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Explicit Serre weights for two-dimensional
Galois representations
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ABSTRACT

We prove the explicit version of the Buzzard—Diamond-Jarvis conjecture formulated
by Dembele et al. (Serre weights and wild ramification in two-dimensional Galois
representations, Preprint (2016), arXiv:1603.07708 [math.N'T]). More precisely, we prove
that it is equivalent to the original Buzzard-Diamond-Jarvis conjecture, which was
proved for odd primes (under a mild Taylor—Wiles hypothesis) in earlier work of the
third author and coauthors.

1. Introduction

The weight part of Serre’s conjecture Hilbert modular forms predicts the weights of the Hilbert
modular forms giving rise to a particular modular mod p Galois representation, in terms of the
restrictions of this Galois representation to decomposition groups above p. The conjecture was
originally formulated in [BDJ10] in the case that p is unramified in the totally real field. Under
a mild Taylor—Wiles hypothesis on the image of the global Galois representation, this conjecture
has been proved for p > 2 in a series of papers of the third author and coauthors, culminating in
the paper [GLS15], which proves a generalization allowing p to be arbitrarily ramified. We refer
the reader to the introduction to [GLS15] for a discussion of these results.

Let K/Q, be an unramified extension and let p : Gx — GL2(F,) be a (continuous)
representation. If p is irreducible, then the recipe for predicted weights in [BDJ10] is completely
explicit, but in the case where it is a non-split extension of characters, the recipe is in terms of
the reduction modulo p of certain crystalline extensions of characters. This description is not
useful for practical computations and the recent paper [DDR16] proposed an alternative recipe
in terms of local class field theory, along with the Artin—Hasse exponential, which can be made
completely explicit in concrete examples (indeed, [DDR16, §§9-10] gives substantial numerical
evidence for their conjecture).

In this paper, we prove [DDR16, Conjecture 7.2], which says that the recipes of [BDJ10]
and [DDR16] agree. This is a purely local conjecture and our proof is purely local. Our main
input is the results of [GLS14] (and their generalization to p = 2 in [Wan16]). We briefly sketch
our approach. Suppose that p = (% ;2), and set x = x1Xo ! For a given Serre weight, the recipes
of [BDJ10] and [DDR16] determine subspaces Lppy and Lppr of H'(Gk,x), and we have to
prove that Lypy = LppRr.-

Received 22 August 2016, accepted in final form 31 March 2017, published online 20 June 2017.
2010 Mathematics Subject Classification 11F80, 11F41 (primary).
Keywords: Galois representations, Hilbert modular forms.

The first author is supported in part by NSF grant DMS-1648702. The second author is supported in part
by the NSF grant DMS-1303450. The third author is supported in part by a Leverhulme Prize, EPSRC grant
EP/L025485/1, Marie Curie Career Integration Grant 303605, and ERC Starting Grant 306326.

This journal is (©) Foundation Compositio Mathematica 2017.

Downloaded from https://www.cambridge.org/core. University of Chicago, on 07 Oct 2017 at 02:57:58, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1112/5S0010437X17007254



F. CALEGARI ET AL.

Let Ko /K be the (non-Galois) extension obtained by adjoining a compatible system of p"th
roots of a fixed uniformizer of K for all n. The restriction map H'(Gk,x) — H'(Gk..,X) is
injective unless x is the mod p cyclotomic character, and [GLS14, Theorem 7.9] allows us to
give an explicit description of the image of Lppj in H 1(G K., X) in terms of Kisin modules.
The theory of the field of norms gives a natural isomorphism of G with Gy (y)), where k

is the residue field of K, and we obtain a description of the image of Lppj in Hl(Gk((u)), X)
in terms of Artin—Schreier theory. On the other hand, we prove a compatibility of the Artin—
Hasse exponential with the field of norms construction that allows us to compute the image of
Lppr in HY(G k((w))> X)- We then use an explicit reciprocity law of Schmid [Sch36] to reduce the
comparison of Lppy and Lppr to a purely combinatorial problem, which we solve.

It is possible that the conjecture of [DDR16] could be extended to the case that p ramifies
in K; we have not tried to do this, but we expect that if such a generalization exists, it could be
proved by the methods of this paper, using the results of [GLS15].

The fourth author’s PhD thesis [Mav16] proved [DDR16, Conjecture 7.2] in generic cases
using similar techniques to those of this paper in the setting of (¢, I')-modules (using the results
of [CD11] where we appeal to [GLS14]), while the first three authors arrived separately at the
strategy presented here for resolving the general case.

