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Abstract

We present a parameterized analytic statistical model of the thermodynamics of al-
chemical molecular binding within the solvent potential of mean force formalism. The
model describes the free energy profiles of linear single-decoupling alchemical binding
free energy calculations accurately. The parameters of the model, which are physically
motivated, are derived by maximum likelihood inference from data obtained from al-
chemical molecular simulations. The validity of the model has been assessed on a set
of host-guest complexes. The model faithfully reproduces both the binding free energy
profiles and the probability densities of the perturbation energy as a function of the
alchemical progress parameter. The model offers a rationalization for the character-
istic shape of binding free energy profiles. The parameters obtained from the model

are potentially useful descriptors of the association equilibrium of molecular complexes.



Potential applications of the model for the classification of molecular complexes and

the design of alchemical molecular simulations are envisioned.

Introduction

The primary goal of a quantitative model of molecular binding is to provide an estimate of
the standard free energy of binding, AGYy, or, equivalently, of the equilibrium constant, Kj,
for the association equilibrium R+ L = RL, between two molecules R and L. For example,
the binding of a drug molecule to a receptor. A brute-force molecular simulation approach
to the calculation of the binding constant, based on following the motion of the ligand in
and out of the receptor, is generally not feasible due to the long times between binding
and unbinding events.! Biased methods have been developed to accelerate the dynamics of
association and obtain the free energy profile of ligand binding along pathways in and out
of the receptor.?1?

Alchemical descriptions of the binding equilibrium provide an alternative to the study
of physical binding/unbinding paths.!"'® The idea is that, because a free energy change
depends only on the end states, one can connect the bound and unbound states of the
molecular system by any thermodynamic path, whether physical or unphysical. In alchemical
methods, the potential energy function is modified parametrically in a series of steps traced
by a progress parameter A to go from a description of the unbound state to that of the
bound state. These methods effectively “grow” the ligand in place within the binding site.
The field has a long history,'® but only relatively recently it has converged into a unified
statistical thermodynamics theory of biomolecular binding.'??°22 The double-decoupling
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metho which is used to compute absolute binding free energies, is so called because

it involves free energy calculations to decouple the ligand to an intermediate gas phase from
the bound and solution states of the ligand. Free energy perturbation methods,?* 2" are

suitable for the analysis of relative binding, such as in drug optimization.



We have developed an alchemical single-decoupling methodology, based on an implicit
description of the solvent,?® that enables the transfer of the ligand directly into the binding
site rather than through multiple thermodynamic pathways.?*3! Among other advantages,
the single-decoupling approach leads naturally to a statistical representation of the equilib-
rium in terms of probability distributions of the binding energy. For example, it is possible
to relate the binding free energy to the probability distribution, po(u), of the binding energy
in the absence of receptor-ligand interactions. *?

Analogously to approaches based on physical binding pathways, alchemical binding free
energy calculations yield free energy profiles along the thermodynamic transformations. Al-
chemical free energy profiles are functions of the alchemical progress parameter A, rather
than, for instance, the ligand-receptor distance. A typical alchemical calculation involves
collecting distributions of perturbation energies as a function of the alchemical progress pa-
rameter \. These are merged using thermodynamic reweighting algorithms3*33 to yield the
free energy profile along A. Typically, only the difference between the endpoints of the free
energy profile, which is the binding free energy, is considered. However, the shape of the free
energy profile can also yield useful information regarding the physical characteristics of the
molecular complex. For example, a quadratic dependence on A, typical of linear response, is
often observed during the alchemical transformation.

In this work, we present a method to relate the shape of the free energy profile to physical
observables of the complex. Working within the single-decoupling framework, we develop a
statistical analytic model of binding and we construct a procedure to estimate the parameters
of the model from data generated by alchemical molecular simulations. The model is based
on the statistics of ligand-receptor interaction energies when the ligand uniformly explores
the binding site volume as if the receptor atoms were not present. This general strategy has
a long history in the treatment of solvation (examples are scaled particle theory, particle

34738)

insertion, and information/fluctuation theories but it has not been fully explored to

study molecular recognition. The main distinction is that a receptor, unlike a homogeneous



solvent, has a specific shape and distribution of interaction sites. We show that the single

decoupling theory offers a useful starting point to think about this problem.

Theory and Methods

Statistical mechanics theory of non-covalent molecular association

The standard free energy of binding, AGy, between a receptor R and a ligand L is given by
BAGS = —In K,, (1)

where 5 = 1/(kgT), T is the absolute temperature, kg is Boltzmann’s constant and K}, is

the dimensionless binding constant that, assuming ideal solutions, is expressed as

RL)/C*
K- L o )/ - 2)
([B]/Co)([L1/C°)
where [...] are equilibrium concentrations and C° is the standard state concentration (con-

ventionally set as 1M or 1 molecule/1668 A?%).

In a widely employed classical statistical mechanics theory of non-covalent association, 22
the binding constant is expressed as
Ky = CVire (e 772, (3)

where U(z,() =V (z,() + W(x, () is the effective potential energy function of the receptor-
ligand complex, expressed in terms of the internal degrees of freedom, z, of receptor and
ligand, and the external degrees of freedom (i.e. overall translation and rotations),?! ¢, of
the ligand with respect to the receptor. The function AU(z,() = U(z,() — Up(x) is the
binding energy of the complex in conformation (z, (), where Uy(x) is the effective potential

energy of the system when receptor and ligand are at infinite separation. Vi is the chosen



volume of the binding site, that is the volume of the region of positions and orientations ¢
of the ligand relative to the receptor which are considered to correspond to the bound state
of the complex.! The average (...)o in Eq. (3) is conducted over the decoupled equilibrium
ensemble corresponding to Up(x), in which receptor and ligand do not interact, while the
ligand samples uniformly the binding site volume. Finally, V'(z, () is the potential energy of
the system and W (x, ) is the solvent potential of mean force, which represents the solvation
free energy of the complex in conformation (z, ). The solvent potential of mean force, which

1239 is a quantity of

is based on the partial averaging over the solvent degrees of freedom,
general applicability and, in principle, does not introduce any new approximations into the
theory proposed here.

Inserting Eq. (3) into Eq. (1) yields

6AGZ =—In OO‘/;ite + 5AG6XC.> (4)

where —kgT In C°V is the concentration-dependent component of the standard free energy

of binding independent of the specific form of the potential energy, and

BAG exe. = — In(e P2V (5)

is the excess free energy of the complex.
In the following, we focus on the excess component of the standard free energy of binding.
To simplify the notation, we henceforth denote the excess free energy as AG, and we measure

all energies and free energies in units kg1’ thereby omitting factors of § throughout.

'Eq. (3) refers to the case in which only overall translations are used to define the binding site volume.
In general, a term corresponding to the integration over orientational degrees of freedom is also present. 22!



