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Non-minimal modularity lifting in weight one
By Frank Calegari at Chicago

Abstract. We prove an integral R D T theorem for odd two-dimensional p-adic repre-
sentations of GQ which are unramified at p, extending results of [5] to the non-minimal case.
We prove, for any p, the existence of Katz modular forms modulo p of weight one which do
not lift to characteristic zero.

1. Introduction

The main innovation of [5] was to develop a framework for modularity lifting theo-
rems in contexts in which the Taylor–Wiles method did not apply. One of the main examples
in [5, Theorem 1.4] was a minimal modularity lifting theorem for odd two-dimensional Galois
representations which are unramified at p. This result was simultaneously a generalization and
a specialization of the main theorem of Buzzard–Taylor [4]; generalized because it related
Galois representations modulo $n to Katz modular forms of weight one modulo $n neither
of which need lift to characteristic zero, and specialized because it required a minimality hypo-
thesis at primes away from p. One of the goals of the present paper is to provide a theorem
which is a new proof of many cases of [4] in the spirit of [5]. Our methods could be viewed as
hybrid of both [5] and [4] in the following sense: as in [5], we prove an integralR D T theorem
for torsion representations by working directly in weight one, however, as a crucial input, we
use ordinary modularity lifting theorems in higher weight (as in [4], although we only need to
work in weight p) in order to show that the patched Hecke modules see every component of the
generic fibre of the global deformation ring. In order to simplify some of our arguments, we do
not strive for maximal generality. The assumption that the representations are unramified at p,
however, seems essential for the method (if one does not use base change), in contrast to [2].
Let us fix a prime p > 2 and a local field ŒE W Qpç <1 with ring of integers O and residue
field k D O=$ .

Theorem 1.1. Let p > 2, and let ⇢ W GQ ! GL2.O/ be a continuous odd Galois rep-

resentation ramified at finitely many primes and unramified at p. Suppose that ⇢ is absolutely

irreducible. If ⇢ is ramified at a prime `, assume that ⇢jD` is reducible. Then ⇢ is modular of

weight one.
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42 Calegari, Non-minimal modularity lifting in weight one

This result will be deduced from our main result, which is an integral R D T theorem
which we now describe. Let

⇢ W GQ ! GL2.k/

be a continuous absolutely irreducible odd representation unramified at p. For each `, let ✏

denote the cyclotomic character. Let  denote the Teichmüller lift of det.⇢/. Let N D S [ P
be a set of primes not containing p such that  is ramified exactly at the primes contained
in P and unramified at primes contained S . By abuse of notation, we also let N denote the
product of the conductor of  with the primes in S . We consider the functorD1 from complete
local Noetherian O-algebras .A;m/ with residue field k defined (informally) as follows. Fix
a collection of elements a` 2 k for ` dividing N . Let D1.A/ consist of deformations ⇢ to A
together with a collection of elements ˛` 2 A for ` 2 N such that:

(i) det.⇢/ D  .

(ii) ⇢ is unramified outside N D S [ P .

(iii) If ` 2 P , then
⇢jD` ' ��1 jD`

˚ �

for some unramified character � with �.Frob`/ D ˛` ⌘ a` mod m.

(iv) If ` 2 S , then

⇢jD` '

 
��1 jD`

⇤

0 �

!

for some unramified character � with �.Frob`/ D ˛` ⌘ a` mod m.

In fact, the actual definition ofD1.A/ needs to be somewhat modified (see Section 2.2 for
precise definitions), but this description will be valid for rings of integers such as O. Naturally
enough, we also assume that D1.k/ is non-empty, and that k is also large enough to contain
the eigenvalues of every element in the image of ⇢. The elements a` 2 k are determined by
⇢ for primes in P , but not necessarily for primes in S , because when ⇢ is unramified at `,
there is a choice of eigenvalue for the unramified line. Hence D1 will not strictly be a Galois
deformation ring; we refer to such rings (and we have several in this paper) as modified defor-
mation rings because they depend not only on ⇢ but also on some auxiliary data. The functor
D1 is representable by a complete local O-algebra R1. The ring R1 comes with elements
a` 2 k and ˛` 2 R1 for ` dividing N . For all other primes `, define a` 2 k to be tr.⇢.Frob`//,
including when ` D p.

We are now ready to state out main theorem. By abuse of notation, let N denote the con-
ductor of  times the primes in S – it is divisible exactly by the primes in N D S [ P . Let
XH .N / denote the quotient of X1.N / by the Sylow p-subgroup of .Z=NZ/⇥. After enlarg-
ing S if necessary, we may assume that the curve XH .N / is a fine moduli space. (XH .N / will
be automatically a fine moduli space if p > 3, see Section 2.3.)

Theorem 1.2. Let p > 2. Let T ⇢ EndOH
0.XH .N /; !E=O/ be the O-algebra gener-

ated by Hecke endomorphisms. Let m be the maximal ideal of T generated by the elements

h`i �  .`/ for `−N and T` � a` for all `. Then there is an isomorphism R1 ' Tm.

1.1. Theorem 1.2 implies Theorem 1.1. Suppose that ⇢ W GQ ! GL2.O/ is a contin-
uous Galois representation ramified at ` ¤ p satisfying the conditions of Theorem 1.1. Then
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Calegari, Non-minimal modularity lifting in weight one 43

after a global twist and enlarging O if necessary to contain a choice of elements a` for ` divid-
ing N , ⇢ gives rise to an element of D1.O/. The modularity of ⇢ then follows.

As an application of Theorem 1.2, we prove the following:

Theorem 1.3. Let p be any prime. There exists a Katz modular form

f 2 H 0.X.Ä/Fp
; !/

for some level Ä prime to p which does not lift to characteristic zero.

The original argument of Wiles [26, 27] for modularity theorems at non-minimal level
was to use an induction argument and a certain numerical criterion involving complete inter-
sections which were finite over O. This does not seem to be obviously generalizable to weight
one – although one still has access to forms of Ihara’s Lemma, the Hecke rings T1 are no
longer complete intersections in general, and are certainly not flat over O. It remains open as
to whether one can proceed using such an argument. Instead, we use modularity theorems in
weight p in order to show R1Q=$ ' T1Q;m=$ for various sets of auxiliary primes Q, and
we then use this information to show that the patched Hecke modules in weight one are “big
enough.” To pass between weight one and weight p we crucially rely on q-expansions. For this
reason, the methods of this paper will probably not be generalizable beyond GL.2/ (although
they may have implications for Hilbert modular forms of partial weight one). Note that, in writ-
ing the paper [5], we tried to avoid the use of q-expansions as much as possible, whereas the
philosophy of this paper is quite the opposite.

Remark 1.4. The methods of our paper may well be able to handle more precise local
deformation conditions than those considered above. However, these assumptions considerably
simplify some aspects of the arguments. We particularly shun Diamond’s vexing primes, which
did indeed cause considerable vexation in [5]. In fact, we try so hard to avoid them that we
assume that ⇢jD` is reducible, when certainly some such representations – for example those
with ⇢jI` irreducible – may well be amenable to our methods.

Acknowledgement. The debt this paper owes to [5] is clear, and the author thanks
David Geraghty for many conversations. We thank Mark Kisin for the explaining a proof of
Lemma 2.6, and we also thank Brian Conrad for a related proof of the same result in the
context of rigid analytic geometry. We thank Toby Gee and Patrick Allen for several useful
comments. We also thank Gabor Wiese for the original idea of proving modularity theorems in
weight one by working in weight p.

2. Preliminaries

2.1. Local modified deformation rings. Let ⇢ W GQ`
! GL2.k/ be a representation,

and let Runiv
`

denote the universal framed local deformation ring, and ⇢univ the universal local
deformation. We assume in this entire section that p > 2. The calculations in this section will
mostly be concerned with the case that ` ¤ p. Fix a lift of Frobenius � 2 GQ`

, and choose
an eigenvalue a` of ⇢.�/, which, after enlarging k if necessary, we may assume to lie in k.
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44 Calegari, Non-minimal modularity lifting in weight one

We define the universal modified framed local deformation ring zRuniv
`

to be the localization of
the ring

Runiv
` Œ˛`ç=.˛

2
` � ˛`Tr.⇢univ.�//C det.⇢univ.�///

at .˛` � a`/. The quadratic polynomial satisfied by ˛` is the characteristic polynomial of
Frobenius.

