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Abstract—A formal power series over a set of noncommut-
ing indeterminants using iterated integrals as the coefficients
is called a Chen series, named after the mathematician K.-
T. Chen. The first goal of this paper is to give a brief overview of
Chen series and their algebraic structures as a kind of reference
point. The second goal is to describe its discrete-time analogue
in detail and then apply the concept in two problems, the time
discretization problem for nonlinear control systems and the
machine learning problem for dynamical systems.
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I. INTRODUCTION

Given a piecewise continuous function u : [t0, t1] →
R

m, consider the set of iterated integrals computed from
line integrals along the various m coordinate axes in specific
orders. A formal power series over a set of m noncom-
muting indeterminants X using these iterated integrals as
the coefficients is called a Chen series, named after the
mathematician K.-T. Chen who first characterized their un-
derlying algebraic properties in a series of papers beginning
with [2]. The concept was later adapted by Fliess in [5]
and further enhanced by Sussmann in [16] for the purpose
of representing the input-output map of a nonlinear control
in terms of a weighted sum of iterated integrals, the so
called Chen-Fliess series or Fliess operator. Subsequently,
the Chen series was recast in the context of a tensor algebra
over X and referred to as the signature in order to describe
the solution of a differential equation driven by a rough
path [14]. More recently, a discrete-time notion of a Chen
series was proposed in [3], [7] for the purpose of numerical
approximation of Fliess operators. The idea in those works
was simply to replace the iterated integrals with iterated
sums and to provide explicit bounds on the discretization
error. The corresponding notion of a discrete-time Fliess
operator turned out to be very convenient for solving data-
driven/model-free control problems [8]. Specifically, input-
output data from some unknown plant, assumed to have a
Fliess operator representation, is used to identify the gen-
erating series coefficients. The discrete-time Fliess operator
approximator is then used for predictive control. This type of
generic system identification for dynamical systems is now
evolving into an alternative notion of machine learning as
networks of discrete-time Fliess operators are interconnected
as learning units in order to achieve a control objective [9].

The goals of this paper are two-fold. First a brief
overview of Chen series and their algebraic structures is

provided as a kind of reference point. Then their discrete-
time analogue is presented in more algebraic detail than was
done in [3], [7]. Next, these ideas are applied to two related
problems, the time discretization problem for nonlinear con-
trol systems and the machine learning problem for dynamical
systems. Perhaps the latter is the most interesting as the
underlying algebraic and combinatorial structures need to
be robustly exercised in order to provide efficient learning
algorithms, especially for multivariable problems where the
combinatorial complexity grows rapidly. Some suggestions
for future work in this regard are outlined.

II. CHEN SERIES

A finite nonempty set of noncommuting symbols X =
{x0, x1, . . . , xm} is called an alphabet. A word η =
xi1 · · ·xik over X is any finite sequence of letters from X .
Its length is |η| = k. The set of all words of length k is
denoted by Xk, while X∗ is the set of all words, including
the empty word ∅. It is immediate that X∗ is a monoid under
catenation. (That is, a set with an associative product and
an identity element.) Any mapping c : X∗ → R

� is called a
formal power series. The value of c at η ∈ X∗ is denoted
by (c, η) and called the coefficient of η in c. A series c is
proper when (c, ∅) = 0. The support of c, supp(c), is the
set of all words having nonzero coefficients. Normally, c is
written as a formal sum c =

∑
η∈X∗(c, η)η. The collection

of all formal power series over X is denoted by R
�〈〈X〉〉.

It constitutes a noncommutative associative R-algebra under
the catenation (Cauchy) product. A series c ∈ R〈〈X〉〉 is
called a Lie series if it can be decomposed as c =

∑
n≥1 pn,

where each pn is a polynomial in the free Lie algebra L(X)
over X with support residing Xn [15]. The series c is called
an exponential Lie series when c = exp(d) :=

∑
n≥0 d

n/n!,
where d is a Lie series. An important class of exponential
Lie series are Chen series as described below.

Definition 2.1: [2], [16] Let X = {x0, x1, . . . , xm}. For
any fixed u ∈ Lm

1 [t0, t1] and t ∈ [t0, t1] one can associate
the formal power series in R〈〈X〉〉

P [u](t, t0) =
∑
η∈X∗

η Eη[u](t, t0),

where for each word η ∈ X∗ the map Eη : Lm
1 [t0, t1] →

C[t0, t1] is defined inductively by setting E∅[u] = 1 and
letting

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,
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with xi ∈ X , η̄ ∈ X∗, and u0(t) := 1. Such a series is called
a Chen series. When t0 = 0, P [u](t, t0) will be abbreviated
as P [u](t).

