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Abstra
t

We present a parameterized analyti
 statisti
al model of the thermodynami
s of al-


hemi
al mole
ular binding within the solvent potential of mean for
e formalism. The

model des
ribes the free energy pro�les of linear single-de
oupling al
hemi
al binding

free energy 
al
ulations a

urately. The parameters of the model, whi
h are physi
ally

motivated, are derived by maximum likelihood inferen
e from data obtained from al-


hemi
al mole
ular simulations. The validity of the model has been assessed on a set

of host-guest 
omplexes. The model faithfully reprodu
es both the binding free energy

pro�les and the probability densities of the perturbation energy as a fun
tion of the

al
hemi
al progress parameter. The model o�ers a rationalization for the 
hara
ter-

isti
 shape of binding free energy pro�les. The parameters obtained from the model

are potentially useful des
riptors of the asso
iation equilibrium of mole
ular 
omplexes.
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Potential appli
ations of the model for the 
lassi�
ation of mole
ular 
omplexes and

the design of al
hemi
al mole
ular simulations are envisioned.

Introdu
tion

The primary goal of a quantitative model of mole
ular binding is to provide an estimate of

the standard free energy of binding, ∆G◦
b , or, equivalently, of the equilibrium 
onstant, Kb,

for the asso
iation equilibrium R+L ⇌ RL, between two mole
ules R and L. For example,

the binding of a drug mole
ule to a re
eptor. A brute-for
e mole
ular simulation approa
h

to the 
al
ulation of the binding 
onstant, based on following the motion of the ligand in

and out of the re
eptor, is generally not feasible due to the long times between binding

and unbinding events.

1

Biased methods have been developed to a

elerate the dynami
s of

asso
iation and obtain the free energy pro�le of ligand binding along pathways in and out

of the re
eptor.

2�10

Al
hemi
al des
riptions of the binding equilibrium provide an alternative to the study

of physi
al binding/unbinding paths.

11�15

The idea is that, be
ause a free energy 
hange

depends only on the end states, one 
an 
onne
t the bound and unbound states of the

mole
ular system by any thermodynami
 path, whether physi
al or unphysi
al. In al
hemi
al

methods, the potential energy fun
tion is modi�ed parametri
ally in a series of steps tra
ed

by a progress parameter λ to go from a des
ription of the unbound state to that of the

bound state. These methods e�e
tively �grow� the ligand in pla
e within the binding site.

The �eld has a long history,

16�19

but only relatively re
ently it has 
onverged into a uni�ed

statisti
al thermodynami
s theory of biomole
ular binding.

12,20�22

The double-de
oupling

method,

11,20,23

whi
h is used to 
ompute absolute binding free energies, is so 
alled be
ause

it involves free energy 
al
ulations to de
ouple the ligand to an intermediate gas phase from

the bound and solution states of the ligand. Free energy perturbation methods,

24�27

are

suitable for the analysis of relative binding, su
h as in drug optimization.
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We have developed an al
hemi
al single-de
oupling methodology, based on an impli
it

des
ription of the solvent,

28

that enables the transfer of the ligand dire
tly into the binding

site rather than through multiple thermodynami
 pathways.

29�31

Among other advantages,

the single-de
oupling approa
h leads naturally to a statisti
al representation of the equilib-

rium in terms of probability distributions of the binding energy. For example, it is possible

to relate the binding free energy to the probability distribution, p0(u), of the binding energy

in the absen
e of re
eptor-ligand intera
tions.

12

Analogously to approa
hes based on physi
al binding pathways, al
hemi
al binding free

energy 
al
ulations yield free energy pro�les along the thermodynami
 transformations. Al-


hemi
al free energy pro�les are fun
tions of the al
hemi
al progress parameter λ, rather

than, for instan
e, the ligand-re
eptor distan
e. A typi
al al
hemi
al 
al
ulation involves


olle
ting distributions of perturbation energies as a fun
tion of the al
hemi
al progress pa-

rameter λ. These are merged using thermodynami
 reweighting algorithms

32,33

to yield the

free energy pro�le along λ. Typi
ally, only the di�eren
e between the endpoints of the free

energy pro�le, whi
h is the binding free energy, is 
onsidered. However, the shape of the free

energy pro�le 
an also yield useful information regarding the physi
al 
hara
teristi
s of the

mole
ular 
omplex. For example, a quadrati
 dependen
e on λ, typi
al of linear response, is

often observed during the al
hemi
al transformation.

In this work, we present a method to relate the shape of the free energy pro�le to physi
al

observables of the 
omplex. Working within the single-de
oupling framework, we develop a

statisti
al analyti
 model of binding and we 
onstru
t a pro
edure to estimate the parameters

of the model from data generated by al
hemi
al mole
ular simulations. The model is based

on the statisti
s of ligand-re
eptor intera
tion energies when the ligand uniformly explores

the binding site volume as if the re
eptor atoms were not present. This general strategy has

a long history in the treatment of solvation (examples are s
aled parti
le theory, parti
le

insertion, and information/�u
tuation theories

34�38

) but it has not been fully explored to

study mole
ular re
ognition. The main distin
tion is that a re
eptor, unlike a homogeneous
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solvent, has a spe
i�
 shape and distribution of intera
tion sites. We show that the single

de
oupling theory o�ers a useful starting point to think about this problem.

Theory and Methods

Statisti
al me
hani
s theory of non-
ovalent mole
ular asso
iation

The standard free energy of binding, ∆G◦
b , between a re
eptor R and a ligand L is given by

β∆G◦
b = − lnKb, (1)

where β = 1/(kBT ), T is the absolute temperature, kB is Boltzmann's 
onstant and Kb is

the dimensionless binding 
onstant that, assuming ideal solutions, is expressed as

Kb =
[RL]/C◦

([R]/C◦)([L]/C◦)
, (2)

where [. . .] are equilibrium 
on
entrations and C◦
is the standard state 
on
entration (
on-

ventionally set as 1M or 1 mole
ule/1668 Å

3
).

In a widely employed 
lassi
al statisti
al me
hani
s theory of non-
ovalent asso
iation,

12,20

the binding 
onstant is expressed as

Kb = C◦Vsite〈e−β∆U〉0, (3)

where U(x, ζ) = V (x, ζ) +W (x, ζ) is the e�e
tive potential energy fun
tion of the re
eptor-

ligand 
omplex, expressed in terms of the internal degrees of freedom, x, of re
eptor and

ligand, and the external degrees of freedom (i.e. overall translation and rotations),

21 ζ , of

the ligand with respe
t to the re
eptor. The fun
tion ∆U(x, ζ) = U(x, ζ) − U0(x) is the

binding energy of the 
omplex in 
onformation (x, ζ), where U0(x) is the e�e
tive potential

energy of the system when re
eptor and ligand are at in�nite separation. Vsite is the 
hosen
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volume of the binding site, that is the volume of the region of positions and orientations ζ

of the ligand relative to the re
eptor whi
h are 
onsidered to 
orrespond to the bound state

of the 
omplex.

1

The average 〈. . .〉0 in Eq. (3) is 
ondu
ted over the de
oupled equilibrium

ensemble 
orresponding to U0(x), in whi
h re
eptor and ligand do not intera
t, while the

ligand samples uniformly the binding site volume. Finally, V (x, ζ) is the potential energy of

the system and W (x, ζ) is the solvent potential of mean for
e, whi
h represents the solvation

free energy of the 
omplex in 
onformation (x, ζ). The solvent potential of mean for
e, whi
h

is based on the partial averaging over the solvent degrees of freedom,

12,39

is a quantity of

general appli
ability and, in prin
iple, does not introdu
e any new approximations into the

theory proposed here.

Inserting Eq. (3) into Eq. (1) yields

β∆G◦
b = − lnC◦Vsite + β∆Gexc., (4)

where −kBT lnC◦Vsite is the 
on
entration-dependent 
omponent of the standard free energy

of binding independent of the spe
i�
 form of the potential energy, and

β∆Gexc. = − ln〈e−β∆U〉0 (5)

is the ex
ess free energy of the 
omplex.

In the following, we fo
us on the ex
ess 
omponent of the standard free energy of binding.

To simplify the notation, we hen
eforth denote the ex
ess free energy as ∆G, and we measure

all energies and free energies in units kBT thereby omitting fa
tors of β throughout.

1

Eq. (3) refers to the 
ase in whi
h only overall translations are used to de�ne the binding site volume.

In general, a term 
orresponding to the integration over orientational degrees of freedom is also present.