Lemma 2.1. If ⇢.�/ has distinct eigenvalues, then zRuniv
`
' Runiv

`
. If ⇢.�/ does not have

distinct eigenvalues, then zRuniv
`

is a finite flat extension of Runiv
`

of degree two.

Proof. If ⇢.�/ has distinct eigenvalues, then the characteristic polynomial of Frobenius
is separable over k. Since Runiv

`
is complete, the polynomial also splits over Runiv

`
by Hensel’s

Lemma, and the quadratic extension above is, (before localization), isomorphic toRuniv
`
˚Runiv

`
.

Localizing at .˛` � a`/ picks out the factor on which we have the congruence ˛` ⌘ a` mod m.
If the eigenvalues of ⇢.�/ are both a`, then the quadratic extension is already local.

A modified local deformation ring will simply be a quotient of zRuniv
`

. Proposition 3.1.2
of [11] proves the existence of quotients Runiv; ;⌧

`
of Runiv

`
which are reduced, O-flat, equidi-

mension of dimension 4, and such that, for any finite extension F=E, a map

x W Runiv ! F

factors through Runiv; ;⌧ if and only if the corresponding F representation Vx has determi-
nant and is of type ⌧ . (For this section may be any unramified character.) For our purposes,
it will suffice to consider the trivial type ⌧ , which corresponds to representations on which

⇢x W GQ`
! GL.Vx/ D GL2.F /

restricted to the inertial subgroup I` ⇢ GQ`
has unipotent (and so possibly trivial) image.

Lemma 2.2. Suppose that p > 2 and ` ¤ p. Let ⌧ denote the trivial type. There exists

a quotient R
mod; 
`

WD zRuniv; ;⌧
`

of zRuniv
`

which is reduced, O-flat, equidimensional of dimen-

sion 4, and such that, for any finite extension F=E, a map

x W zRuniv
` ! F

factors through R
mod; 
`

if and only if the corresponding F representation Vx has determi-

nant  , is ordinary, and has an unramified quotient on which the action of Frob` is by the

image of ˛`.

The arguments are very similar to those already in the literature, but for want of a refer-
ence which covers this case exactly, we give the details.

Proof. Suppose that the eigenvalues of ⇢.�/ are distinct. Then, under the isomorphism
Runiv
`
' zRuniv

`
, we may take zRuniv; ;⌧

`
D Runiv; ;⌧

`
. Hence we may assume that the eigenvalues

are the same. Any representation

⇢x W GQ`
! GL2.F /

for which the image of inertia has non-trivial unipotent image is, up to twist, and enlarg-
ing F if necessary, an extension of F by F.1/. In particular, the ratios of the eigenvalues
of ⇢x.�/ must be equal to `. Since we are assuming the eigenvalues of ⇢.�/ coincide, then,
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Calegari, Non-minimal modularity lifting in weight one 45

if ` 6⌘ 1 modp, Runiv; ;⌧
`

has no such quotients, and will consist precisely the unramified
locus. In this case, we may take zRuniv; ;⌧

`
to be the double cover corresponding to the unram-

ified locus with a choice of Frobenius eigenvalue. Hence we may assume that ` ⌘ 1 modp,
and in particular ` 6⌘ �1 modp.

Assume that ⇢ is unramified. The ring Runiv; ;⌧
`

admits two natural quotients; a quotient
R

unr; 
`

corresponding to representations which are unramified, and a quotient corresponding to
representations for which the ratios of the eigenvalues of Frobenius are equal to `. Because the
determinant is fixed, this latter quotient is given by imposing the equation

tr.⇢.�//2 D `�1.1C `/2 .`/:

Since ` 6⌘ �1 modp, the right hand side is a unit, and hence there is exactly one square root of
this equation which is compatible with the choice of a`, and so this is equivalent to the equation

tr.⇢.�// D `�1=2.1C `/ 1=2.`/

for the appropriate choice of square root. The ring obtained by imposing this relation on
R

univ; ;⌧
`

may or may not be either O-flat or reduced, but let Rsp; 
`

denote the largest quotient
with this property (sp is for special). Its F -points will still include all ramified represen-
tations of type ⌧ . The pre-image of the corresponding affine scheme under the projection
Spec. zRuniv

`
/! Spec.Runiv

`
/ is equal toRsp; 

`
Œ˛`ç=.˛

2
`

�`�1=2.1C`/ 1=2.`/ �˛`C .`//. The
quadratic relation factors as

.˛` �  1=2.`/ � `1=2/.˛` �  1=2.`/ � `�1=2/:

Define zRsp; 
`

to be the quotient on which ˛` D  1=2.`/ � `�1=2. There is a corresponding iso-
morphism

R
sp; 
`
! zRsp; 

`
:

On the other hand, the quotient Runr; 
`

is a formally smooth. In this case, we let zRunr; 
`

be
the finite flat degree two extension given by adjoining an eigenvalue ˛` of the characteristic
polynomial of Frobenius. We now let Rmod; 

`
D zRuniv; ;⌧ be the image of zRuniv

`
under the

map
zRuniv
` ! zRunr; 

`
˚ zRsp; 

`
:

It is O-flat and reduced because both zRunr; 
`

and zRsp; 
`

have this property. Moreover, the
F -points for finite extensions F=E correspond exactly to either an unramified representation
together with a choice of Frobenius, or a ramified ordinary representation together with ˛`
being sent to the action of Frobenius on the unramified quotient. Geometrically, Rmod

`
consists

of the union of two components, one the special component ofRuniv; ;⌧
`

, and the other a double
cover of the unramified component of Runiv; ;⌧

`
. We also remark that, by construction, the

image of the universal deformation ring Runiv; in Rmod
`

will be precisely Runiv; ;⌧ .

We also note the following:

Corollary 2.3. Suppose that p > 2 and ` ¤ p. Let x W zRuniv
`
! EŒ✏ç=✏2 be a surjective

map so that the image of Runiv is E, and the corresponding Galois representation

⇢x W GQ`
! GL2.E/

is unramified. Then x factors through R
mod; 
`

.
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46 Calegari, Non-minimal modularity lifting in weight one

Proof. Such a representation exists exactly when the eigenvalues of ⇢x.�/ are equal.
We see that x certainly factors through zRunr; , which is a quotient of Rmod; 

`
.

If the determinant is explicit from the context, we writeRmod
`

rather thanRmod; 
`

. We give
a precise description of the special fibre of Rmod

`
when ` ⌘ 1 modp,  D 1, and ⇢ is trivial

(this result will only be used for the proof of Theorem 1.3 in Section 4.2.) Note that, since ⇢

by assumption is tamely ramified at `, the image of any deformation also factors through tame
inertia, hence through the group h⌧;�i with �⌧��1 D ⌧`.

Lemma 2.4. Suppose that p > 2, that ` ⌘ 1 modp, that  jGQ`
! GL2.k/ is trivial.

Then Rmod
`

represents the functor of deformations of ⇢ to A together with an ˛` 2 A satisfying

the following conditions:

✏ Tr.⇢.⌧// D 2,

✏ .⇢.⌧/ � 1/2 D 0,

✏ .⇢.⌧/ � 1/.⇢.�/ � ˛`/ D 0,

✏ .⇢.�/ � ˛�1
`
/.⇢.⌧/ � 1/ D 0,

✏ .⇢.�/ � ˛`/.⇢.�/ � ˛�1
`
/ D 0.

The argument is similar (but easier) to the corresponding arguments of Snowden
([23, Section 4.5]). In fact, our argument amounts to the case d D 0 of a theorem proved by
Snowden for all integers d > 0. The only reason that Snowden does not consider this case is
that, in his context, d is the degree of a finite extension of Qp.

