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A B S T R A C T

We performed analyses of Corg, Norg, δ13C org, and δ15N org from the non-marine Permian-Triassic boundary
section at Carlton Heights in the Karoo Basin, South Africa. The Carlton Heights section is thus far unique in the
Karoo in containing the Permian-Triassic palynological boundary between the Upper Permian Klausipollenites
schaubergeri Zone and the Lower Triassic Kraeuselisporites-Lunatisporites Zone, separated by a 1-m thick “fungal
event” zone, marked by abundant fungal cell remains (Reduviasporonites) and woody debris. The Corg values
obtained are very low (below 0.05%), but reach a maximum of 0.1% in the middle of the fungal event zone. Norg

varies little from 0.02%, except in the middle and top of the fungal event, where it rises to 0.04%. C/N ratios are
extremely low throughout the section (less than 3), reaching a maximum of 2.49 during the fungal event, co-
incident with the peaks in Norg and Corg. The very low C/N ratios resemble those found in modern burned soils
with low bacteria/fungi ratios, and the lack of variation suggests no change in the organic matter source. δ15Norg

values vary between 2.46‰ and 4.25‰, showing no significant changes in the fungal event zone. The δ13Corg

values are all below−25‰, and reach a low of−27.41‰ in the fungal event zone. This negative shift in δ13Corg

is an example of the global negative shift in δ13C found associated with the end-Permian extinctions and fungal
event.

1. Introduction

The Permian-Triassic boundary section at Carlton Heights, in the
Northern Cape, South Africa (GPS: 31°13.03′S, 24°56.96′E) is one of the
most thoroughly studied non-marine sections in South Africa (e.g.,
Schwindt et al., 2003; Steiner et al., 2003; Retallack et al., 2003; Ward
et al., 2005; Tabor et al., 2007; Gastaldo and Rolerson, 2008) (Fig. 1a
and b). In latest Permian time (∼252 million years ago), Carlton
Heights lay at about 70°S latitude in the center of Gondwanaland
(Zharkov and Chumakov, 2001). The lower part of the section shows
uppermost Permian medium-to fine-grained sandstones alternating
with siltstones and mudstones of the Balfour Formation, deposited by a
high sinuosity meandering stream-floodplain complex in a semi-arid
climate (Smith, 1987; Katemaunzanga and Gunter, 2009). These beds
are abruptly overlain by lowermost Triassic medium-to coarse-grained
sandstones of the Katberg Sandstone Formation, deposited by swiftly
flowing, low sinuosity, braided, ephemeral streams (Stavrakis, 1979)
(Fig. 1c). The change in sedimentation has been attributed to the

catastrophic loss of land vegetation during the end-Permian extinction
event, causing increased run-off and physical erosion rates (Retallack
and Krull, 1999; Sephton et al., 2005; Smith and Botha-Brink, 2014).
Such changes in erosion rates are detectable and widespread in both
non-marine and marine Permian-Triassic boundary sections (e.g.,
Visscher et al., 1996). In the Karooo basin, late Permian paleosols have
root traces comparable to those of open shrub land and riparian
woodland, whereas early Triassic paleosols have root traces and profile
forms like soils of open woodland (Retallack, 2001). This is a significant
paleoenvironmental change, but not as dramatic a change as would be
expected from the devastating extinctions of vertebrate genera
(Retallack et al., 2003).

This study concentrates on the changes that take place in the up-
permost Permian Palingkloof Member of the Balfour Formation, which
consists of about 20m of laminated to massive maroon mudstones, with
thin sandstones at its base, overlain by about 10m of green fine-grained
sandstones interbedded with green and red siltstones and mudstones
(Fig. 1c). Retallack et al. (2003) placed the Permian-Triassic boundary
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just below a distinctive claystone breccia at about 42m in the Carlton
Heights section, 18m below the base of the Katberg Sandstone (Fig. 1c).
Such lithological placement of biostratigraphic boundaries is unwise,
however, even if the sediment is considered unique, given the varia-
bility and repetitive nature of fluvial sediments (MacLeod et al., 2000).
Ward et al. (2005) placed the P-T boundary where Dicynodon is re-
placed by their Lystrosaurus sp. C at about 35m in the section, 24m
below the base of the Katberg Sandstone Formation (Fig. 1c). This
placement of the P-T boundary lies just above a change in magnetic
polarity from reversed to normal (De Kock and Kirschvink, 2004). Ward
et al’s (2005) Lystrosaurus species C appears just below the “fungal
spike” at Lootsberg (Lucas, 2010) and may be equivalent to Lystrosaurus
curvatus, considered to be the least derived of the Lystrosaurus species,
morphologically closest to the rest of the Permian dicynodonts (Botha
and Smith, 2007).