12,21
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Al
hemi
al binding free energy models

Mole
ular simulations aimed at 
omputing the ex
ess free energy of binding based on Eqs. (4)

and (5) are referred to as �al
hemi
al� in that they sample the unphysi
al un
oupled state

in whi
h re
eptor and ligand, while being 
lose to ea
h other, behave as if the other were

not present. In pra
ti
e, Eq. (5) 
onverges very slowly be
ause, due to atomi
 overlaps,

in the un
oupled state large and positive values of∆U (and, 
onsequently, negligibly small

values of exp(−∆U)) are mu
h more likely to be sampled than favorable ones, 
ausing the

average to be dominated by the infrequent o

urren
es of overlap-free 
on�gurations. To

over
ome this obsta
le, it is 
ommon to adopt a strati�
ation s
heme based on an al
hemi
al

hybrid potential U(x, ζ ;λ), dependent on an al
hemi
al progress parameter λ, 
onventionally

ranging from 0 and 1. This strategy implies a λ-dependent ex
ess free energy de�ned as

∆G(λ) = − lnK(λ), (6)

where

K(λ) = 〈e−∆U(λ)〉0 , (7)

is the λ-dependent binding 
onstant, and where, using the notation introdu
ed above,

∆U(λ) = U(x, ζ ;λ)− U0(x) (8)

is the perturbation energy at λ for the 
omplex in 
onformation (x, ζ). In the following we

will refer to ∆G(λ) as the al
hemi
al free energy pro�le and K(λ) as the binding 
onstant

pro�le.

The strati�
ation approa
h above leads to the familiar 
omputational algorithms for

the 
al
ulation of free energy di�eren
es based on the a

umulation of the e�e
ts of small

progressive in
rements of λ. For instan
e, Eq. (7) is easily generalized to yield an expression
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of the ratio of equilibrium 
onstants at nearby values of λ:

K(λ′)

K(λ)
= 〈e−[∆U(λ′)−∆U(λ)]〉λ , (9)

whi
h is the basis of the Free Energy Perturbation (FEP) method.

2

Similarly, inserting

Eq. (7) into Eq. (6) and di�erentiating with respe
t to λ, leads to the well-known Thermo-

dynami
 Integration (TI) formula:

40

d∆G(λ)

dλ
= 〈∂U(λ)

∂λ
〉λ (10)

whi
h, when integrated, yields the free energy pro�le.

Being related to ensemble averages, it is helpful for the 
urrent purpose to note that both

the FEP and TI formulas 
an be expressed in terms of probability density fun
tions. For

instan
e, Eq. (7) 
an be rewritten as

K(λ) =

ˆ +∞

−∞

d(∆Uλ)e
−∆Uλp0(∆Uλ) , (11)

where p0(∆Uλ) is the probability density of the perturbation energy, ∆U(λ), at λ in the

λ = 0 ensemble. Analogously, denoting u(λ) = ∂U(λ)/∂λ, Eq. (10) is rewritten as

d∆G(λ)

dλ
=

ˆ +∞

−∞

du upλ(u) (12)

where pλ(u) is the probability density of the ∂U/∂λ fun
tion in the ensemble at λ.

2

It should be noted that, while Eq. (9) is mathemati
ally exa
t, modern numeri
al implementations of

FEP employ more e�
ient BAR and MBAR free energy estimators.

32
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Linear al
hemi
al transformations

Eqs. (11) and (12) take a parti
ular 
onvenient form when the al
hemi
al potential energy

fun
tion U(x, ζ ;λ) varies linearly with respe
t to λ:

U(x, ζ ;λ) = U0(x) + λu(x, ζ) (13)

where U0(x, ζ) is the potential energy of the de
oupled state and u(x, ζ) is the so-
alled

binding energy fun
tion of the 
omplex, whi
h is assumed as independent of λ. By 
omparing

Eqs. (13) and (8), it is straightforward to show that for an al
hemi
al potential of the form

(13) the perturbation potential is proportional to the binding energy fun
tion

∆U(x, ζ ;λ) = λu(x, ζ) (14)

and that the λ-derivative employed in the TI formula is independent of λ and equal to the

binding energy fun
tion:

∂U(x, ζ ;λ)

∂λ
= u(x, ζ) . (15)

Inserting Eq. (14) into Eq. (11) we obtain

K(λ) =

ˆ +∞

−∞

du e−λup0(u) , (16)

where p0(u), whi
h plays a 
entral role in this work, is the probability density of the binding

energy fun
tion in the un
oupled state, that is in the state in whi
h the ligand is uniformly

distributed in the binding site region and re
eptor and ligand do not intera
t with ea
h other.

Mathemati
ally, Eq. (16) expresses the fa
t that the binding 
onstant pro�le K(λ) is given

by the two-sided Lapla
e transform of p0(u). In turn, the binding free energy pro�le ∆G(λ)

is related to K(λ) by Eq. (6), and the ex
ess binding free energy is ∆G(λ = 1). Finally,

the Potential Distribution Theorem

41

provides a relationship between p0(u) and the binding
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energy distributions at any other value of λ:

pλ(u) = e∆G(λ)e−λup0(u). (17)

It is therefore apparent that knowledge of p0(u) determines all of the other quantities

that 
hara
terize the al
hemi
al transformation, in
luding the binding free energy pro�le

and the binding free energy. In this respe
t, the fun
tion p0(u) serves the same role in the

al
hemi
al theory of binding that the density of states Ω(E) plays in 
lassi
al statisti
al

me
hani
s. For instan
e, note the parallel between Eq. (17) and the well know Boltzmann's

relationship pβ(E) ∝ exp[−βE]Ω(E), whi
h gives the energy distribution of a system at any

temperature given the density of states.

The main aim of the work presented here is to develop an analyti
 model for p0(u) from

whi
h to derive all of the other quantities dis
ussed above and, 
onversely, to estimate the

parameters of the model against the results of al
hemi
al mole
ular simulations.

Statisti
al model for p0(u)

In this se
tion, we turn to the derivation of a model for the probability distribution, p0(u), of

the binding energy in the un
oupled ensemble at λ = 0, that is in the state when the ligand

and the re
eptor are not intera
ting. Note the 
riti
al distin
tion between the state from

whi
h samples are 
olle
ted (the un
oupled ensemble), and the quantity being sampled (the

binding energy fun
tion): we are interested in the distribution of binding energies, whi
h

are in general not zero, when re
eptor and ligand 
on�gurations are sampled in the absen
e

of re
eptor-ligand intera
tions. As illustrated in Fig. 1, sin
e in the absen
e of intera
tions


lashes between ligand and re
eptor atoms are likely, a long tail at large and positive values

of the binding energy 
hara
terizes p0(u). p0(u) also has a mu
h smaller, but �nite, tail

at favorable binding energies. The low energy tail of p0(u) is ampli�ed by the exp(−u)

exponential term, to yield, through Eq. (17), the expe
ted distribution of binding energies

9



in the bound state narrowly 
entered around a favorable mean binding energy (see Fig. 1).

u
p(
u
)

λ

Figure 1: p0(u) (blue, 
urve on the right) and p1(u) (yellow, 
urve on the left) from Eq. (26)

for ūB = −10, σB = 3, ǫLJ = 1, ũc = 10, nl = 2, pb = 10−6
, and pm = 0. The s
ale of the

y-axis is arbitrary and probability densities are not normalized. Energy values are expressed

in units of kBT .

To start thinking about a fun
tional form for p0(u), 
onsider the model illustrated in

Fig. 2, whi
h depi
ts the binding site volume 
ontaining re
eptor atoms (large 
ir
les) ar-

ranged in some 
on�guration, and a ligand represented by small blue 
ir
les. Be
ause at

λ = 0 ligand-re
eptor intera
tions are turned o�, the ligand atom o

upies the binding site

with uniform probability. The binding site volume is divided into two main regions. In

the region outside any of the re
eptor atom 
ir
les, as lo
ation �B� in the white region of

Fig. 2, the intera
tion energy between the ligand atom and the re
eptor is the result of many,

relatively weak ele
trostati
 and dispersion intera
tions of similar magnitude. This mode of

intera
tion des
ribes the behavior of p0(u) at favorable values of the binding energy. When,

instead, a ligand atom is found within the inner 
ore of a re
eptor atom (shaded in light

and dark gray in Fig. 2), su
h as at lo
ations �C� and �M,� the repulsion energy of that

individual intera
tion dominates all of the others. This intera
tion mode is expe
ted to be

essential to des
ribe the high energy tail of p0(u). The atomi
 
ore of an atom is 
onsidered

here as its most immediate region where the intera
tion potential dominates over all other

intera
tions. Be
ause re
eptor atoms 
annot overlap to more than a 
ertain degree, strong

repulsive intera
tions 
an be understood as the result of a single pair intera
tion rather than

of 
ooperative 
ontributions of many intera
tions. (The distin
tion between the light and

dark gray regions within the repulsive intera
tion 
ore region is explained below).

