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Abstract—This paper proposes a framework to explore the op-

timization of applications where a distributed set of nodes/sensors,

e.g., automated vehicles, collaboratively exchange information over

a network to achieve real-time situational-awareness. To that end

we propose a reasonable proxy for the usefulness of possibly

delayed sensor updates and their sensitivity to the network re-

sources devoted to such exchanges. This enables us to study the

joint optimization of (1) the application-level update rates, i.e.,

how often and when sensors update other nodes, and (2), the

transmission resources allocated to, and resulting delays associated

with, exchanging updates. We first consider a network scenario

where nodes share a single resource, e.g., an ad hoc wireless

setting where a cluster of nodes, e.g., platoon of vehicles, share

information by broadcasting on a single collision domain. In this

setting we provide an explicit solution characterizing the interplay

between network congestion and situational awareness amongst

heterogeneous nodes. We then extend this to a setting where

such clusters can also exchange information via a base station.

In this setting we characterize the optimal solution and develop

a natural distributed algorithm based on exchanging congestion

prices associated with sensor nodes’ update rates and associated

network transmission rates. Preliminary numerical evaluation

provides initial insights on the trade-offs associated with optimizing

situational awareness and the proposed algorithm’s convergence.

I. INTRODUCTION

In this paper we study the fundamental characteristics of sys-
tems aimed at achieving real-time situational-awareness based
on distributed sensing resources. In particular we explore the
joint selection of sensor update rates/policies and the allocation
of communication resources towards optimizing Networked
Situational-Awareness (NSA).

As an example of such a system, we consider automated
vehicles leveraging collaborative sensing. Each car has access
to on-board sensing resources, e.g., mmwave radar, LIDAR,
cameras which provide a local perspective on their dynamic
environment. Unfortunately such sensing modalities are tied
to the availability of Line-of-Sight (LOS) views, meaning that
certain key regions may be obstructed, e.g., a vehicle may not be
able to see what is in front of the vehicle ahead of it, or a vehicle
may wish to have redundant points of view of its environment
to provide improved tracking and/or detection reliability. To
overcome this challenge one might consider enabling vehicles to
engage in collaborative sensing, wherein they exchange raw (or
processed) sensor data with each other towards improving each
vehicle’s situational-awareness [1]. Such an approach would
potentially involve sharing substantial amounts of information
amongst nearby vehicles, possibly overloading communication
resources. Network congestion or other transmission/processing
delays in turn reduce the timeliness of the shared information,
compromising the ability of automated vehicles to make reliable
real-time decisions. Indeed the sensitivity of collaborative sens-
ing systems to both the latency and capacity of the underlying

communication network has motivated the industry to develop
5G wireless standards for Ultra-Reliable Low Latency Commu-
nications (URLLC).

The challenges of achieving real-time situational awareness
through collaborative sensing in a communication constrained
setting are many and involve several fundamental questions,
including:

1) How often and when should sensing nodes update their
neighbors regarding their respective environments?

2) What is an appropriate metric (or proxy thereof) to quantify
situational-awareness and help drive the fair allocation of
resources?

3) How should network resources be allocated among com-
peting nodes’ updates so as to optimize the overall nodes’
situational awareness?

In order to study such systems, we require a well-defined
metric. As discussed in more detail below, the Age-of-
Information (AoI) has emerged as a simple intuitive metric: it
measures how old relative to current time is the most recently
received sensor update. This is, of course, only loosely tied to
situational-awareness. Other more traditional metrics are tied
to the achievable distortion/error, e.g. the Mean Square Error
(MSE) of an estimated sensor node’s “state” at a remote node.
As we will see, these metrics are roughly aligned and provide
the starting point of this paper.

Related Work. There has been substantial interest in modeling
systems involving the timely monitoring of remote processes
over a network. The novelty of our work lies in the study of
optimizing networked situational-awareness.
Age-of-Information (AoI), as discussed in [2], was introduced
in the early 2010s as a measure which quantifies the freshness
of the information a node has about a remote node’s state. This
metric became popular because it better represents the infor-
mation freshness versus traditional latency/delay. Techniques to
quantify and minimize AoI, or simply Age have been extensively
studied in previous work, see examples, [3], [4], [5], [6] and [7].
In particular [4] studies how to optimally manage the freshness
of information updates sent from a single source node to a
destination, via a channel.

The recent work of [8] focuses on what is perhaps a more
natural metric for tracking scenarios. The setting considered
involves a single node monitoring a process (Brownian motion)
and sending updates over a network (single queue) to a remote
node which creates its best estimate for the process based on
the received updates. The paper poses and solves the problem of
determining an optimal update strategy subject to a constraint
on the long term rate of updates, where the cost is given by
the time average MSE of the remote site’s estimate for the
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process. Although this is an extremely simplified model, it gives
a fundamental characterization of the problem at hand, and will
serve to motivate our networked problem formulation.

