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Commodity and energy prices are notoriously volatile. Firms routinely trade financial contracts to hedge their

cash flows that are exposed to this source of risk. When markets are incomplete, which is typical in practice,

eliminating such risk is impossible and attention must thus shift to its partial mitigation. This paper reviews

quadratic hedging, which is an appealing financial risk management approach for this setting, considering

a single commodity or energy cash flow that occurs on a given future date and assuming that financial

hedging is based on trading a risk less bond and a futures contract. This work formulates this hedging

problem as a Markov decision process, derives the optimal policy using stochastic dynamic programming,

and characterizes the initial optimal bond position. Further, it highlights related current and potential future

research.

1. Introduction

Commodities and energy sources exhibit notoriously high price volatility (Geman 2005, Kaminski

2013, Roncoroni et al. 2015). Firms that handle them commonly trade financial instruments,

especially futures, to mitigate this source of risk (see Tirole 2006, §5.4 for a theoretical analysis of

the benefit of financial hedging and Pirrong 2015 for a discussion of such practices at Trafigura). In

an incomplete market setting, which is the typical situation in practice (see, e.g., Swindle 2016 for

a discussion in the context of energy commodities), removal of commodity price risk is unattainable

and limited hedging of such risk is thus a necessity.

Quadratic hedging (Schweizer 1995, Bertsimas et al. 2001) is an attractive approach for dealing

with market incompleteness when devising financial risk management policies. It is based on the

idea of forming a self financing approximate replicating portfolio that is dynamically adjusted to

minimize the expected quadratic hedging error. This paper reviews this methodology considering

a single commodity or energy cash flow that arises on a given date in the future and assuming

that financial hedging relies on trading a risk less bond and a futures contract. It formulates this

hedging problem as a Markov decision process (MDP); uses stochastic dynamic programming to

establish the optimal policy structure, which provides a basis for its computation in applications;

and characterizes the optimal initial bond position as a discounted expectation of the future cash

flow taken under a distinct martingale measure, which gives a proxy for the market value of this

cash flow.
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This work slightly broadens the set up of Schweizer (1995), Bertsimas et al. (2001) based on

the formulation of Gugushvili (2003) and, given its focus, considering futures, rather than stock,

trading, linking the findings of Bertsimas et al. (2001) to the ones of Schweizer (1995). Černý

(2004) makes a similar connection when the hedging portfolio includes multiple financial contracts

but no futures. Canyakmaz et al. (2017) discuss related minimum variance hedging ideas (see,

e.g., Luenberger 2014, §12.10) in the context of inventory models with price risk without imposing

the self financing condition on the hedging portfolio.

Section 2 introduces the hedging problem and its MDP formulation. Section 3 presents a

stochastic dynamic programming approach to solve this MDP. Section 4 characterizes the optimal

initial bond position. Section 5 provides a summary and mentions related ongoing and potential

future research.

2. Model

This section formulates the hedging problem as an MDP based on Schweizer (1995), Bertsimas

et al. (2001).

Consider I dates T0 through TI−1. The current date is T0. Define I as the set {0, 1, . . . , I − 1}.

On date Ti, with i ∈ I, let Pi be the price of a commodity or energy futures with maturity on

date TI−1 and Zi be a vector of factors that have dynamics that are imperfectly correlated with

the ones of this price. The sets Pi and Zi include the values that these quantities can respectively

assume. The quantity CI−1 (PI−1,ZI−1) represents a given date TI−1 cash flow. For example,

it may represent the margin from producing and selling on the wholesale market an amount of

commodity or energy on this date.

The goal is to attempt to replicate the date TI−1 cash flow by trading a risk less bond and the

given futures from dates T0 through TI−2. Denote by Bi the dollar value of the bond position on

date Ti for i ∈ I (B0 is given). Let θi be the number of futures held on date Ti, with i ∈ I \{I−1}.

The market value of a futures position is zero when it is set up. Thus, on date Ti the market value

of the portfolio (Bi, θi) is

Vi = Bi. (1)

Let D be the per period risk free discount factor, which is assumed both deterministic and constant

for simplicity. The futures position θi gives rise to the cash flow (Pi+1 − Pi) θi on date Ti+1.

Attention is restricted to self financing trading portfolios, for which the change in the market value

of the bond position from date Ti to date Ti+1, expressed in terms of date Ti+1 dollars, only derives
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from the futures position cash flow on date Ti+1:

Bi+1 −
Bi
D

= (Pi+1 − Pi) θi. (2)

It follows from (1)-(2) that the dynamics of the market value of the portfolio satisfy

Vi+1 =
Vi
D

+ (Pi+1 − Pi) θi. (3)

Let ψ be a self financing trading policy and Ψ be the set of all such policies. Denote by V ψ
i

the date Ti value of the trading portfolio for policy ψ. Given an initial bond position with market

value V0, the goal is to find a policy ψ ∈ Ψ that minimizes the expected replication error on date

TI−1:

min
ψ∈Ψ

E
[(
V ψ
I−1 − CI−1 (PI−1,ZI−1)

)2
| V0, P0,Z0

]
. (4)

Because the market is incomplete, it is impossible to exactly replicate the date TI−1 cash flow.