10



Figure 2: Illustration of the model of the un
oupled state of the re
eptor-ligand 
omplex.

The box represents the re
eptor site volume. Ligand atoms are blue 
onne
ted by bonds.

Re
eptor atoms are bla
k surrounded by 
ir
les representing the extent of the ligand-re
eptor

repulsive intera
tion potential. A ligand atom in the white region (su
h as at lo
ation

labeled �B�) intera
ts with many re
eptor atoms by means of soft long-ranged ele
trostati


and dispersion intera
tions represented by dashed lines. A ligand atom in the light gray

region (su
h as at lo
ation �C�) intera
ts mainly with the 
losest re
eptor atom by means of

repulsive 12-6 potential (represented by a 
ontinuous line). The dark gray region (su
h as

the ligand atom lo
ation labeled �M�) represents the region where the repulsive intera
tion

energy is 
onstant and 
apped at the maximum value umax.

To model the two distin
t properties of repulsive and attra
tive intera
tions, it is useful

to think of the ligand-re
eptor binding energy as the results of two 
ontributions

u = uC + uB, (18)

where uC represent the 
ollisional 
omponent, whi
h 
orresponds to short-ranged repulsive

intera
tions predominant within the atomi
 
ores and well represented by the a single pair-

wise intera
tion, and uB is the ba
kground 
omponent given by the sum of 
ontributions of

many weak and favorable long-ranged pairwise intera
tions.

Motivated by the 
entral limit theorem, we model the probability distribution of the

ba
kground 
omponent by a Gaussian distribution:

pB(uB) = g(uB; ūB, σB) =
1

√

2πσ2
B

exp

[

−(uB − ūB)
2

2σ2
B

]

, (19)

where ūB is the mean and σB is the standard deviation of the distribution of the distribution

of the total ba
kground ligand-re
eptor intera
tion energies, uB, obtained by summing over

11



all ligand-re
eptor atom pairs

The 
ollisional energy uC is assumed to be zero in the region outside the atomi
 
ores.

Inside one of the atomi
 
ores, uC is assumed to be represented by the repulsion energy

between the pair of atoms with the most severe 
lash. Here we represent the repulsive

pairwise intera
tions by the Weeks-Chandler-Andersen (WCA)

42

form of the Lennard-Jones

(LJ) potential

uWCA(r) =















4ǫLJ

[

(

σLJ

r

)12 −
(

σLJ

r

)6
]

+ ǫ, r < 21/6σLJ

0 r > 21/6σLJ ,

(20)

whi
h, as shown in the Appendix, for a single ligand atom leads to the 
ollisional binding

energy distribution

pWCA(uC) =
H(uC − ũC)(1 + x̃C)

1/2

4ǫLJx(1 + x)3/2
(21)

where H(·) is Heaviside's step fun
tion, x =
√

uC/ǫLJ , x̃C =
√

ũC/ǫLJ and ũC > 0 is an

adjustable energy parameter that de�nes the level set of the boundary of the 
ore of re
eptor

atoms. The parameter ũC is impli
itly de�ned as the repulsive energy above whi
h the

energy of the 
ollision follows the probability density (21).

Eq. (21), derived for a monoatomi
 ligand, 
an be generalized to a polyatomi
 ligand. In

doing so, it is 
riti
al to note that, even though the total 
ollisional energy 
an be expressed

as the sum of the 
ollisional energies for ea
h ligand atom, the 
entral limit theorem is not

appli
able be
ause the mean and varian
e of ea
h 
ontribution, des
ribed by probability

density (21), are unde�ned. We 
an assume however that the 
ollisional energy is dominated

by the largest repulsive intera
tion among all of the ligand atoms: uC ≃ max i=1,N [uC(i)],

where uC(i) is the 
ollisional energy of ligand atom i. The probability density of the max-

imum, xmax, of a set of N independent random variables, xi, distributed a

ording to the

probability density f(x) is given by the expression

43
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p(xmax) = N [F (xmax)]
N−1 f(xmax) (22)

where F (x) is the integrated form of f(x), that is the 
umulative distribution 
orresponding

to f(x). In general, the positions of the N atoms of the ligand are not statisti
ally indepen-

dent so Eq. (22) is an approximation. It is expe
ted however that this form, with an e�e
tive

number of statisti
ally independent number of atoms groups, nl, is of general appli
ability.

If the ligand is small and rigid it will behave as a single atom. On the other extreme, a

large and �exible ligand 
an be thought of being 
omposed of groups of atoms with nearly

un
orrelated position.

Combining Eqs. (35), (40), and (22) �nally yields

pWCA(uC) = nl

[

1− (1 + xC)
1/2

(1 + x)1/2

]nl−1
H(uC − ũC)

4ǫLJ

(1 + xC)
1/2

x(1 + x)3/2
(23)

for the probability distribution of the 
ollisional energy related to the repulsive WCA poten-

tial for a polyatomi
 ligand. The fa
tor of nl in front of the expression is the normalization


onstant and the other symbols have the same meanings as in Eq. (21).

In al
hemi
al mole
ular simulations, it is 
ustomary to adopt soft-
ore intera
tion poten-

tials to smoothly 
ap the maximum value of pair-wise intera
tions and avoid dis
ontinuities

near the un
oupled state.

33,44,45

In this work we model this feature by 
apping to a maximum

value umax the repulsive WCA potential at short interatomi
 distan
es (see Fig. 10). We thus


onsider the inner 
ore region of the re
eptor region, denoted by dark gray shading in Fig. 2,

where the repulsive intera
tion energy is 
onstant and equal to umax. In this work, we set

umax = 1× 106 k
al/mol.

Combined 
ollisional and ba
kground intera
tion energy model

We now turn the derivation of the probability distribution p0(u) = p(uB +uC) of the ligand-

re
eptor energy in the un
oupled ensemble. While the ba
kground 
omponent uB is assumed

13



to o

ur for any 
on�guration of the 
omplex, the probability density of the 
ollisional


omponent is 
onditional on there being at least one atomi
 
lash de�ned as uC > ũC . We

denote by pb the probability that no su
h 
ollision o

urs in the un
oupled ensemble and

when the ligand is within the binding site volume, by pc the probability that a 
ollision o

urs

in the region 
orresponding to the 
ontinuous repulsive part of the WCA potential (the light

gray region in Fig. 2), and by pm the probability that the 
lash o

urs within the inner 
ore

region (the dark gray region in Fig. 2) where the repulsive energy is umax. The probabilities

pb, pc, and pm are not all independent parameters of the model sin
e it is required that they

sum to 1: pb + pc + pm = 1.

Under these assumptions, the probability distribution of the 
ollisional 
omponent of the

intera
tion energy is written as

pC(uC) = pbδ(uC) + pmδ(uC − umax) + pcpWCA(uC) (24)

where pWCA(uC) is given by Eq. (23) and the δ-fun
tions express the fa
t that outside the


ore region the 
ollisional energy is zero and that inside the inner 
ore region it is equal to

uumax. Finally, assuming that the ba
kground and 
ollisional 
ontributions are statisti
ally

independent, the probability density of the total binding energy u = uB +uC is given by the


onvolution of the respe
tive probability densities:

p0(u) = p0(uC + uB) =

ˆ +∞

−∞

pC(u
′)pB(u− u′)du′. (25)

Substituting in Eq. (25) the de�nitions given in Eqs. (19) and (24) we obtain:

p0(u) = pbg(u; ūB, σB)+pmg(u; ūB+umax, σB)+pc

ˆ +∞

ũC

pWCA(u
′)g(u−u′; ūB, σB)du

′ , (26)

where g(u; ū, σ) is the normalized Gaussian distribution of mean ū and standard deviation

σ [see Eq. (19)℄.
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While the integral in Eq. (26) is not available in analyti
al form, it is amenable to

numeri
al 
omputation by for example Gauss-Hermite quadrature (see Methods). Fig. 1

shows p0(u) for a parti
ular 
hoi
e of the parameters ūB, σB, ǫLJ , ũc, and pb and pc. Also

shown in this �gure is p1(u) ∝ e−up0(u) [see Eq. (17)℄. These distributions indeed re�e
t

the behavior of binding energy distributions obtained from a
tual mole
ular simulations (see

Results).