The general approach proposed in this paper is based on
ideas underlying resource allocation in today’s communication
networks. Specifically work connecting the allocations achieved
by transport protocols such as TCP to utility maximization,
see e.g., [9], [10] and [11] for an in depth survey. However,
our paper differs from this body of work in that it addresses
the joint optimization of sensor nodes’ update policies and
network resource allocation. As we shall see, the setting involves
congestion constraints that are not easily decomposable but
capture the underlying character of the problem at hand.

Contributions of this paper. In this paper we propose a
framework to explore the optimization of networked situa-
tional awareness. We study the joint optimization of both the
application-level update rate, i.e., how often and when sensors
update other nodes, and the transmission resources allocated
to, and resulting delays associated with, sharing nodes’ up-
dates. We first consider a network scenario where nodes share
a single resource, e.g., an ad hoc wireless setting where a
cluster of nodes, e.g., platoon of vehicles, share information
by broadcasting on a single collision domain, and find closed
form expressions for both the update and transmission rates
associated with this scenario. We then extend this to a setting
where such clusters can in addition exchange information via a
base station. In this setting we characterize the optimal solution
and develop a natural distributed algorithm based on exchanging
congestion prices associated with sensor nodes’ update rates and
associated network transmission rates. We conclude with a set
of preliminary numerical evaluations to explore the algorithm’s
convergence and character of the resources’ allocations.

Organization. The paper is organized as follows. In Section
II we motivate and propose an appropriate utility function for
situational awareness. Section III describes our system model
for a cluster of nodes broadcasting updates to each other over a
shared ad-hoc wireless network. Section IV expands our model
to include clusters of nodes which can further communicate
through network infrastructure. In Section V, we design a dual
decomposition algorithm used to jointly optimize sensor nodes’
update rates and network transmission rates. Section VI provides
preliminary numerical results and analysis, and finally Section
VII concludes the paper.

II. MODELING NETWORKED SITUATIONAL-AWARENESS

In this section we develop a simplified model for real-
time situational awareness in a collaborative sensing system.
We focus on a setting where sensing nodes are monitoring
“independent” processes and updating their peers accordingly.

As a starting point we consider the AoI metric in a simple
idealized setting. Suppose a sensor node periodically generates
updates every 1/f seconds and each one is delayed by exactly
d seconds before reaching the remote node. The time-varying
AoI at the remote node is shown in Fig.1.

Fig. 1. Transition from AoI to situational awareness metric

This model is idealized in that (1) updates are generated
periodically while in practice they could have been generated
opportunistically, e.g. based on the degree of change in the
underlying process, and (2) network delays are assumed to be
fixed, and (3) the focus is on AoI being the appropriate metric.
The time average AoI for this idealized process is given by

AoI =
1

2f
+ d. (1)

To address these limitations, let us consider the stylized result
in [8]. The setting is as follows: a sensing node monitors and
samples from a Brownian Motion (Wt, t � 0) with variance
�2. This nodes updates another remote node of the observed
processes’ changing state, which it does by transmitting an
update over a communication link. The updates are known
to have i.i.d. service times (Yi, i = 1, 2, . . .) with the same
distribution as a random variable Y . Further the sensor node
is aware of the state of the link, i.e., busy or not. The key
result developed in [8] is a characterization of an optimal update
strategy, i.e., one that minimizes the time average MSE at the
remote node subject to a constraint f on the long term frequency
of updates. The optimal updating policy is parameterized by a
parameter ✓ and can be described as follows. The optimal policy
generates updates at times (Si, i = 1, 2 . . .), given by

Si+1 = inf{t � Si + Yi : |Wt �WSi | �
p
✓}, (2)

i.e., the policy waits until the previous update was successfully
transmitted, and then sends an update once the change in the
process exceeds

p
✓. The optimal ✓ is characterized by the

following theorem.
Theorem 1: [8] For a given constraint on the update rate f

and distribution for the i.i.d. packet service times Y , the optimal
✓ is given by the solution to the following equation

E[max(✓,W 2
Y )] = max


�2

f
,
E[max(✓2,W 4

Y )]

2✓

�
, (3)

where WY corresponds to the distribution of a Brownian Motion
(Wt, t � 0) sampled at a random time Y. The optimal MSE is
then given by

MSEopt =
E[max(✓2,W 4

Y )]

6E[max(✓,W 2
Y )]

+ �2E[Y ]. (4)

This explicit elegant characterization of an optimal updating
policy captures both the role of variability of the observed
process as well as the impact of packet delays. Also underlying
this result is the basic observation that the sensor node should
never generate an update when the channel is busy, as the update
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would simply wait in the queue for transmission. The limitations
of this result should also be clear. In particular only a single
sensor node is considered with a dedicated transmission link,
along with a possibly artificial constraint on the long term rate
of updates f the node can generate.

