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Explicit Serre weights for two-dimensional

Galois representations

Frank Calegari, Matthew Emerton, Toby Gee and Lambros Mavrides

Abstract

We prove the explicit version of the Buzzard–Diamond–Jarvis conjecture formulated
by Dembele et al. (Serre weights and wild ramification in two-dimensional Galois
representations, Preprint (2016), arXiv:1603.07708 [math.NT]). More precisely, we prove
that it is equivalent to the original Buzzard–Diamond–Jarvis conjecture, which was
proved for odd primes (under a mild Taylor–Wiles hypothesis) in earlier work of the
third author and coauthors.

1. Introduction

The weight part of Serre’s conjecture Hilbert modular forms predicts the weights of the Hilbert
modular forms giving rise to a particular modular mod p Galois representation, in terms of the
restrictions of this Galois representation to decomposition groups above p. The conjecture was
originally formulated in [BDJ10] in the case that p is unramified in the totally real field. Under
a mild Taylor–Wiles hypothesis on the image of the global Galois representation, this conjecture
has been proved for p > 2 in a series of papers of the third author and coauthors, culminating in
the paper [GLS15], which proves a generalization allowing p to be arbitrarily ramified. We refer
the reader to the introduction to [GLS15] for a discussion of these results.

Let K/Qp be an unramified extension and let ⇢ : GK → GL2(Fp) be a (continuous)
representation. If ⇢ is irreducible, then the recipe for predicted weights in [BDJ10] is completely
explicit, but in the case where it is a non-split extension of characters, the recipe is in terms of
the reduction modulo p of certain crystalline extensions of characters. This description is not
useful for practical computations and the recent paper [DDR16] proposed an alternative recipe
in terms of local class field theory, along with the Artin–Hasse exponential, which can be made
completely explicit in concrete examples (indeed, [DDR16, §§ 9–10] gives substantial numerical
evidence for their conjecture).

In this paper, we prove [DDR16, Conjecture 7.2], which says that the recipes of [BDJ10]
and [DDR16] agree. This is a purely local conjecture and our proof is purely local. Our main
input is the results of [GLS14] (and their generalization to p = 2 in [Wan16]). We briefly sketch
our approach. Suppose that ⇢ ⇠= (

χ1 ⇤
0 χ2

), and set � = �1�
�1
2 . For a given Serre weight, the recipes

of [BDJ10] and [DDR16] determine subspaces LBDJ and LDDR of H1(GK ,�), and we have to
prove that LBDJ = LDDR.
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Let K1/K be the (non-Galois) extension obtained by adjoining a compatible system of pnth
roots of a fixed uniformizer of K for all n. The restriction map H1(GK ,�) → H1(GK1

,�) is
injective unless � is the mod p cyclotomic character, and [GLS14, Theorem 7.9] allows us to
give an explicit description of the image of LBDJ in H1(GK1

,�) in terms of Kisin modules.
The theory of the field of norms gives a natural isomorphism of GK1

with Gk((u)), where k

is the residue field of K, and we obtain a description of the image of LBDJ in H1(Gk((u)),�)
in terms of Artin–Schreier theory. On the other hand, we prove a compatibility of the Artin–
Hasse exponential with the field of norms construction that allows us to compute the image of
LDDR in H1(Gk((u)),�). We then use an explicit reciprocity law of Schmid [Sch36] to reduce the
comparison of LBDJ and LDDR to a purely combinatorial problem, which we solve.

It is possible that the conjecture of [DDR16] could be extended to the case that p ramifies
in K; we have not tried to do this, but we expect that if such a generalization exists, it could be
proved by the methods of this paper, using the results of [GLS15].

The fourth author’s PhD thesis [Mav16] proved [DDR16, Conjecture 7.2] in generic cases
using similar techniques to those of this paper in the setting of (',Γ)-modules (using the results
of [CD11] where we appeal to [GLS14]), while the first three authors arrived separately at the
strategy presented here for resolving the general case.

2. Notation

We follow the conventions of [GLS15], which are the same as those in the arXiv version of [GLS14]
(see [GLS15, Appendix A] for a correction to some of the indices in the published version
of [GLS14]). Let p be prime, and let K/Qp be a finite unramified extension of degree f , with
residue field k. Embeddings � : k ,→ Fp biject with Qp-linear embeddings K ,→ Qp, and we

choose one such embedding �0 : k ,→ Fp, and recursively require that �pi+1 = �i. Note that
�i+f = �i. Note also that this convention is opposite to that of [DDR16], so that their �i is our
��i; consequently, to compare our formulae to those of [DDR16], one has to negate the indices
throughout.

If ⇡ is a root of xp
f�1+p = 0 then we have the fundamental character !f : GK → k⇥ defined

by
!f (g) = g(⇡)/⇡ (mod ⇡OK(π)).

The composite of !f with the Artin map ArtK (which we normalize so that a uniformizer
corresponds to a geometric Frobenius element) is the homomorphism K⇥

→ k⇥ sending p to
1 and sending elements of O⇥

K to their reductions modulo p. For each � : k ,→ Fp, we set
!σ := � � !|IK and !i := !σi so that, in particular, we have !p

i+1 = !i.