Alchemical binding free energy models

Molecular simulations aimed at computing the excess free energy of binding based on Eqs. (4)
and (5) are referred to as “alchemical” in that they sample the unphysical uncoupled state
in which receptor and ligand, while being close to each other, behave as if the other were
not present. In practice, Eq. (5) converges very slowly because, due to atomic overlaps,
in the uncoupled state large and positive values of AU (and, consequently, negligibly small
values of exp(—AU)) are much more likely to be sampled than favorable ones, causing the
average to be dominated by the infrequent occurrences of overlap-free configurations. To
overcome this obstacle, it is common to adopt a stratification scheme based on an alchemical
hybrid potential U(z, (; A), dependent on an alchemical progress parameter A, conventionally

ranging from 0 and 1. This strategy implies a A-dependent excess free energy defined as

AGO\) = —In K()), (6)

where

K(\) = (e 27W), (7)

is the A-dependent binding constant, and where, using the notation introduced above,

AUA) = Uz, ¢ A) — Up(z) (8)

is the perturbation energy at A for the complex in conformation (z,¢). In the following we
will refer to AG(A) as the alchemical free energy profile and K(\) as the binding constant
profile.

The stratification approach above leads to the familiar computational algorithms for
the calculation of free energy differences based on the accumulation of the effects of small

progressive increments of A. For instance, Eq. (7) is easily generalized to yield an expression



of the ratio of equilibrium constants at nearby values of A:

K(X) /
BA) _tav)-avw) 9

K()\) <6 >)\ ) ( )
which is the basis of the Free Energy Perturbation (FEP) method. ? Similarly, inserting
Eq. (7) into Eq. (6) and differentiating with respect to A, leads to the well-known Thermo-
dynamic Integration (TI) formula:*

dAG(N) AU\
o BN )

(10)

which, when integrated, yields the free energy profile.
Being related to ensemble averages, it is helpful for the current purpose to note that both
the FEP and TI1 formulas can be expressed in terms of probability density functions. For

instance, Eq. (7) can be rewritten as

+oo

K(\) = /_ A(AU)e 20y (AT (11)

[e.e]

where po(AU,) is the probability density of the perturbation energy, AU(A), at A in the

A = 0 ensemble. Analogously, denoting u(A) = OU(A)/O\, Eq. (10) is rewritten as

duupy(u) (12)

dAg\()\) B /+°°

—00

where py(u) is the probability density of the QU/OX function in the ensemble at \.

2It should be noted that, while Eq. (9) is mathematically exact, modern numerical implementations of
FEP employ more efficient BAR and MBAR free energy estimators. 32



Linear alchemical transformations

Egs. (11) and (12) take a particular convenient form when the alchemical potential energy

function U(x, (; \) varies linearly with respect to A:

Uz, ¢ A) = Up(x) + Au(z, C) (13)

where Uy(z, () is the potential energy of the decoupled state and wu(z, () is the so-called
binding energy function of the complex, which is assumed as independent of A\. By comparing
Egs. (13) and (8), it is straightforward to show that for an alchemical potential of the form

(13) the perturbation potential is proportional to the binding energy function

AU(z,(; A) = Au(z, () (14)

and that the A-derivative employed in the TI formula is independent of A\ and equal to the

binding energy function:

oU(x, ¢ A) _
WG _ e ¢). (15
Inserting Eq. (14) into Eq. (11) we obtain
“+o0o
KW= [ duemia) (16

where po(u), which plays a central role in this work, is the probability density of the binding
energy function in the uncoupled state, that is in the state in which the ligand is uniformly
distributed in the binding site region and receptor and ligand do not interact with each other.
Mathematically, Eq. (16) expresses the fact that the binding constant profile K (\) is given
by the two-sided Laplace transform of po(u). In turn, the binding free energy profile AG(\)
is related to K(\) by Eq. (6), and the excess binding free energy is AG(A = 1). Finally,

the Potential Distribution Theorem®!' provides a relationship between po(u) and the binding



energy distributions at any other value of A:

pa(u) = eAG(’\)e_)‘“po(u). (17)

It is therefore apparent that knowledge of po(u) determines all of the other quantities
that characterize the alchemical transformation, including the binding free energy profile
and the binding free energy. In this respect, the function py(u) serves the same role in the
alchemical theory of binding that the density of states (2(E) plays in classical statistical
mechanics. For instance, note the parallel between Eq. (17) and the well know Boltzmann’s
relationship pg(E) x exp[—[BE]|Q(E), which gives the energy distribution of a system at any
temperature given the density of states.

The main aim of the work presented here is to develop an analytic model for pg(u) from
which to derive all of the other quantities discussed above and, conversely, to estimate the

parameters of the model against the results of alchemical molecular simulations.

Statistical model for py(u)

In this section, we turn to the derivation of a model for the probability distribution, py(u), of
the binding energy in the uncoupled ensemble at A = 0, that is in the state when the ligand
and the receptor are not interacting. Note the critical distinction between the state from
which samples are collected (the uncoupled ensemble), and the quantity being sampled (the
binding energy function): we are interested in the distribution of binding energies, which
are in general not zero, when receptor and ligand configurations are sampled in the absence
of receptor-ligand interactions. As illustrated in Fig. 1, since in the absence of interactions
clashes between ligand and receptor atoms are likely, a long tail at large and positive values
of the binding energy characterizes po(u). po(u) also has a much smaller, but finite, tail
at favorable binding energies. The low energy tail of po(u) is amplified by the exp(—u)

exponential term, to yield, through Eq. (17), the expected distribution of binding energies



in the bound state narrowly centered around a favorable mean binding energy (see Fig. 1).

)
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Figure 1: po(u) (blue, curve on the right) and p;(u) (yellow, curve on the left) from Eq. (26)
for ig = —10, o = 3, ery = 1, 4. = 10, n; = 2, p, = 1075, and p,, = 0. The scale of the
y-axis is arbitrary and probability densities are not normalized. Energy values are expressed
in units of kT

To start thinking about a functional form for py(u), consider the model illustrated in
Fig. 2, which depicts the binding site volume containing receptor atoms (large circles) ar-
ranged in some configuration, and a ligand represented by small blue circles. Because at
A = 0 ligand-receptor interactions are turned off, the ligand atom occupies the binding site
with uniform probability. The binding site volume is divided into two main regions. In
the region outside any of the receptor atom circles, as location “B” in the white region of
Fig. 2, the interaction energy between the ligand atom and the receptor is the result of many,
relatively weak electrostatic and dispersion interactions of similar magnitude. This mode of
interaction describes the behavior of pg(u) at favorable values of the binding energy. When,
instead, a ligand atom is found within the inner core of a receptor atom (shaded in light
and dark gray in Fig. 2), such as at locations “C” and “M,” the repulsion energy of that
individual interaction dominates all of the others. This interaction mode is expected to be
essential to describe the high energy tail of pg(u). The atomic core of an atom is considered
here as its most immediate region where the interaction potential dominates over all other
interactions. Because receptor atoms cannot overlap to more than a certain degree, strong
repulsive interactions can be understood as the result of a single pair interaction rather than
of cooperative contributions of many interactions. (The distinction between the light and

dark gray regions within the repulsive interaction core region is explained below).
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Figure 2: Illustration of the model of the uncoupled state of the receptor-ligand complex.
The box represents the receptor site volume. Ligand atoms are blue connected by bonds.
Receptor atoms are black surrounded by circles representing the extent of the ligand-receptor
repulsive interaction potential. A ligand atom in the white region (such as at location
labeled “B”) interacts with many receptor atoms by means of soft long-ranged electrostatic
and dispersion interactions represented by dashed lines. A ligand atom in the light gray
region (such as at location “C”) interacts mainly with the closest receptor atom by means of
repulsive 12-6 potential (represented by a continuous line). The dark gray region (such as
the ligand atom location labeled “M”) represents the region where the repulsive interaction
energy is constant and capped at the maximum value ty.y.