Suppose that the update service times/delays are fixed to d,
then one can show after some somewhat intricate approxima-
tions (left out due to space constraints) that the optimal threshold
✓ and associated MSE in Theorem 1 are roughly

✓ ⇡ �2

f
and MSEopt ⇡ �2

� 1

6f
+ d
�
. (5)

Note that this update threshold ✓ matches the optimal sam-
pling threshold derived in [12] for the case where d = 0. These
approximate results make explicit the role played by various
system parameters. As can be seen, the achievable MSE is lower
bounded by �2d, i.e., no matter how high the sensor update
rate f is, it can not overcome the MSE arising due to the delay
(service time) d to communicate with the remote node. This
brings into focus the critical role that latency plays in networks
supporting real-time situational awareness. Still as the allowable
update rate f increases the optimal updating policy can make
the MSE close to this lower bound. Indeed the reduction in MSE
is inversely proportional to f .
Note that for the AoI model discussed earlier, if the observed
process were a Brownian Motion, the MSE is equal to �2⇥AoI .
Following from Eq.(1), we have that the MSE= �2

�
1
2f + d

�
.

Thus the advantage of having an opportunistic update policy
as exhibited in Eq.(2), versus a periodic updating policy with
the same frequency of updates is the change in the factor
multiplying 1/f from 1

2 to 1
6 .

Motivated by the above results, we propose the following
parametric model for situational-awareness. Suppose that a
sensor update has a size ⌫ bits, and suppose that the sensor has a
dedicated link with capacity r bps. Then the delay d to transmit
an update is given by d = ⌫

r . Also note that if the update rate is
f (Hz), then the associated average bit rate ⇢ (bps) generated by
the sensor node is given by ⇢ = f⌫. With these new variables
the approximate optimal MSE given in Eq.(5) is

MSEopt = (
�2⌫

6
)
1

⇢
+ (�2⌫)

1

r
,

with a similar functional result for AoI. This captures the impact
of allowing an increased update rate ⇢ and/or provisioning a link
with an increased capacity r on the MSE / AoI. Note that ⇢  r.

Based on these observations we propose the following proxy
metric that captures the situational-awareness cost.

Definition. Given an update data rate ⇢ (bps) and link
transmission rate r (bps), we model the Situational Awareness
Error (SAE) of a node, s(., .) as follows:

s(⇢, r) =
a

⇢
+

b

r
, (6)

where b � a > 0 are constants.
Remark. Through the parameters a and b, this model can
capture the salient characteristics of the underlying system. For
example, the variability of the underlying process (captured by
�2) that a sensor node is monitoring would scale a, b. Also,
different types of sensor nodes, e.g. video/imaging, LIDAR,
might generate updates of different sizes, which would also scale
a, b. Finally, the relative values of a, b model the nature of the

update policy being used, e.g., deterministic, opportunistic, or
other.

The figure below exhibits the “on/off” dynamics of the
dedicated transmission link. A simple Corollary to the result
developed to prove Theorem 1 gives the characteristics of this
process.

Fig. 2. System model: sensor update process and SAE model

Corollary 1: Under the optimal policy given in both Theorem
1 and Eq.(2) for an update rate constraint f and deterministic
packet service times d = ⌫/r, the stationary dynamics of
the communication link correspond to an “on/off” alternating
renewal process which has an average “on/off” cycle time of
1/f and “on” period of length d during which the link transmits
at rate r. Whence the fraction of time the link is busy is ⇢/r < 1.

In the next section, we shall leverage this basic result to study
a more general setting.

III. NSA OPTIMIZATION ON A SHARED BROADCAST
NETWORK

As a first step, we consider a cluster of sensor nodes N
sharing a single broadcast resource (single collision domain).
Each node broadcasts updates to all the other nodes. Since
different nodes within the cluster are located in different
positions, the broadcast rate, µn of each node n 2 N may be
different, e.g., a node more centrally located within the cluster
might have a higher broadcast rate .

Below we consider the problem of jointly optimizing the
sensor nodes’ update rates ⇢ = (⇢n : n 2 N ) where ⇢n = fn⌫n
and transmission rates r = (rn : n 2 N ). To that end, we define
an appropriate cost function along with appropriate capacity
constraints.

