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Non-minimal modularity lifting in weight one

By Frank Calegari at Chicago

Abstract. We prove an integral R = T theorem for odd two-dimensional p-adic repre-
sentations of G which are unramified at p, extending results of [5] to the non-minimal case.
We prove, for any p, the existence of Katz modular forms modulo p of weight one which do
not lift to characteristic zero.

1. Introduction

The main innovation of [5] was to develop a framework for modularity lifting theo-
rems in contexts in which the Taylor—Wiles method did not apply. One of the main examples
in [5, Theorem 1.4] was a minimal modularity lifting theorem for odd two-dimensional Galois
representations which are unramified at p. This result was simultaneously a generalization and
a specialization of the main theorem of Buzzard-Taylor [4]; generalized because it related
Galois representations modulo @” to Katz modular forms of weight one modulo w” neither
of which need lift to characteristic zero, and specialized because it required a minimality hypo-
thesis at primes away from p. One of the goals of the present paper is to provide a theorem
which is a new proof of many cases of [4] in the spirit of [5]. Our methods could be viewed as
hybrid of both [5] and [4] in the following sense: as in [5], we prove an integral R = T theorem
for torsion representations by working directly in weight one, however, as a crucial input, we
use ordinary modularity lifting theorems in higher weight (as in [4], although we only need to
work in weight p) in order to show that the patched Hecke modules see every component of the
generic fibre of the global deformation ring. In order to simplify some of our arguments, we do
not strive for maximal generality. The assumption that the representations are unramified at p,
however, seems essential for the method (if one does not use base change), in contrast to [2].
Let us fix a prime p > 2 and a local field [E : Qp] < oo with ring of integers @ and residue
fieldk = 0/w.

Theorem 1.1. Let p > 2, and let p : Gg — GL2(0O) be a continuous odd Galois rep-
resentation ramified at finitely many primes and unramified at p. Suppose that p is absolutely
irreducible. If p is ramified at a prime £, assume that p| Dy is reducible. Then p is modular of
weight one.
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This result will be deduced from our main result, which is an integral R = T theorem
which we now describe. Let
p: Ggo — GLa(k)

be a continuous absolutely irreducible odd representation unramified at p. For each ¢, let €
denote the cyclotomic character. Let ¥ denote the Teichmiiller lift of det(p). Let N = S U P
be a set of primes not containing p such that v is ramified exactly at the primes contained
in P and unramified at primes contained S. By abuse of notation, we also let N denote the
product of the conductor of ¥ with the primes in S. We consider the functor D! from complete
local Noetherian (9-algebras (A, m) with residue field k& defined (informally) as follows. Fix
a collection of elements a; € k for ¢ dividing N. Let D' (A) consist of deformations p to A
together with a collection of elements oy € A for £ € N such that:

(i) det(p) = y.
(ii) p is unramified outside N = S U P.
(iii) If £ € P, then
pIDe =~ 1 'Vip, ® 1

for some unramified character y with y(Froby) = oy = ay mod m.

(iv) If £ € S, then
—1
X Vip, *
p|Dg =~ ( ‘ )
0 X

for some unramified character y with y(Froby) = oy = ay mod m.

In fact, the actual definition of D !(A) needs to be somewhat modified (see Section 2.2 for
precise definitions), but this description will be valid for rings of integers such as (. Naturally
enough, we also assume that D!(k) is non-empty, and that k is also large enough to contain
the eigenvalues of every element in the image of p. The elements ay € k are determined by
p for primes in P, but not necessarily for primes in S, because when p is unramified at ¢,
there is a choice of eigenvalue for the unramified line. Hence D! will not strictly be a Galois
deformation ring; we refer to such rings (and we have several in this paper) as modified defor-
mation rings because they depend not only on p but also on some auxiliary data. The functor
D! is representable by a complete local @-algebra R!. The ring R! comes with elements
a; € k and oy € R! for £ dividing N . For all other primes £, define a; € k to be tr(p(Froby)),
including when £ = p.

We are now ready to state out main theorem. By abuse of notation, let N denote the con-
ductor of ¥ times the primes in S — it is divisible exactly by the primes in N = § U P. Let
X (N) denote the quotient of X1(N) by the Sylow p-subgroup of (Z/NZ)*. After enlarg-
ing S if necessary, we may assume that the curve Xz (N) is a fine moduli space. (Xg (N) will
be automatically a fine moduli space if p > 3, see Section 2.3.)

Theorem 1.2. Let p > 2. Let T C Endg H(Xg (N), wg /o) be the O-algebra gener-
ated by Hecke endomorphisms. Let wu be the maximal ideal of T generated by the elements
(€Y — (L) for L4N and T; — ay for all £. Then there is an isomorphism R' ~ Ty,.

1.1. Theorem 1.2 implies Theorem 1.1. Suppose that p : Gg — GL>(0) is a contin-
uous Galois representation ramified at £ # p satisfying the conditions of Theorem 1.1. Then
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after a global twist and enlarging O if necessary to contain a choice of elements ay for £ divid-
ing N, p gives rise to an element of D! (). The modularity of p then follows.

As an application of Theorem 1.2, we prove the following:

Theorem 1.3. Let p be any prime. There exists a Katz modular form
f € H'(X(D)y,. w)

for some level T prime to p which does not lift to characteristic zero.

The original argument of Wiles [26,27] for modularity theorems at non-minimal level
was to use an induction argument and a certain numerical criterion involving complete inter-
sections which were finite over (0. This does not seem to be obviously generalizable to weight
one — although one still has access to forms of IThara’s Lemma, the Hecke rings T' are no
longer complete intersections in general, and are certainly not flat over (. It remains open as
to whether one can proceed using such an argument. Instead, we use modularity theorems in
weight p in order to show RIQ/ w~T 1Q’m /@ for various sets of auxiliary primes Q, and
we then use this information to show that the patched Hecke modules in weight one are “big
enough.” To pass between weight one and weight p we crucially rely on g-expansions. For this
reason, the methods of this paper will probably not be generalizable beyond GL(2) (although
they may have implications for Hilbert modular forms of partial weight one). Note that, in writ-
ing the paper [5], we tried to avoid the use of g-expansions as much as possible, whereas the
philosophy of this paper is quite the opposite.

Remark 1.4. The methods of our paper may well be able to handle more precise local
deformation conditions than those considered above. However, these assumptions considerably
simplify some aspects of the arguments. We particularly shun Diamond’s vexing primes, which
did indeed cause considerable vexation in [5]. In fact, we try so hard to avoid them that we
assume that p| Dy is reducible, when certainly some such representations — for example those
with p| 1y irreducible — may well be amenable to our methods.

Acknowledgement. The debt this paper owes to [5] is clear, and the author thanks
David Geraghty for many conversations. We thank Mark Kisin for the explaining a proof of
Lemma 2.6, and we also thank Brian Conrad for a related proof of the same result in the
context of rigid analytic geometry. We thank Toby Gee and Patrick Allen for several useful
comments. We also thank Gabor Wiese for the original idea of proving modularity theorems in
weight one by working in weight p.

2. Preliminaries

2.1. Local modified deformation rings. Let p: Gg, — GL2(k) be a representation,
and let Rz“iv denote the universal framed local deformation ring, and p""" the universal local
deformation. We assume in this entire section that p > 2. The calculations in this section will
mostly be concerned with the case that £ # p. Fix a lift of Frobenius ¢ € Gq,, and choose
an eigenvalue ay of p(¢p), which, after enlarging k if necessary, we may assume to lie in k.
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We define the universal modified framed local deformation ring E;“iv to be the localization of
the ring

Ry™[argl/ (f — o Tr(p"™ () + det(p"™ (¢)))
at (o — ay). The quadratic polynomial satisfied by oy is the characteristic polynomial of
Frobenius.