Example 2.1: Suppose X = {x0, x1} and u(t) = û ∈ R

on [0, T ]. It follows directly that P [u](0) = 1 and

d

dt
P [u](t) =

∑
η∈X∗

η
d

dt
Eη[u](t, 0)

=
∑
η∈X∗

x0η Eη[u](t, 0) + x1η ûEη[u](t, 0)

= (x0 + x1û)P [u](t). (1)

Similarly,

dn

dtn
P [u](0) = (x0 + x1û)

n, n ≥ 0,

and, therefore,

P [u](t) =

∞∑
n=0

(x0 + x1û)
n t

n

n!

= e(x0+x1û)t

is the solution of the formal differential equation (1). Clearly,
(x0 + x1û)t ∈ L(X).

The following theorem generalizes the previous example.

Theorem 2.1: [16] Let X = {x0, x1, . . . , xm}. For any
finite T > 0 let u ∈ Lm

1 [0, T ]. Then the Chen series P [u](t)
is an exponential Lie series for every t ∈ [0, T ], and

d

dt
P [u] =

[
x0 +

m∑
i=1

xiui

]
P [u], P [u](0) = 1.

The notion of a Chen series is implicit in the definition
of a Fliess operator y = Fc[u] with generating series c ∈
R〈〈X〉〉. Namely, for any t ≥ t0

y(t) :=
∑
η∈X∗

(c, η)Eη[u](t, t0)

=
∑
η∈X∗

(c, η)(P [u](t, t0), η)

= (c, P [u](t, t0)),

where (·, ·) in the last line is viewed as a scalar product
on R〈〈X〉〉 × R〈〈X〉〉, and all the underlying series are
assumed to converge in some manner [10]. In this context,
the letter x0 is used to represent nonhomogeneous operators,
i.e., those for which Fc[0] �= 0.

Example 2.2: Let c ∈ R〈〈X〉〉 and u ∈ Lm
1 [0, T ]. Since

P [u](t) is in general an exponential Lie series, it follows
that the Fliess operator corresponding to c can always be
written in the form y(t) = Fc[u](t) = (c, eU(t)), where
U(t) = ln(P [u](t)) :=

∑
k≥1((−1)k+1/k)(P [u](t) − 1)k,

t ∈ [0, T ].

A central property of Chen series is that they are closed
under the Cauchy product. Consider two input functions
(u, v) ∈ Lm

1 [ta, tb] × Lm
1 [tc, td]. The durations of u and

v are taken to be tb − ta ≥ 0 and td − tc ≥ 0, respectively,
and the functions are not defined outside their corresponding

ta

t 

0 tb

u

v# u 

v

tc td ta

t 

0 tb

u

v

tc td

Fig. 1. The catenation of two inputs u and v at t = τ .

intervals. The catenation of u and v at τ ∈ [ta, tb] is taken
to be

(v#τu)(t) =

{
u(t) : ta ≤ t ≤ τ

v((t− τ) + tc) : τ < t ≤ τ + (td − tc),

as shown in Figure 1. It is easily verified that the set of
functions

Lm
1 (0) :=

⋃
0≤T<∞

Lm
1 [0, T ]

is a monoid under this catenation operator. The identity
element in this case is denoted by 0 and is equivalent to the
set of functions having exactly zero duration (i.e., T = 0).
By definition P [0] = 1.

Theorem 2.2: (Chen’s identity), [2], [16] Given (u, v) ∈
Lm
1 [ta, tb]×Lm

1 [tc, td], τ ∈ [ta, tb], and t ∈ [τ, τ +(td− tc)]
it follows that

P [v]((t− τ) + tc, tc)P [u](τ, ta) = P [v#τu](t, ta).

For the special case where tc = τ , Chen’s identity
reduces to

P [v](t, τ)P [u](τ, ta) = P [v#τu](t, ta).

Another useful special case is when ta = tc = 0 so that

P [v](t− τ)P [u](τ) = P [v#τu]((t− τ) + τ).