Objective function. The situational awareness error SAE of
node n is modeled as

sn(⇢n, rn) =
an
⇢n

+
bn
rn

,

where bn � an > 0, 8n 2 N . The network’s overall SAE is
then given by

g(⇢, r) =
X

n2N
sn(⇢n, rn) =

X

n2N

an
⇢n

+
bn
rn

.

As should be clear, increasing a sensor node’s update rate
⇢n and/or transmission rate rn decreases the SAE as seen at
the nodes that it is updating, leading to an improved network
situational awareness. Further, note that the overall SAE is
convex encoding a degree of fairness across the SAE’s of the
cluster’s nodes.
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Congestion constraints. As seen in Corollary 1, if nodes
operate on dedicated links, each will act as a stationary alter-
nating renewal process. At any random time, sensor node n
could be “on” with probability ⇢n/rn and transmitting at rate rn.
Otherwise it is “off”. We model the state of a sensor node n at
a typical time via a Bernoulli random variable Xn ⇠ Bernoulli
(⇢n/rn), where ⇢n/rn represents the fraction of time the link
is busy sending node n’s update, as described in Corollary 1.
We shall further make the following assumption.

Assumption 1: (Independence of sensor nodes’ processes). We
shall assume that the sensor nodes’ states are independent, e.g.,
the underlying processes they observe are independent.

In our model, if at some point in time a sensor node is
transmitting at rate rn, it will require a fraction of the shared
broadcast resource, rn/µn, and if all the nodes were active, to
ensure all the nodes’ transmissions can be supported, we require
that X

n2N

rn
µn

 1.

However since not all the nodes are active all the time, we
will impose a relaxed chance constraint [13] which ensures that
with high probability, 1�✏ (for ✏ very small), the sensor nodes’
update transmissions can be supported. In particular, we require

P

✓ X

n2N
Xn

rn
µn

> 1

◆
< ✏. (7)

Using the Hoeffding bound, one can show (see Appendix
IX-A) that a sufficient condition for the above constraint to be
satisfied, is given in the following Lemma.

Lemma 1: Under Assumption 1, the network congestion
constraint Eq.(7) is satisfied if

X

n2N

⇢n
µn

+ ! k r kµ,2 1, (8)

where ! =
q

� 1
2 ln(✏) and k x kµ,q:=

✓P
n2N

�
xn
µn

�q
◆ 1

q

which for q � 1 is a weighted, by positive reciprocals of µ�1,
norm.

Given Lemma 1, one can formulate the following optimiza-
tion problem of NSA, and solve for both the update and
transmission rates.

Problem 1: (NSA optimization - single shared resource)

min
⇢,r

{g(⇢, r) |
X

n2N

⇢n
µn

+ ! k r kµ,2 1, ⇢  r  µ}. (9)

Proposition 1: The NSA optimization Problem 1 is convex
with a unique solution, which for ✏ small enough, e.g., e�72 
✏  e�2, is given by:

⇢⇤n =
↵n

k ↵ k1 +
p
! k � k 4

3

µn, r⇤n =
1p
!

�n

↵n

✓k � k 4
3

�n

◆ 1
3

⇢⇤n,

for all n 2 N , and where ↵ = (↵n =
q

an
µn

: n 2 N ) and

� = (�n =
q

bn
µn

: n 2 N ).
Proposition 1 is proven in Appendix IX-B.
The relatively simple closed form given above, is obtained by
relaxing the constraint ⇢  r  µ and verifying that under the
congestion constraint and the assumption that both bn � an >
0, 8n 2 N , and 0 < !  1, it will be satisfied.

Remark. To get further insight on the NSA problem, consider
the homogeneous case, where all the nodes share the same
an, bn parameters and broadcast capacity µ. In this case the
optimal sensor node update and transmission rates are given by

⇢⇤ =

✓
1

1 +
p
!
q

b
aN

� 1
4

◆
µ

N
and r⇤ =

r
b

a

1p
!
N

1
4 ⇢⇤,

where N = |N |.
As can be seen, for fixed µ, as N grows, the update rate ⇢⇤

behaves as µ
N while the optimal transmission rate r⇤ behaves

as 1

N
3
4

. Intuitively, we might argue that as the number of sensing
nodes in the network increases, optimizing NSA requires that
the probability of each node staying “on” decreases as 1

N
1
4

,
while the transmission rate allocated to each user experiences a
less stringent decrease, i.e., as 1

N
3
4

, i.e., each user still transmits
at a high rate to reduce update delays.
Another interesting setting is one where the broadcast capacity
scales in N , i.e., µ = N , where  > 0 is a constant. In
that case, ⇢⇤ converges to , while r⇤ increases on the order
of N 1

4 . Intuitively, when the broadcast capacity scales linearly,
each node can increase its transmission rate, which reduces both
its probability of being ‘on’ and the update delay.

