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Abstract

We establish the global well-posedness and stability of the Boltzmann equation
with the specular reflection boundary condition in general smooth convex do-
mains when an initial datum is close to the Maxwellian with or without a small
external potential. In particular, we have completely solved the longstanding
open problem after an announcement by Shizuta and Asano in 1977. © 2017 Wi-
ley Periodicals, Inc.
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Kinetic theory describes the dynamics of any system made up of a large num-
ber of particles (e.g., gas or plasma) by a distribution function that is defined in
the phase space. Among others, one of the fundamental models is the Boltzmann
equation. This equation describes the dynamics of dilute collections of gas parti-
cles undergoing elastic binary collisions. In the presence of an external potential
—Vx(¢(t,x) + ®(x)), a density of dilute charged gas particles is governed by the

Boltzmann equation
0:F +v-VyF —Vy(¢(t,x)+ P(x)) - Vo F = Q(F, F),

a.D F(0,x,v) = Fy(x,v),
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where F(t,x,v) is a distribution function of the gas particles at a time ¢ > 0, a
position x € Q C R3, and a velocity v € R3. Here the collision operator Q takes
the form of

O(F1, F2) = Q4+ (F1, F2) — Q-_(F1, F?)

. / / B —u,w)[Fi(u')F2(v) — Fi(u) F2(v) ]de du,
R3 SZ

where u’ = u+[(v—u)-wjw, v’ = v—[(v—u)-w]w,and B(v—u,w) = |(v—u)-o|
(hard sphere). It is well-known (see [16]) that the following local Maxwellian is an
equilibrium solution to (1.1):

(1.2) pE(x.v) = pv)e*™,
where u(v) = ¢~ 1vP/2 s 4 standard global Maxwellian.

In many physical applications, e.g., dilute gases passing objects or charged par-
ticles inside tokamak devices, particles are interacting not only with each other
but also with the boundary. Various interesting phenomena occur when gas parti-
cles interact with the boundary, such as a formation and propagation of singulari-
ties [13—15]. In the presence of the boundary, a kinetic equation has to be supple-
mented with boundary conditions modeling the interaction between the particles
and the boundary. Among other boundary conditions (see [2, 12]), in this paper we
focus on one of the most basic boundary conditions, a so-called specular reflection
boundary condition. This boundary condition takes into account a case that if a gas
particle hits a boundary, then it bounces back with the opposite normal velocity and
the same tangential velocity, as a billiard ball hits a boundary and bounces back:

(1.3) F(t,x,v) = F(t,x, Ryv) forx € 0%,

where Ryv = v—2(n(x)-v)n(x). We note that the local Maxwellian (1.2) satisfies
the boundary condition (1.3).

Despite extensive developments in the study of the Boltzmann theory, many ba-
sic boundary problems, especially regarding the specular reflection boundary con-
dition (BC) with general domains, have remained open. In a landmark paper [21]
of 1974, Ukai constructed the first global-in-time solutions near Maxwellians to
the Boltzmann equation with nontrivial spatial dependence in a periodic box (no
boundary). Not long after, in 1977, Shizuta and Asano announced the construc-
tion of global solutions to the Boltzmann equation (1.1) with no external potential
(¢ = 0 = ®) near Maxwellians in smooth convex domains with specular reflec-
tion BC [20], but without mathematical proofs. It took more than 30 years to
encounter the first mathematical resolution: Guo, in [12], developed a novel L2-
L°° argument to construct a unique solution to the Boltzmann equation (1.1) with
no external potential for the specular reflection boundary condition. An asymptotic
stability of the global Maxwellian w is proven when an initial datum is close to u.
However, such results in [12] are established under an extra condition; namely, the
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boundary is a level set of a real analytic function. Indeed, this analyticity condi-
tion is crucially used to verify a key part of the proof in [12]. Eventually, in this
paper, we are able to establish the global well-posedness and stability of the Boltz-
mann equation for the specular reflection BC without the analyticity, and thereby
we completely settle a long-standing (40 years) open question in the Boltzmann
theory in the affirmative! In fact, our results even go beyond the original open
question in [20]: nontrivial external potentials ¢ (¢, x) and ®(x) can be allowed.
We discuss more on the external potential issue later.

Here we only mention some other relevant works briefly. In [1, 18], the well-
posedness and asymptotic stability of the global Maxwellian are studied when the
boundary condition is any convex combination of the specular reflection BC and
a diffusive BC except the pure specular reflection boundary condition. For large-
amplitude solutions, an asymptotic stability of the global Maxwellian is established
in [4] with or without the boundary, provided certain a priori strong Sobolev esti-
mates can be verified. Recently boundary regularity and singularity of solutions are
extensively studied in [13—15]. We refer [19] among others for the weak solution
contents.

Mathematical problems on the Boltzmann equation with an external potential
have also drawn lots of attention. In [16], the stability of the Maxwellian pg in
(1.2) is established with a time-dependent external potential ®(x), which can be
large, in a periodic box. The Vlasov-Poisson-Boltzmann system (VPB), which
takes account of self-consistent electric fields by charged particles, is studied in
[10] when solutions and fields are small perturbations in a periodic box. However,
in many important physical applications (e.g., semiconductor and tokamak), the
charged dilute gas interacts with the boundary. One major difficulty is that trajec-
tories are curved and behave in a very complicated way when they hit the boundary.
As the first step toward studying models of dilute charged gases interacting with
a self-consistent field and boundary, in this paper we establish the global well-
posedness of the Boltzmann equation coupled with small external potentials and
the specular reflection BC.

An external potential and a boundary condition play an important role in the
evolution of macroscopic quantities such as the total mass, total momentum, and
total energy. Let F be a solution to (1.1) satisfying the specular reflection boundary
condition (1.3). We have the total mass conservation and the evolution of the total
energy as

W ol

o (5 ) [ et
(o)

(1.5)
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By normalization, without loss of generality, we assume that

//QX]R3 Fo(x,v) =//QX]R3 RE (X, v),
//QXW (E +<1>(x))Fo(x v) = //QXR3 (E N ®(x))ME(X 0,

We consider a momentum for a special case: a domain 2 is axis-symmetric if
there are vectors xo € R3 and w € R3 such that

1.7 {(x —xo)xw}-n(x) =0 forall x € 02.

In the case of an axis-symmetric domain, we assume a degenerate condition for the
external fields as

(1.8) {(x—x9)xw@} -Vi(p(t,x) + P(x)) =0 forallt >0and x € Q.

Then, assuming both (1.7) and (1.8), we have an evolution of an angular momen-
tum as

(1.9) //Q o) <y vF ) = /[Q o) xmy vy

In this case, we set

(1.10) //Q Ra{(x —x9) X w}-vFy(x,v) =0.

Furthermore, the entropy

H(F) = /[Ms FlnF

satisfies the following inequality (H-theorem)
(L.11) H(F(t)) — A (nE) = H(Fo) — A (LE).
Now we are ready to state our main theorems.

THEOREM 1.1. Lerw = (1+ |v|)? for g > % Assume that the domain Q@ C R is

C3 and convex in (1.15). Assume that ¢(t,x) € Ci;y and ®(x) € C)%’y for some
0<vy ¢+ @lc2 K1, and for Ay > 0and §4 > 0,

(1.12) sup e**!||p(1)||c1 < 84 < +o0.
t>0

Assume (1.6). If Fo = pg + E fo = 0 and ||w folloo + |77 (Fo) — 7 (1E)| +
8¢ + 08¢/ Ay <K 1, then there exists a unique global-in-time solution

(1.13) F(t)=pe + VHe f(t) =0

to (1.1) satisfying the specular reflection boundary condition (1.3). Moreover,
(L.14)  suplwf()lleo < lwfolloo + [ (Fo) — H(E)| + 8¢ + 8¢/ Ae-
t>0

Furthermore, (1.4), (1.5), and (1.11) hold for all t > 0.
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Here, a C3 domain means that for any boundary point p € 9%, locally there
exists a one-to-one and onto C? function 7, such that 7, (Xp,1,Xp,2,Xp,3) € 0K if
and only if x, 3 = 0 (see (2.6)). The convexity is defined as follows: for Cq > 0,

2
(1.15) Z £i€j0;0;1p(Xp,1.Xp,2.0) - 031 p(Xp,1,Xp,2.0) < —Cql|?
hj=1 for £ € R,
The notation C*? stands for the standard Holder space in ¢ and x.

In the presence of a time-independent external potential (¢ = 0), the asymptot-
ical stability of the local Maxwellian g is studied.

THEOREM 1.2. Assume the same conditions in Theorem 1.1 before (1.12). Let
(1.16) ¢ =0.

Assume (1.6). If both (1.7) and (1.8) hold, then we assume (1.10). If ||w foloo < 1,
then there exists a unique global-in-time solution F = uwg + /g f > 0to (1.1)
with (1.3). Moreover, there exists A = A(2, ®) > 0 such that

(1.17) sup e [w/()llco < llw/folloo-
t>0
Furthermore, the total mass and energy are conserved as (1.4) and (1.5) with ¢ =

0, and the total angular momentum is conserved as (1.9) if both (1.7) and (1.8)
hold.

Note that we do not have a quantitative bound of A in (1.17). The main reason
is that we use a nonconstructive method to prove L? coercivity in Proposition 1.4.

We remark that in both theorems we only need that the domain €2 is smooth
and convex but not real analytic. We also note that in [16] we need a stronger
C?3 assumption for the time-independent external potential to establish the well-
posedness.

To illustrate the main ideas of the paper, it is convenient to play with the pertur-
bation f. The function f in (1.13) solves

(1.18) 3 f +v-Vaf —Vi(p+®)-Vof +e ®Lf =
1 ®
- (Ef T «/—uE)v Vap+ e ST ).

and satisfies
(1.19) f(t,x,v) = f(t,x, Ryv) forx € dQ.

We recall the definition of the linearized collision operator (see [2]),

1
(1.20) Lf = —ﬁ[Q(M» Vi) + 0t wl.
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and the nonlinear collision operator,

1
I'(fg = m[Q(\/ﬁf, Vig) + (Vg )l
It is well-known that (see [8])
Lf =vf—K/,

where the collision frequency is defined as

v(v) ;= /R3 /SZ [(v—u) - w|pu(u)dw du.

For this hard sphere case, there are positive numbers Co and C; such that, for

(v) == Y1+ P2,

(1.21) Co(v) < v(v) < Ci({v).
Moreover, the compact operator K in L?({v € R3}) is defined as
1
Kf = ﬁ[Q-ﬁ-(/’L’ Vif) + 0+ (Vufiw) — Q- (Vi f ]

=f k(v,u) f(u)du.
R3

1.1 LP-L°° Bootstrap Argument via the Triple Iterations

In order to handle the quadratic nonlinearity of I'( f, f), it is important to derive
an L %-control of the solutions of (1.18). To illustrate the main idea, we consider
a simplified linear problem

(1.22) 0 f +v-Vof =V O, x)-Vyf + f = u Nf(u)du.

ui<
Here, ®(¢, x) is a time-dependent potential and we can regard ¢ (¢, x) + ®(x) in
(1.1) as ®(z, x).

We note that due to the boundary condition (1.19), the trajectory (X(s; ¢, x, v),
V(s;t,x,v)) is defined as the backward billiard trajectory that is curved by the
external field (or force) —V®. Let ¢! and x! be the first backward bouncing
time and position of the trajectory sitting on a position x with a velocity v at
time 7. Then we define v! = R, 1v where R, 1v is defined in (1.3). Induc-
tively we can define the cycles (¢, x¢, v%) and Xa(s; 7, x,v) = X(s;%, xt, vb)
and Va(s;1,x,v) = V(s;t¢, xt,vb) for s € [tt+!, 14]. The Duhamel formula of
(1.22) along this trajectory is given by

f(t,x,v) =e " fo(Xa(0;t,x,v), Va(0;1, x,v))

(1.23) P
+/ o s)/ £(s, Xa(s: £, x,v), u)du ds.
0 lu|<N
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Plugging the Duhamel formula into the integrand f (s, X(s;¢, x,v), u), we get

t s—¢&
f(t, x,v) = / e—(t—s)/ e— (=)
0 0

X /[ ' Xa(s'ss, Xa(s; t, x,v),u), u’)du’ du ds’ ds
[u|<N.|u'|<N

+ initial datum’s contributions + O(¢).

(1.24)

Throughout this paper, we use O,4(A) for some function that depends on a and is
size of A.

In the absence of a boundary and an external potential, the trajectory X (s; ¢, x, v)
is a straight line, and we can explicitly compute the Jacobian of

ur X(s':s, X(s;t,x,0),u),

which has a positive lower bound away from a small set of s. Therefore we obtain,
via a change of variables,

(1.25) I fllLee S |.f lLr + data + small terms.

Unfortunately, trajectories are very complicated when the specular reflection BC is
imposed. In fact, in the case of the specular reflection BC, such a lower bound of
Jacobian is only known when the domain is convex and real analytic in the absence
of an external potential [12].

The main contribution of this paper is to establish an L?-L°° bootstrap estimate
as (1.25), when the domain is smooth and convex and the external potential is C 2.y
and small in C2. For the readers’ convenience, we write a rough version of this
result:

A ROUGH VERSION OF THEOREM 3.9. Applying the Duhamel formula once
again to (1.24) (triple iterations), we have

ft, x,v)

t s ’ s ¢ ’ 1
=/ e—(z—s)/ e—(s—S)/ e~ ('=s )fff
(1.26) 0 0 0 [ul <NJui|<N,Ju’|<N

x f(s", Xa(s";s", Xa(s'; s, Xa(s; t, x,v),u),u’),u”)du” du’ du ds” ds’ ds

+ initial datum’s contributions + O(¢).

Let (i1, 12) and (@', 115) be the spherical coordinate of i = u/|u| € S and
W = u'/|u'| € S?, respectively. Then, if s’ and s" are away from some local
C %Y -functions, then locally we can choose two distinct variables {{1, {2} among
{u|, uy, ', wh} such that

‘ det(aXCl(sN; S/a XCI(S/; S’ XCI(S’ [a X, v)7 u)’ M’))‘
('], 81, ¢2)

has a positive lower bound.

(1.27)

As a consequence we achieve (1.25).
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We remark that the regularity of such C%Y-functions is determined and re-
stricted crucially by the regularity of the external potential ® € C?2¥. Moreover,
this C %7 -regularity is a (minimal) condition to guarantee that we can construct
small e-neighborhooods of the graph of them.

There are several key ingredients in the proof of Theorem 3.9:

Specular Basis and Geometric Decomposition. Assume that <y <t
and hence Xq(s’;s, Xa(s: 7, x,v),u) is in between £-bounce and (£ + 1)-bounce.
Then we know that

(1.28) N Xa(s's s, Xa(s; 2, x,v),u) = vt /|vt] + O(|®|¢2).
On the other hand, for 7 = (i1, #i2) € S2, we have
VaXa(s'ss, Xa(sit,x,v).u) = Vax* — (t° — s") Vg

(1.29) ¢
— Vittv —I-O(Hq)”Cz).

Among other terms, 8,;15 is the most delicate term to control since ¢ depends
on all the cycles (' ol forl = 1,2,...,6—1. Fortunately, this harmful term
appears only in the direction of vt / |ve|! Inspired by this observation we define the
specular basis {eg, eﬁ_ 1 eﬁ_ 5> Which is an orthonormal basis with eﬁ = vt/
and eii perpendicular to ef;. See (3.14).
Now we decompose Vi, 4, 2, Xa(s": s, Xa(s: ¢, x,v),u) into

(130)  VXa = (VXa), + (VXa), = (VXa-e€f)eq + VXa — (VXa),.
Then we have the following similarity relations, from (1.28) and (1.29):

90X,
_0Xa - (Wllﬁ))n\
u 3X.
el \ (ot
_(S—S,) *_|vﬁ|vﬁl’ﬁztg
(1.31)
- 0251 (Vi anxt — (5 =5)Vq, 5,0°) - €]
(Va,a,xt = f =) Vg, a,0%) e,
+ Oa([|®[lc2)-

See (3.32) for the precise form. Note that an upper right block containing 8gt€
would have small contribution in the determinant of the full matrix since the lower
left block is a zero matrix.

Due to this geometric decomposition, we are able to relate 90X /0(|ul, &) to the

mapping
(1.32) (lul, i1, 02) — (x5 0°).

Note that the map (1.32) is closely related to the billiard map [3], which turns out to
be more “controllable” than 0X/d(|u|, ). Moreover, the form of the first column
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of (1.31) clearly guarantees that this Jacobian matrix is at least rank 1 for a small
[®llc2.

Diffeomorphism and Specular Matrix. By the chain rule, we can view (1.32) as
the compositions of

(1.33) (ul. i1, 2) = (Lol > (202 > - > (xbh).

In the absence of external potentials, the map (x!, vl > (X!, vty is the bil-
liard table and it is well-known that this map is diffeomorphic [3].

The quantitative study of such a map, especially in 3D domains, is performed
recently in the work [14] by the first author with his other collaborators when the
trajectories are very close to the boundary (grazing trajectories) in the absence of
external potentials. However, these estimates cannot be sufficient for our purpose
since it only can provide the information for the grazing trajectories. Moreover,
the proof of [14] heavily relies on the fact that the ODE of the trajectory is au-
tonomous. In the presence of a time-dependent external potential, however, the
ODE of (X, Vo) becomes nonautonomous, which obstructs generalizing the re-
sult of [14] to the time-dependent external potential case.

We are able to overcome this difficulty by a new advance of our understanding to
the derivatives of trajectories (X, Ver). In this paper, we succeed in performing the
(almost) explicit computations of the Jacobian matrix of a (1.33) in the presence
of a small time-dependent external potential. This also allows us to understand
the role of the regularity of the external potential in (1.27). We expect that this
technical improvement will allow us to generalize the work of [14].

Equipped with this quantitative estimate, we study the lower right 2 x 2 subma-
trix of (1.31). In order to use the diffeomorphism property of (1.33), we employ
the specular matrix %, which is a 4 x 4 full-rank matrix and essentially equals the
Jacobian matrix of (1.33) expressed with the specular basis. The precise form can
be computed as in (3.16), and the entries are C %7 if the external potential is C2.
Indeed, the lower right 2 x 2 submatrix of (1.31) can be written as in (3.32),

134 right upper 2 x 2 submatrix of % — (" —s"
(154 x right lower 2 x 2 submatrix of Z.
Since at least one entry of the right 4 x 2 submatrix of & should not be zero as a
polynomial of s, we are able to show that (Jul|, %) — X is at least rank 2 if s is
away from some C %Y -function of (¢, x, v) in Lemma 3.6.

Triple Iterations. Unfortunately, this rank 2 is still not sufficient for our purpose.
The key idea to overcome this difficulty is the triple iterations in (1.26), apply-
ing the Duhamel formula (1.23) once again to (1.24). One more iteration makes
the game more feasible since now we have more free parameters to play with:
{lul. @1, |u'|. @}, @} € R>. Due to the observation (1.28), we need to choose |u/|
and two other free parameters {1, {»} so that the following map is rank 3,

(1.35) (Ju'],¢1.82) = X(s"; 8", X(s"; 5, X (551, x,v),u),u’).
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We use the full structure of the specular matrix and carefully study the quadratic
polynomial (Lemma 3.5) to achieve a positive lower bound of the Jacobian of
(1.35) in Lemma 3.7. The convexity of the domain (1.15) is used crucially to
control the number of bounces in Lemma 3.8.

1.2 LP-Bounds

Now we illustrate the L? control of the Boltzmann solution. Due to the L?-L*°
bootstrap estimate (1.25), such L? estimates would provide L°° control.

LY-bound in the case of a time-dependent potential. In order to show the stabil-
ity of g in the presence of time-dependent potential ¢, we utilize the following
bound of [11, 15].

LEMMA 1.3.

1F = ke p 550,

4
< E{(FIHF —pelnpug) —(F — pE)

2

Applying the L?-L° bootstrap argument via the triple iteration, the L°°-norm
of the solution is mainly bounded by the L!-norm of |F — MElllF—MEI>5uE'
By Lemma 1.3, we further bound it by the differences in the entropy, total mass,
total energy of the solution, and ©g. A new difficulty in the presence of the time-
dependent potential ¢ (¢, x) is that the total energy is not preserved anymore (1.5).
Via Gronwall’s inequality, we are able to prove that ||wf(#)||co can grow in time
at most as eC(I¢lleotlwsloo)t, Using the decay of potential and f, we can prove
that the total energy is close to the initial total energy for all time. This weighted
L°°-bound is sufficient to prove the existence, uniqueness, and the stability of ug
in Theorem 1.1.

v?
+ (— + CD(X))(F - /,LE)}

L?-decay in the case of a time-independent potential. Tt is well-known [2] that
the linear operator L is only semipositive,

(1.36) /R L vz B R f o

where | - ||, = ||v}/2 - || ;2. The null space of L is a five-dimensional subspace of

L?(R3) spanned by { /E.VJIE. V], /[LE} and the projection of f onto such
null space is denoted by
(1.37) Pf(t,x,v) = {a(t,x) +v-b(t,x)+ |v]*c(t,x)} V/IIE.

Due to this missing term in the lower bound of (1.36), the Boltzmann equation is

degenerated dissipative. In order to prove L2?-decay, we need a coercivity estimate.
Following the argument of [12, 16] we first consider

(1.38) 3 f 4v-Vif —Ve®d(x)-Vyf +e ®®Lf = 0.
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PROPOSITION 1.4. Let ®(x) € Cl. Assume that f solves (1.38) and satisfies
the specular reflection BC and (1.4)-(1.5) with ¢ = 0 for F = ug + /g f-
Furthermore, for an axis-symmetric domain (1.7) with a degenerate potential (1.8),
we assume (1.9). Then there exists C > O such that, for all N € N,

N+1 N+1
az) [ proBasc [ a-proRa,
where P f is defined in (1.37).

We remark that we do not need any smallness of ® in this linear theorem. A
direct consequence of (1.39) is an exponential decay in time of || f()[[12(@xRr3)-
Then following the argument of [12], we are able to show an exponential decay in
time of [|wf (1)l oo (@xR3)-

The proof of this proposition is based on the contradiction argument of [12,16].
As a consequence, we do not have any quantitative estimates of C in (1.39) and
the decay rate. By negating the coercivity of (1.39) and some normalization of
(5.15), we obtain a weakly convergent sequence Z" whose component orthogonal
to the null space of L is vanishing as m — oo. The weak limit Z satisfies the
conservation laws as (5.1)—(5.3) and the specular reflection BC (step 7 in the proof
of Proposition 1.4) and

(1.40) b(t,x)-n(x) =0 foralmostall x € 0Q2.

Moreover, Z remains in the null space of L and solves the transport equation (5.24)
withoute™®LZ. As a consequence, the components «, b, and ¢ of (1.37) solve the
systems of [16]

8,-c = 0,
8;6’ + ajbi = 0,
(1.41) dibj + 0;b; =0, i #J.