Proof. The last equation says that ˛` satisfies the characteristic polynomial of
Frobenius. Hence the functor is certainly represented by a quotient Ré

`
of the universal such

ring zRuniv
`

. Let us show that

MaxSpec.Ré

`
/ D MaxSpec.Rmod

` /

(inside MaxSpec. zRuniv
`
/). Let x W Ré

`
! F be a point of MaxSpec.Ré

`
/. If ⇢.⌧/ is trivial, then

the equations reduce to the statement that ˛` is an eigenvalue of Frobenius, and these cor-
respond exactly to the unramified points of Rmod

`
. If ⇢.⌧/ is non-trivial, then, from the first

equation, its minimal polynomial will be .X � 1/2, and so, after conjugation, has the shape

⇢.⌧/ D

 
1 1

0 1

!
:

The other equations then imply that

⇢.�/ D

 
˛�1
`

⇤

0 ˛`

!
:

Finally, from the equation �⌧��1 D ⌧`, we deduce that ˛�2
`
D `. In particular, the repre-

sentation is, up to twist, an extension of F by F.1/, which corresponds exactly to points
on the special component of Rmod

`
. It follows from [16, Corollary 2.3] (see also Lemma 2.6

below) that O-flat reduced quotients of Runiv
`

are characterized by their F points for finite
extensions F=E. Since we have shown that Ré

`
and Rmod

`
have the same such quotients, and

since Rmod
`

is O-flat and reduced, it suffices to show that Ré

`
is O-flat and reduced. The special
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fibre Ré

`
=$ is exactly the completion of C0 at c D .1I 1I 0/ in the notation of [23, Section 3.5].

The proof of this is identical to the proof of [23, Lemma 4.7.4]. On the special fibre, the equa-
tion .⇢.⌧/ � 1/2 D 0 implies that .⇢.⌧/ � 1/p D 0 and so ⇢.⌧p/ is trivial, and ⇢.⌧`/ D ⇢.⌧/.
Hence the action of conjugation by ⇢.�/ on ⇢.⌧/ is trivial. In [23], the image of inertia factors
through an exponent p commutative group which, as a module for FpJT K where 1C T acts
as conjugation by � , is isomorphic to U D Fp ˚ FpJT K˚d . In our context, the action of iner-
tia commutes with � and factors through a group U D Fp. In particular, letting m D ⇢.⌧/ � 1

and ' be the image of ⇢.�/, the tuple .'; ˛;m/ is the corresponding point on C0. The rest of
the argument follows the proof of [23, Theorem 4.7.1]. The ring C0 has two minimal primes
(corresponding to .˛ � 1/ and m, which come from the components A2 and B0 respectively,
in the notation of [23]). On the other hand, as we have shown, Ré

`
Œ1=$ çred D RmodŒ1=$ ç has

two minimal primes corresponding to the unramified and ordinary locus, so Ré

`
Œ1=$ ç has two

minimal primes, and so, by [23, Propositions 2.2.1 and 2.3.1], it follows that Ré

`
is O-flat

and reduced, and we are done.

2.2. The functors DQ and D1
Q

. In this subsection, ⇢ will be a global Galois repre-
sentation unramified at p with the primes N D S [ P as in the introduction. We now define
modified deformation rings R1Q and RQ for certain sets Q of auxiliary primes distinct from N

and p. Let D` denote the decomposition group GQ`
⇢ GQ. The superscript 1 refers to weight

one, and the lack of superscript will refer to weight p. Note that R1; D R
1. Besides the rep-

resentation ⇢, part of the data required to define D1Q and DQ consists of a fixed choice of
elements a` 2 k for ` dividingN andQ. Moreover, forDQ, we also fix an ap 2 k. LetD1Q.A/
and DQ.A/ consist of deformations ⇢ to A and a collection of elements ˛` 2 A for ` 2 N
(and p̨ 2 A for DQ.A/) such that:

(i) det.⇢/ D  , where  is the Teichmüller lift of det.⇢/ for ⇢ 2 D1Q.A/, det.⇢/ D  ✏p�1

for ⇢ 2 DQ.A/.

(ii) ⇢ is unramified outside N [Q D S [ P [Q for ⇢ 2 D1Q.A/, and unramified outside
N [ S [Q [ πpº for ⇢ 2 DQ.A/.

(iii) If ` 2 P , then ⇢jD` ' ��1 jD`
˚ � if ⇢ 2 D1Q.A/ and ⇢jD` ' ��1 ✏p�1jD`

˚ � if
⇢ 2 DQ.A/, where � is an unramified character and �.Frob`/ D ˛` ⌘ a` mod m.

(iv) If ` 2 S , then ⇢jD` corresponds to an A-valued quotient of Rmod
`

, where we take the
determinant to be  if ⇢ 2 D1Q.A/ and  � ✏p�1 if ⇢ 2 DQ.A/, and, in either case
˛` 2 Rmod

`
is a` mod m.

(v) If ` 2 Q, then ` ⌘ 1 modp, and ⇢.Frob`/ has distinct eigenvalues. Then

⇢jD` ' ��1 jD`
˚ �;

where � is a character of Q⇥

`
⇢ Gab

Q`
such that �.`/ D ˛` ⌘ a` mod m.

(vi) If ⇢ 2 DQ.A/ and ` D p, then ⇢jDp is ordinary with eigenvalue p̨ ⌘ ap mod m.

In order for these functors to be non-zero, the a` for ` 2 N [Q must be chosen to be
one of the eigenvalues of ⇢.Frob`/, and ap must be one of the eigenvalues of ⇢.Frobp/. As
always, we may extend scalars from k to a field which contains all necessary eigenvalues. For
each ` 2 N , there exists a corresponding universal framed local deformation ring associated to
our deformation problem. There is no subtlety in defining these rings outside the case of primes
in S , and at the prime p. The first case was addressed in the previous section. For ` D p, we use
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48 Calegari, Non-minimal modularity lifting in weight one

the modified deformation rings as constructed by Snowden ([23], see in particular Section 4.6).
For each `, we denote the corresponding modified local deformation ring (with the appropriate
determinant) by Rmod

`
.

Proposition 2.5. For all of the ` different from p, the corresponding modified local

deformation ring Rmod
`

is an O-flat reduced equidimensional ring of relative dimension 3

over O. If ` D p andD D DQ, thenRmod
`

is an O-flat reduced equidimensional ring of dimen-

sion 4 over O.

Proof. We consider each deformation ring in turn.
(i) Suppose that ` 2 P . By assumption,  is ramified at ` and hence ˛` is uniquely deter-

mined by ⇢jD`. Hence we recover the framed local deformation ring, and the result follows
from [5, Lemma 4.11].

(ii) Suppose that ` 2 S . Then the result follows from Lemma 2.2.
(iii) Suppose that ` 2 Q. The assumption that ` ⌘ 1 modp and that ⇢.Frob`/ has no

distinct eigenvalues implies that there is no distinction between Runiv
`

and zRuniv
`

. Moreover, all
deformations of ⇢ will be tamely ramified and split as a direct sum of two characters, and so
Rmod
`
D Runiv; 

`
in this case. The ringRuniv; 

`
has the desired properties by direct computation,

see for example [21, Proposition 7]: it may be identified with OJX; Y;Z; P K=..1CP /m � 1/,
where m is the largest power of ` dividing p � 1.

(iv) If ` D p, and ⇢.Frobp/ has distinct eigenvalues, then the usual definition of an ordi-
nary deformation ringRp requires a choice of eigenvalue of the unramified quotient, and hence
Rmod
p is just the usual Kisin ring Rp in this case. If ⇢.Frobp/ has the same eigenvalues, then

the local modified deformation ring is exactly the completion of B1 at b D .1I 1I 0/ consid-
ered in [23, Section 3.4] and denoted by zRé in [5, Section 3.7]. The case when ⇢.Frobp/ has
the same eigenvalues but is non-scalar corresponds to the localization of B1 at .. 1 10 1 /I 1I 0/.
In either case, Rmod

p is O-flat, reduced, equidimensional of relative dimension 4 (over O), and
Cohen–Macaulay.

We also present here the following proposition which will be useful later. (Compare
[17, Lemma 3.4.12].)

Lemma 2.6. Let A and B be complete local Noetherian reduced O-flat algebras with

residue field k. Then A b̋O B is reduced and O-flat.

Proof. The O-flatness follows from [12, Section 0, Lemma 19.7.1.2]. Because B is
reduced, it follows from [16, Corollary 2.3] that the intersection of the kernels of all mor-
phisms B ! O

0 for the ring of integers finite extensions E 0=E is trivial. Using this, we may
write B as an inverse limit B D lim

 �
Bi , where each Bi is reduced and finite flat over O.

