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Abstract We prove new modularity lifting theorems for p-adic Galois repre-
sentations in situations where the methods of Wiles and Taylor–Wiles do not
apply. Previous generalizations of these methods have been restricted to situ-
ations where the automorphic forms in question contribute to a single degree
of cohomology. In practice, this imposes several restrictions—one must be
in a Shimura variety setting and the automorphic forms must be of regular
weight at infinity. In this paper, we essentially show how to remove these
restrictions. Our most general result is a modularity lifting theorem which, on
the automorphic side, applies to automorphic forms on the group GL(n) over
a general number field; it is contingent on a conjecture which, in particular,
predicts the existence of Galois representations associated to torsion classes in
the cohomology of the associated locally symmetric space. We show that if this
conjecture holds, then our main theorem implies the following: if E is an ellip-
tic curve over an arbitrary number field, then E is potentially automorphic and
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satisfies the Sato–Tate conjecture. In addition, we also prove some uncondi-
tional results. For example, in the setting of GL(2) over Q, we identify certain
minimal global deformation rings with the Hecke algebras acting on spaces
of p-adic Katz modular forms of weight 1. Such algebras may well contain
p-torsion. Moreover, we also completely solve the problem (for p odd) of
determining the multiplicity of an irreducible modular representation ρ in the
Jacobian J1(N ), where N is the minimal level such that ρ arises in weight
two.

Mathematics Subject Classification 11F33 · 11F80
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1 Introduction

In this paper, we prove a new kind of modularity lifting theorem for p-adic
Galois representations. Previous generalizations of the work of Wiles [1] and
Taylor–Wiles [2] have (essentially) been restricted to circumstances where the
automorphic forms in question arise from the middle degree cohomology of
Shimura varieties. In particular, such approaches ultimately rely on a “numer-
ical coincidence” (see the introduction to [3]) which does not hold in general,
and does not hold in particular for GL(2)/F if F is not totally real. A second
requirement of these generalizations is that the Galois representations in ques-
tion are regular at ∞, that is, have distinct Hodge–Tate weights for all v|p.
Our approach, in contrast, does not a priori require either such assumption.

When considering questions of modularity in more general contexts, there
are two issues that need to be overcome. The first is that there do not seem
to be “enough” automorphic forms to account for all the Galois representa-
tions. In [4–6], the suggestion is made that one should instead consider integral

cohomology, and that the torsion occurring in these cohomology groups may
account for the missing automorphic forms. In order to make this approach
work, one needs to show that there is “enough” torsion. This is the problem
that we solve in some cases. A second problem is the lack of Galois repre-
sentations attached to these integral cohomology classes. In particular, our
methods require Galois representations associated to torsion classes which do
not necessarily lift to characteristic zero, where one might hope to apply the
recent results of [7]. We do not resolve the problems of constructing Galois
representations in this paper, and instead, our results are contingent on a con-
jecture which predicts that there exists a map from a suitable deformation
ring Rmin to a Hecke algebra T. In a recent preprint, Scholze [8] has con-
structed Galois representations associated to certain torsion classes. If one can
show that these Galois representations satisfy certain local-global compatibil-
ity conditions (including showing that the Galois representations associated to
cohomology classes on which Uv forv|p is invertible are reducible after restric-
tion to the decomposition group at v), then our modularity lifting theorems
for imaginary quadratic fields would be unconditional. There are contexts,
however, in which the existence of Galois representations is known; in these
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cases we can produce unconditional results. In principle, our method currently
applies in two contexts:

Betti To Galois representations conjecturally arising from tempered
π of cohomological type associated to G, where G is reductive
with a maximal compact K , maximal Q-split torus A, and
l0 = rank(G)− rank(K )− rank(A) is arbitrary,

Coherent To Galois representations conjecturally arising from tempered
π associated to G, where (G, X) is a Shimura variety over a
totally real field F , and such that πv is a non-degenerate limit
of discrete series at �0 infinite places and a discrete series at
all other infinite places.

In practice, however, what we really need is that (after localizing at a suitable
maximal ideal m of the Hecke algebra T) the cohomology is concentrated
in l0 + 1 consecutive degrees. (This is certainly true of the tempered repre-
sentations which occur in Betti cohomology. According to [9], the range of
cohomological degrees to which they occur has length l0 + 1. In the coher-
ent case, the value of l0 will depend on the infinity components πv allowed.
That tempered representations occur in a range of length l0, then follows
from [10, Theorems 3.4 and 3.5] together with knowledge of L-packets at
infinite primes). The specialization of our approach to the case �0 = 0 exactly
recovers the usual Taylor–Wiles method.

The following results are a sample of what can be shown by these methods
in case Betti, assuming (Conjecture B of Sect. 9.3) the existence of Galois
representations in appropriate degrees satisfying the expected properties.

Theorem 1.1 Assume Conjecture B. Let F be any number field, and let E be

an elliptic curve over F. Then the following hold:

(1) E is potentially modular.

(2) The Sato–Tate conjecture is true for E.

The proof of Theorem 1.1 relies on the following ingredients. The first
ingredient consists of the usual techniques in modularity lifting (the Taylor–
Wiles–Kisin method) as augmented by Taylor’s Ihara’s Lemma avoidance
trick [11]. The second ingredient is to observe that these arguments continue

to hold in a more general situation, provided that one can show that there is
“enough” cohomology. Ultimately, this amounts to giving a lower bound on
the depth of certain patched Hecke modules. Finally, one can obtain such a
lower bound by a commutative algebra argument, assuming that the relevant
cohomology occurs only in a certain range of length l0. Conjecture B amounts
to assuming both the existence of Galois representations together with the
vanishing of cohomology (localized at an appropriate m) outside a given range.
We deduce Theorem 1.1 from a more general modularity lifting theorem, see
Theorem 5.16.
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The following result is a sample of what can be shown by these methods
in case Betti assuming only Conjecture A concerning the existence of Galois
representations for arithmetic lattices in GL2(OF ) for an imaginary quadratic
field F . Unlike Conjecture B, it appears that Conjecture A may well be quite
tractable in light of the work of [8]. Let O denote the ring of integers in a
finite extension of Qp, let � be a uniformizer of O, and let O/� = k be the
residue field. Say that a representation ρ : G F → GL2(O) is semi-stable if
ρ|Iv is unipotent for all finite v not dividing p, and semi-stable in the sense of
Fontaine [12] if v|p. Furthermore, for v|p, we say that ρ|Dv is finite flat if for
all n ≥ 1 each finite quotient ρ|Dv mod � n is the generic fiber of a finite
flat O-group scheme, and ordinary if ρ|Dv is conjugate to a representation of
the form

(
εχ1 ∗
0 χ2

)

where χ1 and χ2 are unramified and ε is the cyclotomic character.

Theorem 1.2 Assume Conjecture A. Let F/Q be an imaginary quadratic field.

Let p ≥ 3 be unramified in F. Let

ρ : G F → GL2(O)

be a continuous semi-stable Galois representation with cyclotomic determi-

nant unramified outside finitely many primes. Let ρ : G F → GL2(k) denote

the mod-� reduction of ρ. Suppose that

(1) If v|p, the representation ρ|Dv is either finite flat or ordinary.

(2) The restriction of ρ to G F(ζp) is absolutely irreducible.

(3) ρ is modular of level N (ρ), where N (ρ) is the product of the usual prime-

to-p Artin conductor and the primes v|p where ρ is not finite-flat.

(4) ρ is minimally ramified.

Then ρ is modular, that is, there exists a regular algebraic cusp form π for

GL(2)/F such that L(ρ, s) = L(π, s).

It is important to note that the condition (3) is only a statement about the
existence of a mod-p cohomology class of level N (ρ), not the existence of a
characteristic zero lift. This condition is the natural generalization of Serre’s
conjecture.

It turns out that—even assuming Conjecture A—this is not enough to prove
that all minimal semi-stable elliptic curves over F are modular. Even though
the Artin conjecture for finite two-dimensional solvable representations of G F

is known, there are no obvious congruences between eigenforms arising from
Artin L-functions and cohomology classes over F . (Over Q, this arose from
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the happy accident that classical weight one forms could be interpreted via
coherent cohomology). One class of mod-p Galois representations known to
satisfy (3) are the restrictions of odd Galois representationsρ : GQ → GL2(k)

to G F . One might imagine that the minimality condition is a result of the lack
of Ihara’s lemma; however, Ihara’s lemma and level raising are known for
GL(2)/F (see [6]). The issue arises because there is no analogue of Wiles’
numerical criterion for Gorenstein rings of dimension zero.

We deduce Theorem 1.2 from the following more general result.

Theorem 1.3 Assume conjecture A. Let F/Q be an imaginary quadratic field.

Let p ≥ 3 be unramified in F. Let

ρ : G F → GL2(k)

be a continuous representation with cyclotomic determinant, and suppose that:

(1) If v|p, the representation ρ|Dv is either finite flat or ordinary.

(2) ρ is modular of level N = N (ρ).

(3) ρ|G F(ζp) is absolutely irreducible.

(4) If ρ is ramified at x where NF/Q(x) ≡ −1 mod p, then either ρ|Dx is

reducible or ρ|Ix is absolutely irreducible.

Let Rmin denote the minimal finite flat (respectively, ordinary) deformation ring

of ρ with cyclotomic determinant. Let Tm be the algebra of Hecke operators

acting on H1(Y0(N ),O) localized at the maximal ideal corresponding to ρ.

Then there is an isomorphism:

Rmin ∼−→ Tm,

and there exists an integer μ ≥ 1 such that H1(Y0(N ),O)m is free of rank μ

as a Tm-module. If H1(Y0(N ),O)m ⊗ Q �= 0, then μ = 1. If dim(Tm) = 0,

then Tm is a complete intersection.

Note that condition 4—the non-existence of “vexing primes” x such that
NF/Q(x) ≡ −1 mod p—is already a condition that arises in the original
paper of Wiles [1]. It could presumably be removed by making the appropri-
ate modifications as in either [13,14] or [15] and making the corresponding
modifications to Conjecture A.

Our results are obtained by applying a modification of Taylor–Wiles to the
Betti cohomology of arithmetic manifolds. In such a context, it seems difficult
to construct Galois representations whenever l0 �= 0. Following [16,17], how-
ever, we may also apply our methods to the coherent cohomology of Shimura
varieties, where Galois representations are more readily available. In contexts
where the underlying automorphic forms π are discrete series at infinity, one
expects (and in many cases can prove, see [18]) that the integral coherent coho-
mology localized at a suitably generic maximal ideal m of T vanishes outside
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the middle degree. If π∞ is a limit of discrete series, however, (so that we
are in case Coherent) then the cohomology of the associated coherent sheaf
can sometimes be shown to be non-zero in exactly in the expected number of
degrees, in which case our methods apply. In particular, a priori, the Coherent

case appears more tractable, since there are available methods for constructing
Galois representations to coherent cohomology classes in low degree [19,20].
However, our methods still lead to open conjectures concerning the existence
of Galois representations, since the usual methods for constructing represen-
tations on torsion classes (using congruences) only work with Hecke actions
on H0(X,E ) rather than H i (X,E ) for i > 0, and we require Galois repre-
sentations coming from the latter groups.

In this paper, we confine our discussion of the general Coherent case to
addressing the problem of constructing suitable complexes (see Sect. 7.2).
We expect, however, that our methods may be successfully applied to prove
unconditional modularity lifting theorems in a number of interesting cases
in small rank. The most well known example of such a situation is the case
of classical modular forms of weight 1. Such modular forms contribute to
the cohomology of H0(X1(N ), ω) and H1(X1(N ), ω) in characteristic zero,
where X1(N ) is a modular curve, and ω is the usual pushforward π∗ωE/X1(N )

of the relative dualizing sheaf along the universal generalized elliptic curve.
Working over Zp for some prime p � N , the group H0(X1(N ), ω) is torsion
free, but H1(X1(N ), ω) is not torsion free in general, as predicted by Serre
and confirmed by Mestre (Appendix A of [21]). In order to deal with vexing
primes, we introduce a vector bundle Lσ which plays the role of the locally
constant sheaf FM of section Sect. 6 of [15]—see Sect. 3.9 for details. We also
introduce a curve XU which sits in the sequence X1(M) → XU → X0(M)

for some M dividing the Serre conductor of ρ and such that the first map has
p-power degree. Note that if ρ has no vexing primes, then Lσ is trivial of
rank 1, and if ρ is not ramified at any primes congruent to 1 mod p, then
XU = X1(N ). In this context, we prove the following result:

Theorem 1.4 Suppose that p ≥ 3. Let ρ : GQ → GL2(k) be an odd con-

tinuous irreducible Galois representation of Serre level N . Assume that ρ

is unramified at p. Let Rmin denote the universal minimal unramified-at-p

deformation ring of ρ. Then there exists a quotient XU of X1(N ) and a vector

bundle Lσ on XU such that if T denotes the Hecke algebra of H1(XU , ω⊗Lσ ),

there is an isomorphism

Rmin ∼−→ Tm

where m is the maximal ideal of T corresponding toρ. Moreover, H1(XU , ω⊗
Lσ )m is free as a Tm-module.
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Note that even the fact that there exists a surjective map from Rmin to
Tm is non-trivial, and requires us to prove a local–global compatibility result
for Galois representations associated to Katz modular forms of weight one
over any Zp-algebra (see Theorem 3.11). We immediately deduce from The-
orem 1.4 the following:

Corollary 1.5 Suppose that p ≥ 3. Suppose also that ρ : GQ → GL2(O) is

a continuous representation satisfying the following conditions.

(1) For all primes v, either ρ(Iv)
∼→ ρ(Iv) or dim(ρ Iv ) = dim(ρ Iv ) = 1.

(2) ρ is odd and irreducible.

(3) ρ is unramified at p.

Then ρ is modular of weight one.

It is instructive to compare this theorem and the corollary to the main the-
orem of Buzzard–Taylor [22] (see also [23]). Note that the hypothesis in that
paper that ρ is modular is no longer necessary, following the proof of Serre’s
conjecture [24]. In both cases, if ρ is a deformation of ρ to a field of char-
acteristic zero, we deduce that ρ is modular of weight one, and hence has
finite image. The method of [22] applies in a non-minimal situation, but it
requires the hypothesis that ρ(Frobp) has distinct eigenvalues. Moreover, it
has the disadvantage that it only gives an identification of reduced points on
the generic fibre (equivalently, that Rmin[1/p]red = Tm[1/p], although from
this by class field theory—see Lemma 4.14 and the subsequent remarks after
the proof—one may deduce that Rmin[1/p] = Tm[1/p]), and says nothing
about the torsion structure of H1(X1(N ), ω). Contrastingly, we may deduce
the following result:

Corollary 1.6 Suppose that p ≥ 3. Let ρ : GQ → GL2(k) be odd, contin-

uous, irreducible, and unramified at p. Let (A,m) denote a complete local

Noetherian O-algebra with residue field k and ρ : GQ → GL2(A) a minimal

deformation of ρ. Then ρ has finite image.

This gives the first results towards Boston’s strengthening of the Fontaine–
Mazur conjecture for representations unramified at p (See [25], Conjecture 2).

It is natural to ask whether our results can be modified using Kisin’s method
to yield modularity lifting results in non-minimal level. Although the formal-
ism of this method can be adapted to our context, there is a genuine difficultly
in proving that the support of Spec(T∞[1/p]) hits each of the components of
Spec(R∞[1/p]) whenever the latter has more than one component. In certain
situations, we may apply Taylor’s trick [11], but this can not be made to work
in general. However, suppose one replaces the “minimal” condition away from
p with the following condition:

• If ρ is special at x � p, and ρ is unramified at x , then x ≡ 1 mod p.
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In this context our methods should yield that the deformation ring R acts
nearly faithfully on H1(X1(M), ω)m for an appropriate M . This is sufficient
for applications to the conjectures of Fontaine–Mazur and Boston.

In the process of proving our main result, we also completely solve the
problem (for p odd) of determining the multiplicity of an irreducible mod-
ular representation ρ in the Jacobian J1(N

∗)[m], where N∗ is the minimal
level such that ρ arises in weight two. In particular, we prove that when ρ
is unramified at p and ρ(Frobp) is a scalar, then the multiplicity of ρ is two
(see Theorem 4.8). (In all other cases, the multiplicity was already known to
be one—and in the exceptional cases we consider, the multiplicity was also
known to be ≥2).

Finally, we outline here the structure of the paper, which has two parts.
In Part 1, we treat the case where l0 = 1 in two specific instances—namely,
the case of classical modular forms of weight 1 (Sect. 3) and the case of
automorphic forms on GL(2) over a quadratic imaginary field that contribute
to the Betti cohomology (Sect. 5). The ideas from commutative algebra and the
abstract Taylor–Wiles patching method necessary to treat these two situations
are developed in Sect. 2. The ‘multiplicity two’ result mentioned above is
proved in Sect. 4.

In Part 2, we treat the case of general l0. In contrast to Part 1, we only treat
the Betti case in detail (more specifically, we consider the Betti cohomology
of the locally symmetric spaces associated to GL(n) over a general number
field). Section 6 contains the results from commutative algebra and the abstract
Taylor–Wiles style patching result that underlie our approach to the case of
general l0. These techniques are more ‘derived’ in nature than the techniques
that treat l0 = 0 or 1, and in particular rely on the existence of complexes which
compute cohomology and satisfy various desirable properties. The existence
of such complexes is proved in Sect. 7 (in both contexts—Betti cohomology
and coherent cohomology). In Sect. 8, we consider the Galois deformation side
of our arguments. In Sect. 9, we consider cohomology and Hecke algebras.
This section contains Conjecture B on the existence of Galois representations
as well our main modularity lifting theorem. Finally, Sect. 10 contains the
proof of Theorem 1.1 above.

Notation

In this paper, we fix a prime p ≥ 3 and letO denote the ring of integers in a finite
extension K of Qp. We let� denote a uniformizer in O and let k = O/� be
the residue field. We denote by CO the category of complete Noetherian local
O-algebras with residue field k. The homomorphisms in CO are the continuous
O-algebra homomorphisms. If G is a group and χ : G → k× is a character,
we denote by 〈χ〉 : G → O× the Teichmüller lift of χ .
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If F is a field, we let G F denote the Galois group Gal(F/F) for some choice
of algebraic closure F/F . We let ε : G F → Z×p denote the p-adic cyclotomic
character. If F is a number field and v is a prime of F , we let Ov denote the
ring of integers in the completion of F at v and we let πv denote a uniformizer
in Ov . We denote G Fv by Gv and let Iv ⊂ Gv be the inertia group. We also
let Frobv ∈ Gv/Iv denote the arithmetic Frobenius. We let Art : F×v → W ab

Fv
denote the local Artin map, normalized to send uniformizers to geometric
Frobenius lifts. We will also sometimes denote the decomposition group at
v by Dv . If R is a topological ring and α ∈ R×, we let λ(α) : Gv → R×

denoted the continuous unramified character which sends Frobv to α, when
such a character exists. We let AF and A∞F denote the adeles and finite adeles
of F respectively. If F = Q, we simply write A and A∞.

If P is a bounded complex of S-modules for some ring S, then we let
H∗(P) = ⊕i H i (P). Any map H∗(P) → H∗(P) will be assumed to be
degree preserving. If R is a ring, by a perfect complex of R-modules we mean
a bounded complex of finitely generated projective R-modules.

If R is a local ring, we will sometimes denote the maximal ideal of R by
mR .

Part 1. l0 equals 1

2 Some commutative algebra I

This section contains one of the main new technical innovations of this paper.
The issue, as mentioned in the introduction, is to show that there are enough

modular Galois representations. This involves showing that certain modules
HN (consisting of modular forms) for the group rings SN := O[(Z/pN Z)q ]
compile, in a Taylor–Wiles patching process, to form a module of codimen-
sion one over the completed group ring S∞ := O[(Zp)

q ]. The problem then
becomes to find a suitable notion of “codimension one” for modules over a
local ring that

(1) is well behaved for non-reduced quotients of power series rings over O

(like SN ),
(2) can be established for the spaces HN in question,
(3) compiles well in a Taylor–Wiles system.

It turns out that the correct notion is that of being “balanced”, a notion
defined below. When l0 > 1, we shall ultimately be required to patch more
information than simply the modules HN ; rather, we shall patch entire com-
plexes (see Sect. 6).
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2.1 Balanced modules

Let S be a Noetherian local ring with residue field k and let M be a finitely
generated S-module.

Definition 2.1 We define the defect dS(M) of M to be

dS(M) = dimk Tor0
S(M, k)− dimk Tor1

S(M, k)

= dimk M/mS M − dimk Tor1
S(M, k).

Let

· · · → Pi → · · · → P1 → P0 → M → 0

be a (possibly infinite) resolution of M by finite free S-modules. Assume
that the image of Pi in Pi−1 is contained in mS Pi−1 for each i ≥ 1. (Such
resolutions always exist and are often called ‘minimal’). Let ri denote the
rank of Pi . Tensoring the resolution over S with k we see that Pi/mS Pi

∼=
Tori

S(M, k) and hence that ri = dimk Tori
S(M, k).

Definition 2.2 We say that M is balanced if dS(M) ≥ 0.

If M is balanced, then we see that it admits a presentation

Sd → Sd → M → 0

with d = dimk M/mS M .

2.2 Patching

We establish in this section an abstract Taylor–Wiles style patching result
which may be viewed as an analogue of Theorem 2.1 of [26]. This result will
be one of the key ingredients in the proofs of our main theorems.

Proposition 2.3 Suppose that

(1) R is an object of CO and H is a finite R-module which is also finite over

O;

(2) q ≥ 1 is an integer, and for each integer N ≥ 1, SN := O[�N ] with

�N := (Z/pN Z)q ;

(3) R∞ := O[x1, . . . , xq−1];
(4) for each N ≥ 1, φN : R∞ � R is a surjection in CO and HN is an

R∞ ⊗O SN -module.

(5) For each N ≥ 1 the following conditions are satisfied
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(a) the image of SN in EndO(HN ) is contained in the image of R∞ and

moreover, the image of the augmentation ideal of SN in EndO(HN ) is

contained in the image of ker(φN );

(b) there is an isomorphism ψN : (HN )�N

∼→ H of R∞-modules (where

R∞ acts on H via φN );

(c) HN is finite and balanced over SN (see Definition 2.2).

Then H is a free R-module.

Proof Let S∞ = O[(Zp)
q ] and let a denote the augmentation ideal of S∞ (that

is, the kernel of the homomorphism S∞ � O which sends each element of
(Zp)

q to 1). For each N ≥ 1, let aN denote the kernel of the natural surjection
S∞ � SN and let bN denote the open ideal of S∞ generated by � N and aN .
Let d = dimk(H/�H). We may assume that d > 0 since otherwise H = {0}
and the result is trivially true. Choose a sequence of open ideals (dN )N≥1 of
R such that

• dN ⊃ dN+1 for all N ≥ 1;
• ∩N≥1dN = (0);
• � N R ⊂ dN ⊂ � N R + AnnR(H) for all N .

(For example, one can take dN to be the ideal generated by � N and
AnnR(H)

N . These are open ideals since R/AnnR(H) ⊂ EndO(H) is finite
as an O-module).

Define a patching datum of level N to be a 4-tuple (φ, X, ψ, P) where

• φ : R∞ � R/dN is a surjection in CO;
• X is an R∞⊗̂OS∞-module such that the action of S∞ on X factors through

S∞/bN and X is finite over S∞;
• ψ : X/aX

∼→ H/� N H is an isomorphism of R∞ modules (where R∞
acts on H/� N H via φ);

• P is a presentation

(S∞/bN )
d → (S∞/bN )

d → X → 0.

We say that two such 4-tuples (φ, X, ψ, P) and (φ′, X ′, ψ ′, P ′) are isomorphic
if

• φ = φ′;
• there is an isomorphism X

∼→ X ′ of R∞⊗̂OS∞ modules compatible with
ψ and ψ ′, and with the presentations P and P ′.

We note that there are only finitely many isomorphism classes of patching
data of level N . (This follows from the fact that R∞ and S∞ are topologically
finitely generated). If D is a patching datum of level N and 1 ≤ N ′ ≤ N , then
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D gives rise to patching datum of level N ′ in an obvious fashion. We denote
this datum by D mod N ′.

For each pair of integers (M, N ) with M ≥ N ≥ 1, we define a patching
datum DM,N of level N as follows: the statement of the proposition gives a
homomorphism φM : R∞ � R and an R∞ ⊗O SM -module HM . We take

• φ to be the composition R∞ � R � R/dN ;
• X to be HM/bN ;
• ψ : X/aX

∼→ H/bN to be the reduction modulo� N of the given isomor-
phism ψM : HM/aHM

∼→ H ;
• P to be any choice of presentation

(S∞/bN )
d → (S∞/bN )

d → X → 0.

(The facts that HM/aHM
∼→ H and dSM

(HM) ≥ 0 imply that such a
presentation exists).

Since there are finitely many patching data of each level N ≥ 1, up to
isomorphism, we can find a sequence of pairs (Mi , Ni )i≥1 such that

• Mi ≥ Ni , Mi+1 > Mi , and Ni+1 > Ni for all i ;
• DMi+1,Ni+1 mod Ni is isomorphic to DMi ,Ni

for all i ≥ 1.

For each i ≥ 1, we write DMi ,Ni
= (φi , X i , ψi , Pi ) and we fix an isomorphism

between the modules X i+1/bNi
X i+1 and X i giving rise to an isomorphism

between DMi+1,Ni+1 mod Ni and DMi ,Ni
. We define

• φ∞ : R∞ � R to be the inverse limit of the φi ;
• X∞ := lim←−i

X i where the map X i+1 → X i is the composition X i+1 �

X i+1/bNi

∼→ X i ;

• ψ∞ to be the isomorphism of R∞-modules X∞/aX∞
∼→ H (where R∞

acts on H via φ∞) arising from the isomorphisms ψi ;
• P∞ to be the presentation

Sd
∞→ Sd

∞→ X∞→ 0

obtained from the Pi . (Exactness follows from the Mittag–Leffler condition).