Model for the free energy pro�le

Sin
e the Lapla
e transform of a 
onvolution of two fun
tions is the produ
t of their Lapla
e

transforms, from Eq. (16) and Eqs. (24) and (19), for the binding 
onstant pro�le we have

K(λ) = KC(λ)KB(λ), (27)

where

KC(λ) =

ˆ +∞

−∞

pC(u)e
−λudu = pb + pme

−λumax + pcKWCA(λ) (28)

where KWCA(λ) is the two-sided Lapla
e transform of pWCA(u). From Eq. (23):

KWCA(λ) =

ˆ umax

ũC

pWCA(u)e
−λudu (29)

Finally, the two-sided Lapla
e transform of pB(u) = g(u; ūB, σB) is:

KB(λ) =

ˆ +∞

−∞

pB(u)e
−λu = eσ

2

B
λ(λ/2−ūB/σ2

B
)

(30)

An illustrative binding free energy pro�le, ∆G(λ) = − lnK(λ), obtained from Eqs. (27),

(28), (29) and (30) for some 
hoi
e of parameter values is shown in Fig. 3. Free energy

pro�les from simulations indeed follow have the shape illustrated in Fig. 3 (see Results).

Note that in this model ∆G(λ) is given by the sum of the free energies 
orresponding to the

15



λ

Δ
G
(λ
)

Figure 3: The binding free energy ∆G(λ) = − lnK(λ) from Eqs. (27)�(30) as a fun
tion of λ
for ūB = −10, σB = 3 ǫLJ = 1, ũc = 10, nl = 2, pb = 10−6

, and pm = 0. Energy is expressed

in units of kBT .


ollisional and ba
kground pro
esses:

∆G(λ) = − lnKC(λ)− lnKB(λ) = ∆GC(λ) + ∆GB(λ). (31)

Mixture model of ba
kground 
omponent

The analyti
 model des
ribed so far predi
ts Gaussian-distributed binding energies at λ ≃ 1,

where the 
ollisional 
ontribution is negligible. In pra
ti
e, however, we en
ounter systems

displaying bimodal binding energy distributions in this regime (see for example Fig. 9).

These o

urren
es are interpreted as the system undergoes a 
onformational transition from

a high-entropy/high-energy state to a low-entropy/low-energy state as λ is in
reased. We

found that these systems 
an be des
ribed well by a mixture model of the ba
kground binding

energy 
omponent des
ribed by the weighted sum of two Gaussian distributions:

pB(uB) = Pag(uB; ūa, σa) + Pbg(uB; ūb, σb) , (32)

where Pa and Pb (Pa + Pb = 1) are the probabilities of o

urren
e of 
onformational states

a and b at λ = 0, respe
tively, and (ūa, σa) and (ūb, σb) are the 
orresponding average and

standard deviation parameters. (In general, any number of 
onformational states 
an be


onsidered by introdu
ing the average binding energy and standard deviation parameters for

16



ea
h.)

To formulate the full model of p0(u) for this 
ase, Eq. (32) repla
es the single Gaussian

fun
tions g(u; ūB, σB) in Eq. (26). In the 
ase of the mixture model Eq. (30) be
omes

KB(λ) =

ˆ +∞

−∞

pB(u)e
−λu = Pae

σ2
aλ(λ/2−ūa/σ2

a) + Pbe
σ2

b
λ(λ/2−ūb/σ

2

b
)

(33)

Otherwise the remainder of the analyti
al theory is un
hanged. Note that this model 
an

be expanded to an arbitrary number of states and that it redu
es to the single-state model

[Eq. (19)℄ when only one state is present (that is Pa = 1, for example).

Model parameterization

The analyti
al model of binding de�ned by Eq. (26) with Eqs. (23) and (19) depends on

seven independent parameters: ūB, the average ba
kground binding energy in the 
oupled

state, σB, the standard deviation of the ba
kground binding energy in the de
oupled state,

ǫLJ , the e�e
tive Lennard-Jones ǫ parameter of the repulsive potential within the atomi



ore, ũc, the 
losest 
onta
t dominates the 
ollisional binding energy 
ontribution, nl, the

e�e
tive number of statisti
ally independent atom groups of the ligand, pb, the probability

that in the un
oupled state the system is free of atomi
 
lashes, and pc, the probability of

o

urren
e of one or more atomi
 
lashes des
ribed by the repulsive 
omponent of the WCA

potential. The parameter pm, the probability of o

urren
e of an atomi
 
lash of intera
tion

energy umax, is derived from pb and pc so that they 
olle
tively sum to one.

The mixture model (Se
tion ) introdu
es three additional parameters of the ba
kground

energy model (the relative o

upan
y of the two states, and one additional set of average

and standard deviation parameters of the ba
kground 
omponent). In this work, it has been

relatively straightforward to identify by manual inspe
tion the 
ases displaying bimodal

binding energy distributions whi
h required the mixture model. Future work will explore

unsupervised model sele
tion approa
hes

46

to automate the sear
h for the most suitable

17



parameterization for ea
h 
omplex.

The parameters of the sele
ted model are obtained by Maximum Likelihood (ML) in-

feren
e

47

using as input the binding energy values 
olle
ted from al
hemi
al mole
ular sim-

ulations at a series of values of λ. ML seeks the parameters that maximize the likelihood

fun
tion L, or, equivalently, minimize the negative of its logarithm:

−lnL(θ) = −
∑

i

ln pλi
(ui|θ) = −

∑

i

ln
e−λiuip0(ui|θ)

K(λi|θ)
(34)

where the summation runs on the samples of binding energies ui 
olle
ted in the ensemble

at λ = λi, θ represents the set of model parameters above, and we have used Eq. (17).

Computational details of the ML parameter estimation pro
edure are given in the appendix.

Computational details

The host-guest 
omplexes were prepared as des
ribed.

48�50

Single-de
oupling

29

Hamiltonian

Repli
a-ex
hange Mole
ular dynami
s simulations

51

employed 22 intermediate λ steps as

follows: λ = 0, 1 × 10−6
, 1 × 10−5

, 1 × 10−4
, 1 × 10−3

, 0.002, 0.004, 0.008, 0.01, 0.02,

0.04, 0.07, 0.1, 0.17, 0.25, 0.35, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. The 
al
ulation employed

the OPLS-AA for
e �eld

52,53

and the AGBNP2 impli
it solvent model.

28

We employed a

soft-
ore binding energy fun
tion

33

with umax = 1 × 106 k
al/mol. The repli
a-ex
hange

simulations were started from energy-minimized and thermalized stru
tures from manually

do
ked models. A �at-bottom harmoni
 restraint with a toleran
e of 5 Å between the 
enters

of mass of the host and the guest was applied to de�ne the binding site volume. Ea
h 
y
le

of a repli
a lasted for 100 pi
ose
onds with 1 fs time-step. The average sampling time for a

repli
a was approximately 10 ns. Cal
ulations were performed on the 
ampus 
omputational

grid at Brooklyn College. The binding energies obtained from all repli
as were analyzed

using UWHAM

33

method and the R-statisti
al pa
kage to 
ompute the binding free energy

pro�le ∆Gb(λ).
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Results

We tested the analyti
al model of binding presented above on four host-guest 
omplexes:


y
lohexanol, nabumetone, and N-tBOC-L-alanine binding to β-
y
lodextrin48

and trans-4-

methyl
y
lohexanoate binding to the o
ta-a
id 
avitand host

50

(Figs. 4, 6 and 8). The results

for the 
omplexes with 
y
lohexanol and nabumetone, are shown in Fig. 5 and Table 1. The

results for the 
omplexes with trans-4-methyl
y
lohexanoate and N-tBOC-L-alanine, whi
h

undergo λ-dependent 
onformational transitions, are presented in Figs. 7 and 9, and Table

2. The analyti
 model �ts very well the binding energy distributions and free energy pro�les

from the numeri
al simulations for all of the 
omplexes we studied.

β-
y
lodextrin/

y
lohexanol

β-
y
lodextrin/
nabumetone

Figure 4: Mole
ular representations of two of the four host-guest 
omplexes studied in this

work. The host is shown in surfa
e representation and the guest is shown using van der

Waals atomi
 spheres.

Table 1: Model parameters for the 
omplexes of 
y
lohexanol and nabumetone with β-

y
lodextrin.