0:b; + dja —2¢0; d = 0,
a[a_Vx®'b :0,

Unlike the case of ® = 0 in [12], explicit forms of a, b, and ¢ cannot be ob-
tained. We use the boundary condition (1.40) and the conservation laws carefully
and conclude that

(1.42) Z(t,x,v) =0 almostallt,x,v.

On the other hand, due to the normalization (5.15), the LZ-norm of PZ™ is
always 1 identically. Away from the boundary 92, the weak convergence is ac-
tually strong convergence due to the velocity average lemma. For the shell-like
subset of €2, using the Duhamel form along the trajectory, we are able to bound
the integration over this shell-like subset by the interior integration (Lemma 5.1).
Therefore, Z™ — Z strongly and the L2-norm of Z equals 1, which is a contra-
diction to (1.42).
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2 Specular Trajectories with a Small Time-Dependent Potential

In (1.1), a time-dependent potential is given by ®(x) + ¢ (¢, x). In this section,
we write this potential as ®(¢, x) for convenience. The corresponding characteris-
tic equation is

d

—X(s;t,x,v) = V(s:t,x,v),

' d

d—V(s;t,x, v) = =V ®(s, X(s:1, x,0)).
s

DEFINITION 2.1. We recall the standard notations from [14]. We define

th(t,x,v) :=sup{s > 0: X(r;¢,x,v) € Qforallt € (t —s,1)},
(2.2) xp(t, x,v) := X(t —tp(t, x,v);t,x,0),

vp(t, x,v) := V(I —tp(t, x,v):t,X,0),
and similarly,

te(t, x,v) := sup {s >0: X(r;t,x,v) € Q forallt € (¢,¢ + s)},
(2.3) xe(t, x,v) ;= X + (¢, x,v); 8, x,0),

ve(t, x,v) 1= V(t + (¢, x,v); 2, x,0).

Here, 11, and t¢ are called the backward exit time and the forward exit time, respec-
tively. We also define the specular cycle as in [14]. We set (¢°, x%,0v%) = (¢, x, v).
Inductively, we define

lk = k=1 _ tb(lk_l,xk_l, Uk_l),

(2.4) xK = x (% Rt Xk gk,

'Uk — ka V(tk, tk_l,xk_l, Uk_l),

k

where
R V(t; 1K1 k=1 ykmy — gk gt k=t ety
—2(n(xF) - V(R R xR kT nxk).
We define the specular characteristics as
Xa(s;t,x,v) = lee(thrl’,k]X(s;tk,xk, vk),
2.5) ,
Va(s:t,x,v) = lee(tk—ﬁ-l’tk]V(S;tk,xk, vk).
k

For the sake of simplicity we abuse the notation of (2.5) by dropping the subscript
cl in this section.
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From the assumptions of Theorem 1.1 and Theorem 1.2, for any p € €2, there
exists sufficiently small §; > 0 and 6, > 0, and a 1-to-1 and onto C 3_function

np:{xp € R :x,3 <0} N B0:81) — QN B(p;6a),
(26) Xp = (Xp,l,xp,Z’Xp,B') = (x19x2’x3)
= np(Xp,l,Xp,Z,Xp,Z&)a

and np(Xp,1,Xp,2.Xp,3) € 0K if and only if X, 3 = 0. We define the transformed
velocity field at 1, (xp) as

0i np(xp) v

vV gp.ii (Xp)

For any two-dimensional smooth manifold ., we can find a local orthogonal
parametrization from R2 to 9.7. (See [5, cor. 2, p. 183], for example.) Therefore,
we assume

2.7 Vi(xp) =

81771) a2771) 83’71)
\/gp,ll’ \/gp,22’ /8p,33
where gpi; 1= (0inp. 0jnp).

(2.8)

} is orthonormal at X, 3 = 0,

For second derivative d;9;1,, we define the Christoffel symbol l";f ij by
2.9) 0ijnp =Y T i 0knp.
k

Moreover, by reparametrization, we may assume that g, 33(Xp,1,Xp2,Xp3) =
1 whenever it is defined. Without loss of generality, the outward normal at the
boundary is, for x = 17, (Xp,1,Xp,2,0) € 022,

n(x) =nnpXp,1,Xp,2.0)) = 0310,(Xp,1.Xp,2,0)

(2.10) _ o O2mp
V8Pl A/8p.22|(x).1,xp.2,0)
Foreachk = 0,1,2,..., we assume that pk € 9Q is chosen to be close to x¥
as in (2.6). Then we define
x];k = (X];k,l’X];k,Z’O) such that x* = npk(x’;k),
@.11) . okl
k= Vi(XD ) = ——— - v".
pk.i i\%p %
8 pkii (ka)
Note that, due to (2.8), at the boundary,
3
Aen pk i
(2.12) vk =Yk — 2L
l eg P e i ek
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LEMMA 2.2. Assume that Q and ® are C2. Consider (tk"'l,karl Vel ) as a
pk+l pk+l
function Of(lk,X];k,V];k). Thenfori,j = 1,2,
3(l‘k _ tk+1)
k
axpk,j
—1  B3nprtr(x

= k+1
Vok+1 g pk+1 33(xkT1)
(2.13) PETL3 V P33

5 k koo ko k1, 0V
' jnpk(xpkgl’xpk’zv )_([ —1 )W

k+l)

pk.j
k _ k+1y2
—t
+ omumw%(l + (F = A K el Pllea =2,
Vpk+1’3|
9 k+1 k41 k+1 k41
Xpk+1; 1 |:3i okt (XET0) Vo 030 k1 (XFTY) :|
k - k+1
Xk j \/gpk,ii(xk+l) \/gpk,ii(xk+l) Vpkt13 1/ pkr1 33(xk 1)
dvk
|9 e (xF) — (1 - zk+1)}
k
(2.14) |: Xk
|Vk1j_-}1 |
+ Og(|®llc2){1 + ,’jﬂ”}(zk — k)2
Vpk+l,3|

k_jk+1y2
x (1 + (tk _tk+l)|vlp€k|)e||q>||cz(t t ) i

k
8vp;c’-+ll,i
Ly
_ vk ampk+1(xk+1)
=—
aXp",j \/gpk+1,ii(xk+l)
k
f S 0 (e 0T
+v Z = e —
(2.15) t=1 Ppk,j OXprt1 g \\ & pt1 ;i (XK
Atk — ¢kt
+OSZ(||CD||C2) Z T
, .
J p¥.j

+ (lk . tk+1)(l + |V];k|([k _ [k+1))e”q>”C2(tk_tk+l)2

an+1

>

12

)

prtie
oxk
pr,j
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k
avpz_il 3
8x’;k’j
_ auk a3ﬂpk+1(xk+l)
—
3ka,j /gpk+1,33(xk+1)
k+1
(2.16) ok 22: ox pk+1 g 0 83npk+1(xk+1)
’ 8x axkr! k+1
k,j pk+1 g gpk+1’33(x )
a(tk —l‘k+1)
+ 0g(j@fend | T

- ox%, .

J pk.j
axk;i:rll

(1 = N VA = el Pleatt ot o SR L
» axk,
pk.j
where

k
rr’pk,i (.X )

\ &pk, rr(
e Y Y VI oy a0,
=1 r(#L) pk Zﬁ(xk gpk,rr(xk)
Fori =1,2and j =1,2,3,

e L NN (L tk+1)|: i pk (xF)

Xpk,j

k
ank’j pk+1 3 W
2 k_4+k+1)2
(2.18) + 0q(| @ c2)(tF — (kT2 IVEPlleolt =7 }
3377pk+1(xk+1)
gpk+1’33(xk+1)
k+1 X
aka-H’i _ —(tk —tk+1) ajnpk(x )

avk

I V&t ,jj (5
1 |: 3in pi+1 (xF 1)
\/gpk+1,ii(xk+l) \/gpk+1,ii(xk+1)
k+1
Vok+1 8377pk+1(xk+1) :|

k+1 k+1
Vpk+13 /8 pk+1.33 3(x*T)

(2.19)

| k+1

\p k_ k+1y2
+ 052(||q>||c2)<1 i—)(xk — k)3l ®lea =T
| k+1 3



426 C.KIM AND D. LEE

k+1 k+1
M_ia"pkw ( i ) »
8vpk;j =1 m xk+1
\/gpk+1,ii(xk+1) \/gpk,jj(xk
Vo |
(220 +09(||<D||cz)(fk—tk+1)2(1 e )
|V k+1 3|
% (1+ Og(|®]lc2)(tk — K +1)2)el@hea @ —<+1)2
|tk — kt1
+ 09(||¢||02)T|
pk+1,3

k _+k+1y2
x (1 4+ 0q(||®]|c2)(tF — kT2l ®le2GF =770

k+1 2 k+1
a"pk+1 3 Z 8Xp1<+1 5 ( 3377pk+1 ) k
3 v
Vs o VEP L33 ) | e
8377pk+1(xk+1) 3 pk (xF)

\/gpk+1,33(xk+1) \/gpk’jj(xk)
+ Oa(|®llc2) (* = 1 (1 4 Oa(|®llc2) (F - 1*+1)?)
@l a @k —tk+1)2

(2.21)

|lk _ l‘k+1|

+ 0a(|®l¢2) (14 Oa(|®[lc2)(* —tF+1)?

k+1
Vpk+l’3

,e||<1>||cz(lk—lk+1)2)‘

Remark 2.3. Note that we do not need the convexity (1.15) or the smallness of the
size of ® in Lemma 2.2 .

PROOF OF LEMMA 2.2. First we prove (2.13). By the definitions (2.6), (2.4),
and our setting (2.11) and (2.1),

k+1 k+1
7’]pk+1(ka+1’1,ka+1’2,0)
tk-‘rl
— k k k
(222) = Mk (S 12X 200) + /tk v

tk+1

.

/ Vo(r, X(t; tk, xk, vk))df ds.
tk
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We apply to the above equality for j = 1,2 to get

pk,]

k+1
Z axpk-HI N pk+1
I=1,2 axpk,] axp"+‘l
k
ok k1 OV
= (k)
ox

.
(2.23) A

a(tk _ tk-‘rl)% B
axk /tk

rk.j

k
afnpk(pkl’ 20 /z

xk+1

VO(s, X(s; tk, xk, vk))ds}

/ <8X(’) vx)wxcb(r))
tk axk

tk+1

. . 031 jk+1
and then take an inner product with —2&—— to have
p /gpk+1.33 xk+1
k+1
Z 3ka+11 Bnl,kH ) 8377pk+1
I=12 3ka] 3"];}'111 k1 NV EpFTL33| e
k
_(tk k-‘rl) dv . 3377pk+1
O o V&P |
Ak — (k1 it 031 pk+1
(2.24) _Q{ _ / vq>(s,X(s;zk,xk,uk))ds}.L
axk tk VEpk+1 33 | xk+1
k1 BX(r)
{a]n,,k( X 5,0 / ds/ ( )(onb(z))}
837’]pk+l
NV EPFT1,33 | ket

where we abbreviated X(s) = X(s;t%,xk,v%), V(s) = V(s;1k, x*, v¥), and
d(s) = (s, X(s; 1%, x*,v¥)). Due to (2.8) the left-hand side equals 0.

Now we consider the right-hand side. From (2.12), we prove (2.17). We also
note that

tk+1

(2.25) hm V(s th Xk, k) = ok / V@(S,X(s;tk,xk,vk))ds.
t

syth+ k

Therefore, from (2.4) and (2.11),

thrl a
31 pk+1
%vk —/ Vo s, X(s;tk,xk, vk))ds} L Vk,j}rll 3
ik ek 33 k1 P
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From (2.24),
a(lk _ lk+1)
Xk
B 1 93mpesr (XFH)
VI;Z_‘*I*J g prt1 33(xkT1)
k k
(2.26) ' [31‘ Mk (X 1+ Xk 5 0)
[k tk-‘rl) i:vk Vgp rr ) ( k) arﬁpk(Xk) :|
h L p" L)
=1 r(#) v &k ee(xF) V &k rr (XF)
1 O3k (XK1 et )¢
+ = Mpet 77 ) / f ( © Vx)(v (1))
Vi1 3 1/8 pit1 33(xK D) tk axk v
gk Lk o,k
Now we consider integrand W From (2.22) for t*t! < ¢ < ¢k |
rk.j
X(t; 1%, xk k) = M pi (xl;k’l,X’;k’z,O) + vF(r —1%)
2.27)

T N
—/ ds/ ds'Vo(s', X(s'; 5, x*, vk)).
tk tk

By the direct computations, for j = 1, 2,

8X(s’;tk,xk,vk) X vk
sup = |8.1'77pk (ka,l’ k20 k
rs/<th axp" j ox pk.j
T X (s 1%, xk vk
+/ s — %] @llc2 sup « s,
tk <5/ <tk E)xpk j

By Gronwall’s inequality and (2.17),

8X(r;tk,x];k,vlljk)

oxk,
pk,j

(2.28) sup < Oq()(1 + |t - T”Vl;k|)elld>llczlt"—r|2/2.
T

Using (2.26) and (2.28), we complete the proof of (2.13).
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i pk+1

To prove (2.14), we take the inner product with to (2.23) to obtain
gpk+1 i xk—‘,—l
k+1
j{: axpk+11 0N pk+1 3iﬂpk+1 axpk+1,
I=1,2 0x, pr.J aXp“ﬂl okt EpEFLii axp"',j

ok .
— ik k+1) O
3x K Spktlii

xk+1
k+1 th+1 9
(2.29) _a(tt)% _/ V@(S,X(s;tk,xk,vk))ds} M
3ka’] tk & pk+1 jj |xk+1
k k
+ {ajnpk (ka,l,ka,z,O)
k+1
/t / (BX(T) .V )(V o(r ))} 1ka+1
X
tk tk Dk 8 pk+1 i xk+1
Since
tk+1 9 Vk—+-1
N pk+1 k+1 ;
{vk—/ Vd>(s,X(s;tk,xk,vk))ds}.L P
tk 8 pk+1 ji |xk+1 /8 pk+1 i

from (2.8) and (2.13),

k+1
8Xp}f+1 1 8377pk+1(xk+1)
— k+1
8ka’1 Viitis \/gpk+1,33(xk+1)
k+1
vk Vok+1
. |:8j 7ka (xk) . (lk o lk+1) p :| p 51
axpkd VEpKHLii | ket
. k
alnpk-‘rl ) a]n k(xk)_([ k+1) 3
(2.30) gpktiii lxerr | oxk,
k+1
+
+ Osz(lld>||cz)%(r" — k)2
pk+1 3

(1 (K = YK [l Pllea @ =tTh2/2

+ 0@l c2)(* =+ (1 4+ (F = FFH Ve )

@l k=i 4122

This ends the proof of (2.14).
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Now we prove (2.15) and (2.16). From (2.4) and (2.11),

0N, k+1
Vk;rill. = _Gilptt - lim V(s;tk,xk,vk) fori =1,2,
(2.31) PR BpkALii ket syik
kol - Dapis lim V(s %, x*, v¥)

xk+1 S»Ll‘k+l

Vo k+1 3 =
pk+1.3 Ty s

Fori, j = 1,2, from (2.31),

k
avp;»"_—il,,- B air)pk+1(xk+1)
. =
8XPksj gpk+l,ii(xk+l)
vk 9(tk — h+1
| % +de>(tk+1;zk,xk,vk)¥
8ka ] axpk ]
tk+1
_/k (8xkk _X(S)'Vx)VxQD(s,X(s;tk,xk,vk))ds]
t J 2
2 Bxk;("il B i kit
+ Z pk £ k41 ( My ) - lim V(S;lk,xk,vk)'
=1 8kaj axpj+l ‘ VEp i ) k1 sl
Andfor j = 1,2,
3V§?+11,3 _ 931 pr+1 (xF T+

. =
3ka’j /gpk+1,33(xk+1)

vk k+1. .k _k k
. o + V(1 1, X", 0Y)
X<
pk.j

lk+1

_/,k

2 k+1
—Z axpk+1,z 0 ( 33r}pk+1 )
oxk, 3X’;Zr+11 ¢ \VEpFt1 33

=1 P,

a(tk _ tk+1)

axk
Pk, j

(0, X(5) - Vi) Va®(s. X(s: k xk ok ))ds:|
pr.Jj

- lim V(s;tk,xk,vk).
xk+1 s¢lk+]

From (2.25) and (2.28), we prove (2.15) and (2.16).
Now we consider (2.18)—(2.21) for v-derivatives.
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To prove (2.18), we take to (2.22) for j = 1,2,3 to get
pk,f
k
Z axp;!i” 0N pk+1
(S ey XL e

k
k_ k+1 dv

(2.32) Yo
- =" = Vo(s, X(s:t%, x*,v"))ds
av tk

g 9X (1)
{ ds /tk (Bv N Vx)(VxCD(r))},

937 ,k+1

and then take an inner product with m Lt to have
k+1
Z 8ka+1l 0N pk+1 . 937 pk+1
I1=1,2 avpk,J axkﬂll XEHL EpEHt 33 1k
k k k+1
v o —t
(2.33) - {_(tk £k _X . ) lim Vi(s: ik, x*, ")}
3V Ve . sek+1
kJj pr.j
037 pk+1 9X(s)
—L——| 4 Oq(|®llc2)|t* — *F P sup| ——=|.
VEpkHT 33 | xk+1 s 8vpk,j

Due to (2.8), the left-hand side equals 0. Now we consider the right-hand side.
From (2.12),

. k k
gk B 31 i (xpk’l,xpk’z,O)
avk k k )
p",J 8 pk.jj (ka,l’xpk,z’o)

Now we consider sup, w} From (2.27), for j = 1,2, 3,

(2.34)

ok ;
IX(s) . Juk 5 o 39X (1)
D <k sl S 4 1920l [ 1= el S
ove, vy, . s ave, .
) 2 p*,J p~,J

By Gronwall’s inequality and (2.34), for k1 <s < lk,
‘ X (s: 1k, xk, vk)
avk

k_¢|12
< Itk — | l®lealtk—sP/2

v, .
pk.j
||<I>||C2|tk—S\2/2_

(2.35) iy

< |t* —sle



432 C.KIM AND D. LEE

Using (2.31), (2.33), (2.34), and (2.35), we prove (2.18).
The estimate (2.19) is obtained by a similar method. Fori = 1,2 and j =

ain .
pktl to (2.32) to obtain
Epk+1 i |xk+1

1,2, 3, we take the inner product with

xSl d(rk — k1 dv*
S {_ ( ) V(S;tk’xk,vk)_(tk_,kmL}

Ay Wy ST s s
0i N pk+1 90X (s)
p k k+12
E— + Og([| @[l c2) |t — £+ 2 sup| —=—|.
8pk+1 ji | xk+1 s 3vpk ;

From (2.34), (2.35), and (2.18), we prove (2.19).
Now, let us prove (2.20) and (2.21). Fori = 1,2 and j = 1, 2, 3, from (2.31),

gyk+1 2 gkl

Vok+1 k+1 g 0i 1 pk+1 .
—pk : :Z pk : 84( P ) - lim V(s ek, x*,0F)
aVpkj (=1 aVpkj Epkt1ii ) I xk+1 sytktl

Qi1 (X< 1) (3vk Gl RPVWRS VAR

- / vk vk
gpk+1,ii(xk+1) VoK. j Yok,
tk+1 8X
— / ( k(s) ~V)Vd>(s,X(s))ds)
tk v, .
p",J
k+1
_ 22: 3ka+1’ga£( 3i7]pk+1 ) ok
=1 av,;k’j m xk+1
3im pie+1 (xKT1) _ 3j 1 i (x%)
\/gpk+1,ii(xk+l) \/gpk,jj(xk)
k+1
k41 Atk — (k1
+ 0 (| @llc2)(tF = *TH|—L2—| + Og(| @] c2)|——F
avp",j aVp",j
0X (s
+ 0o (Bl ca) ek — K+ sup | 220 |
N ankj

From (2.18), (2.19), and (2.35), we prove (2.20). The proof of (2.21) is also very
similar to the above from (2.31). O
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LEMMA 2.4. Assume that x €  (interior point) and xy(t, x,v) is in the neigh-
borhood of p' € 992. Then locally,

ot 1 2 2
= = [¢ + 0P c2)lry eIV ¥ )/2]
8x] Vpl 3
(2:30) e
vV &pl, 33(X )
ot 1 L) ¢
b [zbej— / / ( © -Vx)(VXqD(T))d‘EdS}
dv; Vo t t dvj
) 3377p1(x1)
VE&pt33(xh)
(2.37) t P33
b 2
= 7 lej + Oa(l®lca)lm eI ®le2®)/2]
Vpl 3
83npl(-x1) _1 2.3,
V &pl, 33(x1 )
Xy \A ) .
o [ ogw@wn(r+ ‘)nF“V@M%>”}
13
(2.38)
. 1 |: j?’]pl(.X) N ;1,1- 8377p1(x1):|
\/gpl,ii(xl) \/gpl,ii(xl) Vpl3 g p 33(x1)
ax t—ty IX (1)
8 [ he; — / [ ( Vx)Vd) (r)dtds:|
,npl(x) V;li 33771,1(x1) i
1
(2.39) \/gpl,ii(xl) —\/gpl,ii(x ) Vpi3 \/gp1,33(x1)_

= —tp|ej + Oqf

1

|q)||C2)|tb|26||v)%<p"oo(tb)2/2]

Iinp(xh) Vi danu(xl) ]

| \/gpl,ii(xl)

1

P

1 ,
L \/gpl,ii(xl) Vpl.a \/gp1,33(x1)_
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av}ﬂ,i _ 0inpi (x1) [/ (8X(S) vx)(v <I>(s))ds]
t

0x;j VE&ptii(xh) dx;

+ia”’ (8177,, ) V(i —tp)
Y4 . —1Ip
=1 axf VEplii /) Ix!
2 8X .
(2.40) - fae( dinp! )
=1 dox;j VEplii / Ix1

+ 0q(|®] c2)tp(1 + [v|tp)elVE loc@)?/2
Iv!
14

Ll
+ [Vx®Pllooltv|{ I + 1 !
|Vpl’3|

(14 0a( @l c2)(1 + to[v]) (ay) e V5 Ploe®)/2),

— ej Vit —
avj gp zz(x) av gp i1/ 1xl
1
inpl(x ) |: 8l‘b
+ . —deb(t—tb;X(t—tb;t,x,v))—'
\/gpl,ii(xl) 81)]
0X
N / ( a(S) VX)VXCD(S)dsi|
(2.41) t Ui

2 ox!

zﬂpl(x ) le ( lnpl )
= +
v 8p! ll('x ) K Z 8v VEp!ii

1

|V11,1|
+ Oq(|®lc2)| 1+ 7 |ty

p‘,3|
(1 + OQ(”(p||C2)(tb)ZeIIV)%@IIoo(tb)Z/Z).