2. Notation

We follow the conventions of [GLS15], which are the same as those in the arXiv version of [GLS14]
(see [GLS15, Appendix A] for a correction to some of the indices in the published version
of [GLS14]). Let p be prime, and let K/Q), be a finite unramified extension of degree f, with
residue field k. Embeddings o : k — Fp biject with Qp-linear embeddings K — @p, and we
choose one such embedding oy : k — Fp, and recursively require that of 1 = 0;. Note that
oit+f = 0;. Note also that this convention is opposite to that of [DDR16], so that their o; is our
o_;; consequently, to compare our formulae to those of [DDR16], one has to negate the indices
throughout.

If 7 is a root of 2P’ ~! +p = 0 then we have the fundamental character wy : Gx — k> defined
by

wi(g) = g(m)/r (mod 7O ().

The composite of w; with the Artin map Artg (which we normalize so that a uniformizer
corresponds to a geometric Frobenius element) is the homomorphism K* — k* sending p to
1 and sending elements of O to their reductions modulo p. For each o : k — Fp, we set
we 1= 0 owl|r, and w; := wy, so that, in particular, we have wfﬂ = w;.

If I/k is a finite extension, we choose an embedding 7 : | — Fp extending oo, and again set
i = 01, ;. We have an isomorphism

1 ®r, F, — [[Fp. (2.0.1)

g4

with the projection onto the factor labelled by g; being given by z @ y — oi(x)y. Under this
isomorphism, the automorphism ¢ ® id on I ®p, I, becomes identified with the automorphism

on [[F, given by (y;) = (yi-1)-
If M is an | ®p, Fp-module equipped with a ¢-linear endomorphism ¢, then the
isomorphism (2.0.1) induces a corresponding decomposition M —> T[], M;, and the

endomorphism ¢ of M induces Fj-linear morphisms ¢ : M;_1 — M,.
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3. Results

3.1 Fields of norms

We briefly recall (following [Kis09, §1.1.12]) the theory of the field of norms and of étale -
modules, adapted to the case at hand. For each n, let (—p)l/pn be a choice of the p™th root of
—p, chosen so that ((—p)/?""")P = (—p)V/?" and let K,, = K((—p)*/?"). Write Ko, = U, Kn-
Then, by the theory of the field of norms,

i K

NKTH»l/KTL

(the transition maps being the norm maps) can be identified with k((u)), with ((—p)Y/?"),
corresponding to w. If F' is a finite extension of K (inside some given algebraic closure of K
containing K ), then Fy, := F K is a finite extension of K, and applying the field of norms
construction to F,, we obtain a finite separable extension

F = lim FK,,
<—

Nrk, /FK,

of k((u)). If F'is Galois over K, then Fy, is Galois over K, and F is also Galois over k((u)),
and there is a natural isomorphism of Galois groups

Gal(F/k((w))) > Gal(Fao/Ks0), (3.1.1)

and, composing with the canonical homomorphism Gal(Fw/Ko) — Gal(F/K), a natural
homomorphism of Galois groups

Gal(F/k((u))) — Gal(F/K). (3.1.2)

Every finite extension of K., arises as such an F,, and, in this manner, we obtain a
functorial bijection between finite extensions of K, and finite separable extensions F of k((u)).
In particular, the various isomorphisms (3.1.1) piece together to induce a natural isomorphism
of absolute Galois groups

Gk, = Gk((u))~ (3.1.3)

The utility of the isomorphism (3.1.3) arises from the fact that there is an equivalence of
abelian categories between the category of finite-dimensional F,-representations V' of Gi((u)) and
the category of étale ¢-modules. The latter are, by definition, finite k((u)) ®, Fp-modules M
equipped with a p-semilinear map ¢ : M — M, with the property that the induced k((u))@Fpr-
linear map ¢*M — M is an isomorphism. This equivalence of categories preserves lengths in
the obvious sense, and is given by the functors

T2 M = (k((u))*P @) M)?~
(where k((u))®P is a separable closure of k((u))) and
Vi (k((u)*P ®F, V)G,

The isomorphism (3.1.3) then allows us to describe finite-dimensional representations of G,
over F, via étale p-modules. In the §3.3 we make this description completely explicit in the
context of (the restriction to Ko of) the crystalline extensions of characters that arise in the
conjecture of [BDJ10].
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The above isomorphisms of Galois groups are compatible with local class field theory in a
natural way. Namely, if F/K and F/k((u)) are as above, then the projection map k((u)) =
lim K,, — K induces a natural map
(-NKn+1/Kn

k((w)™ /Ng iy F* — K*/Npjg ™, (3.1.4)

and we have the following result.