Lemma 2.1. [f p(¢) has distinct eigenvalues, then R““1V ~ Rumv If p(¢) does not have
distinct eigenvalues, then Rllrllv is a finite flat extension of Ruan of degree two.

Proof. If p(¢) has distinct eigenvalues, then the characteristic polynomial of Frobenius
is separable over k. Since Rzniv is complete, the polynomial also splits over R;“iv by Hensel’s
Lemma, and the quadratic extension above is, (before localization), isomorphic to R;}““’@R‘é““’.
Localizing at (oy — ay) picks out the factor on which we have the congruence oy = a, mod nut.
If the eigenvalues of p(¢) are both ay, then the quadratic extension is already local. a

A modified local deformation ring will simply be a quotient of Rumv Proposition 3.1.2
of [11] proves the existence of quotients Rumv VT of R{™ which are reduced O-flat, equidi-
mension of dimension 4, and such that, for any finite extensmn F/E,amap

x:R™ > F

factors through R"™V-¥% if and only if the corresponding F representation V, has determi-
nant ¥ and is of type t. (For this section ¥ may be any unramified character.) For our purposes,
it will suffice to consider the trivial type 7, which corresponds to representations on which

« : Gg, = GL(Vy) = GL,(F)

restricted to the inertial subgroup I, C Gq, has unipotent (and so possibly trivial) image.

Lemma 2.2. Suppose that p > 2 and £ # p. Let T denote the trivial type. There exists
a quotient Rmod V.= Rzmv’w’t of R;™ which is reduced, O-flat, equidimensional of dimen-
sion 4, and such that, for any finite extension F/E, a map

xRN F

factors through R mod, ¥ if and only if the corresponding F representation Vy has determi-

nant \, is ordmary, and has an unramified quotient on which the action of Froby is by the
image of ay.

The arguments are very similar to those already in the literature, but for want of a refer-
ence which covers this case exactly, we give the details.

Proof.  Suppose that the eigenvalues of ﬁ((]&) are distinct. Then, under the isomorphism
Ry™ ~ Ry™, we may take Rzmv’w’r = Rzmv’ ’". Hence we may assume that the eigenvalues
are the same. Any representation

x 1 Gg, = GL2(F)
for which the image of inertia has non-trivial unipotent image is, up to twist, and enlarg-

ing F if necessary, an extension of F by F(1). In particular, the ratios of the eigenvalues
of px(¢) must be equal to £. Since we are assuming the eigenvalues of p(¢) coincide, then,
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if ££ 1 modp, R umv YT has no such quotients, and will consist precisely the unramified
locus. In this case, We may take Runlv VT o be the double cover corresponding to the unram-
ified locus with a choice of Frobenrus eigenvalue. Hence we may assume that £ = 1 mod p,
and in particular £ # —1 mod p.

Assume that p is unramified. The ring R, admits two natural quotients; a quotient
Runr v corresponding to representations Wthh are unramified, and a quotient corresponding to
representations for which the ratios of the eigenvalues of Frobenius are equal to £. Because the
determinant is fixed, this latter quotient is given by imposing the equation

w(p(@))? = €11+ 0>y (0).

Since £ # —1 mod p, the right hand side is a unit, and hence there is exactly one square root of
this equation which is compatible with the choice of ay, and so this is equivalent to the equation

tw(p(¢)) = L7121 + 0y /2 (0)

for the appropriate choice of square root. The ring obtained by imposing this relation on
Rzmv’w’ may or may not be either @-flat or reduced, but let RQP’VI denote the largest quotient
with this property (sp is for special). Its F-points will still 1nc1ude all ramified represen-
tations of type tr. The pre-image of the corresponding affine scheme under the projection
Spec(ﬁzniv) — Spec(Rz“iV) is equal to Rzp’w[ag]/(a(% — V20 4+ 0y V2(0) -ap + ¥ (£)). The

quadratic relation factors as

(g =y 20 - )~y P - 712,

univ,y¥,t

Define ﬁzpnlf to be the quotient on which oy = ¥1/2(£) - £71/2. There is a corresponding iso-
morphism
Rspﬂ// % Esp’w .

unr, ¥ . punr,yr be

On the other hand, the quotient R, is a formally smooth. In this case, we let R,
the finite flat degree two exten51on given by adjoining an eigenvalue oy of the characterrstrc
polynomial of Frobenius. We now let Rmod V= RuWiVYT be the image of R;™ under the
map .

Rznlv — Rznrﬂlf D Rzp,w‘

It is @-flat and reduced because both ﬁznr’w and I‘ézp,w have this property. Moreover, the
F-points for finite extensions F/E correspond exactly to either an unramified representation
together with a choice of Frobenius, or a ramified ordinary representation together with ay
being sent to the action of Frobenius on the unramified quotient. Geometrically, R‘enOd consists
of the union of two components, one the specral component of Rumv VT , and the other a double
cover of the unramified component of Rumv’ 'T. We also remark that, by construction, the
image of the universal deformation ring Runlv Y in R?Od will be precisely RUY-¥-T, a

We also note the following:

Corollary 2.3. Suppose that p > 2 and { # p. Let x : E‘l}“iv — El[e]/€? be a surjective
map so that the image of R"™ is E, and the corresponding Galois representation
x 1 Gg, = GL2(E)

is unramified. Then x factors through Rmod v
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Proof.  Such a representation exists exactly when the eigenvalues of px(¢) are equal.
We see that x certainly factors through R"™¥ which is a quotient of R?Od’w. a

If the determinant is explicit from the context, we write Rzn"d rather than R?Od’v’. We give
a precise description of the special fibre of R?‘Od when £ = 1 mod p, ¥ = 1, and p is trivial
(this result will only be used for the proof of Theorem 1.3 in Section 4.2.) Note that, since p
by assumption is tamely ramified at £, the image of any deformation also factors through tame
inertia, hence through the group (z, ¢) with ¢t~ = 7.

Lemma 2.4. Suppose that p > 2, that { = 1 mod p, that Y|Gq, — GL2(k) is trivial.
Then R?‘Od represents the functor of deformations of p to A together with an oy € A satisfying
the following conditions:

e Tr(p(7)) =2,

* (p()-1)* =0,

(p(r) — D(p(¢p) —ag) =0,
(p(¢) —ayH(p(x) = 1) =0,
(p(¢) — ag)(p(¢) — ;') = 0.

The argument is similar (but easier) to the corresponding arguments of Snowden
([23, Section 4.5]). In fact, our argument amounts to the case d = 0 of a theorem proved by
Snowden for all integers d > 0. The only reason that Snowden does not consider this case is
that, in his context, d is the degree of a finite extension of Q.