Here, ej is the jth directional unit vector in R3. Moreover,

vl

1+ 00(| V2@ ]loo) (1 + th[v]) |1y V5 @l ()
77— = 0a(|Vx®llo0) e
(242) 0% Vi sl

+ OQ(”CD”Cz)[be"v,%(b”oo(tb)z/Z’
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0V, Vi(s;t,x,v) 5 )
P — fim LT 0 (|0 o) (1) eV Bl ®)/2
(2.43) JIvj syl [V(sit, x,v)|
: . 2 2
+ OQ(Hvch”oo)m{l + 0g (IV21]loo) |1y 31V Plloc@)) |
pl.3

PROOF OF LEMMA 2.4. We have
ll
(2.44) lirr} V(s;t,x,v) =v —/ Vo(s, X(s;t, x,v))ds,
syt t
T S
(2.45) X(t;t,x,v) =x+v(r —1) —/ ds/ ds'Vo(s', X(s';t, x,v)).
t t

Especially, when 7 = ¢!, we get

¢! s
(2.46) X't x,v)=x4+v(@! —1) —/ ds/ ds'Vo(s', X(s';t, x,v)).
t t

From (2.44), we have
aV(s;t,x,v) oty
m —F— =

li — Vol X, x,
s o 3, ¥ ol X))
(2.47) /1 9X(s)
S
—[ ( -Vx)V<I>(s)ds,
t 8)6]
and from (2.47),
aX(s';1, x, ' aX(s';1, x,
(2.48)  sup M fl—l—/ ls — ]| ®|lc2 sup M ds.
T<s'<t axj t T<s'<t 3xj
By Gronwall’s inequality
(2.49) sup |XEELXV o (4ol lclt=2/2,
T<s/<t axj
Similarly, from (2.44), we have
aV(s;t, x, ot
lim VL0 I G Gt v v))
sl v v
(2.50) 1 9X(s)
S
—/ ( -Vx)Vd>(s)ds,
t 31)]
and from (2.45),
aX(s'; 2, x,
Sup % E |-L—_t|
T<s'<t vj
2.51) T
2.51) T 0X(s';t,x,v)
+ ls —t|||®|c2 sup |———=|ds.
t T<s'<t 8Uj
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By Gronwall’s inequality
0X(s':t,x,v)

< Oq()|r — t|e”V2‘b”oo|t_f|2/2.
dvj

(2.52) sup

T<s'<t

To prove (2.36)—(2.41), these estimates are very similar to those of Lemma 2.2.
It suffices for us to choose global euclidean coordinates instead of 7« . Therefore
we should replace

(2.53) Npk+1 => Npi,  Npk —> X, tk ¢, tk+1—>t—tb=t1, 0x, X = ej.

Let us prove (2.36). For j = 1,2,3, we apply d; to (2.46) and take an inner

d
product with \/% " Then we get
dtp 1 d3 Npl (x!)

L e
0%, V}J‘,S V&, 33(x1) '
1 9311 (x1h) (3X(‘L’) )(v o
x (T))
3 4/8p133(x1) / / IXp.j

| = 9371
To prove (2.37), for j = 1,2,3, we apply 0y, to (2.46) and take - i
Then we get v
0= Z ll ar’p . 337]p1
I=1,2 8vj ox* ol V8pL33[,
—tl 9
(2:53) = {_(Z - tl)ej - —( ) lim V(s;t, x, v)} C_Blpt
8Uj S»Ltl ’—gp1,33 L
X (s)
+ Oq([|®llc2)|t — 1" * sup| ——|.
s vj
0;
To prove (2.38), for i, j = 1,2, we apply dx; to (2.46) and take .«/ginl ;
pliilx
Then we use (2.48) to get
1 1
8Xp‘,i . 1 8377p1(x1) . Vp‘,i N airlpl .
= v e;
3Xj V;1’3 \/m qlgpl’ii %1 gpl,ii x1
(230 l ‘ 1\2 || ® H2/2
+ OQ(HCI)HCz) |(t th ell®leae—t1)?/

1 ]
+ Oq(||®||c2)(t — ¢ )ze||‘b||cz(t—tl)2/2‘
This yields (2.38).
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To prove (2.39), fori = 1,2and j = 1,2, 3, we apply dy; to (2.46) and take an

3in,1

inner product with
p A /gpl i

x1

X At —t! 9
pl.i — {_g lim V(s;[’x, U) _ (t _ tl)—} . ﬂ
8Uj avj st! 8l)j gpl,ij .
X (s)
+ Oa(I®lc)lr — ' sup| )|
s | ave, .
pk.j

Then we use (2.48) to get (2.39).
Let us prove (2.40). Fori = 1,2 and j = 1,2, we apply dx; to

. i N p1
Vo= -lim V(s;t,x,v) fori =1,2,
P VEpliilxt sl
(2.57) dan 1
L == 2 - lim V(s;t, x,v).

x1 sl

v, . =——22
3
» VEpi33

Fori,j = 1,2, from (2.31),

vt 0; x!
pli _ 0inp(x’) .[VXCIJ(tl;t,x,v)

axj \/gpl,ii(xl)

i —th
an

—/t (8ij(s)-Vx)chb(s,X(s;t,x,v))ds}
t

- lim V(s;t, x,v).

iax alnp
+
ax] ox! 1((«/gp1,ii)

x1 sl
For j = 1,2,
av! 9 X1 ar —1t!
pis () .[vxq)(,l;t,x,v)g
0x;

0x;j \/gpl,33(x1)

— /t (0x; X(5) - Vx)Vx ®(s, X(s; 1, x, v))ds]
t

-lim V(s;t, x,v).
1 syl

£ ()
ax aX 3w gpl,33

From (2.44), (2.38), and (2.36), we prove (2.18).
The proof of (2.41) is similar to the proof above. We apply dv; to (2.57) and

then use (2.44), (2.39), and (2.37). We skip the details.
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Let us consider (2.42). Note that |V11)1| = limg 1 |V (s;7, x,v)| and

| vl
2‘V11‘ |p1|—211mV(stxv) hmax V(s:t,x,v),
Pl Ox; syt J
we have
vl V(sit.x.v)
(2.58) =1li m dx; V(s:t,x,v).

= lim ————
0x; syl |V(s;t, x, v)|
We combine (2.58), (2.47), (2.36), and (2.49) to derive (2.42).
To prove (2.43), we perform a similar process to that above with dv; to get
Wyl Vst
dv; sLel |V(sit,x,v)| s
We combine (2.59), (2.50), (2.37), and (2.52) to derive (2.43).
LEMMA 2.5. We define (X,(s:t,x,v),Vp(sit,x,v)) as
np(Xp(S§ [a X, U)) = X(S7 t’ X, U),
inp(Xp(sit, x,v))
\/gp,ll (Xp (S, t7 X, v))

(2.59) 11rn dy, V(sit,x,0).

(2.60) Vp.i(s;t,x,v) =

-Vi(s;t, x,v).

Then we have
X,i(s:t,x,v)
_ Z( iNp,j Xp,1(5). Xp2(s),0)
8p,ii Xp,1(5), Xp,2(5),0)

+ 0||n||cz(|Xp,3(S)l))Vj(s;t,x, v)

2.61) 1
- Vp.i(s;t,x,v)
VEriXpGitx,v)
+ Oyl (max [Xp,3(5)  max [V(s)1).
Vpi(S'Z X, V)
_Z ZZ ( "np’")ainp,m
m=1 n(i) l= 1«/gpee VEpnn ) /8piii |(X,.1 (5),Xp.2(5),0)
(2.62)

X Vpe(s:t,x,0)Vpnu(s:t,x,v)
+ 0(||r)||c3){rr1§IX Xp,3(s)| max V(s))?
+max [Vp,3(s)| max [V(s)| + [ VE®@loo}.
PROOF. First we prove (2.61). From (2.1),

Zalnp,i(xp(sﬂy)ﬁU))Xp,e(s;t,x, v) = Xi(s;t,x,v) = V;(s;t,x,0).
Y/
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Note that from (2.8), for [X, 3(s)| < 1,

dinp, i (X , X ,0
(9106010 X320 Xpa ) = " IR

+ O(nllc2)Xp3(s)l;

(263) %(Xp’l(s),Xp,Z(s)y 0)

)
J%(Xp,l(s), Xp,2(5),0)

ad

T (Xp,1(5). Xp2(5). 0)

We apply these to (2.60) and use (2.1) to get (2.61).
Second, we prove (2.62). From (2.60), (2.63), and (2.61),

_ 9i1p.iXp1(5). Xp2($).0)
V&p.ji Xp.1(s). Xp,2(5). 0)

Vp,,-(s;t,x,v)
_d [ Dy Kp1(0) Xp25).0) v)}
ds | \/gp.ii(Xp,1(5). Xp2(5).0)
+ Ol ) max X, 3(5)] max |V (s) [

+ O(Inllc2) max |V ,3(5)| max | V(s)|

+ 0(||77||c2)||V;%q’||oomsaX 1Xp,3(s)]

3 2
_ Z Z ( 177pm)8n7717,m
mae1im1 V8.l \8p.ii) \/&p.nn|(X,.1(5)Xp.2(5).0)

X Vpe(s:8,x,0)Vpn(s;t,x,v)
+ Ol cs) max [Xp,5(5)| max |V (s)
+ O(Inllc2) max |V, 3(5)| max [V(s)|
+ O0(Inle2)IVZ®lloo.

where we have used

3
On Np,m

n;l /8p.nn

+ Cq max 1Xp,3(5)] max [V(s)|.

Vpn(sit,x,v)
(Xp,l (S)sXP.Z(s)sO)

Vin(sit,x,v) =

In the case of i = n, we have

=0.
(Xp,1(5),Xp.2(5),0)

3
Z ( lnpm) illp,m
me1 V8p.ii ) \/8p,ii
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Moreover,

(Xp,1(5),Xp,2(5),0)

3
Z 8g(ai Up,m) 8n7]p,m
me1 ' 8p.ii ) /8p.nn

3
_ Z ae( On Np,m ) i Np,m
me1 8p.nn/) /8p.ii

(Xp.1(5).Xp.2(5),0)
This finishes the proof for (2.62). 0

LEMMA 2.6.

(i) Let Q be a bounded open domain in R3. If |v| > % and |VP|leo <
Wforl &K Nand 0 < § < 1. Here diam(R2) := maxy yeq |x — y|.
Then

(2.64) tp(t, x,v) < 3N diam(R2).

(i) Assume convexity in (1.15). Suppose

1

— <k <N, |VD|e <
N <P =N, |VP?|

—  _ for1 <N,
Jdam@nz 1<

and 0 < § K % < L Ifeither% < 10r% & 1, then we

have the following estimates:

k. nixk k+1,,( k+1
(2.65) k| (% — F 1) <q min{lv n(@A)| [ )|}’

k| vk +1|

k. nxk k41, k+1
(2.66) VFI@F =5 2q min{'” L N}

CA N

PROOF. Note that if |y — x| > diam(Q) and x € Q, then y ¢ Q. If 5, =
t — 3N diam(£2), then

| X(s%:t,x,v) — X|

A%

521
fiol = 1701 =i -

A%

1 3
—— 3N diam(2) = = diam(€2).
2N 2
From (2.2), therefore,

th(t,x,v) =sup{s > 0: X(z;t,x,v) € Qforallt € (t —s,7)} <3N diam(R2).
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First, we consider the case of |vF|[t¥+1 — K| > §for0 <8 < 1. If [ VD[ oo <

N2,then
Itk — k+1)2
DG R (G T M e R L
(2.67) > |vk||tk tk+1| 1 — | llool |
2|vk|

|vk||tk tk+1| 8
L —"

- 2
where we have used the fact that
[V®||oo|tk — ek _ 26 3N diam(Q)

2|vk| — N2 2/N
On the other hand, note that
n(X(@*) - (X - x(1%))

N |

(2.68) < 3§diam(2) < 1.

thtl

(2.69) = n(X(t")) - (hm V(s)(eFH1 — %) + [

|[k+1 _ lk|2
2

From the convexity, the left-hand side has a lower bound Cq | X (t51) — X (¢%)|2.

Therefore, if |V < ]%]—52, then from (2.67) and (2.69),
k

/ —V&(r, X(1))dr ds)

= VT =15 VDo

e, L(Co (|vk||X(rk>—X(rk+1)|)2_”W” |tk—rk—1|)
|vk| = |vk| |tk—tk+1| 2 o0 2
> @_ ”VCDHOO |vk||[k_[k+1|
4 2vk2
Cqo 26/N
> == =L | k||t k+1|
4 2/N

v

Cq
(T )lkat k+1|

Q. ki.k k+1
|| — <.

v

Second, we consider the case of |v¥||[r¥T1 — K| < § for 0 < § < 1. Then
X (tF) — X(s)| < [vK]|e*t! —rk| + %lt“’l — k)2 « 1, and therefore we
may assume that X (s) can be parametrized by p¥-coordinate for all s € [tK+1, £K].
From (2.61),

k k+1 k
max [X i ()] < [v, 19! = o

+ Ol o (max [V(s)[[* — 41 x max [X e 5(5)]-
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On the right-hand side, we control maxg |V (s)| by

1
max [V(s)| < [v] + | V@lloo < 20| for [VOlloo < - < %),

so we have

(2.70) max |V (s)||tk — 5+ < 28

and

2.71) max X,k 5(5)| <5 [V KT — i)
From (2.62) and (2.71),

max |V k ki2,k L k+1 e kel
X [V 3 ()] = [V 5| + 407 Pl = T+ VP ooft® —
+ 4|vk ki2)k _ k412
4|Vpk,3||v 2% — ¢k H1
ki+k k+1
+ Oyl s (D max |V i 5 (o) [0 || — 5.

Now we use |v¥[|tFt! — K| < § « 1 to have

(2.72) max [V ke 3(s)] < 2|V];k’3} + 4|uk|2|zk — zk+1| + ||Vd>||oo|zk — tk+1|-

Now we integrate (2.61) on k1 <5< t* and then use (2.62) to obtain
V];k73(tk _ [k+1)

3m3n77pk 3377pk

tk s 2

__ koo

= /Hl /k E Yok mV pk n drds
t L Epknn /8 pk,33

Kk ()X i 5(5).0)

2.73
(2.73) + 0||,7”C2(1)[msax Xk 3(5)| max [V(s)||t% — tKF1) 4 |tk tt —iK)3 max V(s))?

+ 15 = TPV @0 + max [X e 5(s)| max |V (s)[?
+ max |V i 5(5)| max |V(s)|}],

and we use the convexity (1.15), and (2.71), (2.72), and (2.70) to derive
|V]1§k,3‘(tk _ tk-‘rl)

(Zk —lk+1)2
>Com— 3 Ml

m=1,2

— Oyl [}v];kﬁ“tk — 1 max [V(s) [0 = 4 4 26)6% — K P max [V (s)

2.74) <28 O
+ | —rk“F{ IV®lloo + VK, S11e% — ¥+ max |V (s)|?
—_—— rT, s
(*)2 3
+2( 2 ol 4RI = 1 0ottt — )
‘,_’./

(%)a ()5 ()6
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For (*)1, we decomposed |V(s)| by {V,k }¢=1,2,3 and then the } ,_; , |Vpk’e|2

part is absorbed by ng Dom=12 |V’;k’m|2. |V’;k,3|2 is absorbed by the

left-hand side by the fact [vK||t¥T1 — %] < § « 1. For (%)s, since |[v¥| > 1,
IV@lloolr =512 < (Ivye 5 l10°T + Ve P) NIV oot — 54112

2772 k_ k+12
2.75) + [V PNV Do)t — 1541

< N2V ®lloo [vF[1F — ¥, 1 — 551,
s0() k1
so (%), is absorbed by the left-hand side. For ()3, it is also absorbed by the left-
hand side from (2.70). For (x)4, it is also absorbed by the left-hand side from the
facts |o¥ ||tk — k| < § « 1and § < % For (*)5, we perform decomposi-
tion as we did in (x); and apply [v¥[|tFF1 — K| < § « 1and § < & to be

_+k+1y2
t—t ) Zm 12|Vpk |2 FOT(*)&IUS

absorbed by the left-hand side and Cgq (
also absorbed by the left-hand side similarly to the (), case. Finally, we conclude

(2.65).
Assume that x**1 and x* are close enough, i.e., [x¥+1 — x¥| < ||<1>||1/2 < 1.

From

k+1 k

N pk (ka ) — Npk (ka)
—(lk—lk+1)
= V(e* 4 505, e (), vF)ds

(2.76)

Uk(lk+l _ lk)

_/0 /0 VO(k + X (1 + Ttk e () oF) )dr ds,
we have

Mok (X5FT) = 1 (%) = oF (*HT = 15) + OBl )l ! —oF P2,

By the expansion, npk(ka) — npk(xpk) = (X];;;l_l —ka) Vi pk (XkH) For
(AL — k| < 1, [oF| = &, and | ®|¢2 < gy for N > 1,

Lores (Vi (K THAHT = 5 |{[o*] + Ol @l 1)}

—X k|<

@.77) kpjk+1 _ k
S [T ="

On the other hand, from (2.76) - n (xk +1), we have

[, (X];;fl) — Npk (X];k)] "1 pk (Xitl) =

Ve —18) 4 0| @]l ca) P+ — 12,
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By the expansion, the left-hand side equals
[ 5 (x k+1) — Tpk (Xﬁk)] N pk (Xk+1)

= [0 —xE0) - Ve (5 ] mpe (5 + Odlimll ) XL — x|

<Q ‘XI;;L _ka} )

where we have used the fact that V7 ,x+1 (x . Y ln pk (Xk Jrl) Therefore, if
|Vpk 3| > gand | P2 K¢ 1,

k+1 2
OEL = x5e]” 2 [V s =15 + 0|0 c2) [ — 1P|
(2.78) za {[Vic 5| — OUI@llca) I — ¥
k k+1 k
2Q ‘Vpk’3||t .

From (2.77) and (2.78), we prove (2.66) when xk*1 and x* are close enough.
Assume xK*1 and x¥ are not close, i.e., |xk'"1 —xk| > ||<I>||1/2 From (2.1)
and [tk —tFF1 <1, [oF| = L, and | @] ¢2 < g for N > 1,
[1F = ok | = [k — K ol ek — <P 2 o)l
This proves (2.66). U

LEMMA 2.7. Assume (2.6) and (1.15) hold. Suppose x € Q, % < |v] < N,
IVP|oo < Mgwforl < N, and0 < § K % < 1. Assumet € [M, M +1]
for M € N. Foralli € N witht* € [M —1,t],

max {1 — Cq[vF|[t%F — (KT cq nIvE

Vpk,3
(2.79)
Vk,j+113<m1n{1+CQ|vk||t k+1| Cq N} ];k 3
and
k
1_[ max {1 — Cq|v/ ||t/ — l]+1|,CQ’N}V11)1’3
j=1
(2.80)
k+1 . 14 d i+1 1
SVt S l_[ min {1 + Cq|v/ |t/ —t/F |,CQ’N}VI)1’3.
j=1
Moreover,

(2.81) sup{k € N : |t — 5| <1} Sg w5 1.
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PROOF.
Step 1. We claim that if VI;k ; K |v|, then

[k k1
_ZVI;;:}IJ
282)  y2 _ DB R T
mn=1 EKHL s ASEpkHL i | xk+1 \JEpk+1 33 |xk+1 pK T m " pktln
|tk—lk+1| i X
a0+ )

Due to (2.65) and its proof, if V];k’3 & |v¥|, then
X(s;thH1 k1 pktly okl okl o apy JeH < g < gk
By the expansion of
(ka+1 (s: K1 k+1 ety Vs (s; oL ket vk"'l))
in (2.62) around s = k1,

Vpk+1,3(s; tk+1,xk+1, Uk+1)

2 2
g OnMpk+1 - 037pkt k1 Jk+1

pk+1 gV pk+1
n=1/¢=1 \/ng+l’£e\/ng+lJm xk+1 \/gpk+1,33 xk+1
+ O(lInllc3) {max V(s)P[e% — 5 + |V @[l oo max [V (s)||t% — %+

2
+ max 1Xp+1,3(5)] max [V(s)] }
+ O(lInllc2){max |V pe+1 3(s)[ max |V (s)| + IVZ®lloo}-

Note that from Lemma 2.6 and (2.71), the last three lines above are bounded from
above by |[vFT1|[vEEL | + || V2@ o. Then from (2.61), (2.62), (2.71), and (2.72),

pk"rl
(tk _tk+1)2 2 aman77p1<+1
2 m,n=1 E Pk mm /8 pk+1 nn | xk+1
| _03npk k+1 o ket
k41 ¥ pk+1 5
JEpkH1 33 |xk41 P77 PR
k+1 kL k+1 kL k+1p2 k+1 k+1
= Vi1 3@ =D A Oy (0 = IV lloo + [V 5[5
This proves (2.82).
Step 2. We claim that for vﬁ,ﬂl S |k 1|,
Vk—H
k+1’3
(283) apk— =14+ OQ(HCDHCll[k —lk+1|) + OQ(lvk+1|(lk _ Zk+1)).
A

rk.3
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From Lemma 2.2,

k+1
8Vpk+1’3

Bv’;}k,3
=—i§—(‘k—fk+l) 937 i (xF) _ 1 [ den pr+1 (XKL
=1 \/gpk,33(xk) \/gpk+l,ze(xk+1) \/gpk+l,u(xk+l)
e G (e
V];ﬂ]’3 gpk+1’33(xk+1) & pk+133 ) | xk+1
B 037 pk+1 . 037 pk
VEpKH 33 [kt /8 pk 33 |k

Ve

+ og<||q>||cz)|v’“l(1 v )(t" — k)3l ®lea (ot
|Vpk+1’3|

3377pk

xk+1 /8 pk 33

3377pk+1

8 pkt133

xk

2 k+1
5 % s tk gkl Z Vok+1g 8{( 8377pk+1 ) ~vk}
];ﬂn 3 1= VEpRTLee \ /8 pkt133 ) [xkt
()
Kk k1y| 937pk e ph+1
+ O(DP* (" —1577) :
8 pk 33 |xk 8pk+1 gg|xk+1

k+1
|Vpk+1,,-|

+ 052(||q>||c2)(1 + N

)Ivk Itk — tk+1)3e||d>||cz(tk_tk+1)2.
pk+l,3

Consider (). For £, j = 1,2, from (2.8),

9 BN pk41 N din k41
¢ VEpkt133 ) JEpkt1
5 ( 931 pi+1 . Q51 pk+1 )
VEpkt133  /Epktl,jj

=0

xk+1
0¢0; M Hk+1

B e b
k41 N EPEFL | ket

937 k41

ck+1 A/8pk+133

and hence

.’Uk

xk+1

3 ( 931 pr+1 )
Nl
/gpk+1’33
031 pk+1
= ()R 4 O (1@l £ =

/gpk+l’33
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3Mpkt+1 00N pt k1

k+1 5
— pk+1,j
o1 VEpRHL33 8Pkl Lkt

+ Oy (1@l ) * = *F1.

Combining the above with (2.82), we conclude that

|vk+1|2|tk _ tk+1|2

() = =142+ Oy ., (1Pl c1) k1

pk+1,3
=1+ Oy, (1] cr]t* = 1.

Note that
031 & 031 pk
3Mptt! . _30p — 1+ Og(1) max |V(s)|(tk — t%+1),
JE pkt+1 33 [xk+t1 /8 pk 33 |xk §
0N pk+1 031 Hk
p LB 06 (1) max |V(s) (2K — £FFY), for £ = 1,2.
N E kL pg [xk+1 /8 pk 33 |xk $
Taking the above all together, we prove (2.83).