Then C D lim
 �

A˝ Bi (now we can replace b̋ by ˝) and it suffices to prove the claim for
the usual tensor product when B is finite flat over O, which we now assume. Since C is O-flat,
it suffices to show that C Œ1=$ ç D AŒ1=$ ç˝E BŒ1=$ ç is reduced. However, this follows
from [1, Chapter V, Section 15.5, Theorem 3 (d)].

2.3. Modular curves. Let N � 5, and let XH .N / D X.ÄH .N // denote the quotient
of X1.N / by the Sylow p-subgroup of .Z=NZ/⇥ considered as a smooth proper scheme
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Calegari, Non-minimal modularity lifting in weight one 49

over Spec.O/ (see [8]). To be precise, the curve XH .N / is a fine moduli space providing that
either p � 5 or p D 3 andN divisible by a prime q � 5 such that q ⌘ �1 mod 3. This follows
either from the computation of stabilizers at the CM points (as in [19, Section 2, p. 64]), or, in
the second case, becauseXH .N / is a cover ofX1.q/. If p D 3 andXH .N / is not a fine moduli
space, we simply add a prime q � 5 and q ⌘ �1 mod 3 to S such that ⇢ is unramified at q. IfQ
is a collection of auxiliary primes disjoint fromN , letXH .NQ/ denote a quotient ofX1.N / by
the p-Sylow subgroup of .Z=NZ/⇥ and some subgroup of .Z=QZ/⇥. (In practice, the cokernel
of the corresponding subgroup of .Z=QZ/⇥ will be a p-group.)

2.4. Hecke algebras. Let ! be the usual pushforward ⇡⇤!E=XH .N/ of the relative
dualizing sheaf along the universal generalized elliptic curve. If A is an O-module, then let
!nA D !

n ˝O A. The (Katz) space of modular forms of weight k and level N is defined to
be H 0.XH .N /; !

k
A/.

We shall now consider a number of Hecke algebras, and discuss the relationship between
them. Our coefficient ring or module will either beA D O,A D E D O ˝Q,A D O=$ D k,
A D O=$n, or A D E=O unless otherwise specified.

Definition 2.7. The Hecke algebra TA in weight k is the A sub-algebra of

EndA.H
0.XH .N /; !

k
A//

generated by the operators Tn for n prime to p and diamond operators hd i for d prime to N .

Note that this definition includes the operators T` for `jN . These operators can also be
denoted by U` (which is what we shall do below). We now define a variant of these Hecke
algebras where we include the Hecke operator at p.

Definition 2.8. Let zTA denote the ring TA together with the operator Tp.

Note that a maximal ideal m of T need no longer a priori be maximal in zT. That is, zTm

will not always be a local ring. However, it will always be a semi-local ring, that is, a direct
sum of finitely many local rings.

2.5. Hecke algebras at auxiliary level Q. Let Q be a finite collection of primes con-
gruent to 1 modp and distinct from N . Let TQ;A denote the O-algebra generated by Hecke
operators away from p acting at level XH .NQ/ with coefficients in A together with diamond
operators hd i for d prime to N , and let zTQ;A denote TQ;A together with the operator Tp.

Suppose that ⇢ is a representation such that the modified deformation ring R is non-
zero – equivalently, that D.k/ ¤ 0. Recall that N is equal to the conductor of  times the
primes in some auxiliary set S which includes (but may be larger than) the set of primes `−p
where ⇢jI` is non-trivial and unipotent. In particular, if ` divides S , then ` divides N exactly
once. By Serre’s Conjecture [15], any such ⇢ is modular of level N.⇢/jN and weight p, so we
now specialize to the case of weight p, and let TQ D TQ;O . Let Åm be a maximal ideal of zTQ
corresponding to ⇢ (and to a choice of a` for all ` dividing N , Q, and p). Let us also suppose
that for every prime ` dividingQ, the matrix ⇢.Frob`/ has distinct eigenvalues (since this is an
assumption in part (v) of the definition of DQ).
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50 Calegari, Non-minimal modularity lifting in weight one

Proposition 2.9. There exists a deformation

⇢Q W GQ ! GL2.zTQ; Åm/

of ⇢ unramified outside pNQ such that ⇢.Frob`/ D T` for ` prime to pNQ. Let ⇢0
Q D ⇢Q˝ ⌘,

where ⌘2 D  � ✏p�1 � det.⇢Q/�1. Then ⇢0
Q is a deformation of ⇢ inDQ.zTQ; Åm/. In particular,

there is a corresponding map

RQ ! zTQ; Åm

sending tr.⇢univ.Frob`// 2 RQ to ⌘.`/ � T` for ` not dividing pNQ, sending ˛` to ⌘.`/ � U` for

` dividing NQ, and sending p̨ C pp�1 .p/˛�1
p to ⌘.p/ � Tp, or equivalently, p̨ to the unit

root of

X2 � ⌘.p/ � TpX C  .p/pp�1 D 0;

which lies in zTQ; Åm by Hensel’s Lemma.

This proposition is (mostly) an exercise in Atkin–Lehner–Li theory. Indeed, if one
assumes that the action of U` on forms of level `kN is semi-simple (which conjecturally is
always the case), then the space of modular forms under consideration will decompose into
a direct sum of eigenforms for all the Hecke operators in zTQ;m, and then the claim follows
immediately from known local-global compatibility for classical modular forms. (The only
local–global compatibility we require is given by [7, Theorem 3.1].) In practice, we have to
allow for the possibility that U` may not act semi-simply, although this is not difficult.

Proof. The space of modular forms of weight p is torsion free, so the Hecke algebra is
determined by its action on

H 0.XH .NQ/; !p/Åm ˝E:

It suffices to prove the proposition after further decomposing this space into a direct sum
of zTQ; Åm-modules. Enlarging E if necessary, we may assume that all the eigenvalues of all
Hecke operators at level dividing NQ are defined over E. Let Tan

Q denote the anaemic Hecke
algebra consisting of endomorphisms of H 0.XH .NQ/; !p/ generated by Hecke operators Tn
for n prime to pNQ and diamond operators hd i for d prime to NQ. There is a map Tan

Q ! zTQ;
let m ⇢ Tan

Q denote the inverse of the maximal ideal Åm (which is determined by ⇢). Note that m

may correspond to several Åm in zTQ; the possible Åm are indexed by the possible choices of a`
for ` dividing pNQ. In any event, there will always be an inclusion:

H 0.XH .NQ/; !p/Åm ˝E ⇢ H 0.XH .NQ/; !p/m ˝E:

(This would be an equality if we replaced the left hand side with a direct sum over all Åm which
pull back to m.) The space H 0.XH .NQ/; !p/˝E decomposes under Tan

Q into eigenspaces
indexed by newforms f of level dividing NQ. Associated to a cuspidal newform f is a Galois
representation ⇢f . In particular, combining all these Galois representations over f with ⇢f D ⇢,
we obtain a Galois representation

⇢ W GQ ! GL2.T
an
Q;m ˝E/:

Because the traces of Frobenius elements lie in Tan
Q;m, and because ⇢ is absolutely irreducible,

we may take the image of this Galois representation to land in GL2.Tan
Q;m/ by [22, (2.6)]. To

this point, we have simply reconstructed the usual construction of the Galois representation
into the (anaemic) Hecke algebra.
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Let ⇢Q denote the Galois representation induced by composing this with the image of
the algebra Tan

Q;m in zTQ; Åm. This will be the ⇢Q of the proposition. The reason for the twist
by ⌘ is to match the determinant with the required determinant for the functor DQ. The main
point of this proposition is to show that the extra old forms associated to f (with their con-
comitant actions of U`) contain exactly the extra information needed to obtain a modified
deformation of ⇢ of typeDQ. The eigenspaces corresponding to f will contribute to the locali-
zation at m if and only if ⇢f D ⇢. In particular, the level of f must be divisible by the Serre
conductor of ⇢, and hence the level of f is of the form NQ=D, where D is only divisible
by primes dividing either S or Q. Hence the integer D is square-free and prime to NQ=D.
Suppose that D has d prime divisors. The form f generates a space of 2d oldforms of level
NQ consisting of f D f .q/ together with the forms f .qm/ for mjD. By Atkin–Lehner–Li
theory ([24, Theorem 9.4]) this exhausts the entire space of oldforms associated to f which
appear in H 0.XH .NQ/; !p/m ˝Q. Let us now describe the action of U` on these spaces
for ` dividing D. Again by Atkin–Lehner, this is given as the tensor product over `jD of
a two-dimensional space on which U` acts by the matrix

 
tr.⇢f .Frob`// h`i`p�1

�1 0

!
:

Here tr.⇢f .Frob`// may also be identified with the eigenvalue of f under the Hecke opera-
tor T` acting at level NQ=D. The element tr.⇢f .Frob`// will lie in the image of Tan

Q by the
Cebotarev density theorem. Note that the eigenvalues of this matrix are precisely the eigenval-
ues of ⇢f .Frob`/. There are now two possibilities:

(i) The eigenvalues of ⇢f .Frob`/ are distinct. In this case, the space of oldforms over E
decomposes further into eigenspaces under U`. The eigenvalues of U` will correspond
precisely to Galois representations together with a choice of eigenvalue of ⇢f .Frob`/.
Each choice of eigenvalue will contribute to the localization at Åm if and only if the cor-
responding eigenvalue is a` mod$ . After the global twist to match determinants, such
representations will naturally be algebras over Rmod

`
, where ˛` is sent to ⌘.`/ � U` (this

follows by the construction of the rings Rmod
`

, in particular Lemma 2.2 for unramified
primes of type S .

(ii) The eigenvalues of ⇢f .Frob`/ are equal. Call the unique eigenvalue b`. From the explicit
matrix description of the action of U` above, we see that U` is not a multiple of the scalar
matrix, and so it is not diagonalizable. In particular, in the Hecke algebra, the operator U`
satisfies the relation .U` � b`/

2 D 0. However, once again (after twisting), there will be
a map from Rmod

`
sending ˛` to ⌘.`/ � U`, by Corollary 2.3 (the eigenvalues can only be

the same for primes of type S ).

We remark that the second case above conjecturally never occurs in weight � 2 (see [6]).
Let us now consider the operators U` for ` not dividing D. In this case, the Galois repre-

sentation ⇢f is ramified at `, and local–global compatibility of Galois representations implies
that, after twisting by ⌘, the Galois representation has an unramified quotient on which Frob`
acts via U`, and hence we have a natural map from Rmod

`
to zTQ; Åm sending (after twisting) ˛`

to ⌘.`/ � U`. Finally, since (by definition) ap 2 k is a unit (it is an eigenvalue of an invertible
matrix), the representation ⇢f is ordinary at p, and action of Frobenius on the Galois represen-
tations associated to any form f will admit an unramified at p quotient on which Frobp acts
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52 Calegari, Non-minimal modularity lifting in weight one

as Up. Hence there will be a natural map from Rmod
p to zTQ; Åm sending p̨ to ⌘.p/ � Up, which

is related to Tp via the equation U 2p � TpUp C hpipp�1 D 0.

Remark 2.10. The theorem above is true in any weight k � 2, providing that one mod-
ifies the definition of DQ to take into account the weight, and one still works in the ordinary
context (so ap 2 k⇥).

2.6. Modularity lifting theorems in weight p. The main goal of this subsection is to
prove the following:

Theorem 2.11. There is an isomorphism RQ ! zTQ; Åm.

Before proving this theorem, we remark that the “modularity” theorem one can deduce
from this R D T theorem is already well known. In particular, one knows that

.RQŒ1=$ ç/red D .zTQ; ÅmŒ1=$ ç/red

(our Hecke algebras will not be reduced if the action of U` is not semi-simple). Hence the
content of this theorem is to upgrade this known result to an integral statement. In order to see
how one might do this, note that the modifications of Taylor–Wiles due to Diamond, Kisin,
and others ([9,18]) proceed by constructing a patched moduleM1 over a patched deformation
ringR1 and a ring of auxiliary diamond operators S1. By hook or by crook, one tries to prove
thatM1 is faithful (or nearly faithful) as an R1-module. To recover a classical statement, one
takes the quotient ofR1 andM1 by the augmentation ideal a of S1, and recovers the classical
ring R and a module M of classical modular forms on which R acts via the quotient T. An es-
sential difficulty, however, is that even if one knows thatM1 is faithful as an R1-module, this
does not imply thatM1=a is faithful as anR1=a-module; that is, faithfulness is not preserved
under quotients. Hence these methods often only allow one to deduce weaker statements con-
cerning reduced quotients. In Wiles’ original arguments, however, the auxiliary modules MD

are free over the corresponding Hecke algebras, and one ultimately deduces that the patched
module M1 is also free over R1, from which one can certainly conclude that M1=a is free
over R1=a, and hence that R D T. In our argument, we exploit the fact that, by using all the
Hecke operators, the multiplicity one theorem for q-expansions allows us to also show that the
auxiliary modules MD are free over certain Hecke algebras, and hence we are able to deduce
(as in Wiles) an integral R D T theorem.

Remark 2.12. An apology concerning notation: The notation Q that we have used is
meant to suggest a collection of Taylor–Wiles primes. Indeed, the primes denoted by Q will
play the role of Taylor–Wiles primes in the modularity proof of Section 4.1. However, in the
proof of Theorem 2.11 below, the set of primes Q will be fixed, and there will be an auxiliary
choice TD of Taylor–Wiles primes x ⌘ 1 modpD . Explicitly, we are proving an R D T theo-
rem at level p and a level which already includes a fixed collection of Taylor–Wiles primes Q.
Hence we require a second auxiliary choice of Taylor–Wiles primes for which we use the
letter T rather than Q.

Proof. We first define a classical unmodified (“natural”) deformation ring R\Q which
records deformations which are of the same type as considered in RQ, except now the extra
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choice of eigenvalues is omitted, as is the choice of eigenvalue at ` D p. There is a natural
isomorphism

RQ ' R
\
Q ˝Rloc Rmod;

where

Rloc WD
bO

`jpNQ

R`

denotes the corresponding local deformation rings for Rloc, and

Rmod WD
bO

`jpNQ

Rmod
` :

We remind the reader that one should think about the Rloc-algebra Rmod as follows: it is
the algebra obtained by including the extra information over Rloc coming from a choice of
Frobenius eigenvalue, and taking a localization of this ring corresponding to fixing (residually)
a choice of such an eigenvalue. In particular, the set of components of the generic fibre of Rmod

is a subset of the components of the generic fibre of Rloc. The ring Rmod is also reduced by
Lemmas 2.5 and 2.6.

We now patch together coherent cohomology modules and we also simultaneously patch
Betti cohomology. Namely, we patch the pairs of modules

MC
D D H

0.XHD
.NQ � TD/; !

˝p
E=O

/_
Åm
;

MB
D D H

1.XHD
.NQ � TD/;Symp�2..E=O/2//_

m
:

The notation C and B refers to coherent and Betti cohomology, respectively. Here TD is a col-
lection of Taylor–Wiles primes x (distinct from primes dividing NQ) such that x ⌘ 1 modpD ,
and HD is the subgroup of .Z=NQ � TDZ/⇥ generated by the kernel of the map

.Z=TDZ/⇥ ! .Z=pDZ/#TD

together with a fixed subgroup of .Z=NQZ/⇥. The first module has a faithful action of zTQ�TD;Åm

and the second has a faithful action of TQ�TD ;m. Moreover, the tensor productMB
D ˝Rloc Rmod

has a natural action of zTQ�TD ;Åm. We patch together both of these modules for the following
reason. The patched Betti cohomology module is known to be nearly faithful over the patched
framed natural Galois deformation rings RlocJx1; : : : ; xrCd�1K by a theorem of Kisin [18] –
this essentially amounts to the fact that we already have modularity lifting theorems in this
context; the goal is to upgrade these theorems to integral statements. On the other hand, the
coherent cohomology will be free over the corresponding modified Hecke rings, which allows
for an easier passage from patched objects back to finite level.

By Lemma 3.1, the modulesMC
D are free of rank one over zTQ�TD ;Åm, and soMC

D =$
D is

free of rank one over zTQ�TD ;Åm=$
D . On the other hand, MB

D need not be free. However, the
action of the Hecke onMB

D =$
D certainly factors through TQ�TD ;m=$

D , and the action of the
full Hecke algebra (with Hecke operators for primes dividing N ) on MB

D =$
D ˝Rloc Rmod

factors through zTQ�TD ;Åm=$
D .