LEMMA 3.1.5. If F/K is a finite abelian extension, then the following diagram commutes.

Gal(F/k( B gy Fx
al(F/k((u))) (W)™ /N Fk((u))x
l(3.1.2) l(3-1-4)
Artf(l X X
Gal(F/K) K> /Np/gF

Proof. This is easily checked directly, and is a special case of [AJ12, Proposition 5.2], which
proves a generalization to higher-dimensional local fields; see also [Lau88], where the analogous
result is proved for general APF extensions (strictly speaking, the result of [Lau88] does not apply
as written in our situation, as the extension K. /K is not Galois; but, in fact, the argument
still works). In brief, it is enough to check separately the cases that F//K is either unramified
or totally ramified; in the former case the result is immediate, while the latter case follows from
Dwork’s description of Artin’s reciprocity map for totally ramified abelian extensions [Ser79,
XIII §5 Corollary to Theorem 2]. a

3.2 Compatibility of pairings

It will be convenient to establish a further compatibility between various natural pairings. For
a field M, let M) /M denote the maximal exponent p abelian extension (inside some fixed
algebraic closure). If My, /M is an extension, then we have a diagram as follows (where pr is the

natural map given by restriction of automorphisms of Még) to M (1’)).

Gal(M®) /M) x H Gy, F,) — F,

Gal(MW/M) x H(Gai,Fy) — F,
LEMMA 3.2.1. The diagram commutes, in the sense that (pra, 8) = {a,13).

Proof. Since H'(Gyr,Fp) = Hom(Gpr,Fp) (and similarly for M), since the pairings are given
by evaluation, and since ¢ is the natural restriction map, this is clear. O

Suppose now that M is a finite extension of @, with residue field /, and that 7 is a uniformizer
of M. If My, /M is the extension given by a compatible choice of p-power roots of 7, then

Gal(M®) /M) ~ I((u)* @ F,

via the field of norms construction together with local class field theory (applied to I((u))).
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On the other hand, taking Galois cohomology of the short exact sequence

0 — F, — I((u))*® @g, F, “25 1((u))*® @, F, — 0,

where ¥ : I((w))**P — [((u))*P is the Artin—Schreier map defined by ¥ (z) = 2P — z, yields an
isomorphism

HY (G, Fp) = H' (Gy(uy), Fp) = Hom(Gyu), Fp) = (1((w)) /%1((w))) @, Fp;

concretely, the element a € [((u)) corresponds to the homomorphism f, : Gi((u)) — Fp given by
fa(g) = g(x) — z, where x € I((u))**P is chosen so that ¥ (z) = a. (See e.g. [Ser79, X §3(a)] for
more details.)

THEOREM 3.2.2. Let oy € Gal(M /M ) be the Galois element corresponding via the local
Artin map to an element b € 1((u))* ®]Fp, and let f, be the element of H* (G, F,) corresponding
to an element a € (I((u))/¥Il((u))) ®F, Fp. Then

db
(far00) = Trigy, B, /F, <Resa' b)'

Proof. This was first proved in [Sch36]; for a more modern proof, see [Ser79, XIV Corollary to
Proposition 15]. a

3.3 Crystalline extension classes and Lppj

We begin by briefly recalling some of the main results of [GLS14]. For each 0 < ¢ < f — 1 we fix
an integer r; € [1,p]; we then define r; for all integers ¢ by demanding that 7,4 = r;. We let J
be a subset of {0,..., f — 1}, and we assume that J is maximal in the sense of [DDR16, §7.2[;
in other words, we assume that:

(i) if for some ¢ > j we have (rj,...,7) = (1,p—1,...,p—1,p), and j+ 1,...,7 ¢ J, then
j ¢ J; and
(ii) if all the r; are equal to p—1, or if p = 2 and all of the r; are equal to 2, then J is non-empty.

We let x : Gg — ?; be a character with the property that

_ TJH —Tj
Xlre = [Twy [T;

jeJ  g¢J

We let Lpp;y denote the subset of H'(G,x) consisting of those classes corresponding to
extensions of the trivial character by y that arise as the reductions of crystalline representation
whose o;-labelled Hodge-Tate weights are {0, (—1)"#/r;}, where (—=1)#7 is 1 if i € J and —1
otherwise. The subsequent points follow from the proof of [GLS14, Theorem 9.1], together
with [GLS14, Lemmas 9.3 and 9.4] and (in the case that p = 2) the results of [Wan16].