3. Methodology

This section shows how stochastic dynamic programming can be used to characterize the solution

of model (4). It is based on Bertsimas et al. (2001), Gugushvili (2003).

The set of stages is I. The state in each stage i is the triple (Vi, Pi,Zi) ∈ R × Pi × Zi. The

terminal conditions that define the value function in stage I − 1 for each state (VI−1, PI−1,ZI−1)

are

JI−1 (VI−1, PI−1,ZI−1) := [VI−1 − CI−1 (PI−1,ZI−1)]
2 . (5)

The Bellman equations for each other stage and state are

Ji (Vi, Pi,Zi) = min
θi∈R

E
[
Ji+1

(
Vi
D

+ (Pi+1 − Pi) θi, Pi+1,Zi+1

)
| Pi,Zi

]
, (6)

where Vi is not included as a conditioning quantity for notational simplicity. Define aI−1 (PI−1,ZI−1),

bI−1 (PI−1,ZI−1), and cI−1 (PI−1,ZI−1) as one, CI−1 (PI−1,ZI−1), and zero, respectively. The ter-

minal conditions (5) can thus be expressed as

JI−1 (VI−1, PI−1,ZI−1) = aI−1 (PI−1,ZI−1) [VI−1 − bI−1 (PI−1,ZI−1)]
2 + cI−1 (PI−1,ZI−1) .

Consider stage i ∈ I \ {I − 1}. Make the induction hypothesis that for each stage j from i + 1

through I − 2 and corresponding state (Vj , Pj ,Zj) the value function Jj (Vj , Pj ,Zj) can be written

as

Jj (Vj , Pj ,Zj) = aj (Pj ,Zj) [Vj − bj (Pj ,Zj)]
2 + cj (Pj ,Zj) , (7)
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for some quantities aj (Pj ,Zj) ≥ 0, bj (Pj ,Zj), and cj (Pj ,Zj). Denote by fi(θi) the objective

function of the optimization on the right hand side of (6). Using (7) expressed with j = i+1 in (6),

rearranging, dropping both the suffix of each stage i + 1 quantity and the conditioning on stage i

information when taking expectations, and replacing E with Ei for clarity yields

fi (θi) = Ei
[
(Pi+1 − Pi)

2 ai+1

]
θ2i + 2Ei

[
(Pi+1 − Pi)

(
Vi
D

− bi+1

)
ai+1

]
θi

+Ei

[(
Vi
D

− bi+1

)2

ai+1

]
+ Ei [ci+1] . (8)

The optimization on the right hand side of (6) can thus be written as

min
θi∈R

fi (θi) . (9)

If the coefficient of the quadratic term in (8) is zero then so is the one of the linear term in this

expression. That is, the objective function in (9) does not depend on θi. In this degenerate case

define the optimal value of θi in (9) to be θ∗i := 0. Otherwise the induction hypothesis implies that

the term Ei
[
(Pi+1 − Pi)

2 ai+1

]
in (8) is strictly positive, so that the minimizer in (9) is

θ∗i =
Ei [(Pi+1 − Pi) (bi+1 − Vi/D) ai+1]

Ei
[
(Pi+1 − Pi)

2 ai+1

] . (10)

Replacing θi with θ
∗
i in (8) and using (10) leads to

fi (θ
∗
i ) = −(Ei [(Pi+1 − Pi) (bi+1 − Vi/D) ai+1])

2

Ei
[
(Pi+1 − Pi)

2 ai+1

] + Ei

[(
Vi
D

− bi+1

)2

ai+1

]
+ Ei [ci+1] . (11)

This expression applies also to the degenerate case by defining 0/0 as zero, a convention used

throughout. Define

pi :=
Ei [(Pi+1 − Pi) ai+1bi+1]

Ei
[
(Pi+1 − Pi)

2 ai+1

] , (12)

qi :=
Ei [(Pi+1 − Pi) ai+1]

Ei
[
(Pi+1 − Pi)

2 ai+1

] , (13)

where the suffix (Pi,Zi) is omitted from the two quantities being defined. Using (12)-(13) and

adopting a similar simplification, further define

ai :=
1

D2
Ei

[
(1− (Pi+1 − Pi) qi)

2 ai+1

]
, (14)

bi :=
1

aiD
Ei [(bi+1 − (Pi+1 − Pi) pi) (1− (Pi+1 − Pi) qi) ai+1] , (15)

ci := Ei [ci+1] + Ei
[
(bi+1 − (Pi+1 − Pi) pi)

