1

V.sI t; x; v/:

For j D 1; 2;

@v1
p1;3

@xj
D �

@3�p1.x
1/q

gp1;33.x
1/
�

�
rxˆ.t

1
I t; x; v/

@.t � t1/

@xj

�

Z t1

t

.@xjX.s/ � rx/rxˆ.s;X.sI t; x; v//ds
�

�

2X
`D1

@x1
p1;`

@xj

@

@x1
p1;`

�
@3�p1
p
gp1;33

�ˇ̌̌̌
x1
� lim
s#t1

V.sI t; x; v/:

From (2.44), (2.38), and (2.36), we prove (2.18).
The proof of (2.41) is similar to the proof above. We apply @vj to (2.57) and

then use (2.44), (2.39), and (2.37). We skip the details.
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Let us consider (2.42). Note that jv1
p1
j D lims#t1 jV.sI t; x; v/j and

2
ˇ̌
v1
p1

ˇ̌@ˇ̌v1p1 ˇ̌
@xj

D 2 lim
s#t1

V.sI t; x; v/ � lim
s#t1

@xjV.sI t; x; v/;

we have

(2.58)
@jv1

p1
j

@xj
D lim
s#t1

V.sI t; x; v/

jV.sI t; x; v/j
� lim
s#t1

@xjV.sI t; x; v/:

We combine (2.58), (2.47), (2.36), and (2.49) to derive (2.42).
To prove (2.43), we perform a similar process to that above with @vj to get

(2.59)
@jv1

p1
j

@vj
D lim
s#t1

V.sI t; x; v/

jV.sI t; x; v/j
� lim
s#t1

@vjV.sI t; x; v/:

We combine (2.59), (2.50), (2.37), and (2.52) to derive (2.43). �

LEMMA 2.5. We define .Xp.sI t; x; v/;Vp.sI t; x; v// as

(2.60)

�p.Xp.sI t; x; v// WD X.sI t; x; v/;

Vp;i .sI t; x; v/ WD
@i�p.Xp.sI t; x; v//p
gp;i i .Xp.sI t; x; v//

� V.sI t; x; v/:

Then we have

(2.61)

PXp;i .sI t; x; v/

D

X
j

�
@i�p;j .Xp;1.s/;Xp;2.s/; 0/
gp;i i .Xp;1.s/;Xp;2.s/; 0/

COk�k
C2
.jXp;3.s/j/

�
Vj .sI t; x; v/

D
1p

gp;i i .Xp.sI t; x; v//
Vp;i .sI t; x; v/

COk�k
C2
.max
s
jXp;3.s/jmax

s
jV.s/j/;

(2.62)

PVp;i .sI t; x; v/

D �

3X
mD1

X
n.¤i/

2X
`D1

1
p
gp;``

@`

�
@n�p;m
p
gp;nn

�
@i�p;m
p
gp;i i

ˇ̌̌̌
.Xp;1.s/;Xp;2.s/;0/

� Vp;`.sI t; x; v/Vp;n.sI t; x; v/

CO.k�kC3/
˚

max
s
jXp;3.s/jmax

s
jV.s/j2

Cmax
s
jVp;3.s/jmax

s
jV.s/j C kr2xˆk1

	
:

PROOF. First we prove (2.61). From (2.1),X
`

@`�p;i .Xp.sI t; x; v// PXp;`.sI t; x; v/ D PXi .sI t; x; v/ D Vi .sI t; x; v/:
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Note that from (2.8), for jXp;3.s/j � 1,

(2.63)

�
r�p.Xp;1.s/;Xp;2.s/;Xp;3.s//

��1
i;j
D
@i�p;j .Xp;1.s/;Xp;2.s/; 0/
gp;i i .Xp;1.s/;Xp;2.s/; 0/
CO.k�kC2/jXp;3.s/j;0BB@

@1�pp
gp;11

.Xp;1.s/;Xp;2.s/; 0/
@2�pp
gp;22

.Xp;1.s/;Xp;2.s/; 0/
@3�pp
gp;33

.Xp;1.s/;Xp;2.s/; 0/

1CCA
�1

i;j

D
@j�p;i .Xp;1.s/;Xp;2.s/; 0/p
gp;jj .Xp;1.s/;Xp;2.s/; 0/

:

We apply these to (2.60) and use (2.1) to get (2.61).
Second, we prove (2.62). From (2.60), (2.63), and (2.61),

PVp;i .sI t; x; v/

D
d

ds

�
@i�p.Xp;1.s/;Xp;2.s/; 0/p
gp;i i .Xp;1.s/;Xp;2.s/; 0/

� V.sI t; x; v/

�
CO.k�kC3/max

s
jXp;3.s/jmax

s
jV.s/j2

CO.k�kC2/max
s
jVp;3.s/jmax

s
jV.s/j

CO.k�kC2/kr
2
xˆk1max

s
jXp;3.s/j

D

3X
m;nD1

2X
`D1

1
p
gp;``

@`

�
@i�p;m
p
gp;i i

�
@n�p;m
p
gp;nn

ˇ̌̌̌
.Xp;1.s/;Xp;2.s/;0/

� Vp;`.sI t; x; v/Vp;n.sI t; x; v/

CO.k�kC3/max
s
jXp;3.s/jmax

s
jV.s/j2

CO.k�kC2/max
s
jVp;3.s/jmax

s
jV.s/j

CO.k�kC2/kr
2
xˆk1;

where we have used

Vm.sI t; x; v/ D

3X
nD1

@n�p;m
p
gp;nn

ˇ̌̌̌
.Xp;1.s/;Xp;2.s/;0/

Vp;n.sI t; x; v/

C C� max
s
jXp;3.s/jmax

s
jV.s/j:

In the case of i D n, we have

3X
mD1

@`

�
@i�p;m
p
gp;i i

�
@i�p;m
p
gp;i i

ˇ̌̌̌
.Xp;1.s/;Xp;2.s/;0/

D 0:
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Moreover,

3X
mD1

@`

�
@i�p;m
p
gp;i i

�
@n�p;m
p
gp;nn

ˇ̌̌̌
.Xp;1.s/;Xp;2.s/;0/

D

�

3X
mD1

@`

�
@n�p;m
p
gp;nn

�
@i�p;m
p
gp;i i

ˇ̌̌̌
.Xp;1.s/;Xp;2.s/;0/

:

This finishes the proof for (2.62). �

LEMMA 2.6.

(i) Let � be a bounded open domain in R3. If jvj � 1
N

and krˆk1 <
ı

3 diam.�/N 2 for 1 � N and 0 < ı � 1. Here diam.�/ WD maxx;y2� jx � yj.
Then

(2.64) tb.t; x; v/ � 3N diam.�/:

(ii) Assume convexity in (1.15). Suppose

1

N
� jvkj � N; krˆk1 <

ı

3 diam.�/N 2
for 1� N;

and 0 < ı � 1
N
� 1. If either jv

k �n.xk/j

jvk j
� 1 or jv

kC1�n.xkC1/j

jvkC1j
� 1, then we

have the following estimates:

jvkj.tk � tkC1/ .� min
�
jvk � n.xk/j

jvkj
;
jvkC1 � n.xkC1/j

jvkC1j

�
;(2.65)

jvkj.tk � tkC1/ &� min
�
jvk � n.xk/j

jvkj
;
jvkC1 � n.xkC1/j

jvkC1j

�
:(2.66)

PROOF. Note that if jy � xj > diam.�/ and x 2 x�, then y … x�. If s� D
t � 3N diam.�/, then

jX.s�I t; x; v/ � xj �

�
jvj � krˆk1

js� � t j

2

�
js� � t j

�
1

2N
3N diam.�/ D

3

2
diam.�/:

From (2.2), therefore,

tb.t; x; v/ D supfs � 0 W X.� I t; x; v/ 2 � for all � 2 .t � s; t/g � 3N diam.�/:
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First, we consider the case of jvkjjtkC1 � tkj > ı for 0 < ı � 1. If krˆk1 �
2ı
N 2

, then

(2.67)

jX.tkC1/ �X.tk/j � jvkjjtk � tkC1j � krˆk1
jtk � tkC1j2

2

� jvkjjtk � tkC1j

�
1 �
krˆk1jt

k � tkC1j

2jvkj

�
�
jvkjjtk � tkC1j

2
�
ı

2
;

where we have used the fact that

(2.68)
krˆk1jt

k � tkC1j

2jvkj
�
2ı

N 2

3N diam.�/
2=N

� 3ı diam.�/� 1:

On the other hand, note that

(2.69)

n.X.tk// �
�
X.tkC1/ �X.tk/

�
D n.X.tk// �

�
lim
s"tk

V.s/.tkC1 � tk/C

Z tkC1

tk

Z s

tk
�rˆ.�;X.�//d� ds

�
D vk

pk ;3
.tkC1 � tk/C krˆk1

jtkC1 � tkj2

2
:

From the convexity, the left-hand side has a lower bound C�jX.tkC1/ � X.tk/j2.
Therefore, if krˆk1 � 2ı

N 2
, then from (2.67) and (2.69),

vk
pk ;3

jvkj
�

1

jvkj

�
C�

jtk � tkC1j

�
jvkjjX.tk/ �X.tkC1/j

2

�2
� krˆk1

jtk � tk�1j

2

�
�

�
C�

4
�
krˆk1

2jvkj2

�
jvkjjtk � tkC1j

�

�
C�

4
�
2ı=N

2=N

�
jvkjjtk � tkC1j

�

�
C�

4
� ı

�
jvkjjtk � tkC1j

�
C�

8
jvkjjtk � tkC1j:

Second, we consider the case of jvkjjtkC1 � tkj � ı for 0 < ı � 1. Then
jX.tk/ � X.s/j � jvkjjtkC1 � tkj C krˆk1

2
jtkC1 � tkj2 � 1, and therefore we

may assume thatX.s/ can be parametrized by pk-coordinate for all s 2 ŒtkC1; tk�.
From (2.61),

max
s
jXpk ;3.s/j �

ˇ̌
vk
pk ;3

ˇ̌
jtkC1 � tkj

COk�k
C2

�
max
s
jV.s/jjtk � tkC1j

�
�max

s
jXpk ;3.s/j:
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On the right-hand side, we control maxs jV.s/j by

max
s
jV.s/j � jvkj C krˆk1 � 2jv

k
j for krˆk1 �

1

N
� jvkj;

so we have

(2.70) max
s
jV.s/jjtk � tkC1j � 2ı

and

(2.71) max
s
jXpk ;3.s/j .ı

ˇ̌
vk
pk ;3

ˇ̌
jtkC1 � tkj:

From (2.62) and (2.71),

max
s
jVpk ;3.s/j � jv

k
pk ;3
j C 4jvkj2jtk � tkC1j C krˆk1jt

k
� tkC1j

C 4jvk
pk ;3
jjvkj2jtk � tkC1j2

COk�k
C3
.1/max

s
jVpk ;3.s/jjv

k
jjtk � tkC1j:

Now we use jvkjjtkC1 � tkj � ı � 1 to have

(2.72) max
s
jVpk ;3.s/j � 2

ˇ̌
vk
pk ;3

ˇ̌
C 4jvkj2jtk � tkC1j C krˆk1jt

k
� tkC1j:

Now we integrate (2.61) on tkC1 � s � tk and then use (2.62) to obtain

(2.73)

vk
pk ;3

.tk � tkC1/

D �

Z tk

tkC1

Z s

tk

2X
m;nD1

vk
pk ;m

vk
pk ;n

@m@n�pk
p
gpk ;nn

�
@3�pk
p
gpk ;33

ˇ̌̌̌
.X
pk;1

.s/;X
pk;2

.s/;0/

d� ds

COk�k
C2
.1/
h
max
s
jXpk ;3.s/jmax

s
jV.s/jjtk � tkC1j C jtkC1 � tkj3 max

s
jV.s/j3

C jtk � tkC1j2
˚
krˆk1 Cmax

s
jXpk ;3.s/jmax

s
jV.s/j2

Cmax
s
jVpk ;3.s/jmax

s
jV.s/j

	i
;

and we use the convexity (1.15), and (2.71), (2.72), and (2.70) to derive

(2.74)

ˇ̌
vk
pk ;3

ˇ̌
.tk � tkC1/

� C�
.tk � tkC1/2

2

X
mD1;2

ˇ̌
vk
pk ;m

ˇ̌2
�Ok�k

C1

�ˇ̌
vk
pk ;3

ˇ̌
jtk � tkC1jmax

s
jV.s/jjtk � tkC1j„ ƒ‚ …

�2ı

C 2ıjtk � tkC1j2 max
s
jV.s/j2„ ƒ‚ …

.�/1

C jtk � tkC1j2
�
krˆk1„ ƒ‚ …
.�/2

Cjvk
pk ;3
jjtk � tkC1jmax

s
jV.s/j2„ ƒ‚ …

.�/3

C 2

�
2jvk

pk ;3
j„ ƒ‚ …

.�/4

C 4jvkj2jtk � tkC1j„ ƒ‚ …
.�/5

Ckrˆk1jt
k
� tkC1j„ ƒ‚ …

.�/6

���
:
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For .�/1, we decomposed jV.s/j by fvpk ;`g`D1;2;3 and then the
P
`D1;2 jvpk ;`j2

part is absorbed by C�
.tk�tkC1/2

2

P
mD1;2 jvkpk ;mj

2. jvk
pk ;3
j2 is absorbed by the

left-hand side by the fact jvkjjtkC1 � tkj � ı � 1 . For .�/2, since jvkj � 1,

(2.75)

krˆk1jt
k
� tkC1j2 �

�
jvk
pk ;3
jjvkj C jvk

pk ;k
j
2
�
N 2
krˆk1jt

k
� tkC1j2

C jvk
pk ;k
j
2N 2
krˆk1jt

k
� tkC1j2

� N 2
krˆk1„ ƒ‚ …
.O.1/

jvkjjtk � tkC1j„ ƒ‚ …
�ı�1

ˇ̌
vk
pk ;3

ˇ̌
jtk � tkC1j;

so .�/2 is absorbed by the left-hand side. For .�/3, it is also absorbed by the left-
hand side from (2.70). For .�/4, it is also absorbed by the left-hand side from the
facts jvkjjtkC1 � tkj � ı � 1 and ı � 1

N
. For .�/5, we perform decomposi-

tion as we did in .�/1 and apply jvkjjtkC1 � tkj � ı � 1 and ı � 1
N

to be

absorbed by the left-hand side and C�
.tk�tkC1/2

2

P
mD1;2 jvkpk ;mj

2. For .�/6, it is
also absorbed by the left-hand side similarly to the .�/2 case. Finally, we conclude
(2.65).

Assume that xkC1 and xk are close enough, i.e., jxkC1 � xkj � kˆk1=2
C1
� 1.

From

(2.76)

�pk
�
xkC1
pk

�
� �pk

�
xk
pk

�
D

Z �.tk�tkC1/
0

V
�
tk C sI tk; �pk

�
xk
pk

�
; vk

�
ds

D vk.tkC1 � tk/

�

Z �.tk�tkC1/
0

Z s

0

rˆ
�
tk C � IX

�
tk C � I tk; �pk

�
xk
pk

�
; vk

��
d� ds;

we have

�pk
�
xkC1
pk

�
� �pk

�
xk
pk

�
D vk.tkC1 � tk/CO.kˆkC1/jt

kC1
� tkj2:

By the expansion, �pk .x
kC1
pk

/ � �pk .xkpk / D .xkC1
pkC1

� xk
pk
/ � r�pk .x

kC1
pk

/. For

jtkC1 � tkj � 1, jvkj � 1
N

, and kˆkC2 �
1
4N

for N � 1,

jxkC1
pkC1

� xk
pk
j �

ˇ̌
.r�pk .x

kC1
pk

//�1
ˇ̌
jtkC1 � tkj

˚
jvkj CO.kˆkC1/

	
.�;N jvkjjtkC1 � tkj:

(2.77)

On the other hand, from (2.76) � npk .x
kC1
pk

/, we have�
�pk

�
xkC1
pk

�
� �pk

�
xk
pk

��
� npk

�
xkC1
pk

�
D

vk
pk ;3

.tkC1 � tk/CO.kˆkC2/jt
kC1
� tkj2:
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By the expansion, the left-hand side equals

Œ�pk
�
xkC1
pk

�
� �pk

�
xk
pk

��
� npk .x

kC1
pk

/

D
��

xkC1
pkC1

� xk
pk

�
� r�pk

�
xkC1
pk

��
� npk

�
xkC1
pk

�
CO.k�kC2/

ˇ̌
xkC1
pkC1

� xk
pk

ˇ̌2
.�

ˇ̌
xkC1
pkC1

� xk
pk

ˇ̌2
;

where we have used the fact that r�pkC1.x
kC1
pk

/ ? npk .x
kC1
pk

/. Therefore, if

jvk
pk ;3
j > " and kˆkC2 �" 1,

(2.78)

ˇ̌
xkC1
pkC1

� xk
pk

ˇ̌2 &�
ˇ̌
vk
pk ;3

.tkC1 � tk/CO.kˆkC2/jt
kC1
� tkj2

ˇ̌
&�

˚ˇ̌
vk
pk ;3

ˇ̌
�O.kˆkC2/

	
jtkC1 � tkj

&�
ˇ̌
vk
pk ;3

ˇ̌
jtkC1 � tkj:

From (2.77) and (2.78), we prove (2.66) when xkC1 and xk are close enough.
Assume xkC1 and xk are not close, i.e., jxkC1 � xkj � kˆk1=2

C1
. From (2.1)

and jtk � tkC1j � 1, jvkj � 1
N

, and kˆkC2 �
1
4N

for N � 1,

jtk � tkC1jjvkj � jxkC1 � xkj �O.kˆkC1/jt
k
� tkC1j2 & kˆk1=2

C1
:

This proves (2.66). �

LEMMA 2.7. Assume (2.6) and (1.15) hold. Suppose x 2 S�; 1
N
� jvj � N;

krˆk1 < ı
3 diam.�/N 2 for 1� N , and 0 < ı � 1

N
� 1. Assume t 2 ŒM;MC1�

for M 2 N. For all i 2 N with t i 2 ŒM � 1; t �,

(2.79)
max

˚
1 � C�jv

k
jjtk � tkC1j; c�;N

	
vk
pk ;3

� vkC1
pkC1;3

� min
˚
1C C�jv

k
jjtk � tkC1j; C�;N

	
vk
pk ;3

;

and

(2.80)

kY
jD1

max
˚
1 � C�jv

j
jjtj � tjC1j; c�;N

	
v1
p1;3

� vkC1
pkC1;3

�

kY
jD1

min
˚
1C C�jv

j
jjtj � tjC1j; C�;N

	
v1
p1;3

:

Moreover,

(2.81) supfk 2 N W jt � tkj � 1g .�;N;ı 1:
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PROOF.
Step 1. We claim that if vk

pk ;3
� jvkj, then

(2.82)

tk � tkC1

D

�2vkC1
pkC1;3P2

m;nD1

@m@n�pkC1p
g
pkC1;mm

p
g
pkC1;nn

ˇ̌̌
xkC1

�
@3�pkC1p
g
pkC1;33

ˇ̌̌
xkC1

vkC1
pkC1;m

vkC1
pkC1;n

C C�
jtk � tkC1j

jvkj2

˚

rˆ


1
C
ˇ̌
vk
pk ;3

ˇ̌
jvkj

	
:

Due to (2.65) and its proof, if vk
pk ;3
� jvkj, then

X.sI tkC1; xkC1; vkC1/ � xkC1 � pkC1 for all tkC1 � s � tk :

By the expansion of�
XpkC1.sI t

kC1; xkC1; vkC1/;VpkC1.sI t
kC1; xkC1; vkC1/

�
in (2.62) around s D tkC1,
PVpkC1;3.sI t

kC1; xkC1; vkC1/

D �

2X
nD1

2X
`D1

@`@n�pkC1
p
gpkC1;``

p
gpkC1;nn

ˇ̌̌̌
xkC1

�
@3�pkC1
p
gpkC1;33

ˇ̌̌̌
xkC1

vkC1
pkC1;`

vkC1
pkC1;n

CO.k�kC3/
˚
max
s
jV.s/j3jtk � tkC1j C krxˆk1max

s
jV.s/jjtk � tkC1j

Cmax
s
jXpkC1;3.s/jmax

s
jV.s/j2

	
CO.k�kC2/

˚
max
s
jVpkC1;3.s/jmax

s
jV.s/j C kr2xˆk1

	
:

Note that from Lemma 2.6 and (2.71), the last three lines above are bounded from
above by jvkC1jjvkC1

pkC1
j C kr2xˆk1. Then from (2.61), (2.62), (2.71), and (2.72),

�
.tk � tkC1/2

2

2X
m;nD1

@m@n�pkC1
p
gpkC1;mm

p
gpkC1;nn

ˇ̌̌̌
xkC1

�
@3�pkC1
p
gpkC1;33

ˇ̌̌̌
xkC1

vkC1
pkC1;m

vkC1
pkC1;n

D vkC1
pkC1;3

.tk � tkC1/COk�k
C3
.jtk � tkC1j2/

˚
krˆk1 C

ˇ̌
vkC1
pkC1;3

ˇ̌
jvkC1j

	
:

This proves (2.82).