Since P [u](0) = 1 for any fixed u ∈ L1[0, T ], the set of
Chen series

GC(X) = {P [u](t) ∈ R〈〈X〉〉 : u ∈ Lm
1 [0, T ],

0 ≤ t ≤ T < ∞}

defines a monoid under the Cauchy product. In fact, the
mapping P : Lm

1 (0) → GC(X) acts as a monoid homomor-
phism.

Example 2.3: Consider an alphabet for a two input
system with no letter x0, i.e., X = {x1, x2}. Assume
u(t) = [û(0) 0]T on [0, T ] and v(t) = [0 û(1)]T on
[T, 2T ], where û(i) ∈ R, i = 1, 2. Then for any t ∈ [T, 2T ]
the Chen series for v#Tu is

P [v#Tu](t, 0) = P [v](t, T )P [u](T, 0)

=

∞∑
j,k=0

xk
2x

j
1 Exk

2
[v](t, T )Exj

1

[u](T, 0)

=

∞∑
k=0

(û(1)(t− T )x2)
k 1

k!

∞∑
j=0

(û(0)Tx1)
j 1

j!

= eû(1)(t−T )x2eû(0)Tx1 .

From the Campbell-Baker-Hausdorff formula it follows di-
rectly that P [v#Tu](t, 0) is an exponential Lie series as
asserted in Theorem 2.1.



Example 2.4: Reconsider Example 2.3 with v = −u and
t = 2T . In which case,

P [(−u)#Tu](2T, 0) = e−û(0)Tx1eû(0)Tx1 = 1,

or equivalently,

P [−u](2T, T )P [u](T, 0) = 1.

Note that if the drift letter x0 is admitted, then P [0](T, 0) =
eTx0 . In this case, there is no input available to generate a
Chen series corresponding to the inverse series e−Tx0 .

As suggested by the previous example, the final theorem
of this section shows that GC(X) constitutes a group if the
letter x0 is omitted. The proof is straightforward in terms of
the shuffle product on R〈〈X〉〉, namely, the bilinear product
defined inductively on words as

(xiη) �� (xjξ) = xi(η �� (xjξ)) + xj((xiη) �� ξ),

where xi, xj ∈ X , η, ξ ∈ X∗ and with η �� ∅ = ∅ �� η = η
[5].

Theorem 2.3: [2], [16] Let X = {x1, . . . , xm}. The set
of Chen series GC(X) is a group under the Cauchy product.

Proof: Since GC(X) is a monoid under the Cauchy product,
it only remains to be shown that every element in GC(X) has
a well defined inverse. For any given u ∈ Lm

1 [0, T ] and fixed
t ∈ [0, T ] define the input functions uS,i(τ) = −ui(t − τ)
restricted to [0, t] for i = 1, 2, . . . ,m. (Note that this is not
possible for u0 = 1.) It is straightforward to show for any
ξ ∈ X∗ that Eξ[uS ](τ, 0) = ES(ξ)[u](τ, 0) for all τ ∈ [0, t],
where S(ξ) := (−1)|ξ|ξ̃, and ξ̃ denotes the word ξ with the
letters written in reverse order. In which case, for P [u](t) ∈
GC(X)

P [u](t)P [uS ](t) =
∑

η,ξ∈X∗

ηξ Eη[u](t, 0)Eξ[uS ](t, 0)

=
∑

η,ξ∈X∗

(−1)|ξ|ηξ Eη �� ξ̃[u](t, 0).

Given any ν ∈ X∗, it then follows that

(P [u](t)P [uS ](t), ν) =
∑

η,ξ∈X∗

(−1)|ξ|(ηξ, ν)Eη �� ξ̃[u](t, 0)

=

{
1 : |ν| = 0
0 : |ν| > 0,

where the identity∑
η,ξ∈X∗

(−1)|ξ| (ηξ, ν) η �� ξ̃ =

{
1 : |ν| = 0
0 : |ν| > 0

has been used. Thus, P [u](t)P [uS ](t) = 1. Similarly,
one can show that P [uS ](t)P [u](t) = 1, and thus,
(P [u](t))−1 = P [uS ](t) ∈ GC(X).

Finally, it should be noted that in Chen’s original work,
the concept of a path was used instead of an input. A path
U : [0, 1] → R

m corresponding to an input u ∈ Lm
1 [0, 1] is

defined to have component functions

Ui(t) =

∫ t

0

ui(τ) dτ, i = 1, 2, . . . ,m.