Then X∞ is an R∞⊗̂OS∞-module, and the image of S∞ in EndO(X∞)
is contained in the image of R∞. (By condition 5a, the image of S∞ in
each EndO(X i ) is contained in the image of R∞. The same containment
of images then holds in each HomO(X∞, X i ) and hence in EndO(X∞) =
lim←−i

HomO(X∞, X i )). It follows that X∞ is a finite R∞-module. Since
S∞ is formally smooth over O, we can and do choose a homomorphism
ı : S∞→ R∞ in CO, compatible with the actions of S∞ and R∞ on X∞.
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Since dimS∞(X∞) = dimR∞(X∞) and dim R∞ < dim S∞, we deduce
that dimS∞(X∞) < dim S∞. It follows that the first map Sd

∞ → Sd
∞ in the

presentation P∞ is injective. (Denote the kernel by K . If K �= (0), then
K ⊗S∞ Frac(S∞) �= (0) and hence X∞⊗S∞ Frac(S∞) �= (0), which is impos-
sible). We see that P∞ is a minimal projective resolution of X∞, and by the
Auslander–Buchsbaum formula, we deduce that depthS∞(X∞) = dim(S∞)−
1. Since depthR∞(X∞) = depthS∞(X∞), it follows that depthR∞(X∞) =
dim(R∞), and applying the Auslander–Buchsbaum formula again, we deduce
that X∞ is free over R∞. Using this and the second part of condition (5a), we
also deduce that ı(a) ⊂ ker(φ∞).

Finally, the existence of the isomorphism ψ∞ : X∞/aX∞
∼→ H tells us

that H is free over R∞/ ı(a)R∞. However, since the action of R∞ on H also
factors through the quotient R∞/ ker(φ∞) = R and since ı(a) ⊂ ker(φ∞),
we deduce that R∞/ ı(a)R∞ ∼= R and that R acts freely on H . ��

3 Weight one forms

3.1 Deformations of Galois representations

Let

ρ : GQ → GL2(k)

be a continuous, odd, absolutely irreducible Galois representation. Let us sup-
pose that ρ|G p is unramified; this implies that ρ remains absolutely irreducible
when restricted to GQ(ζp). Let S(ρ) denote the set of primes of Q at which ρ
is ramified and let T (ρ) ⊂ S(ρ) be the subset consisting of those primes x

such that x ≡ −1 mod p, ρ|Gx is irreducible and ρ|Ix is reducible. Follow-
ing Diamond, we call the primes in T (ρ) vexing. We further assume that if
x ∈ S(ρ) and ρ|Gx is reducible, then ρ Ix �= (0). Note that this last condition
is always satisfied by a twist of ρ by a character unramified outside of S(ρ).

Let Q denote a finite set of primes of Q disjoint from S(ρ) ∪ {p}. (By
abuse of notation, we sometimes use Q to denote the product of primes in Q).
For objects R in CO, a deformation of ρ to R is a ker(GL2(R) → GL2(k))-
conjugacy class of continuous lifts ρ : GQ → GL2(R) of ρ. We will often
refer to the deformation containing a lift ρ simply by ρ.

Definition 3.1 We say that a deformation ρ : GQ → GL2(R) of ρ is minimal

outside Q if it satisfies the following properties:

(1) The determinant det(ρ) is equal to the Teichmüller lift of det(ρ).
(2) If x /∈ Q ∪ S(ρ) is a prime of Q, then ρ|Gx is unramified.
(3) If x ∈ T (ρ), then ρ(Ix )

∼→ ρ(Ix ).
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(4) If x ∈ S(ρ) − T (ρ) and ρ|Gx is reducible, then ρ Ix is a rank one direct
summand of ρ as an R-module.

If Q is empty, we will refer to such deformations simply as being minimal.

Note that condition 2 implies that ρ is unramified at p. The functor that
associates to each object R of CO the set of deformations of ρ to R which are
minimal outside Q is represented by a complete Noetherian local O-algebra
RQ . This follows from the proof of Theorem 2.41 of [27]. If Q = ∅, we will
sometimes denote RQ by Rmin. Let H1

Q(Q, ad0ρ) denote the Selmer group
defined as the kernel of the map

H1(Q, ad0ρ) −→
⊕

x

H1(Qx , ad0ρ)/L Q,x

where x runs over all primes of Q and

• L Q,x = H1(Gx/Ix , (ad0ρ)Ix ) if x /∈ Q;
• L Q,x = H1(Qx , ad0ρ) if x ∈ Q.

Let H1
Q(Q, ad0ρ(1)) denote the corresponding dual Selmer group.

Proposition 3.2 The reduced tangent space Hom(RQ/mO, k[ε]/ε2) of RQ

has dimension

dimk H1
Q(Q, ad0ρ(1))− 1+

∑

x∈Q

dimk H0(Qx , ad0ρ(1)).

Proof The argument is very similar to that of Corollary 2.43 of [27]. The
reduced tangent space has dimension dimk H1

Q(Q, ad0ρ). By Theorem 2.18
of op. cit. this is equal to

dimk H1
Q(Q, ad0ρ(1))+ dimk H0(Q, ad0ρ)− dimk H0(Q, ad0ρ(1))

+
∑

x

(dimk L Q,x − dimk H0(Qx , ad0ρ))− 1,

where x runs over all finite places of Q. The final term is the contribution at the
infinite place. The second and third terms vanish by the absolute irreducibility
of ρ and the fact that ρ|G p is unramified. Finally, as in the proof of Corollary
2.43 of loc. cit. we see that the contribution at the prime x vanishes if x /∈ Q,
and equals dimk H0(Qx , ad0ρ(1)) if x ∈ Q. ��

Suppose that x ≡ 1 mod p and ρ(Frobx ) has distinct eigenvalues for each
x ∈ Q. Then H0(Qx , ad0ρ(1)) is one dimensional for x ∈ Q and the preceding
proposition shows that the reduced tangent space of RQ has dimension

dimk H1
Q(Q, ad0ρ(1))− 1+ #Q.
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Using this fact and the argument of Theorem 2.49 of [27], we deduce the
following result. (We remind the reader that ρ|GQ(ζp) is absolutely irreducible,
by assumption).

Proposition 3.3 Let q = dimk H1
∅ (Q, ad0ρ(1)). Then q ≥ 1 and for any

integer N ≥ 1 we can find a set QN of primes of Q such that

(1) #QN = q.

(2) x ≡ 1 mod pN for each x ∈ QN .

(3) For each x ∈ QN , ρ is unramified at x and ρ(Frobx ) has distinct eigen-

values.

(4) H1
QN
(Q, ad0ρ(1)) = (0).

In particular, the reduced tangent space of RQN
has dimension q−1 and RQN

is a quotient of a power series ring over O in q − 1 variables.

We note that the calculations on the Galois side are virtually identical to
those that occur in Wiles’ original paper, with the caveat that the tangent space
is of dimension “one less” in our case. On the automorphic side, this −1 will
be a reflection of the fact that the Hecke algebras will not (in general) be flat
over O and the modular forms we are interested in will contribute to one extra
degree of cohomology.

3.2 Cohomology of modular curves

3.2.1 Modular curves

We begin by recalling some classical facts regarding modular curves. Fix
an integer N ≥ 5 such that (N , p) = 1, and fix a squarefree integer Q

with (Q, N p) = 1. Let X1(N ), X1(N ; Q), and X1(N Q) denote the modular
curves of level �1(N ), �1(N ) ∩ �0(Q), and �1(N ) ∩ �1(Q) respectively as
smooth proper schemes over Spec(O). To be precise, we take X1(N ) and
X1(N Q) to be the base change to Spec(O) of the curves denoted by the same
symbols in [28, Proposition 2.1]. Thus, X1(N Q) represents the functor that
assigns to each O-scheme S the set of isomorphism classes of triples (E, αN Q)

where E/S is a generalized elliptic curve and αN Q : μN Q ↪→ E[N Q] is an
embedding of group schemes whose image meets every irreducible component
in each geometric fibre. Given such a triple, we can naturally decompose
αN Q = αN × αQ into its N and Q-parts. The group (Z/N QZ)× acts on
X1(N Q) in the following fashion: a ∈ (Z/N QZ)× sends a pair (E, αN Q)

to 〈a〉(E, αN Q) := (E, a ◦ αN Q). We let X1(N ; Q) be the smooth proper
curve over Spec(O) classifying triples (E, αN ,CQ) where E is a generalized
elliptic curve, αN : μN ↪→ E[N ] is an embedding of group schemes and
CQ ⊂ E[Q] is a subgroup étale locally isomorphic to Z/QZ and such that
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the subgroup Q + αN (μN ) of E meets every irreducible component of every
geometric fibre of E . Then X1(N , Q) is the quotient of X1(N Q) by the action
of (Z/QZ)× ⊂ (Z/N QZ)× and the map X1(N Q)→ X1(N ; Q) is étale; on
points it sends (E, αN Q) to (E, αN , αQ(μQ)).

For any modular curve X over O, let Y ⊂ X denote the corresponding
open modular curve parametrizing genuine elliptic curves. Let π : E → X

denote the universal generalized elliptic curve, and let ω := π∗ωE/X , where
ωE/X is the relative dualizing sheaf. Then the Kodaira–Spencer map (see [29],
A1.3.17) induces an isomorphism ω⊗2 � �1

Y/O over Y , which extends to an

isomorphism ω⊗2 � �1
X/O(∞), where ∞ is the reduced divisor supported

on the cusps. If R is an O-algebra, we let X R = X ×SpecO SpecR. If M is an
O-module and L is a coherent sheaf on X , we let LM denote L ⊗O M .

We now fix a subgroup H of (Z/NZ)×. We let X (resp. X1(Q), resp.
X0(Q)) denote1 the quotient of X1(N ) (resp. X1(N Q), resp. X1(N ; Q))
by the action of H . Note that each of these curves carries an action of
(Z/NZ)×/H . We assume that H is chosen so that X is the moduli space
(rather than the coarse moduli space) of generalized elliptic curves with

�H (N ) :=
{(

a b

c d

)
∈ �0(N ) : d mod N ∈ H

}
-level structure.

3.2.2 Modular forms with coefficients

The map j : XO/�m → X is a closed immersion. If L is any O-flat
sheaf of OX -modules on X , this allows us to identify H0(XO/�m , j∗L ) with
H0(X,LO/�m ). For such a sheaf L , we may identify LK/O with the direct
limit lim

→
LO/�m .

3.2.3 Hecke operators

Let Tuniv denote the commutative polynomial algebra over the group ring
O[(Z/N QZ)×] generated by indeterminates Tx , Uy for x � pN Q prime and
y|Q prime. If a ∈ (Z/N QZ)×, we let 〈a〉 denote the corresponding element
of Tuniv. We recall in this section how the Hecke algebra Tuniv acts on coherent
cohomology groups.

We have an étale covering map X1(Q) → X0(Q) with Galois group
(Z/QZ)×. Let� be a quotient of�Q := (Z/QZ)× and let X�(Q)→ X0(Q)

be the corresponding cover. We will define an action of Tuniv on the groups
H i (X�(Q),LA) for A an O-module, i = 0, 1 and L equal to the bundle ω⊗n

1 We apologize in advance that this is not entirely consistent with the usual notation for modular
curves. The alternative was to adorn the object X with the (fixed throughout) level structure
at N coming from ρ, which the first author felt too notationally cumbersome.
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or ω⊗n(−∞). If C�(Q) ⊂ X�(Q) denotes the divisor of cusps, we will also
define an action of Tuniv on H0(C�(Q), ω

⊗n
A ).

First of all, if a ∈ (Z/N QZ)× and L denotes either ω⊗n or ω⊗n(−∞) on
X�(Q), then we have a natural isomorphism 〈a〉∗L ∼→ L. We may thus define
the operator 〈a〉 on H i (X�(Q),LA) as the pull back

H i (X�(Q),LA)
〈a〉∗−−→ H i (X�(Q), 〈a〉∗LA) = H i (X�(Q),LA).

When i = 0, this is just the usual action of the diamond operators (as in [28,
Sect. 3], for instance). We define the action of 〈a〉 on H0(C�, ω

⊗n
A ) in the same

way, using the fact that 〈a〉 preserves C�(Q) ⊂ X�(Q)

Now, let x be a prime number which does not divide pN Q. We let X�(Q; x)

denote the modular curve over O obtained by adding �0(x)-level structure to
X�(Q) (or equivalently, by taking the quotient of X1(N Q; x) by the appro-
priate subgroup of (Z/N QZ)×). We have two finite flat projection maps

πi : X�(Q; x)→ X�(Q)

for i = 1, 2. The map π1 corresponds to the natural forgetful map on open
modular curves, extended by ‘contraction’ to the compactifications. The map
π2 is defined on the open modular curves Y�(Q; x)→ Y�(Q) by sending a
tuple (E, αN Q,Cx ) to the tuple (E ′ := E/Cx , α

′
N Q) where α′N Q is the level

structure on E ′ obtained fromαN Q by composing with the natural isomorphism

E[N Q] ∼→ E ′[N Q]. The fact that the πi extend to the compactifications is
ensured by [30, Proposition 4.4.3]. We also have the ‘Fricke involution’ wx :
X�(Q; x)→ X�(Q; x)which is defined on the open modular curve Y�(X; x)

by sending a tuple (E, αN Q,Cx ) as above to (E ′ := E/Cx , α
′
N Q, E[x]/Cx ).

Note that this is not really an involution, since w2
x (E, αN Q,Cx ) = (E, x ◦

αN Q,Cx ) = 〈x〉(E, αN Q,Cx ). We have π2 = π1 ◦ wx , and hence π∗2ω =
(w∗x ◦ π∗1 )ω = w∗xω. Let E denote the universal elliptic curve over Y�(Q; x)

and let and let Cx ⊂ E denote the universal subgroup of order x . Let φ denote
the quotient map

E −→ E/Cx .

Then pull back of differentials along φ defines a map of sheaves

φ12 : π∗2ω −→ π∗1ω

over Y�(Q; x). This map extends over X�(Q; x) by [30, Proposition 4.4.3].
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We define the operator Wx on H0(X�(Q; x), ωn
A) by setting Wx to be the

composite

H0(X�(Q; x), ωn
A)

w∗x−→ H0(X�(Q, x), π∗2ω
n
A)

φ⊗n
12−−→ H i (X�(Q; x), ωn

A).

Explicitly, we have:

Wx f (E, αN Q,Cx ) = φ∗ f (E/Cx , α
′
N Q, E[x]/Cx ).

Thus, using the identification x : E/E[x] ∼→ E together with the fact that we
have an equality w2

x (E, αN Q,Cx ) = 〈x〉(E, αN Q,Cx ), we see that:

W 2
x = x〈x〉.

We will use this fact below
We define Hecke operators Tx on H i (X�(Q),LA), for L = ωn , by setting

xTx to be the composition

H i (X�(Q),LA)→ H i (X�(Q, x), π∗2 LA)
φ⊗n

12→ H i (X�(Q; x), π∗1 LA)

tr(π1)→ H i (X�(Q),LA).

This is the same definition as in [31, p. 586] and recovers the usual definition
when i = 0. We define an action of Tx on the cohomology of L = ωn(−∞),
in a similar fashion: the operator xTx is the composition

H i (X�(Q), ω
⊗n(−∞)A)→ H i (X�(Q, x), (π∗2ω

⊗n)(−∞)A)

φ⊗n
12→ H i (X�(Q; x), (π∗1ω

⊗n)(−∞)A)

tr(π1)→ H i (X�(Q), ω
⊗n(−∞)A).

(In the first map, we use that π∗2 (ω
⊗n(−∞)) ⊂ (π∗2ω⊗n)(−∞) and in the last

map we use that the trace maps sections which vanish at the cusps to sections
which vanish at the cusps). Let C�(Q) ⊂ X�(Q) be the divisor of cusps, as
above, and define C�(Q; x) ⊂ X�(Q; x) similarly. Then we define an action
of Tx on H0(C�(Q), ω

n
A) by setting xTx equal to the composition:

H0(C�(Q), ω
⊗n
A )→ H0(C�(Q, x), π∗2ω

⊗n
A )

φ⊗n
12→ H0(C�(Q; x), π∗1ω

⊗n
A )

tr(π1)→ H0(C�(Q), ω
⊗n
A ).
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(In this line, both φ12 and the trace map are obtained from the previous ones
by passing to the appropriate quotients). In this way the long exact sequence

· · · −→ H i (X�(Q), ω
⊗n(−∞)A) −→ H i (X�(Q), ω

⊗n
A )

−→ H i (C�(Q), ω
⊗n
A )→ · · ·

is Tx -equivariant.

Remark 3.4 We note that the action of the operators Tx on H0(C�(Q), ω
⊗n
A )

is given by specializing q equal to 0 in the usual q-expansion formula for
the action of Tx (as in [28, Sect. 3], for instance). This expansion is with
respect to a local parameter q at the cusp ‘∞’, but note that the group
(Z/N QZ)× acts transitively on the set of cusps in C�(Q). In particular, sup-
pose f ∈ H0(C�(Q), ω

⊗n
k ) is a non-zero mod p eigenform for all Tx (with

x prime to pN Q) and is of character χ : (Z/N QZ)× → k× in the sense
that 〈a〉 f = χ(a) f for all a ∈ (Z/N QZ)×. Then f cannot vanish at any
cusp and the formula [28, (3.5)] implies that for each x prime to pN Q, we
have Tx ( f ) = (1+ χ(x)xn−1) f . Thus, the semisimple Galois representation
naturally associated to f (in the sense that for x � pN Q, the representation
is unramified at x with characteristic polynomial X2 − Tx X + 〈x〉xn−1) is
1 ⊕ χεn−1 (where we also think of χ as a character of GQ via class field
theory).

For x a prime dividing Q, the action of Ux on H i (X�(Q),LA) (for
L = ω⊗n , or ω⊗n(−∞)) and on H0(C�(Q), ω

⊗n
A ) is defined similarly. In

this case, we let X1(N Q; x) denote the smooth O-curve parametrizing tuples
(E, αN Q,Cx )where E is a generalized elliptic curve,αN Q : μN Q ↪→ E[N Q]
is an embedding and Cx ⊂ E[x] is a subgroup étale locally isomorphic to Z/xZ

such that αN Q(μN Q)+ Cx meets every irreducible component in every geo-
metric fiber and αN Q(μx )+Cx = E sm[x]. We then let X�(Q; x) be the quo-
tient of X1(N Q; x) by the same subgroup used to define X�(Q) as a quotient
of X1(N Q). We have two projection maps πi : X�(Q; x)→ X�(Q) where
π1 is the forgetful map and π2 sends (E, αN Q,Cx ) to (E ′ = E/Cx , α

′
N Q), as

above. By [30, Proposition 4.4.3], we have a map φ12 : π∗2ω → π∗1ω which
allow us to define Ux by exactly the same formulas as above.

3.2.4 Properties of cohomology groups

Define the Hecke algebra

Tan ⊂ EndO H0(X1(Q), ωK/O)

to be the subring of endomorphisms generated over O by the Hecke opera-
tors Tn with (n, pN Q) = 1 together with all the diamond operators 〈a〉 for
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(a, N Q) = 1. (Here “an” denotes anaemic). Let T denote the O-algebra gen-
erated by these same operators together with Ux for x dividing Q. If Q = 1,
we let T∅ = Tan

∅ denote T. The ring Tan is a finite O-algebra and hence
decomposes as a direct product over its maximal ideals Tan =

∏
m Tan

m . We
have natural homomorphisms

Tan → Tan
∅ = T∅, Tan ↪→ T

where the first is induced by the map H0(X, ωK/O) ↪→ H0(X1(Q), ωK/O)

and the second is the obvious inclusion.
For each maximal ideal m∅ of T∅, there is a finite extension k′ of T∅/m∅ and

a continuous semisimple representation GQ → GL2(k
′) characterized by the

fact that for each prime x � N p, the representation is unramified at x and Frobx

has characteristic polynomial X2−Tx X+〈x〉. (To see this, choose an extension
k′ and a normalized eigenform f ∈ H0(X, ωk′) such that the action of T∅ on
f factors through m∅. Then apply [28, Proposition 11.1]). The representation
may in fact be defined over the residue field T∅/m∅. The maximal ideal m∅ is
said to be Eisenstein if the associated Galois representation is reducible and
non-Eisenstein otherwise. If m∅ is non-Eisenstein, then there is a continuous
representation GQ → GL2(T∅,m∅) which is unramified away from pN and
characterized by the same condition on characteristic polynomials.

Let m∅ be a non-Eisenstein maximal ideal of T∅. By a slight abuse of
notation, we also denote the preimage of m∅ in Tan by m∅. Note that the
resulting ideal m∅ ⊂ Tan is maximal. The localization Tm∅ is a direct factor
of T whose maximal ideals correspond (after possibly extending O) to the
Ux -eigenvalues on H0(X1(Q), ωk)[m∅]. There is a continuous representation
GQ → GL2(T

an
m∅)which is unramified away from pN Q and satisfies the same

condition on characteristic polynomials as above for x � pN Q. The following
lemma is essentially well known in the construction of Taylor–Wiles systems,
we give a detailed proof just to show that the usual arguments apply equally
well in weight one.

Lemma 3.5 Suppose that for each x |Q we have that x ≡ 1 mod p and that

the polynomial X2−Tx X+〈x〉 ∈ T∅[X ] has distinct eigenvalues modulo m∅.

Let m denote the maximal ideal of T containing m∅ and Ux − αx for some

choice of root αx of X2 − Tx X + 〈x〉 mod m∅ for each x |Q. Then there is a

Tan
m∅-isomorphism

H0(X, ωK/O)m∅
∼−→ H0(X0(Q), ωK/O)m.

Proof We first of all remark that the localization H0(X, ωK/O)m∅ is indepen-
dent of whether we consider m∅ as an ideal of T∅ or Tan. To see this, it suffices
to note that Tan

m∅ → T∅,m∅ is surjective. This in turn follows from the fact that
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the Galois representation GQ → GL2(T∅,m∅) can be defined over the image
of Tan

m∅ → T∅,m∅ , and moreover that for x |Q, the operators Tx and 〈x〉 are
given by the trace and determinant of Frobx .

By induction, we reduce immediately to the case when Q = x is prime. Let
π1, π2 : X0(x)→ X denote the natural projection maps and let φ12 : π∗2ω→
π∗1ω be the map described in Sect. 3.2.3. We define ψ := (π∗1 , φ12 ◦ π∗2 )
and ψ∨ := 1

x

( tr(π1)
tr(π1)◦Wx

)
where Wx is the operator defined in Sect. 3.2.3 (with

N Q there playing the role of N here). These give a sequence of Tan-linear
morphisms

H0(X, ωK/O)
2 ψ→ H0(X0(x), ωK/O)

ψ∨→ H0(X, ωK/O)
2,

such that the composite map ψ∨ ◦ ψ is given by

(
x−1 tr(π1) ◦ π∗1 x−1 tr(π1) ◦ φ12 ◦ π∗2

x−1 tr(π1) ◦Wx ◦ π∗1 x−1 tr(π1) ◦Wx ◦ φ12 ◦ π∗2

)

=
(

x−1(x + 1) Tx

Tx 〈x〉(x + 1)

)
.

(On the first row, this follows from the definition of Tx and the fact that π1 has
degree x + 1; in the lower left corner we use the definition of Tx and the fact
that Wx ◦ π∗1 = φ12 ◦ w∗x ◦ π∗1 = φ12 ◦ π∗2 ; in the lower right corner we use
the facts that Wx ◦ φ12 ◦ π∗2 = W 2

x ◦ π∗1 and W 2
x = x〈x〉).

If αx and βx are the roots of X2− Tx X +〈x〉 mod m∅, then Tx ≡ αx +βx

mod m∅ and 〈x〉 ≡ αxβx mod m∅. Since x ≡ 1 mod p, we have

det(ψ∨ ◦ ψ) = x−1(x + 1)2〈x〉 − T 2
x ≡ 4〈x〉 − T 2

x

≡ 4αxβx − (αx + βx )
2 ≡ −(αx − βx )

2 mod m∅.

By assumption, αx �≡ βx , and thus, after localizing at m∅, the composite map
ψ∨ ◦ ψ is an isomorphism.

We deduce that H0(X, ωK/O)
2
m∅ is a direct factor of H0(X0(x), ωK/O)m∅

as a Tan
m∅-module. Consider the action of Ux on the image of H0(X, ωK/O)

2.
Let Vx denote the second component φ12 ◦π∗2 of the degeneracy map ψ . Then
we have equalities of maps H0(X, ωK/O)→ H0(X0(x), ωK/O)

π∗1 ◦ Tx = Ux ◦ π∗1 +
1

x
Vx and Ux ◦ Vx = π∗1 ◦ 〈x〉.
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To see that the first of these holds, note that:

(π∗1 ◦ Tx )( f )(E, αN ,Cx ) =
1

x

∑

D⊂E[x]
φ∗D f (E/D, φD ◦ αN ),

where the sum is over all order x subgroups D ⊂ E[x], and φD denotes the
quotient map E → E/D. (This formula holds after base-change to an étale
extension over which the subgroups D are defined). Restricting the sum to
all D �= Cx gives (Ux ◦ π∗1 )( f )(E, αN ,Cx ), while the remaining term is
1
x
(φ12 ◦ π∗2 )( f )(E, αN ,Cx ). For the second equality, we have:

(Ux ◦ Vx )( f )(E, αN ,Cx ) =
1

x

∑

D �=Cx

φ∗D+Cx
f (E/(D + Cx ), φD+Cx ◦ αN ),

where D is as above and φD+Cx is the quotient E → E/(D + Cx ). Since
D+Cx = E[x] for all D �= Cx , each termφ∗D+Cx

f (E/(D+Cx ), φD+Cx ◦αN )

can be identified with x f (E, x ◦ αN ) = x〈x〉 f (E, αN ). Since there exactly x

subgroups D �= Cx , and we divide by x , we deduce that Ux ◦ Vx = π∗1 〈x〉.
It follows that the action of Ux on H0(X0(x), ωK/O)

2
m∅ is given by the

matrix

A =
(

Tx x〈x〉
− 1

x
0

)
.

There is an identity (A − αx )(A − βx ) ≡ 0 mod m∅ in M2(T∅,m∅). Since
αx �≡ βx , by Hensel’s Lemma, there exist α̃x and β̃x in T×∅,m∅ such that (Ux −
α̃x )(Ux − β̃x ) = 0 on (Imψ)m∅ . It follows that Ux − β̃x is a projector (up to
a unit) from (Imψ)m∅ to (Imψ)m. We claim that there is an isomorphism of
Tan

m∅-modules

H0(X, ωK/O)m∅ � (Imψ)m = (H0(X, ωK/O)
2)m.