Step 2. We claim that for vkC1
pkC1;3

� jvkC1j,

(2.83)
@vkC1
pkC1;3

@vk
pk ;3

D 1CO�
�
kˆkC1 jt

k
� tkC1j

�
CO�.jv

kC1
j.tk � tkC1//:
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From Lemma 2.2,

@vkC1
pkC1;3

@vk
pk ;3

D �

2X
`D1

(
�.tk � tkC1/

@3�pk .x
k/q

gpk ;33.x
k/
�

1q
gpkC1;``.x

kC1/

�
@`�pkC1.x

kC1/q
gpkC1;``.x

kC1/

C

vkC1
pkC1;`

vkC1
pkC1;3

@3�pkC1.x
kC1/q

gpkC1;33.x
kC1/

�)
@`

�
@3�pkC1
p
gpkC1;33

�ˇ̌̌̌
xkC1

� vk

�
@3�pkC1
p
gpkC1;33

ˇ̌̌̌
xkC1

�
@3�pk
p
gpk ;33

ˇ̌̌̌
xk

CO�.kˆkC2/jv
k
j

�
1C
jvkC1
pkC1;i

j

jvkC1
pkC1;3

j

�
.tk � tkC1/3ekˆkC2 .t

k�tkC1/2

D
@3�pkC1
p
gpkC1;33

ˇ̌̌̌
xkC1

�
@3�pk
p
gpk ;33

ˇ̌̌̌
xk

�

�
� 1C

tk � tkC1

vkC1
pkC1;3

2X
`D1

vkC1
pkC1;`

p
gpkC1;``

@`

�
@3�pkC1
p
gpkC1;33

�ˇ̌̌̌
xkC1

� vk
�

„ ƒ‚ …
.�/

CO�.1/jv
k
j.tk � tkC1/

ˇ̌̌̌
@3�pk
p
gpk ;33

ˇ̌̌̌
xk
�
@`�pkC1

gpkC1;``

ˇ̌̌̌
xkC1

ˇ̌̌̌

CO�.kˆkC2/

�
1C
jvkC1
pkC1;i

j

jvkC1
pkC1;3

j

�
jvkj.tk � tkC1/3ekˆkC2 .t

k�tkC1/2 :

Consider .�/. For `; j D 1; 2, from (2.8),

@`

�
@3�pkC1p
g
pkC1;33

�
�
@j�pkC1p
g
pkC1;jj

ˇ̌̌̌
xkC1

D

@`

�
@3�pkC1
p
gpkC1;33

�
@j�pkC1
p
gpkC1;jj

�ˇ̌̌̌
xkC1„ ƒ‚ …

D0

�
@3�pkC1p
g
pkC1;33

ˇ̌̌̌
xkC1

�
@`@j�pkC1p
g
pkC1;jj

ˇ̌̌̌
xkC1

;

and hence

@`

�
@3�pkC1
p
gpkC1;33

�ˇ̌̌̌
xkC1

� vk

D @`

�
@3�pkC1
p
gpkC1;33

�
� vkC1 COk�k

C2
.kˆkC1/jt

k
� tkC1j D
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D �

2X
jD1

@3�pkC1
p
gpkC1;33

�
@`@j�pkC1
p
gpkC1;jj

ˇ̌̌̌
xkC1

vkC1
pkC1;j

COk�k
C2
.kˆkC1/jt

k
� tkC1j:

Combining the above with (2.82), we conclude that

.�/ D �1C 2COk�k
C2
.kˆkC1/

jvkC1j2jtk � tkC1j2ˇ̌
vkC1
pkC1;3

ˇ̌
D 1COk�k

C2
.kˆkC1 jt

k
� tkC1j/:

Note that

@3�pkC1
p
gpkC1;33

ˇ̌̌̌
xkC1

�
@3�pk
p
gpk ;33

ˇ̌̌̌
xk
D 1CO�.1/max

s
jV.s/j.tk � tkC1/;

@`�pkC1
p
gpkC1;``

ˇ̌̌̌
xkC1

�
@3�pk
p
gpk ;33

ˇ̌̌̌
xk
D O�.1/max

s
jV.s/j.tk � tkC1/; for ` D 1; 2:

Taking the above all together, we prove (2.83).

Step 3. We now prove (2.79). For vkC1
pkC1;3

� jvkC1j, by the expansion and
(2.83),

vkC1
pkC1;3

�
tk; xk

pk
I vk
pk ;1

; vk
pk ;2

; vk
pk ;3

�
D vkC1

pkC1;3

�
tk; xk

pk
I vk
pk ;1

; vk
pk ;2

; 0
�

C

Z vk
pk;3

0

@vkC1
pkC1;3

@vk
pk ;3

�
tk; xk

pk
I vk
pk ;1

; vk
pk ;2

; �
�
d�

D 0C vk
pk ;3
� (2.83):

This proves vkC1
pkC1;3

D .1COk�k
C2
jvkjjtk � tkC1j/vk

pk ;3
.

Now we consider the case of vkC1
pkC1;3

& jvkC1j. Clearly

vk
pk ;3
�
ˇ̌
vk
pk
j � jvkC1

ˇ̌
C krxˆk1jt

k
� tkC1j �

1

2
jvkC1j . vkC1

pkC1;3

for sufficiently small krxˆk1. This proves (2.79). Then we prove (2.80) by
induction in k. Also, the proof of (2.81) is a direct consequence of (2.80):

vkC1
pkC1;3

�
�
1C C�jv

k
jjtk � tkC1j

��1vk
pk ;3
� e�C�jv

k jjtk�tkC1jvk
pk ;3

� e�C�
Pk
iD1 jv

i jjt i�t iC1jv1
p1;3
� e�C�N ı: �
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LEMMA 2.8. Assume 1
N
� jvj � N; krˆk1 < ı

3 diam.�/N 2 for 1 � N , and

0 < ı � 1
N
� 1. Also, we assume jtk � tkC1j � 1. Thenˇ̌̌̌

ˇ̌det

24rxk
pk

xkC1
pkC1

rvk
pk

xkC1
pkC1

rxk
pk

vkC1
pkC1

rvk
pk

vkC1
pkC1

35
5�5

ˇ̌̌̌
ˇ̌ D

.1CO�;N .kˆkC2//

q
gpk ;11.x

k/
q
gpk ;22.x

k/q
gpkC1;11.x

kC1/
q
gpkC1;22.x

kC1/

ˇ̌
vk
pk ;3

ˇ̌
ˇ̌
vkC1
pkC1;3

ˇ̌
for the mapping .xk

pk ;1
; xk
pk ;2

; vk
pk
/ 7! .xkC1

pkC1;1
; xk
pkC1;2

; vk
pkC1

/.

PROOF. From Lemma 2.2 and Lemma 2.6,26664
rxk

pk
xkC1
pkC1;1

rvk
pk

xkC1
pkC1;1

rxk
pk

xkC1
pkC1;2

rvk
pk

xkC1
pkC1;2

rxk
pk

vkC1
pkC1

rvk
pk

vkC1
pkC1

37775
5�5

D

2666666666666666664

�
@xkC1
pkC1;i

@xk
pk;j

�
iD1;2;jD1;2

�
@xkC1
pkC1;i

@vk
pk;j

�
iD1;2;jD1;2;3

@i �pkC1p
g
pkC1;ii

ˇ̌̌
xkC1

� @v
k

@xk
pk;j

C
P2
`D1

@xkC1
pkC1;`

@xk
pk;j

@`

�
@i �pkC1p
g
pkC1;ii

�ˇ̌̌
xkC1

�vk

P2
`D1

@xkC1
pkC1;`

@vk
pk;j

@`

�
@i �pkC1p
g
pkC1;ii

�ˇ̌̌̌
xkC1

�vk

C
@i �pkC1

.xkC1/r
g
pkC1;ii

.xkC1/
�
@j �pk

.xk/r
g
pk;jj

.xk/

�
@3�pkC1p
g
pkC1;33

ˇ̌̌
xkC1

� @v
k

@xk
pk;j

�
P2
`D1

@xkC1
pkC1;`

@xk
pk;j

@`

�
@3�pkC1p
g
pkC1;33

�ˇ̌̌
xkC1

�vk

�
P2
`D1

@xkC1
pkC1;`

@vk
pk;j

@`

�
@3�pkC1p
g
pkC1;33

�ˇ̌̌
xkC1

�vk

�
@3�pkC1

.xkC1/r
g
pkC1;33

.xkC1/
�
@j �pk

.xk/r
g
pk;jj

.xk/

3777777777777777775
„ ƒ‚ …

WDA

C

�
0 0

CN kˆkC2 CN kˆkC2

�
5�5

:

Now for i D 1 and i D 2, we multiply

@`

�
@i�pkC1
p
gpkC1;i i

�ˇ̌̌̌
xkC1

� vk

to the `th row for ` D 1; 2, and then subtract this from the .i C 2/th row. Similarly,
we multiply

@`

�
@3�pkC1
p
gpkC1;i i

�ˇ̌̌̌
xkC1

� vk
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to the `th row for ` D 1; 2 and then subtract this from the 5th row. Hence, rewriting
the first two rows using Lemma 2.2, the resulting row echelon form of matrix A is266666666666664

�
@j�pk .x

k/ � .tk � tkC1/ @vk

@xk
pk;j

�
�.tk � tkC1/

@j�pkp
g
pk;jj

ˇ̌̌̌
xk

1p
g
pkC1;ii

�
@i�pkC1p
g
pkC1;ii

C
vkC1
pkC1;i

vkC1
pkC1;3

@3�pkC1p
g
pkC1;33

�ˇ̌̌̌
xkC1

�
1p

g
pkC1;ii

�
@i�pkC1p
g
pkC1;ii

C
vkC1
pkC1;i

vkC1
pkC1;3

@3�pkC1p
g
pkC1;33

�ˇ̌̌̌
xkC1

@i�pkC1p
g
pkC1;ii

ˇ̌̌̌
xkC1

�
@vk

@xk
pk;j

@i�pkC1 .x
kC1/q

g
pkC1;ii

.xkC1/
�
@j�pk .x

k/q
g
pk;jj

.xk/

�
@3�pkC1p
g
pkC1;33

ˇ̌̌̌
xkC1

�
@vk

@xk
pk;j

�
@3�pkC1 .x

kC1/q
g
pkC1;33

.xkC1/
�
@j�pk .x

k/q
g
pk;jj

.xk/

377777777777775
C

�
0 0

CN kˆkC2 CN kˆkC2

�
5�5

:

Then we use rows 3 through 5 to remove the following parts in rows 1 and 2:2664
�.tk�tkC1/ @vk

@xk
pk;j

� 1p
g
pkC1;ii

�
@i �pkC1p
g
pkC1;ii

C

vkC1
pkC1;i

vkC1
pkC1;3

@3�pkC1p
g
pkC1;33

� �.tk�tkC1/
@j �pkp
g
pk;jj

� 1p
g
pkC1;ii

�
@i �pkC1p
g
pkC1;ii

C

vkC1
pkC1;i

vkC1
pkC1;3

@3�pkC1p
g
pkC1;33

�
3775:

Via this process, we obtain the following row echelon form of matrix A :

(2.84)

2666666666664

@j�pk .x
k/ 1p

g
pkC1;ii

�

�
@i�pkC1p
g
pkC1;ii

C
vkC1
pkC1;i

vkC1
pkC1;3

@3�pkC1p
g
pkC1;33

�ˇ̌̌̌
xkC1

0

@i�pkC1p
g
pkC1;ii

ˇ̌̌̌
xkC1

�
@vk

@xk
pk;j

@i�pkC1 .x
kC1/q

g
pkC1;ii

.xkC1/
�
@j�pk .x

k/q
g
pk;jj

.xk/

�
@3�pkC1p
g
pkC1;33

ˇ̌̌̌
xkC1

�
@vk

@xk
pk;j

�
@3�pkC1 .x

kC1/q
g
pkC1;33

.xkC1/
�
@j�pk .x

k/q
g
pk;jj

.xk/

3777777777775
C

264 O�.kˆkC2/jv
kj.tk � tkC1/

�
1C

jvkC1
pkC1

j

jvkC1
pkC1;3

j

�
O�.kˆkC2/jv

kj.tk � tkC1/

�
1C

jvkC1
pkC1

j

jvkC1
pkC1;3

j

�
O�;N .kˆkC2/ O�;N .kˆkC2/

375
5�5

:

Note that the type of elementary row echelon operation we used preserves the
determinant. Therefore, we compute determinants of two matrices. The determi-
nant of the lower right 3 � 3 block of the first matrix in (2.84) is given by

(2.85)

�1 D det

2664
@i�pkC1 .x

kC1/q
g
pkC1;ii

.xkC1/
�
@j�pk .xpk/q
g
pk;jj

.xk/

�
@3�pkC1 .x

kC1/q
g
pkC1;33

.xkC1/
�
@j�pk .x

k/q
g
pk;jj

.xk/

3775
3�3

D det

26666664

@1�pkC1 .x
kC1/q

g
pkC1;11

.xkC1/

@2�pkC1 .x
kC1/q

g
pkC1;22

.xkC1/

�
@3�pkC1 .x

kC1/q
g
pkC1;33

.xkC1/

37777775
3�3

det
�

@1�pk .x
k/q

g
pk;11

.xk/

@2�pk .x
k/q

g
pk;22

.xk/

@3�pk .x
k/q

g
pk;33

.xk/

�
3�3

:

In order to evaluate the determinant of the upper left 2 � 2 matrix, we use a basic
linear algebra result: Let A1; A2; B1; B2 2 R3. Then

(2.86)
ˇ̌̌̌
det
�
A1 � B1 A1 � B2
A2 � B1 A2 � B2

�ˇ̌̌̌
D
ˇ̌
.A1 � A2/ � .B1 � B2/

ˇ̌
:
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From (2.86), the determinant of upper left 2 � 2 submatrix of the first matrix in
(2.84) equalsˇ̌̌̌�

@1�pk � @2�pk
�ˇ̌
xk

�

�
1

p
gpkC1;11

�
@1�pkC1
p
gpkC1;11

ˇ̌̌̌
xkC1

C

vkC1
pkC1;1

vkC1
pkC1;3

@3�pkC1
p
gpkC1;33

ˇ̌̌̌
xkC1

�

�
1

p
gpkC1;22

�
@2�pkC1
p
gpkC1;22

ˇ̌̌̌
xkC1

C

vkC1
pkC1;2

vkC1
pkC1;3

@3�pkC1
p
gpkC1;33

ˇ̌̌̌
xkC1

��ˇ̌̌̌

D

q
gpk ;11.x

k/
q
gpk ;22.x

k/q
gpkC1;11.x

kC1/
q
gpkC1;22.x

kC1/
(2.87)

�

ˇ̌̌̌
npk .x

k/ �

�
npkC1 �

vkC1
pkC1;2

vkC1
pkC1;3

@2�pkC1
p
gpkC1;22

�

vkC1
pkC1;1

vkC1
pkC1;3

@1�pkC1
p
gpkC1;11

�ˇ̌̌̌

D

q
gpk ;11.x

k/gpk ;22.x
k/q

gpkC1;11.x
kC1/gpkC1;22.x

kC1/

jvk
pk ;3
j C krˆk1jt

k � tkC1j

jvkC1
pkC1;3

j
:(2.88)

Since the determinant of the second matrix in (2.84) is the size of kˆkC2 , we finish
the proof from (2.84), (2.85), and (2.88). �

LEMMA 2.9. We define, for all k,

(2.89)
ˇ̌
vk
pk

ˇ̌
D

r�
vk
pk ;1

�2
C
�
vk
pk ;2

�2
C
�
vk
pk ;3

�2
; yvk

pk ;1
D

vk
pk ;1ˇ̌
vk
pk

ˇ̌ ; yvk
pk ;2
D

vk
pk ;2ˇ̌
vk
pk

ˇ̌ ;
where vk

pk
D vk

pk
.t; x; v/ are defined in (2.11). Assume (1.15), 1

N
� jvj � N ,

kˆkC2x <
ı1

3 diam.�/N 2 for 1� N , 0 < ı1 � 1
N
� 1, and jv1

p1;3
.t; x; v/j > ı2 >

0. If jt � tkj � 1, then

(2.90)

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
det

266666666666664

@xk
pk;1

@x1
p1;1

@xk
pk;1

@x1
p1;2

@xk
pk;1

@yv1
p1;1

@xk
pk;1

@yv1
p1;2

@xk
pk;2

@x1
p1;1

@xk
pk;2

@x1
p1;2

@xk
pk;2

@yv1
p1;1

@xk
pk;2

@yv1
p1;2

@yvk
pk;1

@x1
p1;1

@yvk
pk;1

@x1
p1;2

@yvk
pk;1

@yv1
p1;1

@yvk
pk;1

@yv1
p1;2

@yvk
pk;2

@x1
p1;1

@yvk
pk;2

@x1
p1;2

@yvk
pk;2

@yv1
p1;1

@yvk
pk;2

@yv1
p1;2

377777777777775

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
> ��;N;ı1;ı2 > 0;
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where t1 D t1.t; x; v/; x1
p1;i
D x1

p1;i
.t; x; v/; yv1

p1;i
D yv1

p1;i
.t; x; v/, and

xk
pk ;i
D xk

pk ;i

�
t1; x1

p1;1
; x1
p1;2

; yv1
p1;1

; yv1
p1;2

; jv1
p1
j
�
;

yvk
pk ;i
D yvk

pk ;i

�
t1; x1

p1;1
; x1
p1;2

; yv1
p1;1

; yv1
p1;2

; jv1
p1
j
�
:

Here the constant ��;N;ı1;ı2 > 0 does not depend on t or x.

PROOF. Step 1. We compute

(2.91)

J iC1i WD

@
�
xiC1
piC1;1

; xiC1
piC1;2

; yviC1
piC1;1

; yviC1
piC1;2

;
ˇ̌
viC1
piC1

ˇ̌�
@
�
xi
pi ;1

; xi
pi ;2

; yvi
pi ;1

; yvi
pi ;2

;
ˇ̌
vi
pi

ˇ̌�
D

@
�
xi
pi ;1

; xi
pi ;2

; vi
pi

�
@
�
xi
pi ;1

; xi
pi ;2

; yvi
pi ;1

; yvi
pi ;2

; jvi
pi
j
�„ ƒ‚ …

DQi

@
�
xiC1
piC1;1

; xiC1
piC1;2

; viC1
piC1

�
@
�
xi
pi ;1

; xi
pi ;2

; vi
pi

�„ ƒ‚ …
DPi

�

@
�
xiC1
piC1;1

; xiC1
piC1;2

; yviC1
piC1;1

; yviC1
piC1;2

; jviC1
piC1
j
�

@
�
xiC1
piC1;1

; xiC1
piC1;2

; viC1
piC1

�„ ƒ‚ …
DQiC1

:

For Qi ,

(2.92) Qi D

26666666666664

1 0 0 0 0

0 1 0 0 0

0 0
@vi
pi ;1

@yvi
pi ;1

@vi
pi ;1

@yvi
pi ;2

@vi
pi ;1

@jvi
pi
j

0 0
@vi
pi ;2

@yvi
pi ;1

@vi
pi ;2

@yvi
pi ;2

@vi
pi ;2

@jvi
pi
j

0 0
@vi
pi ;3

@yvi
pi ;1

@vi
pi ;3

@yvi
pi ;2

@vi
pi ;3

@jvi
pi
j

37777777777775
D

26666666666664

1 0 0 0 0

0 1 0 0 0

0 0
ˇ̌
vi
pi

ˇ̌
0

@vi
pi ;1

@jvi
pi
j

0 0 0
ˇ̌
vi
pi

ˇ̌ @vi
pi ;2

@jvi
pi
j

0 0
@vi
pi ;3

@yvi
pi ;1

@vi
pi ;3

@yvi
pi ;2

@vi
pi ;3

@jvi
pi
j

37777777777775
:

For QiC1,

(2.93) QiC1 D

26666666666664

1 0 0 0 0

0 1 0 0 0

0 0
@yviC1
piC1;1

@viC1
piC1;1

@yviC1
piC1;1

@viC1
piC1;2

@yviC1
piC1;1

@viC1
piC1;3

0 0
@yviC1
piC1;2

@viC1
piC1;1

@yviC1
piC1;2

@viC1
piC1;2

@yviC1
piC1;2

@viC1
piC1;3

0 0
@jviC1
piC1

j

@viC1
piC1;1

@jviC1
piC1

j

@viC1
piC1;2

@jviC1
piC1

j

@viC1
piC1;3

37777777777775
D
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D

26666666666664

1 0 0 0 0

0 1 0 0 0

0 0
ˇ̌
viC1
piC1

ˇ̌�1
0

@yviC1
piC1;1

@viC1
piC1;3

0 0 0
ˇ̌
viC1
piC1

ˇ̌�1 @yviC1
piC1;2

@viC1
piC1;3

0 0
@
ˇ̌
viC1
piC1

ˇ̌
@viC1
piC1;1

@
ˇ̌
viC1
piC1

ˇ̌
@viC1
piC1;2

@
ˇ̌
viC1
piC1

ˇ̌
@viC1
piC1;3

37777777777775
:

Note that for ` D 1; 2,

(2.94)
@yviC1
piC1;`

@viC1
piC1;3

D viC1
piC1;`

@

@viC1
piC1;3

�
1

jviC1
piC1
j

�
D

viC1
piC1;`

viC1
piC1;3

jviC1
piC1
j3

;

and for k D 1; 2; 3,

(2.95)
@
ˇ̌
viC1
piC1

ˇ̌
@viC1
piC1;k

D �

viC1
piC1;k

jviC1
piC1
j
:

From (2.93), (2.94), and (2.95),

(2.96)

detQiC1 D
1

jviC1
piC1
j

 
�

viC1
piC1;3

jviC1
piC1
j2
C

�
viC1
piC1;2

�2viC1
piC1;3ˇ̌

viC1
piC1

ˇ̌4
!