Proof. The last equation says that oy satisfies the characteristic polynomial of
Frobenius. Hence the functor is certainly represented by a quotient RT of the universal such
ring Runlv Let us show that

MaxSpec(RZ) = MaxSpec(R?“Od)

(inside MaxSpec(ﬁ‘e’“iV)). Let x : RZ — F be a point of MaxSpec(Rz). If p(7) is trivial, then
the equations reduce to the statement that oy is an eigenvalue of Frobenius, and these cor-
respond exactly to the unramified points of R;“Od. If p(7) is non-trivial, then, from the first
equation, its minimal polynomial will be (X — 1)2, and so, after conjugation, has the shape

1 1
T) = .
p(7) (0 1)
The other equations then imply that

p(p) = (0 w)-

Finally, from the equation ¢p7¢~—' = ¢, we deduce that ae_z = {. In particular, the repre-

sentation is, up to twist, an extension of F by F(1), which corresponds exactly to points
on the special component of Rmool It follows from [16, Corollary 2.3] (see also Lemma 2.6
below) that (-flat reduced quotlents of Runlv are characterized by their F points for finite
extensions F'/E. Since we have shown that R and Rm"d have the same such quotients, and
since Rmocl is @-flat and reduced, it suffices to show that R is @-flat and reduced. The special
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fibre Rz /@ is exactly the completion of €y at ¢ = (1; 1; 0) in the notation of [23, Section 3.5].
The proof of this is identical to the proof of [23, Lemma 4.7.4]. On the special fibre, the equa-
tion (p(r) — 1)2 = 0 implies that (o(t) — 1)? = 0 and so p(z?) is trivial, and p(z%) = p().
Hence the action of conjugation by p(¢) on p(t) is trivial. In [23], the image of inertia factors
through an exponent p commutative group which, as a module for F,[7] where 1 + T acts
as conjugation by o, is isomorphic to U = F, @ F,[T] ®d Tn our context, the action of iner-
tia commutes with o and factors through a group U = F,,. In particular, letting m = p(7) — 1
and ¢ be the image of p(¢), the tuple (¢, o, m) is the corresponding point on €. The rest of
the argument follows the proof of [23, Theorem 4.7.1]. The ring €y has two minimal primes
(corresponding to (¢ — 1) and m, which come from the components -4, and By respectively,
in the notation of [23]). On the other hand, as we have shown, RT[ 1/ ]ea = R™9[1/w] has
two minimal primes corresponding to the unramified and ordinary locus, so RT[I /@] has two
minimal primes, and so, by [23, Propositions 2.2.1 and 2.3.1], it follows that Rz is O-flat
and reduced, and we are done. a

2.2. The functors Do and DL, In this subsection, p will be a global Galois repre-
sentation unramified at p with the primes N = S U P as in the introduction. We now define
modified deformation rings RIQ and R for certain sets Q of auxiliary primes distinct from N
and p. Let D, denote the decomposition group Gg, C Gq. The superscript 1 refers to weight
one, and the lack of superscript will refer to weight p. Note that R(}, = R!. Besides the rep-
resentation p, part of the data required to define D1Q and Do consists of a fixed choice of
elements a, € k for £ dividing N and Q. Moreover, for Do, we also fix ana, € k. Let D1Q (A4)
and Do (A) consist of deformations p to A and a collection of elements oy € A for £ € N

(and o, € A for Dg(A)) such that:

(i) det(p) = v, where ¥ is the Teichmiiller lift of det(p) for p € DIQ(A), det(p) = el !
for p € Dg(A).
(ii) p is unramified outside NUQ =S U P U Q for p € D} (A) and unramified outside
NUSUQU{pj}forpe Dg(A).
(iii) If € € P, then p|D¢ ~ x~'¥|p, @ x if p € D} (A) and p| Dy ~ y~'ye?~|p, & y if
p € Dp(A), where x is an unramified character and y(Froby) = oy = a4 mod m.

@iv) If £ € S, then p|Dy corresponds to an A-valued quotient of R“flod where we take the

determinant to be v if p € D} (A) and ¥ -eP7lif pe DQ(A) and, in either case
oy € R‘g“’d is ay mod m.

(v) If £ € Q,then £ = 1 mod p, and p(Froby) has distinct eigenvalues. Then

pIDe = ¢~ D, & ¢,
where ¢ is a character of Q; C G(albe such that ¢ ({) = oy = ay mod .
(vi) If p € Dg(A) and £ = p, then p| D, is ordinary with eigenvalue «, = a, mod m.

In order for these functors to be non-zero, the ay for £ € N U Q must be chosen to be
one of the eigenvalues of p(Froby), and a, must be one of the eigenvalues of p(Frob,). As
always, we may extend scalars from k to a field which contains all necessary eigenvalues. For
each £ € N, there exists a corresponding universal framed local deformation ring associated to
our deformation problem. There is no subtlety in defining these rings outside the case of primes
in S, and at the prime p. The first case was addressed in the previous section. For £ = p, we use
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the modified deformation rings as constructed by Snowden ([23], see in particular Section 4.6).
For each £, we denote the corresponding modified local deformation ring (with the appropriate
determinant) by R?Od.

Proposition 2.5. For all of the £ different from p, the corresponding modified local
deformation ring R?"d is an O-flat reduced equidimensional ring of relative dimension 3
over O.If{ = pand D = D, then Rg“’d is an O-flat reduced equidimensional ring of dimen-
sion 4 over 0.

Proof. 'We consider each deformation ring in turn.

(i) Suppose that £ € P. By assumption, ¥ is ramified at £ and hence oy is uniquely deter-
mined by p|D;. Hence we recover the framed local deformation ring, and the result follows
from [5, Lemma 4.11].

(ii) Suppose that £ € S. Then the result follows from Lemma 2.2.

(iii) Suppose that £ € Q. The assumption that £ = 1 mod p and that p(Froby) has no
distinct eigenvalues implies that there is no distinction between Rz“iv and E;“iv. Moreover, all
deformations of p will be tamely ramified and split as a direct sum of two characters, and so
Ry = Rzmv’w in this case. The ring Rzmv’w has the desired properties by direct computation,
see for example [21, Proposition 7]: it may be identified with O[X,Y, Z, P]/((1 + P)™ — 1),
where m is the largest power of £ dividing p — 1.

(iv) If £ = p, and p(Frob,) has distinct eigenvalues, then the usual definition of an ordi-
nary deformation ring R, requires a choice of eigenvalue of the unramified quotient, and hence
Rg“’d is just the usual Kisin ring R, in this case. If p(Froby) has the same eigenvalues, then
the local modified deformation ring is exactly the completion of By at b = (1; 1;0) consid-
ered in [23, Section 3.4] and denoted by RT in [5, Section 3.7]. The case when p(Froby,) has
the same eigenvalues but is non-scalar corresponds to the localization of B at (((1) % ; 1;0).
In either case, R;,“"d is O-flat, reduced, equidimensional of relative dimension 4 (over @), and
Cohen—Macaulay. o

We also present here the following proposition which will be useful later. (Compare
[17, Lemma 3.4.12].)

Lemma 2.6. Let A and B be complete local Noetherian reduced O-flat algebras with
residue field k. Then A ® @ B is reduced and O-flat.