Step 3. We now prove (2.79). For V];,jll 13 K |v*¥*1|, by the expansion and

(2.83),

k+1 k k . k k k
Vpk+1,3([ ’ka’vp",l’vpk,z’vpkﬁ)
_ Jk+1 k Jk .k k
_vpk+1’3(t »ka»"pk,yvpk,z’o)
k k+1
vV k av
pk3 " pk+l3 k k. k k
+/ a k (t ’ka’vpk,lvvpk’z’f)dr
0 Vpk 3

=0+ v’;k,3 x (2.83).

. k+1 _ k1+k k+1\gk
This proves Voitis = (1+ 0||,,||C2|v [|t* —1 |)Vpk’3.

Now we consider the case of v’;,;brll 3R |k 1|, Clearly

1
k k k+1 k k+1 k+1 k+1
Vo3 = Vel S 0+ [V @flooe — 451 < S S VIR

for sufficiently small ||Vx®|o. This proves (2.79). Then we prove (2.80) by
induction in k. Also, the proof of (2.81) is a direct consequence of (2.80):

k+1 kii+k k+1pn—1 k —Cq|vF||th—tk+1|_k
Vel 5 2 (L4 CaoF|led — 1) vl = e ol =ive, |

_ K Q)40 —gi+1 _
> e Ca iz V'||t'—t |V11)1 ,>e CaNg 0
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LEMMA 2.8. Assume % < |v] £ N, |Vl < Mgwforl <L N, and

<K % & 1. Also, we assume |tk — tk+1) < 1. Then

vxk Xk+1 Vvk Xk+1
Pk k

det pk+1 pk+1 .
k+1 k+1
V., « Ay V « okt
P 5%x5
k k k
\/gpkll(x )\/gkaZ(x ) VkS}
(1 + Og n (@] c2)) — 2
N >\/g,,k+1 22 (K1) Vi
: k k k k+1 k
for the mapping (ka’l’xpka’vpk) = (x pk+11° pk+1 9 pk+l)-
PROOF. From Lemma 2.2 and Lemma 2.6,
AV Xk+1 " Xk+1
pk+1.1 VA Pkt
\vj x Xk+1 \vj « Xk+1
Xk pktlL2 | v Tpktla
V.« V’Zﬂl ‘ \ V];ZZ}I
pk pk 5x5
r k+1 k+1 —
[3ka+4 i} [axpk+1 i]
3Xﬁk J di=1,2,j=1,2 vak i=1,2,j=1,2,3
. k
3 k1 ik 52 axp;j,‘_H.Za( 2in k41 ) iy
N Epk 1 i | xk Wk £=1 "’V];k!j ¢ NGEENT e
_ W, %4n k1 i 9in k1 KD ain b
= | tri- ak g Epkt ka1l K+ X
j p i x \/gpk'H,ii(x ) gpk’jj(x)
5 a1 R
__O3pktl vk _y2_ pk*4‘eae( 3Mpkt1 ) vk
VE k1 33 [kt axk’f,.f = 0kk/ EpkH1 33/ [xkt1
2 W, ( 937 k41 ) " o KD ok
=t 8];,k_' \/‘gpl""'l 33/ Ixk+1 \/pk+l.33(xk+l) g,,k.j_/(xk) i

=g

[ ST Torioter
+ .
Chl®llc2 | Chll®lles s, s

Now fori = 1 andi = 2, we multiply

3 ( i 1 pk+1 )
¢ ,/gpk+1’i,- xk+1

to the £ row for £ = 1,2, and then subtract this from the (i + 2)" row. Similarly,

we multiply

9 ( a3771,k+1 )
| ————
,/gpk+1,l~,~

xk+1
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to the £ row for £ = 1,2 and then subtract this from the 5™ row. Hence, rewriting
the first two rows using Lemma 2.2, the resulting row echelon form of matrix 7 is

- I:ajﬂpk(xk)*(tkftkﬂ)af%} 7(tk7tk+1)% -
pk.j prJi | xk
1 in pk+1 ay 037 pk+1 1 BiM k41 Vi, 037 k41
NG |:\/g,,k+1,,~,v v’!‘;zfi]j \/g,,k+1,33j| k41 '\/g,,kﬂ,,v,- |:\/g,,k+1,,~, Vl;rjrl.z \/g,,k+1_33i| .

0i1 pk+1 vk 3im 1 (KD . 31, (%)
NCZTw aea Vet GEFD ek G

937 k1 ok B3 KD 9im e )

L VEART e O VEp 1 53D ek ()

[cioics Teniie
+ .
Chl®le | Chll®@llcr s s

Then we use rows 3 through 5 to remove the following parts in rows 1 and 2:

- guk .
_(tk—tk-H)a% —(tk =kt E)j”pk
*pk VEK jj

; k41 : k+1
1 3N k41 LRt 330 k41 ) | Dinpk+1 | Vpk41; 930 k41
’ ¢ 3 P — T kF1 c
VEpkH i | N Epk i "J;IL 4 VEPKTI 33 VEpkT1 i | ok +l g K JEpkTT 33

Ypk+13
Via this process, we obtain the following row echelon form of matrix <7

in x(xk)—L—
1 pi )/g,,k+|_“
) vk+| ) 0
. M pk+1 pkt1.i 93N pk+1
Bkt i "f,ﬂl_; Cpr=yery |
Dimphnt | gk Unpent GFHD 3w )
(2.84) VERF i |t O Vet GEFD  Jg k(R
_ O3mpkt vk D3,k KD 9im e (6
VERT S |k B Vet 3G gk ;0
ey k k Vil
Oa(lllc2l¥ ek ~ 1) (14 ) | oaGilcalot ik o1+ 2 )
|",,k+l_3‘ |",,A»+1_3‘
Oa.n(12lc2) | Oa.n(12llc2) x5

Note that the type of elementary row echelon operation we used preserves the
determinant. Therefore, we compute determinants of two matrices. The determi-
nant of the lower right 3 x 3 block of the first matrix in (2.84) is given by

i 41 (xFHD) 0k (xpky
1 = det \/gpk+1'i,~(x"’+1) \/gpk'jj(xk)
- _ 33'7,,k+1(xk+1) 3j77,,k(xk)
L \/gpk+1,33(xk+‘) \/gpk,jj(xk) 3x3
M 9 k1 (K1)
(2.85) —rr
8 41 1 (KT
3am k41 (x5 H1) 3 ,x (x5) d2m ,k (x5) 337,k (x*)
=det| Tt det = < = .
8pkt 22 HD VErk 105 ek 0GR ek 3G | o
_ Bamep KD
8 k1 33 (K1)

3x3
In order to evaluate the determinant of the upper left 2 x 2 matrix, we use a basic
linear algebra result: Let Ay, A, By, B3 € R3. Then

A1-B1 A1-B
det( o1 21 2)‘:\(AIXA2).(BI><BZ)|.

(2.86) Ay- By Ay- B
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From (2.86), the determinant of upper left 2 x 2 submatrix of the first matrix in
(2.84) equals

'(31 Npk X 82"1}") ’xk

k+1
Vok+11 030 pkt1

_l’_
k+1
xk+1 VPZLH 3 V/8pkt1,33

k+1

xk+1:|

( 1 |: 011 pk+1
VEpk+1 11 L /8 pk+1 11

" 1 [ 027 pk+1 n Vok+1, 030 pk+1 ])‘
8 pk+1 22 L /8 pk+1 22 [xk+1 V’;;("_il_l’3 VEpk+1.33 | xk+1
2.87) \/gpk,ll(xk) \/gpk,ZZ(xk)
om0 Je
k+1 k+1
Vo k+15 020 k+1 Vok+1q 010 k+1
X npk(xk)' npk+1 — ]1:+1 : = - /1€)+1 , =
Vit 3 VEPKTI22 Vi 5 EpkFLTI
088) Ve 1698 2 V| VDol — k]
: - k+1 :
\/gpk+1,11(xk+1)gpk+1,22(xk+l) |vpk+1,3|

Since the determinant of the second matrix in (2.84) is the size of | ®|| -2, we finish
the proof from (2.84), (2.85), and (2.88). O

LEMMA 2.9. We define, for all k,

k k

2 2 2 A Vo1 v k.2

(2.89) |V§k’ = \/(Vl;k,1) + (Vl;k,z) + (V];;k,3) ’ Vl;k,l = ijkk ; v];k,z = |5kk|,
p p

where V];k = V];k(t,x,v) are defined in (2.11). Assume (1.15), ﬁ < |v] < N,
”(D”C}C < M&Wforl < N, 0< 81 < % < 1, and |V11)1,3(t,x,v)| > 82 >
0. If |t — t*| < 1, then

axl;k.l axl;k 1 1 k.1
O,y M, | W,
ax’;k!2 axik ) 8X];k,2 8xll‘;k ’
oxl, x| e, v,
(2.90) det aA,f ! aA,f 2 BAZ 1 aA,f 2 > €q N85, > 0,

Yok a Yok a Yok a Yok a
ale,l 3x;1’2 8’0;1,1 8’\7;1‘2
36];" 2 BV’;k 2 ael;k 2 8?’;,( 2

| 0,1y O, [V
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where t' = t1(t, x,v), X1171,i = Xll;l,i (t,x,v), ?;I’i = 611;1,1' (t,x,v), and

ko _ Jk 1 1 1 sl ol 1
Xpki _Xp",i(t ’Xp‘,l’Xp‘,Z’Vp‘,l’vp‘,Z’|Vp‘|)’
ok _ ok 1 1 1 sl ol 1
Vpk.i _Vpk,i(t ’Xp‘,l’xp‘,Z’Vp‘,l’Vp‘,Z’|Vp‘|)'

Here the constant €q y 5, s, > 0 does not depend on t or x.

PROOF.  Step 1. We compute

i+1 i+1 sSi+1 sSi+1 i+1
Ji+l 8(Xp“r‘,l’Xp“f‘,Z’Vp“r‘,l’Vp“r‘,Z’ |fo+‘|)
i = i i ol o i
a(Xp",l’XIJ",Z’VP",I’VIJ",Z’ Vpi )
i i i i+1 i+1 i+1
= 8(X1v",1’}'{1D",2"740") a(Xp’”rl,l’Xp’”“,Z’Vp“”)
i PSP i i i i
(2.91) 8(Xp",l’Xpi,2’vp",1’Vp",Z’ |Vp"|) a(Xp",l’Xp"J’Vp")
=0, =P;
i+1 i+1 Si+1 Si+1 i+1
a(xpi—i-l’l’ pi+1’2’vpi+l’1’vpi+1’2’|Vpi+1|)
i+1 i+1 i+1
8(Xpi+1,1vxpi+1’2’vpi+1)
=0i+1
For Q;,
1 0 0 0 0 ] 1 0 0 0 0 ]
1 0 0 0 1 0 0 0
i i i i
00 vai‘l Bvlfi.1 avpli.1 00 }Vi, 0 vaf.l
3?;1-1 3?;1- 5 3|v2i| P! Blvlpil
(292) Qi = Bvii Bvil« avil- = . Bvil«
0 0|2 —F2 o2 00 0 v, =&
3?;1-1 3?;1- 5 3|V;[| pi a|v;,.|
00 3v;i.3 Bv;l-.3 av;).l-.3 0 0 avj?,-'3 Bv;l-.3 Bv;f-.3
R T T R U T
- pt.1 pt.2 D - pt.1 pt.2 D -
For Qj 41,
1 0 0 0 0 7]
1 0 0 0
i1 i+l i1
0 0 8vpl._i_1’1 3V,,,:+1,1 vaH_l’l
1 i1 i1
8V1i+l v i v
P 1 pitl 2 pitl 3
(2.93) Qi+1 = geit1 aei Tl ait1 =
0 0 pitlo pitlo pitlo
v’ T—il-l gviT] 1 aviT!
pitla pitlo pitl3
i1 i+1 i+1
0 0 a‘vpz‘+1| 3|Vpi+1| 3|Vpi+1|
avi ! avi 1! avi !
L pi-‘rl’] pi-‘rl'z pi+1’3 1
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1 0 0 0 0 ]
1 0 0 0
a/‘;i-‘rl
l+1 - pit1 1
00 pz+l| 0 PWES
_ p1+1 3
- v Tl
vitl |~ pitlo
0 0 0 lerl| W
pt 3
i+1 i+1 i+1
00 3‘ pit1 3‘ pit1 3‘ Vpit1
+1 +1 [ +1
L 8vll+l 1 v ;1+1 2 3"1,1‘+1,3 i
Note that for £ =1, 2,
~it1 i+1 i+l
(2.94) 8Vpi+1’g _ it 0 ( 1 ) B Voit1 ¢Vpiti 3
’ i+1 T pitl g i+l i+1 - i+1 (3 ’
pitl 3 i v pitl3 |V i+1 |V it
and fork = 1,2, 3,
} i+1 ‘ Vi—-H
(2 95) pt+1 _ p1+1 k
’ i+1 - i+1
8V t+1 k |V i+1

From (2.93), (2.94), and (2.95),
i+1 ( i+1 )2 i+1

1 Voitl 3 i+t15) Vit
. _ )4 ptT2 p ,3
det Qi+1 = v i+1 | |V1+1 2 viTl
pt+1 i+1 z+1
yitl i+l i+1
pi-‘rl 1 pi+l 3 pi+l 1
(2.96) l+1 } i+1 ‘
l+1 p1+1
i+1 )3
B (sz+1 3)
o i+1
‘ pl+1|
By taking the inverse and changing index i + 1 to i, we get
‘V;i}s
2.97) detQ; = -3
(Vpi,3)
From (2.91), (2.97), (2.96), and Lemma 2.8, we get
k+1 k+1
kakxpk"‘l Vkaka‘H
det) " i ke
Vi v Vo v
+1 k—+1
p Vok P 5%5
k k k
\/gpkll(x )\/gkaZ(x ) Vk3|

= (1+ Oq,n([®lc2))

k+1
\/gpk+1 11(x +1)\/g k1 pp (XK FT) v pr+13

’
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|det J/ | = |det Q; det P; det Q;41]

i 15

vl Ve 11822 i

= —2—(1+4 Ogn(|®lc2) Pt
(Vi 3) VEP 11 /B 22 i

vl ()
pi.3 p’+1,3
(298) it | i+1 |5

Vpitiz Vpiti

' 2
V& 1/Ep 22 |le-ii-:l’3|

\/gpi+1,11\/gpi+‘,22|x"+1 \V;;i,3|2

=1+ O n([|P]lc2))
+ O N ([Pl c2)-

Therefore,

k|2
V \
‘det]lk‘ =1+ Og n(|®c2)) gpl,llx/gp1’22|xl | pk’3}2
(2.99) «/gpk,lla/gpk,ZZ‘xk ‘Vll;l,3‘

+ O N ([P c2)-

Step 2. From (2.35),

i+1
2|Vi+1 |8|Vpi+1|
pit1 g
pin
V(L i xi )2 Vit i i yi _ S
— | ( ) )| =2 ( - )-V(t"H;t’,x’,v’)
avp",n aVp",n

9 li _ l‘i+1 . .
+ ( . )qu)(tl-i-l’xl-‘rl)
v

_ 2( 3n7]pi
(2.100) /Zpimn i

+ 0 (V20|oo) [t — 11112 ViPloolti 1 ’) V)

xi

a(li _ ti+1)

™ 1V @lloo VL | + O Va@lloo) (1 — 171
pi

— oyl
= 2vp,<,n + 2‘

R

i i i 2 i_pi+1)2
+ 0| VE®[loo) [0 | (¢ — 1712l Va @l =07,

Then by Lemma 2.2 and % <q,nv 1, we get
pl.n
aviELL v
(2.101) P — 2% 4 Oqn(|®|c2) for n=1,2.
vt . i+1
pin |Vpi+1|
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From (2.35), forn =1, 2,

i+1
‘ i+1 ‘ p1+1| 8'V(tl+1 tl X , U )|2
pz+l ) aXll
p.n
V(L Xy . o
-2 ( i )-V(tl—H;l‘l,xl,vl)
8xpi,n
9 li —li+1 ) )
= 2(—( l. )V @it Xt
axp,.,n

[ ] 2 i_gi+1y2
+ 0 (|| V2®| o)t} — 17T el Vi Ploo @' =177 )

. V(ti+1;li,xi,vi)

< Ona([®llc2).

where we have used |d(t} — ti+1)/8x;,- oI Sne 1forn = 1,2 from Lemma 2.2.
This proves

}l-{-l‘

(2.102) - Il”“ = Ona(|®|lc2) forn=1,2.
Xpi
Meanwhile,
v i+1 | 5 v it+1 | i
Vpit1 _ G p”” \/1_(91'_ )2_(Ai )2 Vi3
8|v ) = A v " pi,1 Vpi 2 ;—lir+11‘
+ OQ,N(H‘DHCZ)
(2.103) 2y —
= Zi};ix"l:i’} + \/1 - (v;i’l) - (/G;i,z) ’1’ ’ + OQ N(HCD”CZ)
(=1 p!
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Step 3. From (2.99), (2.101), (2.102), and (2.103),

k 2
NN T v k,3|
[det J¥| = (1 + Oy (| @] ¢2) Y 2= - P
VE &R 22k V31 5]
+ Oa N ([®lc2)

- k k k k
a(xpk .1 ’ka ,2) a(xpk ,1 ’xpk ,2)

BRI

(*)

— ok Sk oSk Sk

- det a(vl?k.l,vpkl) a(vpk,l’vpk.Z) (*) ’
1 1 1 Sl

a(X‘Dl,l’xpll) a(Vpl,]’vpl,2)

i (%) (%) L4+ (%) Jsxs
where (x) := Oq n (| ®||c2).

P (Xk k i’\k if\k

T 1
X X
a( pl.1>"plo

X
pk, 1’ " pk2’ T pk1 T pk2
= |det| —HF—F= P + Oa N (1P c2).
a(x X v Vi)
| L1 Tpl2r Tpli1 Tpl2

4x4

Note that from (2.81), k <q N5, , | and |v’;k 5l SQ.ns o |V11)1 ;|- Therefore, we
conclude (2.90). O

3 Transversality via the Geometric Decomposition
and Triple Iterations

LEMMA 3.1. Assume Y : (y1,y2) = Y(y1,y2) € R3 is a CY-map locally. For
anyt,s > Owiths € [t — 1,t], [n(x'(t,Y(y1, y2).v)) - v (t, Y(y1, y2),v)| > 6,
¥ Sl SN, 3 < |val, 5@ Y (1. y2).v) < s < (K@ Y(y1.y2).v), and
[V®leo <

)
Taam@ N2 We have

(3.1 Iy [Xi(s;t, Y (y1,¥2),v)] =

3
DN pk
) k k
_([_S)Z—p(xklkazao)
KZI gpk,ﬂﬁ 240 p*,

k
Yokt

‘V];k|

+ Os,n ([Pl c2).
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and for d € {95, 05,, dy,, 0y, }

X (s:2, Y(yl,yz) V)]

= —81k|vpk‘ Z

8@7}pk

k ,
gpké p &
(=1

2

Ry Z(

j=1 €=1

2
NGl =

j=1
_ 8377},/(,,- (
V8 pk .33

(3.2)

pk
J”pk,t
JEpk 11

+ 05, n (| D]l c2)-
Here

k
X
pk

= k(1. Y(y1, y2). ).

and v*
PROOF.

Step 1. We claim that

pk 1°

k
pk.1°

V];kz
|V];k|

Xpk2:0)

+Zax k0 00T pk i (pkl’ l;kz’o)

agi’}pk i

L)

k
Pk 1 Xpk o

0)¢ Viok Z)Bx
0)

Qk

<k
Xpk 20

k
Xpk 20

0)=¢

]avk ‘
5]

ok
Vpk 3

= X (1, Y (1. 72),v).

K= Vo Y (1. 72),0),

() =t/ TH ) dv¥|
= Oq N (|Pllc2). =1+ O n([®lc2).
3.3) d[v] d[v]
. ox J ; a"}lf) ;
o |’ = Oq.n([®llc2). e |’ = Oq.n([|®]c2)-
By the chain rule,
- v ) e
Vyl,yz,vl,ﬁz,lvltk A ’ka 1,|v il
(3.4) v)’h)’2,ﬁ1,52,|v|xpk vtk_1=xk/?—1"’f,1?—1=|"p;—1| P <.
) \v} ~ sk V k1 Jk—1 K=l k=1 v
Y1,2,01,02,[v|¥ pk RS SRS\l
vy1,yz,vl,vz,|vl|V il _vtk—l,x’;k‘ Vel IveE 11||V k|
[ V.. 12 ] 1
AR ARAEAAL ) Vy1,92.81.82.0v/!
Virad 90w X2 || Ve s i
Xy v Vo v 51 5o 1oV
xS Y2 Vyl,yz,vl,vz,lvl p!
thxl, |v1||V 2|

1
)’I,yz,ﬁl,ﬁz,lv||vp1|
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We claim that

B o ; Y A S
v”’x;,j ’V;,j’wjj'l
o R
Vi & v Xpi+
p pr 4 —
3 5 TpJ’ pl? J
(3.5) v it | =
v ijaj Azju v/ ;1 p7+1
j+1
Vet 520 Ve
- J+1 o
1{0 0 0 0%
|ij|
0 0
0 0 0 0 + Oa.n ([Pl c2).
0 o.ns(1 0
0 0
L 0 1

Once (3.5) is proven, from the chain rule (3.4) and Lemma 2.4, we conclude (3.3).
From (2.1),
(4] j i +1 +1 ] j
v/ (! —;H-l) = npj+1(X;j+l’1,X;j+l,2,O) —NpJ (X;;J‘,l’x;;j,z’o)
Py R R o
/’ Vi®(t, X(z:t/, x7,v’))dr ds.
t/

tJ
Taking % directly to the above equality, we derive

J 9/ 1 i1 /T Jod i
. (1_ o )z_ — / Vo d(z, X(z;17, 17 v7))dr

+ @ =)V o@, x),

and 82;? =1+ | Vx®lloolt’ —fj+1|/|VI];;LJr11|. Now from Lemma 2.6,
' : 1 §x3Ndiam(Q) _ 1
VL= ol 4+ OV @leolr — 1741 2 @)

=N 3diam(Q)N2 TN’
Therefore we conclude that
8tj +1

(3.6) TR 1+ O n([|®]c2)-

From (2.22), we derive
ox j+1

pitii _ (07! 1)y/ !
ori ol )i
. . 0X(t:t/,x7 v/
@l — P sup | XAV
titl<g<t/ atJ

3.7

= Oq. N ([|P]l¢c2),
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where we have used the fact that

0X (t:t/, x7 v))
ot/

sup S+ Ve ®@|loolt! — /1| < Ch g,

titl<g<gp/

which is proved similarly to the proof of (2.28).
From (2.1), we have

. . tj+1 . . ) . tj+1 2
[v/ 12 = |vf|2—2f v/ Ve ®(r, X (27, x7 v/ ))de + / V,®(7)
tJ tJ
Then
i+1
i1
ot/
j+1r . . .
=-2— v/ V@) 4 207 VD)
L . 0X 0X
+ 20 [V20 oolv7 [(¢7 — /1) +  sup () } @
titt<p<pi | 07 |} piticpeyi| O/
and hence
3|Uj+1|
(3.8) 7 = Oan(®lc2).
From (2.31), we prove
~j+1
aV;,j+1,,~
otJ

x’

(3.9) . o
= Oyl (‘?’;j ){Iv’I + [V ®lloo(t = /1)) + Opyp .y IV @lloo)

= On,o(|®]l¢2).