It suffices to show that there is a Tan
m∅-equivariant injection from H0(X,

ωK/O)m∅ to the module (Imψ)m∅ such that the image has trivial intersection
with the kernel of Ux − β̃x : if there is such an injection, then, by symme-
try, there is also an injection from H0(X, ωK/O)m∅ to (Imψ)m∅ whose image
intersects the kernel of Ux − α̃x trivially; by length considerations both injec-
tions are forced to be isomorphisms. We claim that the natural inclusion π∗1
composed with Ux − β̃x is such a map: from the computation of the matrix
above, it follows that
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(Ux − β̃x )

(
f

0

)
=
(

Tx f − β̃x f

− f

)
,

which is non-zero whenever f is by examining the second coordinate.
We deduce that there is a decomposition of Tan

m∅-modules

H0(X0(x), ωK/O)m = H0(X, ωK/O)m∅ ⊕ V

where V is the kernel of ψ∨. It suffices to show that V [m] is zero. Let f ∈
V [m]. We may regard f as an element of H0(X0(x), ωk). It satisfies the
following properties:

(1) Ux f = αx f ,
(2) 〈x〉 f = αxβx f ,
(3) (tr(π1) ◦Wx ) f = 0.

The first two properties follow from the fact that f is killed by m, and the last
follows from the fact that f lies in the kernel of ψ∨.

We claim that

1

x
(π∗1 ◦ tr(π1) ◦Wx ) = Ux +

1

x
Wx .

To see this, we will rewrite the relation π∗1 ◦ Tx = Ux ◦ π∗1 +
1
x

Vx that we
established earlier. Since π2 = π1 ◦wx , we have that Tx = 1

x
tr(π1) ◦Wx ◦π∗1

and Vx = Wx ◦ π∗1 . The earlier relation can thus be written:

1

x
π∗1 ◦ tr(π1) ◦Wx ◦ π∗1 = Ux ◦ π∗1 +

1

x
Wx ◦ π∗1 .

Since π∗1 is fully faithful, the claim follows.
Now, property (3) above tells us that −xUx f = Wx f . By (1), both sides

are k-multiples of f and applying −xUx f = Wx f once more, we see that
x2U 2

x f = W 2
x f . Since W 2

x = x〈x〉, we deduce that xU 2
x f = 〈x〉 f . Thus, by

(1) and (2):

xα2
x f = αxβx f.

Since x ≡ 1 mod p and αx �= βx , we deduce that f = 0, as required. ��

We have the following mild generalization of Lemma 3.5:

Lemma 3.6 Suppose Q = x is prime not dividing N p and the eigenvalues of

the polynomial X2− Tx X + 〈x〉 ∈ T∅/m∅[X ] do not have ratio x or x−1. Let

m denote the maximal ideal of T containing m∅ and Ux − αx for some choice
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of root αx of X2 − Tx X + 〈x〉 mod m∅. If the roots αx and βx are distinct,

then there is a Tan
m∅-isomorphism

H0(X, ωK/O)m∅
∼−→ H0(X0(x), ωK/O)m.

If the roots αx and βx are equal, then there is a Tan
m∅-isomorphism

H0(X, ωK/O)
2
m∅

∼−→ H0(X0(x), ωK/O)m.

Proof The proof is essentially identical to Lemma 3.5. The only calculations
which are different are the following: If αx and βx are the roots of X2−Tx X+
〈x〉 mod m∅, then Tx ≡ αx+βx mod m∅ and 〈x〉 ≡ αxβx mod m∅. Hence

det(ψ∨ ◦ ψ) = x−1(x + 1)2〈x〉 − T 2
x

≡ x−1((x + 1)2αxβx − x(αx + βx )
2)

≡ x−1(αx − xβx )(βx − xαx ) mod m∅.

This is non-zero under our assumptions. If the eigenvalues are distinct, we
proceed as before; the proof that the summand V of H0(X0(Q), ωK/O)m is
zero is also the same, since the final conclusion is that βx ≡ xαx mod m∅, a
contradiction. If the eigenvalues are equal, note that

ψ(H0(X, ωK/O)
2
m∅) = ψ(H

0(X, ωK/O)
2
m∅)m

since T acts on this space via the quotient T∅,m∅[X ]/(X2 − Tx X + 〈x〉) (with
X corresponding to Ux ), which is a local ring, by assumption. Thus, we can
decompose

H0(X0(x), ωK/O)m = ψ(H0(X, ωK/O)m∅)
2 ⊕ V,

as a direct sum of Tan-modules. The same proof as above shows that V is zero.
��

As in Sect. 3.2.3, let� be a quotient of�Q := (Z/QZ)× and let X�(Q)→
X0(Q) be the corresponding cover. If A is an O-module, we have defined an
action of the universal polynomial algebra Tuniv on the cohomology groups
H i (X�(Q),LA) for L = ω⊗n or ω⊗n(−∞). The ideal m∅ gives rise to a
maximal ideal m of Tuniv after a choice of eigenvalue mod m∅ for Ux for all x

dividing Q. Extending O if necessary, we may assume that Tuniv/m ∼= k.
Let M �→ M∨ := HomO(M, K/O) denote the Pontryagin duality functor.

Lemma 3.7 Let � be a quotient of �Q . Then:
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(1) H1(X�(Q),LK/O)
∨ is p-torsion free for L a vector bundle on X�(Q).

(2) For i = 0, 1, we have an isomorphism

H i (X�(Q), ω(−∞)K/O)m
∼−→ H i (X�(Q), ωK/O)m.

Proof The first claim is equivalent to the divisibility of H1(X�(Q),LK/O).
Since X�(Q) is flat over O, there is an exact sequence

0 → Lk → LK/O
�→ LK/O → 0.

Taking cohomology and using the fact that X�(Q) is a curve and hence
H2(X�(Q),Lk) vanishes, we deduce that H1(X�(Q),LK/O)/� = 0, from
which divisibility follows.

For the second claim, note that there is an exact sequence:

0 → ω(−∞)→ ω→ ω|C�(Q)→ 0,

where C�(Q) denote the divisor of cusps. The cohomology of C�(Q) is con-
centrated in degree 0. Yet the action of Hecke on H0(C�(Q), ω) is Eisenstein
(by Remark 3.4), thus the lemma. ��

If L is a vector bundle on X�(Q), we define

Hi (X�(Q),L) := H i (X�(Q), (�
1 ⊗ L

∗)K/O)
∨

for i = 0, 1, where L∗ is the dual bundle and �1 = �1
X�(Q)/O

can be iden-

tified with ω⊗2(−∞) via the Kodaira–Spencer isomorphism. If � � �′ are
two quotients of (Z/QZ)× giving rise to a Galois cover π : X�(Q) →
X�′(Q) and L is vector bundle on X�′(Q), then there is a natural map
π∗ : Hi (X�(Q), π

∗L) → Hi (X�′(Q),L) coming from the dual of the
pullback π∗ on cohomology. Verdier duality [32, Corollary 11.2(f)] gives an
isomorphism

D : Hi (X�(Q),L)
∼−→ H1−i (X�(Q),L)

under which π∗ corresponds to the trace map tr(π) : H1−i (X�(Q), π
∗L)→

H1−i (X�′(Q),L).
We endow Hi (X�(Q), ω

⊗n) with a Hecke action by first identifying �1

with ω2(−∞) and then taking the Pontryagin dual of the Hecke action on
H i (X�(Q), ω

2−n(−∞)K/O). However, we note that for L = ωn , the isomor-
phism D is not Hecke equivariant: extend O if necessary so that it contains a
primitive N Q-th root of unity ζ . Letw∗ be the operator on H0(X�(Q), ω

⊗n
K/O)
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associated to ζ as in [31, Sect. 7.1]. Let � denote the composition of isomor-
phisms:

H1(X�(Q), ω
2−n(−∞)K/O)

D−→ H0(X�(Q),�⊗ ωn−2(∞))∨

K S∨−−→ H0(X�(Q), ω
n)∨

(w∗)∨−−−→ H0(X�(Q), ω
n)∨,

where D is Verdier duality, and K S is the Kodaira–Spencer isomorphism.
Then by the proof of [31, Proposition 7.3], we have:

� ◦ Tx = x1−nT∨x ◦�,

with the same relation holding for Ux . We also have � ◦ 〈x〉 = 〈x〉 ◦ �. We
let � := �∨ be the dual isomorphism

� : H0(X�(Q), ω
n) −→ H1(X�(Q), ω

n).

When n = 1, � is T-linear.

Proposition 3.8 Let� be a quotient of (Z/QZ)× of p-power order. Then the

O[�]-module H0(X�(Q), ω)m is balanced (in the sense of Definition 2.2).

Proof Let M = H0(X�(Q), ω ⊗ L)m and S = O[�], where L = OX .2

Consider the exact sequence of S-modules (with trivial �-action):

0 → O
�→ O → k → 0.

Tensoring this exact sequence over S with M , we obtain an exact sequence:

0 → TorS
1 (M,O)/� → TorS

1 (M, k)→ M�→ M�→ M ⊗S k → 0.

Let r denote the O-rank of M�. Then this exact sequence tells us that

dS(M) := dimk M ⊗S k − dimk TorS
1 (M, k) = r − dimk TorS

1 (M,O)/�.

We have a second quadrant Hochschild–Serre spectral sequence [33, Theorem
III.2.20, Remark III.3.8]

H i (�, H j (X�(Q), (�
1 ⊗ ω−1 ⊗ L

∗)K/O))

�⇒ H i+ j (X0(Q), (�
1 ⊗ ω−1 ⊗ L

∗)K/O).

2 We present the proof writing L instead of OX since we will use the same argument in the
proof of Theorem 3.30 with L as a more general vector bundle on X .
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Applying Pontryagin duality, we obtain a third quadrant spectral sequence

Hi (�, H j (X�(Q), ω ⊗ L)) = TorS
i (H j (X�(Q), ω ⊗ L),O)

�⇒ Hi+ j (X0(Q), ω ⊗ L).

We claim that the differentials in the spectral sequence commute with the action
of Tuniv on the individual terms. This follows from the fact that the Hochschild–
Serre spectral sequence, for a finite étale Galois cover π : X → Y with group
G,

H i (G, H j (X, π∗F)) �⇒ H i+ j (Y,F)

is functorial in F . Thus for example, to see that the differentials commute with

Tx =
1

x
tr(π1) ◦ φ12 ◦ π∗2 ,

(where π1, π2 : X∗(Q; x) → X∗(Q) are the two projection maps and
∗ ∈ {0,�}), we use the canonical isomorphisms H i (X∗(Q; x), π∗j ω) =
H i (X∗(Q), π j,∗π∗j ω) and successively apply the functoriality of the spec-
tral sequence with (X, Y,F → F ′) taken to equal (X�(Q), X0(Q), ω →
π2,∗π∗2ω), (X�(Q; x), X0(Q; x), π∗2 (ω)

φ12→ π∗1 (ω)) and (X�(Q), X0(Q),

π1,∗π∗1 (ω)
tr→ ω).

Localizing at m, we obtain an isomorphism M� ∼= H0(X0(Q), ω ⊗ L)m
and an exact sequence

(H1(X�(Q), ω ⊗ L)m)�→ H1(X0(Q), ω ⊗ L)m → TorS
1 (M,O)→ 0.

To show that dS(M) ≥ 0, we see that it suffices to show that H1(X0(Q), ω⊗
L)m is free of rank r as an O-module. The module H1(X0(Q), ω ⊗ L)

is p-torsion free by Lemma 3.7 (1). It therefore suffices to show that
dimK H1(X0(Q), ω ⊗ L)m ⊗ K = r . In other words, by the definition of
r , it suffices to show that

dimK H0(X0(Q)K , ω ⊗ L)m = dimK H1(X0(Q), ω ⊗ L)m.

(Here we use the slight abuse of notation H i (X K , ∗)m = H i (X, ∗)m ⊗O K ).
At this point we will specialize to L = OX . By definition of H0 and its

Hecke action, the left hand side above is:

dimK H0(X0(Q)K , ω(−∞))m.
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Using the isomorphism �, we see that the right hand side is equal to:

H0(X0(Q)K , ω)m

We are therefore reduced to showing that

dimK H0(X0(Q)K , ω(−∞))m = dimK H0(X0(Q)K , ω)m.

The result thus follows from Lemma 3.7 (2). ��

3.3 Galois representations

Let N = N (ρ)where N (ρ) is the Serre level of ρ. We let H denote the p-part
of (Z/N (ρ)Z)×. Having fixed N and H , we let X denote the modular curve
defined at the beginning of Sect. 3.2. (We note that N ≥ 5 by Serre’s conjecture,
and also thatρ is thus modular of the appropriate level, by Theorem 4.5 of [31]).
We add, for now, the following assumption:

Assumption 3.9 Assume that:

(1) The set T (ρ) is empty.

We address how to remove this assumption in Sect. 3.9. The only point at
which this assumption is employed is in Sect. 3.4.

Remark 3.10 A digression on representability and stacks. Several of the
modular curves we consider do not represent the corresponding moduli prob-
lems for elliptic curves with level structure (due to automorphisms). In such
cases, the object X H (N ) still exists as a smooth proper Deligne–Mumford
stack over Spec(O), and the sheaf ω descends to a sheaf on X H (N ) (if not
always to the corresponding associated scheme). For these stacks X , one can
still make sense of the cohomology groups H0(X, ω) and show that they sat-
isfy many of the required properties. For example, suppose that Y → X is a
finite étale morphism of modular stacks with Galois group G, and that L = ωk

for some k. Then there is an isomorphism

H0(X,L ) � H0(Y,L )G .

Taking Y to be representable (which is always possible for the X we consider),
and letting R be an O-algebra, one may identify H0(X R, ω

k) with the ring of
Katz modular forms of weight k over R as defined in [29].3

3 Here is a somewhat different example: let H ⊂ (Z/13Z)× denote the group of squares;
there is a finite étale map X1(13)→ X H (13) with Galois group Z/3Z (viewing X H (13) as a
stack). The underlying scheme of X H (13) is isomorphic over O (for p �= 13) to the projective
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Instead of trying to adapt our arguments (when necessary) to the context of
stacks, we introduce the following fix. Choose any prime q �≡ 1 mod p with
q ≥ 5 such that ρ is unramified at q and such that the ratio of the eigenvalues
of ρ(Frobq) is neither q nor q−1 (we allow the possibility that the eigenvalues
are the same). The assumption on the ratio of the eigenvalues ensures that
ρ admits no deformations which are ramified and Steinberg (unipotent on
inertia) at q; the assumption that q �≡ 1 mod p guarantees that there are
no other deformations of ρ which are ramified at q. First, we claim that the
Chebotarev density theorem guarantees the existence of such primes. Since
det(ρ) is unramified at p, the fixed field of ker(ρ) does not contain Q(ζp)

(note that p �= 2). Hence, we may find infinitely many primes q such that
the fixed field of ker(ρ) splits completely and q �≡ 1 mod p; such primes
satisfy the required hypothesis. We then add �1(q) level structure and the
arguments proceed almost entirely unchanged (the assumption on q implies
that any deformation of ρ with fixed determinant is unramified at q). The only
difference is that the multiplicity of the corresponding Hecke modules will
either be the same or twice as expected—depending on whether ρ(Frobq) has
distinct eigenvalues or not—by Lemma 3.6.

By Serre’s conjecture [24] and by the companion form result of Gross [28]
and Coleman–Voloch [37], there exists a maximal ideal m∅ of T∅ correspond-
ing to ρ. The ideal m∅ is generated by� , Tx−Trace(ρ(Frobx )) for all primes x

with (x, N p) = 1 and 〈x〉− det(ρ(Frobx )) for all x with (x, N ) = 1. Extend-
ing O if necessary, we may assume T∅/m∅ = k. Let Q be as in Sect. 3.2. For
each x ∈ Q, assume that the polynomial X2 − Tx X + 〈x〉 has distinct roots
in T∅/m∅ = k and choose a root αx ∈ k of this polynomial. Let m denote the
maximal ideal of T generated by m∅ and Ux − αx for x ∈ Q.

Theorem 3.11 (Local–Global Compatibility) There exists a deformation

ρQ : GQ → GL2(Tm)

of ρ unramified outside N Q and determined by the property that for all

primes x satisfying (x, pN Q) = 1, Trace(ρQ(Frobx )) = Tx . Let ρ′Q =

Footnote 3 continued
line, and hence, naïvely, one would expect H0(X H (13), ω2) to vanish. However, as noted by
Serre [34,35], there exists a Galois representation ρ : GQ → GL2(F3) with N (ρ) = 13,
k(ρ) = 2, and ε(ρ) quadratic. (The representation ρ is induced from Q(

√
−3)). The original

conjecture 3.2.4? of [36] asserts that ρ gives rise to a mod-3 modular form on X H (13). However,
considering X H (13) as a stack, one finds, for p = 3, that the group

H0
(

X H (13)F3 , ω
2
)
= H0

(
X1(13)F3 , ω

2
)Z/3Z

is indeed non-zero, even though the scheme underlying X H (13) has genus zero. This is in
accordance with Edixhoven’s reformulation of Serre’s conjecture (Conjecture 4.2 of [31]).
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Modularity lifting beyond the Taylor–Wiles method

ρQ ⊗ η, where η is the unique p-power order character satisfying η2 =
〈det(ρ)〉 det(ρQ)

−1. Then ρ′Q is a deformation of ρ minimal outside Q. For a

prime x |Q, the restriction of ρ′Q to Dx is conjugate to a direct sum of residu-

ally unramified characters ξ⊕〈det(ρ)〉|Dx ξ
−1 where ξ(Frobx ) ≡ αx mod m,

and such that the restriction of ξ to Ix and hence via local class field theory

to Z×x ⊗Zp = �x is compatible in the usual way with the diamond operators

in Tm.

Remark 3.12 The existence of ρQ follows immediately by using congruences
between weight one forms and higher weight (using powers of the Hasse
invariant). The assumptions on x |Q imply that ρ|Dx is p-distinguished and,
because there are no local extensions, totally split. Hence the required informa-
tion is preserved under congruences, and one is reduced once more to higher
weight, where this statement is known. Hence the main difficulty in proving
Theorem 3.11 is showing that the Galois representation is unramified at p.

Remark 3.13 Under the hypothesis that ρ(Frobp) has distinct eigenvalues,
Theorem 3.11 can be deduced using an argument similar to that of [28]. Under
the hypothesis thatρ(Frobp)has repeated eigenvalues but is not scalar, we shall
deduce this using an argument of Wiese [38] and Buzzard. When ρ(Frobp) is
trivial, however, we shall be forced to find a new argument using properties
of local deformation rings. In the argument below, we avoid using the fact
that the Hecke eigenvalues for all primes l determine a modular eigenform
completely. One reason for doing this is that we would like to generalize our
arguments to situations in which this fact is no longer true; we apologize in
advance that this increases the difficulty of the argument slightly (specifically,
we avoid using the fact that Tp in weight one can be shown to live inside the
Hecke algebra T, although this will be a consequence of our results).

Proof For each m > 0, we have H0(X1(Q), ωO/�m )m ∼= H0(X1(Q),

ωK/O)m[�m], and we let Im denote the annihilator of this space in Tm. Since
Tm = lim←−m

Tm/Im , it suffices to construct, for each m > 0, a representation
ρQ,m : GQ → GL2(Tm/Im) satisfying the conditions of the theorem.

Fix m > 0 and let A be a lift of (some power of) the Hasse invariant such
that A ≡ 1 mod �m ; let n − 1 denote the weight of A. We may assume that
n − 1 is sufficiently divisible by powers of p (and (p − 1)) to ensure that
εn−1 ≡ 1 mod �m . Multiplication by A induces a map:

H0(X1(Q), ωK/O) φ
� H0

(
X1(Q), ω

n
K/O

)

K/O[q]
�

∩

========== K/O[q]
�

∩
.
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This map is Hecke equivariant away from p on�m torsion; indeed, the diagram
is only commutative modulo�m .

Consider the map

ψ : H0
(
X1(Q), ωK/O

)2 [�m] � H0
(

X1(Q), ω
n
K/O

)
[�m]

ψ : H0
(
X1(Q), ωO/�m

)2

������
� H0

(
X1(Q), ω

n
O/�m

)
.

�����

defined by ψ = (φ, φ ◦ Tp −Up ◦ φ). (The operator Tp acts in this setting by
the results of Sect. 4 of Gross [28]). For ease of notation, we let Tp (or φ ◦ Tp)
exclusively refer to the Hecke operator in weight one, and let Up denote the
corresponding Hecke operator in weight n. (The operator Up has the expected
effect on q-expansions, since the weight n is sufficiently large with respect
to m). On q-expansions modulo �m , we may compute that ψ = (φ, 〈p〉Vp)

(see also 4.7 of [28]) . We claim that ψ is injective. It suffices to check this
on the O-socle, namely, on � -torsion. On q-expansions, φ is the identity
and Vp(

∑
anqn) =

∑
anqnp. Suppose we have an identity 〈p〉Vp f = g.

It follows that θg = 0 in H0(X1(Q), ωO/�m )[� ] = H0(X1(Q), ωk). By a
result of Katz [29], the θ map has no kernel in weight ≤ p − 2, and so in
particular no kernel in weight 1. Hence ψ is injective.

The action of Up in weight n on H0(X1(Q), ωO/�m )2 via ψ−1 is given by

(
Tp 1
−〈p〉 0

)
,

where here Tp is acting in weight one (cf. Prop 4.1 of [28]), and hence satisfies
the quadratic relation X2−Tp X+〈p〉 = 0. Note that the action of Up+〈p〉U−1

p

on the image of ψ is given by

(
Tp 0
0 Tp

)
.

By Proposition 12.1 and the remark before equation (4.7) of [28], we
see that 〈p〉 = αβ mod m and (Up − α̃)(Up − β̃) acts nilpotently on
ψ(H0(X1(Q), ωO/�m )2m), where α and β denote the (possibly non-distinct)
eigenvalues of ρ(Frobp) and α̃, β̃ are any lifts of α and β to O. Explicitly,
the only possible eigenvalues of Up modulo m in higher weight are deter-
mined by ρ, and are either equal to α, β, or 0. Yet Up acts invertibly on
ψ(H0(X1(Q), ωO/�m )2m), as can be seen by considering the matrix descrip-
tion of Up (which has invertible determinant given by 〈p〉).
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Let Tan
n denote the subalgebra of EndO(H

0(X1(Q), ω
n
O
)) generated over

O by the operators Tx for primes (x, N Qp) = 1 and diamond operators 〈a〉
for (a, N Q) = 1. Let Tn denote the subalgebra of EndO(H

0(X1(Q), ω
n
O
))

generated by Tan
n and Ux for x dividing Q, and let T̃n denote the subalgebra

generated by Tn and Up (recall that we are denoting Tp in weight n by Up). By a
slight abuse of notation, let m∅ denote the maximal ideal of Tan

n corresponding
to ρ. Similarly, let m denote the maximal ideal of Tn generated by m∅ and
Ux − αx for x ∈ Q.

Let m̃α and m̃β denote the ideals of T̃n containing m and Up−α or Up−β
respectively. If α = β, we simply write m̃ = m̃α = m̃β . Note that since n > 1,
we have

H0 (X1(Q), ω
n
O

)
⊗O/�m ∼→ H0

(
X1(Q), ω

n
O/�m

)

and hence we may regard the latter as a module for T̃n (and its sub-algebras Tn

and Tan
n ). The proof of Theorem 3.11 will be completed in Sections 3.4–3.7. ��

3.4 Interlude: Galois representations in higher weight

In this section, we summarize some results about Galois representations asso-
ciated to ordinary Hecke algebras in weight n ≥ 2. As above, let α and β be the
eigenvalues of ρ(Frobp). There is a natural map Tn,m → T̃n,m̃α . If α = β this
map is injective, otherwise, write Tn,mα for the image. There are continuous
Galois representations

ρn,α : GQ → GL2
(
Tn,mα

)

ρ̃n,α : GQ → GL2
(
T̃n,m̃α

)

with the following properties:

(a) The representation ρ̃n,α is obtained from ρn,α by composing ρn,α with the
natural inclusion map Tn,mα → T̃n,m̃α .

(b) ρn,α and ρ̃n,α are unramified at all primes (x, pN Q) = 1 and the charac-
teristic polynomial of ρn,α(Frobx ) for such x is

X2 − Tx X + xn−1〈x〉.

(c) If E is a field of characteristic zero, andφ : T̃n,m̃ → E is a homomorphism,
then φ ◦ ρ̃n,α|G p is equivalent to a representation of the form

(
εn−1λ(φ(〈p〉)/φ(Up)) ∗

0 λ(φ(Up))

)

where λ(z) denotes the unramified character sending Frobp to z.
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These results follow from standard facts about Galois representations
attached to classical ordinary modular forms, together with the fact that there
is an inclusion

Tn,mα ↪→ T̃n,m̃α ↪→
∏

Ei

with Ei running over a finite collection of finite extensions of K corresponding
to the ordinary eigenforms of weight n and level �1(N Q).

Theorem 3.14 Under Assumption 3.9, ρn,α is a deformation of ρ that satisfies

conditions (2) and (4) of Definition 3.1, with the exception of the condition of

being unramified at p.

This follows from the choice of N and H together with the local Langlands
correspondence and results of Diamond–Taylor and Carayol (see [15, Lemma
5.1.1]). (The choice of H ensures that for each prime x �= p, det(ρn,α)|Ix has
order prime to p). Note that without Assumption 3.9, the representation ρn,α

still satisfies condition (2) of Definition 3.1; the issue is that ρn,α may have
extra ramification at those primes not in T (ρ).

We now fix one of the eigenvalues of ρ(Frobp), α say, and write m̃ = m̃α .
The existence of ρ̃n,α gives B := T̃2

n,m̃ the structure of a T̃n,m̃[GQ]-module.
Recall that G p is the decomposition group of GQ at p.

Lemma 3.15 Suppose that ρ(Frobp) is not a scalar. Then there exists an exact

sequence of T̃n,m̃[G p]-modules

0 → A → B → C → 0

such that:

(1) A and C are free T̃n,m̃-modules of rank one.

(2) The sequence splits B � A ⊕ C as a sequence of T̃n,m̃-modules.