To model the two distinct properties of repulsive and attractive interactions, it is useful

to think of the ligand-receptor binding energy as the results of two contributions

u=uc+up, (18)

where uc represent the collisional component, which corresponds to short-ranged repulsive
interactions predominant within the atomic cores and well represented by the a single pair-
wise interaction, and ug is the background component given by the sum of contributions of
many weak and favorable long-ranged pairwise interactions.

Motivated by the central limit theorem, we model the probability distribution of the

background component by a Gaussian distribution:

_ 1 (up — up)’
pe(up) = g(up; up, op) = Wexp —T 3 (19)
B

where %p is the mean and op is the standard deviation of the distribution of the distribution

of the total background ligand-receptor interaction energies, up, obtained by summing over

11



all ligand-receptor atom pairs

The collisional energy uc is assumed to be zero in the region outside the atomic cores.
Inside one of the atomic cores, uc is assumed to be represented by the repulsion energy
between the pair of atoms with the most severe clash. Here we represent the repulsive
pairwise interactions by the Weeks-Chandler-Andersen (WCA)*? form of the Lennard-Jones

(LJ) potential

dery [(M)lz - (JL_J>6} +e <2,

UWCA (7’) = (20)

0 r>2Y%q,;

which, as shown in the Appendix, for a single ligand atom leads to the collisional binding

energy distribution

H(UC — ﬂ,c)(l + i’c)lﬂ
4€LJJ,’(1 + 37)3/2

where H(-) is Heaviside’s step function, x = M, Ic = m and u¢c > 0 is an

adjustable energy parameter that defines the level set of the boundary of the core of receptor

pwealuc) = (21)

atoms. The parameter o is implicitly defined as the repulsive energy above which the
energy of the collision follows the probability density (21).

Eq. (21), derived for a monoatomic ligand, can be generalized to a polyatomic ligand. In
doing so, it is critical to note that, even though the total collisional energy can be expressed
as the sum of the collisional energies for each ligand atom, the central limit theorem is not
applicable because the mean and variance of each contribution, described by probability
density (21), are undefined. We can assume however that the collisional energy is dominated
by the largest repulsive interaction among all of the ligand atoms: uc ~ max,;—; n[uc(7)],
where uc(7) is the collisional energy of ligand atom ¢. The probability density of the max-
imum, Tp.y, of a set of NV independent random variables, x;, distributed according to the

probability density f(x) is given by the expression?3

12



P(Tmax) = N [F(xmaXHN_l f(Zmax) (22)

where F'(z) is the integrated form of f(z), that is the cumulative distribution corresponding
to f(x). In general, the positions of the N atoms of the ligand are not statistically indepen-
dent so Eq. (22) is an approximation. It is expected however that this form, with an effective
number of statistically independent number of atoms groups, n;, is of general applicability.
If the ligand is small and rigid it will behave as a single atom. On the other extreme, a
large and flexible ligand can be thought of being composed of groups of atoms with nearly
uncorrelated position.

Combining Eqgs. (35), (40), and (22) finally yields

(1 +$C)1/2:|nl_1 H(UC—ﬂc) (1 —|—flfc)1/2 (23)

—n |1—
pwealuc) = mn { (1+ 2)1/2 dery  x(1+x)3/?

for the probability distribution of the collisional energy related to the repulsive WCA poten-
tial for a polyatomic ligand. The factor of n; in front of the expression is the normalization
constant and the other symbols have the same meanings as in Eq. (21).

In alchemical molecular simulations, it is customary to adopt soft-core interaction poten-
tials to smoothly cap the maximum value of pair-wise interactions and avoid discontinuities
near the uncoupled state.?3*4%5 In this work we model this feature by capping to a maximum
value Uy the repulsive WCA potential at short interatomic distances (see Fig. 10). We thus
consider the inner core region of the receptor region, denoted by dark gray shading in Fig. 2,

where the repulsive interaction energy is constant and equal to umax. In this work, we set

Umax = 1 X 108 keal /mol.

Combined collisional and background interaction energy model

We now turn the derivation of the probability distribution py(u) = p(up +ue) of the ligand-

receptor energy in the uncoupled ensemble. While the background component u is assumed

13



to occur for any configuration of the complex, the probability density of the collisional
component is conditional on there being at least one atomic clash defined as uc > uc. We
denote by py, the probability that no such collision occurs in the uncoupled ensemble and
when the ligand is within the binding site volume, by p. the probability that a collision occurs
in the region corresponding to the continuous repulsive part of the WCA potential (the light
gray region in Fig. 2), and by p,, the probability that the clash occurs within the inner core
region (the dark gray region in Fig. 2) where the repulsive energy is uy.x. The probabilities
Db, Pe, and p,, are not all independent parameters of the model since it is required that they
sum to 1: pp + pe + pm = 1.

Under these assumptions, the probability distribution of the collisional component of the

interaction energy is written as

po(uc) = ppd(uc) + Pmd(Uc — Umax) + Depwea(uc) (24)

where pycoa(uc) is given by Eq. (23) and the d-functions express the fact that outside the
core region the collisional energy is zero and that inside the inner core region it is equal to
Uymax. Finally, assuming that the background and collisional contributions are statistically
independent, the probability density of the total binding energy v = up + u¢ is given by the
convolution of the respective probability densities:

po() = poluc + ug) = / " po (s (u — o)l (25)

—00

Substituting in Eq. (25) the definitions given in Eqgs. (19) and (24) we obtain:

“+o00
po(u) :pr(“?UB>UB)+pmg(u§uB+umaxaUB)+pc/ pwea(u)glu—u';up, op)du’, (26)

uc

where g(u;u, o) is the normalized Gaussian distribution of mean @ and standard deviation

o [see Eq. (19)].

14



While the integral in Eq. (26) is not available in analytical form, it is amenable to
numerical computation by for example Gauss-Hermite quadrature (see Methods). Fig. 1
shows po(u) for a particular choice of the parameters ug, op, €1, i, and p, and p.. Also
shown in this figure is p;(u) o e “po(u) [see Eq. (17)]. These distributions indeed reflect
the behavior of binding energy distributions obtained from actual molecular simulations (see

Results).