The catenation of paths V and U includes a renormalization
using arc length so that V#1U always defines another path

on [0, 1]. In this setting, U−1 is the path associated with
the input uS as defined in the proof of Theorem 2.3. In
particular, (U−1)−1 = U , and U−1#1U is the path from
U(0) to U(1) and then back to U(0) retracing the first path
but in the opposite direction. Modulo such null paths, Chen
shows that the set of all paths on [0, 1] forms a group GP so
that the corresponding Chen series map P : GP �→ GC(X)
taking paths (rather than inputs) to the Chen group is a group
homomorphism. In the present setting, however, the notion
of a path is too specialized.

III. DISCRETE-TIME CHEN SERIES

In the discrete-time setting, inputs are sequences of
vectors from the normed linear space

lm+1
∞ (N0) := {û = (û(N0), û(N0 + 1), . . .) : ‖û‖∞ < ∞},

where û(N) := [û0(N), û1(N), . . . , ûm(N)]T , N ≥ N0

with ûi(N) ∈ R, |û(N)| := maxi∈{0,1,...,m} |ûi(N)|, and
‖û‖∞ := supN≥N0

|û(N)|. The subset of finite sequences
over [N0, Nf ] is denoted by lm+1

∞ [N0, Nf ]. In contrast to
the continuous-time case, it is more convenient to explicitly
include the drift input û0, which is constant but not neces-
sarily unity, as part of the input û [7], [8].

Definition 3.1: [7] Given any N ≥ N0 and û ∈
lm+1
∞ (N0), a discrete-time Chen series is defined as

S[û](N,N0) =
∑
η∈X∗

ηSη[û](N,N0),

where

Sxiη[û](N,N0) =
N∑

k=N0

ûi(k)Sη[û](k,N0) (2)

with xi ∈ X , η ∈ X∗, and S∅[û](N,N0) := 1. If N0 = 0
then S[û](N, 0) is abbreviated as S[û](N).

Example 3.1: Let X be arbitrary and define ûη(N) =
ûik(N) · · · ûi1(N) for any η = xik · · ·xi1 ∈ X∗ and
N ≥ N0 with û∅(N) := 1. In addition, cu(N) :=∑

η∈X∗ ûη(N)η. Then

Sxiη[û](N0, N0) = ûxi
(N0)Sη[û](N0, N0)

so that Sη[û](N0, N0) = ûη(N0), and thus, S[û](N0, N0) =
cu(N0). For example, if X = {x1} and ûx1

(N0) =
û1(N0), then S[û](N0, N0) =

∑
k≥0(û1(N0)x1)

k =: (1 −
û1(N0)x1)

−1.

Analogous to the continuous-time case, the discrete-time
Chen series S[û](N,N0) satisfies a difference equation as
described next. The following theorem is a generalization of
that appearing in [8].

Theorem 3.1: For any û ∈ lm+1
∞ (N0), η ∈ X∗ and N ≥

N0

S[û](N + 1, N0) = cu(N + 1)S[û](N,N0)

with S[û](N0, N0) = cu(N0) so that

S[û](N,N0) =

←−−
N∏

i=N0

cu(i), (3)

where
←−∏

denotes a directed product from right to left.



Proof: The first identity is addressed by proving that

Sη[û](N +1, N0) = (cu(N +1)S[û](N,N0), η), ∀η ∈ X∗

via induction on the length of η. When η = ∅ then trivially
S∅[û](N + 1, N0) = 1 = û∅(N + 1)S∅[û](N,N0). If η =
xi ∈ X then from (2)

Sxi
[û](N + 1, N0) = ûxi

(N + 1) + Sxi
[û](N,N0)

=
∑

xi=ξν

ûξ(N + 1)Sν [û](N,N0).

Finally, assume the identity holds for all words up to some
fixed length n ≥ 0. Then for any η ∈ Xn and xi ∈ X it
follows that

Sxiη[û](N + 1, N0)

= ûxi
(N + 1)Sη[û](N + 1, N0) + Sxiη[û](N,N0)

=
∑
η=ξν

ûxi
(N + 1)ûξ(N + 1)Sν [û](N,N0)+

û∅(N + 1)Sxiη[û](N,N0)

=
∑

xiη=ξν

ûξ(N + 1)Sν [û](N,N0),

which proves the claim for all η ∈ X∗. The second identity
in the theorem follows directly from the first.