IV. NSA OPTIMIZATION FOR INFRASTRUCTURE ASSISTED
INTER-CLUSTER COMMUNICATION

In this section, we extend our previous model to include
multiple clusters which can further exchange updates via a base
station. The setting is exhibited in Fig. 3.

Fig. 3. Infrastructure assisted intra-cluster update exchanges.

In particular the sensor nodes distribute their updates as fol-
lows: (1) Intra-Cluster broadcast: sensor nodes within the same
cluster communicate among themselves via a local broadcast.
(2) Inter-Cluster broadcast: clusters can share updates with each
other by transmitting up to the BS which in turn can broadcast
them down to other clusters. We will assume that inter-cluster
and intra-cluster communications do not interfere with each
other, i.e., operate on orthogonal frequency bands, and that
clustering is such that inter-cluster broadcasts do not interfere
with each other.

Let C denote a set of clusters, and Nc be the set of nodes
in cluster c 2 C. We provide further discussion regarding the
network under consideration.

• Broadcasting is inherently unreliable, thus the intra-cluster
and base station inter-cluster broadcast could provide an
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additional level of reliability for intra-cluster update shar-
ing.

• The uplink transmissions to the base station could be
performed in various ways. One possibility is that each
sensing node directly sends the update to the base station.
Another one is that each cluster selects a cluster head
which is in charge of forwarding the updates generated
by any node in the cluster to the base station. The cluster
head might be selected to have either a good connectivity
to the nodes in the cluster and/or a good uplink capacity
to the BS, thus reducing congestion on the BS uplink.

• For base station downlink transmissions, one could con-
sider either an omni-directional broadcast, where all the
nodes in the network receive the update forwarded from
the BS instantaneously, or, one could assume that the BS
uses a directional type of broadcasting, where it directs its
broadcast to a single cluster, one cluster at a time. This
might be necessary to ensure better reliability and higher
transmission rates from the BS to the nodes. Doing so
would require the base station to use several transmissions
on the downlink (in fact, one for each cluster).

While the above options can be handled in our framework,
below we proceed with a simple and straightforward version:
each node n 2 Nc shares its update to all the other nodes
in the network. The nodes within the same cluster receive the
update via both intra-cluster and base station level broadcast.
The nodes in other clusters receive the update via the BS
broadcast alone. Each node sends its updates to the BS which
then broadcasts them to all the nodes in N . We also make the
following assumption:

Assumption 2: (Cut-through assumption). We assume that BS
uplink/downlink relaying of an update incurs no relaying delay.
Below we consider the problem of jointly optimizing the sensor
nodes’ update rates ⇢ = (⇢n : n 2 N ) and transmission rates
r = (rn : n 2 N ). We shall also define ⇢c = (⇢n : n 2 Nc)
and rc = (rn : n 2 Nc).

The overall cost function SAE, g(⇢, r), is the same as that
defined earlier.
We denote the intra-cluster broadcast rate of a sensor node n
to the nodes in its cluster by µa

n, and the uplink/dowlink peak
rates from/to particular nodes by µu

n and µd
n, respectively. We

let µa = (µa
n : n 2 N ). Similarly µu = (µu

n : n 2 N ), and
µd = (µd

n : n 2 N ). We assume that µd
n is the same for all the

nodes and hence equal to µd.
Congestion constraints. As seen in Corollary 1, if nodes

operate in isolation, each will act as a stationary alternating
renewal process.

In our infrastructure assisted network model, if at some point
in time, node n 2 Nc is transmitting an update at rate rn, three
main constraints need to be satisfied. The first one is dictated
by each cluster’s resources: each node will require a fraction
of its cluster’s resources, given by rn/µa

n, and to ensure all the
nodes’ transmissions can be supported, we require that

X

n2Nc

rn
µa
n

 1.

The second and third constraints are set to avoid congestion at
the base station, i.e. the activity at the base station (which is

receiving/broadcasting updates) must be supported for all nodes
n 2 N on both the uplink and the downlink, and must satisfy

X

n2N

rn
µu
n

 1 and
X

n2N

rn
µd

 1.