(3) The action of G p on C factors through GFp = G p/Ip, and Frobenius acts

via the operator Up ∈ T̃n,m̃.

(4) The action of G p on A is unramified and is via the character εn−1λ(〈p〉
U−1

p ).

Proof Let C denote the maximal T̃n,m̃-quotient on which Frobp acts by Up.
The construction of C is given by taking a quotient, and thus its formulation is
preserved under taking quotients of B. Since B is free of rank two, B/m̃ has
dimension 2. The action of Up on C/m̃ is, by definition, given by the scalar α.
Yet B/m̃ as a G p-representation is given by ρ, and ρ(Frobp) either has distinct
eigenvaluesα andβ or is non-scalar by definition. Hence dim C/m̃ = 1, and by
Nakayama’s lemma, C is cyclic. On the other hand, by well-known properties
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of the Galois actions arising from classical modular forms, we see that C ⊗Q

has rank one, and thus C is free as a T̃n,m̃-module. It follows that B → C

splits, and that A is also free of rank one. Considering once more the local
Galois structure of representations arising from classical modular forms, it
follows that G p acts on A ⊗Q via εn−1λ(〈p〉U−1

p ). Since T̃n,m̃ is O-flat, the
action of G p on A itself is given by the same formula, proving the lemma. ��

When ρ(Frobp) is scalar, there does not exist such a decomposition. Instead,
in Sect. 3.7, we shall study the local properties of ρn,α and ρ̃n,α using finer
properties of local deformation rings.

3.5 Proof of Theorem 3.11, case 1: α �= β, ρ(Frob p) has distinct

eigenvalues

We claim there is an isomorphism of Tuniv-modules:

H0(X1(Q), ωO/�m )m � (ψH0(X1(Q), ωO/�m )2)m̃α

obtained by composing φ with the T̃n-equivariant projection onto (ψH0(X1
(Q), ωO/�m )2)m̃α . The argument is similar to the proof of Lemma 3.5. We
know that Up satisfies the equation X2 − Tp X + 〈p〉 = 0 on the image of
ψ but we may not use Hensel’s Lemma to deduce that there exist α̃ and β̃
in Tm/Im such that (Up − α̃)(Up − β̃) = 0 on the m-part of the image
of ψ , since we do not know a priori that Tp lies in Tm. Instead, we note
the following. Since Up acts invertibly on the image of ψ , we deduce from
the equality Tp = U−1

p 〈p〉 + Up that Tp − α − β lies in m̃α and m̃β , and
thus acts nilpotently on H0(X1(Q), ωO/�m )m. It follows that Tm/Im[Tp] ⊂
End(H0(X1(Q), ωO/�m )m) is a local ring with maximal ideal m̃ which acts
on H0(X1(Q), ωO/�m )m. The operator Up does satisfy the quadratic relation
X2 − Tp X + 〈p〉 = 0 over Tm/Im[Tp], and hence by Hensel’s Lemma there
exists α̃ and β̃ in Tm/Im[Tp] such that (Up − α̃)(Up − β̃) = 0 on the m-part
of the image of ψ . The argument then proceeds as in the proof of Lemma 3.5,
noting (tautologically) that H0(X1(Q), ωO/�m )m̃ = H0(X1(Q), ωO/�m )m.

It follows from the result just established that Tm/Im[Tp][Up] ⊂ End
(Im(ψ)m̃α ) is a quotient of T̃n,m̃α , and Tm/Im is the corresponding quotient of
Tn,mα . Note that the trace of any lift of Frobenius on the corresponding quo-
tient of ρn,α is equal to Up+〈p〉U−1

p , which is equal to Tp in End(Im(ψ)m̃α ).
(We use here, as below, that εn−1 is trivial modulo �m). In particular, this
implies that Tp ∈ Tm/Im . We now define ρQ,m to be the composition of ρn,α

with the surjection Tn,mα � Tm/Im , and ρ̃Q,m to be ρ̃n,α on the corresponding
quotient Tm/Im[Up] of T̃n,m̃α . (Since Up = α̃ in Tm/Im[Up], the correspond-
ing quotients of Tn,mα and T̃n,m̃α are the same). The character ν defined by
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the formula ν := 〈det ρ〉 det(ρQ,m)
−1 is thus unramified outside Q and of

p-power order. Since p > 2, ν admits a square root η (also unramified outside
Q). We have established that ρ′Q,m := ρQ,m ⊗ η satisfies all the conditions of
Definition 3.1, except the condition that it be unramified at p. Equivalently, it
suffices to show that ρ̃Q,m is unramified at p. By Lemma 3.15, we may write

ρ̃Q,m |G p
∼=
(
λ(β̃) ∗

0 λ(̃α)

)
.

By symmetry, we could equally well have defined ρQ,m by regarding Tm/Im

as a quotient of Tn,mβ . (Note that the Chebotarev density theorem and [39,
Théorème 1] imply that ρQ,m is uniquely determined by the condition that
TraceρQ,m(Frobx ) = Tx for all (x, pN Q) = 1). It follows that we also have

ρ̃Q,m |G p
∼=
(
λ(̃α) ∗

0 λ(β̃)

)
.

Since α �= β, this forces ρQ,m |G p to split as a direct sum of the unramified
character λ(̃α) and λ(β̃). (Moreover, we see that Tp = U−1

p 〈p〉 + Up =
α̃ + β̃ = Trace(ρQ,m(Frobp)) ∈ Tm).

3.6 Proof of Theorem 3.11, case 2: α = β, ρ(Frob p) non-scalar

We will assume below that α = β is a generalized eigenvalue of ρ(Frobp), and
furthermore that ρ(Frobp) is non-scalar. However, we first prove the lemma
below.

Lemma 3.16 (Doubling) Without any assumption on ρ(Frobp), the action of

T̃n,m̃ on ψ(H0(X1(Q), ωO/�m )2m) factors through a quotient isomorphic to

Tm/Im[Tp][X ]/(X2 − Tp X + 〈p〉),

where Up acts by X.

Proof The action of T̃n,m̃ certainly contains Tp := Up + 〈p〉U−1
p , and more-

over Up also satisfies the indicated relation. Thus it suffices to show that Up

does not satisfy any further relation. Such a relation would be of the form
AUp + B = 0 for operators A, B in Tm/Im[Tp]. By considering the action of
Up as a matrix on the image of ψ , however, this would imply an identity:

A

(
Tp 1
−〈p〉 0

)
+ B

(
1 0
0 1

)
=
(

0 0
0 0

)
,
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from which one deduces that A = B = 0 (the fact that one can deduce the
vanishing of the entries is equivalent to the injectivity of ψ). ��

Following Wiese [38], we call this phenomenon “doubling”, because the
corresponding quotient of T̃n,m̃ contains two copies of the image of Tn,m. We
show that this implies that the corresponding Galois representation is unram-
ified.

Note that the trace under ρn,α of any lift of Frobenius is sent to Up +
〈p〉U−1

p = Tp in Tm/Im , and so this in particular implies that Tp ∈ Tm/Im .
The image of Tn,m under the map

Tn,m → T̃n,m̃ � Tm/Im[Tp][Up]

is given by Tm/Im = Tm/Im[Tp]. We thus obtain a Galois representation

ρQ,m : GQ → GL2(Tm/Im).

As in Sect. 3.5, it suffices to prove that ρQ,m is unramified at p. Consider the
Galois representation ρ̃Q,m : GQ → GL2(Tm/Im[Up]) obtained by tensoring
over Tn,m with T̃n,m̃. By Lemma 3.16, there is an isomorphism

Tm/Im[Up] � Tm/Im ⊕ Tm/Im

as a Tm/Im-module. Since ρ̃Q,m is obtained from ρQ,m by tensoring with a
doubled module, it follows that there is an isomorphism ρ̃Q,m � ρQ,m⊕ρQ,m

as a Tm/Im[G p]-module (or even Tm/Im[GQ]-module).

Lemma 3.17 Let (R,m) be a local ring, and let N , M, and L be R[G p]-
modules which are free R-modules of rank two. Suppose there is an exact

sequence of R[G p]-modules

0 → N → M ⊕ M → L → 0

which is split as a sequence of R-modules. Suppose that L/m is indecompos-

able as a R[G p]-module. Then N � M � L as R[G p]-modules.

Proof This is Proposition 4.4 of Wiese [38] (we use L here instead of Q in [38]
to avoid notational conflicts). Note that the lemma is stated for Fp-algebras R

and the stated condition is on the sub-module N rather than the quotient L ,
but the proof is exactly the same. ��

We apply this as follows. Consider the sequence of T̃n,m̃-modules consid-
ered in Lemma 3.15. If we tensor this sequence with the quotient of T̃n,m̃

corresponding to the doubling isomorphism

Tm/Im[Up] = Tm/Im ⊕ Tm/Im,
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then the corresponding quotient of B is ρ̃Q,m , which, by doubling, is free of
rank 4 over Tm/Im and as a Tm/Im[G p]-module is given by ρQ,m⊕ρQ,m . The
corresponding quotients A and C are similarly free over Tm/Im of rank 2. The
action of Frobp on L/m is given by Up. Since Up does not lie in m—as this
would contradict doubling—it follows that (Up −α) acts nilpotently but non-
trivially on L/m, and hence L/m is indecomposable (indeed, by construction,
L/m is free of rank one over k[Up]/(Up − α)2). Hence, by the lemma above,
there are isomorphisms L � ρQ,m as a G p-module. Yet L is a quotient of C ,
which is by construction unramified, and thus ρQ,m is also unramified. Finally,
we note that the trace of Frobenius at p is given by Up + 〈p〉U−1

p = Tp, so
Tp = Trace(ρQ,m(Frobp)).

3.7 Proof of Theorem 3.11, case 3: α = β, ρ(Frob p) scalar

The construction of the previous section gives a representation ρQ,m which
satisfies all the required deformation properties with the possible exception
of knowing that ρQ,m is unramified at p. In order to deal with the case when
ρ(Frobp) is scalar, we shall have to undergo a closer study of local deformation
rings. Suppose that

ρ : G p → GL2(k)

is trivial. (If ρ is scalar, it is trivial after twisting). We introduce some local
framed universal deformation rings associated to ρ. Fix a lift φp ∈ G p of
Frobp.

In the definition below, an eigenvalue of a linear operator is defined to be a
root of the corresponding characteristic polynomial.

Definition 3.18 For A in CO, let D(A) denote the set of framed deformations
of ρ to A, and let D̃(A) denote the framed deformations together with an
eigenvalue α of φp. Let these functors be represented by rings Runiv and R̃univ

respectively.

There is a natural inclusion Runiv → R̃univ and R̃univ is isomorphic to a
quadratic extension of Runiv (given by the characteristic polynomial of φp).
Kisin constructs certain quotients of Runiv which capture characteristic zero
quotients with good p-adic Hodge theoretic properties. Let ε denote the cyclo-
tomic character, let ω denote the Teichmüller lift of the mod-p reduction of ε,
and let χ = εω−1, so χ ≡ 1 mod � . We modify the choice of φp if neces-

sary so that χ(φp) = 1. Let Runiv,χn−1
and R̃univ,χn−1

denote the quotients of
Runiv and R̃univ corresponding to deformations with determinant χn−1.
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Theorem 3.19 Fix an integer n ≥ 2.

(1) There exists a unique reduced O-flat quotient R̃† of R̃univ,χn−1
such that

points on the generic fiber of R̃† correspond to representations ρ : G p →
GL2(E) such that:

ρ ∼
(
χn−1λ

(
α−1

)
∗

0 λ(α)

)

(2) The ring R̃† is an integral domain which is normal, Cohen–Macaulay, and

of relative dimension 4 over O.

Proof Part 1 of this theorem is due to Kisin. For part 2, the fact that R̃† is an
integral domain follows from the proof of Lemma 3.4.3 of [40]. The rest of
part 2 follows from the method and results of Snowden [41]. More precisely,
Snowden works over an arbitrary finite extension of Qp containing Qp(ζp),
and assumes that n = 2, soχ = εω−1 = ε. However, this is exactly the hardest
case—since for us p �= 2, χn−1 �= ε, our deformation problem consists of a
single potentially crystalline component. In particular, the arguments of [41]
show that R̃† ⊗ k is an integral normal Cohen–Macaulay ring of dimension
four, which is not Gorenstein, and is identified (in the notation of ibid). with
the completion of B1 at b = (1, 1; 0). ��

Let R† denote the image of Runiv in R̃†. We also define the following rings:

Definition 3.20 Let Runr denote the largest quotient of R† corresponding to
unramified deformations of ρ. Let R̃unr denote the corresponding quotient of
R̃†.

We are now in a position to define two ideals of Runiv.

Definition 3.21 The unramified ideal I is the kernel of the map Runiv →
Runr. The doubling ideal J is the annihilator of R̃†/R† as an Runiv-module.

Lemma 3.22 There is an equality J = I .

Proof We first prove the inclusion J ⊆ I . By definition, Runiv/J acts
faithfully on R̃†/R†, and it is the largest such quotient. Hence it suffices to
show that Runiv/I acts faithfully on

(R̃†/R†)⊗ Runiv/I � (R̃†/I )/(R†/I ).

Since R̃†/I � R̃unr and R†/I � Runr, it suffices to show that R̃unr/Runr

is a faithful Runr = Runiv/I -module. (It is not a priori obvious that the map
Runr → R̃unr is injective, so the notation R̃unr/Runr is slightly misleading;
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however, we prove it is so by explicit computation below). Let�m denote the
greatest power of� dividing (χn−1(g)− 1)O for all g in the decomposition
group at p. By considering determinants, Runr (and R̃unr) is annihilated by
�m . The moduli space of matrices φ in O/�m which are trivial modulo �
and have determinant one, that is, with

φ =
(

1+ φ1 φ2
φ3 1+ φ4

)
,

is represented by:

O/�m[φ1, φ2, φ3, φ4]/(φ1 + φ4 + φ1φ4 − φ2φ3).

We show shortly that this ring is isomorphic to Runr; admit this for a moment.
The corresponding moduli space R̃unr of such matrices together with an eigen-
value α = 1+ β is represented by

R̃unr � Runr[β]/(β2 − (φ1 + φ4)β − (φ1 + φ4)) � Runr ⊕ Runr,

where the last isomorphism is as an Runr-module. Clearly Runr acts faithfully
on (Runr⊕ Runr)/Runr � Runr, proving the inclusion J ⊆ I . We now prove
the equality of rings above. It suffices to prove it for R̃unr. By construction,
the ring above certainly surjects onto R̃unr. Hence, it suffices to show that this
ring is naturally a quotient of R̃†. As in Snowden, the ring R̃† represents the
functor given by deformations to A with eigenvalue α satisfying the following
equations:

(1) φ ∈ M2(A) has determinant 1.
(2) α is a root of the characteristic polynomial of φ.
(3) Trace(g) = χn−1(g)+ 1 for g ∈ Ip.
(4) (g − 1)(g′ − 1) = (χn−1(g)− 1)(g′ − 1) for g, g′ ∈ Ip.
(5) (g − 1)(φ − α) = (χn−1(g)− 1)(φ − α) for g ∈ Ip.
(6) (φ − α)(g − 1) = (α−1 − α)(g − 1) for g ∈ Ip.

To understand where these equations come from, one should imagine writing
down the following equations:

ρ(φp) = φ ≈
(
α−1 ∗

0 α

)
, ρ(g) ≈

(
χn−1(g) ∗

0 1

)
, g ∈ Ip.

We caution, however, that although one can find such a basis for any represen-
tation when A is a field, we do not claim that there exists any universal such
basis (indeed, we presume that there does not). Returning to our argument, it
is now trivial to observe that the quotient of R̃† in which g ∈ Ip is the identity
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is equal to the ring we asserted to be R̃unr above (and that the image of Runiv

in this ring is what we asserted to be Runr).
We now prove the opposite inclusion, namely that I ⊆ J . Instead of

writing down a presentation of R̃†, it will suffice to note the following, which
follows from the explicit description above: The ring R̃† is generated over O

by the following elements which all lie in the maximal ideal:

(1) Parameters φi (for i = 1 to 4) corresponding to the image of ρ(φp)− 1,
(2) Parameters xi j for i = 1 to 4 and a finite number of j corresponding to

the image of inertial elements m j = ρ(g j )− 1.
(3) An element β, where α = 1+ β is an eigenvalue of ρ(φp).

Moreover, R† is generated as a sub-algebra by φi and the xi j , and β satisfies

β2 − (φ1 + φ4)β − (φ1 + φ4) = 0.

Since the determinant of φ is one, it follows that α + α−1 = 2+ φ1 + φ4. By
definition, there is a decomposition of R†-modules R̃†/J = R†/J ⊕βR†/J
with each summand being free over R†/J . From the equality (6), we deduce
that the relation

(φ − 1)m j − (φ1 + φ4)m j = (α−1 − 1− φ1 − φ4)m j = −(α − 1)m j

= −βm j

holds in M2(R̃
†), and hence also in M2(R̃

†/J ). Yet by assumption, over
R†/J , the modules R†/J and βR†/J have trivial intersection, from which
it follows that βm j = 0 in M2(βR†/J ). In particular, since the latter module
is generated by β, we must have xi j ∈ J for all i and j . Since I is generated
by xi j , we deduce that I ⊂J , and hence that I =J . ��

Remark 3.23 Why might one expect an equality I = J ? One reason is
as follows. The doubling ideal J represents the largest quotient of R̃† on
which the eigenvalue of Frobenius α cannot be distinguished from its inverse

α−1. Slightly more precisely, it is the largest quotient for which there is an
isomorphism R̃†/J → R̃†/J fixing the image of R† and sending α to α−1.
It is clear that such an isomorphism exists for unramified representations.
Similarly, for a ramified ordinary quotient, one might expect that the α can
be distinguished from α−1 by looking at the “unramified quotient line” of the
representation. Indeed, for characteristic zero representations this is clear—
one even has R†[1/� ] � R̃†[1/� ].

Lemma 3.24 There is a surjection Tn,m ⊗R† R̃† → T̃n,m̃.

Proof Recall that T̃n,m̃ = Tn,m[Up]. Since Up is given as an eigenvalue of
Frobenius, T̃n,m̃ naturally has the structure of a R̃univ-algebra. We claim that
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the map from R̃univ to T̃n,m̃ factors through R̃†. Since T̃n,m̃ acts faithfully on
a space of modular forms, there is an injection:

T̃n,m̃ ↪→
∏

Ei

into a product of fields corresponding to the Galois representations associated
to the ordinary modular forms of weight n and level�1(N Q). By the construc-
tion of R̃†, it follows that the map from R̃univ to this product factors through
via R̃†. This also implies that the map from Runiv to T̃n,m̃ (and hence to Tn,m)
factors through R†, and hence there exists a map

Tn,m ⊗R† R̃† → T̃n,m̃,

sending α ∈ R̃† to Up. Yet the image of this map contains both Tn,m and Up,
and is thus surjective. ��

Definition 3.25 Let the global doubling ideal J glob be the annihilator of
T̃n,m̃/Tn,m as an R†-module.

Since there is a surjection Tn,m⊗R† R̃† → T̃n,m̃, it follows that T̃n,m̃/Tn,m

is a quotient of

(Tn,m ⊗R† R̃†)/Tn,m = (Tn,m ⊗R† R̃†)/Tn,m ⊗R† R† � Tn,m ⊗R† R̃†/R†

as an R†-module. In particular, by considering the action on the last factor, we
deduce that J ⊂ J glob. In particular, I ⊂ J glob, or equivalently, on any
quotient of Tn,m on which the corresponding quotient of T̃n,m̃ is doubled (in
the sense that the quotient of T̃n,m̃ is free of rank 2 as a module for the image
of Tn,m), the action of the Galois group at p is unramified. In particular, by
Lemma 3.16, this applies to the quotient of T̃n,m̃ given by Tm/Im[Tp][Up].
Specifically, as in the previous sections, we obtain corresponding Galois rep-
resentations:

ρQ,m : GQ → GL2(Tm/Im), ρ̃Q,m : GQ → GL2(Tm/Im[Up]).

(The trace of any lift of Frobenius on this quotient is equal to Up+〈p〉U−1
p =

Tp, and so Tp ∈ Tm/Im). From the discussion above, we deduce that ρ̃Q,m

and thus ρQ,m is unramified at p, and that Trace(ρQ,m(Frobp)) = Tp. The
rest of the argument follows as in Case 3.5, and this completes the proof of
Theorem 3.11 ��
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3.8 Modularity lifting

We now return to the situation of Sect. 3.1. Taking Q = 1 in Theorem 3.11,
we obtain a minimal deformation ρ′ : GQ → GL2(T∅,m∅) of ρ and hence
a homomorphism ϕ : Rmin → T∅,m∅ which is easily seen to be surjective.
Recall that Assumption 3.9 is still in force.

Theorem 3.26 The map ϕ : Rmin � T∅,m∅ is an isomorphism and T∅,m∅ acts

freely on H0(X, ω)m∅ .

Proof We view H0(X, ω)m∅ as an Rmin-module via ϕ. Since ϕ is surjective,
to prove the theorem, it suffices to show that H0(X, ω)m∅ is free over Rmin.
To show this, we will apply Proposition 2.3.

We set R = Rmin and H = H0(X, ω)m∅ and we define

q := dimk H1
∅
(
GQ, ad0ρ(1)

)
.

Note that q ≥ 1 by Proposition 3.3. As in Proposition 2.3, we set SN =
O[(Z/pN Z)q ] for each integer N ≥ 1 and we let R∞ denote the power series
ring O[x1, . . . , xq−1]. For each integer N ≥ 1, fix a set of primes QN of Q

satisfying the properties of Proposition 3.3. We can and do fix a surjection
φ̃N : R∞ � RQN

for each N ≥ 1. We let φN denote the composition of φ̃N

with the natural surjection RQN
� Rmin. Let

�QN
=
∏

x∈QN

(Z/x)×

and choose a surjection �QN
� �N := (Z/pN Z)q . Let X�N

(QN ) →
X0(QN ) denote the corresponding Galois cover. For each x ∈ QN , choose
an eigenvalue αx of ρ(Frobx ). We let TQN

denote the Hecke algebra denoted
T in Sect. 3.2.4 with the Q of that section taken to be the current QN . We
let m denote the maximal ideal of TQN

generated by m∅ and Ux − αx for
each x ∈ QN . We set HN := H0(X�N

(QN ), ωO)m. Then HN is naturally
an O[�N ] = SN -module. By Theorem 3.11, we deduce the existence of a
surjective homomorphism RQN

� TQN ,m. Since TQN ,m acts on HN , we get

an induced action of R∞ on HN (via φ̃N and the map RQN
� TQN ,m). We

can therefore view HN as a module over R∞ ⊗O SN .
To apply Proposition 2.3, it remains to check points (5a)–(5c). We check

these conditions one by one:

(a) The image of SN in EndO(HN ) is contained in the image of R∞ by
construction (see Theorem 3.11). The second part of condition 5a is a
consequence of the following: for each x ∈ QN , the restriction to Gx of
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the universal representation GQ → GL2(RQN
) is of the form χαx ⊕ χβx

where each summand is of rank 1 over RQN
and where χαx lifts λ(αx ).

By restricting χαx to Ix for each x ∈ QN , we obtain, by local class field
theory, a map O[�QN

] → RQN
. The quotient of RQN

by the image of the
augmentation ideal of O[�QN

] is just Rmin.
(b) As in the proof of Proposition 3.8, we have a Hochschild–Serre spectral

sequence

TorSN

i (H j (X�N
(QN ), ω)m,O) �⇒ Hi+ j (X0(QN ), ω)m.

We see that (HN )�N
∼= H0(X0(QN ), ω)m. Then, by Lemmas 3.5 and 3.7

we obtain an isomorphism (HN )�N
∼= H0(X, ω)m∅ = H , as required.

(c) The module HN is finite over O and hence over SN . Proposition 3.8 implies
that dSN

(HN ) ≥ 0.

We may therefore apply Proposition 2.3 to deduce that H is free over R,
completing the proof. ��

We now deduce Theorem 1.4, under Assumption 3.9, from the previous
result. In the statement of Theorem 1.4, we take XU = X = X1(N )/H and
Lσ = OX and, as in the statement, we let T be the Hecke algebra of H1(X, ω)

(generated by prime-to-N p Hecke operators) and m the maximal ideal of T

corresponding to ρ. Analogous to the discussion preceding Proposition 3.8),
we have a Hecke equivariant isomorphism H0(X, ω)

∼→ H1(X, ω)which thus
gives rise to an isomorphism T∅,m∅

∼→ Tm.
We also show that H0(X, ω)m∅ has rank one as a T∅,m∅-module: this fol-

lows by multiplicity one for GL(2)/Q if H0(X, ωK )m∅ is non-zero. In the
finite case, we argue as follows. By Nakayama’s lemma it suffices to show
that H0(X, ωk(−∞))[m∅] has dimension one. We claim that Ux ∈ T∅,m∅
for all x |N . This is a consequence of the assumption that N (ρ) = N as we
now explain. Suppose that x‖N . Then the T2

m-representation has a unique
invariant Tm-line on which Frobx acts by Ux , and so Ux ∈ Tm. On the other
hand, if x2|N , then Ux = 0 is also in Tm. Since we have also shown that
Tp ∈ T∅,m∅ , we may deduce this from the fact that q-expansion is com-
pletely determined by the Hecke eigenvalues Tx for all (x, N ) = 1 and Ux for
all x |N .

3.9 Vexing primes

In this section, we detail the modifications to the previous arguments which
are required to deal with vexing primes. To recall the difficulty, recall that a
prime x different from p is vexing if:
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(1) ρ|Dx is absolutely irreducible.
(2) ρ|Ix � ξ ⊕ ξ c is reducible.
(3) x ≡ −1 mod p.