C

viC1
piC1;1

viC1
piC1;3ˇ̌

viC1
piC1

ˇ̌3 viC1
piC1;1ˇ̌

viC1
piC1

ˇ̌2
D �

�
viC1
piC1;3

�3ˇ̌
viC1
piC1

ˇ̌5 :
By taking the inverse and changing index i C 1 to i , we get

(2.97) detQi D �

ˇ̌
vi
pi

ˇ̌5�
vi
pi ;3

�3 :
From (2.91), (2.97), (2.96), and Lemma 2.8, we getˇ̌̌̌
ˇ̌̌det

264 rxk
pk

xkC1
pkC1

rvk
pk

xkC1
pkC1

rxk
pk

vkC1
pkC1

rvk
pk

vkC1
pkC1

375
5�5

ˇ̌̌̌
ˇ̌̌

D .1CO�;N .kˆkC2//

q
gpk ;11.x

k/
q
gpk ;22.x

k/q
gpkC1;11.x

kC1/
q
gpkC1;22.x

kC1/

ˇ̌
vk
pk ;3

ˇ̌
ˇ̌
vkC1
pkC1;3

ˇ̌ ;
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(2.98)

ˇ̌
detJ iC1i

ˇ̌
D jdetQi detPi detQiC1j

D

ˇ̌
vi
pi

ˇ̌5�
vi
pi ;3

�3 .1CO�;N .kˆkC2// p
gpi ;11

p
gpi ;22

ˇ̌
xi

p
gpiC1;11

p
gpiC1;22

ˇ̌
xiC1

�

ˇ̌
vi
pi ;3

ˇ̌ˇ̌
viC1
piC1;3

ˇ̌ �viC1piC1;3

�3ˇ̌
viC1
piC1

ˇ̌5
D .1CO�;N .kˆkC2//

p
gpi ;11

p
gpi ;22

ˇ̌
xi

p
gpiC1;11

p
gpiC1;22

ˇ̌
xiC1

ˇ̌
viC1
piC1;3

ˇ̌2ˇ̌
vi
pi ;3

ˇ̌2
CO�;N .kˆkC2/:

Therefore,

(2.99)

ˇ̌
detJ k1

ˇ̌
D .1CO�;N .kˆkC2//

p
gp1;11

p
gp1;22

ˇ̌
x1

p
gpk ;11

p
gpk ;22

ˇ̌
xk

ˇ̌
vk
pk ;3

ˇ̌2ˇ̌
v1
p1;3

ˇ̌2
CO�;N .kˆkC2/:

Step 2. From (2.35),

(2.100)

2jviC1
piC1
j

@jviC1
piC1
j

@vi
pi ;n

D
@jV.t iC1I t i ; xi ; vi /j2

@vi
pi ;n

D 2
@V.t iC1I t i ; xi ; vi /

@vi
pi ;n

� V.t iC1I t i ; xi ; vi /

D 2

�
@n�pi
p
gpi ;nn

ˇ̌̌̌
xi
C
@.t i � t iC1/

@vi
pi ;n

rxˆ.t
iC1; xiC1/

CO�.r
2
xˆk1/jt

i
� t iC1j2ekr

2
xˆk1.t

i�t iC1/2
�
� V.t iC1I t i ; xi ; vi /

D 2vi
pi ;n
C 2

ˇ̌̌̌
@.t i � t iC1/

@vi
pi ;n

ˇ̌̌̌
krxˆk1jviC1piC1

j CO�.krxˆk1/.t
i
� t iC1/

CO�.kr
2
xˆk1/jv

i
j.t i � t iC1/2ekr

2
xˆk1.t

i�t iC1/2 :

Then by Lemma 2.2 and
ˇ̌̌̌
@.t i�t iC1/

@vi
pi ;n

ˇ̌̌̌
.�;N 1, we get

(2.101)
@jviC1

piC1
j

@vi
pi ;n

D

vi
pi ;n

jviC1
piC1
j
CO�;N .kˆkC2/ for n D 1; 2:
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From (2.35), for n D 1; 2,

2
ˇ̌
viC1
piC1

ˇ̌@ˇ̌viC1piC1

ˇ̌
@xi
pi ;n

D
@jV.t iC1I t i ; xi ; vi /j2

@xi
pi ;n

D 2
@V.t iC1I t i ; xi ; vi /

@xi
pi ;n

� V.t iC1I t i ; xi ; vi /

D 2

�
@.t i � t iC1/

@xi
pi ;n

rxˆ.t
iC1; xiC1/

CO�.kr
2
xˆk1/jt

i
� t iC1jekr

2
xˆk1.t

i�t iC1/2
�

� V.t iC1I t i ; xi ; vi /

� ON;�.kˆkC2/;

where we have used j@.t i � t iC1/=@xi
pi ;n
j .N;� 1 for n D 1; 2 from Lemma 2.2.

This proves

(2.102)
@
ˇ̌
viC1
piC1

ˇ̌
@xi
pi ;n

D ON;�.kˆkC2/ for n D 1; 2:

Meanwhile,

(2.103)

@
ˇ̌
viC1
piC1

ˇ̌
@
ˇ̌
vi
pi

ˇ̌ D 2X
`D1

yvi
pi ;`

@
ˇ̌
viC1
piC1

ˇ̌
@vi
pi ;`

C

r
1 �

�
yvi
pi ;1

�2
�
�
yvi
pi ;2

�2 vi
pi ;3ˇ̌

viC1
piC1

ˇ̌
CO�;N .kˆkC2/

D

2X
`D1

yvi
pi ;`

vi
pi ;`ˇ̌
vi
pi

ˇ̌ Cr1 � �yvi
pi ;1

�2
�
�
yvi
pi ;2

�2 vi
pi ;3ˇ̌
vi
pi

ˇ̌ CO�;N .kˆkC2/
D 1CO�;N .kˆkC2/:
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Step 3. From (2.99), (2.101), (2.102), and (2.103),

ˇ̌
detJ k1

ˇ̌
D .1CO�;N .kˆkC2//

p
gp1;11

p
gp1;22

ˇ̌
x1

p
gpk ;11

p
gpk ;22

ˇ̌
xk

ˇ̌
vk
pk ;3

ˇ̌2ˇ̌
v1
p1;3

ˇ̌2
CO�;N .kˆkC2/

D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌det

2666664
@.xk

pk;1
;xk
pk;2

/

@.x1
p1;1

;x1
p1;2

/

@.xk
pk;1

;xk
pk;2

/

@.yv1
p1;1

;yv1
p1;2

/
.�/

@.yvk
pk;1

;yvk
pk;2

/

@.x1
p1;1

;x1
p1;2

/

@.yvk
pk;1

;yvk
pk;2

/

@.yv1
p1;1

;yv1
p1;2

/
.�/

.�/ .�/ 1C .�/

3777775
5�5

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌;

where .�/ WD O�;N .kˆkC2/;

D

ˇ̌̌̌
ˇ̌det

24@.xkpk ;1; xkpk ;2; yvkpk ;1; yvkpk ;2/
@.x1

p1;1
; x1
p1;2

; yv1
p1;1

; yv1
p1;2

/

35
4�4

ˇ̌̌̌
ˇ̌CO�;N .kˆkC2/:

Note that from (2.81), k .�;N;ı1;2 1 and jvk
pk ;3
j .�;N;ı1;2 jv1p1;3j. Therefore, we

conclude (2.90). �

3 Transversality via the Geometric Decomposition
and Triple Iterations

LEMMA 3.1. Assume Y W .y1; y2/ 7! Y.y1; y2/ 2 R3 is a C 1-map locally. For
any t; s � 0 with s 2 Œt � 1; t �, jn.x1.t; Y.y1; y2/; v// � v1.t; Y.y1; y2/; v/j > ı,
1
N
� jvj � N , 1

N
� jv3j, tkC1.t; Y.y1; y2/; v/ < s < tk.t; Y.y1; y2/; v/, and

krˆk1 < ı
3 diam.�/N 2 , we have

(3.1) @jvjŒXi .sI t; Y.y1; y2/; v/� D

� .t � s/

3X
`D1

@`�pk ;i
p
gpk ;``

�
xk
pk ;1

; xk
pk ;2

; 0
�vk
pk ;`ˇ̌
vk
pk

ˇ̌ COı;N .kˆkC2/;
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and for @ 2 f@yv1 ; @yv2 ; @y1 ; @y2g,

(3.2)

@ŒXi .sI t; Y.y1; y2/; v/�

D �@tk
ˇ̌
vk
pk

ˇ̌ 3X
`D1

@`�pk ;i
p
gpk ;``

�
xk
pk ;1

; xk
pk ;2

; 0
� vk
pk`ˇ̌

vk
pk

ˇ̌
C

2X
`D1

@xk
pk ;`

@`�pk ;i
�
xk
pk ;1

; xk
pk ;2

; 0
�

� .tk � s/
ˇ̌
vk
pk

ˇ̌ 2X
jD1

� 3X
`D1

@

@xk
pk ;j

�
@`�pk ;i
p
gpk ;``

��
xk
pk ;1

; xk
pk ;2

; 0
�
yvk
pk ;`

�
@xk
pk ;j

� .tk � s/
ˇ̌
vk
pk

ˇ̌ 2X
jD1

�
@j�pk ;i
p
gpk ;11

�
xk
pk ;1

; xk
pk ;2

; 0
�

�
@3�pk ;i
p
gpk ;33

�
xk
pk ;1

; xk
pk ;2

; 0
�yvkpk ;j
yvk
pk ;3

�
@yvk
pk ;j

COı;N .kˆkC2/:

Here

tk D tk.t; Y.y1; y2/; v/; xk
pk
D xk

pk
.t; Y.y1; y2/; v/;

and vk
pk
D vk

pk
.t; Y.y1; y2/; v/:

PROOF.
Step 1. We claim that

(3.3)

@..tj � tjC1/jvkj/

@jvj
D O�;N .kˆkC2/;

@jvkj

@jvj
D 1CO�;N .kˆkC2/;

@xj
pj ;i

@jvj
D O�;N .kˆkC2/;

@yvj
pj ;i

@jvj
D O�;N .kˆkC2/:

By the chain rule,

(3.4)

266664
ry1;y2;yv1;yv2;jvjt

k

ry1;y2;yv1;yv2;jvjx
k
pk

ry1;y2;yv1;yv2;jvjyv
k
pk

ry1;y2;yv1;yv2;jvjjv
k
pk
j

377775 D
2666664
rtk�1;xk�1

pk�1
;yvk�1
pk�1

;jvk�1
pk�1

j
tk

rtk�1;xk�1
pk�1

;yvk�1
pk�1

;jvk�1
pk�1

j
xk
pk

rtk�1;xk�1
pk�1

;yvk�1
pk�1

;jvk�1
pk�1

j
yvk
pk

rtk�1;xk�1
pk�1

;yvk�1
pk�1

;jvk�1
pk�1

j
jvk
pk
j

3777775 � � � �

� � � �

2666664
rt1;x1

p1
;yv1
p1
;jv1
p1
j
t2

rt1;x1
p1
;yv1
p1
;jv1
p1
j
x2
p2

rt1;x1
p1
;yv1
p1
;jv1
p1
j
yv2
p2

rt1;x1
p1
;yv1
p1
;jv1
p1
j
jv2
p2
j

3777775
26664
ry1;y2;yv1;yv2;jvjt

1

ry1;y2;yv1;yv2;jvjx
1
p1

ry1;y2;yv1;yv2;jvjyv
1
p1

ry1;y2;yv1;yv2;jvjjv
1
p1
j

37775:
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We claim that

(3.5)

26666664

r
tj ;xj

pj
;yvj
pj
;jvj
pj
j
tjC1

r
tj ;xj

pj
;yvj
pj
;jvj
pj
j
xjC1
pjC1

r
tj ;xj

pj
;yvj
pj
;jvj
pj
j
yvjC1
pjC1

r
tj ;xj

pj
;yvj
pj
;jvj
pj
j
jvjC1
pjC1
j

37777775 D
266666664

1 0 0 0 0 � t
jC1

jvj
pj
j

0 0

0 0

0 O�;N;ı.1/ 0

0 0

0 1

377777775
CO�;N .kˆkC2/:

Once (3.5) is proven, from the chain rule (3.4) and Lemma 2.4, we conclude (3.3).
From (2.1),

vj .tj � tjC1/ D �pjC1
�
xjC1
pjC1;1

; xjC1
pjC1;2

; 0
�
� �pj

�
xj
pj ;1

; xj
pj ;2

; 0
�

�

Z tjC1

tj

Z s

tj
rxˆ.�;X.� I t

j ; xj ; vj //d� ds:

Taking @
@tj

directly to the above equality, we derive

vj
�
1 �

@tjC1

@tj

�
D �

@tjC1

@tj

Z tjC1

tj
rxˆ.�;X.� I t

j ; xj ; vj //d�

C .tjC1 � tj /rxˆ.t
j ; xj /;

and @tjC1

@tj
D 1C krxˆk1jt

j � tjC1j=jvjC1
pjC1
j: Now from Lemma 2.6,ˇ̌

vjC1
pjC1

ˇ̌
D jvj CO.krˆk1/jt � t

jC1
j �

1

N
C
ı � 3N diam.�/
3 diam.�/N 2

&
1

N
:

Therefore we conclude that

(3.6)
@tjC1

@tj
D 1CO�;N .kˆkC2/:

From (2.22), we derive

(3.7)

@xjC1
pjC1;i

@tj
D

�
@tjC1

@tj
� 1

�
vjC1
pjC1;i

C kˆkC2 jt
j
� tjC1j2 sup

tjC1���tj

ˇ̌̌̌
@X.� I tj ; xj ; vj /

@tj

ˇ̌̌̌
D O�;N .kˆkC2/;
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where we have used the fact that

sup
tjC1���tj

ˇ̌̌̌
@X.� I tj ; xj ; vj /

@tj

ˇ̌̌̌
. jvj j C krxˆk1jtj � tjC1j � CN;�;

which is proved similarly to the proof of (2.28).
From (2.1), we have

jvjC1j2 D jvj j2�2

Z tjC1

tj
vj �rxˆ.�;X.� I t

j ; xj ; vj //d�C
ˇ̌̌̌Z tjC1

tj
rxˆ.�/

ˇ̌̌̌2
:

Then

2jvjC1j
@jvjC1j

@tj

D �2
@tjC1

@tj
vj � rxˆ.t

jC1/C 2vj � rxˆ.t
j /

C 2

�
kr

2
xˆk1jv

j
j.tj � tjC1/C sup

tjC1���tj

ˇ̌̌̌
@X.�/

@tj

ˇ̌̌̌�
sup

tjC1���tj

ˇ̌̌̌
@X.�/

@tj

ˇ̌̌̌
;

and hence

(3.8)
@jvjC1j

@tj
D O�;N .kˆkC2/:

From (2.31), we prove

(3.9)

@yvjC1
pjC1;i

@tj

D Ok�k
C2

�ˇ̌̌̌@xj
pj

@tj

ˇ̌̌̌�
fjvj j C krˆk1.t

j
� tjC1/g COk�k

C1
.krxˆk1/

D ON;�.kˆkC2/:

We already have estimates for @tjC1=@xj
pj ;i

in Lemma 2.2.
From Lemma 2.2,

@tjC1

@
ˇ̌
vj
pj

ˇ̌ D � tjC1ˇ̌
vj
pj

ˇ̌ CO�;N .kˆkC2/ and
@tjC1

@yvj
pj ;i

D O�;N .kˆkC2/:

Moreover, from the conditions jn.x1.t; Y.y1; y2/; v// �v1.t; Y.y1; y2/; v/j > ı,
1
N
� jvj � N , Lemma 2.7, (2.80), and (2.81), we have

(3.10)
ˇ̌
vj
pj ;3

.t; Y.y1; y2/; v/
ˇ̌

& ı:

Then, from Lemma 2.2,

(3.11)

ˇ̌̌̌
ˇ @
�
xjC1
pjC1

; yvjC1
pjC1

�
@
�
xj
pj
; yvj
pj
;
ˇ̌
vj
pj

ˇ̌�
ˇ̌̌̌
ˇ D O�;N;ı.1/:
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From (3.6) to (3.11), we prove (3.5).
Step 2. Recall that, from (2.1), for tkC1 � s < tk

(3.12)

Xi .sI t; Y.x1; x2/; v/

D Xi
�
sI tk; xk

pk ;1
; xk
pk ;2

; 0; vk
pk

�
D �pk ;i

�
xk
pk ;1

; xk
pk ;2

; 0
�
� .tk � s/jvkjyvk;i

�

Z s

tk

Z �

tk
@iˆ

�
� 0IX

�
� 0I tk; xk

pk ;1
; xk
pk ;2

; 0; vk
pk

��
d� 0 d�;

Vi
�
sI t; Y.x1; x2/; v

�
D Vi

�
sI tk; xk

pk ;1
; xk
pk ;2

; 0; vk
pk

�
D jvkjyvk;i �

Z s

tk
@iˆ

�
� IX

�
� I tk; xk

pk ;1
; xk
pk ;2

; 0; vk
pk

��
d�;

where the specular cycles are defined in (2.4) as�
tk; xk

pk
; vk
pk

�
D
�
tk.t; Y.y1; y2/; v/; xkpk .t; Y.y1; y2/; v/; v

k
pk
.t; Y.y1; y2/; v/

�
:

By direct computations, for @ D @jvj;

@jvjŒXi .sI t; Y.x1; x2/; v/�

D

2X
`D1

@jvjxkpk ;` � @`�pk ;i
�
xk
pk ;1

; xk
pk ;2

; 0
�

C @jvj
�
.t � tk/jvkj

�
yvk � .t � s/@jvjjv

k
jyvk � .tk � s/jvkj@jvjŒyv

k�

�

Z s

tk

Z �

tk

�
@jvjt

k@tkX.�
0
I tk/

C

2X
`D1

@jvjxkpk ;`@xk
pk;`

X.� 0I tk/C @jvjvkpk ;`@vk
`
X.� 0I tk/

�
� r@iˆ

�
� 0IX

�
� 0I tk; xk

pk ;1
; xk
pk ;2

; 0; vk
pk

��
d� 0 d�

C @jvjt
k.s � tk/ lim

� 0"tk
@iˆ

�
� 0IX

�
� 0I tk; xk

pk ;1
; xk
pk ;2

; 0; vk
pk

��
;

where we have used the abbreviated notation X.� 0I tk/ for X.� 0I tk; xk
pk ;1

; xk
pk ;2

;

0; vk
pk
/. From (3.3), we bound the first, second, fourth, fifth, and last line of the

right-hand side by O�;N .kˆkC2/. Finally, we apply (3.3) to the third line and
conclude (3.1).
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Step 3. First we compute @yvk with any arbitrary derivative @. Note that from
(2.7) and (2.10), yvk

pk ;3
> 0 and yvk

pk ;3
D

q
1 � jyvk

pk ;1
j2 � jyvk

pk ;2
j2. Therefore

@yvk D @

� 2X
`D1

@`�pk
p
gpk ;``

�
xk
pk ;1

; xk
pk ;2

; 0
�
yvk
pk ;`

C
@3�pk
p
gpk ;33

�
xk
pk ;1

; xk
pk ;2

; 0
�q
1 � jyvk

pk ;1
j2 � jyvk

pk ;2
j2

�

D

3X
`D1

2X
mD1

@xk
pk ;m

@m

�
@`�pk
p
gpk ;``

��
xk
pk ;1

; xk
pk ;2

; 0
�
yvk
pk ;`

C

2X
`D1

@`�pk
p
gpk ;``

�
xkp;1; x

k
p;2; 0

�
@
�
yvk
pk ;`

�
�

@3�pk
p
gpk ;33

�
xk
pk ;1

; xk
pk ;2

; 0
� 1q

1 � jyvk
pk ;1
j2 � jyvk

pk ;2
j2

�
�
yvk
pk ;1

@
�
yvk
pk ;1

�
C yvk

pk ;2
@
�
yvk
pk ;2

��
D

2X
jD1

� 3X
`D1

@

@xk
pk ;j

�
@`�pk
p
gpk ;``

��
xk
pk ;1

; xk
pk ;2

; 0
�
yvk
pk ;`

�
@xk
pk ;j

C

2X
jD1

�
@j�pk
p
gpk ;11

�
xk
pk ;1

; xk
pk ;2

; 0
�

�
@3�pk
p
gpk ;33

�
xk
pk ;1

; xk
pk ;2

; 0
�yvkpk ;j
yvk
pk ;3

�
@
�
yvk
pk ;j

�
:

From (3.12), for @ 2 f@yv1 ; @yv2 ; @y1 ; @y2g,

@ŒXi .sI t; Y.y1; y2/; v/�

D

2X
`D1

@xk
pk ;`
� @`�pk ;i

�
xk
pk ;1

; xk
pk ;2

; 0
�
� @tk

ˇ̌
vk
pk

ˇ̌
yvk

� .tk � s/@jvk
pk
jyvk � .tk � s/jvk

pk
j@yvk

�

Z s

tk

Z �

tk

�
@tk@tkX.�

0
I tk/C

2X
`D1

@xk
pk ;`

@xk
pk;`

X.� 0I tk/

C @vk
pk ;`

�
xk
pk

�
@vk
pk;`

X.� 0I tk/

�
� r@iˆ

�
� 0IX

�
� 0I tk; xk

pk ;1
; xk
pk ;2

; 0; vk
pk

��
d� 0 d�

C @tk.s � tk/ lim
� 0"tk

@iˆ
�
� 0IX

�
� 0I tk; xk

pk ;1
; xk
pk ;2

; 0; vk
pk

��
:
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We can easily conclude (3.2) by (3.3) and Step 2. �

Recall the specular cycles .tk; xk; vk/ in (2.4) and �pk in (2.6). Assume

(3.13) n.xk/ � vk ¤ 0:

DEFINITION 3.2 (Specular Basis). We define the specular basis, which is an or-
thonormal basis of R3, as

(3.14)

ek0 WD
vk

jvkj
;

ek?;1 WD ek0 �
@2�pk .x

k/q
gpk ;22.x

k/

� ˇ̌̌̌
ek0 �

@2�pk .x
k/q

gpk ;22.x
k/

ˇ̌̌̌
;

ek?;2 WD ek0 � ek?;1:

DEFINITION 3.3 (Specular Matrix). For fixed k 2 N and a C 1-map

Y W .y1; y2/ 7! Y.y1; y2/;

assume (3.13) with xk D xk.t; Y.y1; y2/; jvj; yv1; yv2/ and vk D vk.t; Y.y1; y2/;

jvj; yv1; yv2/. We define the 4 � 4 specular transition matrix
S k;pk ;Y D S k;pk ;Y .t; y1; y2; jvj; yv1; yv2/ as

(3.15) S k;pk ;Y
WD

"
S k;pk ;Y
1 02�2

S k;pk ;Y
2 S k;pk ;Y

3

#
4�4

;

where

S k;pk ;Y
1 WD

"
@1�pk � ek?;1 @2�pk � ek?;1
@1�pk � ek?;2 @2�pk � ek?;2

#
2�2

;

S k;pk ;Y
2 WD

2664
�P3

`D1 @1

�
@`�pkp
g
pk;``

�
yvk
pk ;`

�
� ek
?;1

�P3
`D1 @2

�
@`�pkp
g
pk;``

�
yvk
p;`

�
� ek
?;1�P3

`D1 @1

�
@`�pkp
g
pk;``

�
yvk
pk ;`

�
� ek
?;2

�P3
`D1 @2

�
@`�pkp
g
pk;``

�
yvk
pk ;`

�
� ek
?;2

3775
2�2

;

S k;pk ;Y
3 WD

26664
�

@1�pkp
g
pk;11

�
@3�pkp
g
pk;33

yvk
pk;1

yvk
pk;3

�
� ek
?;1

�
@2�pkp
g
pk;22

�
@3�pkp
g
pk;33

yvk
pk;2

yvk
pk;3

�
� ek
?;1�

@1�pkp
g
pk;11

�
@3�pkp
g
pk;33

yvk
pk;1

yvk
pk;3

�
� ek
?;2

�
@2�pkp
g
pk;22

�
@3�pkp
g
pk;33

yvk
pk;2

yvk
pk;3

�
� ek
?;2

37775
2�2

;

where �pk and gpk are evaluated at xk.t; Y.y1; y2/; jvj; yv1; yv2/. We also define

the 4 � 4 specular matrix Rk;pk ;Y D Rk;pk ;Y .t; y1; y2; jvj; yv1; yv2/ as

(3.16) Rk;pk ;Y
WD S k;pk ;Y

@
�
xk
pk ;1

; xk
pk ;2

; yvk
pk ;1

; yvk
pk ;1

�
@.y1; y2; yv1; yv2/

where xk
pk
D xk

pk
.t; Y.y1; y2/; jvj; yv1; yv2/, vk

pk
D vk

pk
.t; Y.y1; y2/; jvj; yv1; yv2/.
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Finally, we state the result that is a crucial ingredient in the proofs of Lemma 3.6
and Lemma 3.7. For n �m matrix A, we use the notation Ai;j for its .i; j /-entry.
Recall that e3 D .0; 0; 1/ 2 R3 and v3 D v � e3.

LEMMA 3.4. Let a C 1-map Y W .y1; y2/ 7! Y.y1; y2/ 2 x� with kY kC1 . 1.
Assume 1

N
� jvj � N , 1

N
� jv3j, 1N < jn.x1.t; Y.y1; y2/; v// �e3j, and kˆkC2x <

ı1
3 diam.�/N 2 for 1� N and 0 < ı1 � 1. We also assume a nongrazing condition

(3.17) jv1.t; Y.y1; y2/; v/ � n.x
1.t; Y.y1; y2/; v//j > ı2 > 0

and nondegenerate condition

(3.18)
ˇ̌̌̌�
@Y.y1; y2/

@y1
�
@Y.y1; y2/

@y2

�
�Rx1.t;Y.y1;y2/;v/v

1.t; Y.y1; y2/; v/

ˇ̌̌̌
> ı3 > 0:

Fix k 2 N with jt � tkj � 1. Then the following results hold:
(i) For some constant %�;N;ı1;ı2;ı3 > 0, there exists at least one i 2 f1; 2;
3; 4g such that

(3.19)
ˇ̌
Rk;pk ;Y
i;3 .t; Y.y1; y2/; v/

ˇ̌
> %�;N;ı1;ı2;ı3 :

(ii) There exist i; j 2 f1; 2; 3; 4g with i < j such that

(3.20)

ˇ̌̌̌
ˇ̌det

24Rk;pk ;Y
3;i Rk;pk ;Y

3;j

R
k;pk ;Y
4;i Rk;pk ;Y

4;j

35.t; Y.y1; y2/; v/
ˇ̌̌̌
ˇ̌ > %�;N;ı1;ı2;ı3 :

PROOF.
Step 1. We claim that

(3.21)
ˇ̌
det Rk;pk ;Y .t; Y.y1; y2/; v/

ˇ̌
&�;N;ı1;ı2;ı3 1:

Note that from (3.16) and (3.15),

det.Rk;pk ;Y / D det
�
S k;pk ;Y
1

�
det
�
S k;pk ;Y
3

�
� det

�@�xk
pk ;1

; xk
pk ;2

; yvk
pk ;1

; yvk
pk ;1

�
@.y1; y2; yv1; yv2/

�
:

By (2.86) and (3.14),

det
�
S k;pk ;Y
1

�
D
ˇ̌
.@1�pk � @1�pk / �

�
ek?;1 � ek?;2

�ˇ̌
D

q
gpk ;11.x

k/gpk ;22.x
k/

ˇ̌̌̌ vk
pkˇ̌

vk
pk

ˇ̌ � n.xk/ˇ̌̌̌

D

q
gpk ;11.x

k/gpk ;22.x
k/

ˇ̌
vk
pk ;3

ˇ̌ˇ̌
vk
pk

ˇ̌ ;
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det.S k;pk ;Y
3 / D

ˇ̌̌̌��
@1�pk
p
gpk ;11

�
@3�pk
p
gpk ;33

yvk
pk ;1

yvk
pk ;3

�

�

�
@2�pk
p
gpk ;22

�
@3�pk
p
gpk ;33

yvk
pk ;2

yvk
pk ;3

��
�
�
ek?;1 � ek?;2

�ˇ̌̌̌
D

D
1

jyvk
pk ;3
j

ˇ̌̌̌�
yvk
pk ;1

@1�pk
p
gpk ;11

C yvk
pk ;2

@2�pk
p
gpk ;22

C yvk
pk ;3

@3�pk
p
gpk ;33

�
�
�
ek?;1 � ek?;2

�ˇ̌̌̌
D

1ˇ̌
vk
pk ;3

ˇ̌vk
pk
�

vk
pkˇ̌

vk
pk

ˇ̌ D ˇ̌
vk
pk

ˇ̌ˇ̌
vk
pk ;3

ˇ̌ :
From the chain rule and (2.90),

(3.22)

ˇ̌̌̌
ˇ̌det

0@@.xkpk ;1; xkpk ;2; yvkpk ;1; yvkpk ;1/
@.y1; y2; yv1; yv2/

1Aˇ̌̌̌ˇ̌
D

ˇ̌̌̌
ˇ̌det

0@@.xkpk ;1; xkpk ;2; yvkpk ;1; yvkpk ;2/
@.x1

p1;1
; x1
p1;2

; yv1
pk ;1

; yv1
pk ;2

/

1A det

 
@.x1

p1;1
; x1
p1;2

; yv1
p1;1

; yv1
p1;2

/

@.y1; y2; yv1; yv2/

!ˇ̌̌̌
ˇ̌

� ��;N;ı1;ı2;ı3

ˇ̌̌̌
ˇdet

 
@.x1

p1;1
; x1
p1;2

; yv1
p1;1

; yv1
p1;2

/

@.y1; y2; yv1; yv2/

!ˇ̌̌̌
ˇ:

Note that

@
�
x1
p1;1

; x1
p1;2

; yv1
p1;1

; yv1
p1;2

�
@.y1; y2; yv1; yv2/

D

2666666664

@Y
@y1
� rxx1

p1;1
@Y
@y2
� rxx1

p1;1

@x1
p1;1

@yv1

@x1
p1;1

@yv2

@Y
@y1
� rxx1

p1;2
@Y
@y2
� rxx1

p1;2

@x1
p1;2

@yv1

@x1
p1;2

@yv2

@Y
@y1
� rxyv1p1;1

@Y
@y2
� rxyv1p1;1

@yv1
p1;1

@yv1

@yv1
p1;1

@yv2

@Y
@y1
� rxyv1p1;2

@Y
@y2
� rxyv1p1;2

@yv1
p1;2

@yv1

@yv1
p1;2

@yv2

3777777775
:

From Lemma 2.4 and (3.17),

rxyv1p1;i D
1ˇ̌

v1
p1

ˇ̌ �rxx1
p1
� r

�
@i�p1
p
gp1;i i

�ˇ̌̌̌
x1
� v CO�;N;ı2.kˆkC2/

�
C
O�;N .kˆkC2/

jv1
p1
j2jv1

p1;3
j

D rxx1
p1
� r

�
@i�p1
p
gp1;i i

�ˇ̌̌̌
x1
�
vˇ̌

v1
p1

ˇ̌ CO�;N;ı1;ı2.kˆkC2/;
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ryvyv1p1;i D
1ˇ̌

v1
p1

ˇ̌ryvv1
p1;i
�

v1
p1;iˇ̌

v1
p1

ˇ̌2ryv ˇ̌v1p1 ˇ̌
D

1

jv1
p1
j

�
ryvx1

p1
� r

�
@i�p1
p
gp1;i i

�ˇ̌̌̌
x1
� v CO�;N;ı1;ı2.kˆkC2/

�
C

1

jv1
p1
j

�
jvjej �

@i�p1
p
gp1;i i

ˇ̌̌̌
x1
CO.kˆkC1/

ˇ̌̌̌
@tb

@yvj

ˇ̌̌̌
CON .kˆkC2/tb

�
CO�;N;ı1;ı2.kˆkC2/

D
jvjˇ̌
v1
p1

ˇ̌ @i�p1p
gp1;i i

ˇ̌̌̌
x1
� ej Cryvx1

p1
� r

�
@i�p1
p
gp1;i i

�ˇ̌̌̌
x1
�
vˇ̌

v1
p1

ˇ̌
CO�;N;ı1;ı2.kˆkC2/:

Then by Gaussian elimination,

det

 
@.x1

p1;1
; x1
p1;2

; yv1
p1;1

; yv1
p1;2

/

@.y1; y2; yv1; yv2/

!
D

det

0BBBBBBBB@

2666666664

@Y
@y1
� rxx1

p1;1
@Y
@y2
� rxx1

p1;1

@x1
p1;1

@yv1

@x1
p1;1

@yv2

@Y
@y1
� rxx1

p1;2
@Y
@y2
� rxx1

p1;2

@x1
p1;2

@yv1

@x1
p1;2

@yv2

0 0
@1�p1p
g
p1;11

� e1
@1�p1p
g
p1;11

� e2

0 0
@2�p2p
g
p2;22

� e1
@2�p2p
g
p2;22

� e2

3777777775

1CCCCCCCCA
C ŒO�;N;ı1;ı2.kˆkC2/�4�4/:

From (3.10) and (2.2), all the entries of the above matrix are bound and hence the
determinant of the Jacobian matrix equals

(3.23)
det

0BBBBBBBB@

2666666664

@Y
@y1
� rxx1

p1;1
@Y
@y2
� rxx1

p1;1

@x1
p1;1

@yv1

@x1
p1;1

@yv2

@Y
@y1
� rxx1

p1;2
@Y
@y2
� rxx1

p1;2

@x1
p1;2

@yv1

@x1
p1;2

@yv2

0 0
@1�p1p
g
p1;11

� e1
@1�p1p
g
p1;11

� e2

0 0
@2�p2p
g
p2;22

� e1
@2�p2p
g
p2;22

� e2

3777777775

1CCCCCCCCA
CO�;N;ı1;ı2.kˆkC2/:
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From (2.86), the determinant equals

(3.24)
ˇ̌̌̌�
@Y

@y1
�
@Y

@y2

�
�
�
rxx1

p1;1
� rxx1

p1;2

�ˇ̌̌̌
�

ˇ̌̌̌�
@1�p1
p
gp1;11

�
@2�p1
p
gp1;22

�
� e3

ˇ̌̌̌
CO�;N;ı1;ı2.kˆkC2/:

From (2.4)

rxx1
p1;1
� rxx1

p1;2

D
1q

gp1;11.x
1/gp1;22.x

1/

�

"
np1.x

1/ �
v1
p1;1

v1
p1;3

@1�p1.x
1/q

gp1;11.x
1/
�

v1
p1;2

v1
p1;3

@2�p1.x
1/q

gp1;22.x
1/

#

CO�.kr
2
xˆk1/

�
1C

jvj

jv1
p1;3
j

�
jvj

jv1
p1;3
j
:

From (2.10) and (2.11), the first line of the right-hand side above equals

1q
gp1;11.x

1/gp1;22.x
1/

�Rx1v
1

v1
p1;3

;

while the second line is bounded by O�;N;ı2.kr
2
xˆk1/.jvj=jv1p1;3j/ from (3.17).

From the assumptions of the lemma, including (3.18), we derive a lower bound as

(3.24) &�
ı3

N
�
1

N
CO.kˆkC2/:

By choosing sufficiently small kˆkC2 we prove (3.21).

Step 2. Assume jRk;pk ;Y
i;3 j � 1 for all i 2 f1; 2; 3; 4g . Then

jdet Rk;pk ;Y
j �

ˇ̌̌̌ 4X
iD1

.�1/iC3Rk;pk ;Y
i;3 Mi;3

ˇ̌̌̌
� 4max

i
jMi;3j �max

i

ˇ̌
Rk;pk ;Y
i;3

ˇ̌
;

where the minor Mi;j is defined to be the determinant of the 3 � 3 matrix that
results from Rk;pk ;Y by removing the i th row and the j th column. Note that
jMi;3j .�;N;ı1;ı2 1. From (3.21) we prove (3.19).
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Step 3. Note that

jdet Rk;pk ;Y
j � 12 max

i

ˇ̌
Rk;pk ;Y
1;i

ˇ̌
�max

i

ˇ̌
Rk;pk ;Y
2;i

ˇ̌
�max

i;j

ˇ̌̌̌
ˇdet

"
Rk;pk ;Y
3;i Rk;pk ;Y

3;j

Rk;pk ;Y
4;i Rk;pk ;Y

4;j

#ˇ̌̌̌
ˇ

.�;N;ı1;ı2 max
i;j

ˇ̌̌̌
ˇdet

"
Rk;pk ;Y
3;i Rk;pk ;Y

3;j

Rk;pk ;Y
4;i Rk;pk ;Y

4;j

#ˇ̌̌̌
ˇ:

From (3.21), we prove (3.20). �

LEMMA 3.5. Assume that a.´/, b.´/, and c.´/ are C 0;
 -functions of ´ 2 Rn

locally. We consider G.´; s/ WD a.´/s2 C b.´/s C c.´/.

(i) Assume jaj � min jaj > 0. Define

(3.25)
'1.´/ WD

�b.´/

2a.´/
; '2.´/ WD 1b2�4ac>0

�b.´/C
p
b2.´/ � 4a.´/c.´/

2a.´/
;

'3.´/ WD 1b2.´/�4a.´/c.´/>0
�b.´/ �

p
b2.´/ � 4a.´/c.´/

2a.´/
:

Then 'i .´/ 2 C 0;
 with k'ikC0;
 � C.min jaj; kakC0;
 ; kbkC0;
 ; kckC0;
 / for
i D 1; 2; 3 such that if jsj � 1 and miniD1;2;3 js � 'i .´/j > ı, then jG.´; s/j &
min jaj � ı2.

(ii) Assume a � 0 and min jbj > 0. Define

(3.26) '4.´/ WD
�c.´/

b.´/
:

Then '4.´/ 2 C 0;
 with k'4kC0;
 � C.min jbj; kbkC0;
 ; kckC0;
 /. Moreover, if
jsj � 1 and js � '4.´/j > ı, then jG.´; s/j & min jbj � ı.

(iii) Assume a � 0 and min jcj > 0. Define

(3.27) '5.´/ WD 1
jb.´/j>min jcj

4

�c.´/

b.´/
:

Then '5.´/ 2 C 0;
 with k'5kC0;
 � C.min jbj; kbkC0;
 ; kckC0;
 /. Moreover, if
jsj � 1 and js � '5.´/j > ı, then jG.´; s/j � min

˚min jcj
2
; min jcj

4
� ı
	
.

PROOF. We consider (i). Without loss of generality we may assume that a �
min a > 0. Clearly if a.´/ � min a > 0, then 'i is C 0;
 and k'ikC0;
 �
C.min a; kakC0;
 ; kbkC0;
 ; kckC0;
 / for i D 1; 2; 3.

We claim that

min
js�'1j>ı

fjG.´; s C ı/ �G.´; s/j; jG.´; s/ �G.´; s � ı/jg & min a � ı2:
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Since G.´; s/ is symmetric around s D '1, it suffices to prove the above estimate
for s � '1. First, we consider the difference G.´; s C ı/ � G.´; s/ for s � � b

2a
and ı > 0. Note @sŒG.´; s C ı/ �G.´; s/� D 2aı > 0. Therefore, for any ´,

min
s�� b

2a

ŒG.´; s C ı/ �G.´; s/� D

�
G

�
´;�

b

2a
C ı

�
�G

�
´;�

b

2a

��
� min a � ı2:

Second, we consider G.´; s/ � G.´; s � ı/ for s � � b
2a
C ı and ı > 0. Since

@sŒG.´; s C ı/ �G.´; s/� D 2aı > 0,

min
s�� b

2a
Cı

ŒG.´; s/ �G.´; s � ı/� D

�
G

�
´;�

b

2a
C ı

�
�G

�
´;�

b

2a

��
� min a � ı2;

and thus we prove the claim.
Finally, we consider '2 and '3. We split the argument into two cases with small

number ı: ı <
p
b2�4ac
2a

and ı �
p
b2�4ac
2a

.

Case 1. If ı <
p
b2�4ac
2a

D
'2�'3
2

,˚
s W min

iD2;3
js � 'i j > ı

	
D fs < '3 � ıg [ f'3C ı < s < '2 � ıg [ f'2C ı < sg;

where f'3 C ı < s < '2 � ıg is not the empty set. For fs > '2 C ıg,

jG.´; s/j D

Z s

'2

@sG.´; t/dt D
Z s

'2

.2at C b/dt

D

Z s

'2

2a

�
t �

b

2a

�
dt D

Z s

'2

2a.t � '1/dt; t � '1 WD r;

D

Z s�'1

'2�'1

2ar dt � .min a/.s � '2/.s � '1 C '2 � '1/

� .min a/ı.s � '2 C .'2 � '1// � .min a/ı.s � '2/

� .min a/ı2:

By symmetry, we get the same estimate for the fs < '3 � ıg case.
On the other hand, for f'3C ı < s < '2 � ıg, it suffices to consider f'1 � s <

'2 � ıg because the f'3 C ı < s � '1g case is the same by symmetry. We have a
lower bound as follows:

jG.´; s/j D

Z '2

s

@sG.´; t/dt D
Z '2

s

2a.t � '1/dt; t � '1 WD r;

D

Z '2�'1

s�'1

2ar dt � .min a/.'2 � s/.'2 � '1 C s � '1/

� .min a/ı.ı C .s � '1//

� .min a/ı2:
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Case 2. If ı �
p
b2�4ac
2a

D
'2�'3
2

,˚
s W min

iD2;3
js � 'i j > ıg D fs < '3 � ıg [ fs > '2 C ı

	
:

Note that f'3 C ı < s < '2 � ıg is empty set because, if s � '3 D js � '3j > ı,

'2 � s D js � '2j D .'2 � '3/C .'3 � s/ < 2ı C .�ı/ D ı:

For fs < '3�ıg and fs > '2Cıg, we already checked that jG.´; s/j & min jaj�ı2

holds in Case 1.
Finally, we conclude that

jG.´; s/j D jG.´; s/ �G.´; 'i /j & min a � ı2 for min
iD2;3

js � 'i j > ı;

when �1 < s < 2.
Now we consider (ii). Clearly '4 is C 0;
 for this case, and

jG.´; s/j � min
�ˇ̌̌̌
b.´/

�
�c.´/

b.´/
C ı

�
C c.´/

ˇ̌̌̌
;

ˇ̌̌̌
b.´/

�
�c.´/

b.´/
ı

�
C c.´/

ˇ̌̌̌�
� min jbj � ı:

Now we consider (iii). First, if jbj < min jcj
2

, then j'5.´/j �
jc.´/j

min jcj=2 � 2.
Therefore,

jG.´; s/j � minfjG.´; 1/j; jG.´;�1/jg � jc.´/j � jb.´/j �
min jcj
2

:

Consider the case of jbj > min jcj
4

. If js � '5.s/j > ı, then

jG.´; s/j � min
�ˇ̌̌̌
b.´/

�
�c.´/

b.´/
C ı

�
C c.´/

ˇ̌̌̌
;

ˇ̌̌̌
b.´/

�
�c.´/

b.´/
� ı

�
C c.´/

ˇ̌̌̌�
D min jbj � ı �

min jcj
2
� ı: �

LEMMA 3.6. Assume � is C 3 (2.6) and convex (1.15), and ˆ is C 2;
t;x for some
0 < 
 < 1. We also assume that kˆkC2x � ı1. Let t0 � 0, x0 2 x�, v0 2 R3, and

(3.28)
1

N
� jv0j � N;

1

N
� jv03j;

1

N
� jn.x1/ � e3j; jn.x

1/ � v1j > ı2 > 0;

where .x1; v1/ D .x1.t0; x0; v0/; v1.t0; x0; v0//.
Fix k 2 N with tk � t � 1. Then there exists " > 0 and finitely many C 0;
 -

functions  ki W B".t; x; v/ ! R with k ki kC0;
t;x
.ı1;ı2;�;N 1 and there exists a

constant �ı1;ı2;�;N > 0,

(3.29)

if min
i

ˇ̌
s �  ki .t; x; v/

ˇ̌
> ı� and

.sI t; x; v/ 2
�
max

˚
t � 1; tkC1

	
;min

˚
t � 1

N
; tk
	�
� B".t

0; x0; v0/;

then
ˇ̌
@jvjX.sI t; x; v/ � @yv1X.sI t; x; v/

ˇ̌
> �ı1;ı2;�;N;ı� :
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Here yv1 D v1=jvj; yv2 D v2=jvj:

It is important that this lower bound �ı1;ı2;�;N not depend on time t .