Model for the free energy profile

Since the Laplace transform of a convolution of two functions is the product of their Laplace

transforms, from Eq. (16) and Eqgs. (24) and (19), for the binding constant profile we have
K(A) = Kc(M)Kp(A), (27)

where

+o0o
Kc(\) = / pc(u)e_mdu = Dp + pme” Umax 4 PeKwoa(N) (28)

o0

where Kyca(A) is the two-sided Laplace transform of pyca(u). From Eq. (23):

Kwoa(h) = / pwonu)edu (29)

uc

Finally, the two-sided Laplace transform of pg(u) = g(u; ug, op) is:

+o0o
KB()\) _ / pB(u)e—)\u _ 6023)\()\/2—113/025,) (30)

An illustrative binding free energy profile, AG(\) = —In K (), obtained from Eqs. (27),
(28), (29) and (30) for some choice of parameter values is shown in Fig. 3. Free energy
profiles from simulations indeed follow have the shape illustrated in Fig. 3 (see Results).

Note that in this model AG()) is given by the sum of the free energies corresponding to the

15
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Figure 3: The binding free energy AG(\) = —In K (\) from Egs. (27)—(30) as a function of A

for ip = =10, op =3 €1y = 1, @1, = 10, n; = 2, pp = 107%, and p,, = 0. Energy is expressed
in units of kT

AG(}D)

collisional and background processes:

AGON) = —InKe(\) —InKp(\) = AGe(\) + AGp(\N). (31)

Mixture model of background component

The analytic model described so far predicts Gaussian-distributed binding energies at A ~ 1,
where the collisional contribution is negligible. In practice, however, we encounter systems
displaying bimodal binding energy distributions in this regime (see for example Fig. 9).
These occurrences are interpreted as the system undergoes a conformational transition from
a high-entropy /high-energy state to a low-entropy/low-energy state as A is increased. We
found that these systems can be described well by a mixture model of the background binding

energy component described by the weighted sum of two Gaussian distributions:

p(up) = Pug(up; e, 04) + Pog(up; ty, 0p) (32)

where P, and P, (P, + P, = 1) are the probabilities of occurrence of conformational states
a and b at A = 0, respectively, and (4, 0,) and (uy, 03) are the corresponding average and
standard deviation parameters. (In general, any number of conformational states can be

considered by introducing the average binding energy and standard deviation parameters for

16



each.)
To formulate the full model of py(u) for this case, Eq. (32) replaces the single Gaussian

functions g(u; up,op) in Eq. (26). In the case of the mixture model Eq. (30) becomes

+o0o
Kz(\) = / p(u)e™ = P V2-0a/00) | P coi O/2-un/a}) (33)

[e.e]

Otherwise the remainder of the analytical theory is unchanged. Note that this model can
be expanded to an arbitrary number of states and that it reduces to the single-state model

[Eq. (19)] when only one state is present (that is P, = 1, for example).

Model parameterization

The analytical model of binding defined by Eq. (26) with Eqs. (23) and (19) depends on
seven independent parameters: g, the average background binding energy in the coupled
state, o, the standard deviation of the background binding energy in the decoupled state,
€rJ, the effective Lennard-Jones € parameter of the repulsive potential within the atomic
core, ., the closest contact dominates the collisional binding energy contribution, n;, the
effective number of statistically independent atom groups of the ligand, p,, the probability
that in the uncoupled state the system is free of atomic clashes, and p., the probability of
occurrence of one or more atomic clashes described by the repulsive component of the WCA
potential. The parameter p,,, the probability of occurrence of an atomic clash of interaction
energy Umax, is derived from p, and p. so that they collectively sum to one.

The mixture model (Section ) introduces three additional parameters of the background
energy model (the relative occupancy of the two states, and one additional set of average
and standard deviation parameters of the background component). In this work, it has been
relatively straightforward to identify by manual inspection the cases displaying bimodal
binding energy distributions which required the mixture model. Future work will explore

unsupervised model selection approaches?® to automate the search for the most suitable

17



parameterization for each complex.
The parameters of the selected model are obtained by Maximum Likelihood (ML) in-

47 using as input the binding energy values collected from alchemical molecular sim-

ference
ulations at a series of values of A\. ML seeks the parameters that maximize the likelihood

function £, or, equivalently, minimize the negative of its logarithm:

Aig i 9
—In L(0 Zlnp,\ (u)0) = Zl ];\0‘;” ) (34)

where the summation runs on the samples of binding energies u; collected in the ensemble
at A\ = \;, 0 represents the set of model parameters above, and we have used Eq. (17).

Computational details of the ML parameter estimation procedure are given in the appendix.

Computational details

The host-guest complexes were prepared as described.*®° Single-decoupling? Hamiltonian
Replica-exchange Molecular dynamics simulations® employed 22 intermediate \ steps as
follows: A = 0, 1 x 1075, 1 x 107°, 1 x 1074, 1 x 1073, 0.002, 0.004, 0.008, 0.01, 0.02,
0.04, 0.07, 0.1, 0.17, 0.25, 0.35, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. The calculation employed
the OPLS-AA force field®?®® and the AGBNP2 implicit solvent model.?® We employed a
soft-core binding energy function® with up,, = 1 x 10° kcal/mol. The replica-exchange
simulations were started from energy-minimized and thermalized structures from manually
docked models. A flat-bottom harmonic restraint with a tolerance of 5 A between the centers
of mass of the host and the guest was applied to define the binding site volume. Each cycle
of a replica lasted for 100 picoseconds with 1 fs time-step. The average sampling time for a
replica was approximately 10 ns. Calculations were performed on the campus computational
grid at Brooklyn College. The binding energies obtained from all replicas were analyzed
using UWHAM?? method and the R-statistical package to compute the binding free energy
profile AGy(\).

18



Results

We tested the analytical model of binding presented above on four host-guest complexes:
cyclohexanol, nabumetone, and N-tBOC-L-alanine binding to S-cyclodextrin®® and trans-4-
methylcyclohexanoate binding to the octa-acid cavitand host®® (Figs. 4, 6 and 8). The results
for the complexes with cyclohexanol and nabumetone, are shown in Fig. 5 and Table 1. The
results for the complexes with trans-4-methylcyclohexanoate and N-tBOC-L-alanine, which
undergo A-dependent conformational transitions, are presented in Figs. 7 and 9, and Table
2. The analytic model fits very well the binding energy distributions and free energy profiles

from the numerical simulations for all of the complexes we studied.

p-cyclodextrin/ p-cyclodextrin/
cyclohexanol nabumetone

Figure 4: Molecular representations of two of the four host-guest complexes studied in this
work. The host is shown in surface representation and the guest is shown using van der
Waals atomic spheres.