The vexing nature of these primes can be described as follows: in order to
realize ρ automorphically, one must work with �1(x

n) structure where xn

is the Artin conductor of ρ|Dx . However, according to local Langlands, at
such a level we also expect to see non-minimal deformations of ρ, namely,
deformations with ρ|Ix � ψ〈ξ 〉⊕ψ−1〈ξ c〉, where ψ is a character of (Fx2)×

of p-power order. Diamond [13] was the first to address this problem by
observing that one can cut out a smaller space of modular forms by using the
local Langlands correspondence. The version of this argument in [15] can be
explained as follows. By Shapiro’s Lemma, working with trivial coefficients at
level �(xn) is the same as working at level prime to x where one now replaces
trivial coefficients Z by a local system F corresponding to the group ring of
the corresponding geometric cover. In order to avoid non-minimal lifts of ρ,
one works with a smaller local system Fσ cut out of F by a representation σ
of the Galois group of the cover to capture exactly the minimal automorphic
lifts of ρ. The representation σ corresponds to a fixed inertial type at x . In
our setting (coherent cohomology) we may carry out a completely analogous
construction. Thus, instead, we shall construct a vector bundle Lσ on X . We
then replace H∗(X1(N ), ω) by the groups H∗(X1(N ), ω ⊗ Lσ ). The main
points to check are as follows:

(1) The spaces H0(X1(N ), ω
⊗n⊗Lσ ) for n ≥ 1 do indeed cut out the requisite

spaces of automorphic forms.
(2) This construction is sufficiently functorial so that all the associated coho-

mology groups admit actions by Hecke operators.
(3) These cohomology groups inject into natural spaces of q-expansions.
(4) This construction is compatible with arguments involving the Hochschild–

Serre spectral sequence and Verdier duality.

We start by discussing some more refined properties of modular curves, in
the spirit of Sect. 3.2.1. Let S(ρ), T (ρ) and Q be as in Sect. 3.1. Let P(ρ)

denote the set of x ∈ S(ρ)− T (ρ) where ρ is ramified and reducible.
We will now introduce compact open subgroups V � U ⊂ GL2(A

∞) and
later we will fix a representation σ of U/V on a finite free O module Wσ . (In
applications, U , V and σ will be chosen to capture all minimal modular lifts of
ρ. If the set of vexing primes T (ρ) is empty, then U = V and all minimal lifts
of ρ will appear in H0(XU , ω). As indicated above, there is a complication if
T (ρ) is non-empty. In this case, minimal modular lifts of ρ will appear in the
σ ∗ := Hom(σ,O)-isotypical part of H0(XV , ω)).

For each prime x ∈ S(ρ), let cx denote the Artin conductor of ρ|Gx . Note
that cx is even when x ∈ T (ρ). For x ∈ S(ρ), we define subgroups Vx ⊂
Ux ⊂ GL2(Zx ) as follows:
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• If x ∈ P(ρ), we let

Ux = Vx =
{

g ∈ GL2(Zx ) : g ≡
(
∗ ∗
0 d

)

mod xcx , d ∈ (Z/xcx )× has p − power order

}
.

• If x ∈ T (ρ), then let Ux = GL2(Zx ) and

Vx = ker
(
GL2(Zx ) −→ GL2(Z/x

cx/2)
)
.

• If x ∈ S(ρ)− (T (ρ) ∪ P(ρ)),

Ux = Vx =
{

g ∈ GL2(Zx ) : g ≡
(
∗ ∗
0 1

)
mod xcx

}
.

For x a prime not in S(ρ), we let

Ux = Vx = GL2(Zx )

Finally, if x is any rational prime, we define subgroups U1,x ⊂ U0,x ⊂
GL2(Zx ) by:

U0,x =
{

g ∈ GL2(Zx ) : g ≡
(
∗ ∗
0 ∗

)
mod x

}

U1,x =
{

g ∈ GL2(Zx ) : g ≡
(
∗ ∗
0 1

)
mod x

}
.

We now set

U =
∏

x

Ux , Ui (Q) =
∏

x /∈Q

Ux ×
∏

x∈Q

Ui,x

V =
∏

x

Vx , Vi (Q) =
∏

x /∈Q

Vx ×
∏

x∈Q

Ui,x ,

for i = 0, 1. For W equal to one of U , V , Ui (Q) or Vi (Q), we have a smooth
projective modular curve XW over Spec(O) which is a moduli space of gen-
eralized elliptic curves with W -level structure4. Let YW ⊂ XW be the open
curve parametrizing genuine elliptic curves and let j : YW ↪→ XW denote the

4 Again, in order to obtain a representable moduli problem, we may need to introduce auxiliary
level structure at a prime q as in Sect. 3.3. This would be necessary if every prime in S(ρ) were
vexing, for example.
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inclusion. As in Sect. 3.2, we letπ : E → XW denote the universal generalized
elliptic curve, we let ω := π∗ωE/XW

and we let∞ denote the reduced divisor
supported on the cusps. If M is an O-module and L is a sheaf of O-modules
on X M , then we denote by LM the sheaf L⊗O M on XW . If R is an O-algebra,
we will sometimes denote XW ×Spec(O) Spec(R) by XW,R .

There is a natural right action of U/V on XV coming from the description
of XV as a moduli space of generalized elliptic curves with level structure
[42, Sect. IV]. It follows from [42, IV 3.10] that we have XV /(U/V )

∼→ XU .
Away from the cusps, the map YV → YU is étale and Galois with Galois group
U/V and the map XV → XU is tamely ramified. Similar remarks apply to
the maps XVi (Q)→ XUi (Q) for i = 0, 1.

The natural map XU1(Q)→ XU0(Q) is étale and Galois with Galois group

�Q :=
∏

x∈Q

U0,x/U1,x
∼=
∏

x∈Q

(Z/x)×.

3.9.1 Cutting out spaces of modular forms

Let G = U/V =
∏

x∈T GL2(Z/x
cx/2) and let σ denote a representation of G

on a finite free O-module Wσ . We will now proceed to define a vector bundle
Lσ on X such that

H0 (XU , ω
⊗n ⊗OX

Lσ
) ∼−→

(
H0 (XV , ω

⊗n
)
⊗O Wσ

)G

= HomO[G]
(
W ∗
σ , H0(XV , ω

⊗n)
)
,

where W ∗
σ is the O-dual of Wσ . The sheaf Lσ will thus allow us to extract

the W ∗
σ -part of the space of modular forms at level V . We shall also define a

cuspidal version Lsub
σ ⊂ Lσ which extracts the W ∗

σ -part of the space of cusp
forms at level V :

H0(XU , ω
⊗n ⊗OX

L
sub
σ )

∼−→ (H0(XV , ω
⊗n(−∞))⊗O Wσ )

G

= HomO[G](W
∗
σ , H0(XV , ω

⊗n(−∞))).

The definitions are as follows. Let f denote the natural map XV → XU

and define

Lσ := ( f∗(OXV
⊗O Wσ ))

G

L
sub
σ := ( f∗(OXV

(−∞)⊗O Wσ ))
G,

where G acts diagonally in both cases. Note that

Lσ = ( f∗ f ∗(OXU
⊗O Wσ ))

G = (( f∗OXV
)⊗O Wσ )

G
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by the projection formula. Similarly, by arguing locally, we see that

L
sub
σ = ( f∗(OXV

(−∞))⊗O Wσ )
G .

For i = 0, 1 we denote the pull back of Lσ to XUi (Q) also by Lσ . This
notation is justified since, by flatness of the map XUi (Q)→ XU , the pullback
is isomorphic to ( f∗(OXVi (Q)

⊗O Wσ ))
G , where we continue to denote by f the

natural map XVi (Q)→ XUi (Q). When we use the same notation for sheaves on
different spaces, the underlying spaces will always be clear from the context.

On XUi (Q) we reserve the notation Lsub
σ for ( f∗(OXVi (Q)

(−∞))⊗O Wσ )
G .

The pull back of Lsub
σ on XU to XUi (Q) is a sub-sheaf of Lsub

σ on XUi (Q) (the
quotient being supported at ramified cusps).

We now discuss Hecke actions on cohomology. Let X denote XUi (Q) and
let X (V ) denote XVi (Q) for some choice of i = 0 or 1. Let f denote the map
X (V )→ X . (Note that if Q is empty, then we recover f : XV → XU ). Let
x /∈ S(ρ) ∪ {p}. As in Sect. 3.2.3, we have a modular curve X0(x), obtained
from X by the addition of an appropriate level structure at x , together with
degeneracy maps π1, π2 : X0(x)→ X . (The level structure at x depends on
whether or not x ∈ Q). We define X0(V ; x) similarly, starting from X (V ).
The natural map X0(V ; x) → X0(x) is again denoted f . Then note that we
have a natural isomorphism

φ(σ)12 : π∗2 Lσ
∼−→ π∗1 Lσ

of sheaves on X0(x). Indeed for i = 0, 1, by flatness of the map πi : X0(x)→
X , the pullback π∗i Lσ is canonically isomorphic to

( f∗(OX0(V ;x) ⊗O Wσ ))
G,

independently of i . (The only point to note is that the morphism X0(x)×πi ,X

X (V )→ X0(x) is canonically isomorphic to X0(V ; x)→ X0). Similarly, if
a ∈ Z is coprime to the elements of S(ρ) ∪ Q, we have a morphism 〈a〉 :
X → X which corresponds to multiplication by a on the level structure. Then
〈a〉∗Lσ is canonically isomorphic to Lσ .

Let M denote an O-module and let n be an integer. Then using the iso-
morphisms π∗2 Lσ

∼→ π∗1 Lσ of the previous paragraph, and following the
definitions of Sect. 3.2.3, we can define Hecke operators on the cohomology
of ωn ⊗ Lσ ⊗O M . For example, xTx is defined as the composite (taking
M = O for simplicity):
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H i (XU , ω
n ⊗ Lσ )

π∗2−→ H i (X0(U ; x), π∗2ω
n ⊗ Lσ )

φ12⊗φ12(σ )−−−−−−→ H i (X0(U ; x), π∗1ω
n ⊗ Lσ )

tr(π1)−−−→ H i (XU , ω
n ⊗ Lσ ).

fLet Lsub
σ denote the sheaf

( f∗(OX0(V ;x) ⊗O Wσ ))
G,

on X0(U ; x). (In what follows we will be using Lsub
σ and Lσ to denote sheaves

on both XU and X0(U ; x), but the underlying space will be clear in each
instance). We then have canonical inclusions

π∗1 (L
sub
σ ), π

∗
2 (L

sub
σ ) ⊂ L

sub
σ

of sheaves on X0(U ; x). Note also that the composition of morphisms of
sheaves on XU

π1,∗(L
sub
σ ) ↪→ π1,∗(Lσ ) = π1,∗(π

∗
1 Lσ )

tr(π1)−−−→ Lσ

factors through the sheaf Lsub
σ . This then allows us to define Hecke operators

on the cohomology of ωn ⊗ Lsub
σ ⊗O M .

In summary, we have operators:

• Tx and 〈a〉 on

H j (XU , ω
n ⊗OXU

L
sub
σ ⊗O M) and H j (XU , ω

n ⊗OXU
Lσ ⊗O M)

for all x /∈ S(ρ) ∪ {p} and a coprime to the elements of S(ρ), and
• Tx ,Uy, 〈a〉 on

H j (XUi (Q), ω
n ⊗OXU

L
sub
σ ⊗O M) and H j (XUi (Q), ω

n ⊗OXU
Lσ ⊗O M)

for all x /∈ S(ρ) ∪ Q ∪ {p}, y ∈ Q and a coprime to the elements of
S(ρ) ∪ Q.

Part (2) of the following lemma shows that Lσ and Lsub
σ do indeed allow us

to extract the W ∗
σ -part of the space of modular forms at level V .

Lemma 3.27 Let X denote XU (resp. XUi (Q) for i = 0 or 1), let X (V ) denote

XV (resp. XVi (Q)) and let f denote the map X (V )→ X. Then
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(1) The sheaves Lsub
σ and Lσ are locally free of finite rank on X.

(2) If A is an O-algebra and V is a coherent locally free sheaf of OX A
-modules,

then

H0(X A,V ⊗OX A
(Lσ )A)

∼−→ (H0(X (V )A, f ∗V)⊗O Wσ )
G

H0(X A,V ⊗OX A
(Lsub
σ )A)

∼−→ (H0(X (V )A, ( f ∗V)(−∞))⊗O Wσ )
G .

Proof We give the proof for Lσ ; the case of Lsub
σ is treated in exactly the same

way. Let Y (resp. Y (V )) denote the non-cuspidal open subscheme of X (resp.
X (V )). We have Lσ |Y = f∗(OY (V ) ⊗O Wσ )

G since the inclusion Y → X

is flat. Since the map Y (V ) → Y is étale, it follows from [43, Sect. III.12
Theorem 1 (B)] (and its proof) that Lσ |Y

∼→ OY ⊗O Wσ . To show that Lσ is
locally free of finite rank on X , it remains to check that its stalks at points of
X − Y are free. Let x be a point of X − Y . We can and do assume that for
each point x ′ of X (V ) lying above x , the natural map on residue fields is an
isomorphism. We have

Lσ,x =
(⊕

x ′ �→x

OXV ,x
′ ⊗Wσ

)G

.

Choose some point x ′ �→ x and let I (x ′/x) ⊂ G be the inertia group of x ′.
Then projection onto the x ′-component defines an isomorphism

(⊕

x ′′ �→x

OX (V ),x ′′ ⊗Wσ

)G
∼−→
(
OX (V ),x ′ ⊗Wσ

)I (x ′/x)
.

Now I (x ′/x) is abelian of order prime to p (see [42, Sect. VI.5]). Extending O,
we may assume that each character χ of I (x ′/x) is defined over O. Let Wσ,χ
and OXV ,x

′,χ denote the χ -parts of Wσ and OXV ,x
′ . Then Wσ ∼= ⊕χWσ,χ and

similarly OX (V ),x ′
∼= ⊕χOX (V ),x ′,χ . Each Wσ,χ (resp. OX (V ),x ′,χ ) is free over

O (resp. OX,x ), being a summand of a free module. (Note that f is finite flat).
We now have

Lσ,x
∼−→
(
OX (V ),x ′ ⊗Wσ

)I (x ′/x) ∼−→
⊕

χ

Wσ,χ ⊗O OX (V ),x ′,χ−1,

which is free over OX,x . This establishes part (1).
We now turn to part (2). We first of all note that the proof of the previous

part shows that

(Lσ )A
∼−→ ( f∗(OX (V )A ⊗O Wσ ))

G,
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as sheaves on X A. Now, let V be as in the statement of the lemma. Then,

V ⊗OX A
(Lσ )A

∼= V ⊗OX A
( f∗(OX (V )A ⊗O Wσ ))

G

∼= (V ⊗OX A
f∗(OX (V )A ⊗O Wσ ))

G

∼= ( f∗ f ∗(V ⊗O Wσ ))
G .

Here G acts trivially on V and the third isomorphism follows from the projec-
tion formula. Taking global sections we obtain,

H0(X A,V ⊗ (Lσ )A) = (H0(X (V )A, f ∗(V ⊗O Wσ ))
G

= (H0(X (V )A, f ∗(V))⊗O Wσ )
G,

as required. ��

Let X and X (V ) be as in the statement of the previous lemma. Let σ ∗ =
HomO(Wσ ,O) be the dual of the representation σ . We now consider the dual
vector bundle L∗σ = HomOX

(Lσ ,OX ) and its relation to Lσ ∗ . In addition,
we let A denote an O-algebra and we consider the situation base changed to
SpecA. First of all, note that we have an isomorphism

X (V )A/G
∼→ X A

and in particular, OX A

∼→ f∗(OX (V )A)
G . (When A = O, this follows from

[42, Sect. IV Proposition 3.10]. The same argument works when A = k. These
two cases, and the flatness of X (V ) over O, imply the result when A = O/� n .
The general result follows from this by [44, Proposition A7.1.4]. Alternatively,
as pointed out to us by the referee, one can see directly that X (V )A/G = X A

by applying the argument of the proof of Lemma 3.27 (1)). We have shown in
the proof of Lemma 3.27 (2) that

(Lσ )A
∼= ( f∗(OX (V )A ⊗O Wσ ))

G,

as sheaves on X A. By the projection formula, we therefore also have

(Lσ )A
∼= ( f∗(OX (V )A)⊗O Wσ )

G .

Applying this with σ ∗ in place of σ , we see that

(Lσ ∗)A
∼= ( f∗(OX (V )A)⊗O HomO(Wσ ,O))

G

∼=
(
Hom f∗(OX (V )A

)( f∗(OX (V )A)⊗O Wσ , f∗(OX (V )A))
)G
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Since OX A

∼→ f∗(OX (V )A)
G , we have a map

(Lσ ∗)A −→ HomOX A
((Lσ )A,OX A

) = (Lσ )∗A

given by restriction to G-invariants. This map is induced from the correspond-
ing map Lσ ∗ → L∗σ over SpecO. In addition, when restricted to YA, this map
is an isomorphism since the equivalence of [43, Sect. III.12 Theorem 1 (B)]
for locally free sheaves is compatible with taking duals. In particular, the map
Lσ ∗ → L∗σ is injective and remains injective after base change to SpecA, for
all A.

Lemma 3.28 The injection Lσ ∗ ↪→ L∗σ restricts to an isomorphism

L
sub
σ ∗

∼−→ (L∗σ )(−∞).

Similarly, we have

(Lsub
σ )

∗(−∞) ∼= Lσ ∗ .

Proof The second statement follows immediately from the first by reversing
the roles of σ and σ ∗. Thus, we consider the first statement. Away from the
cusps, all three inclusions

L
sub
σ ∗ ↪→ Lσ ∗ ↪→ L

∗
σ and (L∗σ )(−∞) ↪→ L

∗
σ

are isomorphisms. It therefore suffices to show that at each closed point x of
C, the natural map gives rise to an isomorphism

(Lsub
σ ∗ )

∧
x

∼−→ (L
∗
σ )(−∞)∧x

along the formal completions at x . Extending O if necessary, we may assume
that all cusps of X and X (V ) are defined over O and for each point x ′ of X (V )

lying over x , there is a uniformizer q at x ′ so the map

O
∧
X,x → O

∧
X (V ),x ′

is isomorphic to

O[qe] → O[q].

Here, e = #I (x ′/x) and we may assume that O contains the primitive e-th
roots of unity and the inertia group I (x ′/x) is isomorphic to μe ⊂ O× via
σ �→ σ(q)

q
. Choose a primitive e-th root of unity ζ and for i = 0, . . . , e − 1,
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let χi : I (x ′/x) ∼= μe → O× be the character which sends ζ to ζ i . Then, the
χi -part of O∧

X (V ),x ′ is given by

O
∧
X (V ),x ′,χi

= q i
O[qe] ⊂ O[q].

Thus, as in the proof of Lemma 3.27, we have

(Lσ )
∧
x
∼=

e−1⊕

i=0

q i
O[qe] ⊗O W

σ,χ−1
i
.

Taking duals over O∧X,x
∼= O[qe], we obtain

(L∗σ )
∧
x
∼=

e−1⊕

i=0

q−i
O[qe] ⊗O (HomO(Wσ,χ−1

i
,O)).

Note that HomO(Wσ,χ−1
i
,O) = Wσ ∗,χi

and since qe is a uniformizer at x , we
obtain, under the natural map, identifications

(L∗σ )(−∞)∧x ∼=
e−1⊕

i=0

qe−i
O[qe] ⊗O Wσ ∗,χi

∼=
e⊕

i=1

q i
O[qe] ⊗O W

σ ∗,χ−1
i
.

This is precisely (Lsub
σ ∗ )

∧
x by the proof of Lemma 3.27 (1). ��

We deduce the following.

Corollary 3.29 If n > 1, then

H1(X, ω⊗n ⊗ Lσ ) = {0}

and hence

H0(X, ω⊗n ⊗ Lσ ⊗O O/�m) = (H0(X (V ), ω⊗n)⊗O Wσ )
G ⊗O O/�m .

Moreover, the analogous result holds for n > 2 if we replace Lσ by Lsub
σ .

Proof The second statement follows immediately from the first and from
Lemma 3.27 (2) by considering the long exact sequence in cohomology asso-
ciated to the short exact sequence

0 −→ ω⊗n ⊗OX
Lσ

�m

−−→ ω⊗n ⊗OX
Lσ −→ (ω⊗n ⊗OX

Lσ )/�
m −→ 0.
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To prove the first statement, it suffices to show that H1(X, ω⊗n ⊗OX

Lσ ⊗O k) = {0}. By Serre duality, this is equivalent to the vanishing of
H0(Xk, ω

⊗(2−n) ⊗OX
L∗σ (−∞)). By Lemma 3.28, we are therefore reduced

to showing H0(Xk, ω
⊗(2−n) ⊗OX

Lsub
σ ∗ ) = 0. However, by Lemma 3.27 (2)

again, we have

H0(Xk, ω
⊗(2−n) ⊗OX

L
sub
σ ∗ )

∼= (H0(X (V )k, ω
⊗(2−n)(−∞))⊗O Wσ ∗)

G

which vanishes since n > 1. The case of Lsub
σ is proved in the same way. ��

3.9.2 The proof of Theorem 1.4 in the presence of vexing primes

To complete the proof of Theorem 1.4, it suffices to note the various modifica-
tions which must be made to the argument. For vexing primes x , let cx denote
the conductor of ρ (which is necessarily even). We define a O-representation
Wσx of GL2(Z/x

cx/2Z) to be the representation σx as in Sect. 5 of [15]. The
collection σ = (σx )x∈T (ρ) gives rise to a sheaf Lσ on XU as above. Let T∅
denote the ring of Hecke operators acting on H0(XU , ω ⊗ Lσ ) generated by
Hecke operators away from S(ρ) ∪ {p}. The analogue of Theorem 3.26 is as
follows:

Theorem 3.30 The map ϕ : Rmin � T∅,m∅ is an isomorphism and T∅,m∅ acts

freely on H0(XU , ω ⊗ Lσ )m∅ .

Proof The proof is the same as the proof of Theorem 3.26; we indicate below
the modifications that need to be made.

(1) (Lemma 3.5): Exactly the same argument shows that there is an isomor-
phism of Hecke modules:

H0(XU , (ω ⊗ Lσ )K/O)m∅
∼−→ H0(XU0(Q), (ω ⊗ Lσ )K/O)m.

The only point to note is that there is an operator

Wx : H0(XU0(x), (ω ⊗ Lσ )K/O)→ H0(XU0(x), (ω ⊗ Lσ )K/O)

such that W 2
x = x〈x〉 and

1

x
π∗1 ◦ tr(π1) ◦Wx = Ux +

1

x
Wx .

To see this, one can note that the corresponding operator Wx on
H0(XV0(x), ωK/O) (defined in Sect. 3.2.3) commutes with the action of
G = U/V , and hence induces the desired operator Wx on
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H0(XU0(x), (ω ⊗ Lσ )K/O) = (H0(XV0(x), ωK/O
)⊗O Wσ )

G .

(2) (Proposition 3.7 (2)): The corresponding statement holds: namely, the
natural map

H i (XU�(Q), (ω ⊗ L
sub
σ )K/O)m → H i (XU�(Q), (ω ⊗ Lσ )K/O)m

is an isomorphism for i = 0, 1 whenever m is non-Eistenstein. Indeed,
if CV�(Q) ⊂ XV�(Q) is the cuspidal subscheme, then we have an exact
sequence of sheaves on XU�(Q):

0 −→ ω ⊗ L
sub
σ −→ ω ⊗ Lσ −→ ( f∗((ω ⊗O Wσ )|CV�(Q)

))G,

and it suffices to show that the cohomology of the last term (which is con-
centrated in degree 0) is Eisenstein. However, the argument of Remark 3.4
(noting that the group

∏
x∈T (ρ)GL2(Zx ) ×

∏
x∈P(ρ) Z×x acts transitively

on the set of cusps in XV�(Q)) shows that

H0(XU�(Q), ( f∗((ω ⊗Wσ )|CV�(Q)
))G) = (H0(CV�(Q), ω)⊗O Wσ )

G

is Eisenstein, which gives the desired result.
(3) (Proposition 3.8): We need to show that the O[�]-module M =

H0(X�(Q), ω⊗ Lσ )m is balanced. First of all note that�1
X�(Q)/O

⊗L∗σ =
ω2(−∞)⊗ L∗σ = ω2 ⊗ Lsub

σ ∗ by Lemma 3.28, and hence

Hi (XU�(Q), ω
n ⊗ Lσ ) = H i (XU�(Q), (ω

2−n ⊗ L
sub
σ ∗ )K/O)

∨.

We use this to endow the left hand side with a Hecke action.
We now modify definitions of� and � from Sect. 3.2.4: let� denote the
composition of isomorphisms:

H1(XU�(Q), (ω
2−n ⊗ L

sub
σ ∗ )K/O)

D−→ H0(XU�(Q),�⊗ ωn−2 ⊗ Lσ (∞))∨

K S∨−−→ H0(XU�(Q), ω
n ⊗ Lσ )

∨,

where D is Verdier duality, and K S is the Kodaira–Spencer isomorphism,
and we have used Lemma 3.28. Then by the proof of [31, Proposition 7.3],
we have:

� ◦ Tx = x1−nT t,∨
x ◦�,

for all x prime to N Q, and the same relation holds for the operators Uy with
y|Q. We also have�◦〈a〉 = 〈a−1〉◦� for x |N Q because D switches 〈a〉∗
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with 〈a〉∨∗ = 〈a−1〉∗,∨. The transposed operators T t
x and U t

x are defined in
[31]. We have:

(T t
x f )(E, αN Q) =

∑

φ:(E ′,α′N Q)→(E,αN Q)

φt,∗ f (E ′, α′N Q)

where the sum is over all x-isogenies φ such that φ ◦ α′N Q = αN Q . In
the definition of T t

x , we can replace the sum over φ by the sum over
the corresponding dual isogenies E → E ′. However, note that if φ :
(E ′, α′N Q)→ (E, αN Q) is compatible with level structures at N Q, then
so is φt : (E, αN Q)→ (E ′, x ◦ α′N Q). In this way we see that

T t
x = 〈x−1〉Tx

on H0(XU�(Q), ω
n). The Pontryagin dual � := �∨ is thus an isomor-

phism

� : H0(XU�(Q), ω
n ⊗ Lσ ) −→ H1(XU�(Q), ω

n ⊗ Lσ )

such that

� ◦ (x1−n〈x−1〉Tx ) = Tx ◦�
� ◦ (y1−nU t

y) = Uy ◦�
� ◦ 〈a−1〉 = 〈a〉 ◦�.

Now, with L = Lσ , the proof of Proposition 3.8 proceeds in exactly the
same manner, up to the point where it suffices to show that

dimK H0(XU0(Q),K , ω ⊗ Lσ )m = dimK H1(XU0(Q),K , ω ⊗ Lσ )m.

