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Commodity and energy prices are notoriously volatile. Firms routinely trade financial contracts to hedge their
cash flows that are exposed to this source of risk. When markets are incomplete, which is typical in practice,
eliminating such risk is impossible and attention must thus shift to its partial mitigation. This paper reviews
quadratic hedging, which is an appealing financial risk management approach for this setting, considering
a single commodity or energy cash flow that occurs on a given future date and assuming that financial
hedging is based on trading a risk less bond and a futures contract. This work formulates this hedging
problem as a Markov decision process, derives the optimal policy using stochastic dynamic programming,
and characterizes the initial optimal bond position. Further, it highlights related current and potential future
research.

1. Introduction

Commodities and energy sources exhibit notoriously high price volatility (Geman 2005, Kaminski
2013) [Roncoroni et al.|2015). Firms that handle them commonly trade financial instruments,
especially futures, to mitigate this source of risk (see Tirole 2006, §5.4 for a theoretical analysis of
the benefit of financial hedging and Pirrong 2015/ for a discussion of such practices at Trafigura). In
an incomplete market setting, which is the typical situation in practice (see, e.g., Swindle 2016 for
a discussion in the context of energy commodities), removal of commodity price risk is unattainable
and limited hedging of such risk is thus a necessity.

Quadratic hedging (Schweizer| 1995, Bertsimas et al.[[2001)) is an attractive approach for dealing
with market incompleteness when devising financial risk management policies. It is based on the
idea of forming a self financing approximate replicating portfolio that is dynamically adjusted to
minimize the expected quadratic hedging error. This paper reviews this methodology considering
a single commodity or energy cash flow that arises on a given date in the future and assuming
that financial hedging relies on trading a risk less bond and a futures contract. It formulates this
hedging problem as a Markov decision process (MDP); uses stochastic dynamic programming to
establish the optimal policy structure, which provides a basis for its computation in applications;
and characterizes the optimal initial bond position as a discounted expectation of the future cash
flow taken under a distinct martingale measure, which gives a proxy for the market value of this

cash flow.



This work slightly broadens the set up of Schweizer| (1995)), [Bertsimas et al.| (2001) based on
the formulation of (Gugushvili (2003) and, given its focus, considering futures, rather than stock,
trading, linking the findings of Bertsimas et al.| (2001) to the ones of Schweizer (1995). Cerny
(2004) makes a similar connection when the hedging portfolio includes multiple financial contracts
but no futures. |Canyakmaz et al. (2017) discuss related minimum variance hedging ideas (see,
e.g., Luenberger 2014, §12.10) in the context of inventory models with price risk without imposing
the self financing condition on the hedging portfolio.

Section [2| introduces the hedging problem and its MDP formulation. Section [3| presents a
stochastic dynamic programming approach to solve this MDP. Section [d] characterizes the optimal
initial bond position. Section [5| provides a summary and mentions related ongoing and potential

future research.

2. Model

This section formulates the hedging problem as an MDP based on Schweizer| (1995)), Bertsimas
et al.| (2001).

Consider I dates Ty through T7_1. The current date is Tp. Define 7 as the set {0,1,...,1 —1}.
On date T;, with ¢ € Z, let P; be the price of a commodity or energy futures with maturity on
date T7_1 and Z; be a vector of factors that have dynamics that are imperfectly correlated with
the ones of this price. The sets P; and Z; include the values that these quantities can respectively
assume. The quantity Cr_y (Pr—1,Z1-1) represents a given date T7_; cash flow. For example,
it may represent the margin from producing and selling on the wholesale market an amount of
commodity or energy on this date.

The goal is to attempt to replicate the date T7_1 cash flow by trading a risk less bond and the
given futures from dates Ty through 77 5. Denote by B; the dollar value of the bond position on
date T; for i € Z (By is given). Let 6; be the number of futures held on date T;, with i € Z\ {I —1}.
The market value of a futures position is zero when it is set up. Thus, on date T; the market value
of the portfolio (B;, 6;) is

Vi = Bi. (1)

Let D be the per period risk free discount factor, which is assumed both deterministic and constant
for simplicity. The futures position 6; gives rise to the cash flow (P11 — P;)6; on date Tji1.
Attention is restricted to self financing trading portfolios, for which the change in the market value

of the bond position from date T; to date T; 1, expressed in terms of date T;11 dollars, only derives



from the futures position cash flow on date T;1:

B;
Biy1— D= (Pig1— F;) 0;. (2)

It follows from — that the dynamics of the market value of the portfolio satisfy

Vi
Vig1 = D + (Piy1 — B) 6;. (3)

Let 9 be a self financing trading policy and W be the set of all such policies. Denote by Viw
the date T; value of the trading portfolio for policy . Given an initial bond position with market
value Vj, the goal is to find a policy ¢ € ¥ that minimizes the expected replication error on date
Tr_q:
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Because the market is incomplete, it is impossible to exactly replicate the date T7_1 cash flow.