Proof. The O-flatness follows from [12, Section 0, Lemma 19.7.1.2]. Because B is
reduced, it follows from [16, Corollary 2.3] that the intersection of the kernels of all mor-
phisms B — 9’ for the ring of integers finite extensions E’/E is trivial. Using this, we may
write B as an inverse limit B = 1<i_1_nB,~, whe/:fe each B; is reduced and finite flat over O.
Then C = l(iLnA ® B; (now we can replace ® by ®) and it suffices to prove the claim for
the usual tensor product when B is finite flat over (9, which we now assume. Since C is @-flat,
it suffices to show that C[1/w] = A[l/@w] ® g B[1/w] is reduced. However, this follows
from [1, Chapter V, Section 15.5, Theorem 3 (d)]. |

2.3. Modular curves. Let N > 5, and let Xg(N) = X(I'y (N)) denote the quotient
of X1(N) by the Sylow p-subgroup of (Z/NZ)* considered as a smooth proper scheme
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over Spec(©) (see [8]). To be precise, the curve Xz (V) is a fine moduli space providing that
either p > Sor p = 3 and N divisible by a prime ¢ > 5 such that g = —1 mod 3. This follows
either from the computation of stabilizers at the CM points (as in [19, Section 2, p. 64]), or, in
the second case, because X g (N ) is a cover of X;(g).If p = 3 and X (/N) is not a fine moduli
space, we simply add aprime ¢ > 5and g = —1 mod 3 to S such that p is unramified at ¢. If Q
is a collection of auxiliary primes disjoint from N, let Xz (NQ) denote a quotient of X (N) by
the p-Sylow subgroup of (Z/ N Z)> and some subgroup of (Z/QZ)*. (In practice, the cokernel
of the corresponding subgroup of (Z/QZ)* will be a p-group.)

2.4. Hecke algebras. Let @ be the usual pushforward mw«wg,x,, (v) of the relative
dualizing sheaf along the universal generalized elliptic curve. If 4 is an @-module, then let
o) = " ®9 A. The (Katz) space of modular forms of weight k and level N is defined to
be HO(Xg (N), 0k).

We shall now consider a number of Hecke algebras, and discuss the relationship between
them. Our coefficient ring or module will eitherbe A = O, A=FE =0Q® Q,A=0/w =k,
A=0/w", or A= E/O unless otherwise specified.

Definition 2.7. The Hecke algebra T4 in weight k is the A sub-algebra of
Ends(H° (X (N). )
generated by the operators Ty, for n prime to p and diamond operators (d) for d prime to N.

Note that this definition includes the operators Ty for £|N. These operators can also be
denoted by Uy (which is what we shall do below). We now define a variant of these Hecke
algebras where we include the Hecke operator at p.

Definition 2.8. Let T4 denote the ring T 4 together with the operator Tp,.

Note that a maximal ideal m of T need no longer a priori be maximal in T. That is, T
will not always be a local ring. However, it will always be a semi-local ring, that is, a direct
sum of finitely many local rings.

2.5. Hecke algebras at auxiliary level Q. Let Q be a finite collection of primes con-
gruent to 1 mod p and distinct from N. Let To 4 denote the @-algebra generated by Hecke
operators away from p acting at level X g (NQ) with coefficients in A together with diamond
operators {d) for d prime to N, and let TQ, 4 denote T 4 together with the operator 7).

Suppose that p is a representation such that the modified deformation ring R is non-
zero — equivalently, that D (k) # 0. Recall that N is equal to the conductor of i times the
primes in some auxiliary set S which includes (but may be larger than) the set of primes £} p
where p|/; is non-trivial and unipotent. In particular, if £ divides S, then £ divides N exactly
once. By Serre’s Conjecture [15], any such p is modular of level N(p)|N and weight p, so we
now specialize to the case of weight p, and let Tg = Tp . Let mi be a maximal ideal of TQ
corresponding to p (and to a choice of a, for all £ dividing N, Q, and p). Let us also suppose
that for every prime £ dividing Q, the matrix p(Froby) has distinct eigenvalues (since this is an
assumption in part (v) of the definition of D).
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Proposition 2.9. There exists a deformation
po :Gg — GLz(TQ’fﬁ)

of p unramified outside pNQ such that p(Froby) = Ty for £ prime to pNQ. Let ,o/Q =po ®n,
where n> = - P~ 1. det(,oQ)_l. Then ,O/Q is a deformation of pin Do (T g ). In particular,
there is a corresponding map
Ro — TQ,an
sending tr(p"™ (Froby)) € Rg to n({) - Ty for £ not dividing pNQ, sending oy to n(£) - Uy for
{ dividing NQ, and sending o) + pp_lt//(p)ozp_1 to n(p) - Tp, or equivalently, oy to the unit
root of
X2 —n(p)- T,X +y(p)p?~' =0,

which lies in 'PId'Q, & by Hensel’s Lemma.

This proposition is (mostly) an exercise in Atkin—Lehner—Li theory. Indeed, if one
assumes that the action of Uy on forms of level £|| N is semi-simple (which conjecturally is
always the case), then the space of modular forms under consideration will decompose into
a direct sum of eigenforms for all the Hecke operators in 'T‘Q,m, and then the claim follows
immediately from known local-global compatibility for classical modular forms. (The only
local-global compatibility we require is given by [7, Theorem 3.1].) In practice, we have to
allow for the possibility that Uy, may not act semi-simply, although this is not difficult.

Proof. The space of modular forms of weight p is torsion free, so the Hecke algebra is
determined by its action on
H°(Xn(NQ). o) ® E.

It suffices to prove the proposition after further decomposing this space into a direct sum
of TQ,fﬁ-moduleS. Enlarging E if necessary, we may assume that all the eigenvalues of all
Hecke operators at level dividing NQ are defined over E. Let T’B denote the anaemic Hecke
algebra consisting of endomorphisms of H%(Xg (NQ), ®?) generated by Hecke operators T,
for n prime to pNQ and diamond operators (d ) for d prime to NQ. There is a map T"B — TQ;
letm C Tg denote the inverse 0f~the maximal ideal m (which is determined by p). Note that m
may correspond to several m in Tg; the possible mt are indexed by the possible choices of ay
for £ dividing pNQ. In any event, there will always be an inclusion:

HY(Xy (NQ), 0?) ® E C HY(X5 (NQ), ) ® E.

(This would be an equality if we replaced the left hand side with a direct sum over all it which
pull back to m.) The space H°(Xgy (NQ),w?) ® E decomposes under T“Qn into eigenspaces
indexed by newforms f of level dividing NQ. Associated to a cuspidal newform f is a Galois
representation pr. In particular, combining all these Galois representations over f withpr = p,
we obtain a Galois representation

p:Ggo — GLa( g,m ® E).

Because the traces of Frobenius elements lie in T‘B’ > and because p is absolutely irreducible,
we may take the image of this Galois representation to land in GL; (Tg’m) by [22, (2.6)]. To
this point, we have simply reconstructed the usual construction of the Galois representation
into the (anaemic) Hecke algebra.
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Let pp denote the Galois representation induced by composing this with the image of
the algebra Tg’m in ’T‘Q’g{. This will be the pg of the proposition. The reason for the twist
by 7 is to match the determinant with the required determinant for the functor D g. The main
point of this proposition is to show that the extra old forms associated to f (with their con-
comitant actions of Uy) contain exactly the extra information needed to obtain a modified
deformation of p of type D o. The eigenspaces corresponding to f will contribute to the locali-
zation at m if and only if p = p. In particular, the level of f must be divisible by the Serre
conductor of p, and hence the level of f is of the form NQ/D, where D is only divisible
by primes dividing either S or Q. Hence the integer D is square-free and prime to NQ/D.
Suppose that D has d prime divisors. The form f generates a space of 24 oldforms of level
NQ consisting of f = f(q) together with the forms f(¢") for m|D. By Atkin—Lehner—Li
theory ([24, Theorem 9.4]) this exhausts the entire space of oldforms associated to f which
appear in H°(Xg (NQ), wP)m ® Q. Let us now describe the action of Uy on these spaces
for ¢ dividing D. Again by Atkin—Lehner, this is given as the tensor product over £|D of
a two-dimensional space on which Uy acts by the matrix

tr(ps (Frobg))  (€)£P~1
-1 0 '