Table 1: Model parameters for the complexes of cyclohexanol and nabumetone with S-
cyclodextrin.

ug® o Db De ul €Ly oMy

cyclohexanol  1.00 2.95 1.0x107%2 20x10"' 05 20 2.1

nabumetone —2.23 291 3.9x107* 69x107%2 0.5 20 3.2
® In kcal /mol

In the case of cyclohexanol and nabumetone, for example, the model correctly interpolates
the Gaussian behavior of the binding energy distributions at A ~ 1 and the diffuse and
asymmetric aspects of the distributions at A ~ 0 (Fig. 5). The binding energy distributions

at intermediate \ values present characteristics of both limits and are also correctly described
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Figure 5: Binding energy probability densities, py(u), and binding free energy profiles for
the complexes of cyclohexanol and nabumetone with S-cyclodextrin. Binding energy prob-
ability densities are shown for (from left to right) for A = 1 (red), A = 0.1 (blue), and
A = 0.01 (brown) with corresponding histogram estimates from alchemical molecular calcu-
lations (filled circles). Analytical binding free energy profiles (right, green) are compared to
UWHAM numerical estimates.
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by the model. Free energy profiles (Fig. 5, right panels) are also closely described by the
analytic model. For large values of A (A > 0.3, approximately), the free energy profiles
vary quadratically with A, consistent with linear response behavior. The quadratic regime is
preceded by a highly non-linear variation of the free energy near A = 0. The analytic model
correctly captures the singularity of the first derivative of the free energy profile at A = 0+.5
The maximum of the free energy corresponds to the value of A at which the average binding
energy is zero. In general, as it can be shown from Eqs. (10) and (15), the first derivative
of the free energy profile is proportional to the average binding energy. The singularity of
the first derivative at A = 0% is, thus, consistent with the undefined first moment of the
po(u) probability density. As the data in Fig. 5 illustrates, the analytic model successfully
interpolates between the linear response regime at A ~ 1 and the collisional regime at A ~ 0.

The values of the free energy profile at A = 1 are the excess binding free energies, which
match the numerical estimates (Fig. 5).

The model parameters obtained by fitting the analytic predictions to the numerical results
for the complexes with cyclohexanol and nabumetone are listed in Table 1. The stronger
binding affinity of nabumetone (—3.9 kcal/mol) relative to cyclohexanol (—3.0 kcal/mol)
is driven by stronger interaction energies as reflected by the #p parameter. The average
binding energies at the bound state A = 1 match closely the linear response predictions from
Eq. (47): (u); = —13.7 and —16.6 kcal/mol, from Eq. (47) and fitted up, op parameters
(Table 1), for cyclohexanol and nabumetone, respectively, compared to the direct numerical
estimates (u); = —13.2 and —15.7 kcal/mol, from direct numerical averaging of the binding
energies from the A = 1 simulation replicas.

The most stable bound states of trans-4-methylcyclohexanoate and N-tBOC-L-alanine
have significantly more favorable interaction energies than those of cyclohexanol and nabume-
tone (—14.0 and —11.06 kcal /mol, respectively, Table 2). However, the trend toward stronger
interaction energies is partially offset by the progressively smaller probabilities of fitting the

guest into the host without causing atomic clashes, as illustrated by the p, parameter (Table
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2, 5th column). For example, the estimates indicate that it is almost 3 orders of magnitude
more difficult to fit N-tBOC-L-alanine into the $-cyclodextrin cavity than cyclohexanol. This
feature presumably reflects the larger size and more complex structure of N-tBOC-L-alanine.
The variations of p;, could also represent the probabilities of occurrence of binding-competent
conformations of the host.

As expected, a common set of values of the 4. and €7 ; parameters, corresponding loosely
to the magnitude and softness of the core inter-atomic repulsion potential, describes all of
the complexes investigated. The magnitude of the fitted e;; parameter (e, = 20 kcal/mol)
is significantly larger than typical Lennard-Jones € force field parameters. This confirms the
expectation that these parameters should be interpreted to represent the shape and intensity
of the repulsive potential exercised by groups of atoms, rather than by individual atoms.

Finally, in Tables 1 and 2 we report the fitted values of the the n; parameter (8th and
9th columns, respectively) which represents the number of statistically independent number
of atom groups of the guests. Indeed, n; values roughly scale as the size of the guest. For
example for nabumetone binding to f-cyclodextrin we find n; = 3.2 compared to n; = 2.1
for cyclohexanol. Despite the smaller size, the n; value for trans-4-methylcyclohexanoate
binding to the octa-acid cavitand is similar to that of nabumetone and N-tBOC-L-alanine,
possibly reflecting the fact that this parameter is influenced by the shape of the receptor

cavity as well.

Table 2: Model parameters for the complexes which display multiple binding modes:
trans-4-methylcyclohexanoate with the octa-acid cavitand and of N-tBOC-L-alanine with
[-cyclodextrin.

a 5 a

b —
Pstate uBa OB Do De Ue ELJa n;

t-4-m-cyclohexanoate
state a ~ 1.0 —2.0 2.95

4 _9
state b 3x 101 —140 18 22}l 3x1070.5 200 3.0

N-tBOC-L-alanine
state a ~ 1.0 —0.01 2.56

-5 -2
e 55 10-5 1106 25¢ LO8X 1077 8x107 05 20 3.8

@ In keal/mol.> Population of the indicated conformational state in the uncoupled ensemble.
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octa-acid /trans-4-methylcyclohexanoate
state a state b

Figure 6: Molecular representations of two conformations of complex between trans-4-
methylcyclohexanoate with the octa-acid cavitand representative of the conformational states
a and b discussed in the text. State b (right), in which the methyl substituent is inserted
deeply in the lower cavity of the host, is characterized by a more favorable binding energy
than state a. However, the conformational state a is many times more likely than state b in
absence of guest/host interactions. The complex undergoes a transition from state a to state
b as A increases. The cavitand is shown in surface representation with the atoms occluding
the view of the guest removed. Trans-4-methylcyclohexanoate is shown in Van der Waals
representation.

octa-acid /trans-4-methylcyclohexanoate
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Figure 7: Binding energy probability densities, py(u), and binding free energy profiles for
the complex of trans-4-methylcyclohexanoate with the octa-acid cavitand. Binding energy
probability densities are shown for (from left to right) for A = 1 (red), A = 0.5 (blue), A =
0.01 (brown) with corresponding histogram estimates from alchemical molecular calculations
(filled circles). A transition from a high binding energy state a to a low binding energy
state b occurs at A >~ 0.5. The vertical dotted line separates the probability density peaks
characteristic of the two states. Analytical binding free energy profiles (right, green) are
compared to UWHAM numerical estimates.
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p-cyclodextrin/N-tBOC-L-alanine
state a state b

& &v

Figure 8: Molecular representations of two conformations of theS-cyclodextrin/N-tBOC-L-
alanine complex representative of the conformational states a and b discussed in the text.
State b (right), in which the carboxylate group is oriented toward the solvent and the tert-
butyl group is deeper within the host cavity, is characterized by a more favorable binding
energy than state a. However, the conformational state a is many times more likely than
state b in absence of guest/host interactions. The complex undergoes a transition from state
a to state b as A increases. The [-cyclodextrin host is shown in surface representation with
the atoms occluding the view of the guest removed. N-tBOC-L-alanine is shown in Van der
Waals representation.
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Figure 9: Binding energy probability densities, py(u), and binding free energy profiles for
the complex of N-tBOC-L-alanine with -cyclodextrin. Binding energy probability densities
are shown for (from left to right) for A = 1 (red), A = 0.9 (blue), A = 0.8 (orange),
and A = 0.1 (brown) with corresponding histogram estimates from alchemical molecular
calculations (filled circles). A transition from a high binding energy state a to a low binding
energy state b (see Fig. 8) occurs at A ~ 0.9. The vertical dotted line separates the probability
density peaks characteristic of the two states. Analytical binding free energy profiles (right,
green) are compared to UWHAM numerical estimates.
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The complexes of trans-4-methylcyclohexanoate with the octa-acid cavitand (Fig. 6) and
that of N-tBOC-L-alanine with f-cyclodextrin (Fig. 8) undergo A-induced transitions along
the alchemical path from a more probable but more weakly interacting conformational state
(state a in Figs. 6 and 8) to a more stable bound state (state b).