(1) The subset Lgpy is an Fy-subspace of H' (G, x).
(ii) An extension class is in Lppy if and only if it admits a reducible crystalline lift whose
oi-labelled Hodge Tate weights are {0, (—1)¢/r;}.
(iii) If J ={0,...,f — 1} and all r; = p, then Lppy = HY(Gk, X)-
(iv) Assume that we are not in the case of the previous point. Then dime Lppj = |J|, unless
X =1, in which case dimg Lppy = |J|+ 1.
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We recall below from [DDR16] the definition of another subspace of H!(G, x), denoted by
Lppr; our main result, then, is that Lppy = Lppr. We begin with an easy special case.

LEmma 3.3.1. If J ={0,..., f — 1} and every r; = p, then Lppy = Lppr.

Proof. In this case we have Lppr = H'(Gk,x) by definition (see Definition 3.4.1 below), and
we already noted above that Lgpy = H'(Gk, X)- O

We can and do exclude the case covered by Lemma 3.3.1 from now on; that is, in addition
to the assumptions made above, we assume that:

e if every r; is equal to p, then J # {0,..., f — 1}.

If x =€, then the peu ramifié subspace of H'(G,€) is, by definition, the codimension one
subspace spanned by the classes corresponding via Kummer theory to elements of Oj. Since we
have excluded the cases covered by Lemma 3.3.1, Lppj is contained in the peu ramifié subspace
of H'(Gk,€) by [DS15, Theorem 4.9].

By [GLS15, Lemma 5.4.2], for any x # € the natural restriction map H'(Gg,x) —
HY(Gk.,x) is injective, while if x = €, then the kernel is spanned by the tres ramifié class
corresponding to —p; in particular, the restriction of this map to Lppj is injective. The following
theorem describes the image of Lppyj; before stating it, we introduce some notation that we will
use throughout the paper.

Write x as a power of wy times an unramified character p : Gal(L/K) — ?; , and write
w(Frobg) = a, so that al**! = 1; here Frobg € Gal(L/K) denotes the arithmetic Frobenius. For
each o : k — F,, we let \,, be the element (1,a7?,... ,at Ry ¢ | @0 Fp, so that A, is a
basis of the one-dimensional F,-vector space (I ® » Fp)Gal(L/ K)=r Similarly, we let Aop-1 be
the element (1,a,...,al" 1) €l @y, F,.

THEOREM 3.3.2. The subspace Lppy of H'(G,x) consists of precisely those classes whose

restrictions to H'(Gk._,x) can be represented by étale p-modules M of the following form.
Set hy =r; ifi € J and h; =0 ifi € J. Then we can choose bases e;, f; of the M; so that ¢

has the form

ri—h;

plei—1) =u ‘eq,

o(fic1) = (a)iuhifz‘ + zie;.

Here (a); = 1 for i # 0, and equals a = u(Frobg) for ¢ = 0; and we have x; = 0 if i ¢ J and
x; € Fy if i € J, except in the case that x = 1.

If x =1 then a = 1, and if we fix some ig € J, then x;, is allowed to be of the form x + 7 u?
with z} , x] € F, (while the other x; are in ).

In every case, the x; are uniquely determined by M.

Proof. In the case p > 2, this is an immediate consequence of [GLS14, Theorem 7.9] (which
describes the corresponding Kisin modules, which are just lattices in M; the set J’ appearing
there can be taken to be our J by [GLS14, Proposition 8.8] and our assumption that J is maximal)
and the proof of [GLS14, Theorem 9.1] (which shows that the different x; give rise to different
Galois representations), while if p = 2, then the result follows from the results of [Wanl6]. O
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As in §2, we let 7 be a choice of (pf — 1)th root of —p. Write M := L(r), where L/K
is an unramified extension of degree prime to p, chosen so that x|g,, is trivial (in [DDR16] a
slightly more general choice of M is permitted, but it is shown there that their constructions
are independent of this choice, and this choice is convenient for us). Then M/K is an abelian
extension of degree prime to p. Since (pf —1) is prime to p, for each n > 1 there is a unique p™th
root w!/P" of 7 such that (71/P")®' =1 = (—p)1/P" and we set M, = M (x¥/P"), My = U, M.

If M is an étale g-module with corresponding G ,_-representation 7'(M), then it is easy to
check that the étale ¢-module corresponding to T'(M) is

|GMoo

My =1((w)) ®k((u)) M.

s upd 1

Applying this to one of the étale ¢-modules arising in the statement of Theorem 3.3.2, it
follows that (with the obvious choice of basis e;, f; for M) the matrix of ¢ : Myri—1 — My

1S
0 (a);uhi®' =1

whereas above h; = r; if i € J and h; = 0 if i ¢ J, and z; is zero if i ¢ J. Furthermore, z; € F,
except that if xy = 1, we have fixed a choice of iy € J, and z;, is allowed to be of the form
i + xé’ou”(f’f_l) with @] , 2] € F,. (Here the My, are periodic with period f[l : k], but of
course the 7;, h; and z; depend only on i modulo f.)