PROOF.
Step 1. For .t0; x0; v0/ in the assumption we choose .t; x; v/ with j.t; x; v/ �

.t0; x0; v0/j � 1.
For each x with jx � x0j � 1, we set a C 1-map Yx W .y1; y2/ 7! Y.y1; y2/ 2

R3 such that

(3.30) Yx.y1; y2/ WD x C y1e0?;1.t
0; x0; v0/C y2e0?;2.t

0; x0; v0/:

We claim that

(3.31)
ˇ̌̌̌�
@Yx.y1; y2/

@y1
�
@Yx.y1; y2/

@y2

�
�Rx1.t;Yx.y1;y2/;v/v

1.t; Yx.y1; y2/; v/

ˇ̌̌̌
&�;N;ı1;ı2 1:

Using the definition of the specular basis (3.14), we equate the left-hand side of
(3.31) toˇ̌�

e0?;1.t
0; x0; v0/ � e0?;2.t

0; x0; v0/
�
�Rx1.t0;x0;v0/v

1.t0; x0; v0/
ˇ̌
Dˇ̌̌̌

v0.t0; x0; v0/

jv0.t0; x0; v0/j
� lim
s#t1

V.sI t0; x0; v0/

ˇ̌̌̌
:

For a small potential, we conclude (3.31).
Step 2. Fix k with jtk.t; x; v/ � t j � 1. Then we fix the orthonormal basis

fek0 ; e
k
?;1; e

k
?;2g of (3.14) with xk D xk.t; x; v/, vk D vk.t; x; v/. Note that this

orthonormal basis fek0 ; e
k
?;1; e

k
?;2g depends on .t; x; v/.

For tkC1 < s < tk , recall the forms of @X.s/
@jvj

and @X.s/
@yvj

in (3.1) and (3.2) of
Lemma 3.1, where

X.s/ D X.sI tk; xk; vk/:

Recall the specular matrix (3.16) with Y D Yx in (3.30). Using the specular basis
(3.14) and the specular matrix (3.16), we rewrite (3.1) and (3.2) as

(3.32)

2664
@X.s/
@jvj
� ek0

@X.s/
@yv1
� ek0

@X.s/
@yv2
� ek0

@X.s/
@jvj
� ek
?;1

@X.s/
@yv1
� ek
?;1

@X.s/
@yv2
� ek
?;1

@X.s/
@jvj
� ek
?;2

@X.s/
@yv1
� ek
?;2

@X.s/
@yv2
� ek
?;2

3775 D
2666664
�.t � s/

�

ˇ̌
vk
pk

ˇ̌
ryv1;yv2

tkCryv1;yv2xk
pk;`

@`�pk

ˇ̌
xk
�ek0

�.tk�s/jvk
pk
j
P2
jD1

�P3
`D1 @j

�
@`�pkp
g
pk;``

�ˇ̌̌
xk
yvk
pk;`

�
ryv1;yv2

xk
pk;j

02;1

"
Rk;pk ;Y
1;3 Rk;pk ;Y

1;4

Rk;pk ;Y
2;3 Rk;pk ;Y

2;4

#
� .tk � s/

ˇ̌
vk
pk

ˇ̌"Rk;pk ;Y
3;3 Rk;pk ;Y

3;4

Rk;pk ;Y
4;3 Rk;pk ;Y

4;4

#
3777775

CO�;N;ı2.kˆkC2/:
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From (3.10) and (2.2), all the entries of the above matrix are bounded. By direct
computation we obtain

(3.33)

@jvjX.s/ � @yv1X.s/

D �.t � s/
˚
Rk;pk ;Y
1;3 � .tk � s/

ˇ̌
vk
pk

ˇ̌
Rk;pk ;Y
3;3

	
ek?;2

C .t � s/
˚
Rk;pk ;Y
2;3 � .tk � s/

ˇ̌
vk
pk

ˇ̌
Rk;pk ;Y
4;3

	
ek?;1

CO�;N;ı2.kˆkC2/:

Here Rk;pk ;Y
i;j ; tk; vk

pk
; and ek

?;i depend on .t; x; v/ but not on s.

Step 3. Recall Lemma 3.4. From (3.28) and (3.31), we can choose nonzero con-
stants ı1, ı2, and ı3 for a large N . Applying Lemma 3.4 and (3.19), we conclude
that, for some i 2 f1; 2; 3; 4g,

(3.34)
ˇ̌
Rk;pk ;Y
i;3 .t0; x0; v0/

ˇ̌
> %�;N;ı1;ı2 > 0:

Now we claim that Rk;pk ;Y
i;j .t; x; v/ 2 C

0;

t;x;v if j.t; x; v/ � .t0; x0; v0/j � 1.

Since the domain is convex (1.15) and jn.x1.t0; x0; v0// � v1.t0; x0; v0/j > ı2 in
(3.28), utilizing Lemma 2.7 we deduce that if j.t; x; v/ � .t0; x0; v0/j � 1 then
jn.xl/ � vl j & ı2 for all 1 � l � k. By Lemma 2.2, .t l ; xl ; vl/ is C 0;
 for all
1 � l � k. Hence, from (3.15) and (3.16), we conclude our claim.

Finally, we choose a small constant " > 0 such that, for some i 2 f1; 2; 3; 4g
satisfying (3.34),

(3.35)
ˇ̌
Rk;pk ;Y
i;3 .t; x; v/

ˇ̌
>
%�;N;ı1;ı2

2
for j.t; x; v/ � .t0; x0; v0/j < ":

Step 4. With N � 1, from (3.35), we divide the cases as follows:

(3.36)

ˇ̌
Rk;pk ;Y
i;3

ˇ̌
>
%�;N;ı1;ı2

2
for some i 2 f1; 2g;ˇ̌

Rk;pk ;Y
j;3

ˇ̌
�
%�;N;ı1;ı2

2
for some j 2 f3; 4g:

We split the first case (3.36) further into two more cases as

(3.37)
min
iD1;2

ˇ̌
Rk;pk ;Y
i;3

ˇ̌
>
%�;N;ı1;ı2

2
and max

iD1;2

ˇ̌
Rk;pk ;Y
iC2;3

ˇ̌
<
%�;N;ı1;ı2
4N

;

min
iD1;2

ˇ̌
Rk;pk ;Y
i;3

ˇ̌
>
%�;N;ı1;ı2

2
and max

iD1;2

ˇ̌
Rk;pk ;Y
iC2;3

ˇ̌
�
%�;N;ı1;ı2
4N

:

Set the other case

(3.38)
ˇ̌
Rk;pk ;Y
j;3

ˇ̌
�
%�;N;ı1;ı2

2
for some j 2 f3; 4g:

Then clearly (3.37) and (3.38) cover all the cases.
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Step 5. We consider the case of (3.37). Then, from (3.33),

(3.39)

j@jvjX.s/ � @yv1X.s/j

�
ˇ̌
jvkjRk;pk ;Y

iC2;3 .t
k
� s/ �Rk;pk ;Y

i;3

ˇ̌
.t � s/CO�;N;ı.kˆkC2/

D
ˇ̌
jvkjRk;pk ;Y

iC2;3 .t � s/C
�
�Rk;pk ;Y

i;3 C .tk � t /jvkjRk;pk ;Y
iC2;3

�„ ƒ‚ … ˇ̌.t � s/
CO�;ı2;N .kˆkC2/:

Let us consider the underbraced term above. We define

(3.40) Qs D t � s;

and set

(3.41) a � 0; b WD jvkjRk;pk ;Y
iC2;3 ; c WD �Rk;pk ;Y

i;3 C .tk � t /jvkjRk;pk ;Y
iC2;3 :

Note that Rk;pk ;Y
i;3 ;Rk;pk ;Y

iC2;3 , jvkj, and tk depend only on .t; x; v/.
Hence we regard the underbraced term of (3.39) as an affine function of Qs,

(3.42) b.t; x; v/Qs C c.t; x; v/:

Note that from (3.37)

jc.t; x; v/j �
%�;N;ı1;ı2

2
�N

%�;N;ı1;ı2
4N

�
%�;N;ı1;ı2

4
:

Now we apply (iii) of Lemma 3.5. With '5.t; x; v/ in (3.27), if jQs�'5.t; x; v/j >
ı�, then jb.t; x; v/Qs C c.t; x; v/j � %�;N;ı

4
� ı�. We set

(3.43)  5.t; x; v/ D t � '5.t; x; v/:

From (3.40),

(3.44)
if js �  5.t; x; v/j > ı�; then
jb.t; x; v/.t � s/C c.t; x; v/j �

%�;N;ı1;ı2
4

� ı�.

Now we consider the case of (3.38). From (3.33),

(3.45)

j@jvjX.s/ � @yv1X.s/j

�
ˇ̌
jvkjRk;pk ;Y

j;3 .t � s/

C
�
�Rk;pk ;Y

j�2;3 C .t
k
� t /jvkjRk;pk ;Y

j;3

�ˇ̌
.t � s/

CO�;N;ı.kˆkC2/:

We set Qs as in (3.40) and set

(3.46) a � 0; b WD jvkjRk;pk ;Y
j;3 ; c WD �Rk;pk ;Y

j�2;3 C .t
k
� t /jvkjRk;pk ;Y

j;3 :

From (3.38) and (3.46)

jb.t; x; v/j �
%�;N;ı1;ı2
8N 2

:
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We apply (ii) of Lemma 3.5 to this case: With '4.t; x; v/ in (3.26), we set

(3.47)  4.t; x; v/ D t � '4.t; x; v/;

and

(3.48)
if js �  4.t; x; v/j > ı�; then
jb.t; x; v/.t � s/C c.t; x; v/j &

%�;N;ı1;ı2
8N 2

� ı�:

From (3.44), (3.39), (3.48), and (3.45), we conclude the proof of Lemma 3.6.
�

LEMMA 3.7. Assume � is C 3 (2.6) and convex (1.15), and ˆ is C 2;
t;x for some
0 < 
 < 1. Assume the conditions of Lemma 3.4.

Let a C 1-map Yx W .y1; y2/ 7! Yx.y1; y2/ 2 x� with Yx.0; 0/ D x and
kY kC1x;y1;y2

. 1. We assume that

(3.49)
ˇ̌̌̌�
@Yx0.0; 0/

@y1
�
@Yx0.0; 0/

@y2

�
�Rx1.t;x0;v0/v

1.t; x0; v0/

ˇ̌̌̌
> ı3 > 0:

For k 2 N with tk � t � 1, there exist " > 0, finitely many C 0;
 -functions
 ki W B".t; x; v/ ! R with k ki kC0;
t;x

. 1, and a constant �ı1;ı2;ı3;N;� > 0, and

f�1; �2g � fyv1; yv2; y1; y2g such that if mini js �  ki .t; Yx.y1; y2/; v/j > ı� and

(3.50) .sI t; Yx.y1; y2/; v/ 2

�
maxft � 1; tkC1g;min

�
t �

1

N
; tk
��
� B".t

0; x0; v0/;

then

det
�
@X.sI t; Yx.y1; y2/; jvj; yv1; yv2/

@.jvj; �1; �2/

�
> �ı1;ı2;ı3;N;�;ı� > 0:

PROOF.

Step 1. Recall the specular basis fek0 ; e
k
?;1; e

k
?;2g in (3.14) with

xk D xk.t; Yx.y1; y2/; jvj; yv1; yv2/ and vk D vk.t; Yx.y1; y2/; jvj; yv1; yv2/ W

@X.sI t; Yx.y1; y2/; jvj; yv1; yv2/

@.jvj; y1; y2; yv1; yv2/
D

h
ek0 ek

?;1 ek
?;2

i2664
@X
@jvj
� ek0

@X
@y1
� ek0

@X
@y2
� ek0

@X
@yv1
� ek0

@X
@yv2
� ek0

@X
@jvj
� ek
?;1

@X
@y1
� ek
?;1

@X
@y2
� ek
?;1

@X
@yv1
� ek
?;1

@X
@yv2
� ek
?;1

@X
@jvj
� ek
?;2

@X
@y1
� ek
?;2

@X
@y2
� ek
?;2

@X
@yv1
� ek
?;2

@X
@yv2
� ek
?;2

3775
„ ƒ‚ …

:
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From (3.1) and (3.2), using the specular basis (3.14) and the specular matrix (3.16),
we rewrite the underbraced term as26664 �.t � s/

�jvk jryv1;yv2;y1;y2 t
kCryv1;yv2;y1;y2

xk
pk;`

@`�pk �e
k
0

�.tk�s/jvk j
P2
jD1

�P3
`D1

@

@xk
pk;j

�
@`�pkp
g
pk;``

�
yvk
pk;`

�
ryv1;yv2;y1;y2

xk
pk;j

0
0

�2�4

37775
COı;N .kˆkC2/;

where the lower right 2 � 4-submatrix equals

(3.51)

"
Rk;pk ;Yx
1;1 Rk;pk ;Yx

1;2 Rk;pk ;Yx
1;3 Rk;pk ;Yx

1;4

Rk;pk ;Yx
2;1 Rk;pk ;Yx

2;2 Rk;pk ;Yx
2;3 Rk;pk ;Yx

2;4

#

� .tk � s/jvkj

"
Rk;pk ;Yx
3;1 Rk;pk ;Yx

3;2 Rk;pk ;Yx
3;3 Rk;pk ;Yx

3;4

Rk;pk ;Yx
4;1 Rk;pk ;Yx

4;2 Rk;pk ;Yx
4;3 Rk;pk ;Yx

4;4

#
:

Here Rk;pk ;Yx
i;j is defined in (3.16) with xk D xk.t; Yx.y1; y2/; jvj; yv1; yv2/ and

vk D vk.t; Yx.y1; y2/; jvj; yv1; yv2/.
Step 2. From Lemma 3.4, there exist i < j such that (3.20) holds. We choose

�1; �2 to be the i th component and j th component of fy1; y2; yv1; yv2g. For the sake
of simplicity, we abuse the notation as24Rk;pk ;Yx

3;�1
Rk;pk ;Yx
3;�2

Rk;pk ;Yx
4;�1

Rk;pk ;Yx
4;�2

35 D
24Rk;pk ;Yx

3;i Rk;pk ;Yx
3;j

Rk;pk ;Yx
4;i Rk;pk ;Yx

4;j

35:
Note that

det
�
@X.sI t; Yx.y1; y2/; jvj; yv1; yv2/

@.jvj; �1; �2/

�
D

det

0BBBBBBB@

266666664
.s � t /

�jvk jr�1;�2 t
kCr�1;�2xk

pk;`
@`�pk �e

k
0

�.tk�s/jvk j
P2
jD1

�P3
`D1

@

@xk
pk;j

�
@`�pkp
g
pk;``

�
yvk
pk;`

�
r�1;�2xk

pk;j

0

0

24Rk;pk ;Yx
1;�1

Rk;pk ;Yx
1;�2

Rk;pk ;Yx
2;�1

Rk;pk ;Yx
2;�2

35 � .tk � s/jvkj
24Rk;pk ;Yx

3;�1
Rk;pk ;Yx
3;�2

Rk;pk ;Yx
4;�1

Rk;pk ;Yx
4;�2

35

377777775

1CCCCCCCA
C
�
Oı;N .kˆkC2/

�
3�3

:

From (3.10) and (2.2), all the entries of the above matrix are bound and hence the
determinant of above matrix equals

(3.52)
� .t � s/ det

0@24Rk;pk ;Yx
1;�1

Rk;pk ;Yx
1;�2

Rk;pk ;Yx
2;�1

Rk;pk ;Yx
2;�2

35 � .tk � s/jvkj
24Rk;pk ;Yx

3;�1
Rk;pk ;Yx
3;�2

Rk;pk ;Yx
4;�1

Rk;pk ;Yx
4;�2

351A
„ ƒ‚ …

CO.kˆkC2/:
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The underbraced term equals

(3.53)

.tk � s/2jvkj2 det

0@24Rk;pk ;Yx
3;�1

Rk;pk ;Yx
3;�2

Rk;pk ;Yx
4;�1

Rk;pk ;Yx
4;�2

351A
C det

0@24Rk;pk ;Yx
1;�1

Rk;pk ;Yx
1;�2

Rk;pk ;Yx
2;�1

Rk;pk ;Yx
2;�2

351A
� .tk � s/jvkj

�
Rk;pk ;Yx
3;�1

Rk;pk ;Yx
2;�2

CRk;pk ;Yx
1;�1

Rk;pk ;Yx
4;�2

�Rk;pk ;Yx
1;�2

Rk;pk ;Yx
4;�1

�Rk;pk ;Yx
3;�2

Rk;pk ;Yx
2;�1

�
:

We define
Qs D tk.t; Yx.y1; y2/; v/ � s;

and we regard (3.53) as a quadratic polynomial of Qs. Then the coefficient of Qs2 is

jvkj2

ˇ̌̌̌
ˇ̌det

0@24Rk;pk ;Yx
3;�1

Rk;pk ;Yx
3;�2

Rk;pk ;Yx
4;�1

Rk;pk ;Yx
4;�2

351Aˇ̌̌̌ˇ̌;
which depends only on .t; Yx.y1; y2/; v/. From (3.20) and jvj � 1

N
, we have a

lower bound of ı2
N 2
:

We apply (iii) of Lemma 3.5: There exist C 1-functions  1.t; Yx.y1; y2/; v/,
 2.t; Yx.y1; y2/; v/, and 3.t; Yx.y1; y2/; v/ so that if jQs� i .t; Yx.y1; y2/; v/j >
ı2 for all i D 1; 2; 3, then the absolute value of (3.53) has a positive lower bound.
Set

 i D t
k
� �i :

Using jt � sj > 1
N

and (3.52) we prove (3.50). �

LEMMA 3.8. Assume � is convex in (1.15) and kˆkC1 � 1. Choose N � 1,
0 < ı � 1, and then ı1 D ı1.�;N; ı; krxˆk1/ > 0 as in (3.57). There exist

collections of open subsets fOig
I�;N;ı;ı1
iD1 of � and fVi .q1;q2/g

I�;N;ı;ı1
iD1 of R3,

where q1 and q2 are two independent vectors in R3, with I�;N;ı;ı1 <1 such that
x� �

S
i Oi and

R
R3nVi .q1;q2/ e

�jvj2=100dv � O�. 1N /CO�.ı1/. Moreover,

(3.54)
Ki WD sup

˚
k 2 N W tk.t; x; v/ � T;

.t; x; v/ 2 ŒT; T C 1� � Oi �R3 n Vi .q1;q2/
	
<1:

If .x; v/ 2 Oi �R3 n Vi .q1;q2/ for some i , then

(3.55) jn.x1.t; x; v// � v1.t; x; v/j > min
�
ı1

4
; C�;N;krxˆk1ı

�
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and

(3.56) j.q1 � q2/ � vj �
1

N
:

PROOF. We construct Oi and Vi .q1;q2/. Choose x 2 x� and v 2 R3 with
1
N
� jvj � N , 1

N
� jv3j for N � 1. We split the cases jvjjt � t1.t; x; v/j � ı and

jvjjt � t1.t; x; v/j � 2ı for some 0 < ı � 1. For the first case, from (2.65),

ı � jvjjt � t1.t; x; v/j .�
jv1.t; x; v/ � n.x1.t; x; v//j

jv1.t; x; v/j
;

and hence jv1.t; x; v/ � n.x1.t; x; v//j > C�;N;krxˆk1ı. For the second case,

jn.x1.t; x; v// � v1.t; x; v/j

D jn.x/ � vj COk�k
C3
.jx1.t; x; v/ � xj/ � fjvj C krxˆk1g C krxˆk1

D jn.x/ � vj CON;k�k
C3
.ı/CON;k�k

C3
.krxˆk1/;

where we have used the fact jx1.t; x; v/ � xj D jvjjt � t1j C krxˆk1jt � t
1j2.