ūB
a σB

a pb pc ũc
a ǫLJ

a nl


y
lohexanol 1.00 2.95 1.0× 10−2 2.0× 10−1 0.5 20 2.1
nabumetone −2.23 2.91 3.9× 10−4 6.9× 10−2 0.5 20 3.2

a
In k
al/mol

In the 
ase of 
y
lohexanol and nabumetone, for example, the model 
orre
tly interpolates

the Gaussian behavior of the binding energy distributions at λ ≃ 1 and the di�use and

asymmetri
 aspe
ts of the distributions at λ ≃ 0 (Fig. 5). The binding energy distributions

at intermediate λ values present 
hara
teristi
s of both limits and are also 
orre
tly des
ribed

19



β-
y
lodextrin/
y
lohexanol

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-30 -20 -10  0  10  20  30  40  50  60

P
λ
(u

)

u [kcal/mol]

-6

-4

-2

 0

 2

 4

 0  0.2  0.4  0.6  0.8  1

∆
G

(λ
) 

[k
c
a
l/

m
o
l]

λ

β-
y
lodextrin/nabumetone

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-30 -20 -10  0  10  20  30  40  50  60

P
λ
(u

)

u [kcal/mol]

-6

-4

-2

 0

 2

 4

 0  0.2  0.4  0.6  0.8  1

∆
G

(λ
) 

[k
c
a
l/

m
o
l]

λ

Figure 5: Binding energy probability densities, pλ(u), and binding free energy pro�les for

the 
omplexes of 
y
lohexanol and nabumetone with β-
y
lodextrin. Binding energy prob-

ability densities are shown for (from left to right) for λ = 1 (red), λ = 0.1 (blue), and

λ = 0.01 (brown) with 
orresponding histogram estimates from al
hemi
al mole
ular 
al
u-

lations (�lled 
ir
les). Analyti
al binding free energy pro�les (right, green) are 
ompared to

UWHAM numeri
al estimates.
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by the model. Free energy pro�les (Fig. 5, right panels) are also 
losely des
ribed by the

analyti
 model. For large values of λ (λ > 0.3, approximately), the free energy pro�les

vary quadrati
ally with λ, 
onsistent with linear response behavior. The quadrati
 regime is

pre
eded by a highly non-linear variation of the free energy near λ = 0. The analyti
 model


orre
tly 
aptures the singularity of the �rst derivative of the free energy pro�le at λ = 0+.54

The maximum of the free energy 
orresponds to the value of λ at whi
h the average binding

energy is zero. In general, as it 
an be shown from Eqs. (10) and (15), the �rst derivative

of the free energy pro�le is proportional to the average binding energy. The singularity of

the �rst derivative at λ = 0+ is, thus, 
onsistent with the unde�ned �rst moment of the

p0(u) probability density. As the data in Fig. 5 illustrates, the analyti
 model su

essfully

interpolates between the linear response regime at λ ≃ 1 and the 
ollisional regime at λ ≃ 0.

The values of the free energy pro�le at λ = 1 are the ex
ess binding free energies, whi
h

mat
h the numeri
al estimates (Fig. 5).

The model parameters obtained by �tting the analyti
 predi
tions to the numeri
al results

for the 
omplexes with 
y
lohexanol and nabumetone are listed in Table 1. The stronger

binding a�nity of nabumetone (−3.9 k
al/mol) relative to 
y
lohexanol (−3.0 k
al/mol)

is driven by stronger intera
tion energies as re�e
ted by the ūB parameter. The average

binding energies at the bound state λ = 1 mat
h 
losely the linear response predi
tions from

Eq. (47): 〈u〉1 = −13.7 and −16.6 k
al/mol, from Eq. (47) and �tted ūB, σB parameters

(Table 1), for 
y
lohexanol and nabumetone, respe
tively, 
ompared to the dire
t numeri
al

estimates 〈u〉1 = −13.2 and −15.7 k
al/mol, from dire
t numeri
al averaging of the binding

energies from the λ = 1 simulation repli
as.

The most stable bound states of trans-4-methyl
y
lohexanoate and N-tBOC-L-alanine

have signi�
antly more favorable intera
tion energies than those of 
y
lohexanol and nabume-

tone (−14.0 and −11.06 k
al/mol, respe
tively, Table 2). However, the trend toward stronger

intera
tion energies is partially o�set by the progressively smaller probabilities of �tting the

guest into the host without 
ausing atomi
 
lashes, as illustrated by the pb parameter (Table
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2, 5th 
olumn). For example, the estimates indi
ate that it is almost 3 orders of magnitude

more di�
ult to �t N-tBOC-L-alanine into the β-
y
lodextrin 
avity than 
y
lohexanol. This

feature presumably re�e
ts the larger size and more 
omplex stru
ture of N-tBOC-L-alanine.

The variations of pb 
ould also represent the probabilities of o

urren
e of binding-
ompetent


onformations of the host.

As expe
ted, a 
ommon set of values of the ũc and ǫLJ parameters, 
orresponding loosely

to the magnitude and softness of the 
ore inter-atomi
 repulsion potential, des
ribes all of

the 
omplexes investigated. The magnitude of the �tted ǫLJ parameter (ǫLJ = 20 k
al/mol)

is signi�
antly larger than typi
al Lennard-Jones ǫ for
e �eld parameters. This 
on�rms the

expe
tation that these parameters should be interpreted to represent the shape and intensity

of the repulsive potential exer
ised by groups of atoms, rather than by individual atoms.

Finally, in Tables 1 and 2 we report the �tted values of the the nl parameter (8th and

9th 
olumns, respe
tively) whi
h represents the number of statisti
ally independent number

of atom groups of the guests. Indeed, nl values roughly s
ale as the size of the guest. For

example for nabumetone binding to β-
y
lodextrin we �nd nl = 3.2 
ompared to nl = 2.1

for 
y
lohexanol. Despite the smaller size, the nl value for trans-4-methyl
y
lohexanoate

binding to the o
ta-a
id 
avitand is similar to that of nabumetone and N-tBOC-L-alanine,

possibly re�e
ting the fa
t that this parameter is in�uen
ed by the shape of the re
eptor


avity as well.

Table 2: Model parameters for the 
omplexes whi
h display multiple binding modes:

trans-4-methyl
y
lohexanoate with the o
ta-a
id 
avitand and of N-tBOC-L-alanine with

β-
y
lodextrin.

Pstate
b ūB

a σB
a pb pc ũc

a ǫLJ
a nl

t-4-m-
y
lohexanoate

state a ∼ 1.0 −2.0 2.95
2.2× 10−4 3× 10−2 0.5 20 3.0

state b 3× 10−4 −14.0 1.8
N-tBOC-L-alanine

state a ∼ 1.0 −0.01 2.56
4.68× 10−5 8× 10−2 0.5 20 3.185

state b 5.5× 10−8 −11.06 2.56
a
In k
al/mol.

b
Population of the indi
ated 
onformational state in the un
oupled ensemble.

22



o
ta-a
id/trans-4-methyl
y
lohexanoate

state a state b

Figure 6: Mole
ular representations of two 
onformations of 
omplex between trans-4-

methyl
y
lohexanoate with the o
ta-a
id 
avitand representative of the 
onformational states

a and b dis
ussed in the text. State b (right), in whi
h the methyl substituent is inserted

deeply in the lower 
avity of the host, is 
hara
terized by a more favorable binding energy

than state a. However, the 
onformational state a is many times more likely than state b in
absen
e of guest/host intera
tions. The 
omplex undergoes a transition from state a to state

b as λ in
reases. The 
avitand is shown in surfa
e representation with the atoms o

luding

the view of the guest removed. Trans-4-methyl
y
lohexanoate is shown in Van der Waals

representation.

o
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Figure 7: Binding energy probability densities, pλ(u), and binding free energy pro�les for

the 
omplex of trans-4-methyl
y
lohexanoate with the o
ta-a
id 
avitand. Binding energy

probability densities are shown for (from left to right) for λ = 1 (red), λ = 0.5 (blue), λ =
0.01 (brown) with 
orresponding histogram estimates from al
hemi
al mole
ular 
al
ulations

(�lled 
ir
les). A transition from a high binding energy state a to a low binding energy

state b o

urs at λ ≃ 0.5. The verti
al dotted line separates the probability density peaks


hara
teristi
 of the two states. Analyti
al binding free energy pro�les (right, green) are


ompared to UWHAM numeri
al estimates.
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β-
y
lodextrin/N-tBOC-L-alanine
state a state b

Figure 8: Mole
ular representations of two 
onformations of theβ-
y
lodextrin/N-tBOC-L-
alanine 
omplex representative of the 
onformational states a and b dis
ussed in the text.