Here tr(pr (Frobg)) may also be identified with the eigenvalue of f under the Hecke opera-
tor Ty acting at level NQ/D. The element tr(ps (Frobg)) will lie in the image of Ti‘Qn by the
Cebotarev density theorem. Note that the eigenvalues of this matrix are precisely the eigenval-
ues of ps (Froby). There are now two possibilities:

(i) The eigenvalues of pr(Froby) are distinct. In this case, the space of oldforms over E
decomposes further into eigenspaces under Uy. The eigenvalues of U, will correspond
precisely to Galois representations together with a choice of eigenvalue of pr (Froby).
Each choice of eigenvalue will contribute to the localization at 1t if and only if the cor-
responding eigenvalue is ay mod . After the global twist to match determinants, such
representations will naturally be algebras over R‘;Od, where oy is sent to n(€) - Uy (this
follows by the construction of the rings R?“’d, in particular Lemma 2.2 for unramified
primes of type S.

(i) The eigenvalues of pr(Froby) are equal. Call the unique eigenvalue by. From the explicit
matrix description of the action of U, above, we see that Uy is not a multiple of the scalar
matrix, and so it is not diagonalizable. In particular, in the Hecke algebra, the operator Uy
satisfies the relation (U, — by)? = 0. However, once again (after twisting), there will be
a map from R‘enOd sending oy to n(£) - Uy, by Corollary 2.3 (the eigenvalues can only be
the same for primes of type S).

We remark that the second case above conjecturally never occurs in weight > 2 (see [6]).

Let us now consider the operators Uy for £ not dividing D. In this case, the Galois repre-
sentation py is ramified at £, and local-global compatibility of Galois representations implies
that, after twisting by 7, the Galois representation has an unramified quotient on which Froby
acts via Uy, and hence we have a natural map from R?Od to TQ,RI sending (after twisting) oy
to n(£) - Uy. Finally, since (by definition) a, € k is a unit (it is an eigenvalue of an invertible
matrix), the representation ps is ordinary at p, and action of Frobenius on the Galois represen-
tations associated to any form f will admit an unramified at p quotient on which Frob,, acts



52 Calegari, Non-minimal modularity lifting in weight one

as Up. Hence there will be a natural map from R;,n"d to TQ, & sending ) to n(p) - Uy, which
is related to 7}, via the equation Up2 —T,Uy, + (p)pP~! =0. m

Remark 2.10. The theorem above is true in any weight k& > 2, providing that one mod-
ifies the definition of D¢ to take into account the weight, and one still works in the ordinary
context (so ap € k™).

2.6. Modularity lifting theorems in weight p. The main goal of this subsection is to
prove the following:

Theorem 2.11.  There is an isomorphism Rg — TQ’I’E.

Before proving this theorem, we remark that the “modularity” theorem one can deduce
from this R = T theorem is already well known. In particular, one knows that

(Ro[l/w])™ = (Tg, w[l/w])™

(our Hecke algebras will not be reduced if the action of Uy is not semi-simple). Hence the
content of this theorem is to upgrade this known result to an integral statement. In order to see
how one might do this, note that the modifications of Taylor—Wiles due to Diamond, Kisin,
and others ([9, 18]) proceed by constructing a patched module M, over a patched deformation
ring R and a ring of auxiliary diamond operators So. By hook or by crook, one tries to prove
that M, is faithful (or nearly faithful) as an Roo-module. To recover a classical statement, one
takes the quotient of Ro and M by the augmentation ideal a of S, and recovers the classical
ring R and a module M of classical modular forms on which R acts via the quotient T. An es-
sential difficulty, however, is that even if one knows that M is faithful as an Ry,-module, this
does not imply that Moo /a is faithful as an R~ /a-module; that is, faithfulness is not preserved
under quotients. Hence these methods often only allow one to deduce weaker statements con-
cerning reduced quotients. In Wiles’ original arguments, however, the auxiliary modules Mp
are free over the corresponding Hecke algebras, and one ultimately deduces that the patched
module M is also free over R, from which one can certainly conclude that Moo /a is free
over Roo/a, and hence that R = T. In our argument, we exploit the fact that, by using all the
Hecke operators, the multiplicity one theorem for g-expansions allows us to also show that the
auxiliary modules Mp are free over certain Hecke algebras, and hence we are able to deduce
(as in Wiles) an integral R = T theorem.

Remark 2.12. An apology concerning notation: The notation Q that we have used is
meant to suggest a collection of Taylor—Wiles primes. Indeed, the primes denoted by Q will
play the role of Taylor—Wiles primes in the modularity proof of Section 4.1. However, in the
proof of Theorem 2.11 below, the set of primes Q will be fixed, and there will be an auxiliary
choice Tp of Taylor—Wiles primes x = 1 mod p?. Explicitly, we are proving an R = T theo-
rem at level p and a level which already includes a fixed collection of Taylor—Wiles primes Q.
Hence we require a second auxiliary choice of Taylor—Wiles primes for which we use the
letter 7" rather than Q.

Proof. We first define a classical unmodified (“natural”’) deformation ring R HQ which
records deformations which are of the same type as considered in Rg, except now the extra
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choice of eigenvalues is omitted, as is the choice of eigenvalue at £ = p. There is a natural
isomorphism
~ pl d
RQ —= RQ ®Rloc Rmo )

R := ) Ry
{|pNQ
denotes the corresponding local deformation rings for R'°, and

S ;
R™ = ) Ry
£l pNO

We remind the reader that one should think about the R'°-algebra R™Y as follows: it is
the algebra obtained by including the extra information over R'° coming from a choice of
Frobenius eigenvalue, and taking a localization of this ring corresponding to fixing (residually)
a choice of such an eigenvalue. In particular, the set of components of the generic fibre of R™°
is a subset of the components of the generic fibre of R'°°. The ring R™¢ is also reduced by
Lemmas 2.5 and 2.6.

We now patch together coherent cohomology modules and we also simultaneously patch
Betti cohomology. Namely, we patch the pairs of modules

M§ = H(Xp,,(NQ - Tp), 05 o),

M = H' (X, (NQ - Tp). Sym” >((E/0)*)y;.
The notation C and B refers to coherent and Betti cohomology, respectively. Here Tp is a col-
lection of Taylor—Wiles primes x (distinct from primes dividing NQ) such that x = 1 mod p?,
and Hp is the subgroup of (Z/NQ - TpZ)* generated by the kernel of the map
(2/Tp2)* — (2/pPZ)*P

together with a fixed subgroup of (Z/NQZ)*. The first module has a faithful action of ’TQ.TD’{T"I
and the second has a faithful action of T¢.7,, . Moreover, the tensor product M g ® gioc R™4

where

has a natural action of TQ.TD’ﬁ. We patch together both of these modules for the following
reason. The patched Betti cohomology module is known to be nearly faithful over the patched
framed natural Galois deformation rings R'°[x1,...,x,44_1] by a theorem of Kisin [18] —
this essentially amounts to the fact that we already have modularity lifting theorems in this
context; the goal is to upgrade these theorems to integral statements. On the other hand, the
coherent cohomology will be free over the corresponding modified Hecke rings, which allows
for an easier passage from patched objects back to finite level.