Let us choose

(3.57) ı1 D 2
ˇ̌
ON;k�k

C3
.ı/CON;k�k

C3
.krxˆk1/

ˇ̌
for ı �N;� 1; krxˆk1 �N;� 1:

Then jn.x1.t; x; v// � v1.t; x; v/j � ı1
2

for jn.x/ � vj � ı1. Condition (3.56) is
independent of position x. Note that, from Lemma 2.4, .t1; x1; v1/ is continuous
locally. Therefore, we can choose rx > 0 such that if x 2 B.x; rx/\ x�, 1

N
� jvj �

N , 1
N
� jv3j, jn.x/ � vj � 2ı1, and j.q1 � q2/ � vj � 1

N
, then we have (3.55) and

(3.56). Since x� is a compact subset of R3, we extract finite points fxig
I�;N;ı;ı1
iD1

with I�;N;ı;ı1 < 1 such that fB.xi ; rxi /g
I�;N;ı;ı1
iD1 is an open covering of x�. We

define

(3.58)

Oi WD B.xi ; rxi /;

Vi .q1;q2/ WD
�
v 2 R3 W jvj �

1

N
; jvj � N; jv3j �

1

N
; jn.x/ � vj � 2ı1;

or j.q1 � q2/ � vj �
1

N

�
;

for two independent vectors q1;q2 in R3. Clearly we already proved that if .x; v/ 2
Oi �R3 nVi .q1;q2/ for some i D 1; 2; : : : ; I�;N;ı;ı1 , then we have (3.55). More-
over,

R
Vi .q1;q2/ e

�jvj2=100dv < O. 1
N
/CO.ı1/ from our construction. From (2.81),

we prove (3.54). �

Now we are ready to prove the main theorem.
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THEOREM 3.9. Fix arbitrary .t; x; v/ 2 ŒT; T C1����R3. RecallM , ı, ı1, and
Oi ;Vi .ye1;ye2/, which are chosen in Lemma 3.8. For each i D 1; 2; : : : ; I�;N;ı;ı1 ,

there exist ı2 > 0 and a C 0;
 -function  `0; È;i;k for k � Ki in (3.54) where
 `0;

È;i;k is defined locally around .T C ı2`0; X.T C ı2`0I t; x; v/; ı2 È/ with

.`0; È/ D .`0; `1; `2; `3/ 2

�
0; 1; : : : ;

�
1

ı2

�
C 1

�
�

�
�

�
N

ı2

�
� 1; : : : ; 0; : : : ;

�
N

ı2

�
C 1

�3
and k `0; È;i;kkC0;
 � CN;�;ı;ı1;ı2;kˆkC2;
 <1.

Moreover, if

.X.sI t; x; v/; u/ 2 Oi �R3 n Vi .ye1;ye2/ for i D 1; 2; : : : ; I�;N;ı;ı1 ;(3.59)

.s; u/ 2 ŒT C .`0 � 1/ı2; T C .`0 C 1/ı2� � B.ı2 ÈI 2ı2/;(3.60)

s0 2

�
tkC1.T C ı2`0IX.T C ı2`0I t; x; v/; ı2 È/C

1

N
;

tk.T C ı2`0IX.T C ı2`0I t; x; v/; ı2 È/ �
1

N

�
;

(3.61)

and

(3.62)
ˇ̌
s0 �  `0;

È;i;k.T C ı2`0; X.T C ı2`0I t; x; v/; ı2 È/
ˇ̌
>

N 2.1C k `0;
È;i;k
kC0;
 /.ı2/


 ;

then

(3.63)
ˇ̌
@jujX.s

0
I s; X.sI t; x; v/; u/ � @yu1X.s

0
I s; X.sI t; x; v/; u/

ˇ̌
>

��;N;kˆk
C2
;ı1;ı2;ı2 :

Here ��;N;kˆk
C2
;ı1;ı2;ı2 > 0 does not depend on T , t , x, or v.

For each j D 1; 2; : : : ; I�;N;ı;ı1 in Lemma 3.8, there exist ı3 > 0 and C 0;
 -
functions

(3.64)  
`0; È;i;k;j;m0; Em;k

0

1 ;  
`0; È;i;k;j;m0; Em;k

0

2 ;  
`0; È;i;k;j;m0; Em;k

0

3 ;

for k0 � Kj in (3.54) where  `0;
È;i;k;j;m0; Em;k

0

n is defined locally around�
T C ı3m0IX.T C ı3m0IT C ı2`0; X.T C ı2`0I t; x; v/; ı2 È/; ı3 Em

�
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for some

.m0; Em/ D .m0; m1; m2; m3/ 2

�
0; 1; : : : ;

�
1

ı3

�
C 1

�
�

�
�

�
N

ı3

�
� 1; : : : ; 0; : : : ;

�
N

ı3

�
C 1

�3
with 0 < ı3 � 1.

Moreover, if we assume (3.59), (3.60), (3.61), and (3.62),

(3.65)
.X.s0I s; X.sI t; x; v/; u/; u0/ 2 Oj �R3 n Vj .@jujX; @yu1X/

for some j D 1; 2; : : : ; I�;N;ı;ı1 in Lemma 3.8;

(3.66)

s00 2

�
tk
0C1
�
T C ı3m0IX.T C ı3m0IT C ı2`0; X.T C ı2`0I t; x; v/; ı2 È/; ı3 Em

�
C
1

N
;

tk
0

.T C ı3m0IX.T C ı3m0IT C ı2`0; X.T C ı2`0I t; x; v/; ı2 È/; ı3 Em/„ ƒ‚ …
.��/

�
1

N

�
;

and

(3.67) min
nD1;2;3

ˇ̌
s00 �  `0;

È;i;k;j;m0; Em;k
0

n .��/
ˇ̌
>

N 2
�
1C max

nD1;2;3



 `0; È;i;k;j;m0; Em;k0n




C0;


�
.ı3/


 ;

where .��/ is defined in (3.66). Then for each `0, È, i , k, j , m0, Em, and k0 we can
choose two distinct variables f�1; �2g � fjuj; yu1; yu01; yu

0
2g such that .ju0j; �1; �2/ 7!

X.s00I s0; X.s0I s; X.sI t; x; v/; u/; u0/ is one-to-one locally and

(3.68)
ˇ̌̌̌
det
�
@X.s00I s0; X.s0I s; X.sI t; x; v/; u/; u0/

@.ju0j; �1; �2/

�ˇ̌̌̌
> �0�;N;kˆk

C2
;ı1;ı2;ı3

:

Here �0
�;N;kˆk

C2
;ı1;ı2;ı3

> 0 does not depend on T , t , x, or v.

PROOF.
Step 1. Fix any arbitrary .t; x; v/ 2 ŒT; T C1����R3. Assume that s 2 ŒT; t �

and .X.sI t; x; v/; u/ 2 Oi � R3 n Vi .ye1;ye2/ for some i , where e1 and e2 are the
standard unit vectors .1; 0; 0/ and .0; 1; 0/ in global coordinates. Due to Lemma
3.8, .X.s0I s; X.sI t; x; v/; u/; V .s0I s; X.sI t; x; v/; u// is well-defined for all s0 2
ŒT; s� and jn.xk.s; X.sI t; x; v/; u// � vk.s; X.sI t; x; v/; u/j &�;N 1 for all k with
jt � tk.s; X.sI t; x; v/; u/j � 1.

We note that, from X.sI t; x; v/ D X.xsI t; x; v/C
R s
xs V.� I t; x; v/d� ,

(3.69)

j k.s; X.sI t; x; v/; u/ �  k.xs; X.xsI t; x; v/; xu/j

� k kk
C
0;

t;x;v
fjs � xsj
 C jX.sI t; x; v/ �X.xsI t; x; v/j
 C ju � xuj
g

� k kk
C
0;

t;x;v
fjs � xsj
 C .1CN 


C krxˆk


1/ju � xuj



g:
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For 0 < ı2 � 1 we split

ŒT; T C 1� D

Œı�12 �C1[
`0D0

�
T C .`0 � 1/ı2; T C .`0 C 1/ı2

�
;

R3 n Vi .ye1;ye2/ D
ŒN=ı�22 �C1[
j ÈjD0

B. Èı2I 2ı2/ \R3 n Vi .ye1;ye2/:

From (3.69), if

.s; u/ 2 ŒT C .`0 � 1/ı2; T C .`0 C 1/ı2�

� fB. Èı2I 2ı2/ \R3 n Vig;

then

j k.T C `0ı; X.T C `0ıI t; x; v/; .`1ı; `2ı; `3ı// �  
k.s; X.sI t; x; v/; u/j

� k kkC0;
 .2CN


C krxˆk



1/.ı2/


 :

Therefore, if (3.62) holds, then

(3.70)

js0 �  k.s; X.sI t; x; v/; u/j

�
ˇ̌
s0 �  k

�
T C `0ı; X.T C `0ıI t; x; v/; Èı

�ˇ̌
�
ˇ̌
 k
�
T C `0ı; X.T C `0ıI t; x; v/; Èı

�
�  k.s; X.sI t; x; v/; u/

ˇ̌
& .N 2

�N 
 /k kkC0;
 .ı2/

 &N k kkC0;
 .ı2/
 :

Consider the mapping u 7! X.s0I s; X.sI t; x; v/; u/. Note that from Lemma
3.8 we verify the condition of Lemma 3.6. Applying Lemma 3.6, we construct
the C 0;
 -function  k W B".s; X.sI t; x; v/; u/ ! R for k � Ki such that if js0 �
 k.s; X.sI t; x; v/; u/j > .ı2/


 , thenˇ̌
@jujX.s

0
I s; X.sI t; x; v/; u/ � @yu1X.s

0
I s; X.sI t; x; v/; u/

ˇ̌
> ��;N;kˆk

C2
;ı1;.ı2/


> 0:

Clearly if (3.62) holds, then from (3.70) we have js0 �  k.s; X.sI t; x; v/; u/j >
.ı2/


 .
Step 2. Assume all the conditions of (3.59)–(3.62) and (3.65). Applying Lemma

3.7, we construct (3.64). From (3.69)

(3.71)
j .s0; X.s0I s; X.sI t; x; v/; u/; u0/ �  .xs0; X.xs0I s; X.sI t; x; v/; u/; xu0/j

� k kC0;
 fjs
0
� xs0j
 C .1CN 


C krxˆk


1/ju

0
� xu0j
g:
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For 0 < ı3 � 1, we split

ŒT; T C 1� D

Œı�13 �C1[
m0D0

�
T C .m0 � 1/ı3; T C .m0 C 1/ı3

�
;

R3 n Vj .@jujX; @yu1X/ D

ŒN=ı�23 �C1[
j EmjD0

B. Emı3I 2ı3/

\R3 n Vj .@jujX; @yu1X/:

From (3.71) if

.s0; u0/ 2 ŒT C .m � 1/ı; T C .mC 1/ı�

� fB. EmıI 2ı/ \R3 n Vj .@jujX; @yu1X/g;

.X.sI t; x; v/; u/ 2 Oi �R3 n Vi .ye1;ye2/;

.X.s0I s; X.sI t; x; v/; u/; u0/ 2 Oj �R3 n Vj .@jujX; @yu1X/;

then

js0 � �.T C `ı;X.T C `ıI t; x; v/; Èı/j &N k�kC0;
 ı
 ;

js00 �  .T Cmı;X.T CmıIT C `ı;X.T C `ıI t; x; v/; Emı/; Èı/j &N ı
 :

Consider the mapping

.u; u0/ 7! X.s00I s0; X.s0I s; X.sI t; x; v/; u/; u0/:

Note that from Lemma 3.8 we verify the condition of Lemma 3.7. For each i; j
and `0; `1; `2; `3 andm0; m1; m2; m3, in applying Lemma 3.7, we can choose two
variables f�1; �2g � fjuj; yu1; yu01; yu

0
2g so that (3.68) holds. �

4 A Time-Dependent Potential
THEOREM 4.1 (Local existence). For a sufficiently small ı0 > 0 and ı� > 0 there
exists T � > 0 such that if kwf0k1 � ı0 and k�kC1 � ı� , then there exists a
unique solution f .t; x; v/ to (1.18) in Œ0; T �/ �� �R3 such that

(4.1) sup
0�t�T �

kwf .t/k1 � 2.ı0 C Cı�/;

and kwf .t/k1 is continuous over Œ0; T �/. If F0 D �E C
p
�
E
f0 � 0, then

F D �E C
p
�Ef � 0:

PROOF. For the proof we use a sequence of F 0 � 0 and for ` � 0

@tF
`C1
C v � rxF

`C1
� rx.� Cˆ/ � rvF

`C1

D QC.F
`; F `/ � �.F `/F `C1; F jtD0 D F0;

F `C1.t; x; v/ D F `C1.t; x; Rxv/ on @�:
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Note that

d

ds
e�

R t
s �.F

`/.�;X.� It;x;v/;X.� It;x;v//d�F `C1.s; X.s/; V .s// D

QC.F
`; F `/.s; X.s/; V .s//;

where X.s/ D X.sI t; x; v/ and V.s/ WD V.sI t; x; v/ satisfy (2.1) and (2.4). Note
that if F ` � 0, then �.F `/ � 0 and QC.F `; F `/ � 0. Therefore, if F ` � 0 and
F0 � 0, then

(4.2) F `C1 � 0 for all `:

From F `C1 D �E C
p
�Ef

`C1,

(4.3)

@tf
`C1
C v � rxf

`C1
� rx.� Cˆ/ � rvf

`C1

C e�ˆ�f `C1 C
f `C1

2
v � rx�

D e�ˆKf ` �
p
�Ev � rx� C e

�ˆ
2 �C.f

`; f `/ � e�
ˆ
2 ��.f

`; f `C1/:

For h` WD wf `

(4.4)

@th
`C1
C v � rxh

`C1
� rx.� Cˆ/ � rvh

`C1

C
h`C1

w
r.� Cˆ/ � rvw C e

�ˆ�h`C1 C
h`C1

2
v � rx�

D e�ˆKwh
`
� w
p
�Ev � rx� C we

�ˆ
2 �C

�
h`

w
;
h`

w

�
� we�

ˆ
2 ��

�
h`

w
;
h`C1

w

�
:

We claim that we can choose 0 < T � � 1 such that for all `

(4.5) sup
0�t�T �

kh`.t/k1 � 2.ı0 C Cı�/:

We define

(4.6)

E.v; t; x/ WD exp
�
�

Z t

s

�E .�; X.� I t; x; v/; V .� I t; x; v//d�
�

WD exp
�
�

Z t

s

�
e�ˆ.X.�//�.V .�//C

1

2
V.�/ � r�.�;X.�//

C
1

w
rx.�.�; X.�//Cˆ.X.�// � rvw.V.�//

�
d�
�
;

G`C1 WD �w
p
�EV � rx� C we

�ˆ
2 �C

�
h`

w
;
h`

w

�
� we�

ˆ
2 ��

�
h`

w
;
h`C1

w

�
:
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Along the trajectory,

d
ds

�
E.v; t; s/h`C1.s; X.sI t; x; v/; V .sI t; x; v//

�
D

E.v; t; s/
�
e�ˆ.X.s//Kwh

`C1
CG`C1

�
.s; X.sI t; x; v/; V .sI t; x; v//:

By integrating from 0 to t , we obtain

(4.7)

h`C1.t; x; v/

D E.v; t; 0/h`C1.0; X.0/; V .0//C

Z t

0

E.v; t; s/G`C1.s/ds

C

Z t

0

E.v; t; s/e�ˆ.X.s//
Z

R3
kw.u; V .s//h

`C1.s; X.sI t; x; v/; u/du ds:

From (1.21),

(4.8) hV.� I t; x; v/i .�;ˆ �E .�; X.� I t; x; v/; V .� I t; x; v// .�;ˆ hV.� I t; x; v/i:

Recall the standard estimates (see lemma 4 and lemma 5 in [14]):

(4.9)
Z

R3
jkw.v; u/jdu � CKhvi�1;

ˇ̌̌̌
w�˙

�
h1

w
;
h2

w

�
.v/

ˇ̌̌̌
. hvijh1jjh2j:

Therefore,

(4.10)

jG`C1.sI t; x; v/j

.ˆ krx�.s/k1e�
jV.s/j2

8

C hV.sI t; x; v/ifkh`.s/k1 C kh
`C1.s/k1gkh

`.s/k1:

From (4.8) and (4.10), we deduce that

sup
0�t�T

kh`C1.t/k1

� ı0 C Cı� C CKT sup
0�s�t

kh`C1.s/k1

C CT
˚

sup
0�s�t

kh`C1.s/k1 C sup
0�s�t

kh`.s/k1
	

sup
0�s�t

kh`.s/k1:

Choose T � > 0 such that CKT � � 1. Then from (4.5) for h`�
1 �

1

10
� 2.ı0 C Cı�/

�
� sup
0�t�T

kh`C1.t/k1 � ı0 C Cı� C C.ı0 C Cı�/
2;

and we prove the same upper bound of (4.5) for h`C1 for sufficiently small ı0
and ı� .

We can show that h` is a Cauchy sequence in L1.Œ0; T �/IL1.� � R3// by
repeating the argument with h`C1 � h`. Then we pass a limit `!1 to prove the
existence and (4.1). Using (4.2) and this limit we prove F � 0. Assume h1 and h2
solve the same equation (4.4). Following the same proof as for (4.5), we prove that
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sup0�t�T � kh1 � h2k1 � o.1/ sup0�t�T � kh1 � h2k1. Hence h1 � h2, and we
conclude the uniqueness.

For 0 < "� 1, from (4.4) with h D h`C1

kh.t C "/k1 � kh.t/k1 � kh.t C "/ � h.t/k1

. "fkh0k1 C khk1 C khk
2
1 C k�kC1g:

Hence kwf .t/k1 is continuous on Œ0; T �/. �

LEMMA 4.2. For w.v/ D .1C jvj/ˇ with ˇ > 2,

(4.11)

ˇ̌̌̌ Z
R3
�C. ;  /' dv

ˇ̌̌̌
. kw k1k kL2.R3/k'kL2.R3/;ˇ̌̌̌ Z

R3
��. ;  /' dv

ˇ̌̌̌
. kw k1

˚
k kL2.R3/k'kL2.R3/

C k.I � P/ k�k'k�
	
:

PROOF. Via the well-known Carleman representation (for example, see (32)
in [15]), we have

�C. ;  /.v/

D
1p
�.v/

QC.
p
� ;
p
� /.v/

D 2

Z
R3
 .v0/

1

jv � v0j2

�

Z
Evv0

 .v01/e
�
j�vCv0Cv0

1
j2

4 B

�
2v � v0 � v01;

v0 � v01
jv0 � v01j

�
dv01 dv0;

where Evv0 is a hyperplane containing v 2 R3 and is perpendicular to v0�v
jv0�vj

2 S2,
i.e.,

Evv0 WD
˚
v01 2 R3 W .v01 � v/ � .v

0
� v/ D 0

	
:

For the internal integration over Evv0 , using lemma 6 and (34) in [15], we bound it
above asZ

Evv0

� � � dv01 . kw k1
1C jv � v0j

w.v � v0/
. kw k1hv � v0i�.ˇ�1/;

where we have used

w.v01/
�1e�

j�vCv0Cv0
1
j2

4 . w.v � v0/�1:
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Note that
R

R3
hv�v0i�.ˇ�1/

jv�v0j2
dv0 . 1 for ˇ > 2. Hence we conclude thatˇ̌̌̌Z

R3
�C. ;  /' dv

ˇ̌̌̌
. kw k1

Z
R3

Z
R3

hv � v0i�.ˇ�1/

jv � v0j2
j .v0/jj'.v/jdv0 dv

. kw k1
� Z

R3

�Z
R3

hv � v0i�.ˇ�1/

jv � v0j2
dv
�
j .v0/j2 dv0

� 1
2

�

� Z
R3

�Z
R3

hv � v0i�.ˇ�1/

jv � v0j2
dv0
�
j'.v/j2 dv

� 1
2

. kw k1k kL2.R3/k'kL2.R3/:
For the �� estimate, we haveZ

R3
j��. ;  /.v/'.v/jdv �

Z
R3

Z
R3
jv � ujj .u/j

p
�.u/du � j .v/jj'.v/jdv

. kw k1
Z

R3
hvifjP .v/j C j.I � P/ .v/jgj'.v/jdv

. kw k1fk kL2.R3/k'kL2.R3/ C k.I � P/ k�k'k�g;

where we have used the fact, for all p 2 Œ1;1�,

khviP kLp.R3/ .




hvi3p�.v/ Z

R3
 .u/hui2

p
�.u/du






Lp.R3/

. k kLp.R3/:

�

LEMMA 4.3. Let f solve (1.18). Then there exists a constant C > 0 not depending
on f0, f , or � such that, for all t � 0,

kf .t/k22 � C

�
kf .0/k22 C

Z t

0

k�.s/k1

�
�
�
1C C.k�k1 C kwf k1/te

C.k�k1Ckwf k1/t
�
:

(4.12)

PROOF.

kf .t/k22 C

Z t

0

“
��R3

e�ˆfLf

D kf .0/k22 �

Z t

0

“
��R3

v � rx�

2
jf j2„ ƒ‚ …

.I/

�

Z t

0

“
��R3

v � rx�Pf
p
�E„ ƒ‚ …

.II/

C

Z t

0

“
��R3

e�
ˆ
2 �.f; f /.I � P/f„ ƒ‚ …
.III/

:



484 C. KIM AND D. LEE

By the decomposition f D Pf C .I � P/f and the strong decay-in-v of Pf in
(1.37),

.I/ � k�k1

� Z t

0

“
��R3

jvjjPf j2 C
Z t

0

k.I � P/f k2�

�
. k�k1

� Z t

0

kf k22 C

Z t

0

k.I � P/f k2�

�
;

.II/ . k�k1
Z t

0

kf k22 C

Z t

0

k�.s/k1 ds:

From (4.11)

.III/ .
Z t

0

Z
�

kwf .s; x; � /k1k.I � P/f .s; x; � /k2� dx ds

C

Z t

0

Z
�

kwf .s; x; �/k1kf .s; x; �/k
2
2 dx ds

. kwf k1
Z t

0

k.I � P/f .s/k2� ds C kwf k1

Z t

0

kf .s/k22 ds:

Using (1.36) and collecting the terms, we deduce that, for some constant C > 0,

(4.13)
kf .t/k22 � kf .t/k

2
2 C .ıL � k�k1 � kwf k1/

Z t

0

k.I � P/f k2�

� kf .0/k22 C C.k�k1 C kwf k1/

Z t

0

kf k22 C C

Z t

0

k�k1:

By Gronwall’s inequality we conclude (4.12). �

LEMMA 4.4. Assume F D �E C
p
�Ef solves (1.1) and satisfies (1.5). Assume

(1.12) and

(4.14) �� � ı� C kwf k1:

Then

(4.15)

ˇ̌̌̌ “
��R3

�
jvj2

2
Cˆ.x/

�
F.t; x; v/dx dv

�

“
��R3

�
jvj2

2
Cˆ.x/

�
F0.x; v/dx dv

ˇ̌̌̌
.
ı�

��

˚
1C kf .0/k22 C kwf k1

	
:
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PROOF. The proof is a direct consequence of two previous lemmas ((1.5) and
(4.12)) and the exponential decay-in-time of �.t/ in (1.12): The LHS of (4.15) is
bounded by

�

Z t

0

“
��R3

˚
�E .x; v/C

p
�E .x; v/jf .s; x; v/j

	
jvjjrx�.s; x/jdv dx ds

� ı�

Z t

0

e���s
�
1C C

�
kf .0/k22 C

Z t

0

k�.s/k1

�
�
�
1C C.k�k1 C kwf k1/se

C.k�k1Ckwf k1/s
��

ds

� ı�

Z t

0

e���s
˚
1C C

�
kf .0/k22 C ı�=��

�
�
�
1C C.ı� C kwf k1/se

C.ı�Ckwf k1/s
�	

ds

� ı�=��
˚
1C C

�
kf .0/k22 C ı�=��

�	
C Cı�.ı� C kwf k1/

Z t

0

e�Œ���C.ı�Ckwf k1/�s

.
ı�

��

˚
1C kf .0/k22 C kwf k1

	
: �

LEMMA 4.5 ([11, 15]). Recall �E in (1.2). Then

(4.16)

jF � �E j1jF��E j�xı�E

�
4

xı

�
.F lnF � �E ln�E /

� .F � �E /C

�
jvj2

2
Cˆ.x/

�
.F � �E /

�
:

PROOF. The proof is based on the proof of lemma 4 of [15] and the argument
on page 147 of [11].