Example 3.2: Consider the case in Example 3.1 where
X = {x1} and ûx1

(i) = û1(i) for all i ≥ N0. Then cu(i) =∑
k≥0(û1(i)x1)

k = (1− û1(i)x1)
−1 and

S[û](N,N0) = (1− û1(N)x1)
−1 · · · (1− û1(N0)x1)

−1.

For example,

S[û](1, 0) = S[û](1, 1)S[û](0, 0)

= 1 + (û1(1) + û1(0))x1 + (û2
1(1)+

û1(1)û1(0) + û2
1(1))x

2
1 + (û3

1(1)+

û2
1(1)û1(0) + û1(1)û

2
1(0) + û3

1(0))x
3
1 + · · ·

In this case, S[û](N,N0) is always a rational series [1].

Given a generating series c ∈ R〈〈X〉〉, the corresponding
discrete-time Fliess operator is defined as

ŷ(N) = F̂c[û](N) =
∑
η∈X∗

(c, η)Sη[û](N,N0)

for any N ≥ N0 and û ∈ lm+1
∞ (N0). The series is known

to always converge provided that c satisfies certain growth
conditions [7]. Analogous to the continuous-time case,

ŷ(N) = F̂c[û](N) = (c, S[û](N,N0)). (4)

Consider two input sequences (û, v̂) ∈ lm+1
∞ [Na, Nb] ×

lm+1
∞ [Nc, Nd] with Nb > Na and Nd > Nc. The catenation

of û and v̂ at M ∈ [Na, Nb] is taken to be

(v̂#M û)(N)

=

{
û(N) : Na ≤ N ≤ M

v̂((N −M) +Nc) : M < N ≤ M + (Nd −Nc).

Define the set of sequences

lm+1
∞,e (0) := lm+1

∞ (0) ∪ {0̂},

where 0̂ denotes the empty sequence with duration zero so
that formally v̂#M 0̂ = 0̂#M v̂ = v̂ for all v̂ ∈ lm+1

∞,e (0). In
which case, lm+1

∞,e (0) is a monoid under this input catenation
operator. Define S[0̂] = 1. The following discrete-time ver-
sion of Chen’s identity follows directly from Theorem 3.1.

Theorem 3.2: (Discrete-time Chen’s identity) Given
(û, v̂) ∈ lm+1

∞ [Na, Nb]× lm+1
∞ [Nc, Nd], M ∈ [Na, Nb], and

N ∈ [M,M + (Nd −Nc)] it follows that

S[v̂]((N−M)+Nc, Nc)S[û](M,Na) = S[v̂#M û](N,Na).

In particular, when Na = Nc = 0 then

S[v̂](N −M)S[û](M) = S[v̂#M û](N). (5)

Define the set of discrete-time Chen series

MC(X) = {S[û](N) ∈ R〈〈X〉〉 : û ∈ lm+1
∞ [0, Nf ],

0 ≤ N ≤ Nf < ∞}.

Example 3.3: The Cauchy inverse of cu(i) in Exam-
ple 3.2 is clearly 1 − û1(i)x1. But there exists no obvious
input û which renders this polynomial as a Chen series.
Thus, the only immediate claim is that MC(X) is a monoid
under the Cauchy product. To recover a group structure
as in the continuous-time case, the shuffle product needs
to be replaced with the quasi-shuffle product over a larger
alphabet. An analogous algebraic structure in a stochastic
setting can be found in [4]. For the applications considered
here, a group inverse will not be needed.

Theorem 3.3: MC is a monoid under the Cauchy prod-
uct. In addition, S : lm+1

∞,e (0) → MC is a monoid homo-
morphism.

Proof: The results follow directly from (5).

Let End(R∞) be the set of endomorphisms on the R-
vector space of real right-sided infinite sequences. This set
can be viewed as the monoid of doubly infinite matrices with
well defined matrix products and unit I = diag(1, 1, . . .).
A monoid M is said to have an infinite dimensional real
representation, Π, if the mapping Π : M → End(R∞) is a
monoid homomorphism. The representation is faithful if Π
is injective.

Theorem 3.4: The monoid MC(X) has a faithful
infinite dimensional real representation Π given by

Π(S[û](N)) =
←−−−∏N

i=0S(i), where S(i) is any matrix rep-
resentation of the R-linear map on R〈〈X〉〉 given by the
catenation map C : d �→ cu(i)d.