If l/k is a finite extension, we choose an embedding e�0 : l ,→ Fp extending �0, and again set
e�i = e�pi+1. We have an isomorphism

l ⌦Fp Fp
⇠

�→

Y

eσi

Fp, (2.0.1)

with the projection onto the factor labelled by e�i being given by x ⌦ y 7→ e�i(x)y. Under this
isomorphism, the automorphism ' ⌦ id on l ⌦Fp Fp becomes identified with the automorphism

on
Q

Fp given by (yi) 7→ (yi�1).
If M is an l ⌦Fp Fp-module equipped with a '-linear endomorphism ', then the

isomorphism (2.0.1) induces a corresponding decomposition M
⇠

�→

Q
iMi, and the

endomorphism ' of M induces Fp-linear morphisms ' : Mi�1 → Mi.
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3. Results

3.1 Fields of norms

We briefly recall (following [Kis09, § 1.1.12]) the theory of the field of norms and of étale '-
modules, adapted to the case at hand. For each n, let (�p)1/p

n
be a choice of the pnth root of

�p, chosen so that ((�p)1/p
n+1

)p = (�p)1/p
n
, and let Kn = K((�p)1/p

n
). Write K1 =

S
nKn.

Then, by the theory of the field of norms,

lim
←�

NKn+1/Kn

Kn

(the transition maps being the norm maps) can be identified with k((u)), with ((�p)1/p
n
)n

corresponding to u. If F is a finite extension of K (inside some given algebraic closure of K
containing K1), then F1 := FK1 is a finite extension of K1, and applying the field of norms
construction to F1, we obtain a finite separable extension

F := lim
←�

NFKn/FKn�1

FKn,

of k((u)). If F is Galois over K, then F1 is Galois over K1, and F is also Galois over k((u)),
and there is a natural isomorphism of Galois groups

Gal(F/k((u)))
⇠

�→ Gal(F1/K1), (3.1.1)

and, composing with the canonical homomorphism Gal(F1/K1) → Gal(F/K), a natural
homomorphism of Galois groups

Gal(F/k((u))) → Gal(F/K). (3.1.2)

Every finite extension of K1 arises as such an F1 and, in this manner, we obtain a
functorial bijection between finite extensions of K1 and finite separable extensions F of k((u)).
In particular, the various isomorphisms (3.1.1) piece together to induce a natural isomorphism
of absolute Galois groups

GK1
= Gk((u)). (3.1.3)

The utility of the isomorphism (3.1.3) arises from the fact that there is an equivalence of
abelian categories between the category of finite-dimensional Fp-representations V of Gk((u)) and

the category of étale '-modules. The latter are, by definition, finite k((u)) ⌦Fp Fp-modules M

equipped with a '-semilinear map ' :M → M, with the property that the induced k((u))⌦FpFp-
linear map '⇤M → M is an isomorphism. This equivalence of categories preserves lengths in
the obvious sense, and is given by the functors

T : M → (k((u))sep ⌦k((u)) M)ϕ=1

(where k((u))sep is a separable closure of k((u))) and

V 7→ (k((u))sep ⌦Fp V )Gk((u)) .

The isomorphism (3.1.3) then allows us to describe finite-dimensional representations of GK1

over Fp via étale '-modules. In the § 3.3 we make this description completely explicit in the
context of (the restriction to K1 of) the crystalline extensions of characters that arise in the
conjecture of [BDJ10].
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The above isomorphisms of Galois groups are compatible with local class field theory in a
natural way. Namely, if F/K and F/k((u)) are as above, then the projection map k((u)) =
lim
←�NKn+1/Kn

Kn → K induces a natural map

k((u))⇥/NF/k((u))⇥F
⇥

→ K⇥/NF/KF⇥, (3.1.4)

and we have the following result.

Lemma 3.1.5. If F/K is a finite abelian extension, then the following diagram commutes.

Gal(F/k((u)))

(3.1.2)

✏✏

Art�1
k((u))

// k((u))⇥/NF/k((u))⇥F
⇥

(3.1.4)
✏✏

Gal(F/K)
Art�1

K
// K⇥/NF/KF⇥

Proof. This is easily checked directly, and is a special case of [AJ12, Proposition 5.2], which
proves a generalization to higher-dimensional local fields; see also [Lau88], where the analogous
result is proved for general APF extensions (strictly speaking, the result of [Lau88] does not apply
as written in our situation, as the extension K1/K is not Galois; but, in fact, the argument
still works). In brief, it is enough to check separately the cases that F/K is either unramified
or totally ramified; in the former case the result is immediate, while the latter case follows from
Dwork’s description of Artin’s reciprocity map for totally ramified abelian extensions [Ser79,
XIII § 5 Corollary to Theorem 2]. 2

3.2 Compatibility of pairings

It will be convenient to establish a further compatibility between various natural pairings. For
a field M , let M (p)/M denote the maximal exponent p abelian extension (inside some fixed
algebraic closure). If M1/M is an extension, then we have a diagram as follows (where pr is the

natural map given by restriction of automorphisms of M
(p)
1 to M (p)).