State b (right), in whi
h the 
arboxylate group is oriented toward the solvent and the tert-

butyl group is deeper within the host 
avity, is 
hara
terized by a more favorable binding

energy than state a. However, the 
onformational state a is many times more likely than

state b in absen
e of guest/host intera
tions. The 
omplex undergoes a transition from state

a to state b as λ in
reases. The β-
y
lodextrin host is shown in surfa
e representation with

the atoms o

luding the view of the guest removed. N-tBOC-L-alanine is shown in Van der

Waals representation.
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Figure 9: Binding energy probability densities, pλ(u), and binding free energy pro�les for

the 
omplex of N-tBOC-L-alanine with β-
y
lodextrin. Binding energy probability densities

are shown for (from left to right) for λ = 1 (red), λ = 0.9 (blue), λ = 0.8 (orange),

and λ = 0.1 (brown) with 
orresponding histogram estimates from al
hemi
al mole
ular


al
ulations (�lled 
ir
les). A transition from a high binding energy state a to a low binding

energy state b (see Fig. 8) o

urs at λ ≃ 0.9. The verti
al dotted line separates the probability
density peaks 
hara
teristi
 of the two states. Analyti
al binding free energy pro�les (right,

green) are 
ompared to UWHAM numeri
al estimates.
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The 
omplexes of trans-4-methyl
y
lohexanoate with the o
ta-a
id 
avitand (Fig. 6) and

that of N-tBOC-L-alanine with β-
y
lodextrin (Fig. 8) undergo λ-indu
ed transitions along

the al
hemi
al path from a more probable but more weakly intera
ting 
onformational state

(state a in Figs. 6 and 8) to a more stable bound state (state b).

The more stable bound pose of trans-4-methyl
y
lohexanoate 
orresponds to the state in

whi
h the methyl substituent o

upies the deep and narrow po
ket of the o
ta-a
id 
avitand

(Fig. 6, state b), as opposed to being loosely bound as in state a. State b is favored by

stronger intermole
ular intera
tions (−19 k
al/mol at λ = 1 
ompared to −16.6 for state a,

from Eq. 46 and the parameters in Table 2) but its probability of o

urren
e at λ = 0 is

predi
ted to be 4 orders of magnitude smaller than the loosely bound state. As λ is in
reased,

the in�uen
e of the host-guest intera
tions grows, and state b be
omes predominant despite

being less likely. The 
omplex with N-tBOC-L-alanine undergoes a similar transition (Fig. 8)

from a loosely bound state (state a) to a more stable state (state b in Fig. 8), in whi
h the


arboxylate group is rotated toward the solvent, and the body of the aminoa
id, in
luding

the tert-butyl moiety, is more buried in the host interior.

The optimized parameters (Table 2) indi
ate that the stable bound state of N-tBOC-

L-alanine is extremely unlikely relative to the loosely bound state (Pb = 5.5 × 10−8
, 2nd


olumn in Table 2) as 
ompared to trans-4-methyl
y
lohexanoate (Pb = 3 × 10−4
). The

small probability of o

urren
e of the stable bound state 
auses the binding a�nity of N-

tBOC-L-alanine to be rather weak (∆Gb = −0.5 k
al/mol) 
ompared to that of trans-

4-methyl
y
lohexanoate (∆Gb = −6.5 k
al/mol). Another interesting di�eren
e between

these two 
omplexes is that, as eviden
ed by the optimized standard deviation parameters

σB in Table 2, the stable bound state b of trans-4-methyl
y
lohexanoate is signi�
antly more

energeti
ally restrained than the loosely bound state a. In 
ontrast, the �u
tuations of the

binding energy, measured by σB, is un
hanged in going from state a to state b of N-tBOC-

L-alanine. This feature is signi�
ant be
ause the standard deviation parameter σB, whi
h


ontrols the 
urvature of the binding energy pro�le, has a strong in�uen
e on the binding
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free energy. A transition to a state with smaller binding energy �u
tuations, su
h as in the


are of trans-4-methyl
y
lohexanoate, disfavors binding.

The λ−indu
ed 
onformational transitions are parti
ular evident in the distributions

of binding energy values as a fun
tion of λ (Figs. 7 and 9). For the other 
omplexes

studied (Fig. 5) the peaks of the binding energy distributions linearly shift toward more

negative values as λ is in
reased. In 
ontrast, the binding energy distributions for trans-4-

methyl
y
lohexanoate and N-tBOC-L-alanine be
ome bimodal starting at some 
riti
al λ,

and develop by growing the low energy peak (
orresponding to the stable bound state b)

at the expense of the high energy one. In the 
ase of N-tBOC-L-alanine, for example, the

binding energy distribution at λ ≃ 0.8 is 
learly bimodal (Fig. 9) with a predominant high

energy mode (
orresponding to state a) 
entered near u = −9 k
al/mol and a low energy

mode (
orresponding to state b) near u = −22 k
al/mol. As λ is in
reased, population shifts

to state b, whi
h be
omes the predominant state at λ = 1. At λ = 0.9 the two states have

almost the same population. This behavior is the hallmark of a pseudo �rst-order phase

equilibrium,

55

in whi
h two phases, 
hara
terized by 
ompensating di�eren
es in average en-

ergy and entropy, 
oexist within the same free energy range. The 
onformational transition

is also apparent in the abrupt 
hange of slope of the binding free energy pro�le near λ = 0.9

(Fig. 9). As mentioned, the slope of the binding free energy pro�le 
orresponds to the aver-

age binding energy as a fun
tion of λ. Correspondingly, at λ ≃ 0.9, the system transitions

to a state of lower binding energy thereby 
ausing the 
hange in slope. Note that, while the

transition appears slight in the binding free energy pro�le, the shift in the slope 
auses a

signi�
ant de
rease (by about 1 k
al/mol) of the binding free energy. The shift in slope of

the binding free energy pro�le and the bimodal 
hara
ter of the binding energy distributions


annot be des
ribed without invoking the mixture model.
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Dis
ussion

The results obtained as part of this work indi
ate that it is feasible to represent al
hemi-


al binding free energy pro�les and binding energy distributions by parameterized analyti


fun
tions. The model we proposed o�ers a rationalization for the shape of the free energy

pro�le and the binding energy distributions. The 
riti
al feature of the model is the ability

to bridge the two limiting behaviors of the free energy pro�le, the region near λ ≃ 0 deter-

mined by atomi
 
lashes and the region near λ ≃ 1 
hara
terized by linear response. The

main 
on
eptual advan
e that enabled this versatility of the model is the des
ription of the

binding energy in the un
oupled state of the 
omplex as the sum of two intera
tion energy


omponents with radi
ally distin
t statisti
al signatures. The �rst, termed �
ollisional� in-

tera
tion energy, des
ribes atomi
 
lashes dominated by nearest neighbor pairs and follows

the statisti
s of the maximum of a set of random variables. The se
ond, that we termed

�ba
kground� intera
tion energy, des
ribes the sum of many weak and favorable interatomi


intera
tions and follows the 
entral limit theorem. The two statisti
al 
omponents, assumed

statisti
ally independent, are then 
ombined using standard 
onvolution to obtain the dis-

tribution of the total binding energy and, through of a Lapla
e transformation, the binding

free energy pro�le.

The general strategy of des
ribing free energy 
hanges along a thermodynami
 path by

means of probability models applied to the �de
oupled� end point has a long history in

the treatment of solvation phenomena in 
ondensed phases. Examples are s
aled parti
le

theory, parti
le insertion models, and information/�u
tuation theories.

34�36,38,56

Early work

in this area by Pratt & Chandler,

57

introdu
ed the 
onne
tion between the solubility of hard

sphere parti
les

58

and the probability of formation of suitable 
avities in the neat solvent,

a predi
tion that was 
on�rmed by Pangali, Rao, and Berne

59

and subsequent 
omputer

simulation work.

60�62

Both Pohorille and Pratt

63

and Hummer et al.,

36

elaborated on the


on
ept of, p0(r), the probability that a 
avity of size r o

urs in a neat liquid, whi
h was �rst

introdu
ed in s
aled parti
le theory

56,64

to model the probability of o

urren
es of 
avities
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based on the moments of the number of solvent mole
ules that o

upy the solute volume in

neat water.

The same essential 
on
epts have been used here to formulate a model 
onne
ting the free

energy of inserting a ligand mole
ule into a re
eptor binding site to probability distributions


olle
ted in the de
oupled state. The main di�eren
e between the solvation pro
ess, seen as

solute insertion, and binding, seen as ligand insertion, is that, unlike a homogeneous solution,

the distribution of re
eptor atoms is not homogeneous. In parti
ular, there are regions in the

re
eptor binding site where a ligand 
an �t without requiring 
onformational reorganization.