Between the P-T boundary based on lithology and vertebrate fauna,
and the lowermost Katberg Sandstone, there is a transitional zone about
10m thick showing evidence of increasing aridity (Smith and Botha-
Brink, 2014), which contains more than twenty paleosols of protosol,
calcisol and gleysol types (Retallack et al., 2003), representing what
were low-lying alluvial areas, with seasonally fluctuating (but locally
high) water tables in an arid to semi-arid climate (Mack and James,
1994). Though it is difficult to estimate the rate of formation of such
soils, the transformation of protosols to gleysols may take up to 10,000

years (Reintam and Moora, 1998). The large number of paleosols in the
30m-thick Palingkloof Member sediment package indicates that the
sediments may have taken thousands of years to accumulate. Estimates
of accumulation rates of up to 50 cm/kyr (Steiner et al., 2003) would
make the duration of the 30-m thick unit about 60,000 years. These
protosols and gleysols contain the probable callianasid arthropod trace
fossil, Katbergia, which ranges from the Elandsberg member of the
Balfour Formation into the Katberg Sandstone (Gastaldo and Rolerson,
2008), suggesting no major paleoenvironmental changes in the over-
bank facies from Permian to Triassic (Fig. 1c).

The palynological Permian-Triassic boundary, is at 56m in the
outcrop, only about 3m below the base of the Katberg Sandstone. At
that level, the latest Permian Klausipollenites schaubergeri pollen/spore
assemblage disappears, and is replaced by a 1-m thick section of silt-
stones and fine sandstones containing only increased woody fragments
and the abundant remains of fungi (Reduviasporonites) (Steiner et al.,
2003). This “fungal event” layer is overlain by 0.5 m of siltstones with
an early Triassic Kraeuselisporites-Lunatisporites pollen/spore assem-
blage of lycopods (clubmosses, quillworts and spike mosses), and two
gymnosperm pollen types, just prior to the main sedimentological
change to the braided stream deposits of the lowermost Katberg
Sandstone Formation (Steiner et al., 2003) (Fig. 2).

The “fungal event”, (or fungal spike), is found worldwide in both
marine and terrestrial P-T boundary sections . The fungal event is

Fig. 1. a: Location of Carlton Heights in South Africa; b: Location of Carlton Heights road-cut section between Middelburg and Noupoort, and view of section (from
Steiner et al., 2003); and c: palynological P-T boundary section at Carlton Heights with δ13Corg (Steiner et al., 2003; Ward et al., 2005). Locations of Katbergia trace
fossils are from Gastaldo and Rolerson (2008).
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interpreted globally as an interval of decreased terrestrial biomass, with
large amounts of decaying vegetation associated with the P-T crisis and
boundary (Eshet et al., 1995; Visscher et al., 1996; Rampino and Eshet,
2018). Although there has been some dispute as to whether the “fungi”
(Reduviasporonites) that makes up the fungal event are really fungi
(Foster et al., 2002; Hochuli, 2016), recent biogeochemical work sup-
ports a fungal affinity and, more specifically, with the living fungus,
Rhizoctonia, which is often an opportunistic facultative pathogen
(Sephton et al., 2009; Visscher et al., 2011; Rampino and Eshet, 2018),
whereas the non-fungal affinity is based on morphology (Spina et al.,
2015). Even if accepted as fungi, Reduviasporonites is not confined to the
end Permian, and should be expected at any level where plant remains
are being degraded (Hochuli, 2016). But the Reduviasporonites level at
Carlton Heights marks the sharp palynological change from late Per-
mian to early Triassic plants which, though possibly the result of eco-
logical control, nevertheless marks a major and irreversible change in
floras (Anderson, 1977).