We now make a change of basis, setting ¢/ = u®e; and f! = al//flufi f; (where 0 < i <
fll : k] — 1), so that the matrix of ¢ : Mys;-1 = Mys; becomes

wri—h)(Pf =D+paii—ai o li=1/f] g qypBi-1—au
0 whi e =D+pBici—Bi |

We choose the «;, 8; so that the entries on the diagonal become trivial; concretely, this means

that we set
f-1 f-1
;= — Z(Tz'+j+1 —hig)p’ T, Bi=— Z hivjrp! 1.
=0 =0

Write &; := a; — pBi—1, so that we have

F-1
&= (1) T 4 Gieri(pf - 1),
=0

where d;c; =1 if i € J and 0 otherwise. B
With the obvious basis for My, as an I((u)) ®F, Fp-module, ¢, is given by the matrix

1 (xiaflx\ai,u—luf&)i:O,...,f—l
0 1

where A, ,-1 is the element of | ®f o, F, that we defined above. Then T'(M /) is an extension of
the trivial representation by itself, and thus corresponds to an element of Hom(Gl((u)),R,). By
the definition of T', the kernel of this homomorphism corresponds to the Artin—Schreier extension
of I((u)) determined by (x;),, ,~1u %)=, f—1. We have therefore proved the following result.
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COROLLARY 3.3.3. The image of Lppy in H' (G, Fp) = Hom(Gy(u)),Fp) is spanned by the

classes f, |, -& corresponding via Artin-Schreier theory to the elements
Tl

>‘017M71u7€i €l ®k10i FP - ! ®]Fp FT”

for i € J, together with the class f)\

Tig ok

ifx=1.
Lp 0gg X

As in [DDRI16, §3.2], we may write x|, = w;® for some unique ng of the form ny =
Zle a;p/ =7 with each a; € [1,p] and at least one a; # p. We set

f
ni =Y aip;p’ I,
j=1

so we have x|r, = w;", and for all 7, j we have
p 'ni=pIn; (modp’ —1).

Note that we have

_ T Ty
Xlne = ij H“’j

jeJ  g¢J
f-1 o .

_ H wf(—1)1+J+1€‘]ri+j+117f71ﬂ

7

§=0

_ w?i*]’ﬂi—l _ wiﬁi’

so that, in particular, we have
& =n; (modp/ —1). (3.3.4)

3.4 The Artin—Hasse exponential and Lppgr
We now recall some of the definitions made in [DDR16, §5.1]. In particular, for each i we define
an embedding o} and an integer n} as follows. If a;_1 # p, then we set o} = 0;_1 and n} = n;_;.
If a;—1 = p, then we let j be the greatest integer less than ¢ such that a;_; # p — 1, and we set
ol =oj_1 and n} =n;_1 — (p/ — 1). Note that we always have n} > 0.

We let E(z) = exp(}_,,502"" /p™) € Zp|[x]] denote the Artin-Hasse exponential. For any
a € myy, we define the homomorphism

€a 1l O, Fp — O} ®F, Fp
by €n(a ® b) := E([a]a) @ b, where [] : I = W(I) is the Teichmiiller lift. Then we set
Uj 1= € (/\Ué,u) € 0;\} ®Fp-

In the case that y = 1, we also set ugiv ;=7 ® 1 € M* ® ?p, and in the case that x = €, the
mod p cyclotomic character, we set Ucyc 1= € .7 _1)/p-1) (b®1), where b € [ is any element with
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Trl/]Fp(b) # 0. It is shown in [DDRI16, §5] that the w;, together with uty if x = 1, and ucyc if
X = €, are a basis of the Fp—vector space

Uy = (M @, (1) e/,
Via the Artin map Artys, we may write
HY (G, x) = Homea a0y (M, Fp(x))

and, thus, identify H'(G,x) with the F,-dual of U,. We then define a basis of H(G,x) by
letting c¢;, cuiv (if x = 1) and ceye (if x = €) denote the dual basis to that given by the u;, ugriv
and Ucyc.

Recall from [DDR16, §7.1] the definition of the set u(J). It is defined as follows: u(J) = J,
unless there is some i ¢ J for which we have a;_1 =p, a;_o =p—1,...,a;i—s =p—1,a;—5_1 # p—1,
and at least one of i — 1,7 —2,...,7 — s is in J. If this is the case, we let £ be minimal such that
i—x € J, and we consider the set obtained from J by replacing ¢ —« with 7. Then u(J) is the set
obtained by simultaneously making all such replacements (that is, making these replacements
for all possible 7).