By the Taylor expansion, for t; s > 0

(4.17)
1

maxft; sg
jt � sj2

2
�

Z t

s

Z s1

s

1

s2
ds2 ds1 D t ln t �s ln s� .1C ln s/.t �s/:

Note that if F.t; x; v/ � �E .x; v/ � xı�E .x; v/ with 0 � xı � 1, then F �
.1C xı/�E and hence

maxfF;�E g D .1C xı/�E :

If �E .x; v/ � F.t; x; v/ � �xı�E .x; v/, then .1C xı/�E � F and

maxfF;�E g � .1C xı/�E :
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Therefore, if jF � �E j � xı�E then

jF � �E j

maxfF;�E g
�
jF � �E j

2
�

xı�E

.1C xı/�E
�
jF � �E j

2

�

xı

2
�
jF � �E j

2
�

xı

4
jF � �E j:

Hence, from (4.17), we deduce that

jF � �E j1jF��E j�xı�E

�
4

xı

1

maxfF;�E g
jF � �E j

2

2

�
4

xı

˚
F.t/ lnF.t/ � �E ln�E � .1C ln�E /.F � �E .x; v//

	
�
4

xı

˚
.F lnF � �E ln�E / � .F � �E /C .jvj2=2Cˆ.x//.F � �E /

	
;

where we have used ln�E D �.
jvj2

2
Cˆ.x//. �

PROOF OF THEOREM 1.1. Denote

T1 WD supft � 0 W kwf .t/k1 � 2.ı0 C Cı�/g:

Note that (1.4), (1.5), and (1.11) hold for 0 � t � T1. Note that f and h satisfy
(1.18) and (4.4) with h`C1 D h D h`. Then we have (4.7) with h`C1 D h D h`.

We apply the Duhamel formula (4.7) three times, for 0 � t � T1, and decom-
pose the integrand h as

(4.18) h D h1
jF��E j�xı�E

C w
F � �E
p
�E

1
jF��E j�xı�E

;

for sufficiently small 0 < xı � 1, to get
h.t; x; v/

D E.v; t; 0/h.0/C

Z t

0
E.v; t; s/G.s/ds

C

Z t

0
E.v; t; s/e�ˆ.X.s//

Z
u
kw .u; v/h.s; X.s/; u/du ds

D E.v; t; 0/h.0/C

Z t

0
E.v; t; s/G.s/ds

C

Z t

0
E.v; t; s/e�ˆ.X.s//

�

Z
u
kw .u; v/E.u; s; 0/

�
h.0/C

Z s

0
E.u; s; s0/G.s0/ds0

�
C

Z t

0
E.v; t; s/e�ˆ.X.s//

Z
u
kw .u; v/

Z s

0
E.u; s; s0/e�ˆ.X.s

0//

�

Z
u0
kw .u

0; u/h.s0; X.s0/; u0/du0 ds0 du ds D
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D E.v; t; 0/h.0/C

Z t

0
E.v; t; s/G.s/ds(4.19)

C

Z t

0
E.v; t; s/e�ˆ

Z
u
kw .u; v/E.u; s; 0/h.0/du ds

C

Z t

0

Z s

0

Z
u
E.v; t; s/e�ˆkw .u; v/E.u; s; 0/E.u; s; s

0/G.s0/du ds0 ds

C

Z t

0
E.v; t; s/e�ˆ.X.s//

Z
u
kw .u; v/

�

Z s

0
E.u; s; s0/e�ˆ.X.s

0//

Z
u0
kw .u

0; u/E.u0; s0; 0/h.0/

C

Z t

0
E.v; t; s/e�ˆ.X.s//

Z
u
kw .u; v/

�

Z s

0
E.u; s; s0/e�ˆ.X.s

0//

Z
u0
kw .u

0; u/

Z s0

0
E.u0; s0; s00/G.s00/

C

Z t

0
E.v; t; s/e�ˆ.X.s//

Z
u
kw .u; v/

Z s

0
E.u; s; s0/e�ˆ.X.s

0//

Z
u0
kw .u

0; u/

�

Z s0

0
E.u0; s0; s00/e�ˆ.X.s

00//

Z
u00
kw .u

00; u0/h.s00; X.s00/; u00/1
jF��E j�xı�E

C

Z t

0
E.v; t; s/e�ˆ.X.s//

Z
u
kw .u; v/

Z s

0
E.u; s; s0/e�ˆ.X.s

0//

Z
u0
kw .u

0; u/

�

Z s0

0
E.u0; s0; s00/e�ˆ.X.s

00//

Z
u00
kw .u

00; u0/h.s00; X.s00/; u00/ 1
jF��E j�xı�E

.�/

;

where we abbreviated notation as follows:,

X.s/ WD X.sI t; x; v/; X.s0/ WD X 0.s0I s; X.sI t; x; v/; u/;

X.s00/ WD X.s00I s0; X 0.s0I s; X.sI t; x; v/; u/; u0/;

and where we use definitions similar to those in (4.6):

(4.20)

E.v; t; s/ WD exp
�
�

Z t

s

�E .�; X.� I t; x; v/; V .� I t; x; v//d�
�

WD exp
�
�

Z t

s

�
e�ˆ.X.�//�.V .�//C

1

2
V.�/ � r�.�;X.�//

C
1

w
rx.�.�; X.�//Cˆ.X.�// � rvw.V.�//

�
d�
�
;

G WD �w
p
�EV � rx� C we

�ˆ
2 �

�
h

w
;
h

w

�
:

Under the assumption that ı� C ı�=�� � 1,

(4.21) E.v; t; s/ � e�
1
2
e�kˆkC �.v/.t�s/

WD e��ˆ.v/.t�s/;
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where we define �ˆ.v/ WD 1
2
e�kˆkC �.v/. For (4.19), every term except .�/ is

controlled by

(4.22) Cˆ;��
�
ı� C xı C kh.0/k1 C sup

0�s�t

kh.s/k21
�
:

For .�/, we choose m.N/ so that

(4.23) kw;m.u; v/ WD 1
fju�vj� 1

m
;juj�mgkw.u; v/

satisfies
R

R3 jkw;m.u; v/ � kw.u; v/jdu �
1
N

for sufficiently large N � 1. Then,
by splitting kw ,

(4.24)

.�/ �

Z t

0

Z s

0

Z s0

0

e��ˆ.0/.t�s
00/

Z
u

kw;m.u; v/

Z
u0
kw;m.u

0; u/

�

Z
u00
kw;m.u

00; u0/h.s00; X 00.s00/; u00/1
jF��E j�xı�E

du00 du0 du ds00 ds0 ds
.��/

CO�

�
1

N

�
sup
0�s�t

kh.s/k1:

We analyze .��/. We use Theorem 3.9; then

(4.25)
9is 2 f1; 2; : : : ; I�;N g such that X.s/ 2 Ois ;

9js;s0 2 f1; 2; : : : ; I�;N g such that X.s0I s; X.sI t; x; v/; u/ 2 Ojs;s0 ;

and then we can define the following sets for fixed n, En, i , k, m, Em, j , and k0,
where Theorem 3.9 does not work.

(4.26)

R1 WD
˚
u j u … B.EnıI 2ı/ \ fR3 n Vis . ye1; ye2/g

	
;

R2 WD
˚
s0 j js � s0j � ı


	
;

R3 WD
˚
s0 j js0 �  

n;En;i;k;m; Em;j;k0

1 .nı;X.nıI t; x; v/; Enı/j .N ı
k 1kC0;

	
;

R4 WD
˚
u0 j u0 … B. EmıI 2ı/ \ fR3 n Vjs;s0 .@jujX; @yu1X/g

	
;

R5 WD
˚
s00 j js0 � s00j � ı


	
;

R6 WD
˚
s00 j min

rD1;2
js00 �  n;En;i;k;m; Em;j;k

0

r .mı;X.mıInı;X.nıI t; x; v/; Emı/; Enı/j

.N ı
 min
rD1;2

k rkC0;

	
:

Therefore,

(4.27)

.��/ D

Œt=ı�C1X
nD0

X
jEnj�N

Œt=ı�C1X
mD0

X
j Emj�N

KisX
k

K0
js;s0X
k0

Z .nC1/ı

.n�1/ı

Z tk�ı


tkC1Cı


Z tk
0
�ı


tk
0C1Cı


e��ˆ.0/.t�s
00/

�

Z
juj�N;ju0j�N;ju00j�N

jh.s00; X.s00/; u00/j 1
jF��E j�xı�E

1Rc1\Rc2\Rc3\Rc4\Rc5\Rc6
(MAIN)

C B CR;

where the B term corresponds to where the trajectory is near bouncing points and
R corresponds to where .u; s0; u0; s00/ is in one of R1 through R6. So we have the
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following small estimates for B and R:

(4.28)

B �

Z t

0

Z s

0

Z s0

0

e��ˆ.0/.t�s
00/

Z
juj�N

kw;m.u; v/

Z
ju0j�N

kw;m.u
0; u/

�

Z
ju00j�N

kw;m.u
00; u0/h.s00; X 00.s00/; u00/1

jF��E j�xı�E

� 1
js0�tk j�ı
 or js00�tk0 j�ı


� CN ı

 sup
0�s�t

kh.s/k1;

R �

Z t

0

Z s

0

Z s0

0

e��ˆ.0/.t�s
00/

Z
juj�N

kw;m.u; v/

Z
ju0j�N

kw;m.u
0; u/

�

Z
ju00j�N

kw;m.u
00; u0/h.s00; X 00.s00/; u00/1

jF��E j�xı�E

� 1R1[R2[R3[R4[R5[R6

� CN ı

 sup
0�s�t

kh.s/k1;

For (MAIN) in (4.27), we are away from two sets B and R. Under the condi-
tion of

.u; s0; u0; s00/ 2 Rc
1 \ Rc

2 \R
c
3 \R

c
4 \R

c
5 \R

c
6;

where Rc
i is the complement of Ri . Indices n, En, is , k, m, Em, js;s0 , and k0 are

determined so that

t 2 Œ.n � 1/ı; .nC 1/ı�;

X.sI t; x; v/ 2 Ois ;

X.s0I s; X.sI t; x; v/; u/ 2 Ojs;s0 ;

u 2 B.EnıI 2ı/ \R3 n Vis .ye1;ye2/;

u0 2 B. EmıI 2ı/ \R3 n Vjs;s0 .@jujX; @yu1X/:

We can apply Theorem 3.9, which gives a local time-independent lower bound ofˇ̌̌̌
det
�

@.X.s00//

@.ju0j; �1; �2/

�ˇ̌̌̌
� �0ı :

Note that f�1; �2g � fjuj; yu1; yu01; yu
0
2g are chosen variables in Theorem 3.9 and

f�3; �4g � fjuj; yu1; yu
0
1; yu
0
2g are unchosen variables. Let us use P to denote the

projection of B.EnıI 2ı/\R3 nVis .ye1;ye2/�B. EmıI 2ı/\R3 nVjs;s0 .@jujX; @yu1X/

into R3, which corresponds to the .ju0j; �1; �2/ components. If we choose suffi-
ciently small ı, there exist small rı;n;En;i;k;m; Em;j;k0 such that there exist one-to-one
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map M ,

M WP
�
B.EnıI 2ı/ \R3 n Vis .ye1;ye2/ � B. EmıI 2ı/ \R3 n Vjs;s0 .@jujX; @yu1X/

�
7! B.X.s00I s0; X.s0I s; X.sI t; x; v/; u/; u0/; rı;n;En;i;k;m; Em;j;k0/:

So we perform a change of variable for (MAIN) in (4.27) to obtain

(4.29)

(MAIN)

�

Œt=ı�C1X
nD0

X
jEnj�N

Œt=ı�C1X
mD0

X
j Emj�N

KisX
k

K0
js;s0X
k0

Z .nC1/ı

.n�1/ı

Z tk�ı


tkC1Cı


Z tk
0
�ı


tk
0C1Cı


e��ˆ.0/.t�s
00/

�

Z
u00

du00
Z
yu2;�3;�4

1juj�N;ju0j�N;ju00j�N dyu2 d�3 d�4

�

Z
ju0j;�1;�2

dju0jd�1 d�2jh.s00; X.s00/; u00/j1jF��E j�xı�Eds ds0 ds00

�

Œt=ı�C1X
nD0

X
jEnj�N

Œt=ı�C1X
mD0

X
j Emj�N

KisX
k

K0
js;s0X
k0

Z .nC1/ı

.n�1/ı

Z tk�ı


tkC1Cı


Z tk
0
�ı


tk
0C1Cı


e��ˆ.0/.t�s
00/

�

Z
yu2;�3;�4

1juj�N;ju0j�N;ju00j�N dyu2 d�3 d�4 1
jF��E j�xı�E

�

Z
u00

Z
B.X.s00/;rı;n;En;i;k;m; Em;j;k0 /

jh`C1.s00; x; u00/j
1

�0
�;N;kˆk

C2
;ı

dx du00 ds ds0 ds00

� CN;ı;ˆ;�;�

Z t

0

e��ˆ.0/.t�s
00/

Z
�

Z
ju00j�N

jh.s00; x; u00/j 1
jF��E j�xı�E

du00 dx ds00

� CN;ı;ˆ;�;� sup
0�s00�t



h.s00/1
jF��E j�xı�E




L1.��BN /

� CN;ı;ˆ;�;�





 wp�





L1.BN /

sup
0�s00�t



.F.s00/ � �E /1jF��E j�xı�E

L1.��BN /:
From (4.16) and (1.11), we can further bound (4.29) by

(4.30)

� CN;ı;ˆ;�;�
1

xı





 wp�





L1.BN /

� sup
0�s00�t

�
H .F.0// �H .�E / �

“
.F.s00/ � �E /

C

“ �
jvj2

2
Cˆ.x/

�
.F.s00/ � �E /

�
:

Finally, utilizing (1.4), (1.6), and (4.15), we deduce that

(4.31)

(MAIN) � CN;ı;ˆ;�;�
1

xı





 wp�





L1.BN /

�

�
H .F.0// �H .�E /C

ı�

��

˚
1C sup

0�s00�t

kwf .s00/k1
	�
:
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For ı0; ı� ;
ı�
��
� 1; we collect (4.22), (4.24), (4.27), (4.28), and (4.31) to get

sup
0�t�T1

kwf .t/k1 . kwf0k1 C ı� C xı CH .0/ �H .�E /

C
ı�

��
C sup
0�t�T1

kwf .t/k21:
(4.32)

By choosing small data we deduce sup0�t�T1 kwf .t/k1 < 2.ı0 C Cı�/ � 1

from (4.1). By continuity of kwf .t/k1 in Theorem 4.1 and a uniform bound, we
conclude

T1 D1;

and this proves the global-in-time existence. �

5 A Time-Independent Potential
First we derive L2-coercivity for the homogeneous linear Boltzmann of (1.18)

@tf C v � rxf � rxˆ.x/ � rvf C e
�ˆLf D 0;

with specular reflection boundary condition on the boundary @�. From (1.6),“
��R3

f .t/
p
�E D

“
��R3

f0
p
�E D 0;(5.1) “

��R3
f .t/

�
jvj2

2
Cˆ

�
p
�E D

“
��R3

f0

�
jvj2

2
Cˆ

�
p
�E D 0:(5.2)

If the domain is axis-symmetric (1.7) and ˆ is degenerated (1.8), then

(5.3)
“
��R3

f .t/f.x � x0/ �$g � v
p
�E D“

��R3
f0f.x � x

0/ �$g � v
p
�E D 0:

We prove Proposition 1.4 by the contradiction argument of the proof of proposi-
tion 11 in [12]. We first study the geometric lemma, which allows estimating near
the boundary via the interior bound, and postpone the proof of the proposition.
Define the distance function toward the boundary as

(5.4) dist.x; @�/ D inffjx � yj W y 2 @�g;

which is well-defined if dist.x; @�/ � 1. In this case there exists a unique x� 2
@� satisfying jx� � xj D dist.x; @�/. We also define

(5.5) n.x/ D n.x�/

for x 2 � with dist.x; @�/� 1.



492 C. KIM AND D. LEE

LEMMA 5.1. Let g be a (distributional) solution to

(5.6) @tg C v � rxg CE � rvg D G;

where E D E.t; x/ 2 C 1;
 . Then, for a sufficiently small " > 0,

(5.7)
Z 1�"

"

k1dist.x;@�/<"41jn.x/�vj>"g.t/k22 dt .Z 1

0

k1dist.x;@�/>"3=2g.t/k
2
2 dt C

Z 1

0

“
��R3

jgGj:

Note that this lemma is true even for a time-dependent external field case.

PROOF. For x 2 x� with dist.x; @�/ < "4, n.x/ � v < �", and y 2 @� with
jy � x�j � 1,

jX.t C "I t; x; v/ � yj � j.X.t C "I t; x; v/ � y/ � n.x�/j

D

ˇ̌̌̌
.x � y/ � n.x�/C v � n.x�/"

2
CO.1/kEk1

"4

2

ˇ̌̌̌
� "3 � "4 �O.1/kEk1

"4

2
�
"3

2
:

Hence

(5.8) dist.X.t C "I t; x; v/;�/ D inf
y2@�;jy�x�j�1

jX.t C "I t; x; v/ � yj �
"3

2
:

We can prove the exact same lower bound of jX.t�"I t; x; v/�yjwhen n.x/�v > ".
Hence we conclude, for x 2 x� with dist.x; @�/ < "4 and n.x/ � v > ",

(5.9) dist.X.t � "I t; x; v/;�/ D inf
y2@�;jy�x�j�1

jX.t � "I t; x; v/ � yj �
"3

2
:

Moreover, it is well-known that .x; v/ 7! .X.t C "I t; x; v/; V .t C "I t; x; v// is a
local diffeomorphism if dist.x; @�/ < "4 and n.x/�v < �". And, .x; v/ 7! .X.t�

"I t; x; v/; V .t C "I t; x; v// is also a local diffeomorphism if dist.x; @�/ < "4 and
n.x/ �v > " hold, since they never hit the boundary. These diffeomorphisms satisfy

(5.10) Jac
�
@.X.t ˙ "I t; x; v/; V .t ˙ "I t; x; v//

@.x; v/

�
D 1:

Note that

kX.t C "I t; � ; � /kC1;
 �
"2

2
kEkC1;
 ; kV.t C "I t; � ; � /kC1;
 � "kEkC1;
 :

By expansions, we conclude that there exist sufficiently small ı > 0 and "0 > 0

such that for all 0 < " < "0, .X.t C "I t; � ; � /; V .t C "I t; � ; � // is one-to-one in
f.x; v/ 2 x� � R3 W dist.x; @�/ < "4; n.x/ � v < �"; jx � x0j C jv � v0j < ıg

and .X.t � "I t; � ; � /; V .t � "I t; � ; � // is so in f.x; v/ 2 x� � R3 W dist.x; @�/ <
"4; n.x/ � v > "; jx � x0j C jv � v0j < ıg.
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On the other hand, if X.tC "I t; Qx; Qv/ D X.tC "I t; x; v/ and V.tC "I t; Qx; Qv/ D
V.t C "I t; x; v/, then jv � Qvj � kEk1" and jx � Qxj � 2kEk1"

2. We deduce
the same conclusion if X.t � "I t; Qx; Qv/ D X.t � "I t; x; v/ and V.t � "I t; Qx; Qv/ D
V.t�"I t; x; v/. Hence for a sufficiently small ", such .x; v/ and . Qx; Qv/ are close as
j.x; v/ � . Qx; Qv/j < ı. From the local one-to-one property in the previous sentence
we conclude .x; v/ D . Qx; Qv/.