Conversely, there are interior regions of the re
eptor from where the ligand is e�e
tively

ex
luded. The model we formulated takes into a

ount these 
omplex geometri
 and energeti


e�e
ts in terms of e�e
tive physi
al parameters whi
h are optimized by maximum likelihood

inferen
e to reprodu
e the results of al
hemi
al mole
ular simulations. The 
lose agreement

obtained here between model predi
tions and mole
ular simulations of a set of relatively

simple but yet 
hemi
ally-relevant host-guest 
omplexes is eviden
e that the model is sound

and deserving of further investigation and development.

The primary advantage of the theory developed here is that, unlike numeri
al reweighting

methods su
h as MBAR and UWHAM,

32,33

it yields physi
al parameters 
hara
terizing

the thermodynami
s of binding of ea
h 
omplex. These parameters 
an be useful in the


lassi�
ation of mole
ular 
omplexes. For instan
e, the ūB and σB parameters measure the

strength of favorable ele
trostati
 and dispersion re
eptor-ligand intera
tions as a fun
tion of

λ [Eq. (47)℄. In parti
ular, the σB parameter measures the linear response of the 
omplex to

the establishment of favorable intera
tions. A larger σB 
an be an indi
ation, for example,

of larger polarizability of the re
eptor and 
an be interpreted in terms of lo
al diele
tri



onstant.

65�68

On the other hand, the pb parameter, whi
h is the probability that ligand and

re
eptor do not overlap while un
oupled, is a measure of the entropi
 and reorganization


osts that oppose the formation of the 
omplex. The model relates these thermodynami


driving for
es to interpretable physi
al parameters su
h as the size of the binding 
avity, if

28



present, relative to the size of the ligand, or, alternatively, the likelihood of the formation of

a suitable binding 
avity that 
an �t the ligand. Similarly, the nl parameter is interpreted

as a measure of ligand size and ligand �exibility.

As dis
ussed, the mixture model parameters indi
ate the presen
e of multiple 
onforma-

tional states of the 
omplex and their average intera
tion energies and relative probabilities.

The model parameters attempt to 
apture the trade-o� between energeti
 gains (the ūB

parameter) and entropi
 
osts (the Pstate parameter). In the systems examined we observed

transitions from loosely bound states with a high probability of o

urren
e to strongly bound

but entropi
ally disfavored 
onformational states. For al
hemi
al states near the un
oupled

state, the weight of the binding energy 
omponent of the al
hemi
al potential energy fun
-

tion [Eq. (13)℄ is small and the 
omplex tends to visit ex
lusively the loosely 
oupled state

given its overwhelmingly large probability. However, as the 
oupled state is approa
hed the

strongly bound state be
omes 
ompetitive with the loosely bound state due to the in
rease

the weight of the intera
tion energy.

Taken together, the parameters of the model, o�er useful insights into the binding equi-

librium. When tabulated over a series of systems, they 
an potentially be employed to


hara
terize and 
ategorize re
eptor-ligand 
omplexes and, when 
orrelated with binding

a�nities, 
an inform re
eptor and ligand design.

Future work will assess the potential usefulness of the analyti
 model toward the improve-

ment of al
hemi
al simulation proto
ols. Be
ause, it builds upon a physi
ally-motivated

ansatz dependent on a relatively small number of parameters, the model 
ould be the basis

of a free energy estimator with a smaller varian
e than general-purpose approa
hes.

32,33

For

example, a potential appli
ation of the model is as a framework to analyze and measure free

energy 
hanges near the de
oupled state without the need for extrapolation

23

or soft-
ore

al
hemi
al potentials.

33,45

As analyzed by Simonson

54

and reprodu
ed by our model, the �rst

derivative of the free energy pro�le has a singularity at λ = 0. This singularity 
auses prob-

lems for numeri
al free energy estimators,

32,69

whi
h are usually addressed by the adoption

29



of non-linear soft-
ore al
hemi
al potentials.

70,71

These di�
ulties 
an also be addressed by

repla
ing the numeri
al estimation of free energies near the singularity with the estimation

of the parameters (whi
h are free of singularities) of the analyti
 free energy fun
tion (31).

The analyti
 model 
an also be potentially useful to evaluate al
hemi
al thermodynami


lengths to optimize the λ s
hedule

72,73

of al
hemi
al transformations.

The model, as 
urrently expressed, is limited to single-de
oupling linear al
hemi
al trans-

formations.

12

Single-de
oupling requires pre-averaging to the solvent degrees of freedom

by means of a solvent potential of mean for
e treatment

39

implemented here using the

AGBNP2

28

impli
it solvent model. The requirement of linearity of the al
hemi
al trans-

formation with respe
t to the 
harging parameter λ is introdu
ed to deploy potential dis-

tribution theorem identities

41

relating binding energy distributions at di�erent values of λ.

Future work will attempt to extend the model to non-linear 
oupling s
hemes and expli
it

solvation models. Binding free energy 
al
ulations with expli
it solvation are typi
ally 
on-

du
ted a

ording to the double-de
oupling s
heme,

20

whi
h is based on the di�eren
e of

the free energies of 
oupling the ligand to the hydrated re
eptor and the free energy of

solvation. Hen
e, it is 
on
eivable that analogous analyti
 models 
an be developed for

double-de
oupling al
hemi
al 
al
ulations by 
onsidering ea
h free energy leg separately.

Con
lusion

We have presented a parameterized analyti
al model des
ribing the free energy pro�le of

linear single-de
oupling al
hemi
al binding free energy 
al
ulations. The parameters of the

model, whi
h are physi
ally motivated, are obtained by �tting model predi
tions to numeri
al

simulations. The validity of the model has been assessed on a set of host-guest 
omplexes.

The model faithfully reprodu
es the binding free energy pro�les and the probability densities

of the perturbation energy as a fun
tion of the al
hemi
al progress parameter λ. The model

o�ers a rationalization for the 
hara
teristi
 shape of the free energy pro�les. The parameters

30



obtained from the model are potentially useful des
riptors of the asso
iation equilibrium of

mole
ular 
omplexes.
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Appendix

Derivation of Eq. (21)

Consider two parti
les intera
ting by the pair potential (20) in whi
h one parti
le (represent-

ing the re
eptor) is �xed at the origin and the other (representing the ligand) is uniformly

distributed in a sphere of radius rC 
entered at the origin (Fig. 10). Here we assume that

rc < r0 = 21/6σLJ (the distan
e beyond whi
h the Lennard-Jones WCA potential is zero).

We will derive the probability density pC(uC) of the intera
tion energy uWCA(r), where r is

the distan
e between the two parti
les, by di�erentiating the 
umulative probability fun
tion

PC(uC) de�ned as the probability that, given that the ligand parti
le is uniformly distributed

in the sphere, the intera
tion energy uWCA(r) is greater than the given value uC. The value

of the WCA potential at rc is denoted by ũc; ũc is therefore the smallest allowed intera
tion

energy.

Figure 10: Representation of the repulsive WCA 
omponent of the Lennard-Jones potential

[Eq. (20)℄ used in the derivation of Eq. (21). Here r̃C represents the radius of the spheri
al


ore region around a re
eptor atom and ũC the 
orresponding repulsion potential energy.

Similarly, rC is a generi
 distan
e between the ligand atom and the re
eptor atom within the


ore and uC is the 
orresponding potential energy. The dashed 
urve represents the soft-
ore

intera
tion potential 
apped at u = umax.

The probability that the pair intera
tion energy is smaller than uC is given by:

PWCA(uC) = H(uC − ũc)
VC − V (uC)

VC

(35)

where the Heaviside fun
tion imposes the requirement that uC be larger than the minimum
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values, VC is the volume of the sphere of radius rc and V (uC) is the volume of the sphere

of radius r(uC), where r(uC) is inter-parti
le distan
e at whi
h the LJ WCA potential has

value uC . From Eq. (20) we have

r(uC) =
r0

(1 + xC)1/6
; uC ≥ 0 (36)

where r0 = 21/6σLJ is the minimum of the Lennard-Jones pair potential and

xC =
√

uC/ǫLJ (37)

Inserting Eq. (36) into Eq. (35) and di�erentiating with respe
t to uC yields Eq. (21), whi
h

expresses a normalized distribution as it 
an be veri�ed by dire
t integration using the fa
t

that

ˆ

dx

(1 + x)3/2
=

2

(1 + x)1/2
(38)

Now 
onsider a re
eptor 
omposed ofM atoms intera
ting with a monoatomi
 ligand with

the WCA repulsive potential (20). The 
umulative probability is given by the expression

PWCA(uC) = H(uC − ũc)(1 − V (uC)/VC), as in Eq. (35), where now V (uC) is the volume

of the region of the re
eptor where the WCA potential is larger than uC and, similarly,

VC ≥ V (uC) is the volume where the WCA potential is larger than ũC . We 
an approximate

V (uC) by the van der Waals volume V [r(uC)] of a mole
ule with M atoms with van der

Waals radii r(uC), given by Eq. (36) below, 
orresponding to distan
e at whi
h the value

of WCA repulsive pair potential is equal to uC. Di�erentiating the 
umulative distribution

with respe
t to uC , yields:

pWCA(uC) = − 1

VC

dV (r)

dr

dr(uC)

duC
=

H(uC − ũC)

12ǫLJ

A(r)r

VC

1

x(1 + x)3/2
(39)

where A(r) is the van der Waals surfa
e of the re
eptor when the atomi
 radii are set to r,

and r and x are both fun
tions of uC [see Eqs. (36) and (37)℄.
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Eq. (39) is interesting be
ause it links the probability density of the 
ollisional intera
tion

energy to the shape of the re
eptor. There are numeri
al algorithms (some analyti
al) to

obtain the van der Waals surfa
e area of a mole
ule.