Proof: The representation claim follows from (3). To see
that Π is injective, assume a fixed ordering of the words
in X∗, say {η1, η2, . . .}. Then define the matrix [S(i)]jk =
(cu(i)ηk, ηj) = ûξ(i), where ξηk = ηj . Thus, S(i) is a
lower triangular matrix with ones along the diagonal since
u∅(i) = 1, i ≥ 0. The first column is comprised of the
coefficients of cu(i) in the order given to X∗. Hence, the
map Π on the monoid MC is injective since cu(i) can be
uniquely identified from S(i) = Π(S[û](i, i)).

Example 3.4: Suppose X = {x1} as in Example 3.2.
Assuming the ordering on X∗ to be {∅, x1, x

2
1, . . .}. Then



for all i ≥ 0

S(i) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 · · ·
û1(i) 1 0 0 · · ·
û2
1(i) û1(i) 1 0 · · ·

û3
1(i) û2

1(i) û1(i) 1 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦

and cu(i) =
∑

k≥0 û
k
1(i)x

k
1 . In addition,

Π(S[û](1))

= S(1)S(0)

=

⎡
⎢⎢⎢⎢⎣

1
û1(1) + û1(0)

û
2

1(1) + û1(1)û1(0) + û
2

1(0)
û
3

1(1) + û
2

1(1)û1(0) + û1(1)û
2

1(0) + û
3

1(0)
...

0 0 0 · · ·

1 0 0 · · ·

û1(1) + û1(0) 1 0 · · ·

û
2

1(1) + û1(1)û1(0) + û
2

1(0) û1(1) + û1(0) 1 · · ·

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦
.

Note here that the first column coincides with the coeffi-
cients of S[û](1) in Example 3.2.

IV. APPLICATION TO TIME DISCRETIZATION

Select some fixed u ∈ Lm
1 [0, T ] with T > 0 finite.

Choose an integer L ≥ 1, let Δ := T/L, and define the
sequence of real numbers

ûi(N) =

∫ (N+1)Δ

NΔ

ui(t) dt, i = 0, 1, . . . ,m

where N ∈ [0, L − 1]. Note that since u0 = 1, it follows
that û0(N) = Δ. The sampling operator ΔS in this setting
is the monoid homomorphism

ΔS : Lm
1 (0) → lm+1

∞,e (0) : u �→ û,

where ΔS [0] := 0̂.

Definition 4.1: The discretization operator D :
GC(X) → MC(X) is the monoid homomorphism satisfying
the commutative diagram

−−−−−−−−−−−−−→
ΔS

−−
−
−
−
−
−→

P

−−
−
−
−
−→

S

−−−−−−−−−−−−−→
D

Lm
1 (0) lm+1

∞,e (0)

GC(X) MC(X)

As a consequence, D maps any iterated integral Eη to
its corresponding iterated sum Sη . Specifically, D(P [u]) =
S[û], where û = ΔS [u], and, extending D linearly, it follows
that D(Fc[u]) = F̂c[û], assuming both series converge (see
[7] for details).

Example 4.1: Consider the Chen series given in Exam-
ple 2.3, where t = 2T and T = 1, that is,

P [v](2, 1)P [u](1, 0) = eû(1)x2eû(0)x1 .

In this case

D(eû(1)x2eû(0)x1) = D(eû(1)x2)D(eû(0)x1)

= (1− û(1)x2)
−1(1− û(0)x1)

−1.

V. APPLICATION TO MACHINE LEARNING

Machine learning in control applications has traditionally
been approached using recurrent neural networks to ap-
proximate dynamical system behavior [12], [13]. While this
approach has a certain heuristic appeal, the computational
costs are significant, and method is only suitable for certain
classes of systems. In [8], [9] an alternative approach is
given via a learning unit as shown in Figure 2. Here
input-output data (u, y) from some unknown continuous-
time plant (or the error system between the plant and an
assumed model) is fed into the unit. The only assumption
is that the data came from a system which has a Fliess
operator representation y = Fc[u]. For example, any system
modeled by a control affine analytic state space realization
would fit this paradigm [11]. The generating series c for
a discrete-time Fliess operator approximation F̂c of the
system is estimated by a parameter vector θ̂ using a standard
mean-square error (MSE) parameter estimation algorithm
with covariance resetting to enhance convergence [6, p. 65].
Control is then realized by a variety of different methods
using the predicted output ŷp = F̂c[û] at time N +1, which
can be written using (4) for N ≥ N0 as

ŷp(N + 1) = θ̂T (N)Π(S[û](N + 1))e1

= θ̂T (N)S(N + 1)Π(S[û](N))e1 (6)

with e1 := [1 0 0 · · · ]T (see examples in [8], [9]). As only
finite sums are possible in practice, all these objects are as-
sumed to be truncated to some suitable length (for simplicity
the same notation will be used). The truncation error can be
estimated a priori using error bounds computed in [7]. The
following simple example illustrates an implementation of
this type of learning. The main advantage of the present
approach is that it is easy to generalize to the multivariable
setting, i.e., to an arbitrary alphabet X = {x0, x1, . . . , xm}.