As before, by definition, the left hand side of this is equal to

dimK H0(XU0(Q),K , ω ⊗ L
sub
σ ∗ )m,

which in turn, by point (2) above, is equal to:

dimK H0(XU0(Q),K , ω ⊗ Lσ ∗)m,

On the other hand, using the isomorphism �, we see that the right hand
side is equal to:

dimK H0(XU0(Q), ω
n ⊗ Lσ )m∗
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where m∗ is a maximal ideal of the polynomial ring R generated over O

by the operators Tx ,U
t
y, 〈a〉. Specifically, let α : T → T/m = k be the

reduction map. Then m∗ is the kernel of the map β : R → k defined by:
β(Tx ) = α(〈x〉Tx ), β(U t

y) = α(Uy), and β(〈a〉) = α(〈a−1〉).
Thus, we need to see that H0(XU0(Q),K , ω⊗Lσ )m∗ and H0(XU0(Q),K , ω⊗
Lσ ∗)m have the same dimension. One way to see this is as follows: after
choosing an embedding K ↪→ C, we can identify both sides in terms
of automorphic representations of GL2/Q which are limits of discrete
series at ∞, unramified outside S(ρ) ∪ Q and satisfy appropriate local
conditions at the primes in S(ρ)∪Q. The operation which sends each such
automorphic representation π to its contragredient then interchanges

H0(XU0(Q),K , ω ⊗ Lσ )m∗ ⊗K C and H0(XU0(Q),K , ω ⊗ Lσ ∗)m ⊗K C,

from which the result follows.
(4) (Theorem 3.11): The analogue of this theorem is true. Namely, let T denote

the subalgebra of endomorphisms of

H0(XU1(Q), (ω ⊗ Lσ )K/O)

generated by the operators Tx , Uy and 〈a〉. For each x ∈ Q, we assume
that the Hecke polynomial X2 − Tx X + 〈x〉 has distinct roots in T∅/m∅
and we let αx be one of these roots. Let m be the ideal of T generated by
m∅ and Ux − αx for x ∈ Q. Then there is a Galois representation

ρQ : GQ → GL2(Tm)

deforming ρ, unramified away from S(ρ) ∪ {p} and such that Frobx has
trace Tx for all x /∈ S(ρ) ∪ {p}. Moreover ρ′Q := ρQ ⊗ η, where η is
defined as before, is a deformation of ρ minimal outside Q.
This is proved as follows: as before it suffices to fix an m ≥ 1 and work
with the quotient Tm/Jm of Tm acting faithfully on H0(XU1(Q), (ω ⊗
Lσ )O/�m )m. Then we have

H0(XU1(Q), (ω ⊗ Lσ )O/�m )m ⊂ H0(XV1(Q), ωO/�m )m ⊗O Wσ .

From this inclusion and the arguments of Sections 3.3–3.7, we immedi-
ately deduce the existence of ρQ over Tm/Jm such that ρ′Q satisfies all
the conditions of Definition 3.1, except possibly for condition (3). More
precisely, we construct a deformation over the Hecke algebra of

H0(XV1(Q), ωO/�m )m
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which satisfies these properties exactly as we did in Sections 3.3–3.7.
(The new level structures at the primes in T (ρ) do not affect the argu-
ments; the only essential difference is that the modular curves are no longer
geometrically connected. Thus, in any argument involving q-expansions,
one needs to consider q-expansions at a cusp on each connected com-
ponent instead of at the single cusp ∞. Note, however, that the use
of q-expansions was only used for the following two facts: the iden-
tity φ ◦ Tp − Up ◦ φ = 〈p〉Vp and the claim that θVp = 0, which was
used to show that (φ, φ ◦ Tp −Up ◦ φ) was injective. On the other hand,
the group

∏
x∈T (ρ)GL2(Zx ) acts invertibly on XV1(Q) and hence also the

cohomology group above, acts transitively on the set of connected com-
ponents, and commutes with the Hecke operators at p. Hence it suffices
to check these identities on the component at∞, where the required con-
clusions follow from our previous computation). We then use the above
inclusion of Hecke modules to deduce the result over the algebra Tm/Jm .
It remains to show that condition (3) of Definition 3.1 holds. For this, we
use that fact that multiplication by a high power of a lift of the Hasse
invariant of level XV1(Q) realizes

H0(XU1(Q), (ω ⊗ Lσ )O/�m )m

as a Hecke equivariant subquotient of

(H0(XV1(Q), ω
n)m ⊗O Wσ )

G

for some sufficiently large n. (This follows from Corollary 3.29). It there-
fore suffices to show that the deformation of ρ over the Hecke algebra
of

(H0(XV1(Q), ω
n)m ⊗O Wσ )

G

satisfies condition (3) of Definition 3.1. However, this is precisely the point
of the representation Wσ : it cuts out the automorphic representations giving
rise to minimal deformations of ρ at the primes in T (ρ) (see [15, Lemma
5.1.1]). (Note that, since n is large, the space H0(XV1(Q), ω

n)m is torsion
free). This completes the proof. ��

Theorem 1.4 follows from the previous result and Verdier duality as in
Sect. 3.8. We remark that H0(X, ω ⊗ Lσ )m∅ is of rank one over T∅,m∅ when
H0(X, ωK ⊗Lσ )m∅ is non-zero. This follows from multiplicity one for GL(2)
and [15, Lemma 4.2.4(3)].
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4 Complements

4.1 Multiplicity two

Although this is not needed for our main results, we deduce in this section some
facts about global multiplicity of Galois representations in modular Jacobians.
Recall that k denotes a finite field of odd characteristic, O denotes the ring of
integers of some finite extension K of Qp with uniformizer� and O/� = k.

We recall some standard facts about Cohen–Macaulay rings from [45],
Sect. 21.3 (see also [46]). Let (A,m, k) be a complete local Cohen–Macaulay
ring of dimension n. Then A admits a canonical module ωA. Moreover, if
(x1, . . . xm) is a regular sequence for A, and B = A/(x1, . . . , xm), then

ωB := ωA ⊗A B

is a canonical module for B. It follows that

ωA ⊗A A/m = ωA ⊗A (B ⊗B B/m) = ωB ⊗B B/m.

If m = n, so B is of dimension zero, then Hom(∗, ωB) is a dualizing functor,
and so

dimk B[m] = dimk ωB ⊗ B/m = dimk ωA ⊗ A/m.

Moreover, we have the following:

Lemma 4.1 Let A be a finite flat local Zp-algebra. Suppose that A is Cohen–

Macaulay. Then HomZp(A,Zp) is a canonical module for A.

Proof More generally, if A is a module-finite extension of a regular (or Goren-
stein) local ring R, then (by Theorem 21.15 of [45]) HomR(A, R) is a canonical
module for A. ��

Finally, we note the following:

Lemma 4.2 If B is a complete local Cohen–Macaulay O-algebra and admits

a dualizing module ωB with μ generators, then the same is true for the power

series ring A = B[T1, . . . , Tn]. Moreover, the same is also true for B⊗̂OC,

for any complete local O-algebra C which is a complete intersection.

Proof For power series rings this is a special case of the discussion above. Con-
sider now the case of B⊗̂OC . By assumption, C is a quotient of O[T1, . . . , Tn]
by a regular sequence. Hence B⊗̂OC is a quotient of B[T1, . . . , Tn] by a reg-
ular sequence, and the result follows from the discussion above applied to the
maps B[T1, . . . , Tn] → B and B[T1, . . . , Tn] → B⊗̂OC respectively. ��
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As an example, this applies to B[�] for any finite abelian group � of p-
power order, since O[�] is a complete intersection.

Let ρ : G p → GL2(k) be unramified with ρ(Frobp) scalar. Let R̃† denote
the framed deformation ring of ordinary representations of weight n over O-
algebras with fixed determinant (together with a Frobenius eigenvalue α acting
on an “unramified quotient”) as in Theorem 3.19.

Theorem 4.3 R̃† is a complete normal local Cohen–Macaulay ring of rela-

tive dimension 4 over O. Let ωR̃† denote the canonical module of R̃†. Then

dimk ωR̃†/m = 3.

Proof Following the previous discussion, to determine dimk ωR̃†/m, it suffices
to find a regular sequence of length 5 ( = dim R̃†), take the quotient C , and
compute dimk C[m]. Since R̃† is O-flat,� is regular, and thus we may choose
� as the first term of our regular sequence. Yet the method of Snowden shows
that R̃† ⊗ k is given by the following relations (the completion of B1 at b =
(1, 1; 0) in the notation of [41]):

m =
(

a b

c −a

)
, n = φ − id =

(
φ1 φ2
φ3 φ4

)
, β = α − 1,

mn = βm, Pφ(α) = 0,m2 = 0, det(φ) = 1

Explicitly, in terms of equations, this is given by the quotient A of

k[a, b, c, φ1, φ2, φ3, φ4, β]

by the following relations:

φ1 + φ4 + φ1φ4 − φ2φ3 = 0, β2 − (φ1 + φ4)β − (φ1 + φ4) = 0,

aφ1 + bφ3 = aβ, aφ2 + bφ4 = bβ,−aφ3 + cφ1 = cβ,

aφ4 − cφ2 = aβ, a2 + bc = 0.

For a complete local k-algebra (R,m) with residue field k, let

HR(t) =
∞∑

n=0

dimk(m
n/mn+1)tn ∈ Z[t]

denote the corresponding Hilbert series. We define a partial ordering of ele-
ments of Z[t] as follows: say that

∞∑

n=0

antn ≥
∞∑

n=0

bntn

whenever an ≥ bn for all n.

123



Modularity lifting beyond the Taylor–Wiles method

Lemma 4.4 Let x ∈ md . We have

HR/x (t)

1− t
≥ HR(t) ·

1− td

1− t
,

and equality holds if and only if x is a regular element. Moreover, if there is

an isomorphism

R � gr(R) =
⊕

mn/mn+1,

and x is pure of degree d, then equality holds if and only if x is a regular

element.

Proof There is an exact sequence as follows:

R/mn → R/mn → R/(x,mn)→ 0.

The kernel of the first map certainly contains mn−d/mn . If HR(t) =
∑

antn

and HR/x (t) =
∑

bntn , it follows that

coefficient of tm+d−1 in
HR/x (t)

(1− t)

=
m+d−1∑

n=0

bn = dim R/(x,mm+d)

= dim coker(R/mm+d → R/mm+d)

= dim ker(R/mm+d → R/mm+d)

≥ dim mm/mm+d

= am + am+1 + · · · + am+d−1

= coefficient of tm+d−1 in HR(t)(1+ t + · · · + td−1).

This proves the inequality. (Note that the coefficients of tn for n < d are
automatically the same). On the other hand, assume that x is not a regular
element. By assumption, there exists a non-zero element y ∈ R such that
xy = 0. By Krull’s intersection theorem, there exists an m such that y /∈ mm .
For such an m, it follows that the kernel of R/mm+d → R/mm+d is strictly
bigger than mm/mm+d , and the inequality above is strict. Finally, assume that
x is a regular element, and that R � gr(R). Then the kernel of the map with
n = m + d above is precisely mm/mm+d , and we have equality.

Note that, in the non-graded case, the converse is not true, namely, x may
be regular of degree one and yet the equality HR/x (t) = HR(t)(1− t) fails; as
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an example one may take R = k[φ6, φ7, φ15] and x = φ6. Then x is regular,
but

HR/x (t)

1− t
=

1+ 2t + 2t2 + t3

1− t
>

1+ 2t + t2 + t3 + t5

1− t
= HR(t).

The point is that x is no longer regular in gr(R). (In fact, R is a Cohen–
Macaulay domain, but the depth of gr(R) is zero; this example was taken
from [47]).

Let B � A/β. The equation β2−(φ1+φ4)β−(φ1+φ4) = 0 in A becomes
φ1 + φ4 = 0 in B, and hence B is the quotient of

k[a, b, c, φ1, φ2, φ3]

by the following relations:

−φ2
1 − φ2φ3 = 0,

aφ1 + bφ3 = 0, aφ2 − bφ1 = 0,−aφ3 + cφ1 = 0,−aφ1

−cφ2 = 0, a2 + bc = 0.

All the relations in B are pure of degree two, and hence there is an isomorphism
B � gr(B).

Lemma 4.5 The first few terms of HB(t) are

HB(t) = 1+ 6t + 15t2 + · · ·

Proof Clearly dim(B/m) = 1. B is a quotient of a power series ring S =
k[a, b, c, φ1, φ2, φ3]. Moreover, since all the relations are quadratic, we have

dim m/m2 = dim mS/m
2
S = 6.

The six generators of S give rise, a priori, to

dim m2
S/m

3
S =

(
7

2

)
= 21

generators of m2/m3. Note, however, that we have 6 quadratic relations. In
order to prove that dim m2/m3 = 21 − 6 = 15, it suffices to show that these
six relations are linearly independent. Choose a basis of m2

S/m
3
S coming from

the lexiographic ordering a > b > c > φ1 > φ2 > φ3. With respect to this
basis, the matrix of relations is as follows:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a2 0 0 0 0 0 1
ab 0 0 0 0 0 0
ac 0 0 0 0 0 0

aφ1 0 1 0 0 −1 0
aφ2 0 0 1 0 0 0
aφ3 0 0 0 −1 0 0
b2 0 0 0 0 0 0
bc 0 0 0 0 0 1

bφ1 0 0 −1 0 0 0
bφ2 0 0 0 0 0 0
bφ3 0 1 0 0 0 0
c2 0 0 0 0 0 0

cφ1 0 0 0 1 0 0
cφ2 0 0 0 0 −1 0
cφ3 0 0 0 0 0 0
φ2

1 −1 0 0 0 0 0
φ1φ2 0 0 0 0 0 0
φ1φ3 0 0 0 0 0 0
φ2

2 0 0 0 0 0 0
φ2φ3 −1 0 0 0 0 0
φ2

3 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The minor consisting of rows 1, 4, 6, 9, 14, and 16 has determinant 1, and
hence the result follows. ��

Recall (Theorem 3.4.1 of [41]) that A is, in addition to being Cohen–
Macaulay, also a domain. Since β �= 0 (it is non-zero in m/m2), it follows that
β is a regular element, and hence B = A/β is also Cohen–Macaulay.

Lemma 4.6 If I ⊂ B is an ideal generated by a regular sequence of elements

of pure degree one of length 3, then

HB/I (t) = 1+ 3t.

Moreover, if I is any ideal generated by three pure elements of degree one such

that HB/I (t) = 1+ 3t , then the generators of I consist of a regular sequence.

Proof Let R be a complete local Cohen–Macaulay Noetherian graded k-
algebra with residue field k. Replacing R by R⊗k k does not effect the Hilbert
series of R. Assume that dim(R) ≥ 1, so that m is not an associated prime. We
claim that R⊗k k admits a regular element x ∈ m of pure degree one. Without
loss of generality, we assume that k = k. The set of zero divisors is the union
of the associated primes. By assumption, m is not one of the associated primes.
Hence, for every associated prime p, the image of p in m/m2 is proper (since
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otherwise p = m by Nakayama’s Lemma). Because R is Noetherian, there
exist only finitely many associated primes. Hence the union of the images of
all such p cut out a finite number of proper linear subspaces of m/m2. Since k

is infinite, such a union misses an infinite number of points, and hence there
exists an x ∈ m\m2 which is not a zero-divisor. By induction, there exists a
regular sequence of length dim(R) generated by pure degree one elements. It
follows that, after a finite extension, B admits a regular sequence of length 3
generated by pure degree one elements. By Lemma 4.4 (in the graded case),
if I is the corresponding ideal, then

HB/I (t)=HB(t)(1− t)3=(1+6t+15t2 + · · · )(1− t)3 = 1+ 3t + O(t3).

If m is the maximal ideal of B/I , we deduce that m2/m3 = 0, and thus by
Nakayama’s Lemma that m2 = 0, and HB/I (t) = 1 + 3t . Conversely, if I is
any ideal generated by three pure elements such that HB/I (t) = 1+ 3t , then
by Lemma 4.4, we deduce that the three generators of I consist of a regular
sequence. ��

Lemma 4.7 {β, a, φ2 + φ3, b + c + φ1} is a regular sequence in A.

Proof It suffices to show that {a, φ2+φ3, b+ c+φ1} is regular in B = A/β.
By Lemma 4.6, it suffices to show that the Hilbert series of B/I with I =
(a, φ2 + φ3, b + c + φ1) is 1 + 3t . If C = B/I , then we compute that C is
given by the quotient of

k[b, c, φ2]

by the following relations:

−(b + c)2 + φ2
2 = 0,

−bφ2 = 0, b(b + c) = 0, (b + c)c = 0,−cφ2 = 0, bc = 0.

Let x = b, y = c, and z = φ2. Then, from the second, fifth, and sixth relations,
we deduce that

xz = yz = xy = 0.

Combining this with the third and fourth equations yields:

x2 = x2 + xy = 0, y2 = xy + y2 = 0.

The first equation yields

z2 = −x2 − y2 − 2xy + z2 = 0.
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It follows that C is a quotient of

k[x, y, z]/(x2, y2, z2, xy, xz, yz).

On the other hand, since all the relations are trivial in m2, we have
dim(m/m2) = 3. Hence the Hilbert polynomial of C is 1+3t , and the sequence
is regular in A. ��

Since dim C[m] = 3, this completes the proof. ��
From now until the end of Sect. 4.1, we let ρ : GQ → GL2(k) be an

absolutely irreducible modular (= odd) representation of Serre conductor N =
N (ρ) and Serre weight k(ρ)with p+1 ≥ k(ρ) ≥ 2. This is an abuse of notation
as we have already fixed a representation ρ in Sect. 3.1 but we hope it will not
lead to confusion. Assume that ρ has minimal conductor amongst all its twists
at all other primes (one can always twist ρ to satisfy these condition). One
knows that ρ occurs as the mod-p reduction of a modular form of weight 2
and level N∗, where N∗ = N if k = 2 and N p otherwise. Let T denote the ring
of endomorphisms of J1(N

∗)/Q generated by the Hecke operators Tl for all

primes l (including p), and let m denote the maximal ideal of T corresponding
to ρ. Assume that p ≥ 3.

Theorem 4.8 (Multiplicity one or two) If ρ is either ramified at p or unram-

ified at p and ρ(Frobp) is non-scalar, then J1(N
∗)[m] � ρ, that is, m

has multiplicity one. If ρ is unramified at p and ρ(Frobp) is scalar, then

J1(N
∗)[m] � ρ ⊕ ρ, that is, m has multiplicity two.

Remark 4.9 By results of Mazur [48] (Proposition 14.2), Mazur–Ribet [49]
(Main Theorem), Gross [28] (Proposition 12.10), Edixhoven [31] (Thm. 9.2),
Buzzard [50], and Wiese [51] Cor. 4.2, the theorem is known except in the
case when ρ is unramified at p and ρ(Frobp) is scalar. In this case, Wiese [51]
has shown that the multiplicity is always at least two. Thus our contribution
to this result is to show that the multiplicity is exactly two in the scalar case.

Remark 4.10 It was historically the case that multiplicity one was an ingredient

in modularity lifting theorems, e.g., Theorem 2.1 of [1]. It followed that the
methods used to prove such theorems required a careful study of the geometry
of J1(N

∗). However, a refinement of the Taylor–Wiles method due to Diamond
showed that one could deduce multiplicity one in certain circumstances while
simultaneously proving a modularity theorem (see [26]). Our argument is in
the spirit of Diamond, where it is the geometry of a local deformation ring
rather than J1(N

∗) that is the crux of the matter.

Proof Let G denote the part of the p-divisible group of J1(N
∗) which is

associated to m. By [28], Prop 12.9, as well as the proof of Prop 12.10, recall
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there is an exact sequence of groups

0 → TpG0 → TpG → TpGe → 0

which is stable under Tm. Moreover, TpG0 is free of rank one over Tm, and
TpGe = Hom(TpG0,Zp).

We may assume that ρ is unramified at p and ρ(Frobp) is scalar. Thus
N∗ = pN (since p is odd). Let M denote the largest factor of N which is
only divisible by the so called “harmless” primes, that is, the primes v such
that v ≡ 1 mod p and such that ρ|Gv is absolutely irreducible. Define the
group � as follows:

� := Zp ⊗
∏

x |M
(Z/xZ)×

�measures the group of Dirichlet characters (equivalently, characters of GQ)
congruent to 1 mod � which preserve the set of lifts of ρ of minimal con-
ductor under twisting (by assumption, ρ has minimal conductor amongst its
twists, so an easy exercise shows that these are the only twists with this
property). Extending O if necessary, we may assume that each character
φ ∈ �̂ := Hom(�,Q

×
p ) is valued in O×. For φ ∈ �̂, and let χφ denote

the character ε · 〈ρε−1〉φ of GQ. For v|N∗ we define a quotient Rv = Rv,φ of
the universal framed deformation ring with determinantχφ of ρ|Gv as follows:

(1) When v = p, Rv = Rv,φ is the ordinary framed deformation ring R† of
Sect. 3.7 (with n = 2).

(2) When v �= p, Rv = Rv,φ is the unrestricted framed deformation ring with
determinant χφ|Gv .

The isomorphism types of these deformation rings do not depend on φ. Let
R = Rφ denote the (global) universal deformation ring of ρ corresponding
to deformations with determinant χφ which are unramified outside N∗ and
which are classified (after a choice of framing) by Rv for each v|N∗. Let R�

denote the framed version of R, with framings at each place v|N∗. Let Tan
φ

be the anaemic weight 2, level �1(N
∗) ordinary Hecke algebra (so it does not

contain Up) which acts on

Sφ :=
⊕

χ

Sord
2 (�1(N

∗), χ,O),

where χ runs over all the characters of (Z/N pZ)× with χ |� = φ. Note that

Sord
2 (�1(N

∗),O)⊗Q =
⊕

�̂

Sφ ⊗Q.
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The reason for dealing with the harmless primes in this manner is as follows.
For all non-harmless v �= p, the conductor-minimal deformation ring of ρ|Gv
(which classifies deformations which appear at level �1(N )) is isomorphic to
the ring Rv,φ (up to unramified twists). Equivalently, for non-harmless primes,
any characteristic zero lift ρ of ρ is uniquely twist equivalent to a lift of
minimal conductor. The only time this is not true is when v ≡ 1 mod p

and ρ has trivial invariants under Iv . Since we are assuming that ρ|Gv is
minimally ramified amongst all its twists, this only happens when ρ|Gv is
absolutely irreducible and v ≡ 1 mod p. However, the naïve conductor-
minimal deformation deformation ring at a harmless prime is equal to the
unrestricted deformation ring and does not have fixed inertial determinant,
and one needs the determinant to be fixed for the Taylor–Wiles method to
work correctly.

Consider the Galois representation ρ : GQ → GL2(T
an
φ,m) associated to

eigenforms in Sφ . The character ε−1 det ρ can be regarded as a character χ :
(Z/N pZ)× → (Tan

φ,m)
× with χ |� = φ. Let ψ denote the restriction of χ

to Zp ⊗
∏

x �M(Z/xZ)×, which we may regard as a character of GQ. After

twisting ρ by ψ−1/2, we obtain a Galois representation

GQ → GL2(T
an
φ,m)

with determinant χφ = ε · 〈ρε−1〉φ which is classified by R = Rφ . Our
hypotheses on ρ (that ρ is absolutely irreducible and unramified at p) imply
that ρ|GQ(ζp) is absolutely irreducible. Kisin’s improvement of the Taylor–
Wiles method yields an isomorphism Rφ[1/p] � Tan

φ,m[1/p]. (Here we apply
the Taylor–Wiles type patching results Proposition 3.3.1 and Lemma 3.3.4 of
[52]—as in the proof of Theorem 3.4.11 of ibid.—except that the rings denoted
B and D in the statements of these results may no longer be integral domains
in our situation (though their generic fibres will be formally smooth over K by
Lemma 4.11 below). This is due to the fact that the rings Rv,φ defined above
may have multiple irreducible components for certain v �= p. On the other
hand, the only place in [52] where the assumption that B and D be integral
domains is used is in the first paragraph of the proof of Lemma 3.3.4. In our
case, it will suffice to show that each irreducible component of Rv,φ is in the
support of Sφ . This follows from now standard results on the existence of
modular deformations with prescribed local inertial types). ��

Now, R� is (non-canonically) a power series ring over R, and is realized as
a quotient of

(
R†⊗̂

⊗̂
v|N

Rv

)
[x1, . . . , xn] → R�
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by a sequence of elements that can be extended to a system of parameters;
this last fact follows from the proof of Prop 5.1.1 of [41] and the fact that
R is finite over O (for the most general results concerning the finiteness of
deformation rings over O, see Theorem 10.2 of [53]). As a variant of this, we
may consider deformations of ρ together with an eigenvalue α of Frobenius
at p. Globally, this now corresponds to a modified global deformation ring
R̃ = R̃φ and the corresponding framed version R̃�, where we now map to the
full Hecke algebra Tm. There are surjections:

Rloc[x1, . . . , xn] :=
(

R̃†⊗̂
⊗̂

v|N
Rv

)
[x1, . . . , xn] → R̃� → R̃ → R̃/�.

Since R̃ is finite over O, it follows that R̃/� is Artinian. Again, as in the proof
of Prop 5.1.1 of [41] (see also Proposition 4.1.5 of [54]), the kernel of the
composition of these maps is given by a system of parameters, one of which
is� . On the other hand, we have:

Lemma 4.11 The rings Rv = Rv,φ for v �= p are complete intersections.

Moreover, their generic fibres Rv[1/p] are formally smooth over K .

Proof There are three cases in which Rv is not smooth. In two of these cases,
we shall prove that Rv is a power series ring over O[�] for some finite cyclic
abelian p-group �. Since O[�] is manifestly a complete intersection with
formally smooth generic fibre, this suffices to prove the lemma in these cases.
In the other case, we will show that Rv is a quotient of a power series ring
by a single relation. This shows that it is a complete intersection. The three
situations in which Rv is not smooth correspond to primes v such that:

(1) v ≡ 1 mod p, ρ|Gv is reducible, and ρ|Iv � χ ⊕ 1 for some ramified χ .
(2) v ≡ −1 mod p, ρ|Gv is absolutely irreducible and induced from a char-

acter ξ .
(3) v ≡ 1 mod p, ρ Iv is 1-dimensional and ρss|Gv is unramified.