At Lootsbergpass, about 80 km SSW of Carlton Heights, Glossopteris
and a Permian palynoflora occur just below the base of the Katberg
Sandstone, with the junction of the Dicynodont and Lystrosaurus as-
semblage zones about 10m below the floral change (Ward et al., 2005).
Here there is some dispute, possibly due to taking the boundary at the
top of the equivalent of the green sandstones of the Elandsberg member
at 15–30m in the Carlton Heights section, where the Glossopteris flora
also occurs (Gastaldo et al., 2015). Both Carlton Heights and Loots-
bergpass sections thus show the disappearance of the Late Permian
Dicynodon vertebrate assemblage prior to the floral extinction. There

remains the possibility, however, that the actual vertebrate zone
boundary lies above the last occurrence of Dicynodon in the section
because of the Signor-Lipps effect, whereby neither the first nor the last
organism in a given taxon will be recorded as a fossil (Signor and Lipps,
1982). An accepted procedure now it to define boundaries on the first
appearance datum (FAD) of a fossil taxon; in this case the first ap-
pearance of Lystrosaurus curvatus (Botha and Smith, 2007).

We do not wish to comment further on the exact position of the
vertebrate Permo-Triassic boundary (however defined) at Carleton
Heights because equating supposedly distinctive lithological units in
very variable continental sediments, even in relatively small area, can
lead to misleading correlations and wrong placement of biostrati-
graphic horizons (Gastaldo et al., 2015). Even the plant record across
the Permo-Triassic boundary is poor and dominated by dispersed,
fragmentary material in lenticular horizons which are not necessarily
the same age, even when assumed to be so (Gastaldo et al., 2005; Ward
et al., 2005). But, we do consider the common and easily transportable
plant spores to give the most exact continental biostratigraphic re-
solution, reflecting major biome changes through time across large
continents (Stephenson, 2016).

This paper reports on the analyses of the carbon and nitrogen
content of organic material (Corg and Norg) and their δ13Corg and δ15Norg

isotopic values from sediments across the proposed P-T boundary based
on palynology and the fungal event in the Carlton Heights section, and
discusses the significance of these analyses for paleoenvironmental
changes at this horizon.

Fig. 2. Palynology of P-T boundary section at Carlton Heights (from Steiner et al., 2003): x's mark samples analyzed here.
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2. Methods

The available samples used for palynology in Steiner et al. (2003)
were analyzed here for organic carbon and nitrogen, and their isotopes.
Whole-rock powdered samples were acidified with 10% HCl to remove
the acid-soluble components. To determine concentration and isotopic
ratios, the remaining insoluble residues were weighed into tin capsules
and measured using a Costech Elemental Analyzer ECS 4010 paired to a
Thermo Delta V + Isotope Ratio Mass Spectrometer at the Environ-
mental Analytical Facility of the University of Massachusetts Boston.
Carbon and nitrogen were quantified separately, with a CO2 trap used
for nitrogen. Organic carbon and nitrogen concentrations were cali-
brated against 5-point calibration curves of the Costech Acetanilide
standard. Replicate analyses of check standards for organic carbon and
nitrogen concentrations were within 2 and 5 percent error of certified
values respectively.

Isotope standards NBS-19, IA-R022, and NIST 8542 were used to
calibrate the measured δ13Corg values, and the isotope compositions are
expressed in per mil notation relative to Vienna Pee Dee belemnite
(VPDB). Isotope standards USGS 40, USGS 41a, and IVA Urea were used
to calibrate the measured δ15Norg values, and the isotope compositions
are expressed in per mil notation relative to Air. Precision, based on
replicate measurements of standards, was determined to be less than
0.2‰ for δ13Corg and less than 0.3‰ for δ15Norg.

3. Results

The Corg values obtained are very low (below 0.05%), but reaching a
maximum of 0.1% in the middle of the fungal event zone. Norg varies
little from 0.02%, except in the middle and top of the fungal event,
where it rises to 0.04%. C/N ratios are extremely low throughout the
section (less than 3), reaching a maximum of 2.49 during the fungal
event, coincident with the peaks in Norg and Corg (Fig. 3; Table 1).
δ13Corg values are all below −25‰, and reach a low of −27.41‰ in
the fungal event zone (Fig. 3). δ15Norg values vary between 2.46 and
4.25‰, showing no significant changes in the fungal event zone
(Fig. 3).