DEFINITION 3.4.1. We define Lppg to be the subspace of H' (G, x) spanned by the classes ¢;
for i € p(J), together with the class cuiv if x = 1, and the class cqyc if x =€, J ={0,..., f — 1}
and every r; = p.

3.5 The comparison of Lgpjy and Lppr
In this section, we prove that the classes in Lgpy are orthogonal to certain u;. We begin with a
computation that will allow us to compare the constructions underlying the definition of Lppgr,

which involve the Artin—Hasse exponential, with the field of norms constructions underlying the
description of Lgpj.

LEMMA 3.5.1. Foranyn >1,a €l andr > 1 with (r,p) = 1 we have N,/ E([a a'/P" ] (w /Py =
E([a]7™).

Proof. Let ¢ be a primitive p™th root of unity. Then
pt—1
N x B(@" )7 = [T B ) 7")r¢h)

T exp<z [a“p”]pmwl/p“)w’"ckpm)

k=0 m=0 pm
Pl 1/p P 1/p™\rp™ fkp™
_ exp(z sl e )
k=0 m>0
n_1
[a 1/p" ]p (m 1/p" Tp P i )
= exp< ¢ .
v &
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Now the sum over roots of unity is 0 if (" # 1 (equivalently, m < n) and p" if ¢P" = 1
(equivalently, m > n). Hence,

. N 1/p™p"™ (g 1/P"\rp™ pyn
NKTL/KE([al/p ](Wl/p )r) —6Xp<§ : [CL ] (7Tm ) 4 >
p

[al/P"]P"J”" (71-1/17" ),,,pn+7npn
pm+n >

m>=n

:exp<z

m=0

For each r» > 1 have a homomorphism
e L@F, = I(u)* ®F,
defined by €,r(a ® b) = E(au™) ® b. Then, for each i, we set

’Zli = eun;()\aéhu) (S l((u))x ® Fp.
LEMMA 3.5.2. Let r > 1 be coprime to p. Then under the homomorphism (3.1.4) (with M in
place of K), the image of E([a]u”) is equal to E([a]n"); consequently, for each i, the image of i,
is Uj .

Proof. This is an immediate consequence of Lemma 3.5.1, taking into account Lemma 3.6.1
below, which shows that n} is coprime to p. O

We now state and prove our main result, which establishes [DDR16, Conjecture 7.2], by
reducing the equality Lppg = Lppj to a purely combinatorial problem that is solved in § 3.6.

THEOREM 3.5.3. We have Lgpj = LppR.

Proof. Since we have dime Lgpy = dime Lppr = |J| + dy=1, it is enough to prove that
Lppy C Lppr- By the definition of Lppg, it is equivalent to prove that the image of every
class in Lgpy in Hl(GM,Fp) is orthogonal under the pairing of §3.2 to the elements u; € U,,
j & uld).

In the case that x =€, we also need to show that the classes are orthogonal to ucyc; to see
this, note that, as explained in [DDR16, §6.4] the classes ¢; (together with cgiy if p = 2) span
the space of classes which are (equivalently) flatly or typically ramified in the sense of [DDR16,
§3.3], which are exactly the peu ramifié classes; in other words, the classes orthogonal to ucyc
are exactly the peu ramifié classes. As we recalled in §3.3, it follows from [DS15, Theorem 4.9]
that every class in Lgpj is peu ramifié.

Combining Lemmas 3.1.5 and 3.2.1, Theorem 3.2.2, Lemma 3.5.2 and Corollary 3.3.3, we see
that we must show that for all i € J, j ¢ u(J), the residue
ST (3.5.4)

Trl@Epr/Fp Res(dlog(aj) ’ Aai,u

vanishes. (If x = 1, then we must also show that the pairing with )‘010, PP D=8 vanishes.)

m
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Since
dlogE(X) = (X + X + X?* 4+ ...) dlogX

and dlog(AMu™) = n - u~!, the pairing (3.5.4) evaluates to

/‘ ’!VL71 L.
Trlwﬁp@p Res <Z n;(cp ® 1)M()\U;7N)UHJP A1 U fz).

m=0

(Here p® 1:1®F, — | ® F, is the pth power map on [.)