If we patch together all this data simultaneously (together with framings), we deduce (as
in the pre-Diamond argument of Wiles) that the patched framed module M⇤;C

1 is free of rank
one over zT⇤

1 (this is tautological, because each of the modules that is being patched will be
free), and that the action of the patched modified Galois deformation ring onM⇤;B

1 ˝Rloc Rmod

acts through zT⇤

1. If R⇤

Q denotes the framed version of RQ over d primes dividing pNQ, then
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54 Calegari, Non-minimal modularity lifting in weight one

the Taylor–Wiles method as modified by Kisin gives presentations:

RQJT1; : : : ; T4d�1K ' R
⇤

Q ' R
modJx1; : : : ; xrCd�1K=.f1; : : : ; frC1/;

R
\
QJT1; : : : ; T4d�1K ' R

⇤;\
Q ' RlocJx1; : : : ; xrCd�1K=.f1; : : : ; frC1/:

From [18] we know that M⇤;B
1 is a nearly faithful RlocJx1; : : : ; xrCd�1K-module. From the

freeness ofMC over the Hecke algebra, it follows that zT⇤

1 is a quotient of the power series ring
RmodJx1; : : : ; xrCd�1K. If zT⇤

1 is actually isomorphic to this ring, then by taking the quotient
by diamond operators, we arrive at the required isomorphism RQ ' zTQ; Åm. On the other hand,
the components of the generic fibre of RmodJx1; : : : ; xrCd�1K are a subset of those for Rloc, so
we deduce (cf. [25, Lemma 2.3]) that zT⇤

1 is a nearly faithful RmodJx1; : : : ; xrCd�1K-module.
Since Rmod is reduced and Noetherian, the power series ring has no nilpotent elements, and
hence being nearly faithful over this ring is equivalent to being faithful. Thus zT⇤

1 is a faithful
module, and hence isomorphic to RmodJx1; : : : ; xrCd�1K, and the proof follows.

Corollary 2.13. There is an isomorphism RQ=$ ' zTQ; Åm=$ ' zTQ;k;Åm.

Proof. The first isomorphism is an immediate consequence of the previous theorem,
so it suffices to show that zTQ; Åm=$ ' zTQ;k;Åm, or equivalently, that zTQ; Åm=$ acts faithfully
on H 0.X; !

p

k
/. For this it suffices to note that

H 0.X; !
p

k
/_ D .H 0.X; !

p

E=O
/Œ$ ç/_ D H 0.X; !

p

E=O
/_=$

and that H 0.X; !
p

E=O
/_ is free of rank one over zTm by Lemma 3.1 below.

3. Katz modular forms

We now study more closely the action of Hecke operators in characteristic p, especially
in weights p and one. In this section, we denote TQ;k and zTQ;k by T and zT. We use freely the
q-expansion principle, namely, that a form in H 0.X; !n

k
/ is determined by its image in kJqK.

Multiplication by the Hasse invariant induces a map

A W H 0.X; !k/! H 0.X; !
p

k
/

which is an injection and is the identity map on q-expansions. It follows that this map is
T-equivariant, but it is not in general zT-equivariant. There is another map between these spaces
induced by the map q 7! qp:

V W H 0.X; !k/! H 0.X; !
p

k
/I

this map V is also T-equivariant. (Although the corresponding Hecke algebras T in weights
one and p are not the same rings, the meaning of T-equivariance should be clear.)

Lemma 3.1. Let Åm be a maximal ideal in zT in weight p, and let m be the corresponding

maximal ideal in T. Then dimH 0.X; !
p

k
/ŒÅmç D 1 and

dimH 0.X; !
p

k
/Œmç D 1C dimH 0.X; !k/Œmç;

where dimH 0.X; !k/Œmç  1.
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Proof. The Hecke operators at all primes determine the q-expansion, which proves the
first equality. For the second, let f 2 H 0.X; !

p

k
/ŒÅmç denote the unique eigenform with leading

coefficient 1. There is a homomorphism

H 0.X; !
p

k
/Œmç! kJqpK \H 0.X; !

p

k
/Œmç

given by g 7! g � a1.g/f . By the q-expansion principle, the kernel of this map is one-dimen-
sional. By the main theorem of Katz [14], the space kJqpK \H 0.X; !

p

k
/Œmç, which lies in

the kernel ker.✓/ of the theta operator, may be identified with the image of H 0.X; !k/Œmç

under V . This gives the first equality. To prove the inequality, we repeat the same argument in
weight one, except now [14] implies that kJqpK \H 0.X; !k/ D 0.

It follows that T1 D zT1 in weight one because Tp 2 T1 and mT1 D ÅmT1.

3.1. Doubled modules. We define the notion of a doubled module with respect to T

and zT.

Definition 3.2. Let N ⇢ H 0.X; !
p

k
/ be invariant under the action of zT, let

zI D AnnzT.N /; I D AnnT.N / D zI \ T:

We say that N is doubled if the action of zT on N acts faithfully through a quotient zT= zI such

that

length.zT= zI / D 2 � length.T=I /:

Lemma 3.3. There exists a maximal doubled sub-module of H 0.X; !
p

k
/m.

Proof. In case dimH 0.X; !
p

k
/Œmç D 1, thenH 0.X; !

p

k
/_
m

is free of rank one over Tm

and zTm, so Tm ' zTm, and the maximal doubled quotient is trivial. Hence we may assume
that dimH 0.X; !

p

k
/Œmç D 2. By Nakayama’s Lemma applied to Tm, it follows that zTm has

rank at most two over Tm, or equivalently that Tp satisfies a quadratic relation. IfN is doubled,
however, then zTm= zI must be free of rank two as a Tm=I -module. In particular, I must act
trivially on zTm=Tm, so it must contain the annihilator of this module. Let J be the annihilator
of zTm=Tm as a Tm-module. This is an ideal of Tm; we claim that it is actually an ideal of zTm.
By definition, if a 2 Tm is any element, then a annihilates zTm=Tm if and only if it lies in J .
Equivalently, we have ax 2 Tm for all x 2 zTm if and only if a 2 J . To show that J is an ideal
of zTm, it suffices to show that aTp 2 J . By the previous equivalence, we have aTp 2 Tm.
Moreover, since ax 2 Tm for every x 2 zTm, we also have aTpx 2 Tm for every x 2 zTm.
Thus aTp 2 J , and J is an ideal of zTm. We then observe that H 0.X; !

p

k
/ŒJ ç is doubled, and

is thus the maximal doubled sub-module.

The ideal J is the analogue in this context of the (global) doubling ideal denoted J glob

in [5].
LetM ⇢ H 0.Xk; !

p/m be a maximally doubled module. HenceM_ is free of rank two
over T=J and free of rank one over zT=J , where J D AnnT.M/. The only maximal ideal of
T=J is m, so T=J is a finite local ring. Let ker.✓/ denote the subset of elements annihilated
by the ✓ operator, and let kerM .✓/ D ker.✓/ \M
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Lemma 3.4. The module M= kerM .✓/ is a faithful T=J -module.

Proof. We have a surjection

.T=J /2 'M_ ! kerM .✓/
_:

The module kerM .✓/ is isomorphic as a T-module to H 0.X; !k/m. Hence, by Lemma 3.1,
kerM .✓/_ is cyclic as a T=J -module. IfK denotes the kernel, it follows thatK=m! .T=m/2

has non-trivial image. Let x 2 K denote an element which maps to a non-zero element
in .T=m/. Then the cyclic module in .T=J /2 generated by x is a faithful T=J -module, and
hence K is also a faithful T=J -module. We then have M= kerM .✓/ D K_.

Definition 3.5. There is a T-equivariant pairing T=J ⇥M ! k defined as follows:

hTn; f i D a1.Tnf /:

Lemma 3.6. The map h⇤;⇤i is a perfect pairing between T=J and M= kerM .✓/.