However, since not all nodes are active at the same time, we
shall, once again, impose a chance constraint [13] which ensures
with high probability that the sensor node’s update transmissions
can be supported. In particular, we require that,

P

✓ X

n2Nc

Xn
rn
µa
n

> 1

◆
< ✏, 8c 2 C,

P

✓ X

n2N
Xn

rn
µu
n

> 1

◆
< ✏ and P

✓ X

n2N
Xn

rn
µd

> 1

◆
< ✏,

where Xn ⇠ Bernoulli (⇢n/rn) for all n 2 N . As shown in
Lemma 1, sufficient constraints for these to be satisfied can be
found based on the following norms:

sX

n2Nc

� rn
µa
n

�2
=k rc kµa,2,

sX

n2N

� rn
µu
n

�2
=k r kµu,2 and

sX

n2N

� rn
µd

�2
=k r kµd,2 .

The joint NSA optimization problem with infrastructure assis-
tance can be formulated as follows.

Problem 2: (NSA optimization for infrastructure assisted

setting).

min
⇢,r

{g(⇢, r) |
X

n2Nc

⇢n
µn

+ ! k rc kµa,2 1, 8c 2 C,

X

n2N

⇢n
µu
n

+ ! k r kµu,2 1,

X

n2N

⇢n
µd

+ ! k r kµd,2 1}.

Proposition 2: Under Assumption 1, Problem 2 is convex
with a unique solution characterized by first order optimality
conditions which gives the following solution: For all n 2 N ,

⇢⇤n =
s

an
�a
c

µa
n
+

�u
b

µu
n
+

�d
b

µd

, (10)

r⇤n = 3

vuut
bn

!
� �a

c
(µa

n)
2krckµa,2

+
�u
b

(µu
n)

2krkµu,2
+

�d
b

(µd)2krk
µd,2

� , (11)

where �a
c , c 2 C, are Lagrange multipliers associated with the

intra-cluster congestion constraint and �u
b and �d

b are associated
with BS uplink and downlink congestion constraints, respec-
tively.

Remark. An interesting observation is that while ⇢⇤n depends
only on congestion prices, r⇤n depends also on other nodes’
transmission rates.

In the next section, we propose a distributed algorithm to
determine the optimal joint sensor node update and transmission
rates’ allocation across the sensor nodes.
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V. NSA ALGORITHM

The algorithm works as follows. Each cluster of nodes c 2 C
updates its Lagrange multiplier �a

c which we refer to as cluster
price, while the base station updates the Lagrange multipliers,
�u
b and �d

b corresponding to uplink/downlink prices, respectively.
Meanwhile each sensor node n 2 N responds by updating its
sensor update and transmission rates ⇢n and rn, respectively.

Suppose that each cluster elects a single node to serve as the
cluster head. Its main role will be to compute the cluster price
and establish a direct connection to exchange price information
with the base station. �a

c is updated at the cluster head, while
�u
b and �d

b are updated at the base station. �u
b and �d

b are shared
with the cluster heads, who forward �a

c , �u
b and �d

b to the
corresponding clusters’ nodes. The optimal form for the sensor
node update and transmission rates given in Eq. (10) and (11)
can be re-written as

⇢n =

r
an
pn

and rn = 3

s
bn
!qn

(12)

where pn and qn can be interpreted as nodal update rate price
and nodal transmission rate price given respectively by

pn =
�a
c

µa
n

+
�u
b

µu
n

+
�d
b

µd
,

qn =
1

(µa
n)

2

�a
c

�a
c

+
1

(µu
n)

2

�u
b

�u
b

+
1

(µd)2
�d
b

�d
b

,

and are computed once the Lagrange multipliers are known.
Remark. We shall assume that the cluster head knows the
broadcast rates µa

n of all n 2 Nc, while the base station knows
the uplink/downlink peak rates, µu

n and µb respectively, of all
n 2 N .
We summarize the algorithm as follows.
Each node computes pn and sends an

pn
to the cluster head which

forwards it to the base station. The cluster head computes a
cluster quantity �a

c that we refer to as the “spare capacity” and
which is defined as follows

�a
c =

1

!
max


1�

X

n2Nc

1

µa
n

r
an
pn

, �

�
.

for some small � > 0. The base station uses the quantity an
pn

to compute uplink/downlink quantities, �u
b and �d

b respectively,
also referred to as BS’s uplink and downlink “spare capacity”,
and defined as

�u
b =

1

!
max


1�

X

n2N

1

µu
n

r
an
pn

, �

�
,

�d
b =

1

!
max


1�

X

n2N

1

µd

r
an
pn

, �

�
.