Lemma 3.2.1. The diagram commutes, in the sense that hpr↵,�i = h↵, ◆�i.

Proof. Since H1(GM ,Fp) = Hom(GM ,Fp) (and similarly for M1), since the pairings are given
by evaluation, and since ◆ is the natural restriction map, this is clear. 2

Suppose now thatM is a finite extension of Qp with residue field l, and that ⇡ is a uniformizer
of M . If M1/M is the extension given by a compatible choice of p-power roots of ⇡, then

Gal(M (p)
1 /M1) ' l((u))⇥ ⌦ Fp

via the field of norms construction together with local class field theory (applied to l((u))).
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On the other hand, taking Galois cohomology of the short exact sequence

0 → Fp → l((u))sep ⌦Fp Fp
ψ⌦id
�→ l((u))sep ⌦Fp Fp → 0,

where  : l((u))sep → l((u))sep is the Artin–Schreier map defined by  (x) = xp � x, yields an
isomorphism

H1(GM1
,Fp) = H1(Gl((u)),Fp) = Hom(Gl((u)),Fp) ' (l((u))/ l((u)))⌦Fp Fp;

concretely, the element a 2 l((u)) corresponds to the homomorphism fa : Gl((u)) → Fp given by
fa(g) = g(x) � x, where x 2 l((u))sep is chosen so that  (x) = a. (See e.g. [Ser79, X § 3(a)] for
more details.)

Theorem 3.2.2. Let �b 2 Gal(M
(p)
1 /M1) be the Galois element corresponding via the local

Artin map to an element b 2 l((u))⇥⌦Fp, and let fa be the element ofH1(GM1
,Fp) corresponding

to an element a 2 (l((u))/ l((u)))⌦Fp Fp. Then

hfa,�bi = Trl⌦FpFp/Fp

✓
Res a ·

db

b

◆
.

Proof. This was first proved in [Sch36]; for a more modern proof, see [Ser79, XIV Corollary to
Proposition 15]. 2

3.3 Crystalline extension classes and LBDJ

We begin by briefly recalling some of the main results of [GLS14]. For each 0 6 i 6 f � 1 we fix
an integer ri 2 [1, p]; we then define ri for all integers i by demanding that ri+f = ri. We let J
be a subset of {0, . . . , f � 1}, and we assume that J is maximal in the sense of [DDR16, § 7.2];
in other words, we assume that:

(i) if for some i > j we have (rj , . . . , ri) = (1, p � 1, . . . , p � 1, p), and j + 1, . . . , i /2 J , then
j /2 J ; and

(ii) if all the ri are equal to p�1, or if p = 2 and all of the ri are equal to 2, then J is non-empty.

We let � : GK → F
⇥
p be a character with the property that

�|IK =
Y

j2J

!
rj
j

Y

j /2J

!
�rj
j .

We let LBDJ denote the subset of H1(GK ,�) consisting of those classes corresponding to
extensions of the trivial character by � that arise as the reductions of crystalline representation
whose �i-labelled Hodge–Tate weights are {0, (�1)i/2Jri}, where (�1)i/2J is 1 if i 2 J and �1
otherwise. The subsequent points follow from the proof of [GLS14, Theorem 9.1], together
with [GLS14, Lemmas 9.3 and 9.4] and (in the case that p = 2) the results of [Wan16].

(i) The subset LBDJ is an Fp-subspace of H1(GK ,�).

(ii) An extension class is in LBDJ if and only if it admits a reducible crystalline lift whose
�i-labelled Hodge–Tate weights are {0, (�1)i/2Jri}.

(iii) If J = {0, . . . , f � 1} and all ri = p, then LBDJ = H1(GK ,�).

(iv) Assume that we are not in the case of the previous point. Then dim
Fp

LBDJ = |J |, unless

� = 1, in which case dim
Fp

LBDJ = |J |+ 1.
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We recall below from [DDR16] the definition of another subspace of H1(GK ,�), denoted by

LDDR; our main result, then, is that LBDJ = LDDR. We begin with an easy special case.

Lemma 3.3.1. If J = {0, . . . , f � 1} and every ri = p, then LBDJ = LDDR.

Proof. In this case we have LDDR = H1(GK ,�) by definition (see Definition 3.4.1 below), and

we already noted above that LBDJ = H1(GK ,�). 2

We can and do exclude the case covered by Lemma 3.3.1 from now on; that is, in addition

to the assumptions made above, we assume that:

• if every ri is equal to p, then J 6= {0, . . . , f � 1}.

If � = ✏, then the peu ramifié subspace of H1(GK , ✏) is, by definition, the codimension one

subspace spanned by the classes corresponding via Kummer theory to elements of O⇥
K . Since we

have excluded the cases covered by Lemma 3.3.1, LBDJ is contained in the peu ramifié subspace

of H1(GK , ✏) by [DS15, Theorem 4.9].

By [GLS15, Lemma 5.4.2], for any � 6= ✏ the natural restriction map H1(GK ,�) →

H1(GK1
,�) is injective, while if � = ✏, then the kernel is spanned by the tres ramifié class

corresponding to �p; in particular, the restriction of this map to LBDJ is injective. The following

theorem describes the image of LBDJ; before stating it, we introduce some notation that we will

use throughout the paper.