The more stable bound pose of trans-4-methylcyclohexanoate corresponds to the state in
which the methyl substituent occupies the deep and narrow pocket of the octa-acid cavitand
(Fig. 6, state b), as opposed to being loosely bound as in state a. State b is favored by
stronger intermolecular interactions (—19 kcal/mol at A = 1 compared to —16.6 for state a,
from Eq. 46 and the parameters in Table 2) but its probability of occurrence at A = 0 is
predicted to be 4 orders of magnitude smaller than the loosely bound state. As A is increased,
the influence of the host-guest interactions grows, and state b becomes predominant despite
being less likely. The complex with N-tBOC-L-alanine undergoes a similar transition (Fig. 8)
from a loosely bound state (state a) to a more stable state (state b in Fig. 8), in which the
carboxylate group is rotated toward the solvent, and the body of the aminoacid, including
the tert-butyl moiety, is more buried in the host interior.

The optimized parameters (Table 2) indicate that the stable bound state of N-tBOC-
L-alanine is extremely unlikely relative to the loosely bound state (P, = 5.5 x 1078, 2nd
column in Table 2) as compared to trans-4-methylcyclohexanoate (P, = 3 x 107%). The
small probability of occurrence of the stable bound state causes the binding affinity of N-
tBOC-L-alanine to be rather weak (AG, = —0.5 kcal/mol) compared to that of trans-
4-methylcyclohexanoate (AG, = —6.5 kcal/mol). Another interesting difference between
these two complexes is that, as evidenced by the optimized standard deviation parameters
op in Table 2, the stable bound state b of trans-4-methylcyclohexanoate is significantly more
energetically restrained than the loosely bound state a. In contrast, the fluctuations of the
binding energy, measured by op, is unchanged in going from state a to state b of N-tBOC-
L-alanine. This feature is significant because the standard deviation parameter og, which

controls the curvature of the binding energy profile, has a strong influence on the binding
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free energy. A transition to a state with smaller binding energy fluctuations, such as in the
care of trans-4-methylcyclohexanoate, disfavors binding.

The A—induced conformational transitions are particular evident in the distributions
of binding energy values as a function of A\ (Figs. 7 and 9). For the other complexes
studied (Fig. 5) the peaks of the binding energy distributions linearly shift toward more
negative values as A is increased. In contrast, the binding energy distributions for trans-4-
methylcyclohexanoate and N-tBOC-L-alanine become bimodal starting at some critical A,
and develop by growing the low energy peak (corresponding to the stable bound state b)
at the expense of the high energy one. In the case of N-tBOC-L-alanine, for example, the
binding energy distribution at A ~ 0.8 is clearly bimodal (Fig. 9) with a predominant high
energy mode (corresponding to state a) centered near u = —9 kcal/mol and a low energy
mode (corresponding to state b) near u = —22 kcal/mol. As A is increased, population shifts
to state b, which becomes the predominant state at A = 1. At A = 0.9 the two states have
almost the same population. This behavior is the hallmark of a pseudo first-order phase
equilibrium,®® in which two phases, characterized by compensating differences in average en-
ergy and entropy, coexist within the same free energy range. The conformational transition
is also apparent in the abrupt change of slope of the binding free energy profile near A = 0.9
(Fig. 9). As mentioned, the slope of the binding free energy profile corresponds to the aver-
age binding energy as a function of A\. Correspondingly, at A ~ 0.9, the system transitions
to a state of lower binding energy thereby causing the change in slope. Note that, while the
transition appears slight in the binding free energy profile, the shift in the slope causes a
significant decrease (by about 1 kcal/mol) of the binding free energy. The shift in slope of
the binding free energy profile and the bimodal character of the binding energy distributions

cannot be described without invoking the mixture model.
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Discussion

The results obtained as part of this work indicate that it is feasible to represent alchemi-
cal binding free energy profiles and binding energy distributions by parameterized analytic
functions. The model we proposed offers a rationalization for the shape of the free energy
profile and the binding energy distributions. The critical feature of the model is the ability
to bridge the two limiting behaviors of the free energy profile, the region near A ~ 0 deter-
mined by atomic clashes and the region near A ~ 1 characterized by linear response. The
main conceptual advance that enabled this versatility of the model is the description of the
binding energy in the uncoupled state of the complex as the sum of two interaction energy
components with radically distinct statistical signatures. The first, termed “collisional” in-
teraction energy, describes atomic clashes dominated by nearest neighbor pairs and follows
the statistics of the maximum of a set of random variables. The second, that we termed
“background” interaction energy, describes the sum of many weak and favorable interatomic
interactions and follows the central limit theorem. The two statistical components, assumed
statistically independent, are then combined using standard convolution to obtain the dis-
tribution of the total binding energy and, through of a Laplace transformation, the binding
free energy profile.

The general strategy of describing free energy changes along a thermodynamic path by
means of probability models applied to the “decoupled” end point has a long history in
the treatment of solvation phenomena in condensed phases. Examples are scaled particle
theory, particle insertion models, and information/fluctuation theories.34363856 Early work
in this area by Pratt & Chandler,5” introduced the connection between the solubility of hard
sphere particles®® and the probability of formation of suitable cavities in the neat solvent,
a prediction that was confirmed by Pangali, Rao, and Berne® and subsequent computer
simulation work.%9%2 Both Pohorille and Pratt® and Hummer et al.,3% elaborated on the
concept of, po(r), the probability that a cavity of size r occurs in a neat liquid, which was first

introduced in scaled particle theory®®%* to model the probability of occurrences of cavities
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based on the moments of the number of solvent molecules that occupy the solute volume in
neat water.

The same essential concepts have been used here to formulate a model connecting the free
energy of inserting a ligand molecule into a receptor binding site to probability distributions
collected in the decoupled state. The main difference between the solvation process, seen as
solute insertion, and binding, seen as ligand insertion, is that, unlike a homogeneous solution,
the distribution of receptor atoms is not homogeneous. In particular, there are regions in the
receptor binding site where a ligand can fit without requiring conformational reorganization.
Conversely, there are interior regions of the receptor from where the ligand is effectively
excluded. The model we formulated takes into account these complex geometric and energetic
effects in terms of effective physical parameters which are optimized by maximum likelihood
inference to reproduce the results of alchemical molecular simulations. The close agreement
obtained here between model predictions and molecular simulations of a set of relatively
simple but yet chemically-relevant host-guest complexes is evidence that the model is sound
and deserving of further investigation and development.