By Lemma 3.1, the modules MDC are free of rank one over TQ-TD,% and so MDC JwP is
free of rank one over TQ~TD,E1 /@ P . On the other hand, M g need not be free. However, the
action of the Hecke on M g /@ P certainly factors through To.rp,m/ @ P, and the action of the
full Hecke algebra (with Hecke operators for primes dividing N) on M5 /w? ® gioc R™
factors through TQ.TD,a/wD.

If we patch together all this data simultaneously (together with framings), we deduce (as
in the pre-Diamond argument of Wiles) that the patched framed module MO%’C is free of rank
one over 'T‘Eo (this is tautological, because each of the modules that is being patched will be
free), and that the action of the patched modified Galois deformation ring on MODO’B ® gloc R™04
acts through TODO If RB denotes the framed version of Rg over d primes dividing pNQ, then
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the Taylor—Wiles method as modified by Kisin gives presentations:

Ro[Ti.....Tyg—1] >~ RG ~ R™[x1.....xp4q1]/(f1.-- . fra1),
RGIT1. ... Taqoa] = RY¥ = R[x1.. o Xppqmal/(fio o frp).

From [18] we know that M2 is a nearly faithful R'°[xy, ..., X,44—1]-module. From the
freeness of M € over the Hecke algebra, it follows that ’TEO is a quotient of the power series ring
R™x1, ..., Xpq1q1]. If ’TEO is actually isomorphic to this ring, then by taking the quotient
by diamond operators, we arrive at the required isomorphism Rgp =~ TQ, #- On the other hand,
the components of the generic fibre of R™9[x1, ..., x,;4_1] are a subset of those for R'°°, so
we deduce (cf. [25, Lemma 2.3]) that TEO is a nearly faithful Rmod [x1,...,Xr4+q—1]-module.
Since R™? is reduced and Noetherian, the power series ring has no nilpotent elements, and
hence being nearly faithful over this ring is equivalent to being faithful. Thus TEO is a faithful
module, and hence isomorphic to Rmed [x1,...,Xr+4—1], and the proof follows. O

Corollary 2.13. There is an isomorphism Rg [ ~ TQ,ﬁ/w ~ 'AIJ‘Q,k’gI.
Proof.  The first isomorphism is an immediate consequence of the previous theorem,

so it suffices to show that TQ /o~ TQ k.- Or equivalently, that TQ /@ acts faithfully
on HO(X, wy 7). For this it suffices to note that

HO(Xa w]f)v = (HO(Xa a)g/(g)[w])v = HO(Xa a)g/(g)v/w
and that H%(X, o g / (9)\’ is free of rank one over T‘m by Lemma 3.1 below. a

3. Katz modular forms

We now study more closely the action of Hecke operators in characteristic p, especially
in weights p and one. In this section, we denote Tg ; and 'T‘Q,k by T and T. We use freely the
g-expansion principle, namely, that a form in H°(X, wy) is determined by its image in k[q].
Multiplication by the Hasse invariant induces a map

A:H' (X, ) > H'(X,0])

which is an injection and is the identity map on g-expansions. It follows that this map is
T-equivariant, but it is not in general T-equivariant. There is another map between these spaces
induced by the map ¢ — ¢ ?:

V:HY (X, ) > H (X, 0):

this map V' is also T-equivariant. (Although the corresponding Hecke algebras T in weights
one and p are not the same rings, the meaning of T-equivariance should be clear.)

Lemma3.1. Let i be a maximal ideal in T in weight p, and let mt be the corresponding
maximal ideal in T. Then dim H®(X, a)]f)[?ti] = 1and

dim HO(X, 0f)[m] = 1 + dim H°(X, o) [m],
where dim H°(X, w)[m] <1
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Proof. The Hecke operators at all primes determine the g-expansion, which proves the
first equality. For the second, let f € H(X, a)]f )[tt] denote the unique eigenform with leading
coefficient 1. There is a homomorphism

HO(X,a),f)[m] — k[g?] N HO(X,a)If)[m]

given by g — g —a1(g) f. By the g-expansion principle, the kernel of this map is one-dimen-
sional. By the main theorem of Katz [14], the space k[q?] N H(X, a)kp )[m], which lies in
the kernel ker(6) of the theta operator, may be identified with the image of H°(X, wy)[m]
under V. This gives the first equality. To prove the inequality, we repeat the same argument in
weight one, except now [14] implies that k[¢ ?] N H°(X, wy) = 0. O

It follows that T! = T' in weight one because 7T), € T! and mT' = mT!.

3.1. Doubled modules. We define the notion of a doubled module with respect to T
and T.

Definition 3.2. Let N C HO(X, a)]f ) be invariant under the action of T, let
I =Amz(N), [ =Anmp(N)=T1NT.

We say that N is doubled if the action of T on N acts faithfully through a quotient T / T such
that B
length(T/I) = 2 -length(T/1).

Lemma 3.3. There exists a maximal doubled sub-module of H®(X, a),f )1

_Proof. Incase dim HO(X, a),f)[m] = 1,then H%(X, a),f)t\{I is free of rank one over Ty,
and Ty, so Ty >~ Ty, and the maximal doubled quotient is trivial. Hence we may assume
that dim H°(X, w]f )[m] = 2. By Nakayama’s Lemma applied to Ty, it follows that Ty has
rank at most two over Ty, or equivalently that 7), satisfies a quadratic relation. If N is doubled,
however, then Ty / T must be free of rank two as a Ty /I-module. In particular, / must act
trivially on Te /T, so it must contain the annihilator of this module. Let J be the annihilator
of ’Tm /T as a Tyy-module. This is an ideal of Ty, ; we claim that it is actually an ideal of 'T‘m.
By definition, if a € Ty, is any element, then a annihilates T /Ty if and only if it lies in J.
Equivalently, we have ax € Ty, forall x € Ty if and only if a € J. To show that J is an ideal
of T, it suffices to show that aTp, € J. By the previous equivalence, we have aT), € Ty.
Moreover, since ax € Ty, for every x € Tm, we also have aT,x € Ty, for every x € ’Tm
Thus aT, € J, and J is an ideal of Ty. We then observe that HO(X, a)]f)[J] is doubled, and
is thus the maximal doubled sub-module. a

The ideal J is the analogue in this context of the (global) doubling ideal denoted ¢ glob
in [5].

Let M C H°(Xy, w?)y be a maximally doubled module. Hence M Y is free of rank two
over T/J and free of rank one over T/J, where J = Anny(M). The only maximal ideal of
T/J is m, so T/J is a finite local ring. Let ker(6) denote the subset of elements annihilated
by the 6 operator, and let kerps () = ker(6) N M
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Lemma 3.4. The module M/ kerps (0) is a faithful T/ J-module.

Proof. 'We have a surjection
(T/J)? ~ MY — kerps(9)".

The module kerpy (#) is isomorphic as a T-module to H°(X, wy)w. Hence, by Lemma 3.1,
kerps (9)V is cyclic as a T/J-module. If K denotes the kernel, it follows that K /m — (T/m)?
has non-trivial image. Let x € K denote an element which maps to a non-zero element
in (T/m). Then the cyclic module in (T/J)? generated by x is a faithful T/J-module, and
hence K is also a faithful T/J-module. We then have M/ kerps(6) = KV. o

Definition 3.5. There is a T-equivariant pairing T/J x M — k defined as follows:
(Tn, f) = ar(Tu f).

Lemma 3.6. The map (*, x) is a perfect pairing between T/J and M/ kerps (6).