Note that �a
c depends on the update rate prices of all nodes in

cluster c, while �u
b and �d

b depend on the update rate prices
of all the nodes in sharing the BS. Given the nodal update
prices and spare capacities, each cluster head node determines
a cluster price on transmission rate given by �a

c/�
a
c , while the

base station determines the uplink/downlink rate transmission
prices given by �u

b /�
u
b and �d

b/�
d
b , and then shares them with

the corresponding clusters’ heads. Note that the higher the spare
capacity the lower the price of adopting a higher transmission
rate for sensor nodes updates at node n. The transmissions’

prices are then distributed from the cluster head amongst the
cluster nodes. Each node in the network can now compute their
own qn. At this point, given that each node have their pn and
qn, they update their ⇢n and rn according to Eq.(12), then send
them to the corresponding cluster heads who share them with
the BS. Cluster heads update their respective prices according
to

�a
c (t+ 1) = [�a

c (t)� (1�
X

n2Nc

⇢n(t)

µa
n

� ! k rc(t) kµa,2)]
+

where [x]+ = max[x, 0]. Similarly, base station prices are
updated at each time step (at the base station itself), as follows

�u
b (t+ 1) = [�u

b (t)� (1�
X

n2N

⇢n(t)

µu
n

� ! k r(t) kµu,2)]
+,

�d
b(t+ 1) = [�d

b(t)� (1�
X

n2N

⇢n(t)

µd
� ! k r(t) kµd,2)]

+.

The proposed algorithm is based on the natural dual decom-
position approach [9] and [11], but accounts for the non-linear
coupling on congested network resources. A such algorithm will
naturally converge to the appropriate Lagrange multipliers, i.e.,
prices associated with the problem at hand.

VI. NUMERICAL RESULTS

We conducted various preliminary numerical evaluations to
explore the algorithm’s convergence and character of the re-
sources’ allocations. We considered a network with three clus-
ters of sensing nodes sharing a single base station.

A. Convergence of the NSA Algorithm

We first show that the NSA algorithm we designed in Section
V converges fairly quickly. The representative results shown in
Fig.4 correspond to the case where there are 3 clusters, each
having 5 nodes. The intra-cluster broadcast capacity of each
node is 100 Mbps. The uplink capacity from each node to the
base station is also 100 Mbps, while the downlink capacity
is 100 Mbps. Under homogeneous assumptions (i.e. model
parameters an and bn are the same across all clusters in the
network, where an = 1 and bn = 6), we exhibit the convergence
of the resource allocations for a single node. We note that this
algorithm can in principle adapt to changing network capacities
and topologies.

Fig. 4. Convergence of our designed NSA algorithm.
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B. Increasing cluster size
Next, we studied how the nodes’ update and transmission

rates vary as a function of the number of sensing nodes
(assuming again homogeneous conditions). For this purpose,
we increase the number of nodes per cluster, N, from 2 to
10. The intra-cluster broadcast rate of each node is 100 Mbps,
while the uplink and downlink capacities (from each node to BS
and vice-versa) are both 50 Mbps. We plot below the optimal
nodal update and transmission rates, as well as the overall
network SAE. As expected, the transmission and propagation
rates decrease as N increases.

Fig. 5. Update and transmission rates vs cluster size.

C. Cluster heterogeneity in nodal SAE
Another feature we explored is the impact of giving a higher

priority (or SAE sensitivity) to all the nodes in a particular
cluster. This time we considered a network with two clusters
with five nodes each. We assign a higher sensitivity to all the
nodes of one cluster (say Cluster 1), while keeping the same
weight to all the nodes of Cluster 2. An example of this scenario
is when a cluster of cars is moving faster than another one. We
implement this scenario as follows: Starting with an = 1 and
bn = 6 for all nodes in Cluster 1, we multiply them by some
constant, say ⇣, which we keep increasing. We then plot the
rates for both clusters in function of the constant. All capacities
are 100 Mbps. As expected, more rate is allocated to Cluster
1, showing that NSA optimization requires more updates and
faster transmission rates to these nodes.

Fig. 6. Heterogeneous Setting: Leading cluster has higher SAE sensitivity.

D. Increasing the imbalance of nodes across clusters
Finally, we are interested in understanding the effect of

increasing the number of nodes in one of the clusters. For this
purpose, we considered a network with two clusters, 1 and
2, and a single base station. The number of nodes in Cluster
1 is kept fixed at 5, while we vary the number of nodes in
Cluster 2 from 2 to 10. Below, we plot the resulting update
and transmission rates, as well as the overall network SAE. We

observe that our algorithm achieves fairness, which results in
an equal allocation of resources among all nodes.

Fig. 7. Clusters with imbalanced number of nodes.