The primary advantage of the theory developed here is that, unlike numerical reweighting
methods such as MBAR and UWHAM, 3?33 it yields physical parameters characterizing
the thermodynamics of binding of each complex. These parameters can be useful in the
classification of molecular complexes. For instance, the ug and o parameters measure the
strength of favorable electrostatic and dispersion receptor-ligand interactions as a function of
A |[Eq. (47)]. In particular, the o5 parameter measures the linear response of the complex to
the establishment of favorable interactions. A larger o can be an indication, for example,
of larger polarizability of the receptor and can be interpreted in terms of local dielectric

t.5°758 On the other hand, the p, parameter, which is the probability that ligand and

constan
receptor do not overlap while uncoupled, is a measure of the entropic and reorganization
costs that oppose the formation of the complex. The model relates these thermodynamic

driving forces to interpretable physical parameters such as the size of the binding cavity, if
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present, relative to the size of the ligand, or, alternatively, the likelihood of the formation of
a suitable binding cavity that can fit the ligand. Similarly, the n; parameter is interpreted
as a measure of ligand size and ligand flexibility.

As discussed, the mixture model parameters indicate the presence of multiple conforma-
tional states of the complex and their average interaction energies and relative probabilities.
The model parameters attempt to capture the trade-off between energetic gains (the up
parameter) and entropic costs (the Py parameter). In the systems examined we observed
transitions from loosely bound states with a high probability of occurrence to strongly bound
but entropically disfavored conformational states. For alchemical states near the uncoupled
state, the weight of the binding energy component of the alchemical potential energy func-
tion [Eq. (13)] is small and the complex tends to visit exclusively the loosely coupled state
given its overwhelmingly large probability. However, as the coupled state is approached the
strongly bound state becomes competitive with the loosely bound state due to the increase
the weight of the interaction energy.

Taken together, the parameters of the model, offer useful insights into the binding equi-
librium. When tabulated over a series of systems, they can potentially be employed to
characterize and categorize receptor-ligand complexes and, when correlated with binding
affinities, can inform receptor and ligand design.

Future work will assess the potential usefulness of the analytic model toward the improve-
ment of alchemical simulation protocols. Because, it builds upon a physically-motivated
ansatz dependent on a relatively small number of parameters, the model could be the basis
of a free energy estimator with a smaller variance than general-purpose approaches.3233 For
example, a potential application of the model is as a framework to analyze and measure free
energy changes near the decoupled state without the need for extrapolation? or soft-core
alchemical potentials.®3* As analyzed by Simonson®* and reproduced by our model, the first
derivative of the free energy profile has a singularity at A = 0. This singularity causes prob-

32,69

lems for numerical free energy estimators, which are usually addressed by the adoption
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of non-linear soft-core alchemical potentials.”>™ These difficulties can also be addressed by
replacing the numerical estimation of free energies near the singularity with the estimation
of the parameters (which are free of singularities) of the analytic free energy function (31).
The analytic model can also be potentially useful to evaluate alchemical thermodynamic

72,73 of alchemical transformations.

lengths to optimize the A\ schedule
The model, as currently expressed, is limited to single-decoupling linear alchemical trans-
formations.'? Single-decoupling requires pre-averaging to the solvent degrees of freedom

by means of a solvent potential of mean force treatment?’

implemented here using the
AGBNP22 implicit solvent model. The requirement of linearity of the alchemical trans-
formation with respect to the charging parameter X is introduced to deploy potential dis-
tribution theorem identities*! relating binding energy distributions at different values of \.
Future work will attempt to extend the model to non-linear coupling schemes and explicit
solvation models. Binding free energy calculations with explicit solvation are typically con-
ducted according to the double-decoupling scheme,?’ which is based on the difference of
the free energies of coupling the ligand to the hydrated receptor and the free energy of

solvation. Hence, it is conceivable that analogous analytic models can be developed for

double-decoupling alchemical calculations by considering each free energy leg separately.

Conclusion

We have presented a parameterized analytical model describing the free energy profile of
linear single-decoupling alchemical binding free energy calculations. The parameters of the
model, which are physically motivated, are obtained by fitting model predictions to numerical
simulations. The validity of the model has been assessed on a set of host-guest complexes.
The model faithfully reproduces the binding free energy profiles and the probability densities
of the perturbation energy as a function of the alchemical progress parameter A. The model

offers a rationalization for the characteristic shape of the free energy profiles. The parameters
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obtained from the model are potentially useful descriptors of the association equilibrium of

molecular complexes.
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Appendix

Derivation of Eq. (21)

Consider two particles interacting by the pair potential (20) in which one particle (represent-
ing the receptor) is fixed at the origin and the other (representing the ligand) is uniformly
distributed in a sphere of radius r¢ centered at the origin (Fig. 10). Here we assume that
T. < 19 = 280, ; (the distance beyond which the Lennard-Jones WCA potential is zero).
We will derive the probability density po(uc) of the interaction energy uwca(r), where r is
the distance between the two particles, by differentiating the cumulative probability function
Pc(uc) defined as the probability that, given that the ligand particle is uniformly distributed
in the sphere, the interaction energy uwca(7) is greater than the given value uc. The value
of the WCA potential at r. is denoted by t.; . is therefore the smallest allowed interaction

energy.

Figure 10: Representation of the repulsive WCA component of the Lennard-Jones potential
[Eq. (20)] used in the derivation of Eq. (21). Here 7¢ represents the radius of the spherical
core region around a receptor atom and uc the corresponding repulsion potential energy.
Similarly, r¢ is a generic distance between the ligand atom and the receptor atom within the
core and u¢ is the corresponding potential energy. The dashed curve represents the soft-core
interaction potential capped at u = Upay.

The probability that the pair interaction energy is smaller than u¢ is given by:

_Ve—=—V(u
Pwea(uc) = H(ue — UC)CT(C)

(35)

where the Heaviside function imposes the requirement that uc be larger than the minimum

32



values, V¢ is the volume of the sphere of radius 7. and V' (u¢) is the volume of the sphere
of radius r(uc), where r(uc) is inter-particle distance at which the LJ WCA potential has

value ue. From Eq. (20) we have

r(ue) = ¢ w0 ue >0 (36)

14 370)1/6;

where 79 = 260 ; is the minimum of the Lennard-Jones pair potential and

ro =\ uc/ers (37)

Inserting Eq. (36) into Eq. (35) and differentiating with respect to uc yields Eq. (21), which
expresses a normalized distribution as it can be verified by direct integration using the fact

that

dx 2
/(1 F2)32 " (1+2)2 (38)