Proof. If f =) a,q™ and0(f) =0, thena, = 0forall (n, p) = 1,s0 (T, f) = 0for
all 7,, € T, and hence for all T € T. Conversely, if (T}, f) = 0, thena, = 0forall (n, p) = 1
and f lies in the kernel of 6. Now suppose that (7, f) = 0 for all f € M. Since the map is
Hecke equivariant, it follows that

(TmTf) = (TTn,f) = <TnT»f> = (T, Tnf) =0

for all n, and hence Tf is trivial in M/ kerps(6). But T/J acts faithfully on M/ kerps(0),
soT = 0. a

Lemma 3.7. The module kerps(0) is a faithful T/J-module, and kerps ()Y is free
over T/J of rank one.

Proof. By definition, M is free of rank two over T/J, and so it has the same length
as (T/J)?. However, by Lemma 3.6, M/ kerp; (6) and T/J have the same dimension over k,
and hence the same length. It then follows that kerys (6) has the same length as T/J. Since
dimkerps (6)[m] = 1, the module kerps (6)Y is cyclic of the same length as T/J, and thus free
of rank one over T/J. Hence keryy (0) is also faithful as a T/J-module. a

Since, by Lemma 3.1, ker(@);’n is also free of rank one over T! = TlQ o the Hecke
algebra in weight one, and kerps ()Y is a quotient of this module, we deduce the immediate
corollary:

Corollary 3.8. There is a surjection T' — T/ J.

Now let us fix X = Xg(NQ), and suppose that m and @ correspond to our residual
Galois representation p together with a suitable choice of ay.

Proposition 3.9. There exists a doubled submodule M C H°(Xg (NQ), a)kp )m such
that the action of T on M acts faithfully through R1Q /@. In particular, there is a surjec-
tionT/J — RlQ/w.
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Proof. Let ﬁIQ denote the modification of Ry where one also takes into account an
eigenvaluei ap of p(Frob,) (recall that representations associated to DIQ are unramified at p).
The ring RIQ is a finite flat degree 2 extension of RIQ given as the quotient of RIQ [op] by the
monic quadratic polynomial ), corresponding to the characteristic polynomial of Frobenius in
the universal representation associated to R 1Q Let us distinguish two cases. The first is when
the eigenvalues of p(Frob, ) are distinct, and the second is when they are the same (in the latter
case, p(Frob,) may or may not be scalar). Let ¥ denote the set of eigenvalues, so |X| = 2 or 1.
If |X| =1, then EIQ is a local ring, and if |X| = 2, it is a semi-local ring with two maximal
ideals; indeed, by Hensel’s Lemma the quadratic relation satisfied by «;, splits over RIQ, and

so there is an isomorphism RL = RIQ @ R1Q in this case. (This is essentially Lemma 2.1.) In

particular, the quadratic polynomial has exactly two roots in R 1Q There is a surjection

@RQ — @Rg/w — ElQ/w
z =

Here the sum is over the rings R corresponding to each choice of eigenvalue a, € X. The lat-
ter map sends oy to oy for all £ dividing NQ. If |£| = 2, then each «, goes to the corresponding
eigenvalue of Frobenius. If |X| = 1, then o, goes to a,. These maps are well defined because,
after reduction modulo =, all the local conditions (including the determinant) in the defini-
tion of D! and D IQ coincide with the exception of £ = p. For £ = p, the enriched ring R R!
receives a map from Rm"d because o, in RmOd is exactly an eigenvalue of Frobenius. Smce
TQ’k,~ ~ Rp/w by Corollary 2.13, there is a surjection

PTosm— Ry/w.
)y
Since @ HO(Xg (NQ) )m is co-free over P TQ k.- there certainly exists a module M
such that the action of T on M is precisely via this quotient RIQ /@ . Yet this quotient is also
finite flat of degree two over R}, /@, which is precisely the image of T under this map. Hence
the submodule M is doubled, and the corresponding action of T is via RIQ /@ . The final claim
follows from the fact that J is the ideal corresponding to the largest doubled submodule. o

Remark 3.10. One alternative way to write this paper was to define the functors Do,
etc. without making a fixed choice of ay. This would have amounted to replacing the universal
local deformation rings Rg, etc. by universal semi-local deformation rings, which would be
isomorphic to a direct sum over all the local rings in this paper and over all possible choices
of ay. We have decided to work with the version of these rings in which choices have been
made, however, as evidenced by the proof of the previous proposition, one still has to deal
with semi-local rings in some cases at £ = p, because when p(Frob,) has distinct eigenval-
ues, the corresponding maximal ideal in weight one is determined by the sum o + 8 of these
eigenvalues whereas the local rings in higher weight require a choice of « or S.

4. Passage from weight p to weight one

Let T1Q = T1Q E/o" Recall that the rings T?, T!, T, and T of the previous section were
abbreviations for the rings T 0k T! 0k To x and TQ & respectively; we return to this expanded
notation now.
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Corollary 4.1.  There is an isomorphism R1Q/w — T1Q,k,m ~ TlQ’m/w.

Proof. For the first isomorphism, it suffices to note that there exists a map
ng/w — TlQ,k,m - Tokm/J — ng/w

whose composite is the identity. The existence of the first map follows from the fact that Galois
representations in weight one are unramified at p, which follows from [5, Theorem 3.11]
(together with the appropriate local-global compatibility away from p, which follows as in
the proof of [5, Theorem 3.11] by reduction to characteristic zero in higher weight, together
with the proof of Proposition 2.9). The second map comes from Corollary 3.8. The existence
of the third map follows from Proposition 3.9. The identification of TlQ,k,m with TlQ,m Vao
follows from the fact that

H®(Xg (NQ), wp)m = H*(Xg(NQ), 0F 0)m[™]

and the fact that H°%(X g (NQ), wEg /)" is free over Tg y by Lemma 3.1. a

4.1. Modularity in weight one. We have an isomorphism Ry, /@ ~ Ty, . /@ for all
collections of Taylor—Wiles primes Q = Q p, and we apply the machinery of [5], in particular
Proposition 2.3 as applied in [5, Section 3.8]. We patch the modules H%(X g, (NQp), g /0>
where Q is a collection of Taylor—-Wiles primes x = 1 mod p?, and H is the subgroup of
(Z/NQpZ)* which is generated by the kernel of (Z/QpZ)* — (Z/pPZ)* and the p-Sylow
of (Z/NZ)*. We obtain a module M, which is a module over the framed ring of diamond
operators S5, and a patched deformation ring RégD which is also an algebra over this ring. In
contrast to [5], the ring Rég,D is a power series ring over a completed tensor product

mod._/\ mod
R™:= () R,
LN

instead of a power series ring over (. Since the modules H°(X 0, WE /@)y are free over Tg
the module M is cyclic as an RégD -module. Hence we know that:

(1) M /@ is free of rank one over RclxgD /@, as follows from our mod- p modularity results
above, in particular Corollary 4.1.

(2) M is pure of co-dimension one as an S oDo-module; that is, M is a torsion S oDo-module,
and there exists a presentation

0— (S)" = (S)" = Moo — 0;
this is exactly the output of the construction of [5].