Write � as a power of !0 times an unramified character µ : Gal(L/K) → F
⇥
p , and write

µ(FrobK) = a, so that a[l:k] = 1; here FrobK 2 Gal(L/K) denotes the arithmetic Frobenius. For

each � : k ,→ Fp, we let �σ,µ be the element (1, a�1, . . . , a1�[l:k]) 2 l ⌦k,σ Fp, so that �σ,µ is a

basis of the one-dimensional Fp-vector space (l ⌦k,σ Fp)
Gal(L/K)=µ. Similarly, we let �σ,µ�1 be

the element (1, a, . . . , a[l:k]�1) 2 l ⌦k,σ Fp.

Theorem 3.3.2. The subspace LBDJ of H1(GK ,�) consists of precisely those classes whose

restrictions to H1(GK1
,�) can be represented by étale '-modules M of the following form.

Set hi = ri if i 2 J and hi = 0 if i 62 J . Then we can choose bases ei, fi of the Mi so that '
has the form

'(ei�1) = uri�hiei,

'(fi�1) = (a)iu
hifi + xiei.

Here (a)i = 1 for i 6= 0, and equals a = µ(FrobK) for i = 0; and we have xi = 0 if i 62 J and

xi 2 Fp if i 2 J , except in the case that � = 1.

If � = 1 then a = 1, and if we fix some i0 2 J , then xi0 is allowed to be of the form x0i0 +x00i0u
p

with x0i0 , x
00
i0
2 Fp (while the other xi are in Fp).

In every case, the xi are uniquely determined by M.

Proof. In the case p > 2, this is an immediate consequence of [GLS14, Theorem 7.9] (which

describes the corresponding Kisin modules, which are just lattices in M; the set J 0 appearing

there can be taken to be our J by [GLS14, Proposition 8.8] and our assumption that J is maximal)

and the proof of [GLS14, Theorem 9.1] (which shows that the different xi give rise to different

Galois representations), while if p = 2, then the result follows from the results of [Wan16]. 2
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Explicit Serre weights for two-dimensional Galois representations

As in § 2, we let ⇡ be a choice of (pf � 1)th root of �p. Write M := L(⇡), where L/K
is an unramified extension of degree prime to p, chosen so that �|GM

is trivial (in [DDR16] a
slightly more general choice of M is permitted, but it is shown there that their constructions
are independent of this choice, and this choice is convenient for us). Then M/K is an abelian
extension of degree prime to p. Since (pf �1) is prime to p, for each n > 1 there is a unique pnth

root ⇡1/p
n
of ⇡ such that (⇡1/p

n
)(p

f�1) = (�p)1/p
n
, and we set Mn = M(⇡1/p

n
), M1 =

S
nMn.

If M is an étale '-module with corresponding GK1
-representation T (M), then it is easy to

check that the étale '-module corresponding to T (M)|GM1
is

MM := l((u))⌦
k((u)),u 7→upf�1 M.

Applying this to one of the étale '-modules arising in the statement of Theorem 3.3.2, it
follows that (with the obvious choice of basis ei, fi for MM ) the matrix of ' : MM,i�1 → MM,i

is  
u(ri�hi)(p

f�1) xi
0 (a)iu

hi(p
f�1)

!

whereas above hi = ri if i 2 J and hi = 0 if i /2 J , and xi is zero if i /2 J . Furthermore, xi 2 Fp,
except that if � = 1, we have fixed a choice of i0 2 J , and xi0 is allowed to be of the form

x0i0 + x00i0u
p(pf�1) with x0i0 , x

00
i0

2 Fp. (Here the MM,i are periodic with period f [l : k], but of
course the ri, hi and xi depend only on i modulo f .)

We now make a change of basis, setting e0i = uαiei and f 0
i = abi/fcuβifi (where 0 6 i 6

f [l : k]� 1), so that the matrix of ' : MM,i�1 → MM,i becomes

 
u(ri�hi)(p

f�1)+pαi�1�αi abi�1/fcxiu
pβi�1�αi

0 uhi(p
f�1)+pβi�1�βi

!
.

We choose the ↵i,�i so that the entries on the diagonal become trivial; concretely, this means
that we set

↵i = �

f�1X

j=0

(ri+j+1 � hi+j+1)p
f�1�j , �i = �

f�1X

j=0

hi+j+1p
f�1�j .

Write ⇠i := ↵i � p�i�1, so that we have

⇠i =

f�1X

j=0

(�1)i+j+1/2Jri+j+1p
f�1�j + �i2Jri(p

f � 1),

where �i2J = 1 if i 2 J and 0 otherwise.
With the obvious basis for MM as an l((u))⌦Fp Fp-module, �MM

is given by the matrix

✓
1 (xia

�1�σi,µ�1u�ξi)i=0,...,f�1

0 1

◆

where �σi,µ�1 is the element of l⌦k,σi
Fp that we defined above. Then T (MM ) is an extension of

the trivial representation by itself, and thus corresponds to an element of Hom(Gl((u)),Fp). By
the definition of T , the kernel of this homomorphism corresponds to the Artin–Schreier extension
of l((u)) determined by (xi�σi,µ�1u�ξi)i=0,...,f�1. We have therefore proved the following result.
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Corollary 3.3.3. The image of LBDJ in H1(GM1
,Fp) = Hom(Gl((u)),Fp) is spanned by the

classes fλ
σi,µ

�1u�ξi corresponding via Artin–Schreier theory to the elements

�σi,µ�1u�ξi 2 l ⌦k,σi
Fp ✓ l ⌦Fp Fp,

for i 2 J , together with the class f
λ
σi0

,µ�1u
p(pf�1)�ξi0

if � = 1.