Proof. If f D
P
anq

n and ✓.f /D 0, then an D 0 for all .n; p/D 1, so hTn; f i D 0 for
all Tn 2 T, and hence for all T 2 T. Conversely, if hTn; f i D 0, then an D 0 for all .n; p/ D 1
and f lies in the kernel of ✓ . Now suppose that hT; f i D 0 for all f 2M . Since the map is
Hecke equivariant, it follows that

hTn; Tf i D hT Tn; f i D hTnT; f i D hT; Tnf i D 0

for all n, and hence Tf is trivial in M= kerM .✓/. But T=J acts faithfully on M= kerM .✓/,
so T D 0.

Lemma 3.7. The module kerM .✓/ is a faithful T=J -module, and kerM .✓/_ is free

over T=J of rank one.

Proof. By definition, M is free of rank two over T=J , and so it has the same length
as .T=J /2. However, by Lemma 3.6, M= kerM .✓/ and T=J have the same dimension over k,
and hence the same length. It then follows that kerM .✓/ has the same length as T=J . Since
dim kerM .✓/Œmç D 1, the module kerM .✓/_ is cyclic of the same length as T=J , and thus free
of rank one over T=J . Hence kerM .✓/ is also faithful as a T=J -module.

Since, by Lemma 3.1, ker.✓/_
m

is also free of rank one over T1 D T1
Q;k

, the Hecke
algebra in weight one, and kerM .✓/_ is a quotient of this module, we deduce the immediate
corollary:

Corollary 3.8. There is a surjection T1 ! T=J .

Now let us fix X D XH .NQ/, and suppose that m and Åm correspond to our residual
Galois representation ⇢ together with a suitable choice of a`.

Proposition 3.9. There exists a doubled submodule M ⇢ H 0.XH .NQ/; !
p

k
/m such

that the action of T on M acts faithfully through R1Q=$ . In particular, there is a surjec-

tion T=J ! R1Q=$ .
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Proof. Let zR1Q denote the modification of RQ where one also takes into account an
eigenvalue p̨ of ⇢.Frobp/ (recall that representations associated to D1Q are unramified at p).
The ring zR1Q is a finite flat degree 2 extension of R1Q given as the quotient of R1QŒ p̨ç by the
monic quadratic polynomial p̨ corresponding to the characteristic polynomial of Frobenius in
the universal representation associated to R1Q. Let us distinguish two cases. The first is when
the eigenvalues of ⇢.Frobp/ are distinct, and the second is when they are the same (in the latter
case, ⇢.Frobp/may or may not be scalar). Let† denote the set of eigenvalues, so j†j D 2 or 1.
If j†j D 1, then zR1Q is a local ring, and if j†j D 2, it is a semi-local ring with two maximal
ideals; indeed, by Hensel’s Lemma the quadratic relation satisfied by p̨ splits over R1Q, and
so there is an isomorphism zR1Q D R

1
Q ˚R

1
Q in this case. (This is essentially Lemma 2.1.) In

particular, the quadratic polynomial has exactly two roots in zR1Q. There is a surjection

M

†

RQ !
M

†

RQ=$ ! zR1Q=$:

Here the sum is over the ringsRQ corresponding to each choice of eigenvalue ap 2 †. The lat-
ter map sends ˛` to ˛` for all ` dividing NQ. If j†j D 2, then each p̨ goes to the corresponding
eigenvalue of Frobenius. If j†j D 1, then p̨ goes to p̨. These maps are well defined because,
after reduction modulo $ , all the local conditions (including the determinant) in the defini-
tion of D1 and D1Q coincide with the exception of ` D p. For ` D p, the enriched ring zR1Q
receives a map from Rmod

p , because p̨ in Rmod
p is exactly an eigenvalue of Frobenius. Since

zTQ;k;Åm ' RQ=$ by Corollary 2.13, there is a surjection
M

†

zTQ;k;Åm ! zR
1
Q=$:

Since
L
H 0.XH .NQ/; !

p

k
/Åm is co-free over

L zTQ;k;Åm, there certainly exists a module M
such that the action of zT on M is precisely via this quotient zR1Q=$ . Yet this quotient is also
finite flat of degree two over R1Q=$ , which is precisely the image of T under this map. Hence
the submodule M is doubled, and the corresponding action of T is via R1Q=$ . The final claim
follows from the fact that J is the ideal corresponding to the largest doubled submodule.

Remark 3.10. One alternative way to write this paper was to define the functors DQ,
etc. without making a fixed choice of a`. This would have amounted to replacing the universal
local deformation rings RQ, etc. by universal semi-local deformation rings, which would be
isomorphic to a direct sum over all the local rings in this paper and over all possible choices
of a`. We have decided to work with the version of these rings in which choices have been
made, however, as evidenced by the proof of the previous proposition, one still has to deal
with semi-local rings in some cases at ` D p, because when ⇢.Frobp/ has distinct eigenval-
ues, the corresponding maximal ideal in weight one is determined by the sum ˛ C ˇ of these
eigenvalues whereas the local rings in higher weight require a choice of ˛ or ˇ.

4. Passage from weight p to weight one

Let T1Q D T1
Q;E=O

. Recall that the rings T1, zT1, T, and zT of the previous section were
abbreviations for the rings T1

Q;k
, zT1
Q;k

, TQ;k and zTQ;k respectively; we return to this expanded
notation now.
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58 Calegari, Non-minimal modularity lifting in weight one

Corollary 4.1. There is an isomorphism R1Q=$ ! T1
Q;k;m

' T1Q;m=$ .

Proof. For the first isomorphism, it suffices to note that there exists a map

R1Q=$ ! T1Q;k;m ! TQ;k;m=J ! R1Q=$

whose composite is the identity. The existence of the first map follows from the fact that Galois
representations in weight one are unramified at p, which follows from [5, Theorem 3.11]
(together with the appropriate local–global compatibility away from p, which follows as in
the proof of [5, Theorem 3.11] by reduction to characteristic zero in higher weight, together
with the proof of Proposition 2.9). The second map comes from Corollary 3.8. The existence
of the third map follows from Proposition 3.9. The identification of T1

Q;k;m
with T1Q;m=$

follows from the fact that

H 0.XH .NQ/; !k/m D H
0.XH .NQ/; !E=O/mŒ$ ç

and the fact that H 0.XH .NQ/; !E=O/
_ is free over T1Q;m by Lemma 3.1.

4.1. Modularity in weight one. We have an isomorphism R1Q=$ ' T1Q;m=$ for all
collections of Taylor–Wiles primes Q D QD , and we apply the machinery of [5], in particular
Proposition 2.3 as applied in [5, Section 3.8]. We patch the modulesH 0.XHD

.NQD/;!E=O/
_
m

,
where Q is a collection of Taylor–Wiles primes x ⌘ 1 modpD , and H is the subgroup of
.Z=NQDZ/⇥ which is generated by the kernel of .Z=QDZ/⇥ ! .Z=pDZ/⇥ and the p-Sylow
of .Z=NZ/⇥. We obtain a module M1 which is a module over the framed ring of diamond
operators S⇤

1, and a patched deformation ring R1;⇤1 which is also an algebra over this ring. In
contrast to [5], the ring R1;⇤1 is a power series ring over a completed tensor product

Rmod WD
bO

`jN

Rmod
` ;

instead of a power series ring over O. Since the modulesH 0.XQ; !E=O/
_
m

are free over TQ;m,
the module M1 is cyclic as an R1;⇤1 -module. Hence we know that:

(1) M1=$ is free of rank one over R1;⇤1 =$ , as follows from our mod-p modularity results
above, in particular Corollary 4.1.

(2) M1 is pure of co-dimension one as an S⇤

1-module; that is,M1 is a torsion S⇤

1-module,
and there exists a presentation

0! .S⇤

1/
n ! .S⇤

1/
n !M1 ! 0I

this is exactly the output of the construction of [5].

The second result is essentially a formal consequence of the method of [5] rather than
anything in this paper. This on its own is enough to show that M1 will certainly be supported
on some components of the generic fibre of R1;⇤1 . However, as soon as S contains primes for
which ⇢ is unramified (that is, as soon as we are at non-minimal level), the ringR1;⇤1 Œ1=$ ç will
have multiple components. The usual technique for showing that the support of M1 is spread
over all components is to produce modular lifts with these properties. In our context this is not
possible: there are no weight one forms in characteristic zero which are Steinberg at a finite
place q (see the proof of Proposition 4.2 below). Our replacement for producing modular points

Brought to you by | University of Chicago

Authenticated

Download Date | 7/19/18 11:12 PM



Calegari, Non-minimal modularity lifting in weight one 59

in characteristic zero is to work on the special fibre, and to show thatM1=$ is (in some sense)
spread out as much as possible over R1;⇤1 =$ . And we do this (and this is the main point of
everything so far) by working in weight p and then descending back to weight one using the
doubling method. In particular, we know that M1=$ is free of rank one over R1;⇤1 =$ . From
these two properties, we will now deduce that M1 is free of rank one over R1;⇤1 , which will
imply all our modularity results.