Now we are ready to prove (5.7). Note that

d

ds
jg.s; X.sI t; x; v/; V .sI t; x; v//j2 D 2.gG/.s; X.sI t; x; v/; V .sI t; x; v//:

For .x; v/ with dist.x; @�/ < "4 and n.x/ �v < �", taking integration s 2 Œt; tC"�
along the trajectory,

jg.t; x; v/j2 D jg.t C ";X.t C "/; V .t C "//j2

� 2

Z tC"

t

2.gG/.s; X.s/; V .s//ds:

From (5.8), dist.X.t C "/; @�/ � "3=2. Using (5.10) and the one-to-one prop-
erty of .x; v/ 7! .X.s/; V .s// for any fixed jsj � ", we take an integration over
dist.x; @�/ < "4 and n.x/ � v < �" and conclude that

k1dist.x;@�/<"41n.x/�v<�"g.t/k22 D k1dist.x;@�/>"3=2g.t C "/k
2
2

C

Z tC"

t

“
��R3

jg.s/G.s/j:
(5.11)

For the other case, dist.x; @�/ < "4 and n.x/ � v > ", we repeat the same
argument but change " to �" and conclude that

k1dist.x;@�/<"41n.x/�v>"g.t/k22 D k1dist.x;@�/>"3=2g.t � "/k
2
2

C

Z t

t�"

“
��R3

jg.s/G.s/j:
(5.12)

Finally by
R 1�"
" (5.11)dt and

R 1�"
" (5.12)dt , we conclude (5.7). �

PROOF OF PROPOSITION 1.4. First, it is easy to check that equation (1.38) is
translation invariant in time; i.e., Qf .t; x; v/ WD f .t C c; x; v/ also solves the same
equation for any c. Note that this is not true for the time-dependent potential case
anymore, unless the potential is periodic in time. Therefore it suffices to prove
coercivity for finite time interval t 2 Œ0; 1� and so we claim (1.39) for N D 0.

Step 1. Assume that Proposition 1.4 is wrong. This means for anym� 1 there
exists a solution f m to (1.38) satisfying the specular reflection BC that solves

(5.13) @tf
m
C v � rxf

m
� rxˆ � rvf

m
C e�ˆLf m D 0 for t 2 Œ0; 1�
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and satisfies

(5.14)
Z 1

0

kPf m.t/k22 dt � m
Z 1

0

k.I � P/f m.t/k2� dt:

We define the normalized form of f m by

(5.15) Zm.t; x; v/ WD
f m.t; x; v/qR 1
0 kPf m.t/k

2
2 dt

:

Then Zm solves

@tZ
m
C v � rxZ

m
� rxˆ � rvZ

m
C e�ˆLZm D 0;(5.16)

Zm.t; x; v/ D Zm.t; x; Rxv/ x 2 @�;(5.17)

and

1

m
�

Z 1

0

k.I � P/Zm.t/k2� dt:(5.18)

Step 2. We claim that

(5.19) sup
m

sup
0�t�1

kZm.t/k22 <1:

From (5.16), for 0 � t � 1,

(5.20) kZm.t/k22 C

Z t

0

e�ˆ.LZm; Zm/ D kZm.0/k22:

From the nonnegativity of L,

(5.21) sup
0�t�1

kZm.t/k22 � kZ
m.0/k22:

On the other hand, by integration
R 1
0 (5.20)dt and utilizing (5.18) and (5.15),

(5.22) kZm.0/k22 .ˆ
Z 1

0

kZmk22 C

Z 1

0

k.I � P/Zmk2� .ˆ 1C
1

m
:

Therefore, we prove the claim (5.19) from (5.21) and (5.22).
Step 3. Therefore, the sequence fZmgm�1 is uniformly bounded from above

by sup0�t�1 kg.t/k
2
� dt . By the weak compactness of L2-space, there exists a

weak limit Z such that

(5.23) Zm * Z in L1
�
Œ0; 1�IL2�.� �R3/

�
\ L2

�
Œ0; 1�IL2�.� �R3/

�
:

Therefore, in the sense of distributions, Z solves

(5.24) @tZ C v � rxZ � rxˆ � rvZ D 0:
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Now we consider the limit of the linear conservation laws. Note that, taking a
weak limit Zm * Z in L1t L

2
x;v of (5.23) and using (5.1), (5.2), and (5.15), we

deduce linear conservation laws, for almost every t 2 Œ0; 1�,

(5.25)
“
��R3

Z.t/
p
�E D 0;

“
��R3

Z.t/

�
jvj2

2
Cˆ

�
p
�E D 0:

In the case that both (1.7) and (1.8) hold, from (5.3),

(5.26)
“
��R3

f.x � x0/ �$g � vZ.t/
p
�E D 0:

On the other hand, since

PZm * PZ and .I � P/Zm ! 0 in
Z 1

0

k � k
2
� dt;

we know that weak limit Z has only a hydrodynamic part, i.e.,

(5.27) Z.t; x; v/ D fa.t; x/C v � b.x; v/C jvj2c.t; x/g
p
�E ;

and

(5.28)
Z 1

0

kZk2� dt � lim inf
m!1

Z 1

0

kZmk2� dt � 1C
1

m
! 1:

Step 4. Let �" W x� ! Œ0; 1� be a smooth function such that �".x/ D 1 if
dist.x; @�/ > 2"4 and �".x/ D 0 if dist.x; @�/ < "4. From (5.16),

Œ@t C v � rx�.�"Z
m/ D rxˆ � rv.�"Z

m/C v � rx�"Z
m
� e�ˆL.�"Z

m/:

From the standard average lemma in [8], �"Zm is compact, i.e.,

(5.29) �"Z
m
! �"Z strongly in L2.Œ0; 1�IL2�.� �R3//:

Step 5. First we claim that

(5.30)
Z 1�"

"



.Zm.t; x; v/ �Z.t; x; v//1dist.x;@�/<"41jn.x/�vj>"


2
2

.Z 1

0

k
�
Zm.t; x; v/ �Z.t; x; v/

�
1dist.x;@�/>"3=2k

2
2 CO

�
1
p
m

�
:

We consider the equation of Zm �Z. By subtracting (5.16) from (5.24),

(5.31) .Zm �Z/C e�ˆLZm D 0:
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Now we apply Lemma 5.1 to (5.31) by equating g and G with Zm � Z and the
right-hand side of (5.31), respectively. ThenZ 1�"

"

k1dist.x;@�/<"41jn.x/�vj>".Zm �Z/.t/k22 dt

.
Z 1

0

k1dist.x;@�/>"3=2.Z
m
�Z/.t/k22 dt

C

Z 1

0

“
��R3

jZm �Zjhvij.I � P/Zmj:

Using Hölder’s inequality, we bound the last line of the above estimate by

p
m

Z 1

0

k.I � P/Zmk2� C
1
p
m

Z 1

0

kZmk2� C kZk
2
� :

By (5.19) and (5.18), we conclude (5.30).
On the other hand, from (5.18), (5.27), and (5.19),

(5.32)

Z 1�"

"

k.Zm �Z/1jn.x/�vj�"k22

�

Z 1�"

"

k.I � P/Zmk2� CO."/
Z 1�"

"

kPZmk22 C kPZk
2
2

�
1

m
CO."/:

Step 6. For given " > 0, we can choose m�" 1 such thatZ 1

0

“
��R3

jZm �Zj2

�

Z 1

1�"

“
��R3

C

Z "

0

“
��R3

C

Z 1�"

"

“
�"�R3

C

Z 1�"

"

“
�n�"�R3

\fjn.x/�vj<" or jvj�"�1g

C

Z 1�"

"

“
�n�"�R3

\ fjn.x/�vj�" and jvj�"�1g

< C";

where we have used (5.19), (5.29), (5.30), and (5.32). Therefore, we conclude that
Zm ! Z strongly in L2.Œ0; 1� �� �R3/ and hence

(5.33)
Z 1

0

kZk22 D 1:

Step 7. We consider the boundary condition of Z. Fix a small constant ı > 0.
In order to control Z in f.x; v/ 2 
˙ W jn.x/ � vj < ıg, we use smooth functions
�ı
˙
W x��R3 ! Œ0; 1� where �ı

˙
� 1 on f.x; v/ 2 
˙ W jn.x/ �vj < ıg and �ı

˙
� 0

on f.x; v/ 2 
˙ W jn.x/ � vj > 2ıg, respectively.
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From the weak formulation, we have .@tCv �rx�rxˆ �rv/jZj2 D 0. Testing
it with �ı

˙
, we obtainZ 1

0

Z



jZj2�ı˙.n � v/ D �

“
��R3

�ı˙jZ.1/j
2
C

“
��R3

�ı˙jZ.0/j
2

C

Z 1

0

“
��R3

�v � rx�
ı
˙jZj

2
Crxˆ � rv�

ı
˙jZj

2:

From (5.27) and (5.28), we deduce that Z 2 L2.f.x; v/ 2 
˙ W jn.x/ � vj < ıg/,
and a; b; c 2 L2.Œ0; 1� � @�/ such that

(5.34)
Z 1

0

Z
@�

jaj2 C jbj2 C jcj2 .
Z 1

0

kZk2� C sup
0�t�1

kZ.t/k22:

Now we claim that

(5.35) Z.t; x; v/ D Z.t; x;Rxv/ almost every Œı; 1 � ı� � 
�:

Let � W x� � R3 ! R be a smooth bounded function with strong decay in v.
Moreover, we assume that this test function is an even function in �.n.x/ � v/ at
the boundary. Testing (5.24) with such a function �, we have

(5.36)

Z 1

0

Z



Z�.n.x/ � v/ D �

“
��R3

.Z.1/ �Z.0//�

C

Z 1

0

“
��R3

Z.�v � rx� Crxˆ � rv�/:

On the other hand, employing the same test function, from (5.16) and (5.17), we
conclude that

0 D �

“
��R3

.Zm.1/ �Zm.0//�

C

Z 1

0

“
��R3

Zm.�v � rx� Crxˆ � rv�/C

Z 1

0

“
��R3

eˆLZm�:

By passing to the limit m ! 1, from (5.27) and (5.18), we realize that the right-
hand side of (5.36) equals 0. Therefore, we conclude that

(5.37)
Z 1

0

Z



Z�.n.x/ � v/ D 0:

for any smooth function � that is even in n.x/ � v at the boundary. This proves
(5.35).

Finally, combining (5.35), (5.27), and (5.34), we prove (1.40).
Step 8. We claim (1.42). We consider the system of a, b, and c that is obtained

by plugging (5.27) in (5.24). From [16], in the sense of distributions, they solve
(1.41).
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The first equation of (1.41) implies that c is only a function of t , i.e., c D c.t/.
From the first three equations of (1.41) we can get

(5.38) b.t; x/ D �@tc.t/x C$.t/ � x Cm.t/:

The proof of (5.38) is based on direct computations. (See lemma 12 in [12] for the
details.)

From the second equation of (1.41), we obtain rx � b D �3c0.t/. By the diver-
gence theorem and (1.40),

�3c0.t/j�j D

Z
@�

b � n D 0:

Therefore, c0.t/ D 0, c.t/ D c0, and b D $.t/ � x Cm.t/. We conclude

(5.39) c.t; x/ D c0:

We split into two cases: $ D 0 and $ ¤ 0.

Case of $ D 0. If $ D 0, then b.t/ D m.t/. From (1.40) we deduce that

(5.40) b.t/ � m.t/ � 0:

Then from the last equation of (1.41), a D a.x/. From the fourth equation of
(1.41), for some constant C , we obtain that

(5.41) a.t; x/ D 2c0ˆ.x/C C:

Plugging (5.39) and (5.41) into the conservation laws (5.25),

0 D

“ �
2c0ˆ.x/C C C c0jvj

2
�
�E

D

“ �
2c0ˆ.x/C C C c0jvj

2
�� jvj2

2
Cˆ.x/

�
�E :

From the direct computations, we deduce c0 D 0 D C and hence (1.42).

Case of $ ¤ 0. From (1.40), at the boundary,

b.t; x/ � n.x/ D .$.t/ � x Cm.t// � n.x/ D 0:

Since m.t/ is a fixed vector for given t , we decompose m.t/ into the parallel and
orthogonal components to $.t/ as

m.t/ D ˛.t/$.t/ �$.t/ � x0.t/:

Then

b.t; x/ � n.x/

D .$.t/ � x Cm.t// � n.x/

D
�
$.t/ � .x � x0.t//

�
� n.x/C ˛.t/$.t/ � n.x/ D 0 8x 2 @�:(5.42)
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Choose t with $.t/ ¤ 0. We can pick x0 2 @� such that $.t/ k n.x0/. Then the
first term of the right-hand side in (5.42) is 0. Hence we deduce, from (5.38) and
(5.39), that

(5.43) ˛.t/ D 0 and b.t; x/ D $.t/ � .x � x0.t//:

This yields

(5.44)
�
$.t/ � .x � x0.t//

�
� n.x/ D 0 8x 2 @�:

The equality (5.44) implies that � is axis symmetric with the origin x0.t/ and
the axis $.t/. From (5.26) and (5.43),

0 D

“
�

j$ � .x � x0.t// � vj
2�e�ˆ dx dv:

Therefore, we conclude that $.t/ � 0 for all t . This proves b.t; x/ � 0. Then we
follow the argument for the case of $ D 0 and deduce (1.42).

Step 9. Finally, we deduce a contradiction from (5.33) and (1.42). Hence we
prove the theorem. �

Once such a coercivity is proven, we can directly deduce an exponential decay.

COROLLARY 5.2. Assume the same conditions in Proposition 1.4. Then there
exists � > 0 such that a solution of (1.38) satisfies

(5.45) sup
0�t

e�tkf .t/k22 . kf0k22:

PROOF OF COROLLARY 5.2. Assume that 0 � t � 1. From the energy esti-
mate of (1.38) in a time interval Œ0; N �,

(5.46) kf .N /k22 C

Z N

0

“
��R3

e�ˆfLf � kf .0/k22:

From (1.38), for any � > 0

(5.47) Œ@t C v � rx � rxˆ � rv�.e
�tf /C e�ˆL.e�tf / D �e�tf:

By the energy estimate,

ke�tf .N /k22 C

Z N

0

“
��R3

e�ˆe2�sfLf„ ƒ‚ …
.I/

� �

Z N

0

“
��R3

je�sf .s/j2 � kf .0/k22:

(5.48)
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First, we consider .I/ in (5.48). From (1.36), the term .I/ in (5.48) is bounded
below by

.I/ � ıL

Z N

0

Z
�

e�ˆ
Z

R3
hvije�s.I � P/f j2

� ıLe
�kˆk1

Z N

0

ke�s.I � P/f k2� :

By time translation, we apply (1.39) to obtain

�
ıLe
�kˆk1

2

Z N

0

ke�s.I � P/f k2� C
ıLe
�kˆk1

2C

Z N

0

ke�sPf k22

�
ıLe
�kˆk1

2C

Z N

0

ke�sf k22:

Therefore, we derive

(5.49) e�N kf .N /k22 C

�
ıLe
�kˆk1

2C
� �

�Z N

0

ke�sf k22 � kf .0/k
2
2:

On the other hand, from the energy estimate of (1.38) in a time interval ŒN; t �,
using (1.36), we have

(5.50) kf .t/k22 � kf .N /k
2
2:

Finally, choosing �� 1, from (5.49) and (5.50), we conclude that

(5.51) e�tkf .t/k22 D e
�.t�N/e�N kf .N /k22 � 2kf .0/k

2
2

and prove (5.45). �

PROOF OF THEOREM 1.2. We sketch the proof of the nonlinearL1-decay. Note
that we have shown a local existence result in (4.1) and the global stability theo-
rem, Theorem 1.1, so we perform an exponential decaying a priori estimate for a
nonlinear problem to finish proof.

Note that for small kˆkC1 D ıˆ � 1, we have

e�ˆ�.v/C
1

w
ryˆ � rvw �

1

2
e�ıˆ�.v/:

This inequality implies

(5.52)
e�

R t
s e
�ˆ.X/�.V /d��

R t
s
1
w
ryˆ�rvw � e�

1
2
e�ıˆ�.v/.t�s/

WD e�
1
2
�ˆ.v/.t�s/;
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where we defined �ˆ.v/ WD e�ıˆ�.v/. Then, similar to the proof of Theorem 1.1,

h.t; x; v/

D E.v; t; T /h.T /C

Z t

T

E.v; t; s/e�ˆ
Z
u

kw.u; v/E.u; s; T /h.T /du ds

C

Z t

T

E.v; t; s/e�ˆ.X.s//
Z
u

kw.u; v/

Z s

T

E.u; s; s0/e�ˆ.X.s
0//

�

Z
u0
kw.u

0; u/E.u0; s0; T /h.T /du0ds0du ds

C

Z t

T

E.v; t; s/e�ˆ.X.s//
Z
u

kw.u; v/

Z s

T

E.u; s; s0/e�ˆ.X.s
0//

�

Z
u0
kw.u

0; u/

Z s0

T

E.u0; s0; s00/e�ˆ.X.s
00//

�

Z
u00
kw.u

00; u0/h.s00; X.s00I s0; X.s0I s; X.sI t; x; v/; u/; u0/; u00/du00ds00du0ds0du ds
(IV)

;

where we defined,

E.v; t; s/ WD e�
R t
s e
�ˆ.X.sIt;x;v//�.V.sIt;x;v//d��

R t
s
1
w
rxˆ.X.sIt;x;v//�rvw.V.sIt;x;v//:

Except for (IV), the rest of the terms are clearly bounded by

(5.53) e�
1
2
�ˆ.0/.t�T /kh.T /k1:

The estimate for (IV) is obtained by a change of variable similar to (4.29) in the
proof of Theorem 1.1. Using definition (4.23) and performing a change of variable,
we obtain

(5.54)

(IV) . CN;�;ˆ;ˇ

Z t

T

Z
X 00

Z
u00
h.s00; X 00.s00/; u00/du00 dX 00 ds

C CN;�;ˆı

 sup
s2ŒT;t�

kh.s/k1

. CN;�;ˆ;ˇ

Z t

T

kf .s/kL2x;v ds C CN;�;ˆı
 sup
s2ŒT;t�

kh.s/k1:

Hence

(5.55) sup
s2ŒT;t�

kh.s/k1 .N;�;ˆ;ˇ e�
1
2
�ˆ.0/.t�T /kh.T /k1 C

Z t

T

kf .s/k2 ds:

We assume that m � t < m C 1 and define �� WD minf�ˆ.0/
2
; �g, where � is

some constant from Corollary 5.2. We use (5.55) repeatedly for each time step,
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Œk; k C 1/, k 2 N, and Corollary 5.2 to perform an L2-L1 bootstrap, i.e.,

(5.56)

kh.t/k1 .N;�;ˆ;ˇ e�m
�ˆ.0/

2 kh.0/k1

C

m�1X
kD0

e�k
�ˆ.0/

2

Z m�k

m�1�k

kf .s/kds

.N;�;ˆ;ˇ e�m
�ˆ.0/

2 kh.0/k1

C

m�1X
kD0

e�k
�ˆ.0/

2

Z m�k

m�1�k

e��.m�1�k/kf .0/kds

� CN;�;ˆ;ˇe
��
�

2
t
kh.0/k1:

For a nonlinear problem, from Duhamel principle,

(5.57)

h WD U.t/h0 C

Z t

0

U.t � s/we�
ˆ
2 �

�
h

w
;
h

w

�
.s/ds;

kh.t/k1 .N;�;ˆ;ˇ e�
��

2
t
kh.0/k1

C





 Z t

0

U.t � s/we�
ˆ
2 �

�
h

w
;
h

w

�
.s/ds






1

;

where U.t/ is a linear solver for a linearized Boltzmann equation. Inspired by [12],
we use Duhamel’s principle again, i.e.,

(5.58) U.t � s/ D G.t � s/C

Z t

s

G.t � s1/KwU.s1 � s/ds1;

where G.t/ is linear solver for the system

(5.59)
@thC v � rxh � rxˆ � rvhC

h

w
rˆ � rvw C e

�ˆ�h D 0

and jG.t/h0j � e
� 1
2
�ˆ.v/t jh0j:

For the last term in (5.57),

(5.60)





 Z t

0

U.t � s/we�
ˆ
2 �

�
h

w
;
h

w

�
.s/ds






1

�





 Z t

0

G.t � s/w�

�
h

w
;
h

w

�
.s/ds






1

C





 Z t

0

Z t

s

G.t � s1/KwU.s1 � s/w�

�
h

w
;
h

w

�
.s/ds1 ds






1

� Cˆe
��
�

2
t
�

sup
0�s�1

e
��

2
s
kh.s/k1

�2
:
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Therefore, for sufficiently small kh0k1 � 1, we have a uniform bound

(5.61) sup
0�t�1

e
��

2
t
kh.t/k1 � 1:

From this small uniform bound, we get global decay and uniqueness. Positivity
was already proved in Theorem 4.1. �
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