Suppose that v is a vexing prime (the second case). Any conductor-minimal
deformation of ρ is induced from a character of the form 〈ξ 〉ψ over the
quadratic unramified extension of Qv , where ψ mod � is trivial. It follows
that ψ is tamely ramified, and in particular, up to unramified twist, it may be
identified with a character of F×

v2 of p-power order. We may therefore write
down the universal deformation explicitly, which identifies Rv with a power
series ring over O[�], where � is the maximal p-quotient of F×

v2 .
Suppose that we are in the first case, and so, after an unramified twist,

ρ|Gv ∼= χ ⊕ 1. All Rv-deformations of ρ are of the form (〈χ〉ψ ⊕ ψ−1) ⊗
(χφ〈χ−1〉)1/2, whereψ ≡ 1 mod � . It follows thatψ is tamely ramified, and
in particular, decomposes as an unramified character and a character of F×v of
p-power order. We may therefore write down the universal framed deformation
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explicitly, which identifies Rv with a power series ring over O[�], where �
is the maximal p-quotient of F×v .

In the third case, the deformation rings are not quite as easy to describe
explicitly, so we use a more general argument. As noted by the referee, the
following argument may also be easily modified to deal with the first two
cases. We first note that Rv,φ is a quotient of a power series ring over O in
dim Z1(Gv, ad0ρ) = 4 variables by at most dim H2(Gv, ad0ρ) = 1 rela-
tion. Closed points on the generic fiber of Rv,φ correspond to lifts ρ of ρ|Gv
which are either unramified twists of the Steinberg representation or lifts which
decompose (after inverting p) into a sum χφψ ⊕ ψ−1 with ψ |Iv of p-power
order. The completion of Rv[1/p] at such a point is the corresponding charac-
teristic 0 deformation ring of the lift ρ (see Proposition 2.3.5 of [52]). In each
case, we have dim H2(Gv, ad0ρ) = 0 and hence this ring is a power series
ring (over the residue field at the point) in dim Z1(Gv, ad0ρ) = 3 variables.
It follows that Rv ∼= O[x1, x2, x3, x4]/(r) for some r �= 0 and Rv[1/p] is
formally smooth over K 5. This concludes the proof of the lemma. ��
By Lemma 4.2, it follows that Rloc[x1, . . . , xn] is Cohen–Macaulay, and hence
the sequence of parameters giving rise to the quotient R̃/� is a regular
sequence. In particular, R̃ is Cohen–Macaulay and� -torsion free. Moreover,
again by Lemma 4.2, the number of generators of the canonical module of of
Rloc[x1, . . . , xn] (and hence of R̃) is equal to the number of generators of the
canonical module of R̃†, which is 3, by Theorem 4.3. Since patching arguments
may also be applied to the adorned Hecke algebras Tm, The method of Kisin
yields an isomorphism R̃[1/p] = Tφ,m[1/p] (note that R̃† is a domain, and
R̃†[1/p] is formally smooth). Since (as proven above) R̃ is O-flat, it follows
that R̃ � Tφ,m. In particular, we deduce that Tφ,m is Cohen–Macaulay, and
that dimωTφ,m/m = 3. There is an isomorphism as follows:

S2(�1(N
∗),O)m ⊗ K =

⊕

�̂

Sφ2,m ⊗ K ,

where, since p is odd, we write every element of �̂ uniquely as a square.
If Tφ,m denotes the Hecke action on Sφ,m ⊗ K , then twisting by φ induces
an isomorphism Tφ2,m � T1,m ⊗O O(φ), since this is precisely the effect
twisting has on the action of the diamond operators. (Here O(φ) = O with

5 One may take r to be C(T )− T , where C is the Chebyshev-type polynomial determined by
the relation C(t + t−1) = tv + t−v , and T is the trace of a generator of tame inertia (note
that T − 2 ∈ mRv ). The generic fibre of Rv has (q + 1)/2 geometric components, where q is
the largest power of p dividing v − 1 (see also Theorem 1.0.1(A2.2) of [55]). One component
corresponds to lifts of ρ on which inertia is nilpotent, and in particular has trace T = 2. The
remaining (q − 1)/2 components correspond to representations which are finitely ramified of
order dividing q , on which T = ζ + ζ−1 for some primitive q-th root of unity ζ �= 1.
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the � action twisted by φ). If Tm is the Hecke ring at full level �1(N
∗), then

the restriction map induces an inclusion map

Tm ↪→
⊕

Tφ2,m � T1,m ⊗
⊕

O(φ).

Since Tm is local, the image lands inside T1,m ⊗ O[�]. Because the map
above is an isomorphism after tensoring with K , and since all the relevant
spaces of modular forms are � -torsion free, we have an isomorphism Tm �
T1,m ⊗O O[�]. Hence, applying Lemma 4.2 once more, we deduce that Tm

is Cohen–Macaulay and dimωTm
/m = 3

Since Tm is finite over Zp, we deduce by Lemma 4.1 that Hom(Tm,Zp) is
the canonical module of Tm, and thus Hom(Tm,Zp)/m also has dimension
three. Yet we have identified Hom(Tm,Zp) with TpGe, and it follows that
dim G0[m] = dim TpGe/m = 3, and hence

dim J1(N
∗)[m]=

1

2
dim G[m] =

1

2
(dim G0[m] + dim Ge[m]) =

3+ 1

2
= 2.

��
Remark 4.12 If X H (N

∗) = X1(N
∗)/H is the smallest quotient of X1(N

∗)
where one might expect ρ to occur, a similar argument shows that JH (N

∗)[m]
has multiplicity two if ρ is unramified and scalar at p, and has multiplicity
one otherwise, providing that p �= 3 and ρ is not induced from a character of
Q(
√
−3). The only extra ingredient required is the result of Carayol (see [56],

Proposition 3 and also [57], Proposition 1.10).

Remark 4.13 We expect that these arguments should also apply in principle
when p = 2; the key point is that one should instead use the quotient R̃

†
3

of R̃† (in the notation of [41], Sect. 4), corresponding to crystalline ordinary
deformations. The special fibre of R̃

†
3 is (in this case) also given by B1, and thus

one would deduce that the multiplicity of ρ is two when ρ(Frob2) is scalar,
assuming that ρ is not induced from a quadratic extension. The key point to
check is that the arguments above are compatible with the modifications to the
R = T method for p = 2 developed by Khare–Wintenberger and Kisin (in
particular, this will require that ρ is not dihedral).

4.2 Finiteness of deformation rings

Lemma 4.14 Let F/Q be a number field, let k be a finite field, and let S denote

a finite set of places not containing any v|p. Let G F,S denote the Galois group

of the maximal extension of F unramified outside S. Let

ρ : G F,S → GL2(k)

123



Modularity lifting beyond the Taylor–Wiles method

be a continuous absolutely irreducible representation, and let R denote the

universal deformation ring of ρ. Suppose that the Galois representation asso-

ciated to any Qp-point of R has finite image, and suppose that there are

only finitely many Qp-points of R. Then R[1/p] is reduced; equivalently,

R[1/p]red = R[1/p].

Proof Because S is a finite set of primes, it follows from the discussion
in Sect. 1 p. 387 of [58] that R is a complete local Noetherian W (k)-algebra.
The assumption that R has only finitely many Qp-points implies that R[1/p]red

is isomorphic to a product of finitely many fields indexed by prime ideals pred

of R[1/p]red. Since Spec(R[1/p]red) and Spec(R[1/p]) are naturally isomor-
phic as sets, there is a bijection between primes p of R[1/p] and pred of
R[1/p]red. Hence R[1/p] is a Noetherian semi-local ring, which therefore
decomposes as a direct sum of its localizations over all finite ideals p. It suf-
fices to show that the localizations of R[1/p] and R[1/p]red at every prime
p are isomorphic. Denote this localization of R[1/p] by (A,m). Note that
A/m = A/p = R[1/p]red/pred � E for some finite extension E of Qp. We
have Galois representations as follows:

G F,S → GL2(R)→ GL2(R[1/p])→ GL2(A)→ GL2(A/m
2)→ GL2(E)

To show that A = E , it suffices, by Nakayama’s Lemma, to show that A/m2 =
A/m. Because E is of characteristic zero, the map A/m2 → E splits, and
A/m2 has the structure of an E-algebra. If A/m2 �= A/m, then the map
A/m2 → A/m factors through a surjection A/m2 → E[ε]/ε2. Because ρ is
absolutely irreducible, the ring R is generated by the traces of the images of
elements of G F,S (Proposition 4, S1.8 of [58]). It follows that the traces of the
elements of G F,S generate R[1/p] and all its quotients over W (k)⊗Q. It thus
suffices to show that the images of the elements of G F,S in GL2(E[ε]/ε2) all
have traces in E . Consider the corresponding Galois representation

ρ : G F,S → GL2(E[ε]/ε2).

The composite to GL2(E) has finite image by assumption. Denote the corre-
sponding finite image Galois representation over E by V . Hence ρ arises from
some extension

0 → V → W → V → 0.

Consider the restriction of this representation to a finite extension L/F such
that GL ,S acts trivially on V . Then the action of GL on W factors through a
Zp-extension which is unramified outside primes outside those above S, and
is in particular unramified at all primes v|p. Such extensions are trivial by
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class field theory. Hence the extension splits over GL ,S . However, because
GL ,S has finite image in G F,S , the extension also splits over G F,S , because
the inflation map is injective (the kernel is computed by H1 of a finite group
acting in characteristic zero). It follows that the extension is trivial over G F,S .
Yet this implies that the trace of the image of any element lies in E , which
completes the proof. ��

If ρ : G Q,S → GL2(k) as above is modular, then one can often deduce
the assumptions (and hence the conclusions) of Lemma 4.14 from work of
Buzzard–Taylor and Buzzard [22,23].

5 Imaginary quadratic fields

In this section, we apply our methods to Galois representations of regular
weight over imaginary quadratic fields. The argument, formally, is very simi-
lar to what happens to weight one Galois representations over GQ. The most
important difference is that we are not able to prove the existence of Galois
representations associated to torsion classes in cohomology, and so our results
are predicated on a conjecture that suitable Galois representations exist (Con-
jecture A).

5.1 Deformations of Galois representations

Let F be an imaginary quadratic field, and let p ≥ 3 be a prime that is
unramified in F . Suppose that v|p is a place of F and A is an Artinian local
O-algebra. We say that a continuous representation ρ : Gv → GL2(A) is
finite flat if there is a finite flat group scheme F/OFv such that ρ ∼= F(Fv) as
Zp[Gv]-modules, and det(ρ|Iv) is the cyclotomic character. We say that ρ is
ordinary if ρ is conjugate in GL2(A) to a representation of the form

(
εχ1 ∗
0 χ2

)

where χ1 and χ2 are unramified.
Let

ρ : G F → GL2(k)

be a continuous Galois representation such that the restriction

ρ : G F(ζp)→ GL2(k)
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is absolutely irreducible. Let S(ρ) denote the set of primes not dividing p

where ρ is ramified. We assume the following:

(1) det(ρ) is the mod-p reduction of the cyclotomic character.
(2) ρ is either ordinary or finite flat at v|p.
(3) If x ∈ S(ρ), then either:

(a) ρ|Ix is irreducible.
(b) ρ|Ix is unipotent.
(c) ρ|Dx is reducible, and ρ|Ix is of the form ψ ⊕ ψ−1.
(d) If ρ|Dx is irreducible and ρ|Ix is reducible, then NF/Q(x) �≡ −1

mod p.

Let Q denote a finite set of primes in OF not containing any primes above p

and not containing any primes at which ρ is ramified. For objects R in CO, we
say that a representation ρ : G → GL2(R) is unipotent if, after some change

of basis, the image of ρ is a subgroup of the matrices of the form

(
1 ∗
0 1

)
.

For objects R in CO, we may consider lifts ρ : G F → GL2(R) of ρ with the
following properties:

(1) det(ρ) = ε.
(2) If v|p, then (ρ ⊗R (R/m

n
R))|Gv is finite flat or ordinary for all n ≥ 1.

(3) If v|p and ρ|Gv is finite flat, then (ρ ⊗R (R/m
n
R))|Gv is finite flat for all

n ≥ 1.
(4) If x /∈ Q ∪ S(ρ) ∪ {v|p}, then ρ|Gx is unramified.
(5) S : If x ∈ S(ρ), and ρ|Ix is unipotent, then ρ|Ix is unipotent.
(6) P : If x ∈ S(ρ), and ρ|Ix � ψ ⊕ ψ−1, then ρ|Ix � 〈ψ〉 ⊕ 〈ψ〉−1.
(7) M : If x ∈ S(ρ), ρ|Dx is irreducible, and ρ|Ix = ψ1 ⊕ ψ2 is reducible,

then ρ|Ix = 〈ψ1〉 ⊕ 〈ψ2〉.
(8) H: If ρ|Ix is irreducible, then ρ(Ix )

∼→ ρ(Ix ). (This also follows automat-
ically from the determinant condition).

In cases 6 and 7 (and 8), there is an isomorphismρ(Ix)
∼→ ρ(Ix ). For x ∈ S(ρ),

we say thatρ|Dx is of type Special, Principal, Mixed, or Harmless respectively
if is of the type indicated above. Note that primes of type M are called vexing
by [14], but we have eliminated the most troublesome of the vexing primes,
namely those x with NF/Q(x) ≡ −1 mod p. The corresponding deformation
functor is represented by a complete Noetherian local O-algebra RQ (this
follows from the proof of Theorem 2.41 of [27]). If Q = ∅, we will sometimes
denote RQ by Rmin. Let H1

Q(F, ad0ρ) denote the Selmer group defined as the
kernel of the map

H1(F, ad0ρ) −→
⊕

x

H1(Fx , ad0ρ)/L Q,x

where x runs over all primes of F and
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• L Q,x = H1(Gx/Ix , (ad0ρ)Ix ) if x /∈ Q ∪ {v|p};
• L Q,x = H1(Fx , ad0ρ) if x ∈ Q and x � p;
• L Q,v = H1

f (Fv, ad0ρ) if v|p and v /∈ Q;

(The group H1
f (Fv, ad0ρ) is defined as in Sect. 2.4 of [27]). Let H1

Q(F, ad0

ρ(1)) denote the corresponding dual Selmer group.

Proposition 5.1 The reduced tangent space Hom(RQ/mO, k[ε]/ε2) of RQ

has dimension at most

dimk H1
Q(F, ad0ρ(1))− 1+

∑

x∈Q

dimk H0(Fx , ad0ρ(1)).

Proof The argument follows along the exact lines of Corollary 2.43 of [27].
The only difference in the calculation occurs at v|p and at v = ∞. Specifically,
when v|p and p splits, the contribution to the Euler characteristic formula
(Theorem 2.19 of [27]) is

∑

v|p
(dimk H1

f (Fv, ad0ρ)− dimk H0(Fv, ad0ρ)),

which, by Proposition 2.27 of [27], is at most 2. However, the contribution at
the prime at∞ is− dimk H0(C, ad0ρ) = −3. When p is inert, the contribution
at p is

dimk H1
f (Fp, ad0ρ)− dimk H0(Fp, ad0ρ)

which is also at most 2 (see, for instance, Corollary 2.4.3 of [3] and note that
there is an inclusion H1(G Fp/IFp , k) ⊂ H1

f (Fp, adρ)∩ H1(Fp, k) where we
view k as the scalar matrices in adρ). ��

Suppose that NF/Q(x) ≡ 1 mod p and ρ(Frobx ) has distinct eigenvalues
for each x ∈ Q. Then H0(Fx , ad0ρ) is one dimensional for x ∈ Q and
the preceding proposition shows that the reduced tangent space of RQ has
dimension at most

dimk H1
Q(F, ad0ρ(1))− 1+ #Q.

We now show that one may choose a judicious set of primes (colloquially
referred to as Taylor–Wiles primes) to annihilate the dual Selmer group.

Proposition 5.2 Let q = dimk H1
∅ (F, ad0ρ(1)) and suppose that ρ|G F(ζp) is

absolutely irreducible. Then q ≥ 1 and for any integer N ≥ 1 we can find a

set QN of primes of F such that
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(1) #QN = q.

(2) NF/Q(x) ≡ 1 mod pN for each x ∈ QN .

(3) For each x ∈ QN , ρ is unramified at x and ρ(Frobx ) has distinct eigen-

values.

(4) H1
QN
(F, ad0ρ(1)) = (0).

In particular, the reduced tangent space of RQN
has dimension at most q − 1

and RQN
is a quotient of a power series ring over O in q − 1 variables.

Proof That q ≥ 1 follows immediately from Proposition 5.1. Now suppose
that Q is a finite set of primes of F containing no primes dividing p and no
primes where ρ is ramified. Suppose that ρ(Frobx ) has distinct eigenvalues
and NF/Q(x) ≡ 1 mod p for each x ∈ Q. Then we have an exact sequence

0 −→ H1
Q(F, ad0ρ(1)) −→ H1

∅ (F, ad0ρ(1)) −→
⊕

x∈Q

H1(Gx/Ix , ad0ρ(1)).

Moreover, for each x ∈ Q, the space H1(Gx/Ix , ad0ρ(1)) is one-dimensional
over k and is isomorphic to ad0ρ/(ρ(Frobx ) − 1)(ad0ρ) via the map which
sends a class [γ ] to γ (Frobx ). It follows that we may ignore condition (1): if
we can find a set Q̃N satisfying conditions (2), (3) and (4), then #Q̃N ≥ q and
by removing elements of Q̃N if necessary, we can obtain a set QN satisfying
(1)–(4).

By the Chebotarev density theorem, it therefore suffices to show that for
each non-zero class [γ ] ∈ H1

∅ (F, ad0ρ(1)), we can find an element σ ∈ G F

such that

• σ |G F(ζ
pN ) = 1;

• ρ(σ) has distinct eigenvalues;
• γ (σ ) /∈ (ρ(σ )− 1)(ad0ρ).

The existence of such a σ can be established exactly as in the proof of Theo-
rem 2.49 of [27]. ��

5.2 Homology of arithmetic quotients

Let A denote the adeles of Q, and A∞ the finite adeles. Similarly, let AF

and A∞F denote the adeles and finite adeles of F . Let G = ResF/QPGL(2),
and write G∞ = G(R) = PGL2(C). Let K∞ denote a maximal compact of
G∞ with connected component K 0

∞. For any compact open subgroup K of
G(A∞), we may define an arithmetic orbifold Y (K ) as follows:

Y (K ) := G(Q)\G(A)/K 0
∞K .
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Remark 5.3 If K is a sufficiently small (neat) compact subgroup, then Y (K )

is a manifold. Moreover, it will also be a a (disjoint union of) K (π, 1) spaces,
since each component is the quotient of a contractible space. Recall that for a
K (π, 1)-manifold M , there is a functorial isomorphism

Hn(π1(M), �) � Hn(M, �)

for all n. For orbifolds M = �\H of a similar shape (with contractible H),
the cohomology of M as an orbifold satisfies the same formula. Note that the
cohomology in this sense may differ from the cohomology of the underlying
space. (For example, the underlying manifold of PSL2(Z) is the punctured
sphere which is contractible, whereas the underlying orbifold has interesting
cohomology). We take the convention that, for any K , the cohomology of
Y (K ) is understood to be the cohomology in the orbifold sense, namely, that
the cohomology of each component is the cohomology of the corresponding
arithmetic lattice. The main advantage of this approach is that, for any finite
index normal subgroup K ′ � K , the corresponding map of orbifolds

Y (K ′)→ Y (K )

is a covering map with Galois group K/K ′. This approach is the analogue (in
the world of PEL Shimura varieties) of working with stacks rather than the
underlying schemes at non-representable level.

We will specifically be interested in the following K . Let S(ρ) and Q be as
above.

5.2.1 Arithmetic quotients

If v is a place of F and c ≥ 1 is an integer, we define

�0(v
c) =

{
g ∈ PGL2(Ov) | g ≡

(
1 ∗
0 ∗

)
mod πc

v

}

�1(v
c) =

{
g ∈ PGL2(Ov) | g ≡

(
1 ∗
0 1

)
mod πc

v

}

�p(v
c)=

{
g ∈ PGL2(Ov) | g≡

(
1 ∗
0 d

)
mod πc

v , d has p − power order

}

Let K Q =
∏
v K Q,v and L Q =

∏
v L Q,v denote the open compact subgroups

of G(A) such that:
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(1) If v ∈ Q, K Q,v = �1(v).
(2) If v ∈ Q, L Q,v = �0(v).
(3) If v is not in S(ρ) ∪ {v|p} ∪ Q, then K Q,v = L Q,v = PGL2(Ov).
(4) If v|p, then K Q,v = L Q,v = GL2(Ov) if ρ|Dv is finite flat. Otherwise,

K Q,v = L Q,v = �0(v).
(5) If v ∈ S(ρ), K Q,v = L Q,v is defined as follows:

(a) If ρ is of type S at v, then K Q,v = �0(v).
(b) If ρ is of type P, M or H at v, then K Q,v = �p(v

c), where c is the
conductor of ρ|Dv .

We define the arithmetic quotients Y0(Q) and Y1(Q) to be Y (L Q) and
Y (K Q) respectively. These spaces are the analogues of the modular curves
corresponding to the congruence subgroups consisting of �0(Q) and �1(Q)

intersected with a level specifically tailored to the ramification structure of ρ.
Topologically, they are a finite disconnected union of finite volume arithmetic
hyperbolic 3-orbifolds.

5.2.2 Hecke operators

We recall the construction of the Hecke operators. Let g ∈ G(A∞) be an invert-
ible matrix. For K ⊂ G(A∞) a compact open subgroup, the Hecke operator
T (g) is defined on the homology modules H•(Y (K ),O) by considering the
composition:

H•(Y (K ),O)→ H•(Y (gK g−1 ∩ K ),O)→ H•(Y (K ∩ g−1K g),O)

→ H•(Y (K ),O),

the first map coming from the corestriction (= transfer) map, the second com-
ing from the map Y (gK g−1 ∩ K ,O)→ Y (K ∩ g−1K g,O) induced by right
multiplication by g on G(A) and the third coming from the natural map on
homology. (We recall that, since we are viewing these spaces as orbifolds, the
map Y (gK g−1∩K )→ Y (K ) is always a covering map). The Hecke operators
act on H•(Y (K ),O) but do not preserve the homology of the connected com-
ponents. The group of components is isomorphic, via the determinant map,
to

F×\A∞,×F /A
∞,×2
F det(K ).

This is the mod-2 reduction of a ray class group. For α ∈ A
∞,×
F , we define the

Hecke operator Tα by taking

g =
(
α 0
0 1

)
.
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If α ∈ A
∞,×
F is a unit at all finite places, we denote the corresponding operator

by 〈α〉 and refer to it as a diamond operator; it acts as an automorphism on
Y (K ) for all the K considered above.

Definition 5.4 Let Tan
Q denote the sub-O-algebra of EndO H1(Y1(Q),O) gen-

erated by Hecke endomorphisms Tα for all α which are trivial at primes in
Q ∪ S(ρ) ∪ {v|p}. Let TQ denote the O-algebra generated by the same oper-
ators together with Tα for α non-trivial at places in Q. If Q = ∅, we write
T = T∅ for TQ .

These rings are commutative. If ε ∈ O
×
F is a global unit, then Tε acts by the

identity. If a ⊆ OF is an ideal prime to the level, we may define the Hecke
operator Ta as Tα where α ∈ A

×,∞
F is any element which represents the ideal

a and such that α is 1 for each component dividing the level. In particular, if
a = x is prime, then Tx is uniquely defined when x is prime to the level but
not when x divides the level.

5.3 Conjectures on existence of Galois representations

Let m denote a maximal ideal of TQ , and let TQ,m denote the completion. It
is a local ring which is finite (but not necessarily flat) over O.

Definition 5.5 We say that m is Eisenstein if Tλ − 2 ∈ m for all but finitely
primes λ which split completely in some fixed abelian extension of F . We say
that m is non-Eisenstein if it is not Eisenstein.

We say that m is associated to ρ if for each λ /∈ S(ρ)∪ Q ∪ {v|p}, we have
an inclusion Tλ − Trace(ρ(Frobv)) ∈ m.

Conjecture A Suppose that m is non-Eisenstein and is associated to ρ, and

that Q is a set of primes v such that N (v) ≡ 1 mod p, ρ is unramified at v,

and ρ(Frobv) has distinct eigenvalues. Then there exists a continuous Galois

representation ρ = ρm : G F → GL2(TQ,m) with the following properties:

(1) If λ /∈ S(ρ) ∪ Q ∪ {v|p} is a prime of F, then ρ is unramified at λ, and

the characteristic polynomial of ρ(Frobλ) is

X2 − TλX + NF/Q(λ) ∈ TQ,m[X ].

(2) If v ∈ S(ρ), then:

(a) If ρ|Dv is of type S, then ρ|Iv is unipotent.

(b) If ρ|Dv is of type P, so that ρ|Iv ∼= ψ ⊕ ψ−1, then ρ|Iv ∼= 〈ψ〉 ⊕
〈ψ〉−1.

(3) If v ∈ Q, the operators Tα for α ∈ F×v ⊂ A
∞,×
F are invertible. Let φ

denote the character of Dv = Gal(Fv/Fv) which, by class field theory, is

associated to the resulting homomorphism:
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F×v → T×Q,m

given by sending x to Tx . By assumption, the image ofφ mod m is unrami-

fied, and so factors through F×v /O
×
v � Z, and soφ(Frobv) mod m is well

defined; assume that φ(Frobv) �≡ ±1 mod m. Then ρ|Dv ∼ φε ⊕ φ−1.

(4) If v|p, then ρ|Dv is finite flat, and if ρ|Dv is ordinary, then ρ|Dv is

ordinary.

Some form of this conjecture has been suspected to be true at least as far back
as the investigations of F. Grunewald in the early 70’s (see [59,60]). Related
conjectures about the existence of ρm were made for GL(n)/Q by Ash [61],
and for GL(2)/F by Figueiredo [62]. Say that a deformation of ρQ of ρ is
minimal outside Q if it arises from a quotient of the ring RQ of Sect. 5.1.

Lemma 5.6 Assume Conjecture A. Assume that there exists a maximal ideal

m of TQ associated to ρ. Suppose that Q consists entirely of Taylor–Wiles

primes. Then there exists a representation: ρQ : G F → GL2(TQ,m) whose

traces generate TQ,m and such that ρQ is a minimal deformation of ρ outside

Q with cyclotomic determinant.