The second result is essentially a formal consequence of the method of [5] rather than
anything in this paper. This on its own is enough to show that My, will certainly be supported
on some components of the generic fibre of RCIX’F. However, as soon as S contains primes for
which p is unramified (that is, as soon as we are at non-minimal level), the ring RYE [1/@] will
have multiple components. The usual technique for showing that the support of My, is spread
over all components is to produce modular lifts with these properties. In our context this is not
possible: there are no weight one forms in characteristic zero which are Steinberg at a finite
place ¢ (see the proof of Proposition 4.2 below). Our replacement for producing modular points
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in characteristic zero is to work on the special fibre, and to show that M,/ is (in some sense)
spread out as much as possible over Rcl,c’,D /@ . And we do this (and this is the main point of
everything so far) by working in weight p and then descending back to weight one using the
doubling method. In particular, we know that M,/ @ is free of rank one over R /@ . From
these two properties, we will now deduce that M, is free of rank one over RéaD, which will
imply all our modularity results.

By Nakayama’s Lemma, there is certainly an exact sequence of S5 -modules

0— K — RLE — My — 0.

It suffices to show that K = 0. By Nakayama’s Lemma again, it suffices to show that K /@ = 0.
Tensoring with S /@ (that is, reducing modulo =), we get a long exact sequence

Torl(SoDo/w,Moo) — K/w — Réé':'/w S My /w — 0.

Here the last map is an isomorphism by property (1) above. Hence, to prove that K /@ is trivial,
it suffices to show that

Tor' (Se8/ @, Moo) = Moo[w]

is trivial. If Myo[w] is non-trivial, then, from the purity of Moo, we claim that M/ will
have positive rank over S5 /7. To see this, simply tensor the presentation of M, with S5 /=
to obtain the exact sequence

0 — Tor' (S /@, M) — (SZ /)" — (SL/@)" — Moo/ — 0,
from which it follows that
rankSD/wMoo/w = rankSD/wTor1 (So%/w, Mso).

If Tor! (S3 /@, M) is non-zero, then, as it is a submodule of a free module over S /=
which has no associated prime, it also has no associated prime as an S /@ module. However,
a module with no associated prime over a power series ring over k certainly must have positive
rank. This implies that (if Moo[w@] is non-zero) that M,/ has positive rank. Yet this con-
tradicts the fact that RL" /@ ~ Moo /@ does not have positive rank, as R&F is flat over O
(Lemma 2.6) and of smaller dimension than the ring of diamond operators (by one). Hence
M is free of rank one over Rclx’F. But now specializing down to finite level, we deduce that
H°(X,wg /0 ) 18 free of rank one over R', which proves Theorem 1.2.

4.2. Producing torsion classes. Let
f=Y ang" € Si(Tu(N).n)
be a cuspidal eigenform of some level N and character n. Let
p: Gg — GLy(E)

denote the corresponding Artin representation. Assume that p| Dy is reducible for any prime £
dividing N.
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Proposition 4.2. Let f be as above. Let p > 2 be a prime such that py is absolutely
irreducible and p is prime to the level N of [ and the order of 1. Then there exists a set of
primes L of positive density so that, for each such £, the map

HY(X(Tg(N) N To()z,,@)m ® Fpy = HY(X(TH(N) N To(0)r,, ®)m

is not surjective.

Remark 4.3. This implies that Katz’ base-change theorem ([13, Theorem 1.7.1]) fails
as badly as possible in weight one.

Proof. Suppose, to the contrary, that all such forms of this level lift to characteristic
zero. There are no forms in characteristic zero which are new at £ of level I'g({), because any
such form would have to be (up to unramified twist) Steinberg at £, and no weight one form in
characteristic zero can be Steinberg at any place. The easiest way to see this is that the eigen-
value of U, would have to be a root of unity times £=1/2 but this is impossible because Hecke
eigenvalues of modular forms are algebraic integers. Hence any Galois representation arising
from forms of this level must come from level I'g7 (), and so in particular be unramified at £.
Thus, by Theorem 1.2, it suffices to show that there is a non-trivial deformation of p to the
dual numbers which is minimal at N, corresponds to a quotient of Rzn"d at the new auxil-
iary prime £, and is unramified everywhere else. The reduced tangent space of the unramified
deformation ring is given by the Selmer group H@1 (Q. ad’(p)). Denote the dual Selmer group
by H} (Q,ad®(p)(1)). Since these groups are both finite, there exists a finite extension F/Q
which contains the fixed field of ker(p) and such that all the classes in H ., (Q, ad’(p)(1)) split
completely. Let £ be a prime which splits completely in F'({,). Let H é (Q. ad’(p)) denote the
modified Selmer group where classes are allowed to be arbitrarily ramified at £. By construc-
tion of £, the dual Selmer group H{, (Q, ad’(p)) consisting of all dual Selmer classes which
split completely at £ is equal to H 1, (Q,ad®(p)), because the localization map factors through
the restriction to G, and by construction all classes in the latter group are assumed to split
completely over Q. Hence, the Greenberg—Wiles Euler characteristic formula

|Hg(Q.ad°(®)| _  [Hg(Q.ad’(@)|  |Hz.(Q.ad’(@) (1))
|H}(Q.ad’(®))|  [He (Q.ad’()(1)|  |HJ(Q.ad’(p))|
_ |H'(Q¢.ad’(p))|
 |H(F¢.ad’(p))|
= |H®(Q¢.ad’ (p)(1))]
= [ad(p)(1)].

the final equality coming from the assumption that £ splits completely in F({,). Note that
dimad®(p)(1) = 3 > 0. It follows that for such choices of £, there exists a deformation

p: Go — GLa(k[e]/€?)

which is minimal at all primes away from £ and genuinely ramified at £. Moreover, p|Dy is
trivial and £ = 1 mod p. It suffices to show that the corresponding deformation arises from
a quotient of R‘e‘“’d, which was described explicitly in this case by Lemma 2.4. Since we are
considering fixed determinant deformations, the trace of the image p(g) of any element g
is 1 4+ det(g) = 2. However, it is apparent the description of R?‘"d in Lemma 2.4 that all the
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relations apart from Tr(p(7)) = 2 lie in m?, and so are automatically satisfied for any deforma-
tion to k [€]/€2. (Note that, associated to p, there is a corresponding surjection R‘e“"d — kle]/€?
for any choice of oy € 1 + € - k[€]/€2.) i

4.3. Proof of Theorem 1.3. To prove Theorem 1.3, it suffices to apply Proposition 4.2
to suitably chosen f. Note that the class numbers of the fields Q(v/—23) and Q(+/—47) are 3
and 5 respectively. This gives rise to suitable weight one forms f with image D3 and Ds
and level I'1(23) and I'; (47) respectively (both with quadratic nebentypus). Applying Propo-
sition 4.2, we deduce the existence of mod-p Katz modular forms which fail to lift for all
p # 2,3,23 in the first example and p # 2,5,47 in the second. For p = 2, the theorem is
known by an example of Mestre [10], completing the proof.

Remark 4.4. The computations of [20] (see also [3]) suggest that Theorem 1.3 should
also be true if one insists that f is an eigenform. By Serre’s conjecture, this would follow if
for each p > 5 there existed an odd Galois representation: p : Gg — GLy (k) unramified at p
with image containing SL>(F}), although proving this appears difficult.

Remark 4.5. If the cuspform f in Proposition 4.2 is exceptional — that is, the projective
image of pr is A4, S4, or As —, then the resulting torsion class at level I'yy (N') N Tp(q) will not
lift to characteristic zero at any higher level. The reason is that any form g with py = p, will
have to satisfy py = pg up to a p-power twist, and the resulting Hecke algebra in weight one
cannot give rise to the infinitesimal deformations p which arise in the proof of Proposition 4.2.
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