Example 5.1: Consider the case where X = {x1} as in
Examples 2.3 and 4.1. Truncating all the dimensions in (6)
to length 4 gives

θ̂T (N) =
[

(c, ∅) (c, x1) (c, x2
1) (c, x3

1)
]

(7a)

S(N) =

⎡
⎢⎣

1 0 0 0
û1(N) 1 0 0
û2
1(N) û1(N) 1 0

û3
1(N) û2

1(N) û1(N) 1

⎤
⎥⎦ (7b)

Π(S[û](N)) =

⎡
⎢⎣

1 0 0 0
Sx1

(N) 1 0 0
Sx2

1
(N) Sx1

(N) 1 0
Sx3

1
(N) Sx2

1
(N) Sx1

(N) 1

⎤
⎥⎦ ,

(7c)

where Sxk
1

(N) := (S[û](N), xk
1). Therefore, the output

ŷ3p(N + 1) is defined as the degree 3 polynomial in terms
of the next applied input û1(N + 1) for N ≥ N0 − 1.

As a specific example, consider a plant modeled by
the Fliess operator y = Fc[u] with generating series c =



    MSE

parameter

estimator 

 

y 

discrete-time

     Fliess

   operator

u 

y p 

Fig. 2. Learning unit based on discrete-time Fliess operator
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Fig. 3. Learning unit output ŷ3
p

versus true output y in Example 5.1

∑
k≥0 x

k
1 . The system has the state space realization

ż(t) = u(t), z(0) = 0, y(t) = ez(t) (8)

since for all t ≥ 0

y(t) =

∞∑
k=0

Ek
x1
[u](t, 0)

1

k!
=

∞∑
k=0

Ex �� k
1

1

k!

[u](t, 0)

=
∞∑
k=0

Exk
1

[u](t, 0) = Fc[u](t).

The output y is computed from a numerical simulation of the
state space model (8) when the input u(t) = 2e−t/3 sin(2πt)
is applied and plotted in Figure 3. The response of the
learning unit ŷ3p(N), N ≥ 0 as implemented using (6)-(7) is
also shown in the figure. The learning unit has no a priori
knowledge of the system as θ̂(−1) is initialized to zero. As
the learning unit processes more data, its estimate of the
output y improves asymptotically.

VI. CONCLUSIONS AND FUTURE WORK

After a brief overview of classical Chen series, a discrete-
time notion of the concept was presented where the iterated
integrals are replaced by iterated sums. In particular, it
is shown that discrete-time Chen series define a monoid
homomorphism between discrete-time inputs and formal
power series in much the same way as in the continuous-
time case. This idea also leads naturally to a discrete-time
analogue of a Fliess operator. The relationship between this

object and the continuous-time Fliess operator is described
by another monoid homomorphism called the discretization
operator. Finally, using representation theory, it is shown
how to implement a known learning algorithm in the context
of discrete-time Fliess operators using only matrix multi-
plication. Therefore, its realization is straightforward on a
computational platform like MatLab.

Future work will include an implementation of the pro-
posed learning algorithm in the full multivariable setting
and an analysis of the underlying computational complexity.
The long term goal is to develop an algebraic framework
to analyze the interconnection of such learning units for
specific control objectives.
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M. Barbero Liñán, Eds., Springer Nature Switzerland AG, Cham,
Switzerland, 2018, pp. 139–183.

[4] K. Ebrahimi-Fard, S. J. Malham, F. Patras, and A. Wiese, The expo-
nential Lie series for continuous semimartingales, Proc. R. Soc. A,
471 (2015), no. 2184.

[5] M. Fliess, Fonctionnelles causales non linéaires et indéterminées non
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Driven by Rough Paths, Ecole d’Eté de Probabilités de Saint-Flour
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