Now consider a receptor composed of M atoms interacting with a monoatomic ligand with
the WCA repulsive potential (20). The cumulative probability is given by the expression
Pycaluc) = H(ue — a.)(1 — V(ue)/Ve), as in Eq. (35), where now V(uc) is the volume
of the region of the receptor where the WCA potential is larger than ueo and, similarly,
Vo > V(ue) is the volume where the WCA potential is larger than . We can approximate
V(uc) by the van der Waals volume V[r(uc)] of a molecule with M atoms with van der
Waals radii r(uc), given by Eq. (36) below, corresponding to distance at which the value
of WCA repulsive pair potential is equal to uc. Differentiating the cumulative distribution
with respect to uc, yields:

(uc) = _idV(r) dr(uc)  H(uc —tc) A(r)r 1
Pweallc) = =0 =0 Tdue. | 12¢,, Vo a(l+ )32

(39)

where A(r) is the van der Waals surface of the receptor when the atomic radii are set to r,

and r and x are both functions of u¢ [see Eqgs. (36) and (37)].
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Eq. (39) is interesting because it links the probability density of the collisional interaction
energy to the shape of the receptor. There are numerical algorithms (some analytical) to
obtain the van der Waals surface area of a molecule.”™ For large u, r(u) is small and atomic
overlaps between receptor atoms can be ignored. In this limit Alr(u)] ~ M4rr(u)?, and

assuming that Vo ~ M4nr(ac)?/3, we finally obtain

H(UC — ac) (1 + 1’0)1/2
4€LJ flf(l"‘flf)g/z

pwea(uc) = (40)

which has the same form as the probability density of the collisional energy for one receptor

atom.

Maximum Likelihood parameter estimation

The maximum likelihood optimization function in Eq. (34), net of additive terms independent

of the parameters, and using Eqgs. (27) is
—InL(0) ==Y Ipo(wlf) + Y NelnKp(Ap) + > Npln Ke(Ay) (41)
i k k

where Ny, is the number of binding energy samples collected at A = \g, po(u;|@) is given by
Eq. (26), Kp(Ax) is given by Eq. (33), and K¢ (A;) by Eqgs. (28) and (29). Given an initial
set of parameters, the po(u;|6) terms are evaluated using Eq. (26). The convolution integral,

or, in the case of the mixture model, the sum of two integrals in Eq. (26) is each of the form:

—+o00
/ pWCA(u/)e—(u—u’—ﬁ)2/2cr2 du’ (42)

oo

which, upon the variable transformation y = (u'—u+1)/v/20 becomes of the standard form:

—+00

V20 - f (y)e ™ dy (43)
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where f(y) = pwea(V20y + u — @), which is amenable to evaluation by Gauss-Hermite

quadrature:

Var [ ety = Vi Y wndn) (4

where w,and y, are the Gauss-Hermite weights and nodes, respectively. In this work we
used 15 Gauss-Hermite nodes. The calculation of K¢ (Ax) in Eq. (41) requires the numerical
evaluation of the integral in Eq. (29) which is accomplished using the variable transformation
u = exp[y/2] — 1 and a linear interaction grid of 100 y-values distributed from y = 0 to
Yy = 21In Upay.

Minimization of the function (41) was implemented in a Python application
(github.com/egallicc/femodel-tf-optimizer) using TensorFlow ™, which derives func-
tion gradients on the fly. Because of the presence of the step function, TensorFlow was
unable to compute the first derivative of Eq. (23), even though it is continuous at u = @c.

To mimic the behavior of Eq. (23) without a step function we used the following expression

12)1/12}"1_1 s(ug — tg) (1 + z¢)'?

45
dery (14 x)3/2 (4)

pweal(uc) ~ny [1 — tanh(z

where z = (1 + z¢)Y?/(1 + 2)"/? and s(u) = [1 + exp(—20u/7ic)] " is a sigmoid function.
The advantage of Eq. (45) is that it allows optimization of ¢ in TensorFlow.

We observed that successful optimization progress in TensorFlow was achieved only when
starting with good initial guesses of the parameters. When ligand-receptor interactions are
established, atomic collisions are unlikely and the binding energy is mainly determined by the
background component. Thus, histograms obtained from molecular dynamics trajectories
near A = 1 are most useful in the estimation of the background binding energy parameters
up and opg. An initial first guess for these parameters can be extracted from the average
(up) =1 and standard deviation \/m of the binding energies at A = 1, observing that,

because the background energy is assumed to be Gaussian-distributed, its parameters follow
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linear response behavior upon variation of \:

(duip)r = (dup)o = 0 (46)

(ug)y = (up)o — \op = ip — Aoy, (47)

which can be easily derived by applying the potential distribution theorem [Eq. (17)| to the
Gaussian distribution of ug at A: glup;up(N),op(N)] x exp|—Aulg(up; up, op).

Conversely, the histograms at small A values are most useful to estimate the collisional
energy parameters €y, ., n;, py, and p. once a first guess for the values of g and op is
available. We observed (see Results), as it would be expected, a high degree of universality of
the parameters €7,; and 4., which describe the extent and softness of the repulsive potential
within the atomic cores common to all complexes investigated. We varied the p, parameter,
which regulates the relative magnitude of the two components in Eq. (26), to match the
shape of histograms at intermediate values of A. Finally, we employed the n; parameter to
reproduce the shape of the high energy tail of histograms at small A values (with larger n;
values describing slower decaying tails). Given the difficulty of binning the unbound high
energy portion of binding energies, this last step was performed by also matching at the
shape of the free energy profile AG(\) at small A\. Final refinement of the parameters was
performed numerically with TensorFlow starting with these initial guesses.

The mixture model (Section ) introduces three additional parameters related to the back-
ground energy model including the relative occupancy of the two states at A = 0, and one
additional set of average and standard deviation parameters of the background component.
In the case of N-tBOC-L-alanine, for which the binding energy distribution at large values
of A were clearly bimodal, we obtained initial guesses of the parameters by exploiting the

linear response behavior of each of the average and standard deviation parameters [Egs. (46)
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and (47)|, and those of the state probabilities:

P, = 4
a(>\) M()\) ( 8)
By(A) =1 - Pu(X) (49)
where
M(\) = Pye~ (@ (w208 4 p o=@ (w)3)/207 (50)

which can be derived by application of the potential distribution theorem to the Gaussian
mixture distribution (32). In the case of trans-4-methylcyclohexanoate binding to the octa-
acid cavitand the relative populations of the two components were not clearly resolved. How-
ever we were able to distinguish the value of the standard deviation of the two components
and obtain their corresponding average binding energies using iterative ML optimization

using TensorFlow.
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The binding equilibrium between a ligand molecule and a receptor is simulated alchemi-
cally by “turning on” the ligand within the binding site. Alchemical calculations are nowadays
widely employed in the computational design of drugs, catalysts and advanced materials.
Most often these studies entail the numerical analysis of molecular dynamics simulations. In
this work we develop a fully analytic statistical model of the thermodynamics of alchemical
binding. The parameters of the model, which have intuitive physical interpretation, are ob-
tained by maximum likelihood inference from data extracted from alchemical calculations.
Applications of the model for the classification of molecular complexes and the design of

alchemical molecular simulations are envisioned.
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