3. Methodology

This section shows how stochastic dynamic programming can be used to characterize the solution
of model ([4). It is based on Bertsimas et al. (2001)), Gugushvili (2003).

The set of stages is Z. The state in each stage 7 is the triple (V;, P;, Z;) € R x P; x Z;. The
terminal conditions that define the value function in stage I — 1 for each state (Vi_1, Pr—1,Z1-1)
are

Jra(Viey, Pro1, Zr 1) == [Vio1 — Cr_1 (Pr_1, Z11))%. (5)

The Bellman equations for each other stage and state are

. Vi
Ji Vi, P, Z;) = ‘191_161%1@ |:Ji+1 <D + (Piy1 — Pi) 6;, Pig, Z¢+1> | P;, Zi:| , (6)

where V; is not included as a conditioning quantity for notational simplicity. Define a;_1 (Pr—1, Z1-1),
br—1 (Pr—1,Zr-1),and ¢y—1 (Pr-1,Z1-1) as one, Cr_1 (Pr—1, Z;_1), and zero, respectively. The ter-

minal conditions can thus be expressed as
Jr-1 (Vie1, Pr-1, Zr—1) = aj—1 (P—1, Z1-1) Vi1 = bi—1 (Pr—1, Z1-1))* + 11 (Pr—1, Z1-1) -

Consider stage i € Z \ {I — 1}. Make the induction hypothesis that for each stage j from i + 1
through I — 2 and corresponding state (V}, P;, Z;) the value function J; (Vj}, Pj, Z;) can be written
as

J; (V;. Py, Zj) = a; (P}, Z;) [V; — b; (P}, Z))]> + ¢; (P}, Z;) , (7)



for some quantities a; (P, Z;) > 0, b; (P, Z;), and ¢;j (P;, Z;). Denote by f;(6;) the objective
function of the optimization on the right hand side of @ Using expressed with j =i+ 1in @,
rearranging, dropping both the suffix of each stage i + 1 quantity and the conditioning on stage ¢

information when taking expectations, and replacing E with E; for clarity yields

Vi
fi(6) = E; [(Pi—i—l —- p)? ai—i—l} 07 + 2E; [(PH—I - P) (D — bi+1> ai+1:| 0;

Vi, N
D i+1 i+1

The optimization on the right hand side of @ can thus be written as

+E; + E; [ci+1] - (8)

0;eR
If the coefficient of the quadratic term in is zero then so is the one of the linear term in this
expression. That is, the objective function in @ does not depend on #;. In this degenerate case
define the optimal value of 6; in @ to be 6 := 0. Otherwise the induction hypothesis implies that
the term IE; [(P,-H — P,-)2 ai+1] in is strictly positive, so that the minimizer in (@) is

E; [(Pit1 — P;) (biv1 — Vi/D) ait1]
E; [(Pi-',-l ~ P)? ai-i—l}

Replacing 6; with 6] in and using leads to

)

. (10)

(E; [(Pis1 — P) (big1 — Vi/D) ai+1])”
E; [(Pz'+1 ~P)* ai+1}

fi(67) =— +E; +Eilciya].  (11)

Vi oo V.
D i+1 1+1

This expression applies also to the degenerate case by defining 0/0 as zero, a convention used

throughout. Define

E; [(Pit1 — P) ait1b;

P = [(Pisa )a2+1 +1]7 (12)
E; [(PiJrl - B) ai+1]
E; [(Pi1 — F;) a;

o = P m o] (13)
E; [(PiJrl - F) ai+1}

where the suffix (P;, Z;) is omitted from the two quantities being defined. Using (12)-(13) and

adopting a similar simplification, further define

1
ai = 7B (1= (Ps = P) ) ain] | (14)
1
bi = 5B [(bit1 — (Piv1 — P) pi) (1 — (Pip1 — B5) gi) @i, (15)
ci = Eilcin] +E [(bi—l-l — (P11 — P)pi)? az’—i—l} — a;b;.
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Some algebra shows that J; (V;, P;, Z;), which corresponds to the right hand side of , can be
written as