VII. CONCLUSION

We proposed a framework to study distributed collaborative
sensing of a dynamic environment based on sharing informa-
tion over limited network resources. A proposed model for
situational awareness, SAE, was introduced. It is dependent
on environment variability and sensor heterogeneity. The main
goal was to establish key trade-offs among sensors’ update and
transmission rates.
We considered first a simple setting where a cluster of nodes are
sharing updates over a single communication resource, which
we referred to as intra-cluster broadcast, then we extended it
to include multiple clusters sharing updates via a single base
station, referred to as inter-cluster broadcast. We also developed
a new algorithm, NSA algorithm, geared at jointly minimizing
the SAE, which could optimize the allocation of resources to
heterogeneous sensor nodes and time varying network capacity
(and topology).
In our future work, we would like to explore more in depth a
more general network setting where path routing and resource
allocation decisions need to be made. This would follow from
the extension of the current model to include the impact of
relaying delays at the base station on SAE, along with the impact
of the geographical positioning of the sensor nodes relatively to
the cluster head, which will directly affect the SAE model.
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IX. APPENDIX

A. Proof of Lemma 1

P
� X

n2N
Xn

rn
µn

> 1
�

= P

✓ X

n2N
Xn

rn
µn

� E
⇥ X

n2N
Xn

rn
µn

⇤
> 1� E

⇥ X

n2N
Xn

rn
µn

⇤�

(a)
= P

� X

n2N
Xn

rn
µn

�
X

n2N

⇢n
µn

> 1�
X

n2N

⇢n
µn

�

(b)
 exp

✓
�

2
�
1�

P
n2N

⇢n

µn

�2
P

n2N ( rn
µn

)2

◆

where ,
(a) follows from E[Xn] =

⇢n

rn
, for all n 2 N .
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(b) Follows from the independence of Xn’s and Hoeffding
upper bound.

Constraining the upper bound to be less than ✏ results in the
constraint given in Eq.(8).

B. Proof of Proposition 1

One can verify that the cost function is jointly convex in ⇢
and r. The congestion constraint corresponds to a convex set in
both ⇢ and r. We shall initially relax the constraint ⇢  r  µ
and define the Lagrangian associated with the relaxed Problem
1.

L(⇢, r;�) = �
⇥ X

n2N

�an
⇢n

+
bn
rn

�⇤

+ �

✓
1�

X

n2N

⇢n
µn

� ! krkµ,2

◆

where � � 0 is the dual variable. Let

f(�) , min
⇢,r

L(⇢, r;�).

The Lagrangian dual problem is defined by

h , max
��0

f(�)

Taking the partial derivative of L(⇢, r;�) w.r.t ⇢n and rn
respectively and setting them equal to 0 gives

⇢⇤n =

r
anµn

�
, r⇤n = µn

3

s
bn kr⇤kµ,2

�!µn

Given optimal r⇤, we solve for kr⇤kµ,2

r⇤n = µn
3

s
bn kr⇤kµ,2

�!µn

� r⇤n
µn

�2
=

✓
bn

µn�!

◆2/3

kr⇤k2/3µ,2

X

n

� r⇤n
µn

�2
=
�X

n

� bn
µn

�2/3�
✓

1

�!

◆2/3

kr⇤k2/3µ,2

kr⇤k2µ,2 =
�X

n

� bn
µn

�2/3�
✓

1

�!

◆2/3

kr⇤k2/3µ,2

(13)

which leads to

kr⇤kµ,2 =
q
kbkµ, 23

✓
1

!�

◆1/2

We plug-in ⇢⇤n and kr⇤kµ,2 into the constraint function and
solve for �

� =

q
kakµ, 12

+
q
! kbkµ, 23

�2

We finally find ⇢⇤n and r⇤n,

⇢⇤n =

p
an/µnq

kakµ, 12
+
q

! kbkµ, 23

µn ,

kr⇤kµ,2 =
1p
!

 q
kbkµ, 23q

kakµ, 12
+
q

! kbkµ, 23

!
, and

r⇤n =
1p
!

✓
bn
an

◆ 1
2

 
kbkµ, 23

bn/µn

! 1
6

⇢⇤n

We re-write ⇢⇤n and r⇤n in terms of ↵ and � as defined in
Proposition 1,

⇢⇤n =
↵n

k ↵ k1 +
p
! k � k 4

3

µn, r⇤n =
1p
!

�n

↵n

✓k � k 4
3

�n

◆ 1
3

⇢⇤n,

Next, we verify that the solution to the relaxed problem will
satisfy the constraints we have relaxed. Recall that bn �
an, 8n 2 N and 1  !  6 (or e�72  ✏  e�2). Note
that

r⇤n
⇢⇤n

=
1p
!

�n

↵n

✓k � k 4
3

�n

◆ 1
3 (a)
� 1p

!

�n

↵n
� 1p

!

r
bn
an

� 1,

where (a) follows from
✓

k�k 4
3

�n

◆ 1
3

being always greater than 1.

The above shows that the relaxed constraint is satisfied under
specific assumptions.
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