We already have estimates for ¢/ +1/ 3X£ ;; inLemma 2.2.
From Lemma 2.2,

gritl i /1

— = + Oa N(|®|c2) and 5 = Oq,n([®llc2)-
o|v | v Wi

p- D D’

Moreover, from the conditions |n(x!(z, Y (y1, y2),v))-v!(t, Y(y1, y2),v)| > 6,
% <|v| < N,Lemma 2.7, (2.80), and (2.81), we have

(3.10) [V, S Y (1, y2),0)| 2 6.

Then, from Lemma 2.2,

JHl i+l
8(ij+1"’pj+l)
o T | = O
X’V

i Vpi V;j )

(3.11)
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From (3.6) to (3.11), we prove (3.5).
Step 2. Recall that, from (2.1), for A+l < g < ¢k

Xi(s;t, Y(xl,xz) v)

—X,(sz OV )

pk r p" 2’
= npk,i(xllc)k’l’xl;k’27 )_(t _S)lvkh’)\,li

S T
—/k /k 81'(13(1’/;X(‘C/;lk,X];k,l,X’;k’z,O,VI;k))d‘C/d‘L’,
(3.12) "

Vi(s:2,Y(x1.x2), v)

—V,(st OV v)

pk 1’ pk bX
= [vF|5% —/tk 0i0(z; X (rse x| Xk, 098 ))dr,
where the specular cycles are defined in (2.4) as

([k7 I;k’VI;k) = (tk(t,Y()’h y2)7v)7XI;k(t’Y(y1’ yz),v)»VI;k([’Y()’l»)’Z)sU))-

By direct computations, for 0 = 9|,

o[ Xi (532, Y (x1,x2),0)]

2

— k k k

= § 8|U|xpk,e.agr;pk’i(xpk,l,xpk’z,O)
(=1

+ [ — BV FJOF = (¢ = 5) 3y [vF 1% — (F — 5)[0F |81 [0%]

S T
—/k /k (a|v|r’<a,kX(f/;z’<)
t t

2
D Dol Oy, X ’k)+9|v|Vpkea’zX(f/;fk))

Vo d(1; X(f/;lk,X];k I,XI;k 50, vkk))dr’dr

+8|v|tk(s—tk) 1/1Tr? 0; <I>(r X(r -tk x ];k 1 pk 50, V ))

where we have used the abbreviated notation X(z’; t%) for X(¢/; 1%, x pk I,XI; ko
0, Vpk). From (3.3), we bound the first, second, fourth, fifth, and last line of the

right-hand side by Ogq v (||®||c2). Finally, we apply (3.3) to the third line and
conclude (3.1).
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Step 3. First we compute 3v% with any arbitrary derivative d. Note that from
(2.7) and (2.10), ¢ k> 0 and ¥ k3 \/l — |¥k ok 1| |v X 2|2. Therefore

2
ook a[ denpr

k k sk
o = (X551 X5 00",
= 8k 0l pr, 1" T pt2 ph.L
031 pk
D
+ gpk33( k17 k27 \/1 |Vk1 |pk2|]

357] k
Z V4 A
= 8ka mam — (kal,ka Z’O)kag
it p~, gpk,ﬁz p~, p~, p”,
2

dgn pi &5k ok
m( psl’xpaz’o)a[vpk,e]
3377p 1

k
( klv kza
«/gpk 33 \/1 IV "1

[i’\];k,la[";];k,l] + Vpk 28[ Pk, 2]]

| pk 2|

2 3 9 8[’7 k
=3 (s | ke g 00
— 8ka’j & pk it ’ ’ ’ ’

2
Cinpk g k
J:
ok

_M(Xk X~ O)VP o[, ]
VB P RE T
From (3.12), for 0 € {0d5,, 05,, 0y, . 0y, },
3[X'(S'f Y(y1.y2).v)]

_ Zax eg Bempe s (5, b 0) — ark VR [oF
e_

— (" —s)8|vkk|ﬁk — (k- s)|v’;k|aﬁk

[/ (az 0k X(7'; z")+23xk€ ‘£, X(r’;tk)
tk s

k .k
+ avp"’,e(xpk)avl;k_zx(f,at ))

-VaidD(r’;X(r’;tk,X];k1,x];k2,0,vkk))dr/dr
+ 3tk (s — %) lim 9;®("; X (v ok x ];kp k2,0v %))

/le
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We can easily conclude (3.2) by (3.3) and Step 2. O
Recall the specular cycles (5, x*, v¥) in (2.4) and Npk in (2.6). Assume
(3.13) n(xk) - vk £ 0.

DEFINITION 3.2 (Specular Basis). We define the specular basis, which is an or-
thonormal basis of R3, as

k

v
e](g = AR

v

0 xk d xk
(3.14) e’j_,l — elgx 277pk( ) /elgx 27]pk( ) "
\/gpk,ZZ(xk) \/gpk,22(xk)

k k k

€] ,i=¢eyxe] ;.
DEFINITION 3.3 (Specular Matrix). For fixed k € N and a C !-map

Y (y1,y2) = Y(y1, y2),

assume (3.13) with x¥ = x¥(z, Y(y1., y2), [v], 1. D2) and vF = v*(r, Y (31, 2).
|v|, V1, 02). We define the 4 x 4 specular transition matrix
FHPEY = kP Y (¢ y1 s, [v], D1, D) as

k.p*.Y ‘
(3.15) koY .| A 022
: ’ yk,Pk,Y ‘ yk,pk,Y ’
2 3 4x4
where
- k k
gkPEY Impr - €] | 021 pk ‘el,l}
1 T k k ’
LO1npk €] 5 O2mpi-e] 5], ,

(3 p den k| ok k 3 den k| ak k
—1 01 \4 - € — 32 \4 - €
yk,pk,Y . (Z[ 1 [m pk L 1,1 ZZ 1 /8 ko | Pt 1,1
> = )
3 4 e,k |~k & 3 4 ek |~k A
_ _ . _ Vv .
_( 2=t [m Vo) €Ll 2192 /8 pk 0 | PR €12 .
r k
dnx  Bmyk Vok gy ok ok B0k Vik, ok
P /8,k 11 [Epk 33 Vi | BT /8,k 2 [8pk 33V 5| bl
3 ik 3mpk vﬁk.l ok domx  O3mpk Gl;kvz e '
/8 ,k 11 /8 ,k 33 Vﬁks 1,2 /8,k 22 /8K 33 ?’;,\3 1.2

where 7,« and g« are evaluated at xK (@, Y(y1. y2). |v], 01, D2). We also define
. k k A A
the 4 x 4 specular matrix Z%P" Y = Z5P"Y (¢ y1, ys,|v|, 01, 02) as

Ed

2x2

8(xk xk, vk ¥k )

k k k.1’ k.2’ k.1’ k1

(3.16) Y = et Y P P Pl P
d(y1, y2, 01, V2)

where x¥, = x¥, (1. Y(y1. y2). [v]. 01.92), VA, = V&, (0. Y (31, y2). [v]. D1, D2).
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Finally, we state the result that is a crucial ingredient in the proofs of Lemma 3.6
and Lemma 3.7. For n x m matrix A, we use the notation A4; ; for its (i, j)-entry.
Recall that ez = (0,0, 1) € R3 and v3 = v - e3.

LEMMA 3.4. Leta C'-map Y : (y1,y2) = Y(y1,y2) € Q with |[Y]c1 < 1.
Assume % <|v| <N, % < |vs], % < |n(x'(t,Y(y1,y2).v))-e3|, and ||<D||c§ <

Mmf(w for1 < N and 0 < 81 < 1. We also assume a nongrazing condition

(3.17) vl (t, Y (1, y2),v) -n(x' (¢, Y (1, y2), )| > 62 > 0
and nondegenerate condition

3.18) ‘(3Y(Y1,Y2) y Y (y1,y2)
ay1 dy2

Fixk € N with |t — t¥| < 1. Then the following results hold:

(i) For some constant 0Q N5, .8,,6; > 0, there exists at least one i € {1,2,
3,4} such that

k,pk,Y
(3.19) (% (6, Y (91, 92),0)| > 00,N.81.62.55-
(i) There existi, j € {1,2,3,4} withi < j such that

) Rt (.1 ya) )V G Y (V1. 92).v)| > 83 > 0.

k,pk.Y k,p*.Y
Ry

o
(3.20) det| iy iy |GYO152).0)] > 008588
R4i ‘@4 j
9 ’.]
PROOF.
Step 1. We claim that
k
(3.21) |det Z52°Y (£, Y (31, 92).0)| Z@.N.61.62.85 1.

Note that from (3.16) and (3.15),
det(#5P" Ty = det( K7 T ) det(FHPHT)

k kK ok ok
X det(a(xpk,rxpk,z’ Vpkal’vp"’l))
d(y1, y2, 01, V2)

By (2.86) and (3.14),

det(ylk’pk’y) = ‘(817]pk X 011 pic) - (elj_,l X eﬁ,z)‘

vk

pk
‘V];k |

-n(xk)

= \/gpk,ll(xk)gpk,ZZ(xk)'

}V];kg

= \/gpk,ll(xk)gpk,ZZ(xk)

’

}Vpk
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Sk
det(yk’pk’y) . '([ 8177pk B 8377pk vpk,1:|
3 - A

N FINTHIN PR L

Sk
Vv
5 921 pk B 93Mpk Yk o ~(ek ok )
~k 1,1 1,2

VEpkaa  /8pk.33 Vok 3
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_ 1 (Ak 317’}pk Y aznpk ok 337)pk )
= k’2 k’3
|V k3 VL P8k PR STk
k k
) (eJ_,l X eJ_,z)
k
_ 1 k. ¥k ‘Vpk|
k
}Vpk 3‘ }Vpk‘ ‘Vpk 3|
From the chain rule and (2.90),
<k vk Gk
det a(xpkl’ pe2 Yok Vo)
d(y1, y2, 01, 02)
xk Sk Sk a1 a1
(3.22) — |det 8(ka 1 pk,Z’Vka’Vpk’z) 3(Xp1 T plyz,Vplyl,vpl’z)
a(Xpl v ;,1 2,?;,( 1’6;;/&2) 9(y1. y2,01,02)

a(x v, ¥
> ¢ det ( pl 1’ pl 2 pl,17 pl,2)
Z €Q,N,81,62,03 =~ =~ .
9(y1. y2. 01, 02)

Note that
B 1 1
W gl Wyl | P P
dy1 XTplil Ay TXTpla alﬁl 31172
~ ~ ox 0x
axt, xt, ¥t ¥l Y | 1 Y 1 pl.2 pl2
( pl,lv pl’zv pl’lv PI,Z) _ 1 Vxxpl’z 3y5 Vxxpl 5 9%, 9,
~ ~ - ol o1
9(y1, y2, 01, 02) Yy gl KD v | avpl,l avpl,l
dyr " FUplil dyz "X Tplia | 9 90>
Wy Y oye 891‘71 5 a@;l’z
| Oy1 pr1 2 yz VxVpio | Tany 90>

From Lemma 2.4 and (3.17),

~ 1 3'77 1
VxV})1 ;= T{VxX;I . V(l—p)
’ v 1‘ Epliii

vy
Oq N ([®ll¢c2)
|V11,1 |2|V;1’3|

9;
:VxXllﬂ V( Hp! )
V8pliii

v+ Oq N, ([|P]lc2)

x!

v
: 1 + OQ,N,51,82(||<D||C2)’
x1 ‘Vpl‘
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sl 1 1 V
Vﬁvpl,i = VTI‘VﬁVPI’i } V’*‘V 1‘
pl

|V 1] V&l ii

- OQ,N,sl,gz(ucbncz)}

Xl
M {|| " | oge) | 1 on (ol )t}
v|ej - —2— cl N c2)t
| ! | / E8pliii lx!

+ Oq n,5,.5, (|l c2)

v 0Ny diny1 v

|1| L e Vxd V(_P .

Vo ‘ VEpliii lxt VEplii /) Ix! ‘Vpl ‘
+ OQ,N,81,32(||(D||C2)'

Then by Gaussian elimination,
J1 a1
8(Xp1 r p‘ 2 pl,l’vpl,Z)
det — =
01, y2. 01, 02)
Wy ol Yy ol %1 %1 \
dyr  "X%pl,t dyx "XTpla 00 90>
ax! ax!
a—Y.V Xl a_Y.V Xl pl2 12
0y1 Xplo  dy,  "X7plo 001 90>
det 0111 01n,1
0 0 Il e 2L e,
V8pl.11 Epl 11
027 27
0 0 202 Lo 22 L,
L N/ 8p2.22 8p2.22 _

+ [Oq,n,5,,8, (| Pllc2)]axa)-

From (3.10) and (2.2), all the entries of the above matrix are bound and hence the
determinant of the Jacobian matrix equals

— 1 1 -
([ ¥ .y xl 3 g1 %1 1 \
a1 *Tplil dya TX¥Tplia 3151 3152
Y .V.x! Y .V x! axpl.z axpl,z
det ay1 X312 Jyy pl,2 0V V2
(3.23) 0 0 017,1 e 917,,1
1
\/gp],ll \/gpl 11
0 0 027,2 ey 921,,2 ¢ )
/&p2.22 /8p2.22 -

+ Oq n,5,,5, (|l c2)-
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From (2.86), the determinant equals

X

Y oy
(3.24) ‘(— x —) - (VaXp1 g X VX )

817}p1 « 3277p1 ¢
dyr  dy2 P 3

V8pli1  /8pl22
+ O0q.n,5,.5, (| Pl c2).

From (2.4)

1 1
vap1,1 X Vxxpl’2

. 1
\/gpl,ll(xl)gpl,ZZ(xl)
1 1
[ oy T G Vi 8znp1<x1>}
p! Tl T
Vpi3 \/gpl,ll(xl) Vpi3 \/gp1,22(x1)

ol \ ol
+ og(||v§<1>||oo)(1 T LI
Vp1’3| |Vp1’3

i
From (2.10) and (2.11), the first line of the right-hand side above equals

1 —Rxll)l
1
\/gpl,ll(xl)gpl,ZZ(xl) Vp1.3

’

while the second line is bounded by OQ’N,52(HV)%@”OO)(lvl/h’;l ;1) from (3.17).
From the assumptions of the lemma, including (3.18), we derive a lower bound as

83 1
(3.24) zq N X N + O(|| @[ ¢2).

By choosing sufficiently small ||®| -2 we prove (3.21).
Step 2. Assume L@f’fk’yl < 1foralli € {1,2,3,4} . Then

4
. k k
Z(—l)’+3%f’3p ’YMi,3 < 4max |M, 3| x max|%f’3p ¥
b i i bl
i=1

k
|det 2%P"Y | <

’

where the minor M; ; is defined to be the determinant of the 3 x 3 matrix that

results from 22%-P"-Y by removing the i row and the j" column. Note that
IM; 3| <@ N85, 1. From (3.21) we prove (3.19).
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Step 3. Note that
|det5?k’pk’Y| <12 max‘%f’ipk’Y| X max‘%f’fk’y}
1 ’ i ’

k,p*.Y k,p*.Y
det|: ﬁz’i ky %i’jk Y :H
’p 9 7p 9
Ry Ks.j
k,p*.Y k,p*.Y
det[%i’i ky %2’1 k Yi|
5p bl 5p 9
‘%)4,1' ‘%)4,1'

From (3.21), we prove (3.20). Il

X max
iL,Jj

SQ N8 ,82 nlla}x

LEMMA 3.5. Assume that a(z), b(z), and c(z) are C%Y-functions of z € R"
locally. We consider G(z,s) = a(z)s? + b(z)s + c(2).

(1) Assume |a| > min |a| > 0. Define

—b(z) . —b(z) + Vb*(z) — 4a(z)c(z)
da(z)” 2 Tormsacs 2a(2) |

—b _ b2 —4 :
93(2) == 1p2(2)—4a(z)c(z)>0 @)=V 2:2) a(z)c(z).

¢1(2) :
(3.25)

Then ¢i(z) € C*Y with ||gi]|coy < C(minlal, lalcor. [bllcor. lcllcor) for

i = 1,2,3 such that if |s| < 1 and minj=1 2 3|s — @i (2)| > 8, then |G(z,s)| =
min |a| x §2.

(i) Assume a = 0 and min |b| > 0. Define
—(z)
b(z)

Then ¢4(z) € C%Y with ||@4]|coy < C(min ||, |b]co.y. Ic]lco.y). Moreover, if
|s| < 1and|s — pa(z)| > 8, then |G(z,s)| Z min |b| x 6.

(3.26) 9a(2) =

(iii) Assume a = 0 and min |c| > 0. Define

(3.27) 95(2) 1= 1)) minlcl _bcéz))

Then ¢s(z) € C%7 with ||gs||cor < C(min |b|, 18]l cor. liclco.r). Moreover, if
Is| < 1and |s — ¢5(z)| > §, then |G(z,5)| > min {22l minjel 51,

PROOF. We consider (i). Without loss of generality we may assume that a >
mina > 0. Clearly if a(z) > mina > 0, then ¢; is C%” and |¢;|co.y
C(mina, ||a||co.v. |b|lco.v, llcllcor) fori =1,2,3.

We claim that

| mirll 8{|G(z,s +8) —G(z,9).1G(z,5) — G(z,s — 8)|} = mina x §2.
S—@1|>

A
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Since G(z, s) is symmetric around s = ¢y, it suffices to prove the above estimate
for s > ¢,. First, we consider the difference G(z,s + §) — G(z,s) for s > —b

2a
and § > 0. Note d5[G(z,s + §) — G(z,5)] = 2ad > 0. Therefore, for any z,

min [G(z,s 4+ 8) — G(z,s5)] = [G(z,—ﬁ + 8) — G(z,—i)} > mina x §2.
b 2a 2a

52724

Second, we consider G(z,s) — G(z,s — J) for s > —% + 8 and § > 0. Since
ds[G(z,s +8) — G(z,s)] = 2aé > 0,

b b
min [G(z,5) — G(z,5s —8)] = |:G (z, —— 4 8) — G(z, ——)j| > mina x §2,
s>—L 4§ 2a 2a
and thus we prove the claim.

Finally, we consider ¢ and ¢3. We split the argument into two cases with small

x/b22;4ac and § > «/b22—a4ac.

number §: § <

Vb2—4ac _ ¢2—
Case 1. If § < ¥25_24€ = (022%,
{s:.m£n3|s—<p,~|>5}:{s<<p3—8}U{<p3+8<s<<p2—8}U{<p2+8<s},
1=z,
where {¢3 + 6 < s < @ — 8} is not the empty set. For {s > ¢> + 6},

N N
|G(z,s)| = 0sG(z,t)dt = | (at + b)dt
¢2 $2

s b s
= / 2a(l——)dz =/ 2a(t —@r)dt, t—¢1 =7,
»2 2a »2

s—1
=/ 2ardt > (mina)(s — ¢2)(s — @1 + @2 — ¢1)
)

> (mina)d(s — 2 + (92 — ¢1)) = (mina)d(s — ¢2)

> (mina)s§>.

By symmetry, we get the same estimate for the {s < ¢3 — §} case.

On the other hand, for {¢3 + 6§ < s < ¢ — &}, it suffices to consider {p; < s <
@2 — 8} because the {¢3 + § < 5 < @1} case is the same by symmetry. We have a
lower bound as follows:

¢ @2
|G(z,9)| = dsG(z,t)dt = / 2a(t —@r)dt, t—q¢ =1,
N

N

P2—@Y1
=/ 2ardt > (mina)(g2 — 5)(@2 — @1 + 5 — ¢1)
S—¢Q1

> (mina)8(§ + (s — ¢1))

> (mina)82.
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Case 2. If § > ¥Yb2—4ac _ ¢203
: - a

’

{s:irilin3|s—(p,-| >8}={s<<p3—8}u{s><p2+8}.

Note that {¢3 + § < s < @y — &} is empty set because, if s — @3 = |s — @3] > 6,
@2 =5 =|s— 2| = (g2 —¢3) + (p3 —5) <26 + (=) = 6.

For {s < ¢3—8} and {s > ¢, +8}, we already checked that |G(z, s)| = min |a|x§?
holds in Case 1.
Finally, we conclude that

|G(z,5)| = |G(z,s) — G(z,9;)| = mina x §% for ‘m;n3 |s — @i| > 6,
i=2,

when —1 < s < 2.
Now we consider (ii). Clearly ¢4 is C% for this case, and

b(z)(_bi(;)) + 5) +c(2) ,‘b(z)(_;(f))a) + c(z)‘}

|G(z,$)| = min%

> min |b| X 4.

Now we consider (iii). First, if |b| < m'%k’l, then |ps(z)| > mfl(|i|)}2 > 2.
Therefore,

min |c|

G(z.5)] =z min{[G (2. D], [G(z. DI} = [e(@)] = b)) = ——-

Consider the case of |b| > mi“Tl"". If |s — @5(s)| > 6, then

b(z)(_b‘f)) + 5) +e(2) b(z)(_bc(iz)) —5) +e2) }

min |c| s 0

’

|G(z,8)| > min{

= min || X § >

LEMMA 3.6. Assume Q is C3 (2.6) and convex (1.15), and ® is C,Z,;Cy for some
0 <y < 1. We also assume that ”q)”C)% & 8. Lett° >0, x% € Q, v° € R3, and

1 1 1
(3.28) <0 <N, N§|v2|, N§|n(x1)-e3|, In(x')- vl > 8, > 0,

ﬁ =
where (x',v1) = (x1(t%, x%,v%), v1(t% x%,v?)).

Fix k € N with t* > t — 1. Then there exists ¢ > 0 and finitely many C %7 -
functions wlk : Be(t,x,v) — R with ||1ﬂlk||cto;, <5,.5,.9,N 1 and there exists a

constant €5, s, o N > 0,
if mjn‘s — wik(t, X, v)} > 84 and
14
(3.29) (s:t,x,v) € [max{r — 1, /K1Y min{r — +. 193] x Be(e%, x°,02),

then ‘8|U|X(s; t,x,v) x 05, X(s:1,x, v)‘ > €8, 8,.Q.N.8x-
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Here U1 = v1/|v], U2 = va2/]v].
It is important that this lower bound €5, 5, o n not depend on time ¢.

PROOF.

Step 1. For (¢2, x°, v%) in the assumption we choose (¢, x, v) with |(z, x, v) —
(2, x%09) « 1.