As in [DDR16, § 3.2], we may write �|IK = !n0
0 for some unique n0 of the form n0 =Pf

j=1 ajp
f�j with each aj 2 [1, p] and at least one aj 6= p. We set

ni =

fX

j=1

ai+jp
f�j ,

so we have �|IK = !ni
i , and for all i, j we have

p�ini ⌘ p�jnj (mod pf � 1).

Note that we have

�|IK =
Y

j2J

!
rj
j

Y

j /2J

!
�rj
j

=

f�1Y

j=0

!
�(�1)i+j+12Jri+j+1p

f�1�j

i

= !
αi�pβi�1

i = !
ξi
i ,

so that, in particular, we have

⇠i ⌘ ni (mod pf � 1). (3.3.4)

3.4 The Artin–Hasse exponential and LDDR

We now recall some of the definitions made in [DDR16, § 5.1]. In particular, for each i we define

an embedding �0i and an integer n0
i as follows. If ai�1 6= p, then we set �0i = �i�1 and n0

i = ni�1.

If ai�1 = p, then we let j be the greatest integer less than i such that aj�1 6= p� 1, and we set

�0i = �j�1 and n0
i = nj�1 � (pf � 1). Note that we always have n0

i > 0.

We let E(x) = exp(
P

m>0 x
pm/pm) 2 Zp[[x]] denote the Artin–Hasse exponential. For any

↵ 2 mM , we define the homomorphism

✏α : l ⌦Fp Fp → O⇥
M ⌦Fp Fp

by ✏α(a⌦ b) := E([a]↵)⌦ b, where [·] : l → W (l) is the Teichmüller lift. Then we set

ui := ✏
π
n0

i
(�σ0

i,µ
) 2 O⇥

M ⌦ Fp.

In the case that � = 1, we also set utriv := ⇡ ⌦ 1 2 M⇥ ⌦ Fp, and in the case that � = ✏, the

mod p cyclotomic character, we set ucyc := ✏
πp(pf�1)/(p�1)(b⌦ 1), where b 2 l is any element with
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Explicit Serre weights for two-dimensional Galois representations

Trl/Fp
(b) 6= 0. It is shown in [DDR16, § 5] that the ui, together with utriv if � = 1, and ucyc if

� = ✏, are a basis of the Fp-vector space

Uχ := (M⇥ ⌦ Fp(�
�1))Gal(M/K).

Via the Artin map ArtM , we may write

H1(GK ,�) ⇠= HomGal(M/K)(M
⇥,Fp(�))

and, thus, identify H1(GK ,�) with the Fp-dual of Uχ. We then define a basis of H1(GK ,�) by

letting ci, ctriv (if � = 1) and ccyc (if � = ✏) denote the dual basis to that given by the ui, utriv
and ucyc.

Recall from [DDR16, § 7.1] the definition of the set µ(J). It is defined as follows: µ(J) = J ,

unless there is some i /2 J for which we have ai�1 = p, ai�2 = p�1, . . . , ai�s = p�1, ai�s�1 6= p�1,

and at least one of i� 1, i� 2, . . . , i� s is in J . If this is the case, we let x be minimal such that

i�x 2 J , and we consider the set obtained from J by replacing i�x with i. Then µ(J) is the set

obtained by simultaneously making all such replacements (that is, making these replacements

for all possible i).

Definition 3.4.1. We define LDDR to be the subspace of H1(GK ,�) spanned by the classes ci
for i 2 µ(J), together with the class ctriv if � = 1, and the class ccyc if � = ✏, J = {0, . . . , f � 1}

and every ri = p.

3.5 The comparison of LBDJ and LDDR

In this section, we prove that the classes in LBDJ are orthogonal to certain ui. We begin with a

computation that will allow us to compare the constructions underlying the definition of LDDR,

which involve the Artin–Hasse exponential, with the field of norms constructions underlying the

description of LBDJ.

Lemma 3.5.1. For any n > 1, a 2 l and r > 1 with (r, p) = 1 we have NKn/KE([a1/p
n
](⇡1/p

n
)r) =

E([a]⇡r).