3.1. Interpretation

The Corg and Norg content and isotope ratios most likely come from
the wood fragments rather than the pollen and spores, which are vo-
lumetrically insignificant. The very low C/N ratios of less than 3 are
only found in modern burned soils with low bacteria/fungi ratios
(Palese et al., 2004), although decaying wood can also contain 2–3 fold
higher Norg concentrations with lower Corg contents compared with
their undecayed counterparts (Ometto et al., 2006). The very low Corg

values in the very fine-grained sandstones and siltstones of the fungal
event zone suggest suspension settling (at low velocities of less than
0.01m/sec−1) of only the smaller wood particles being transported
from elsewhere with the very fine sand.

At Carlton Heights, the rapid and short-lived fungal event likely
represents an interval of increased terrestrial devastation with enough
decaying wood debris to support a proliferation of fungi (Steiner et al.,
2003). The peaks in Corg and Norg concentrations through the fungal
event zone, without a major change to C/N ratios, are likely reflecting
the increase in woody debris abundance based on palynological ana-
lyses without a change in organic matter source (Fig. 3). Besides the
fungal event zone itself, lithological evidence points to drastic vegeta-
tion loss at Carlton Heights with the change to the Katberg Sandstone
occurring about 50 cm above the fungal event zone (Ward et al., 2000;
Steiner et al., 2003). Furthermore, the decrease in palynomorph di-
versity following the lower barren zone (50–62m), but below the
fungal event zone, could represent an initial pulse of environmental
stress at Carlton Heights (Fig. 2), but preservation bias cannot be ruled
out (Steiner et al., 2003). At other locations, terrestrial devastation at
the P-T boundary is associated with wildfires (Grice et al., 2007; Shen
et al., 2011), soil acidification (Sephton et al., 2015) and inferred acid
rain (Maruoka et al., 2003).

Also, unlike the paleosols of coal measures which were partially or
entirely waterlogged as they sank below thick peats and were isolated
from the atmosphere, the abundant latest Permian-earliest Triassic
paleosols of calcareous red beds are massive and hackly from the ac-
tivity of roots and burrows, and have a horizon of calcareous nodules
below surface rooted horizons formed over substantial periods of time
(millennia) in full contact with the atmosphere and biosphere
(Retallack, 2001). In the Carlton Heights section, δ13C and δ18O values

Fig. 3. Plots of Corg, Norg, C/N, δ13Corg and δ15Norg in the Carlton Heights Permian-Triassic palynological boundary section.

M.E. Brookfield et al. Journal of African Earth Sciences 145 (2018) 170–177

173



from paleosol carbonate nodules composed of micrite are taken to re-
flect atmospheric carbon dioxide as they formed in well-drained, open
system soils, in contrast to the recrystallized nodules which formed in
phreatic closed environments (Tabor et al., 2007). Below 37–46m in
the Carlton Heights section, micrite nodule δ13Cnod values range from
−16.9 to −21.9‰, whereas the δ18Onod values range from −2.1 to
−18.2‰. The δ13Cnod values at 49 m and 62m, rise to −5.1‰, while
the δ18Onod values remain average at−11‰. The two values of δ13Cnod

at 49 m and 62m are around 20‰ higher than the δ13Corg values,
which is in keeping with the C3 plant Calvin pathway of most land
plants, which biochemically discriminates against 13C to produce a
δ13Corg shift of about −20‰ (O'Leary, 1988). Above 71m in the sec-
tion, in the Katberg Sandstone, the δ13Cnod values drop again to−12‰,
as do the δ18Onod values to −15‰ (Tabor et al., 2007).

The section between ∼50 and 60m in the Carlton Heights section
thus shows a typical relationship between δ13Cnod and δ13Corg and
shows little variation (Fig. 3). The values above and below the fungal
event zone, however, show much lower δ13Cnod and δ13Corg values,
which indicates removal of δ13C from the system. The low values for
δ13Cnod may be due to crystallization of calcite in semi-closed systems
independent of the atmosphere, in reducing swamp conditions, as may
the carbonate nodule microspar value of−15.5‰ at 62m in lowermost