For each x with |x — x° < 1, weseta Cl-map Yy : (y1,y2) — Y(y1,)2) €
R3 such that

(3.30) Ye(y1.y2) i=x + y1eQ 1 (1%, x%,0%) + y2e , (1%, x°09).
We claim that
aYx(y1, Yx(y1,
(3.31) ‘( (8ny1 y2) E‘)yylz yz)) Rty oyt (6 Y (01, 32).0) | Zans6, 1

Using the definition of the specular basis (3.14), we equate the left-hand side of
(33D to

0 (0 0 0y_.0 (0 .0 0 1,0 .0 0
(D 1% x°. 0% x €] ,(t°. x°.v)) - Ry1(0 50 0y (17, x° 00| =

0,0 .0 ,0

v (Y, x%,v )
# - lim V(s;to,xo,vo).
[vO(20, x0,v0)| syr!

For a small potential, we conclude (3.31).

Step 2. Fix k with |tK(z,x,v) — 1| < 1. Then we fix the orthonormal basis
{elg,elj_’l,elj_’z} of (3.14) with x¥ = xk (¢, x, v), v* = v¥(z, x,v). Note that this
orthonormal basis {elg , e’Ll, e’i,z} depends on (¢, x, v).

For t¥+1 < s < t*, recall the forms of % and % in (3.1) and (3.2) of
J

Lemma 3.1, where
X(s) = X(s; ik, x*, vk).
Recall the specular matrix (3.16) with Y = Y in (3.30). Using the specular basis
(3.14) and the specular matrix (3.16), we rewrite (3.1) and (3.2) as
0X(s) | ok 0X(s) Lk 0X(s) | ok
ol % T3, % e, %
0X(s) .k 0X(s) |k 0X(s) .k _
(3.32) BlvT €1 aﬁf "€l aazs A
IX(s) | ok IX(s) | ok 0X(s) .k
d|v] 1,2 001 1,2 00> 1,2

k .tk SO 4 oK
_|Vpk Vvl,vzt +Vvlqv2xpk.£8mpk |xk e
Ipn
(4 — ) vk 2 3 Y A Gk
( S)vak|2,=1 (Ze=l aj<\/gpk—u) xkvpk'g)vvl,vzxpksj
k.pk.Y k.pk.Y k,pk.Y k,pk.Y
|:%1,3 %1 4 '% 3 '%3 4

Kpky _K.pk Yi| _(tk_s)lvl;k}{ ioky ey
<%2:3 ’ <%2,,4 ’ ‘%4,3 ’ ‘@4,4 ’

+ Oq N5, (1P c2).

—(r—5)

0> 1
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From (3.10) and (2.2), all the entries of the above matrix are bounded. By direct
computation we obtain

0jy| X (s) x 05, X(s)
= (=B — (k=) VE T ek
+ (- s){%é‘:é’ T )|V ek
+ Oq N5, (| @]l c2).

(3.33)

kp Y tk vk
Here % ANT and ek 1 depend on (¢, x, v) but not on s.

Step 3. Recall Lemma 3.4. From (3.28) and (3.31), we can choose nonzero con-
stants 81, 82, and 3 for a large N. Applying Lemma 3.4 and (3.19), we conclude
that, for some i € {1,2, 3,4},

k Y
(3.34) % P10 k0 00)| > 00w g5 > 0.

Now we claim that ,%’k r* Y(Z x,v) € Ctx o if [, x,0) — (22,x%,00)] <« 1.
Since the domain is convex (1.15) and |n(x'(t%, x°, v?)) - v1(z% x°,v%)| > 8, in
(3.28), utilizing Lemma 2.7 we deduce that if |(z, x,v) — (9, x°, v0)| < 1 then
[n(x!) - vl| = 8y forall 1 <[ < k. By Lemma 2.2, (¢!, x%,v!) is C%7 for all
1 <[ < k. Hence, from (3.15) and (3.16), we conclude our claim.

Finally, we choose a small constant & > 0 such that, for some i € {1,2,3,4}
satisfying (3.34),

k
(335 |Z5F Y@ x )| > QQN% for |(z, x,v) — (1%, x° %) <.
Step 4. With N > 1, from (3.35), we divide the cases as follows:

}%kp Y| 9Q.N.81.5, for some i € {1,2},

2
(3.36) .
}%J]f’f ’Y| > —QQ’]\;S“& for some j € {3, 4}.

We split the first case (3.36) further into two more cases as

k
.min |%k,p ,Y‘ > OQ,N,81,8> pky < QQ,N,S],SQ’

and max !%

Gan 27 2 i+2.3 4N
‘ ; K Q,N,81,8 O NS S
min L%’;‘;P ,Y‘ > u and max |‘@ng 3Y‘ > w
e 2 i= 4N

Set the other case

}%/;,pk,y| > 9Q.N.81.5
J,3 - 2

Then clearly (3.37) and (3.38) cover all the cases.

(3.38) for some j € {3,4}.
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Step 5. We consider the case of (3.37). Then, from (3.33),
10)v) X (s) x 05, X(s)|

ki k.p5.Y &k k,pk.Y
> [|0F1255 T (15 —5) = 27T (1 = 5) + Og v s (1@l c2)

k,pk.Y k,pk.Y k,pk.Y
= | |”k|‘@i+1;,3 (t—s)+ [_%i,f + (- t)|vk|‘@i+l;,3 1@ —s)

(3.39)

+ O0q 5, N (Pl c2)-

Let us consider the underbraced term above. We define

(3.40) §=1-—s,
and set
_ k| phoP" Y : k,pk.Y k k| gpk:p* .Y
(B41) a=0, b:=N"%h5 . ¢=—-%3% + @ =D Z 5
k k
Note that %ﬁgp ’Y, %ﬁpz’gy, |v¥|, and r* depend only on (¢, x, v).

Hence we regard the underbraced term of (3.39) as an affine function of §,
(3.42) b(t,x,v)§ + c(t, x,v).
Note that from (3.37)

O0Q,N,51,8> _NQQ,N,Sl,Sz - OQ,N,81,8>
2 4N - 4 '

Now we apply (iii) of Lemma 3.5. With ¢5(¢, x, v) in (3.27), if [§—¢5 (¢, x, v)| >
8+, then |b(1,x,v)§ + c(r,x,v)| = ZLEE x5, We set

(3.43) Ys5(t,x,v) =t —@s5(t, x,v).
From (3.40),

if |[s — ¥5(t, x,v)| > dx, then
|b(t, x,v)(t —s) + c(t,x,v)| >

le(t,x,v)| >

(3.44) CaNss | g

4
Now we consider the case of (3.38). From (3.33),

|0}y X (s) x 35, X(s)|

k ok, pk.Y
> “v |%j,3p (t—ys)

* .

(3.45) ) .

+[=2h 5+ k= opR2i T - s)

+ Ogq. N5 (|l c2).

We set s as in (3.40) and set

(346) a=0, b:=FZT Y o= =R 4 (k@Y
From (3.38) and (3.46)

OQ,N,81,82

b(t,x, >
b x.v)| = =25
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We apply (ii) of Lemma 3.5 to this case: With @4(¢, x, v) in (3.26), we set
(3.47) Va(t,x,v) =1 —@a(t, x,v),

and
if |[s — ¥a(t, x,v)| > 84, then

(3.48) |b(t, x,v)(t —s) +c(t,x,v)| Z

OQ,N,81,8>
8N2

From (3.44), (3.39), (3.48), and (3.45), we conclude the proof of Lemma 3.6.
O

X Os.

LEMMA 3.7. Assume Q is C3 (2.6) and convex (1.15), and ® is Ctz’;cy for some
0 < y < 1. Assume the conditions of Lemma 3.4. B
Let a Cl-map Yy : (y1,y2) = Yx(y1,y2) € Q with Yx(0,0) = x and

1Y e < 1. We assume that
X,¥V1.Y2
9Y,0(0,0)  8Y,0(0,0)
3.49 x x "R L. x% 09| > 85 > 0.
( ) ‘( ay1 X Iy> x1(£,x0,00)V (t,x",v") 3

For k € N with t* > t — 1, there exist ¢ > 0, finitely many C %Y -functions
1/fik : Be(t, x,v) = R with ||wik||co,y < 1, and a constant €, 5, s, n.@ > 0, and
r,x -

{€1. 82} C (D1, B2, y1. y2} such that if min; |s — Y (1. Y (1. y2). v)| > 8« and
(3.50) (551, Yx(¥1,¥2),v) € |:max{t -1, tk'H},min{t - % tk” x Bg(1%,x°,0?),

then

de (3X(S:1,Yx(y1,Y2)7 [v], 01, D2)
(v, ¢1.82)

) > 681382:8371\]7938* > O'

PROOF.

Step 1. Recall the specular basis {elg , e’i 1 e’i ) in (3.14) with

k k

XK = xR, Y1, y2), |v], 01, 82)  and  vF = vF (e, Ye(y1, y2), |v], D1, B2)

aX(Sat’ Yx()’l,yz)» |v|’61’62) —

a(|vl, y1, y2, V1, V2)
X Lk X  k X  k X k X k
ol € Gy % 3 % 3 % 55, %
kook ok || 83X gk X ok X ok 0X ok X ok
[eo €11 eJ_,z] o] “€L1 3y €L 3y, €L1 99, L1 o, €L
X ok X kX ok X ok X Gk
vl “L2 dy; L2 dy, “L,2 3y L2 9, L2
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From (3.1) and (3.2), using the specular basis (3.14) and the specular matrix (3.16),
we rewrite the underbraced term as

ok |V~ - kaiv. - k ok
0¥ Vo, 55,91 .00t +Vvlsvzvy1<yzxpk,gampk €0

_(t _s) . AN k
—(tk—g)|vk| 32 3 9 p ok SR k
@ =51 | Xe=1 ok, | Vb Vok o | Voo Xk
pk.j

‘ *2x4

(=1}

+ Os,n (|12l c2).
where the lower right 2 x 4-submatrix equals

k;Pk,Yx %k,Pk,Yx %k,Pk,Yx %k,Pk,Yx

(3 51) l,lk 1,2k 1,3k 1,4k
’ kap ’YX kap ',YX k’p 7Y.)C k’p 7}’,’6
%2,1 %2,2 %)2,3 %2,4
k;Pk,Yx k’pk’Yx k’pkan kaPkan
_ (lk _ s)|vk| <@3,1 . ‘@3,2 . ‘@3,3 . ‘@3,4 .
ksp aYX ksp an ksp aY)C kap aYX
%4,1 %4,2 %4,3 %4,4

Here 227" 7~ is defined in (3.16) with x* = x (1, Y. 91, 02) and
ere %, is defined in (3.16) with x* = x* (¢, Y5 (y1, ¥2), |v], V1, V2) an

vk =0k (@, Ye(y1. y2). [v]. B1.D2).

Step 2. From Lemma 3.4, there exist i < j such that (3.20) holds. We choose
1, & to be the i™ component and j ™ component of {1, y», D1, D2 }. For the sake
of simplicity, we abuse the notation as

k,pk,Yx k,pk,Yx k,pk,Yx k,pk,Yx
%3&'1 %3,§2 _ %3,1' %3,1'
kypk:YX kypk:YX B kapkaY_x kspkny
%47§1 %47§2 %471 %4a.]
Note that
det(aX(s;t,Yx(yl,yz), |v|,171,f)2)) _
a(|vl, 81, 82)
—0K Ve en Ve X Dem e
(s—1) ) 5 3 ; an k|
—( =) 5= Zezlﬁ \/gp',iiw Vo |VeroX
det

k,pk,Yx 7 k;PksYx 17 k;PksYx k,pk,Yx
0 ‘%1&'1 <Zl,§2 k k ‘23&1 =%3,52
’ S GE

k,pk.Y. k,pX .Yy
V720 200 E T, 29 2 €5
j4,§1 ’14,52

+[0s.n (1] c2)] 5

From (3.10) and (2.2), all the entries of the above matrix are bound and hence the
determinant of above matrix equals

sk, pk Y. k,pk.Y.
gplsP” s ¥x K. D” ¥ x
'12,51 jZ,iz

k,Pngx k,Pk,Yx % & %k,Pk,Yx %k,Pk,Kx
(1 — L5 L, _ _ 3,81 3,82

3 52 (t S) det %k,Pk,Yx %k,Pk,Yx (t S)|U | k,Pkan gk,Pk,Yx
(3.52) 2,6 2,5 4,51 4,62

+ O([[®]c2).
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The underbraced term equals

k,Pk,Yx %k,pk,Yx

(t* — 5)?|vF|? det 3’§‘k 3’§2k
(@k,P 9Y)C %k,p 5YX
4’;-1 4’;2
k,Pk,Yx %kapk’YX
L& 1,5
(3‘53) + det L@kapkny L@kspkny
2a§1 2)&2
_ k _ k k:Pkny k,pk,Yx k,PksYx k,pk,Yx
(t )l |(%3,§1 %2&'2 +%1,§1 %4,4'2
_ k,Pk,Yx k,Pk,Yx _ k,PksYx k,Pk,Yx)
'%1&2 %4&1 %3&'2 '@2&1 )

We define
§ = tk(t’ Yx(yl, y2), v) -,
and we regard (3.53) as a quadratic polynomial of §. Then the coefficient of 52 is

k:Pkny %k,Pk,Yx

3, 3,
|Uk|2 det kglk , ké'zk . ’
sP X x sP X x
'@4&'1 '@4&'2

which depends only on (¢, Y5 (y1, y2),v). From (3.20) and |v| > ﬁ we have a
lower bound of %

We apply (iii) of Lemma 3.5: There exist C!-functions ¥ (¢, Yx(y1, y2),v),

Ya(t, Yx(y1, y2),v), and ¥3(f, Yx(y1, y2), v) so thatif [§—v; (¢, Yx (y1. y2), v)| >
8> forall i = 1,2, 3, then the absolute value of (3.53) has a positive lower bound.
Set

Ui =% —¢i.
Using |t — s| > % and (3.52) we prove (3.50). O

LEMMA 3.8. Assume Q2 is convex in (1.15) and |®||c1 < 1. Choose N > 1,
0<6 K 1,andthen §; = 61(Q2,N,6,||Vx®P|loo) > 0 as in (3.57). There exist

Q.,N.8.81

. Ia.Ns.
collections of open subsets {0;},; | of Q and {¥; (ql,qz)}ile's a1 of R3,
where q and q are two independent vectors in R3, with I Q,N,8,8, < 00 such that
Qc U; O; and fR3\”f/i(q1 ©) e~ IvI?/1004,, < Oq (%) + 0q(61). Moreover,

Ki :=sup{k e N :t%(t,x,v) > T,

(3.54)
(t,x,v) € [T.T + 1] x 0; x R> \ %(q1,q2)} < o0.

If (x,v) € O; x R3\ % (q1, q) for some i, then

(6
(355 (' @x) -0 (G x )] > ming o Ca v, )8
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and

1
(3.56) l(q1 X q2) - v| > v

PROOF. We construct &; and % (q1,q2). Choose ¢ € Q and v € R3 with

% <|v|<N, % < |vs| for N > 1. We split the cases |v||t —¢1(¢,r,v)| > & and

[v|]t —t'(¢t,x,v)| < 28 for some 0 < § < 1. For the first case, from (2.65),
't xv) nx' (5 0)
[vl(t.r,v)]

and hence |v!(t,¢,v) - n(x!(t,z.v))| > CQ,N,|V,®| 68 For the second case,
n(x! (¢, ) -0 (2,5, 0)]
= [n() - v| + Oy 5 (X' (1,2, 0) = £]) X {[v] + [ VaPlloo} + [VxP]loo
= [n(®) - v| + ONnl .3 O) + ON il .5 (I Vx Plloo)
where we have used the fact |x!(z,r,v) — | = [v||t —t!]| + ||V ®@|loo|t — t|?.

Let us choose

(3.57) 81 =2|ONInl 3 6) + ON 1) o5 (I Vx @llco)]
foréd <y 1, [Vi®Ploo <n,0 1.

§ < |t —tl(t,r,v)| Sq

El

Then |n(x!(t,x,v)) - vi(t, . v)| > 57‘ for |n(x) - v| = §;. Condition (3.56) is

1 v1) is continuous

independent of position x. Note that, from Lemma 2.4, (¢!, x
locally. Therefore, we can choose r, > 0 such thatif x € B(x,r;) N Q, L <lv| <

N, % < |vs|, [n(r) - v| = 261, and |(q1 X q2) - V| > %, then we have (3.55) and

O I
(3.56). Since Q is a compact subset of R3, we extract finite points {; }iZiN 8.8
I _
with I n.s.6, < 00 such that {B(r;,r,)}; 21" is an open covering of Q. We
define
Oi = B(ri, ry),

1 1
g e 3. o .
(3.58) 7i(q1,q2) :=3veR” v < N,|v| > N, |v3| < N In(r) - v| <2681,
1
X . < —
or [(q1 x q2) - v = .

for two independent vectors qy, q2 in R3. Clearly we already proved that if (x, v) €
O; xR3\ % (q1,qz) forsomei = 1,2, ..., Iq N.s.5,» then we have (3.55). More-

over, f%_ (1,4) e~ IvI?/1004, 0(%) + O(81) from our construction. From (2.81),
we prove (3.54). Il

Now we are ready to prove the main theorem.
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THEOREM 3.9. Fix arbitrary (t,x,v) € [T, T +1]xQ xR3. Recall M, 8, §1, and
Oy, Vi (@1, €2), which are chosen in Lemma 3.8. For eachi = 1,2,...,1g N5,
there exist 83 > 0 and a C%7-function wéo,z,i,k for k < K; in (3.54) where
weoj”"k is defined locally around (T + 6200, X(T + 8240;1t, x,v), 5257) with

1

(ZO,E) = (50,51,@2,53) c {0, 1,..., LKJ + 1}
2

N 1 0 N +1 ’
Xeo—|—|—1,...,0,...,| —
52 82
and ”weo’z’i’k”COJ’ = CN,Q,8,81,32’||¢||C2,)/ < 0.
Moreover, if

(3.59) (X(s;t,x,v),u) € O; xR3\ ¥%(@1,82) fori =1,2,...,Ig. .55
(3.60) (s.u) € [T + (Lo — 1)82. T + (o + 1)82] x B(820;285).

- 1
s’ e |:tk+1(T + 824p; X(T + 8200: 1, x, 'U), 823) + N,
3.61) !
(T + 8abo: X(T + 82Lo:1.x. ). 620) — ﬂ,

and

(3.62) |s' — Yl bR (T 4 8280, X(T + 82boi 1, x,v),820)| >
N2(1 A+ [yhobt) 0oy ) (82)7
then
(3.63) ‘8|u|X(s’;s,X(s;t,x,v),u) x 0g, X(s's 5, X(s:1, x, v),u)| >
€Q,N, [Pl -2,61,82,62-

Here €q N || 0|l .2.61,62,62 > 0 does not depend on T, t, x, or v.

Foreach j = 1,2,...,Iq ngss, in Lemma 3.8, there exist 63 > 0 and cor.
functions
eOaZaiakajamOar;lak/ ZO:Zaiakajam()yr;l:k/ eOaZJiak:j7m07r;l:k/
(3.64) vy . Yy . Y3 ;

fork’ < K7 in (3.54) where wﬁo’g’i’k’j’mo’ﬁ”k/ is defined locally around

(T + 83mo; X(T 4 83mo; T + 8280, X(T + 62£0;¢, x,v), 5257), 831171)
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for some

1
(mo,m) = (mg,my1,mp, m3) € {0, 1,..., LS—J + 1}
3

N N 3
- —(=1,...,0,...,| — 1
X{ L%J {53J+ }
with0 < 63 < 1.

Moreover, if we assume (3.59), (3.60), (3.61), and (3.62),
(X(s's5, X(s;t,x,0),u),u') € OF x R3\ ¥ (3, X, 93, X)

(3.65) . .
forsome j =1,2,...,Ig ns.s, inLemma3.3,

" k’+1 . . . A > 1

s e |t (T + 83mo; X(T + 83mo; T + 8280, X(T + 8240;t, x,v), 824), 831’)’!) + N,
(3.66) v -

t5 (T + 63mo; X(T + 83mo; T + 8280, X(T + 8240: ¢, x,v),82L), 53m) _N}’
(%)

and

(3.67) n=n}1r21 3‘3” — Wﬁo’e’i’k’j’mo”;”k/(**)‘ >

N2(1+ max ot imo ik )67,

where (x%) is defined in (3.66). Then for each £, E i, k, j, mo, m, and k' we can
choose two distinct variables {{1, {2} C {|u|, 1wy, @}, w5} such that (|u'], {1, ¢2) —
X(s";s", X(s";5, X(s:¢, x,v),u),u’) is one-to-one locally and
0X(s";s", X(s";s, X(s:1, x, v),u),u’))
a(|u'[, 1, ¢2)

/
Here EQ,N,II<I>IIC2,81,52,33 > 0 does not depend on T, t, x, or v.

/
= €QN, D] 2,51,62,83°

(3.68) ‘ det(

PROOF.

Step 1. Fix any arbitrary (t, x,v) € [T, T 4+ 1] x Q x R3. Assume that s € [T, 1]
and (X(s;t,x,v),u) € 0; x R3\ % (@1, @€,) for some i, where e; and e, are the
standard unit vectors (1,0, 0) and (0, 1, 0) in global coordinates. Due to Lemma
3.8, (X(s';8, X(s;2,x,v),u), V(s';s, X(s:t,x,v),u)) is well-defined for all s’ €
[T,s] and |[n(x¥ (s, X(s:1,x,v),u)) - v&(s, X(s:, x,0),u)| Zq.n 1 forall k with
|t —t*(s, X(s;t,x,v),u)] < 1.

We note that, from X(s;¢, x,v) = X(5;¢,x,v) + f; V(t;t,x,v)dr,

Y5 (s X(s:1.x,0),0) = YFE X G, x,0), 1)
(3.69) < IIwkllchvv{ls =51+ [ X(s:t,x,0) = X(558, x5, 0) 7 + u—ul”}
< 1 llcoy Als =517 + (1 + NV + [V @l ) u — 7"},
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For 0 < 8, < 1 we split

[651+1
[T.T+11= |J [T+ —D&T+ o+ 1)s2].
Lo=0
[N/852]+1
RN\ %@&) = | B@52:25) NR3\ % (@1.&).
|é1=0

From (3.69), if
(s.u) € [T + (Lo — 1)82. T + (Lo + 1)83]
x {B(£82:282) NR>\ %},
then
[WR(T + 008, X(T + €08; 1, x,v), (€18, €28, £38)) — v (s, X(s:1, x,v), u)|
< [[¥*llcor @+ N + [[V2®[ %) ()"
Therefore, if (3.62) holds, then
|s" = ¥ (s, X (s, %, v),0)]
> |s" = R (T + £o8, X(T + Lo8; 1, x,v), £5)|
(3.70) — [W* (T + €08, X(T + Lo8: 1. x,v), L)
— Yk (s X(s:t. x.v).0)|
2 (N> = N)[[¥¥cor (82)7 2N V5l cor (82)”

Consider the mapping u +— X(s';s, X(s;¢, x,v),u). Note that from Lemma
3.8 we verify the condition of Lemma 3.6. Applying Lemma 3.6, we construct
the C%Y-function ¥* : Be(s, X(s;7,x,v),u) — R for k < K* such that if |s —
vk (s, X(s;1,x,v),u)| > (62)7, then

|0 X (5”55, X (532, %, 0),u) X B, X (555, X (532, %, 0),u)| > €@ N, [@] .2.51.52)7
> 0.