This residue is given by the coefficient of u ™!, so we see that this pairing can be non-zero
only when §; = pmn} for some m > 0 (if x = 1, then we must also consider the possibility that
&—plpf —1)= pmn;», but this is excluded by Lemma 3.6.6 below). If this holds, then the pairing
evaluates to

n; Trl®]Fpr/Fp(90 ® 1)m()\U;_’M) N1

Now, we have
(()0 & 1)m()‘0;,p) : Aai,u—l = (90 ® 1)m()‘a;,u)‘ai_m,u—1)

which is non-zero if and only if ¢; = 0;_p,, in which case its trace to F, is equal to [l : k].
In conclusion, we have seen that in order for the pairing to be non-zero, we require:

(i) 0% = 0i—m; and

(ii) & = p™nl.

(In fact, although we do not need this stronger statement, we observe that the pairing is non-zero
if and only if these conditions hold, because n; is always a unit by Lemma 3.6.1, while [l : k] is
prime to p.) By Proposition 3.6.7 below, these conditions imply that j € u(J), as required. O

Remark 3.5.5. It is clear that the method of the proof of Theorem 3.5.3 could be used to compare
the bases of Lppy and Lppr that we have been working with. We have checked that in suitably

generic cases the bases are the same (up to scalars), but that in exceptional cases they may
differ.

3.6 Combinatorics

Our main aim in this section is to prove Proposition 3.6.7, which was used in the proof of
Theorem 3.5.3. We begin with some simple observations; the following three lemmas give us some
control on the quantities ¢ and n; which will be important in the proof of Proposition 3.6.7.

LEMMA 3.6.1. The quantity n} is not divisible by p.

Proof. This is automatic if a;—1 # p because then n} = n;—; = a,—1 (mod p). Assume that
a;—1 = p, and write that (a;—1,a;—2,...,a;) = (p,p—1,...,p— 1), with aj_; # p — 1. Now

nti=n; 1@ —1)=nj14+1=a;_1+1 (mod p).

However, since aj_; # p—1 and lies in [1, p], we have a;_1 # —1 mod p, and so n; # 0 (mod p).
O

LEMMA 3.6.2. Ifi € J, then 0 < & < p*(p! —1)/(p — 1).
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Proof. Since i € J, we have
& =plri+ (=) p e+ ()2 2 ()T (3.6.3)

The upper bound is immediate, as we have r; < p for all j (and in the case that all r; are
equal to p, we are not allowing J¢ to be empty). For the lower bound, if r; > 2, then & >
2pf — (pf +pf~1 4+ 4+ p?) > 0, so we may assume that r; = 1. Suppose that J # {i}, and let
z > 0 be minimal so that ¢ +x + 1 € J. Since r; = 1 and 7 € J, it follows from the maximality
condition on J that no initial segment of (7541,...,742) can be (p — 1,p — 1,...,p) (which
also excludes the degenerate case consisting of a single initial p). Hence, either all the r; for
j €li+1,i+ x] are at most p — 1, in which case
Pt A T <@ Y- =)
so that
Gzp T T =T pp =TT T >0,

or for some y < x we have rj41,...,74y =p—1 and 71441 < p — 1, in which case

P A T <@ 40T (- 1)
+ = 2p (T )
=@+ -
—pf VTl 2 S
<@+ -
=pf —p/7,

and one proceeds as above. Finally, if J = {i}, then arguing as above (and, again, using the
maximality condition on .J) we see (considering the two cases as above) that & > pf — (p/~1 +
ot p)p—1)=p>0. O

LEMMA 3.6.4. For any value of i, we have (pf —1)/(p—1) <n; < (pf = 1)+ = 1)/(p - 1).
Proof. This is immediate from the definition of n;. a

Let v,(&;) denote the p-adic valuation of §;. The following lemma shows that &; is in some
sense a function of this valuation, and is crucial for our main argument.

LEMMA 3.6.5. If i € J, and if m := vp(&), then m > 1. If furthermore m > 1, then we have
& = p™(ni—m — (p¥ — 1)), while if m = 1, then either & = pn;_1 or & = p(n;_1 — (pf — 1)),
depending on whether or not & /p > (pf —1)/(p — 1).

Proof. Equation (3.6.3) shows that m is at least 1 if ¢ € J. From (3.3.4), we deduce that & /p™ =
Ni—m (mod p/ —1). By Lemma 3.6.2 we have

0<&/p™ <p* ™' —1)/(p—1),

so that if m > 2 it follows by Lemma 3.6.4 that

&G/ < (' —1)/p-1) <nicm <@ -1+ @ -1)/(p-1).
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Since & > 0 by Lemma 3.6.2, the congruence modulo p/ — 1 forces the equality n;_,, — &/p™ =
(pf —1). If m = 1, then we have

0<&/p<@ -1+ -1)/(p-1)

and the claim follows in the same way. O
The following simple lemma was used in the proof of Theorem 3.5.3 in the case x = 1.