Proof. Let ⇣ be a primitive pnth root of unity. Then

NKn/KE([a1/p
n
](⇡1/p

n
)r) =

pn�1Y

k=0

E([a1/p
n
](⇡1/p

n
)r⇣k)

=

pn�1Y

k=0

exp

✓X

m>0

[a1/p
n
]p

m
(⇡1/p

n
)rp

m
⇣kp

m

pm

◆

= exp

✓pn�1X

k=0

X

m>0

[a1/p
n
]p

m
(⇡1/p

n
)rp

m
⇣kp

m

pm

◆

= exp

✓X

m>0

[a1/p
n
]p

m
(⇡1/p

n
)rp

m

pm

pn�1X

k=0

⇣kp
m

◆
.
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Now the sum over roots of unity is 0 if ⇣p
m

6= 1 (equivalently, m < n) and pn if ⇣p
m

= 1
(equivalently, m > n). Hence,

NKn/KE([a1/p
n
](⇡1/p

n
)r) = exp

✓X

m>n

[a1/p
n
]p

m
(⇡1/p

n
)rp

m
pn

pm

◆

= exp

✓X

m>0

[a1/p
n
]p

n+m
(⇡1/p

n
)rp

n+m
pn

pm+n

◆

= exp

✓X

m>0

[a]p
m
(⇡r)p

m

pm

◆
= E([a]⇡r). 2

For each r > 1 have a homomorphism

✏ur : l ⌦ Fp → l((u))⇥ ⌦ Fp

defined by ✏ur(a⌦ b) = E(aur)⌦ b. Then, for each i, we set

ũi := ✏
un0

i
(�σ0

i,µ
) 2 l((u))⇥ ⌦ Fp.

Lemma 3.5.2. Let r > 1 be coprime to p. Then under the homomorphism (3.1.4) (with M in
place of K), the image of E([a]ur) is equal to E([a]⇡r); consequently, for each i, the image of ũi
is ui.

Proof. This is an immediate consequence of Lemma 3.5.1, taking into account Lemma 3.6.1
below, which shows that n0

i is coprime to p. 2

We now state and prove our main result, which establishes [DDR16, Conjecture 7.2], by
reducing the equality LDDR = LBDJ to a purely combinatorial problem that is solved in § 3.6.

Theorem 3.5.3. We have LBDJ = LDDR.

Proof. Since we have dim
Fp

LBDJ = dim
Fp

LDDR = |J | + �χ=1, it is enough to prove that
LBDJ ✓ LDDR. By the definition of LDDR, it is equivalent to prove that the image of every
class in LBDJ in H1(GM ,Fp) is orthogonal under the pairing of § 3.2 to the elements uj 2 Uχ,
j /2 µ(J).

In the case that � = ✏, we also need to show that the classes are orthogonal to ucyc; to see
this, note that, as explained in [DDR16, § 6.4] the classes ci (together with ctriv if p = 2) span
the space of classes which are (equivalently) flatly or typically ramified in the sense of [DDR16,
§ 3.3], which are exactly the peu ramifié classes; in other words, the classes orthogonal to ucyc
are exactly the peu ramifié classes. As we recalled in § 3.3, it follows from [DS15, Theorem 4.9]
that every class in LBDJ is peu ramifié.

Combining Lemmas 3.1.5 and 3.2.1, Theorem 3.2.2, Lemma 3.5.2 and Corollary 3.3.3, we see
that we must show that for all i 2 J , j /2 µ(J), the residue

Trl⌦FpFp/Fp
Res(dlog(ũj) · �σi,µ�1u�ξi) (3.5.4)

vanishes. (If � = 1, then we must also show that the pairing with �σi0
,µ�1up(p

f�1)�ξi0 vanishes.)
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Explicit Serre weights for two-dimensional Galois representations

Since

dlogE(X) = (X +Xp +Xp2 + · · ·) dlogX

and dlog(�un) = n · u�1, the pairing (3.5.4) evaluates to

Trl⌦FpFp/Fp
Res

✓X

m>0

n0
j('⌦ 1)m(�σ0

j ,µ
)un

0

jp
m�1 · �σi,µ�1u�ξi

◆
.

(Here '⌦ 1 : l ⌦ Fp → l ⌦ Fp is the pth power map on l.)
This residue is given by the coefficient of u�1, so we see that this pairing can be non-zero

only when ⇠i = pmn0
j for some m > 0 (if � = 1, then we must also consider the possibility that

⇠i�p(pf �1) = pmn0
j , but this is excluded by Lemma 3.6.6 below). If this holds, then the pairing

evaluates to

n0
j Trl⌦FpFp/Fp

('⌦ 1)m(�σ0

j ,µ
) · �σi,µ�1 .

Now, we have

('⌦ 1)m(�σ0

j ,µ
) · �σi,µ�1 = ('⌦ 1)m(�σ0

j ,µ
�σi�m,µ�1)

which is non-zero if and only if �0j = �i�m, in which case its trace to Fp is equal to [l : k].
In conclusion, we have seen that in order for the pairing to be non-zero, we require:

(i) �0j = �i�m; and

(ii) ⇠i = pmn0
j .

(In fact, although we do not need this stronger statement, we observe that the pairing is non-zero
if and only if these conditions hold, because n0

j is always a unit by Lemma 3.6.1, while [l : k] is
prime to p.) By Proposition 3.6.7 below, these conditions imply that j 2 µ(J), as required. 2

Remark 3.5.5. It is clear that the method of the proof of Theorem 3.5.3 could be used to compare
the bases of LBDJ and LDDR that we have been working with. We have checked that in suitably
generic cases the bases are the same (up to scalars), but that in exceptional cases they may
differ.