Katberg Sandstone (Tabor et al., 2007).
The δ13Corg values at the Carlton Heights P-T boundary section

contains relatively subdued variation with a transient decrease from
around −26‰ to −27.5‰ in the fungal event zone before increasing
back to around −26.5‰. A similar ∼1–2‰ negative excursion around
the fungal event zone is recorded at this section in Ward et al. (2005),
but in our study we can constrain the δ13Corg event to the 1-m thick
fungal event zone itself. Ward et al. (2005) recorded a larger δ13Corg

negative excursion of around 4‰, (from −22 to −26‰) between 33
and 40m at their biostratigraphic boundary between Dicynodon and
Lystrosaurus zones (Fig. 4). The negative excursion is interrupted by a
reversal to −23‰ at about 35m in the section (Ward et al., 2005). The
complexities shown by Ward et al. (2005) indicate the necessity of fine-
scale sampling to determine significant fluctuations. The similar sec-
tions at Lootsbergpas, 80 km to the SSW, and Bethulie, ∼300 km to the
NE shows a very comparable δ13Corg pattern, but with a more con-
densed section, and most seem to correlate with the change from
greenish to reddish sediments in most sections and the last occurrence
of Lystrosaurus in the Senekal section (Fig. 4). Lystrosaurus is interpreted
as a burrower (Retallack et al., 2003) and, like modern vertebrate
burrowers was presumably adapted to low oxygen and high carbon
dioxide in its burrows (Shams et al., 2005). It would be interesting to

Table 1
Analyses.

Sample 10 9 8 7 6 5 4 3 2 1

Location + 59.5 m + 59.04 m + 58.75 m + 58.7 m + 58.64 m + 58.59 m + 58.3 m + 58.2 m + 58.1 m + 50.3 m
Norg (wt %) 0.02 0.02 0.02 0.02 0.02 0.04 0.04 0.04 0.02 0.03
Corg (wt %) 0.06 0.03 0.03 0.03 0.05 0.07 0.10 0.04 0.02 0.05
δ13Corg (‰ VPDB) −26.40 −26.76 −26.25 −26.31 −26.83 −27.41 −26.96 −26.61 −25.82 −25.99
δ15Norg (‰ AIR) 2.46 3.53 3.89 4.05 3.60 4.08 3.95 2.86 4.25 2.87

Corg/Norg 2.80 1.48 1.26 1.03 2.09 2.03 2.49 0.94 0.95 1.96

Fig. 4. Detailed δ13Corg trends across non-marine Permian-Triassic boundary sections in Karoo Basin: Carlton Heights and Lootsberg sections (Ward et al., 2005);
Commando Drift Dam (Coney et al., 2007); Bethulie (Ward et al., 2005); Senekal (Maruoka et al., 2003); and Australia Sydney Basin- Murrays Run - 1 (Morante,
1996).
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see if the larger δ13Corg negative excursion at the Dicynodon/Lystro-
saurus boundary is due to methane oxidation and consequent loss of
oxygen and increase in carbon dioxide.

The δ13Corg variations in South Africa are much less than equivalent
Gondwanan non-marine P-T boundary sections in higher paleolatitudes,
such as in Australia, where they reach as low as −30‰ in the Sydney
Basin and nearby basins (Morante, 1996; Thomas et al., 2004; Van de
Wetering et al., 2013) (Fig. 4); in Antarctica, where they reach as low as
−46‰ (Krull and Retallack, 2000) (Fig. 5); and in marine sections in
the Nelson region of New Zealand, where δ13Corg reaches as low as
−38‰ at the same stratigraphic level (Krull et al., 2000) (Fig. 6).
Comparable patterns are seen in non-marine sections in southwest
China at Jiucaichong and Mide, where the ranges of δ13Corg are
somewhat more negative in these lower latitude and more coastal sites
(Fig. 5) (Cui et al., 2015). A pronounced negative shift in δ13Corg just
below the paleontological PTr boundary is seen in all sections, is thus a
world wide phenomenon, and can not be due to changes in the isotopic
character of local sources like a change in vegetation (Korte et al.,
2010). The negativity of this shift, however, seems to decrease from the
Permo-Triassic south pole to the equator for reason yet to be in-
vestigated.

Even if the fungal remains are present at a high enough abundance
to influence the δ13Corg signature over the woody debris, they are un-
likely to be the cause of the decreasing δ13Corg trend through the fungal
event zone. Fungi are 13C enriched compared to their food source
(Kohzu et al., 1999), and this fractionation agrees with the coeval
measurements of the fungal remains and land-plant material from a P-T
boundary section in Italy (Sephton et al., 2009). Therefore, if anything,
the fungal remains likely subdued the δ13Corg depletion event in the
fungal event zone.