74

For large u, r(u) is small and atomi


overlaps between re
eptor atoms 
an be ignored. In this limit A[r(u)] ≃ M4πr(u)2, and

assuming that VC ≃ M4πr(ũC)
3/3, we �nally obtain

pWCA(uC) =
H(uC − ũC)

4ǫLJ

(1 + xC)
1/2

x(1 + x)3/2
(40)

whi
h has the same form as the probability density of the 
ollisional energy for one re
eptor

atom.

Maximum Likelihood parameter estimation

The maximum likelihood optimization fun
tion in Eq. (34), net of additive terms independent

of the parameters, and using Eqs. (27) is

−lnL(θ) = −
∑

i

ln p0(ui|θ) +
∑

k

Nk lnKB(λk) +
∑

k

Nk lnKC(λk) (41)

where Nk is the number of binding energy samples 
olle
ted at λ = λk, p0(ui|θ) is given by

Eq. (26), KB(λk) is given by Eq. (33), and KC(λk) by Eqs. (28) and (29). Given an initial

set of parameters, the p0(ui|θ) terms are evaluated using Eq. (26). The 
onvolution integral,

or, in the 
ase of the mixture model, the sum of two integrals in Eq. (26) is ea
h of the form:

ˆ +∞

−∞

pWCA(u
′)e−(u−u′−ū)2/2σ2

du′
(42)

whi
h, upon the variable transformation y = (u′−u+ ū)/
√
2σ be
omes of the standard form:

√
2σ

ˆ +∞

−∞

f(y)e−y2dy (43)
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where f(y) = pWCA(
√
2σy + u − ū), whi
h is amenable to evaluation by Gauss-Hermite

quadrature:

√
2σ

ˆ +∞

−∞

f(y)e−y2dy ≃
√
2σ

∑

n

wnf(yn) (44)

where wnand yn are the Gauss-Hermite weights and nodes, respe
tively. In this work we

used 15 Gauss-Hermite nodes. The 
al
ulation of KC(λk) in Eq. (41) requires the numeri
al

evaluation of the integral in Eq. (29) whi
h is a

omplished using the variable transformation

u = exp[y/2] − 1 and a linear intera
tion grid of 100 y-values distributed from y = 0 to

y = 2 ln umax.

Minimization of the fun
tion (41) was implemented in a Python appli
ation

(github.
om/�egalli

/�femodel-tf-optimizer) using TensorFlow

75

, whi
h derives fun
-

tion gradients on the �y. Be
ause of the presen
e of the step fun
tion, TensorFlow was

unable to 
ompute the �rst derivative of Eq. (23), even though it is 
ontinuous at u = ũC .

To mimi
 the behavior of Eq. (23) without a step fun
tion we used the following expression

pWCA(uC) ≃ nl

[

1− tanh(z12)1/12
]nl−1 s(uC − ũC)

4ǫLJ

(1 + xC)
1/2

x(1 + x)3/2
(45)

where z = (1 + xC)
1/2/(1 + x)1/2 and s(u) = [1 + exp(−20u/ũC)]

−1
is a sigmoid fun
tion.

The advantage of Eq. (45) is that it allows optimization of ũC in TensorFlow.

We observed that su

essful optimization progress in TensorFlow was a
hieved only when

starting with good initial guesses of the parameters. When ligand-re
eptor intera
tions are

established, atomi
 
ollisions are unlikely and the binding energy is mainly determined by the

ba
kground 
omponent. Thus, histograms obtained from mole
ular dynami
s traje
tories

near λ = 1 are most useful in the estimation of the ba
kground binding energy parameters

ūB and σB. An initial �rst guess for these parameters 
an be extra
ted from the average

〈uB〉λ=1 and standard deviation

√

〈δu2
B〉λ=1 of the binding energies at λ = 1, observing that,

be
ause the ba
kground energy is assumed to be Gaussian-distributed, its parameters follow
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linear response behavior upon variation of λ:

〈δu2
B〉λ = 〈δu2

B〉0 = σ2
B (46)

〈uB〉λ = 〈uB〉0 − λσB = ūB − λσ2
B , (47)

whi
h 
an be easily derived by applying the potential distribution theorem [Eq. (17)℄ to the

Gaussian distribution of uB at λ: g[uB; ūB(λ), σB(λ)] ∝ exp[−λu]g(uB; ūB, σB).

Conversely, the histograms at small λ values are most useful to estimate the 
ollisional

energy parameters ǫLJ , ũc, nl, pb, and pc on
e a �rst guess for the values of ūB and σB is

available. We observed (see Results), as it would be expe
ted, a high degree of universality of

the parameters ǫLJ and ũc, whi
h des
ribe the extent and softness of the repulsive potential

within the atomi
 
ores 
ommon to all 
omplexes investigated. We varied the pb parameter,

whi
h regulates the relative magnitude of the two 
omponents in Eq. (26), to mat
h the

shape of histograms at intermediate values of λ. Finally, we employed the nl parameter to

reprodu
e the shape of the high energy tail of histograms at small λ values (with larger nl

values des
ribing slower de
aying tails). Given the di�
ulty of binning the unbound high

energy portion of binding energies, this last step was performed by also mat
hing at the

shape of the free energy pro�le ∆G(λ) at small λ. Final re�nement of the parameters was

performed numeri
ally with TensorFlow starting with these initial guesses.

The mixture model (Se
tion ) introdu
es three additional parameters related to the ba
k-

ground energy model in
luding the relative o

upan
y of the two states at λ = 0, and one

additional set of average and standard deviation parameters of the ba
kground 
omponent.

In the 
ase of N-tBOC-L-alanine, for whi
h the binding energy distribution at large values

of λ were 
learly bimodal, we obtained initial guesses of the parameters by exploiting the

linear response behavior of ea
h of the average and standard deviation parameters [Eqs. (46)
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and (47)℄, and those of the state probabilities:

Pa(λ) =
Pae

−(ū2
a−〈ua〉2λ)/2σ

2
a

M(λ)
(48)

Pb(λ) = 1− Pa(λ) (49)

where

M(λ) = Pae
−(ū2

a−〈ua〉2λ)/2σ
2
a + Pbe

−(ū2

b
−〈ub〉

2

λ
)/2σ2

b . (50)

whi
h 
an be derived by appli
ation of the potential distribution theorem to the Gaussian

mixture distribution (32). In the 
ase of trans-4-methyl
y
lohexanoate binding to the o
ta-

a
id 
avitand the relative populations of the two 
omponents were not 
learly resolved. How-

ever we were able to distinguish the value of the standard deviation of the two 
omponents

and obtain their 
orresponding average binding energies using iterative ML optimization

using TensorFlow.
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The binding equilibrium between a ligand mole
ule and a re
eptor is simulated al
hemi-


ally by �turning on� the ligand within the binding site. Al
hemi
al 
al
ulations are nowadays

widely employed in the 
omputational design of drugs, 
atalysts and advan
ed materials.

Most often these studies entail the numeri
al analysis of mole
ular dynami
s simulations. In

this work we develop a fully analyti
 statisti
al model of the thermodynami
s of al
hemi
al

binding. The parameters of the model, whi
h have intuitive physi
al interpretation, are ob-

tained by maximum likelihood inferen
e from data extra
ted from al
hemi
al 
al
ulations.

Appli
ations of the model for the 
lassi�
ation of mole
ular 
omplexes and the design of

al
hemi
al mole
ular simulations are envisioned.
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