3.6 Combinatorics

Our main aim in this section is to prove Proposition 3.6.7, which was used in the proof of
Theorem 3.5.3. We begin with some simple observations; the following three lemmas give us some
control on the quantities ⇠i and n0

i which will be important in the proof of Proposition 3.6.7.

Lemma 3.6.1. The quantity n0
i is not divisible by p.

Proof. This is automatic if ai�1 6= p because then n0
i = ni�1 ⌘ ai�1 (mod p). Assume that

ai�1 = p, and write that (ai�1, ai�2, . . . , aj) = (p, p� 1, . . . , p� 1), with aj�1 6= p� 1. Now

n0
i := nj�1 � (pf � 1) ⌘ nj�1 + 1 ⌘ aj�1 + 1 (mod p).

However, since aj�1 6= p�1 and lies in [1, p], we have aj�1 6⌘ �1 mod p, and so n0
i 6⌘ 0 (mod p).

2

Lemma 3.6.2. If i 2 J , then 0 < ⇠i < p2(pf � 1)/(p� 1).
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Proof. Since i 2 J, we have

⇠i = pfri + (�1)i+1/2Jpf�1ri+1 + (�1)i+2/2Jpf�2ri+2 + · · ·+ (�1)i�1/2Jpri�1. (3.6.3)

The upper bound is immediate, as we have rj 6 p for all j (and in the case that all rj are
equal to p, we are not allowing Jc to be empty). For the lower bound, if ri > 2, then ⇠i >

2pf � (pf + pf�1 + · · ·+ p2) > 0, so we may assume that ri = 1. Suppose that J 6= {i}, and let
x > 0 be minimal so that i + x + 1 2 J . Since ri = 1 and i 2 J , it follows from the maximality
condition on J that no initial segment of (ri+1, . . . , ri+x) can be (p � 1, p � 1, . . . , p) (which
also excludes the degenerate case consisting of a single initial p). Hence, either all the rj for
j 2 [i+ 1, i+ x] are at most p� 1, in which case

pf�1ri+1 + · · ·+ pf�xri+x 6 (pf�1 + · · ·+ pf�x)(p� 1) = pf � pf�x,

so that

⇠i > pf�x + pf�x�1 � (pf�x�2 + · · ·+ p)p = pf�x � pf�x�2 � · · ·� p2 > 0,

or for some y < x we have ri+1, . . . , ri+y = p� 1 and ri+y+1 < p� 1, in which case

pf�1ri+1 + · · ·+ pf�xri+x 6 (pf�1 + · · ·+ pf�y)(p� 1)

+ (p� 2)pf�y�1 + p(pf�y�2 + · · · pf�x)

= (pf�1 + · · ·+ pf�x)(p� 1)

� pf�y�1 + pf�y�2 + · · ·+ pf�x

6 (pf�1 + · · ·+ pf�x)(p� 1)

= pf � pf�x,

and one proceeds as above. Finally, if J = {i}, then arguing as above (and, again, using the
maximality condition on J) we see (considering the two cases as above) that ⇠i > pf � (pf�1 +
· · ·+ p)(p� 1) = p > 0. 2

Lemma 3.6.4. For any value of i, we have (pf � 1)/(p� 1) 6 ni < (pf � 1) + (pf � 1)/(p� 1).

Proof. This is immediate from the definition of ni. 2

Let vp(⇠i) denote the p-adic valuation of ⇠i. The following lemma shows that ⇠i is in some
sense a function of this valuation, and is crucial for our main argument.

Lemma 3.6.5. If i 2 J , and if m := vp(⇠i), then m > 1. If furthermore m > 1, then we have
⇠i = pm(ni�m � (pf � 1)), while if m = 1, then either ⇠i = pni�1 or ⇠i = p(ni�1 � (pf � 1)),
depending on whether or not ⇠i/p > (pf � 1)/(p� 1).

Proof. Equation (3.6.3) shows that m is at least 1 if i 2 J . From (3.3.4), we deduce that ⇠i/p
m ⌘

ni�m (mod pf � 1). By Lemma 3.6.2 we have

0 < ⇠i/p
m < p2�m(pf � 1)/(p� 1),

so that if m > 2 it follows by Lemma 3.6.4 that

⇠i/p
m < (pf � 1)/(p� 1) 6 ni�m < (pf � 1) + (pf � 1)/(p� 1).
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Explicit Serre weights for two-dimensional Galois representations

Since ⇠i > 0 by Lemma 3.6.2, the congruence modulo pf � 1 forces the equality ni�m � ⇠i/p
m =

(pf � 1). If m = 1, then we have

0 < ⇠i/p < (pf � 1) + (pf � 1)/(p� 1)

and the claim follows in the same way. 2

The following simple lemma was used in the proof of Theorem 3.5.3 in the case � = 1.

Lemma 3.6.6. Suppose that � = 1 and that i 2 J . Then there are no solutions to the equation
⇠i � p(pf � 1) = pm(pf � 1), for any m > 0.