Clearly if (3.62) holds, then from (3.70) we have |s’ — wk(s, X(s;t,x,v),u)| >
(82)".

Step 2. Assume all the conditions of (3.59)—(3.62) and (3.65). Applying Lemma
3.7, we construct (3.64). From (3.69)

W (s’ X(s"ss, X(s:t,x,0),u),u') —(s’, X(s";5, X (52, x,v),u), u')]|

(3.71) - -
< Wllcor{ls" =51 + (1 + N” + [[Vx @ E) |’ — '}
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For 0 < §3 <« 1, we split

[6511+1
(T.T+11= | [T+ @mo—185.T + (mo + 1)53].
mo=0
[N/8521+1
R\ %0 X.00,X) = | B(R&s283)
7|=0

AR\ 7 (3 X, 95, X).
From (3.71) if
" u') e [T+ (m—1)8T + (m+ 1)§]
x {B(m8;28) N R\ 7 (), X, 0z, X))}
(X(s:2,x,v),u) € O; x R*\ % (@1, &),
(X(s's5, X(s3t,x,0),u),u') € Of x R3\ ¥ (3, X, 93, X),
then
|s" — (T + €8, X(T + £8;1,x,v),£8)| Zn [ pllcor8?,
Is”" — W (T +m8, X(T +m8; T + £8, X(T + €8: 1, x,v),m8), £8)| =n 8.
Consider the mapping
(u,u')y — X(s";s", X(s"; s, X(s;, x,v),u),u’).

Note that from Lemma 3.8 we verify the condition of Lemma 3.7. For each i, j
and £g, 41,45, €3 and mgo, my, my, m3, in applying Lemma 3.7, we can choose two

oY e/

variables {{1, 2} C {|u|, iy, %), i, } so that (3.68) holds. O

4 A Time-Dependent Potential

THEOREM 4.1 (Local existence). For a sufficiently small 5o > 0 and §4 > O there
exists T* > 0 such that if |[wfolleo < 80 and ||p|lc1 < 8¢, then there exists a

unique solution f(t,x,v) to (1.18) in [0, T*) x Q x R? such that
4.1) sup  [[wf(?)lloo < 2(80 + Cdyp),

0<t<T*

and |[wf(t)|loo is continuous over [0,T*). If Fo = ug + /itgfo = O, then
F=ug+ Jref=0.

PROOF. For the proof we use a sequence of F® = 0 and for £ > 0
atFZ-i-l 4. VxFe+1 _ vx(¢ + q)) ) VUFZ—H
= 0+ (FY. FY) —v(FOF™! Fli= = Fo,

F4, x,v) = F&P ¢, x, Ryv) on 092,
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Note that

die—fst v(Ff)(1:,X(t;t,x,v),X(t;t,x,v))drF(H—l(S’ X(S), V(S)) —
s

0+(F FO) (5, X(5). V(9)),
where X(s) = X(s;¢,x,v) and V(s) := V(s;¢t, x, v) satisfy (2.1) and (2.4). Note
that if F¢ > 0, then v(F%) > 0 and Q4 (F¥, F¢) > 0. Therefore, if F¥ > 0 and
Fy > 0, then

4.2) F1 >0 forall £.
From F* = g + /g f411,
B [ 40V fYH - Vi(p + @) -V, 44!

43) 4 ®yrtt +ﬂv.v #
. - .

= e Kl — v Vap + e 2T (fL fY — e TT_(fL U,

For ht := wf*t
athe-i—l +u- vxhg-i-l _ Vx(¢ + CD) 5 Vvl’le+1
£+1 B+l
+ ——V(p+ @) Vyw + e Pvhtt! 4 — v Ve
w
4.4

ht ht
= e PKuht —w ,LLEU~VX¢+U)€_?F+(—,—)

w w

> h€ hﬁ—i—l

— we_ZF_(—, )
w w

We claim that we can choose 0 < T™* <« 1 such that for all £
4.5) sup A1) ]loo < 2(80 + C8p).

0<t<T*
We define

E(,t,x):= exp{—/t ve (T, X(t:t,x,v), V(t;t, x, U))d‘f}
= exp{— / t [e—‘D(X(r))v(V(z)) + %V(r) -V (t, X(1))
+ le(qﬁ(f, X(7)) + ¢(X (7)) - Vyw(V (7)) |dT ¢,
(4.6) w

‘ o (Wt K
Gl = —w gV - Vo + we_2F+(— —)

w’ w

pt pttl

—we_ﬁl"_(—,—).
woow
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Along the trajectory,
d
d—(E(v,t,s)h“l(s,X(s;t,x,v), V(s;t,x,v))) =
s
E(v, t,s)[e_q)("((s))l(whe+1 + GZ+1](S, X(s;1,x,v), V(s:t,x,0)).
By integrating from O to ¢, we obtain

h“'l(t,x, V)
t

47 = E(v,1,0)h**(0, X(O),V(O))—i—/ E(u,t,5)G* 1 (s)ds
: 0

t
+/ E(v,t,s)e_q’(x(s))/ kw u, V()R (s, X (53¢, x, v), u)du ds.
0 R3

From (1.21),
4.8) (V(r;t,x,v)) S¢,0 VE(T, X(T:1,x,0), V(1:1,X,0)) S¢,0 (V(T:1,x,0)).

Recall the standard estimates (see lemma 4 and lemma 5 in [14]):

_ hi h
@9 [ huwldn < e, ‘wri(—l,—z)w)'s<v>|h1||hz|.
R3 w w
Therefore,
G (552, x,v)|
_ W2
(4.10) So [[Vxp(s)|oce™ 8

(Vi DY) oo + 1HE 1) oo 124 (5) oo
From (4.8) and (4.10), we deduce that
sup 1A (1) ]|oo

0<t<T
<80+ C8p+ CkT sup [H*T1() oo
0<s<t
+CT{ sup W) oo + sup (4]l sup [155() oo
0<s<t 0<s<t 0<s<t

Choose T* > 0 such that CxT* < 1. Then from (4.5) for h*

(1 - l —2(8o + C5¢)) X sup ||he+1(l)||oo <80+ Cdp + C(S0 + C5¢)2,
10 0<t<T

and we prove the same upper bound of (4.5) for R+ for sufficiently small 8¢

and d.

We can show that i¢ is a Cauchy sequence in L®([0, T*); L®°(Q x R3)) by
repeating the argument with 2T — 4%, Then we pass a limit £ — oo to prove the
existence and (4.1). Using (4.2) and this limit we prove F > 0. Assume /; and h;
solve the same equation (4.4). Following the same proof as for (4.5), we prove that
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supg<s <7+ 111 — h2lleo < 0(1) supg<; <7+ |21 — h2| 0. Hence hy = h2, and we
conclude the uniqueness.
For 0 < & < 1, from (4.4) with h = h¢+1

12 + &)lloo = (D) lloo < [[2(t + &) = h(1)]loo
< elllholloo + lhlloo + 1812 + I#llc1}-
Hence ||wf(?)||co is continuous on [0, 7). O

LEMMA 4.2. For w(v) = (1 + |v|)® with B > 2,

SlwylloolVi2®syllellL2®3)

‘ / Fy (YY) du
R3

@.11)
S lwlleo{lV 2w lellL2®s)

+1A=P)vllely}.

PROOF. Via the well-known Carleman representation (for example, see (32)
in [15]), we have

Ty (0. ) ()
1
Vi)
1
— 2/R3w(v)—|v_v,|2

I—v+v/+0] 1 v

_ ot i — V]
V(v))e 7 B(2v—v’—vi,—|v,_v,i|)dv/1 dv’,

] / _ (. ¥)p dv
R3

O+ (VY. Vuy)(v)

E,

. .. 3 . . [ 2
Where Eyy is a hyperplane containing v € R and is perpendicular to ﬁ,_gl € S*,
ie.,

Eyy := {v’l cR3: (v’1 —v)- (v =v) = 0}.

For the internal integration over Ey,/, using lemma 6 and (34) in [15], we bound it
above as

I+ |v=2 (B

/ v 5 oo 0 g oo — vy B0,

E, . lU(U — v )

where we have used

w(vy) e 3 Swlw—v)"".
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N=(B—1)
Note that [g3 %dv/ < 1 for B > 2. Hence we conclude that

' / Ty (9 g dv
R3

—p\—(B-1D
Shovles [ [ @lipwara

_ . Nn—(B-1) %
stwviel [ ([ 552m w ) weora]
(v—v)=6B-D MR
) [/Rs (/]R3 de )Ifﬂ(v)l dv]

S lwé ooVl L2w3) 1@l 2R 3)-
For the I'_ estimate, we have

/ IT-(¥, ¥) (v)p(v)|dv < / / v —ully )| v p@)du x [y (v)]lp(v)|dy
R3 R3 JR3
S ||W/f||oo/RB(v){|P¢(v)| + X =P)y (v)[}p(v)[dv

S wylloodllVllL2®s)lellL2@s) + IA=P)¥ullely}
where we have used the fact, for all p € [1, o0],

0PV sy 5 |00 VirGo) [ 00 ity

SV liLe @3-
L7 (R3) -

LEMMA 4.3. Let f solve (1.18). Then there exists a constant C > 0 not depending
on fo, f, or ¢ such that, forallt > 0,

QI C(Ilf(0)||§ +/0 ||¢(S)||oo)

x (1+C(|¢lloo + ”wf||Oo)tec("q}"oo"‘"wf”oo)t).

(4.12)

PROOF.

@i+ [ t //Q et
— O3 - f/fm3” Vb ppp - ///Wv V9P f JHE

()
///QXR3"_2F(/’J’)(I P)f.

(1)
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By the decomposition f = Pf + (I — P) f and the strong decay-in-v of Pf in

(1.37),
< ! 2 Cr 2
(1)_||¢||oo{/0 //Qst'””Pf' +/0 la P)fnv}
snm{/0 1713+ | ||(I—P)f||%},
t t
I < ||¢>||oo/0 ||f||%+f0 16(5) oo ds.
From (4.11)

t
(1) < /0 /Q w0 (5. %Moo ll (L = ) f(s. x. )2 dx ds
t
+/0 /Q||wf<s,x,->||oo||f<s,x,->||%dxds

t t
< 1w oo fo 1A= P) £ ds + [wf oo /0 1 £(5)113 ds.

Using (1.36) and collecting the terms, we deduce that, for some constant C > 0,

t
IFOI3 < 1 FON5+ G — l1plloo — ”wf”oo)/ IX—P)fI3
(4.13) 0

t t
< 1O + Clgleo + s oo) [ 1715 +C [ 19l
By Gronwall’s inequality we conclude (4.12). U

LEMMA 4.4, Assume F = ug + JIE f solves (1.1) and satisfies (1.5). Assume
(1.12) and

(4.14) Ap > 8p + |wfloo-
Then
2
' /[ (u + <I>(x))F(t x,v)dx dv
QxR3
2
(4.15) // (u + CID(x)) Fo(x,v)dx dv
QXR3

M LA 1L O + 1w lloo-
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PROOF. The proof is a direct consequence of two previous lemmas ((1.5) and
(4.12)) and the exponential decay-in-time of ¢ (¢) in (1.12): The LHS of (4.15) is
bounded by

t
E//f (g () + Vg o) £Gs 2 )0l [V (s, x)ldv dx ds
0 QxR3

t t
: 84,/0 e—w{l i c(||f(0)||% +f0 ||¢<s)||oo)

x (14 C(l|¢loo + ||wf||OO)S€C(”¢”00+||wf||oo)s)}ds

<8 /0’ e 1+ C(ILF O3 + 8p/Ag)
X (14 C(Bp + 10 o)seCOHIT Ids) g
<8/A{1 4+ C(IF O3 + 85/20)}
+ Co(8p + 10 1oo) /Ot o—Ths=C 6+ 0 oc)ls

)
< ﬁ{l + 1L O3 + wf oo} -

LEMMA 4.5 ([11,15]). Recall wg in (1.2). Then

\F = 1Eelp 250,

4
(4.16) = §%(F1nF—,UvE Inpg)

P2
- e+ (5 + 00 ) - |

PROOF. The proof is based on the proof of lemma 4 of [15] and the argument
on page 147 of [11].
By the Taylor expansion, for z, s > 0
1 |t — s|?
max{z,s} 2

t rS1 1
4.17) < // —dspdsy =tInt—slns—(1+1ns)(t —s).
sds 852

Note that if F(z,x,v) — ug(x,v) > guE(x, v) with 0 < § « 1, then F >
(1 + &) g and hence

max{F,ug} = (1+8)ue.
If wg (x,v) — F(t,x,v) > —8ug (x,v), then (1 + 8)ug > F and

max{F, g} < (1 + §)uE.
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Therefore, if |F — g | > Siug then
|F —pel  |F—pEgl SuE |F — el
X > — X
max{F, i g} 2 (1+8)uE 2

" |F — ugl
2

- § - §| |
=5 =1 F—uegl
Hence, from (4.17), we deduce that

\F = BEp 550,

_4 1 |F —pel

~ smax{F,ug} 2
4

< g{F(l)ln F(t)—ppnpg —(14+Inpg)(F — pg(x,v)}
4

< AFINF —pphpg) = (F —pg) + (WP/2 4+ @))(F - np)).

2
where we have used In ug = —(% + d(x)). O
PROOF OF THEOREM 1.1. Denote
Ty :=sup{t = 0: [[wf(1)lloo = 2(80 + Cdp)}.

Note that (1.4), (1.5), and (1.11) hold for 0 < ¢t < Ty. Note that f and & satisfy
(1.18) and (4.4) with h¢t! = i = ht. Then we have (4.7) with h¢+! = h = ht.

We apply the Duhamel formula (4.7) three times, for 0 < ¢t < T7, and decom-
pose the integrand / as

F—ug
(4.18) h=hp_yeissur + wﬁlw_umf&w’

for sufficiently small 0 < §<1,to get
h(t,x,v)

t
= E(v,t,O)h(O)—|—/ E(v,t,5)G(s)ds
0
t
—I—/ E(v,t,s)efcb(x(s))/kw(u.v)h(s,X(s),u)duds
0 u
t
= E(v,t,O)h(O)—i—/ E(v,t,5)G(s)ds
0
t
E(v.t.s)e”PX6)
+/0 (v,t,5)e
kywu,v)E(u,s,0) (0 E(u,s,s")G(s")ds’
x/u (u,v) (us){()—i—/o (u,s,s") (s)s}

t s )
+/ E(v,t,s)e_cp(x(s))/kw(u,v)/ Eu,s,s)e X6
0 u 0

X / kw @', w)h(s’", X(s7),u")du' ds’ du ds =
u/
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¢
4.19) =E(v,t,0)h(0)—|—/ E(v,t,5)G(s)ds
0
t
+/ E(v,t,s)e_"p/kw(u,v)E(u,s,O)h(O)duds
0 u
t s
+///E(v,t,s)e_q)kw(u,v)E(u,s,O)E(u,s,s/)G(s/)duds/ds
0J0 Ju
t
—|—/ E(v,t,s)e_q>(X(s))/kw(uvv)
0 u
s 4
x/ E(u,s,s)e ®XG@ ))/ kw @', u)EQ, s, 0)h(0)
0 u’
t
+/ E(v,t,s)e_CD(X(s))/kw(u,v)
0 u
s , s’
X/ E(u,s,s")e” ®XG ))/ kw(u/,u)/ Ew',s",s"YG(s")
0 u’ 0
t s ,
—|—/ E(v,t,s)e_q>(X(s))/kw(u,v)/ E(u,s,s')e”®XG ))/ kw (', u)
0 u 0 u’

’

s
1IN, —D(X () "o " AN _
x/(; Ew', s, s")e /u//kw(u L udh(s”, X(s”),u )I\F—ME\SME

t s
+/O E(v,t,s)e_cp(X(s))/kw(u,v)/o E(u,s,s)e” ®XG ”/ kw ', 1)
u u’

’

S
1o I, —P(X () "o ” A/ _
x/(; EWw,s',s")e /u//kw(u L uHh(s”, X(s™),u )IIF—MEIZME{*)’

where we abbreviated notation as follows:,

X(s) := X(s;t,x,v), X&) :=X'(s";5, X(s:t,x,0),u),
X"y = X" 8", X (75, X(s5, x,0),u),u'),

and where we use definitions similar to those in (4.6):

t
E(v,t,s) := exp;—/ ve (T, X(t:t,x,v), V(t;t, x, v))dt}

S
t

1

= exp§— / [e-q’(X(f))u(V(z)) + 5 V(D) Vé(z. X(1)

N

(4.20) 1
LV X () + O(X() vvw(vu))}dr},

h h
G :=—-w/ugV - -Vi¢p + we_%)l“(—, —).
w

w

Under the assumption that § + §¢/A¢ < 1,

4.21) E(v,t,5) < e 2¢ 1Y) .= pmvaW)(=s),
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where we define vg(v) = %e‘"d’"Cv(v). For (4.19), every term except (k) is
controlled by
(4.22) Coiy (8 + 8+ 110)loo + sup [[A(9)II3,)-

0o<s<t

For (x), we choose m(N) so that

satisfies [p3 [kw,m(u, v) — ky (u, v)|du < % for sufficiently large N > 1. Then,
by splitting ky,

t ps ps’
(%) < / / / (o0 / Ko (41, 0) / ko 4’ 0)
0J0 JO u u’

(4.24) % [ RV G s 05
u// -

(%)

1
+0a( ;) s 1Ol

0<s<t
We analyze (**). We use Theorem 3.9; then
Jiy € {1,2,...,Ig N} such that X(s) € 0,

4.25
(4.23) Ajs,s» € {1.2,.... Iq,N} such that X(s";s, X(s:2, x,v),u) € Oj__,,

and then we can define the following sets for fixed n, n, i, k, m, m, j, and k’,
where Theorem 3.9 does not work.

Ry:={u | u ¢ B(78:26) N {R*\ %, (&, &)}},

Ry:={s"||s —s'| <8},

Ry :={s' | |s' — g mikmm ik 15 X081, x,v),78)] <n 8 |¥1llcor
4.26) Ra=1{u' [/ ¢ BGs:28) N AR\ ¥ (0 X. dg, X}

Rs:={s" | |s'—s"| < 87},

Re := {s" | rrilill’lz |s" — Y AAKMILE (05 X (mS:n8, X(n8:t, x,v), m8), i8)|

Sy 8 min [Yrlco)-
Therefore,
[t/8]+1 [t/8]+1

Ki, Ky (18 prk—8Y K gy o~ Pe@)(=s")
(k%) = Z Z Z Z ZZ/ /t /t ’

A0 RN m=0 [N & (n-18  Jek+145v k’+1+sv

4.27)

X |h(s”, X(s"),u")| 1 = 1ReARCARSNREAREARE
) ) Fepp|>8une LRSNRSNRSNRSNRENR,
/\;t\SN,Iu’ISN,\u”ISN IF-nelzbue PR e s e

+ B+ R,

(MAIN)

where the B term corresponds to where the trajectory is near bouncing points and
R corresponds to where (u, s”, u’, s”') is in one of Ry through R¢. So we have the
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following small estimates for B and R:

t ps ps
B < / / / Va5 / kw1, V) ko ' 10)
0J0o JO lu|<N |l |<N

X / kw,m(u//, u/)h(s//, X//(S//), u//)1|F_ME|>8_ME
lu”|<N -

X Ntk |<87 or |s7—tk'| <87

< Cné&” sup [[h(5)]lco.

0<s<t

t ps ps
R< / / / V25" / kw1, v) ko ' 1)
0J0o JO lu|<N |l |<N

X / kw,m(u//, u/)h(s//, X//(S//), u//)1|F_ME|>8_ME
lu”|<N -

(4.28)

X 1R1 URUR3UR4UR5URg

< Cn8” sup [h(s)lloo-

0<s<t

For (MAIN) in (4.27), we are away from two sets B and R. Under the condi-

tion of
(u,s",u’,s"ye RS N RS NRS NR NRE N RE,
where RY is the complement of R;. Indices n, 7, ig, k, m, m, jsy, and k' are
determined so that
t €(n—1)45, 1+ 1)4§8,
X(s;t,x,v) € Oy,
X(s"s5, X(s:t,x,v),u) € O;_,,

u € B(ii8;26) NR3\ %, (€1.€2),
u' € B(ms;28) NR*\ ¥, , (01 X. 9z, X).

We can apply Theorem 3.9, which gives a local time-independent lower bound of

oG |
e vt ) | 2

Note that {1, {2} C {|u|, 1, %), @, } are chosen variables in Theorem 3.9 and
{¢3,¢a} C {Ju|, 1y, ), u,} are unchosen variables. Let us use & to denote the
projection of B(7i8;28) N IR\ ¥} (€1,€) x B(m&;28) NR3\ ¥}, , (3 X, 37, X)
into R3, which corresponds to the (Ju’|, {1, 2) components. If we choose suffi-
ciently small 8, there exist small rg ,, 7 ; k m ja, j,k such that there exist one-to-one
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map A ,

M P(B(ii8:28) NR>\ ¥, (€1.€2) x B(md;28) NR>\ ¥, , (1 X. 9z, X))
= B(X(s";8", X (558, X (538, %,0),u), '), s i ke.mosin, k)

So we perform a change of variable for (MAIN) in (4.27) to obtain

(MAIN)
[2/8]+1 [t/8]+1 Kzs fs s D)8 prk—87 ik gy ro (O)(f—s")
= r;) lil<N m; AI<N (=3 /’H'”V/’Hl”y )
x| du” Ly <N jw|<n,ur|<n dil2 dE3 04
u'’ 2,83,84

X/|- . d|u'|d§1d§2|h(s”,X(s”),u”)|1‘F_ME|>gMEdsds’ds”
u'[,81,62 -

tk—g§7 K v
/ / oo O)—s")
thtl4§y Jek/+148y

x [ Lyj<njw|<N <N di2d3d0a L g o5
42,83,84 -

1
x/ / IR (s, x,u”) | ————— dx du” ds ds’ ds”
w"’ JBX(S")s s i i ke i, j k) esz NJ|®ll 2.8

t
7
<Cpns (D¢Q/ e Ve O(—s )/ / |h(s”, x,u")| 1, ,_ = du” dxds”
o o Juri<n |F—pel=8ue

[t/8]+1 [t/8]1+1 Kig fsy n+1)8

DI IDID Y|

(4.29) n=0 |i|l<N m=0 |m|<N k (n=1)8

< 1" _
= Cns.2.0.0 o;{?g ||h(5 )I\F—uglzzmg ||Ll(sszN)

w
sup [(F(s") — ngp)l
ﬂ Loo(By) 0<s”/<t ” |F— ME\>8ME HLI(QXBN)

From (4.16) and (1.11), we can further bound (4.29) by

<Cngs,0,0,9

<Cpys,0,¢,0=

|
430) X sup {%(F(O»—%(m)— / (F(s") - 1)

0<s”’<t
2
+f (u i @(x))(F(s”) ME)}

Finally, utilizing (1.4), (1.6), and (4.15), we deduce that

L>°(By)

I| w

MAIN) < C =|—

( ) < N’8’¢’¢’95H«//7
)

(o) =+ L+ s o6}

0<s”<t

431) L= (BN)
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For 8¢, 8¢, % < 1, we collect (4.22), (4.24), (4.27), (4.28), and (4.31) to get

sup [ wf()lloo < lwfolloo + 8¢ + 8 + H(0) — A (k)
(4.32) 0=r=Ti 5
+ 254 sup [uf)]3.
¢ 0<t<T

By choosing small data we deduce supy<, <7, [[wf(1)]lcoc < 2(80 + Cp) <K 1
from (4.1). By continuity of |wf(¢)|lcc in Theorem 4.1 and a uniform bound, we
conclude

Ty = oo,

and this proves the global-in-time existence. O

5 A Time-Independent Potential
First we derive L2-coercivity for the homogeneous linear Boltzmann of (1.18)
[ +v-Viof —=Vi®(x)-Vyf +e ®Lf =0,

with specular reflection boundary condition on the boundary d€2. From (1.6),

5.1) f/m F(0)IiE = //M foFiE =0,

o [y 0 )= [ ()

If the domain is axis-symmetric (1.7) and ® is degenerated (1.8), then
63 [ o= <m0 i =
QxR3

//ngs fol(x = x°) x @} - v JliE = 0.