By Nakayama’s Lemma, there is certainly an exact sequence of S⇤

1-modules

0! K ! R1;⇤1 !M1 ! 0:

It suffices to show thatK D 0. By Nakayama’s Lemma again, it suffices to show thatK=$ D 0.
Tensoring with S⇤

1=$ (that is, reducing modulo $ ), we get a long exact sequence

Tor1.S⇤

1=$;M1/ �! K=$ �! R1;⇤1 =$
'
�!M1=$ �! 0:

Here the last map is an isomorphism by property (1) above. Hence, to prove thatK=$ is trivial,
it suffices to show that

Tor1.S⇤

1=$;M1/ DM1Œ$ ç

is trivial. If M1Œ$ ç is non-trivial, then, from the purity of M1, we claim that M1=$ will
have positive rank over S⇤

1=$ . To see this, simply tensor the presentation ofM1 with S⇤

1=$

to obtain the exact sequence

0! Tor1.S⇤

1=$;M1/! .S⇤

1=$/
n ! .S⇤

1=$/
n !M1=$ ! 0;

from which it follows that

rank
S⇤

1=$
M1=$ D rank

S⇤
1=$

Tor1.S⇤

1=$;M1/:

If Tor1.S⇤

1=$;M1/ is non-zero, then, as it is a submodule of a free module over S⇤

1=$

which has no associated prime, it also has no associated prime as an S⇤

1=$ module. However,
a module with no associated prime over a power series ring over k certainly must have positive
rank. This implies that (if M1Œ$ ç is non-zero) that M1=$ has positive rank. Yet this con-
tradicts the fact that R1;⇤1 =$ 'M1=$ does not have positive rank, as R1;⇤1 is flat over O

(Lemma 2.6) and of smaller dimension than the ring of diamond operators (by one). Hence
M1 is free of rank one over R1;⇤1 . But now specializing down to finite level, we deduce that
H 0.X; !E=O/

_
m

is free of rank one over R1, which proves Theorem 1.2.

4.2. Producing torsion classes. Let

f D
X

anq
n 2 S1.ÄH .N /; ⌘/

be a cuspidal eigenform of some level N and character ⌘. Let

⇢ W GQ ! GL2.E/

denote the corresponding Artin representation. Assume that ⇢jD` is reducible for any prime `
dividing N .
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60 Calegari, Non-minimal modularity lifting in weight one

Proposition 4.2. Let f be as above. Let p > 2 be a prime such that ⇢f is absolutely

irreducible and p is prime to the level N of f and the order of ⌘. Then there exists a set of

primes ` of positive density so that, for each such `, the map

H 0.X.ÄH .N / \ Ä0.`//Zp
; !/m ˝ Fp ! H 0.X.ÄH .N / \ Ä0.`//Fp

; !/m

is not surjective.

Remark 4.3. This implies that Katz’ base-change theorem ([13, Theorem 1.7.1]) fails
as badly as possible in weight one.

Proof. Suppose, to the contrary, that all such forms of this level lift to characteristic
zero. There are no forms in characteristic zero which are new at ` of level Ä0.`/, because any
such form would have to be (up to unramified twist) Steinberg at `, and no weight one form in
characteristic zero can be Steinberg at any place. The easiest way to see this is that the eigen-
value of U` would have to be a root of unity times `�1=2, but this is impossible because Hecke
eigenvalues of modular forms are algebraic integers. Hence any Galois representation arising
from forms of this level must come from level ÄH .N /, and so in particular be unramified at `.
Thus, by Theorem 1.2, it suffices to show that there is a non-trivial deformation of ⇢ to the
dual numbers which is minimal at N , corresponds to a quotient of Rmod

`
at the new auxil-

iary prime `, and is unramified everywhere else. The reduced tangent space of the unramified
deformation ring is given by the Selmer group H 1

; .Q; ad0.⇢//. Denote the dual Selmer group
by H 1

;⇤.Q; ad0.⇢/.1//. Since these groups are both finite, there exists a finite extension F=Q

which contains the fixed field of ker.⇢/ and such that all the classes inH 1
;⇤.Q; ad0.⇢/.1// split

completely. Let ` be a prime which splits completely in F.⇣p/. Let H 1
†.Q; ad0.⇢// denote the

modified Selmer group where classes are allowed to be arbitrarily ramified at `. By construc-
tion of `, the dual Selmer group H 1

†⇤.Q; ad0.⇢// consisting of all dual Selmer classes which
split completely at ` is equal to H 1

;⇤.Q; ad0.⇢//, because the localization map factors through
the restriction to GF , and by construction all classes in the latter group are assumed to split
completely over Q`. Hence, the Greenberg–Wiles Euler characteristic formula

jH 1
†.Q; ad0.⇢//j

jH 1
; .Q; ad0.⇢//j

D
jH 1
†.Q; ad0.⇢//j

jH 1
†⇤.Q; ad0.⇢/.1//j

�
jH 1

;⇤.Q; ad0.⇢/.1//j

jH 1
; .Q; ad0.⇢//j

D
jH 1.Q`; ad0.⇢//j

jH 1.F`; ad0.⇢//j

D jH 0.Q`; ad0.⇢/.1//j

D jad0.⇢/.1/j;

the final equality coming from the assumption that ` splits completely in F.⇣p/. Note that
dim ad0.⇢/.1/ D 3 > 0. It follows that for such choices of `, there exists a deformation

⇢ W GQ ! GL2.kŒ✏ç=✏2/

which is minimal at all primes away from ` and genuinely ramified at `. Moreover, ⇢jD` is
trivial and ` ⌘ 1 modp. It suffices to show that the corresponding deformation arises from
a quotient of Rmod

`
, which was described explicitly in this case by Lemma 2.4. Since we are

considering fixed determinant deformations, the trace of the image ⇢.g/ of any element g
is 1C det.g/ D 2. However, it is apparent the description of Rmod

`
in Lemma 2.4 that all the
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relations apart from Tr.⇢.⌧// D 2 lie in m
2, and so are automatically satisfied for any deforma-

tion to kŒ✏ç=✏2. (Note that, associated to ⇢, there is a corresponding surjectionRmod
`
! kŒ✏ç=✏2

for any choice of ˛` 2 1C ✏ � kŒ✏ç=✏2.)

4.3. Proof of Theorem 1.3. To prove Theorem 1.3, it suffices to apply Proposition 4.2
to suitably chosen f . Note that the class numbers of the fields Q.

p
�23/ and Q.

p
�47/ are 3

and 5 respectively. This gives rise to suitable weight one forms f with image D3 and D5
and level Ä1.23/ and Ä1.47/ respectively (both with quadratic nebentypus). Applying Propo-
sition 4.2, we deduce the existence of mod-p Katz modular forms which fail to lift for all
p ¤ 2; 3; 23 in the first example and p ¤ 2; 5; 47 in the second. For p D 2, the theorem is
known by an example of Mestre [10], completing the proof.

Remark 4.4. The computations of [20] (see also [3]) suggest that Theorem 1.3 should
also be true if one insists that f is an eigenform. By Serre’s conjecture, this would follow if
for each p > 5 there existed an odd Galois representation: ⇢ W GQ ! GL2.k/ unramified at p
with image containing SL2.Fp/, although proving this appears difficult.

Remark 4.5. If the cuspform f in Proposition 4.2 is exceptional – that is, the projective
image of ⇢f isA4, S4, orA5 –, then the resulting torsion class at level ÄH .N / \ Ä0.q/will not
lift to characteristic zero at any higher level. The reason is that any form g with ⇢f D ⇢g will
have to satisfy ⇢f D ⇢g up to a p-power twist, and the resulting Hecke algebra in weight one
cannot give rise to the infinitesimal deformations ⇢ which arise in the proof of Proposition 4.2.
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