Compared to δ13Corg values, δ15Norg values show little systematic
variation through the fungal event zone, and the values are very similar
to samples prior to and subsequent to this zone. This suggests little
variation in nitrogen cycling during the measured time interval. The
δ15N values of wood can be diagenetically overprinted, while δ13C
values are more resistant (Gröcke, 2002), and so diagenesis cannot be
ruled out for the lack of δ15Norg variation across the fungal event zone.

For the δ13Corg, the values of the terrestrial organic matter were
likely controlled by atmospheric δ13C (e.g., Cui et al., 2015), as the
relatively constant C/N ratios of terrestrial organic matter at Carlton
Heights suggests that the source of the organic matter did not change
across the palynological boundary. The decrease of ∼1–2‰ in δ13Corg

Fig. 5. Detailed δ13Corg trends across non-marine and marine Permian-Triassic boundary sections in Antarctica – Graphite Peak and Allen Hills sections (Krull and
Retallack, 2000); and China – Jiucaichong and Mide sections (Cui et al., 2015).

M.E. Brookfield et al. Journal of African Earth Sciences 145 (2018) 170–177

175



values recorded during the fungal event can be correlated with a global
negative shift in δ13Corg in marine and non-marine sections (e.g., Korte
et al., 2010). One potential cause of the global fungal proliferation on
rotting vegetation is forest-kill by acid rain associated with the eruption
of the Siberian Traps (e.g., Visscher et al., 1996; Rampino and Eshet,
2018). In modern forest soils, ratios of bacteria to fungi drop pre-
cipitately to less than one below pH 4 (Matthies et al., 1997). And some
Permian lakes had negative pH's (Benison, 2013). At Senekal, in the
northern Karooo basin (Fig. 1A), dark lake mudstones immediately
below the erosional contact with the Katberg Sandstones show a sudden
marked negative shift in δ34S, caused by high sulphide accumulation
induced by acid rain (Maruoka et al., 2003).

Another effect of the massive volcanism is the release of isotopically
light CO2 and/or CH4 gases into the atmosphere, which could explain
the negative shift in δ13Corg recorded in globally distributed terrestrial
and marine sections (e.g., Korte et al., 2010; Svensen et al., 2009). The
Carlton Heights data adds to the growing global database of the end-
Permian fungal event associated with decreasing δ13Corg values in
marine and non-marine sections (Visscher et al., 1996; Cui et al., 2015;
Rampino and Eshet, 2018).

4. Conclusions

The Carlton Heights section is thus far unique in the Karoo in
containing the Permian-Triassic palynological boundary between the
Upper Permian Klausipollenites schaubergeri Zone and the Lower Triassic
Kraeuselisporites-Lunatisporites Zone, separated by the 1-m thick “fungal
event” zone, marked by abundant fungal cell remains
(Reduviasporonites) and woody debris. The Corg and Norg values obtained
are very low but reach a maximum in the fungal event zone. C/N ratios
are extremely low (less than 3) throughout the section with little var-
iation suggesting no change in organic matter source across the fungal
event. The low values resemble those found in modern burned soils
with low bacteria/fungi ratios. δ15Norg values vary between 2.46‰ and
4.25‰, showing no significant changes within the fungal event zone.
The δ13Corg values show a ∼2‰ negative shift in the fungal event zone
and reach a low of −27.41‰. This shift in δ13Corg may correlate with
the global shift in δ13C seen in P-T boundary sections worldwide.

The successive extinction of vertebrates and plants seen in the South
African section mirror the inferred two-fold extinction in the marine
realm, separated by thousands of years (Song et al., 2013). The first
phase of extinction is attributed to a slow injection of carbon into the
atmosphere, and ocean when pH remained stable. During the second
extinction pulse, however, a rapid and large injection of carbon caused
an abrupt acidification event that drove the preferential loss of heavily
calcified marine biota and land plants (Clarkson et al., 2015).

Though beyond, the scope of this local study, we really need a
comprehensive critical review of the abundant available detailed
stratigraphy, paleobiological and geochemical changes across the
Permo-Triassic boundary in both northern and southern hemispheres to
adequately evaluate the causes of the mass extinctions. This has yet to
be done.
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