2 ai+1

]
− aib

2
i .
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Some algebra shows that Ji (Vi, Pi,Zi), which corresponds to the right hand side of (11), can be

written as

ai (Pi,Zi) [Vi − bi (Pi,Zi)]
2 + ci (Pi,Zi) ,

where the suffix (Pi,Zi) for ai (Pi,Zi), bi (Pi,Zi), and ci (Pi,Zi) is reinstated. The induction

hypothesis and (14) imply that ai (Pi,Zi) is (weakly) positive. The properties inductively assumed

for each state in stages i+1 through I − 2 thus also hold for each state in stage i. The principle of

mathematical induction implies that in every stage and state the value function can be expressed

as

Ji (Vi, Pi,Zi) = ai (Pi,Zi) [Vi − bi (Pi,Zi)]
2 + ci (Pi,Zi) ,

with ai (Pi,Zi) ≥ 0. Using (12)-(13) and appending the suffix (Pi,Zi) to both pi and qi, the right

hand side of (10) can be written as

pi (Pi,Zi)−
qi (Pi,Zi)

D
Vi, (16)

which is the optimal decision rule for stage i. It is linear in the value of the portfolio, Vi. The

definitions (12)-(13) and the recursive expressions (14)-(15) form the basis for the computation

of (16) in applications.

4. Discussion

This section characterizes the optimal initial bond position, linking the material in Bertsimas et al.

(2001) to the one in Schweizer (1995).

Model (4) takes the initial bond position V0 as given. Denote as V0 (P0,Z0) the value of this

position that leads to the smallest replication error. This value is known as the minimal production

cost for the cash flow CI−1 (PI−1,ZI−1). That is, it belongs to

argmin
V0∈R

min
ψ∈Ψ

E
[(
V ψ
I−1 − CI−1 (PI−1,ZI−1)

)2
| V0, P0,Z0

]
.

The quantity V0 (P0,Z0) is b0 (P0,Z0) and the minimal approximate replication error is c0 (P0,Z0).

To characterize V0 (P0,Z0), consider expressions (14)-(15), which, using the same notational

simplifications adopted in §3, after some algebra can be equivalently written as

ai =
1

D2
Ei [(1− (Pi+1 − Pi) qi) ai+1] , (17)

bi =
Ei [(1− (Pi+1 − Pi)qi) ai+1bi+1]

aiD
. (18)
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An induction argument starting from stage I − 2 establishes that these terms satisfy

ai =
1

D2[I−(i+1)]
Ei

[
I−2∏
k=i

(1− (Pk+1 − Pk) qk)

]
, (19)

bi =
Ei

[
CI−1

∏I−2
k=i (1− (Pk+1 − Pk)qk)

]
aiDI−(i+1)

, (20)

with CI−1 (PI−1,ZI−1) written without suffix in (20) to reduce the notational burden. Substitut-

ing (19) in (20) and simplifying yields

bi = DI−(i+1)
Ei

[
CI−1

∏I−2
k=i (1− (Pk+1 − Pk)qk)

]
Ei

[∏I−2
k=i (1− (Pk+1 − Pk) qk)

] . (21)

The quantity
∏I−2
k=i (1− (Pk+1 − Pk)qk) /Ei

[∏I−2
k=i (1− (Pk+1 − Pk) qk)

]
is a signed measure known

as the variance optimal measure. In particular, it is a martingale measure. That is, denoting by Ẽi
conditional expectation under this measure, it holds that Ẽi [Pj ] = Pi for j equal to i+ 1 through

I − 1. Expression (21) evaluated for i = 0 and the equality V0 (P0,Z0) = b0 (P0,Z0) imply

V0 (P0,Z0) = DI−1Ẽ [CI−1 (PI−1,ZI−1) | P0,Z0] . (22)

That is, the minimal production cost of the cash flow CI−1 (PI−1,ZI−1) is its expected value under

the variance optimal measure deflated by applying the risk free discount factor. The condition (22) is

consistent with risk neutral valuation in complete markets, in which case the market value of a risky

cash flow is its expected value under the so called risk neutral measure, which is also a martingale

measure, discounted using the risk free rate (see, e.g., Smith and McCardle 1999; Luenberger 2014,

§14.5; Secomandi and Seppi 2014; and references therein). The quantity V0 (P0,Z0) can thus be

interpreted as a proxy for the market value on date T0 of the cash flow CI−1 (PI−1,ZI−1).

5. Conclusions

This work reviews quadratic hedging of commodity and energy cash flows in incomplete markets.

Focusing on a single future cash flow to be hedged by trading a risk less bond and a futures contract,

it formulates the hedging problem as an MDP and discusses both the structure of the optimal

hedging policy and the characterization of the optimal initial bond position. Secomandi (2018)

considers the case of linked cash flows that occur on multiple dates, in which case optimization of

the operating policy that generates them is relevant. Future research could deal with applications

in realistic settings, e.g., in the context of commodity and energy merchant operations (Secomandi

and Seppi 2014, 2016, Secomandi 2017).
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