We prove Proposition 1.4 by the contradiction argument of the proof of proposi-
tion 11 in [12]. We first study the geometric lemma, which allows estimating near
the boundary via the interior bound, and postpone the proof of the proposition.
Define the distance function toward the boundary as

5.4 dist(x, dQ2) = inf{|x — y| : y € 0},

which is well-defined if dist(x, d2) < 1. In this case there exists a unique xx €
92 satisfying |x* — x| = dist(x, 92). We also define

(5.5) n(x) = n(xx)
for x € Q with dist(x, Q) < 1.
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LEMMA 5.1. Let g be a (distributional) solution to
(5.6) dig+v-Vyg+ E-Vyg =G,
where E = E(t,x) € CYY. Then, for a sufficiently small & > 0,

1—¢
(5~7) / ”1dist(x,8§2)<s4l\n(x)'v|>sg(z) ”% dr <
&

1 1
/ M s0ymes 28 (O3t + [ // 2G|,
0 0 QxR3

Note that this lemma is true even for a time-dependent external field case.

PROOF. For x € Q with dist(x,dQ) < &* n(x)-v < —e, and y € 9Q with
[y —x«| <1,

| X(t +&:t,x,v) —y| > |(X( +&:1,x,0) — y) - n(xx)]
4
(x =) nra) +v-n(x)e? + O Elloo s

3_ .4 et _ &
>3 gt o — >
>e’—¢ 0(1)||E||002 >
Hence
&3
(5.8) dist(X(¢ + &;¢,x,0),Q) = inf | X( +e:t,x,v)—y| = —.
yeI,|y—x4|K1 2

We can prove the exact same lower bound of | X (¢ —e¢; ¢, x, v)—y| whenn(x)-v > e.
Hence we conclude, for x € Q with dist(x, 3Q) < e* and n(x) - v > ¢,

3
(5.9) dist(X(1 — 31, x,0), Q) = inf  X(t—et,x,0) —y| >
YEIQ,|y—x4|<K1 2
Moreover, it is well-known that (x,v) — (X( + &;¢,x,v), V(t + &;t,x,v)) isa
local diffeomorphism if dist(x, 9R2) < e* and n(x)-v < —e. And, (x,v) — (X(t—
g;t,x,v), V(t + &;t,x,v)) is also a local diffeomorphism if dist(x, dQ2) < ¢* and
n(x)-v > ¢ hold, since they never hit the boundary. These diffeomorphisms satisfy

AX(t £et,x,v),V(t et x,v))
Jac =1.
a(x,v)

(5.10)

Note that
2
g
X + et ) lcry = ?IIEllcl.y, Ve +et,-. )iy <ellElcry.

By expansions, we conclude that there exist sufficiently small § > 0 and g9 > 0
such that for all 0 < ¢ < &g, (X(t + &;¢,-,-), V(t + &;t,-,-)) is one-to-one in
{(x,v) € Q@ x R3 : dist(x, Q) < &*, n(x)-v < —&, |x —x°| + |[v — 00| < §}
and (X(t —eit,-,-), V(t —et,-,-))is soin {(x,v) € @ x R3 : dist(x, Q) <
et n(x)-v>e |x —x% 4+ v—0° <6
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On the other hand, if X(z +¢;¢,X,0) = X(¢ 4+¢&;¢,x,v)and V(t +¢;¢,X,0) =
V(t + e:t,x,v), then |v — §| < ||E]looe and |x — X| < 2||E|lcoe?. We deduce
the same conclusion if X(t —e;¢,x,0) = X(t —e;t,x,v)and V(t —e&;t,X,0) =
V(t—e:t, x,v). Hence for a sufficiently small g, such (x, v) and (X, 0) are close as
|(x,v) — (X, 0)| < 8. From the local one-to-one property in the previous sentence
we conclude (x,v) = (X, D).

Now we are ready to prove (5.7). Note that

d
d—|g(s, X(s:t,x,0), V(s:t,x,0))|* = 2(gG)(s, X(s:1, x,v), V(s: 1, x,0)).
s

For (x, v) with dist(x, Q) < ¢* and n(x)-v < —e, taking integration s € [, t + €]
along the trajectory,

lg(t,x,v)|> = |g(t + & X(t +¢), V(t + ¢))]?
t+e
— 2/ 2(gG)(s, X(s), V(s))ds.
t

From (5.8), dist(X(t + €), ) > £3/2. Using (5.10) and the one-to-one prop-
erty of (x,v) — (X(s), V(s)) for any fixed |s| < &, we take an integration over
dist(x, 9Q) < &* and n(x) - v < —e and conclude that

M gisi(x.02) <4 In(r)v<—e& O3 = IMgigie.02)>e3/28( + &3

5.11) +[+8 //ngs 12()G(5)).

For the other case, dist(x, Q) < &* and n(x) - v > &, we repeat the same
argument but change ¢ to —e and conclude that

”1dist(x,3$2)<s41n(x)-v>eg(t)”% = ||1dist(x,8§z)>s3/2g(t - 8)”%

(5.12) +/t;[/m3 1g(s)G(s)].

Finally by /7 (5.11)dr and [, ~° (5.12)dz, we conclude (5.7). O

PROOF OF PROPOSITION 1.4. First, it is easy to check that equation (1.38) is
translation invariant in time; i.e., f(t, x,v) := f(t + c, x,v) also solves the same
equation for any c¢. Note that this is not true for the time-dependent potential case
anymore, unless the potential is periodic in time. Therefore it suffices to prove
coercivity for finite time interval ¢ € [0, 1] and so we claim (1.39) for N = 0.

Step 1. Assume that Proposition 1.4 is wrong. This means for any m > 1 there
exists a solution /™ to (1.38) satisfying the specular reflection BC that solves

(5.13) 0 fM 4 vV f =V D -V fm+e L™ =0 fors e [0,1]
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and satisfies

1 1
(5.14) Rz m [ Cja-p o
We define the normalized form of /™ by
S™(t, x,v)
IR rm@o))2 d

(5.15) ZM(t,x,v) =

Then Z™ solves

(5.16) 0 ZM +v-VyZM -V ®-Vy Z™ 4+ e ®LZ™ =0,
(5.17) Z™M(t,x,v) = Z™(t,x, Ryv) x €09,
and

1 1
(5.18) - > / X —=P)Z™ ()2 dt.

m 0

Step 2. We claim that
(5.19) sup sup [|Z™(1)||3 < oo.
m 0<t<l1

From (5.16), for0 <t <1,

t
(5.20) IZn i3+ [ etz zm =1z ok
0

From the nonnegativity of L,
(5.21) sup (12" ()13 < 12" (0)]3-
0<t<1

On the other hand, by integration fol (5.20)dr and utilizing (5.18) and (5.15),

1 1
1
(5.22) 1Z"O)5 <a [ I1Z"I13+ | 1A-P)Z"|; So 1 4+ —.
0 0 m

Therefore, we prove the claim (5.19) from (5.21) and (5.22).

Step 3. Therefore, the sequence {Z™},,>1 is uniformly bounded from above
by supp<;<1 |l g(1)||?>dt. By the weak compactness of L2-space, there exists a
weak limit Z such that

(523)  Z™—~Z inL%®([0,1; LZ(2 x R?)) n L3([0, 1]; LZ(Q x R?)).
Therefore, in the sense of distributions, Z solves

(5.24) 0:Z +v-VyZ —-Vy®-V,Z =0.
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Now we consider the limit of the linear conservation laws. Note that, taking a
weak limit Z™ — Z in L?OL)ZC,U of (5.23) and using (5.1), (5.2), and (5.15), we
deduce linear conservation laws, for almost every ¢ € [0, 1],

v[?

(5.25) [/QXR3 Z(t) /g =0, /[QXR3 Z(z)(T + <1>)¢;TE = 0.

In the case that both (1.7) and (1.8) hold, from (5.3),
(5.26) f/ {(x—x) xw}-vZ(t) /g =0.
QxR3
On the other hand, since
1
PZ" —~PZ and (I-P)Z™ -0 in / || - |2 dt,
0

we know that weak limit Z has only a hydrodynamic part, i.e.,

(5.27) Z(t,x,v) = {a(t,x) +v-b(x,v) + |v|>c(t, X))}/ RE.
and
1 1 1
(5.28) /||Z||5dz5nminf/ [Z™)2dt <1+ — — 1.
0 m—00 0 m

Step 4. Let yo : Q — [0,1] be a smooth function such that y.(x) = 1 if
dist(x, 2) > 2¢* and y.(x) = 0 if dist(x, 90Q) < £*. From (5.16),

[0; + v Vi](}eZ™) = Vi@ Vy(e Z™) + v - Vi g Z™ — e P L(3: Z™).
From the standard average lemma in [8], y.Z™ is compact, i.e.,
(5.29) xeZ™ — yeZ strongly in L2([0, 1]; L2(Q2 x R?)).

Step 5. First we claim that

1—¢
2
(5.30) / |27 (1%, 0) = Z(t, %, v) Lgie a2) <e LinGovle |3 S
&€

1
1
[ 1m0 = 200 ) sgeiny-erall + 0 )
We consider the equation of Z™ — Z. By subtracting (5.16) from (5.24),

(5.31) (Z™—Z)+e®LZ™ =0.
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Now we apply Lemma 5.1 to (5.31) by equating g and G with Z™ — Z and the
right-hand side of (5.31), respectively. Then

1—¢
/ ”1dist(x,8§2)<s41|n(x)-v|>s(Zm - Z)(t)”% dr
&

1
< /0 Mase.amyme/2 (2™ — Z)(0)|2 de

+[01//M3|zm—Z|<v>|<I—P)Z’"|.

Using Holder’s inequality, we bound the last line of the above estimate by

1 1
1
Jm I—PZ’"2+—/ Z™1Z2 + | Z|3.
/OII( V2™ «/_0” 15+ 11Z15

By (5.19) and (5.18), we conclude (5.30).
On the other hand, from (5.18), (5.27), and (5.19),

1—¢
/ 1(Z™ = Z)1jn(xyvl<ell3
&
1—¢ 1—¢
(5.32) < / IA—P)Z" |2 + 0(e) / IPZ™ |2 + [PZ|2
& &

1
< —4 0(e).
m

Step 6. For given ¢ > 0, we can choose m > 1 such that

1

f 2 -2
0 QxR3
1 e 1—e¢
Sl ot L
1—e JJQXR3 0 JUQxR3 e Q.xR3
1—¢ 1—e¢
+/¢: // Q\Q xR3 +/€ // Q\ Q2 xR3
1
}

N{|n(x)-v|<e or |v|>e~ N {|n(x)-v|>¢ and |v|<e~1}
< Ceg,

where we have used (5.19), (5.29), (5.30), and (5.32). Therefore, we conclude that
Z™ — Z strongly in L2([0, 1] x  x R3) and hence

1
(5.33) /0 115 = 1.

Step 7. We consider the boundary condition of Z. Fix a small constant § > 0.
In order to control Z in {(x,v) € y+ : [n(x) - v| < 8}, we use smooth functions
¢>i cQxR3 = [0,1] where¢>fIE = lon{(x,v) € y+ : |n(x)-v| <8} and¢>5jE =
on {(x,v) € y+ : |n(x) - v| > 28}, respectively.
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From the weak formulation, we have (3; +v-Vy —V,;®-V,)|Z|?> = 0. Testing
it with ¢_§E, we obtain

/OI/V 1Z2¢%(n - v) = _//ssz3 %L1 Z(1))? +//QXR3 ¢%1Z(0)?

1
+/// v Vepl|Z 2 + Vi@ - Vyol | Z.
0 QxR3

From (5.27) and (5.28), we deduce that Z € L2({(x,v) € y+ : |n(x) - v| < §}),
and a,b,c € L?([0, 1] x dK2) such that

1 1
(5.34) | [ taP bl e 5 [C1ziE+ s 1zl
0 JoQ 0 0<t<1
Now we claim that
(5.35) Z(t,x,v) = Z(t,x, Ryv) almostevery [6,]1 —&] x y_.

Let ¢ : @ x R — R be a smooth bounded function with strong decay in v.
Moreover, we assume that this test function is an even function in ¢(n(x) - v) at
the boundary. Testing (5.24) with such a function ¢, we have

/0 1 /y Zo(n(x) -v) = — [[Q @z -zopy

+/01f/QXR3 Z(—v-Vip  + Vi V).

On the other hand, employing the same test function, from (5.16) and (5.17), we
conclude that

0= _/LZXR3(zm(1) — Z™(0))¢

By passing to the limit m — oo, from (5.27) and (5.18), we realize that the right-
hand side of (5.36) equals 0. Therefore, we conclude that

(5.36)

1
(5.37) /o / Zo(n(x)-v) =0.
Y

for any smooth function ¢ that is even in n(x) - v at the boundary. This proves
(5.35).

Finally, combining (5.35), (5.27), and (5.34), we prove (1.40).

Step 8. We claim (1.42). We consider the system of a, b, and ¢ that is obtained

by plugging (5.27) in (5.24). From [16], in the sense of distributions, they solve
(1.41).
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The first equation of (1.41) implies that ¢ is only a function of ¢, i.e., ¢ = c¢(¢).
From the first three equations of (1.41) we can get

(5.38) b(t,x) = —0dic(t)x + w(t) x x + m(t).

The proof of (5.38) is based on direct computations. (See lemma 12 in [12] for the
details.)

From the second equation of (1.41), we obtain Vy - b = —3¢/(t). By the diver-
gence theorem and (1.40),

-3¢/ ()| =/ b-n=0.
Q2

Therefore, ¢’(t) = 0, ¢c(t) = cg, and b = w(t) x x + m(t). We conclude
(5.39) c(t,x) = co.

We split into two cases: w = 0 and @ # 0.

Case of w = 0. If w = 0, then b(¢t) = m(¢). From (1.40) we deduce that
(5.40) b()=m(t) =0.

Then from the last equation of (1.41), @ = a(x). From the fourth equation of
(1.41), for some constant C, we obtain that

541 a(t,x) =2cod(x) + C.
Plugging (5.39) and (5.41) into the conservation laws (5.25),

0= //(ZCOCD(X)—I—C + colv|?) g

2
v
= //(2c0¢(x) +C + co|v|2) (% + CI)(X))[,LE.
From the direct computations, we deduce co = 0 = C and hence (1.42).
Case of w # 0. From (1.40), at the boundary,
b(t,x)-n(x) = (w(t) x x +m(t)) -n(x) =0.

Since m(t) is a fixed vector for given ¢, we decompose m(t) into the parallel and
orthogonal components to @ (¢) as

m(t) = a)w () — w(t) X xo(t).
Then
b(t,x)-n(x)
= (w(t) X x +m(t)) - n(x)
(5.42) = (w(t) X (x — xo(t))) -n(x)+a@®)w @) -n(x) =0 Vx e d.
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Choose t with @ () # 0. We can pick x” € 92 such that w (¢) || n(x’). Then the
first term of the right-hand side in (5.42) is 0. Hence we deduce, from (5.38) and
(5.39), that

(5.43) a(t) =0 and b(t.x) = w(t) x (x —x°(t)).
This yields
(5.44) (@ (t) x (x —x0(t))) -n(x) =0 Vx €9Q.

The equality (5.44) implies that 2 is axis symmetric with the origin x¢(¢) and
the axis @ (¢). From (5.26) and (5.43),

0= //Q |w x (x — x0(1)) - v|? e 2 dx dv.

Therefore, we conclude that @ (¢) = 0 for all ¢. This proves b(¢, x) = 0. Then we
follow the argument for the case of w = 0 and deduce (1.42).

Step 9. Finally, we deduce a contradiction from (5.33) and (1.42). Hence we
prove the theorem. O

Once such a coercivity is proven, we can directly deduce an exponential decay.

COROLLARY 5.2. Assume the same conditions in Proposition 1.4. Then there
exists A > 0 such that a solution of (1.38) satisfies

(5.45) supe™ || F()3 < 11 foll3-

0<t

PROOF OF COROLLARY 5.2. Assume that 0 < ¢ < 1. From the energy esti-
mate of (1.38) in a time interval [0, N],

N
(5.46) 1FVI2 + / // @ ILf < | fO)2.
0 QxR3
From (1.38), for any A > 0

(5.47) [0, + v Vi — Vi@ - V] (M f) + e LM f) = A .

By the energy estimate,

e 013 + [ ! [/Q Ly

@
N
_ As 2 2
A /0 //Q RGO VO

(5.48)
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First, we consider (I) in (5.48). From (1.36), the term (I) in (5.48) is bounded

below by
N
Wzo [ [ [ wiea-psp

N
> s 12les / le™ (@ —P) 2.
0

By time translation, we apply (1.39) to obtain

Spe 1%l N spe~1®loe N
> oLe T / leMa—pyf)z+ 2" / ESIE
2 0 2 Jo

—|®P|lco N
, de 1l [ le™ £ 2.
¢ Jo

Therefore, we derive
—®lleo

2C

dre

N
_ A) / le™ £12 < 1 £O)]3.
0

On the other hand, from the energy estimate of (1.38) in a time interval [N, t],
using (1.36), we have

(5.50) LA O3 < /(N3
Finally, choosing A < 1, from (5.49) and (5.50), we conclude that

(5.49) MV FN) 3 + (

(5.51) AN fO))3 = ATNAN| (N3 < 2] £(0)]I3
and prove (5.45). Il

PROOF OF THEOREM 1.2. We sketch the proof of the nonlinear L.°°-decay. Note
that we have shown a local existence result in (4.1) and the global stability theo-
rem, Theorem 1.1, so we perform an exponential decaying a priori estimate for a
nonlinear problem to finish proof.

Note that for small | ®||c1 = §¢ <K 1, we have

1 1
e () + —V,®-Vyw > Ee_‘gq’v(v).
w

This inequality implies

e—fst e*‘D(X)v(V)dr—fS[ %Vycbvvw < e—%e*&bv(v)(t—s)
(5.52) -

— o~ Ire®)(—s)
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where we defined v (v) := e ~5®v(v). Then, similar to the proof of Theorem 1.1,
h(t,x,v)
= E(,t,T)h(T) + /Tt E(.t,5)e"® [ kw W, V)E(u,s, T)h(T)du ds
u
+ /: E(,t,s)e” 2X6) / kw(u,v) /TS E(u,s,s)e  ®X6D)
u

x/ k@', W)EW',s", TYh(T)du'ds’du ds
u/

t s
+ [ B9 [ [ Es.se @
T u T

S/
X/ kw(u/yu)/ E(u/,s/,s”)g_cp(X(S”))
u’ T

x/ kw@” uYh(s", X(s";s', X(s"; s, X(s5 ¢, x,v),u),u’), u”)du"ds” du’ds’du ds
u” av

where we defined,

w

E(,1,5) i= e~ Js € PXET D0 (st x,00)de— [ 5 Vx DX (s3t,6,0) Vow (V(s538,%,0))

Except for (IV), the rest of the terms are clearly bounded by
(5.53) e 2 2O (7).

The estimate for (IV) is obtained by a change of variable similar to (4.29) in the
proof of Theorem 1.1. Using definition (4.23) and performing a change of variable,
we obtain

t
(IV) S Cn.2.0.8 f / h(s”, X" (s"),u"ydu" dX" ds
T X// u//

+C §Y sup |h(s

t
< Cvaos [ 176, &+ Craed sw [h6)].
T ’ s€[T,t]

Hence

t

_1 _

(5.55  sup [[h(5)]loo Sh2.08 € 2 QDT 00 + / /()2 ds.
s€[T,t] T

We assume that m < ¢t < m + 1 and define A* := min{”"T(m,/\}, where A is
some constant from Corollary 5.2. We use (5.55) repeatedly for each time step,
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[k,k + 1), k € N, and Corollary 5.2 to perform an L2-L bootstrap, i.e.,

_ vg(0)
12()lle Sn.@pe ™ 2 [17(0)]oo

m—1 m—k
v (0)
+ Y et / 1 £(s)ds
k=0 —1-k
v
(5.56) Snva.epe 2 1h(0)]oo

g P e
+ D e / e~Hm=1R)) £(0) ds
k=0 —1-k

_ax
< Cne,0.8¢ 2 [1(0)]oo-

For a nonlinear problem, from Duhamel principle,

d h h
h:=U(t)hy +[ Ut — s)we_ch(—, —)(s)ds,
0 w w
_A*
(5.57) 1h@)llee Sn.2.0.8 € 2" [11(0)]loo

)
o0

/t Ut — s)we_g)l“(ﬁ, ﬁ)(s)ds
0 w w

where U(t) is a linear solver for a linearized Boltzmann equation. Inspired by [12],
we use Duhamel’s principle again, i.e.,

|

t

(5.58) Uit—s)=Gt—s)+ / G(t —s1)KpU(s1 — s)dsy,
N

where G(t) is linear solver for the system

h
h+v-Veh—Vye®-Vyh+ —V®-Vyw + e Pvh =0
(5.59) w

and  |G(t)ho| < e~ 2"*®1|py|.

For the last term in (5.57),

H /t Ut — s)we_fI‘(ﬁ, ﬁ)(s)ds
0 w w
/t G(t — s)wF(ﬁ, ﬁ) (s)ds

0 w w 00

[t /t G(t —s1)KyU(s1 — s)wl"(ﬁ, ﬁ) (s)dsy ds
0 K w w

*

* 2
= Coe™ 7! sup_ T [h(s)lloo) -

0<s<o0

o0

=

(5.60)

l

o0
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Therefore, for sufficiently small ||4¢]co < 1, we have a uniform bound

(5.61) sup e T A(t) oo < 1.

0<t<o0

From this small uniform bound, we get global decay and uniqueness. Positivity
was already proved in Theorem 4.1. 0
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