ai (P, Zi) [Vi = bi (P, Zi)) + ¢ (Pi, Zy)

where the suffix (P, Z;) for a; (P;, Z;), b; (P;, Z;), and ¢; (P;, Z;) is reinstated. The induction
hypothesis and imply that a; (P;, Z;) is (weakly) positive. The properties inductively assumed
for each state in stages ¢ + 1 through I — 2 thus also hold for each state in stage ¢. The principle of
mathematical induction implies that in every stage and state the value function can be expressed

as

Ji Vi, Pi, Z3) = a; (Py, Z) [Vi — b (Pi, Z3))* + i (Pi, Z3)

with a; (P, Z;) > 0. Using (12)-(13) and appending the suffix (P, Z;) to both p; and g;, the right
hand side of can be written as

a4 (P, Z;)

i (B, Z;) — i 1
(P z) - L2y, (16)

which is the optimal decision rule for stage i. It is linear in the value of the portfolio, V;. The

definitions — and the recursive expressions — form the basis for the computation
of in applications.

4. Discussion

This section characterizes the optimal initial bond position, linking the material in |Bertsimas et al.
(2001)) to the one in Schweizer| (1995).

Model takes the initial bond position Vj as given. Denote as Vg (FPy, Zy) the value of this
position that leads to the smallest replication error. This value is known as the minimal production
cost for the cash flow C7_q1 (Pr—1,Z7—1). That is, it belongs to

. o 2
ar\%gl[kmilﬁnél‘llflE [(VI_l —Cr-1 (Pr-1, Z1,1)> | Vo, Po, Zo] .
The quantity Vo (Py, Zp) is by (Py, Zp) and the minimal approximate replication error is ¢y (Py, Zy).

To characterize Vi (Py, Zy), consider expressions —, which, using the same notational

simplifications adopted in after some algebra can be equivalently written as

1
ai = pEi[(1 = (Piv1 = B) @) aira], (17)
o Ei( = (Piv1 — P)46) aiabiva]
b = e . (18)




An induction argument starting from stage I — 2 establishes that these terms satisfy

-2
1
a; = WEZ H (1 - (Pk+1 - Pk) Qk) ) (19)
k=1
E; {01—1 Hi;? (1 = (Prgr — Pk)‘]k)}
bi - aiDI_(H_l) ) (20)

with Cr_q (Pr—1, Z7—1) written without suffix in to reduce the notational burden. Substitut-
ing in and simplifying yields
E; [01—1 1= (1= (Peg1 — Pk)Qk)}

bi — DI*(H’I)
E; [ P2 (1= (P — Pk)(lk)}

(21)

The quantity Hi;? (1 = (Px+1 — Pi)ar) /E; { i;? (1 = (Pgg1 — Pr) qk)} is a signed measure known
as the variance optimal measure. In particular, it is a martingale measure. That is, denoting by E;
conditional expectation under this measure, it holds that E; [P;] = P; for j equal to i + 1 through
I — 1. Expression evaluated for i = 0 and the equality Vg (Py, Zy) = by (Po, Zy) imply

Vo (P, Zo) = D' 'E[Cr—1 (P1—1, Z1-1) | Po, Zo) .- (22)

That is, the minimal production cost of the cash flow Cy_q (Pr_1, Z7_1) is its expected value under
the variance optimal measure deflated by applying the risk free discount factor. The condition ([22]) is
consistent with risk neutral valuation in complete markets, in which case the market value of a risky
cash flow is its expected value under the so called risk neutral measure, which is also a martingale
measure, discounted using the risk free rate (see, e.g., Smith and McCardle|1999; Luenberger|2014,
§14.5; Secomandi and Seppi|[2014; and references therein). The quantity V¢ (Py, Zy) can thus be

interpreted as a proxy for the market value on date Ty of the cash flow C7_1 (Pr—1,Z1_1).

5. Conclusions

This work reviews quadratic hedging of commodity and energy cash flows in incomplete markets.
Focusing on a single future cash flow to be hedged by trading a risk less bond and a futures contract,
it formulates the hedging problem as an MDP and discusses both the structure of the optimal
hedging policy and the characterization of the optimal initial bond position. |Secomandi| (2018)
considers the case of linked cash flows that occur on multiple dates, in which case optimization of
the operating policy that generates them is relevant. Future research could deal with applications
in realistic settings, e.g., in the context of commodity and energy merchant operations (Secomandi

and Seppi| 2014} 2016, |[Secomandi|2017)).
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