LEMMA 3.6.6. Suppose that x = 1 and that ¢ € J. Then there are no solutions to the equation
& —pp! —1) = p™(p! — 1), for any m > 0.

Proof. Since x = 1, we have n; = p/ — 1 for all j. From Lemma 3.6.5, we find that either
vp(&) > 2, in which case §; = 0 (contradicting Lemma 3.6.2), or v,(&;) = 1, in which case either
& =0or & = p(p’ —1). The first case again contradicts Lemma 3.6.2. The second case leads to
the equation 0 = p™(p/ — 1), which has no solutions, as required. O

We now prove our main combinatorial result.

PROPOSITION 3.6.7. Suppose that i € J, and that for some integers j, m we have:

(i) o} = 0i—m; and
(il) & = p™n’;
then j € p(J).

Proof. By Lemma 3.6.1, we must have m = v,(§;). Suppose first that m =1 and & = pn;—;. We
need to solve the equations 09- =o0;_1 and n; =Mn;_1.

If a;_1 = p, then we have o;. =041 and n; =ns_1— (pf — 1), where s is the greatest integer
less than j for which as_; # p — 1. Since 0’} = 0;—1 by assumption, we find that s = i. However,
then n;_1 = n; =n;_1 — (p/ — 1), which is not possible.

Thus, aj_1 # p and, hence, we have ¢/, = ;_1, so that j = i. We must show that j =i € u(J).
By the definition of u(J), this will be the case unless for some s > i we have i +1,...,s ¢ J, and
(aiy...;as—1) =(p—1,...,p—1,p). Suppose then that this holds; we must show that we cannot
have & = pn;_1 after all. Now, by definition and the assumption that i +1,...,s ¢ J, we have

E/p=p i —p P — (1) s ()T
< pf _ (pf*Q .. +pf+1*5*1) + (pfﬂ”*?*s et 1)p
:pf _ (pf—Q +...+pf+l—5) + (pf‘H—?_S 4. _|_p)

while

nior=p lai+p e+ ai
B e R e (e R
o ppltil

which gives the required contradiction.

Having disposed of the case that m = 1 and §; = pn;_1, it follows from Lemma 3.6.5 that we
may assume that & = p™(n;_n, — (p/ —1)). We show first that we cannot have aj_1 # p. Indeed,
if this occurs, then by definition we have n; = n;_1 and 0 = 0;_1, so that the equations we need
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to solve are i —m = j — 1, and n;_p, — (p/ — 1) = nj_1, which are mutually inconsistent, since
together they imply that n;_; — (pf —1) = nj_1.

We are thus reduced to the case when a;_1 = p and, by the definition of n;, we see (since
o', = 0j—m) that i—m must be congruent to the greatest integer ¢’ less than j —1 with ay # p—1.

j
Replacing 4 by something congruent to its modulo f, we may assume that i — m = ¢/, so that

i—m # Pp—1, Gji—mt1 =+ =aj_2 = p—1 and a;_1 = p. Again, we must show that this implies that
j € u(J). By the definition of u(J), this will be the case unless i—m~+1,...,j—2,5—1,7j ¢ J. Since
we are assuming that ¢ € J, this implies, in particular, that j is contained in the interval [i —m, 7).
We now show that this leads to a contradiction. Consider the equation & /p™ = nj_, — (pf -1).
From the definitions and the assumptions we are making, we have

Nicm =P im0 Gy + o G
= pf + pf—m‘f‘l—]aj + e Gy,

so that

P — (pf -1 =1 +pffm+i7jaj 4t ajm
> pf—m+i—j +pf—m+i—j—1 441

Thus, o o
& =™ (Nim — (pf = 1)) > p/ T 4 pf ==l . (3.6.8)

Since & < p?(pf —1)/(p — 1) by Lemma 3.6.2, we conclude that, in particular,
(0 = 1)/(p 1) > &/ > p 7372 = pl DI,

which is only possible if ¢ = j+ 1. Assume now that this is the case. Then we may rewrite (3.6.8)
in the form

& =" (Nimm — (7 — 1)) > p" T 4 pl 4 ™, (3.6.9)
We also find that ¢ —m + 1,...,i — 1 ¢ J, so that, from the definition of & (and taking into
account the fact that ¢ € J), we compute

G=plrit -+ ()T — (0T g e+ pris)
<plrit o+ (1)

This contradicts (3.6.9), and completes the argument. O
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