Proof. Since � = 1, we have nj = pf � 1 for all j. From Lemma 3.6.5, we find that either
vp(⇠i) > 2, in which case ⇠i = 0 (contradicting Lemma 3.6.2), or vp(⇠i) = 1, in which case either
⇠i = 0 or ⇠i = p(pf � 1). The first case again contradicts Lemma 3.6.2. The second case leads to
the equation 0 = pm(pf � 1), which has no solutions, as required. 2

We now prove our main combinatorial result.

Proposition 3.6.7. Suppose that i 2 J , and that for some integers j,m we have:

(i) �0j = �i�m; and

(ii) ⇠i = pmn0
j ;

then j 2 µ(J).

Proof. By Lemma 3.6.1, we must have m = vp(⇠i). Suppose first that m = 1 and ⇠i = pni�1. We
need to solve the equations �0j = �i�1 and n0

j = ni�1.

If aj�1 = p, then we have �0j = �s�1 and n0
j = ns�1� (pf � 1), where s is the greatest integer

less than j for which as�1 6= p� 1. Since �0j = �i�1 by assumption, we find that s = i. However,

then ni�1 = n0
j = ni�1 � (pf � 1), which is not possible.

Thus, aj�1 6= p and, hence, we have �0j = �j�1, so that j = i. We must show that j = i 2 µ(J).
By the definition of µ(J), this will be the case unless for some s > i we have i+1, . . . , s /2 J , and
(ai, . . . , as�1) = (p� 1, . . . , p� 1, p). Suppose then that this holds; we must show that we cannot
have ⇠i = pni�1 after all. Now, by definition and the assumption that i+ 1, . . . , s /2 J , we have

⇠i/p = pf�1ri � pf�2ri+1 � · · ·+ (�1)s+1/2Jpf+i�2�srs+1 + · · ·+ (�1)i�1/2Jri�1

6 pf � (pf�2 + · · ·+ pf+i�s�1) + (pf+i�2�s + · · ·+ 1)p

= pf � (pf�2 + · · ·+ pf+i�s) + (pf+i�2�s + · · ·+ p)

while

ni�1 = pf�1ai + pf�2ai+1 + · · ·+ ai�1

> pf�1(p� 1) + · · ·+ pf+i+1�s(p� 1) + pf+i�sp+ pf+i�1�s + · · ·+ 1

= pf + pf+i�1�s + · · ·+ 1,

which gives the required contradiction.
Having disposed of the case that m = 1 and ⇠i = pni�1, it follows from Lemma 3.6.5 that we

may assume that ⇠i = pm(ni�m� (pf � 1)). We show first that we cannot have aj�1 6= p. Indeed,
if this occurs, then by definition we have n0

j = nj�1 and �0j = �i�1, so that the equations we need
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to solve are i �m = j � 1, and ni�m � (pf � 1) = nj�1, which are mutually inconsistent, since
together they imply that nj�1 � (pf � 1) = nj�1.

We are thus reduced to the case when aj�1 = p and, by the definition of n0
j , we see (since

�0j = �i�m) that i�m must be congruent to the greatest integer i0 less than j�1 with ai0 6= p�1.
Replacing i by something congruent to its modulo f , we may assume that i � m = i0, so that
ai�m 6= p�1, ai�m+1 = · · ·= aj�2 = p�1 and aj�1 = p. Again, we must show that this implies that
j 2 µ(J). By the definition of µ(J), this will be the case unless i�m+1, . . . , j�2, j�1, j /2 J . Since
we are assuming that i 2 J , this implies, in particular, that j is contained in the interval [i�m, i).
We now show that this leads to a contradiction. Consider the equation ⇠i/p

m = ni�m� (pf � 1).
From the definitions and the assumptions we are making, we have

ni�m = pf�1ai�m+1 + · · ·+ pf�xai�m+x + · · ·+ ai�m

= pf + pf�m+i�jaj + · · ·+ ai�m,

so that

ni�m � (pf � 1) = 1 + pf�m+i�jaj + · · ·+ ai�m

> pf�m+i�j + pf�m+i�j�1 + · · ·+ 1.

Thus,
⇠i = pm(ni�m � (pf � 1)) > pf+i�j + pf+i�j�1 + · · ·+ pm. (3.6.8)

Since ⇠i 6 p2(pf � 1)/(p� 1) by Lemma 3.6.2, we conclude that, in particular,

(pf � 1)/(p� 1) > ⇠i/p
2 > pf+i�j�2 = p(f�1)+(i�j�1),

which is only possible if i = j+1. Assume now that this is the case. Then we may rewrite (3.6.8)
in the form

⇠i = pm(ni�m � (pf � 1)) > pf+1 + pf + · · ·+ pm. (3.6.9)

We also find that i � m + 1, . . . , i � 1 /2 J , so that, from the definition of ⇠i (and taking into
account the fact that i 2 J), we compute

⇠i = pfri + · · ·+ (�1)i�m/2Jpmri�m � (pm�1ri�m+1 + · · ·+ pri�1)

6 pfri + · · ·+ (�1)i�m/2Jpmri�m

6 (pf + · · ·+ pm)p = pf+1 + pf + · · ·+ pm+1.

This contradicts (3.6.9), and completes the argument. 2
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