Proof By Conjecture A, the representation ρQ := ρm to TQ,m is such a rep-
resentation. Moreover, assumption 3 above guarantees (by Hensel’s Lemma)
that the Tα for α|Q lie in the O-subalgebra generated by traces. ��

5.3.1 Properties of homology groups

Let m∅ denote a non-Eisenstein maximal ideal of T∅. We have natural homo-
morphisms

Tan
Q → Tan = T∅, Tan

Q ↪→ TQ

induced by the map H1(Y1(Q),O)→ H1(Y,O) and by the natural inclusion.
(The surjectivity of this map is an immediate consequence of the interpretation
of these groups in terms of group cohomology and the fact that the abelian-
ization of PSL2(Fx ) is trivial for N (x) > 3). The ideal m∅ of T∅ pulls back to
an ideal of Tan

Q which we also denote by m∅ in a slight abuse of notation. The
ideal m∅ may give rise to multiple maximal ideals m of TQ .

Remark 5.7 If x /∈ Q ∪ S(ρ) ∪ {v|p} is prime, then there is an operator
Tx ∈ Tan

Q . If x ∈ Q, then we let Ux denote the operator Ux := Tπx , where
πx , by abuse of notation, is the adele which is trivial away from x and the
uniformizerπx at x . However, this operator is only well defined up to a diamond
operator 〈α〉, where α ∈ O×x ⊂ A

∞,×
F . On the other hand, by Conjecture A,

the image of Ux modulo m is well defined, because the associated character φ
is unramified.
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If x /∈ S(ρ) ∪ {v|p} is a prime of F such that NF/Q(x) ≡ 1 mod p and
ρ(Frobx ) has distinct eigenvalues, then the representation ρ|Gx does not admit
ramified semistable deformations. The following lemma is the homological
manifestation of this fact.

Lemma 5.8 Suppose that for each x ∈ Q we have that NF/Q(x) ≡ 1 mod p

and that the polynomial X2−Tx X+NF/Q(x) ∈ T∅[X ]has distinct eigenvalues

modulo m∅. Let m denote the maximal ideal of TQ containing m∅ and Ux−αx

for some choice of root αx of X2 − Tx X + 1 mod m for each x ∈ Q. Then

there is an isomorphism of Tan
Q,m∅

-modules

H1(Y0(Q),O)m
∼→ H1(Y,O)m∅ .

Proof Note that, by the universal coefficient theorem, we have H1(Y, K/O) =
H1(Y,O)

∨ (and similarly for Y0(Q)). We proceed as in the proof of Lemma 3.5
to deduce that there is an isomorphism

H1(Y0(x), K/O)m = H1(Y, K/O)m∅ ⊕ V .

In light of the universal coefficient theorem, it suffices to show that V = 0.
The remainder of the proof now proceeds as in Lemma 3.5. ��

There is a natural covering map Y1(Q)→ Y0(Q) with Galois group

�Q :=
∏

x∈Q

(OF/x)
×.

If μ is a finitely generated O[�Q]-module, it gives rise to a local system on
Y0(Q). Let Tuniv be the polynomial algebra generated analogously to the one
in Sect. 3.2.3 by Hecke endomorphisms Tα for all α which are trivial at primes
in Q ∪ S(ρ) ∪ {v|p} and by Ux for x ∈ Q (see Remark 5.7). We have an
action of Tuniv on the homology groups Hi (Y0(Q), μ) and the Borel–Moore
homology groups H B M

i (Y0(Q), μ). The ideal m∅ gives rise to a maximal ideal
m of Tuniv after a choice of eigenvalue mod m for Ux for all x dividing Q.

We let� denote a quotient of�Q and Y�(Q)→ Y0(Q) the corresponding
Galois cover. Further suppose that� is a p-power order quotient of�Q . Then
O[�] is a local ring. Note that by Shapiro’s Lemma there is an isomorphism
H1(Y0(Q),O[�]) ∼= H1(Y�(Q),O).

Lemma 5.9 Let μ be a finitely generated O[�]-module. Then:

(1) Hi (Y0(Q), μ)m = (0) for i = 0, 3.

(2) If μ is p-torsion free, then H2(Y0(Q), μ)m is p-torsion free.

123



Modularity lifting beyond the Taylor–Wiles method

(3) For all i , we have an isomorphism

Hi (Y0(Q), μ)m
∼→ H B M

i (Y0(Q), μ)m.

Proof Consider part (1). By Nakayama’s Lemma, we reduce to the case
when μ = k. Yet H3(Y0(Q), k) = 0 and the action of Hecke operators on
H0(Y0(Q), k) (which preserve the connected components) is via the degree
map, and this action is Eisenstein (in the sense that the only m in the support
of H0 are Eisenstein). For part (2), since μ is O-flat (by assumption), there is
an exact sequence

0 → μ→ μ→ μ/� → 0.

Taking cohomology, localizing atm, and using the vanishing of H3(Y0(Q), μ)m
from part (1), we deduce that H2(Y0(Q), μ)m[� ] = 0, hence the result. For
part (3), there is a long exact sequence

· · · → Hi (∂Y0(Q), μ)→ Hi (Y0(Q), μ)→ H B M
i (Y0(Q), μ)

→ Hi−1(∂Y0(Q), μ)→ · · ·

from which we observe that it suffices to show that Hi (∂Y0(Q), μ)m vanishes
for all i . (The action of Hecke operators on the boundary is the obvious one
coming from topological considerations. For an explicit exposition of the rele-
vant details, see p. 107 of [63]). By Nakayama’s Lemma, we once more reduce
to the case whenμ = k. The cusps are given by tori (specifically, elliptic curves
with CM by some order in OF ), and since the cohomology with constant coef-
ficients of tori is torsion free, the case when μ = k reduces to the case when
μ = O and then μ = K . We claim that the action of Tuniv on the homology of
the cusps in characteristic zero given by a sum of algebraic Grossencharacters
for the field F ; such a representation is Eisenstein by class field theory. This
follows from the work of [64]; an explicit reference is Sect. 2.10 of [65]. ��

Proposition 5.10 The O[�]-module H1(Y0(Q),O[�])m ∼= H1(Y�(Q),O)m
is balanced (in the sense of Definition 2.2).

Proof The argument is almost identical to the proof of Proposition 3.8. Let
M denote the module H1(Y0(Q),O[�])m and S = O[�]. Consider the exact
sequence of S-modules (with trivial �-action):

0 → O
�→ O → k → 0
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where � denotes a uniformizer in O. Tensoring this exact sequence over S

with M , we obtain an exact sequence:

0 → TorS
1 (M,O)/� → TorS

1 (M, k)→ M�→ M�→ M ⊗S k → 0.

Let r denote the O-rank of M�. Then this exact sequence tells us that

dS(M) = dimk M ⊗S k − dimk TorS
1 (M, k) = r − dimk TorS

1 (M,O)/�.

We have a Hochschild–Serre spectral sequence

Hi (�, H j (Y0(Q), S)) = TorS
i (H j (Y0(Q), S),O) �⇒ Hi+ j (Y0(Q),O).

We obtain an action of Tuniv on the spectral sequence by essentially the same
argument as that of Proposition 3.8. Localizing at m, and using the fact that
Hi (Y0(Q), S)m = (0) for i = 0, 3 by Lemma 5.9 (1), we obtain an exact
sequence

(H2(Y0(Q), S)m)�→ H2(Y0(Q),O)m → TorS
1 (M,O)→ 0.

To show that dS(M) ≥ 0, we see that it suffices to show that H2(Y0(Q),O)m
is free of rank r as an O-module. By Lemma 5.9 (2), it then suffices to show
that dimK H2(Y0(Q), K )m = r . Inverting � and applying Hochschild–Serre
again, we obtain isomorphisms

(Hi (Y0(Q), S ⊗O K )m)�
∼→ Hi (Y0(Q), K )m

for i = 1, 2. It follows that r = dimK H1(Y0(Q), K )m. By Poincaré duality,
we have

dimK H2(Y0(Q), K )m = dimK H B M
1 (Y0(Q), K )m.

(Because we are working with PGL, the dual maximal ideal m∗ is identified
with m). Finally, by Lemma 5.9 (3), we have

dimK H1(Y0(Q), K )m = dimK H B M
1 (Y0(Q), K )m,

as required. ��

5.4 Modularity lifting

We now associate to ρ the ideal m∅ of T∅ which is generated by (�, Tλ −
Trace(ρ(Frobλ))) where λ ranges over all primes λ /∈ S(ρ) ∪ {v|p} of F .
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We make the hypothesis that m∅ is a proper ideal of T∅. In other words, we
are assuming that ρ is ‘modular’ of minimal level and trivial weight. Since
T∅/m∅ ↪→ k it follows that m∅ is maximal. Since ρ is absolutely irreducible,
it follows by Chebotarev density that m∅ is non-Eisenstein.

We now assume that Conjecture A holds for m∅. In other words, there is a
continuous Galois representation

ρm : G F → GL2(Tm∅)

satisfying the properties of Conjecture A. The definition of m∅ and the Cheb-
otarev density theorem imply that ρm∅ mod m∅ is isomorphic to ρ. Properties
(1)–(4) of Conjecture A then imply that ρm∅ gives rise to a homomorphism

ϕ : Rmin → Tm∅

such that the universal deformation pushes forward to ρm∅ . The following is
the main result of this section.

Theorem 5.11 If we make the following assumptions:

(1) the ideal m∅ is a proper ideal of T∅, and

(2) Conjecture A holds for all Q,

then the map ϕ : Rmin → Tm∅ is an isomorphism and T∅,m∅ acts freely on

H1(Y,O)m∅ .

Proof By property (1) of Conjecture A, the map ϕ : Rmin → T∅,m∅ is sur-
jective. To prove the theorem, it therefore suffices to show that H1(Y,O)m∅
is free over Rmin (where we view H1(Y,O)m∅ as an Rmin-module via ϕ). To
show this, we will apply Proposition 2.3.

We set R = Rmin and H = H1(Y,O)m∅ and we define

q := dimk H1
∅ (G F , ad0ρ).

Note that q ≥ 1 by Proposition 5.2. As in Proposition 2.3, we set �∞ = Z
q
p

and let �N = (Z/pN Z)q for each integer N ≥ 1. We also let R∞ denote
the power series ring O[x1, . . . , xq−1]. It remains to show that conditions 4
and 5 of Proposition 2.3 are satisfied. For this we will use the existence of
Taylor–Wiles primes together with the results established in Sect. 5.2.

For each integer N ≥ 1, fix a set of primes QN of F satisfying the properties
of Proposition 5.2. We can and do fix a surjection φ̃N : R∞ � RQN

for each
N ≥ 1. We let φN denote the composition of φ̃N with the natural surjection
RQN

� Rmin. Let

�QN
=
∏

x∈QN

(OF/x)
×
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and choose a surjection �QN
� �N . Let Y�N

(QN ) → Y0(QN ) denote the
corresponding Galois cover. We set HN := H1(Y�N

(QN ),O)m where m is the
ideal of TQN

which contains m∅ and Ux −αx for each x ∈ Q, for some choice
of αx . Then HN is naturally an O[�N ] = SN -module. Applying Conjecture
A to TQN ,m, we deduce the existence of a surjective homomorphism RQN

�

TQN ,m. Since TQN ,m acts on HN , we get an induced action of R∞ on HN (via
φ̃N and the map RQN

� TQN ,m). We can therefore view HN as a module over
R∞ ⊗O SN . To apply Proposition 2.3, it remains to check points (5a)–(5c).
We check these conditions one by one:

(a) The image of SN in EndO(HN ) is contained in the image of R∞ by Con-
jecture A, because it is given by the image of the diamond operators. The
second part of condition (5a) follows from Conjecture A part (3) (exactly
as in the proof of Theorem 3.26).

(b) We have a Hochschild–Serre spectral sequence

TorSN

i (H j (Y�N
(QN ),O)m) �⇒ Hi+ j (Y0(QN ),O)m.

Applying part (1) of Lemma 5.9, we see that (HN )�N
∼= H1(Y0(QN ),O)m.

Then, by Lemma 5.8 we see that (HN )�N
∼= H1(Y,O)m∅ = H , as

required.
(c) HN is finite over O and hence over SN . Proposition 5.10 implies that

dSN
(HN ) ≥ 0.

We may therefore apply Proposition 2.3 to deduce that H is free over R and
the theorem follows. ��

If H1(Y,O)m∅ ⊗Q �= 0, then we may deduce that the multiplicity μ for H

as a T∅,m∅-module is one by multiplicity one for PGL(2)/F . The proof also
exhibits T∅,m∅ as a quotient of a power series ring in q − 1 variables by q ele-
ments. In particular, if dim(T∅,m∅) = 0, then T∅,m∅ is a complete intersection.
From these remarks we see that Theorem 1.3 follows from Theorem 5.11.

5.5 The distinction between GL and PGL

The reader may wonder why, when considering Galois representations over
imaginary quadratic fields, we consider the group G = PGL rather than GL.
When F = Q or an imaginary quadratic field, the associated locally symmetric
spaces are very similar (the same up to components), and working with PGL
has the disadvantage of forcing the determinant to be cyclotomic rather than
cyclotomic up to finite twist. The main reason we use PGL is related to an
issue which arises (and was pointed out to us by the referee) when the class
number of F is divisible by p. Suppose that ρ is a modular representation of
level one, and suppose that the minimal fixed determinant deformation ring
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is O. Then, if the class group of OF is Z/pZ, the minimal Hecke ring Tm is
expected to be of the form O[Z/pZ] rather than O, and the map Rmin → Tm

will not be surjective. The issue is that the Hecke algebra even at minimal
level sees the twists of the corresponding automorphic form by characters of
the class group. If these characters have p-power order, they contribute to the
localization of T at any maximal ideal m. This is analogous to what might
happen classically if one has a representation ρ over Q of tame level N ; one
has to be careful in choosing a minimal level, since the Hecke algebra of X1(N )

will contain spurious twists if N −1 is divisible by p. The latter issue is easily
resolved by a careful choice of level structure at N , namely, replacing X1(N )

by X H (N ) which is the quotient of X1(N ) by the p-Sylow subgroup of the
group (Z/NZ)× of diamond operators. However, it is not possible to avoid the
class group in this way by choosing appropriate level structure, because the
level structure only sees ramification. One fix is to work with PGL, but there is
another fix for imaginary quadratic fields F which we sketch now. The natural
approach is to replace the spaces Y , Y0(Q) and Y1(Q) by their quotients by the
group Clp(OF ) := Cl(OF )⊗ Zp. For example, the natural level structure at
Y admits a ring of diamond operators which act via an extension of Cl(OF ) by
a group of order prime to p, and hence there is a canonical splitting and thus a
canonical quotient Y/Clp(OF )which gives the “correct” space. Note that, for
p odd, the group Clp(OF ) acts freely on the components, so this quotient is
given explicitly by a subset of the connected components of Y . In the example
above, the natural ring of Hecke operators Tm acting on Y (now generated by Tα
such that the image of (α) in Cl(OF ) has order prime to p) will be isomorphic
to O. This construction, however, is not as canonical as one would like. For
example, the ring of diamond operators on Y1(Q) naturally acts through a
group whose p-Sylow subgroup is RClp(Q) = RCl(Q)⊗ Zp, the (p-part of
the) ray class group of conductor Q. This group surjects onto Clp(OF ), but
there is no natural section. It seems that the Taylor–Wiles method still applies as
long as one restricts the set of Taylor–Wiles primes to x ∈ Q such that the map

RClp(Q)→ Clp(OF )

splits. This imposes a further Chebotarev condition on the Taylor–Wiles primes
x ∈ Q which corresponds to x splitting completely in a metabelian extension
of F . Explicitly, if a ∈ Clp(OF ) has p-power order h, let ah = (α). The
necessary condition on x is that (assuming p is prime to the order of the unit
group of F) that

α
N (x)−1

p ≡ 1 mod x,

or equivalently that x splits completely in F(α1/p, ζp). We ultimately decided,
however, to impose the simplifying assumption that det(ρ) is cyclotomic, in
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part because the main example of interest concerns elliptic curves over F

which naturally have cyclotomic determinant.

Remark 5.12 A different approach to modularity lifting for GL is to allow the
determinant to vary, specifically, to fix the determinant only up to a character
which is ramified only at the Taylor–Wiles primes in Q (and so not at v|p).
This is possibly the most general way to proceed, although it requires working
with �0 > 0 even for GL(2)/F for totally real fields of degree [F : Q] > 1.
We give some indication of this method by considering the case of GL(1) in
Sect. 8.2. The general case of GL(n) is then a fibre product of this argument
with the fixed determinant arguments for PGL(n).

Remark 5.13 Our methods may easily be modified to prove an Rmin = Tm

theorem for ordinary representations in weights other than weight zero (given
the appropriate modification of Conjecture A). In weights which are not invari-
ant under the Cartan involution (complex conjugation), one knows a priori for
non-Eisenstein ideals m that Tm is finite. Note that in this case it is some-
times possible to prove unconditionally that Rmin[1/p] = 0, see Theorem 1.4
of [66].

Remark 5.14 One technical tool that is conspicuously absent when l0 = 1 is
the technique of solvable base change. When proving modularity results for
GL(2) over totally real fields, for example, one may pass to a finite solvable
extension to avoid various technical issues, such as level lowering (see [67]).
However, if F is an imaginary quadratic field, then every non-trivial extension
H/F has at least two pairs of complex places, and the corresponding invariant
l0 = rank(G) − rank(K ) for PGL(2)/H is at least 2 (more precisely, it is
equal to the number of complex places of H ). This means that when l0 = 1,
our techniques are mostly confined to the approach used originally by Wiles,
Taylor–Wiles, and Diamond [1,2,26].

Remark 5.15 Our techniques also apply to some other situations in which
l0 = 1 (the Betti case). One may, for example, consider 2-dimensional rep-
resentations over a field F with one complex place. If [F : Q] is even, there
exists an inner form for GL(2)/F which is compact at all real places of
F , and the corresponding arithmetic quotient is a finite volume arithmetic
hyperbolic manifold which is compact if [F : Q] > 2. (If [F : Q] is
odd, one would have to require that ρ be ramified with semi-stable reduc-
tion at at least one prime λ � p). Nonetheless, we obtain minimal lifting
theorems in these cases, modulo an analogue of Conjecture A. Similarly, our
methods immediately produce minimal lifting theorems for GL(3)/Q, mod-
ulo an appropriate version of Conjecture A. Similarly, our methods should
also apply to other situations in which π∞ is a holomorphic limit of discrete
series (the Coherent case). One case to consider would be odd ordinary irre-
ducible Galois representations ρ : G F → GL2(Qp) of a totally real field F
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which conjecturally arise from Hilbert modular forms exactly one of whose
weights is one. Other examples of particular interest include the case in which
ρ : GQ → GSp4(Qp) is the Galois representation associated to an abelian
surface A/Q, or ρ : G E → GL3(Qp) is the Galois representation associ-
ated to a Picard Curve (see the appendix to [68]). We hope to return to these
examples in future work.

Part 2. l0 arbitrary.

In this second part of the paper, our main result is a conditional modularity
lifting theorem for n-dimensional p-adic representations of the Galois group of
an arbitrary number field. In this generality, we are forced to work in a situation
where the automorphic forms in question occur in a range of cohomological
degrees of arbitrary length l0. We could have presented our arguments in both
the coherent cohomology setting and the Betti cohomology setting, but for
concreteness, we have decided to treat only the latter case in detail.

We now state our main (conditional) modularity lifting theorem; it will be
used in Sect. 10 to prove Theorem 1.1. Let O denote the ring of integers in a
finite extension of Qp, let � be a uniformizer of O, and let O/� = k be the
residue field. Recall that a representation Gal(C/R)→ GLn(O) is odd if the
image of c has trace in {−1, 0, 1}, and let ε denote the cyclotomic character.

Theorem 5.16 Assume Conjecture B. Let F/Q be an arbitrary number field,

and n a positive integer. Let p > n be unramified in F. Let

r : G F → GLn(O)

be a continuous Galois representation unramified outside a finite set of primes.

Denote the mod-� reduction of r by r : G F → GLn(k). Suppose that

(1) If v|p, the representation r |Dv is crystalline.

(2) If v|p, then gri (r ⊗Zp BDR)
Dv = 0 unless i ∈ {0, 1, . . . , n − 1}, in which

case it is free of rank 1 over O ⊗Zp Fv .

(3) The restriction of r to F
(
ζp

)
is absolutely irreducible, and the field

F(ad0(r)) does not contain F(ζp).

(4) In the terminology of [3], Definition 2.5.1, r is big.

(5) If v|∞ is any real place of F, then r |G Fv is odd.

(6) If r is ramified at a prime x, then r |Ix is unipotent. Moreover, if, further-

more, r is unramified at x, then N (x) ≡ 1 mod p.

(7) The determinant of r is εn(n−1)/2.

(8) Either:

(a) There exists a cuspidal automorphic representation π0 of GLn(AF )

such that: π0,v has trivial infinitesimal character for all v|∞, good

reduction at all v|p, and the p-adic Galois representation rp(π) both

satisfies condition 6 and the identity r p(π) = r .
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(b) r is Serre modular of minimal level N (r), and r is ramified only at

primes which ramify in r .

Then r is modular, that is, there exists a regular algebraic cusp form π for

GLn(AF ) with trivial infinitesimal character such that L(r, s) = L(π, s).

This theorem will follow immediately from Theorem 9.19, proved below.
As in Theorem 1.2, condition 8b is only a statement about the existence of a
mod-p cohomology class of level N (r), not the existence of a characteristic
zero lift; this condition is the natural generalization of Serre’s conjecture. On
the other hand, the usual strategy for proving potential modularity usually
proceeds by producing characteristic zero lifts which are not minimal, and
thus condition 8a will be useful for applications. If conditions 1, 2, and 3
are satisfied, then conditions 5 and 6 are satisfied after a solvable extension
which is unramified at p. Moreover, if r admits an automorphic lift with
trivial infinitesimal character and good reduction at p, then condition 8a is
also satisfied after a solvable extension which is unramified at p. Condition 8b,
however, is not obviously preserved under cyclic base change.

Note that it will be obvious to the expert that our methods will allow for
(conditional) generalizations of these theorems to other contexts (for example,
varying the weight) but we have contented ourselves with the simplest possible
statements necessary to deduce Theorem 1.1. We caution, however, that several
techniques are not available in this case, in particular, the lifting techniques of
Ramakrishna and Khare–Wintenberger require that l0 = 0.

6 Some commutative algebra II

The general difficulty in proving that R∞ = T∞ is to show that there are
enough modular Galois representations. If the cohomology we are interested
in occurs in a range of degrees of length l0, then we would like to show that
in at least one of these degrees that the associated modules HN (which are
both Hecke modules and modules for the group rings SN := O[(Z/pN Z)q ])
compile, in a Taylor–Wiles patching process, to form a module of codimension
l0 over the completed group ring S∞ := O[(Zp)

q ]. The problem then becomes
to find a find a suitable notion of “codimension l0” for modules over a local
ring that

(1) is well behaved for non-reduced quotients of power series rings over O

(like SN ),
(2) can be established for the spaces HN in question,
(3) compiles well in a Taylor–Wiles system.

It turns out to be more effective to patch together a series of complexes
DN of length l0 whose cohomology computes the cohomology of �1(QN )
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localized at m. The limit of these patched complexes will then turn out to be
a length l0 resolution of an associated patched module.

It will be useful to prove the following lemmas.

Lemma 6.1 Let S be a Noetherian local ring. If N is an S-module with depth

n, and 0 �= M ⊆ N, then dim(M) ≥ n.

Proof Let p be an associated prime of M (and hence of N ). Then p is the
annihilator of some 0 �= m ∈ M , and it suffices to prove the result for M

replaced by mS ⊂ M . On the other hand, for a Noetherian local ring, one has
the inequality (see [69], Theorem 17.2)

n = depth(N ) ≤ min
Ass(N )

dim S/p ≤ dim(M).

��
We deduce from this the following:

Lemma 6.2 Let l0 ≥ 0 be an integer and let S be a Noetherian regular local

ring of dimension n ≥ l0. Let P be a perfect complex of S-modules which is

concentrated in degrees 0, . . . , l0. Then codim(H∗(P)) ≤ l0, and moreover,

if equality occurs, then:

(1) P is a projective resolution of H l0(P),

(2) H l0(P) has depth n − l0 and has projective dimension l0.

Proof Let δi : P i → P i+1 denote the differential and let m ≤ l0 denote the
smallest integer such that Hm(P) �= 0. Consider the complex:

P0 → P1 → · · · → Pm .

By assumption, this complex is exact until the final term, and thus it is a
projective resolution of the S-module K m := Pm/ Im(δm−1). It follows that
the projective dimension of K m is ≤ m. On the other hand, we see that

Hm(P) = ker(δm)/ Im(δm−1) ⊆ K m,

and thus

codim(Hm(P))=n−dim(Hm(P))≤n−depth(K m) = proj.dim(K m)≤m,

where the central inequality is Lemma 6.1, and the second equality is the
Auslander–Buchsbaum formula.

Suppose that codim(H∗(P)) ≥ l0. Then it follows from the argument
above that the smallest m for which Hm(P) is non-zero is m = l0,
that codim(H l0(P)) = l0, that P is a resolution of H l0(P), and that
proj.dim(H l0(P)) = l0, completing the argument. ��

123



F. Calegari, D. Geraghty

6.1 Patching

We establish in this section an abstract Taylor–Wiles style patching result
which may be viewed as an analogue of Theorem 2.1 of [26] and Proposi-
tion 2.3, but also including refinements due to Kisin.

Theorem 6.3 Let q and j be non-negative integers with q + j ≥ l0, and let

S∞ = O[(Zp)
q ]. For each integer N ≥ 0, let SN := O[�N ] with �N :=

(Z/pN Z)q . For each M ≥ N ≥ 0 and each ideal I of O, we regard SN/I

(and in particular, O/I = S0/I ) as a quotient of SM via the quotient map

�M � �N and reduction modulo I .

(1) Let R∞ be an object of CO of Krull dimension 1+ j + q − l0.

(2) Let R be an object of CO, and let H be an R-module.

(3) Let T be a complex of finite-dimensional k-vector spaces concentrated in

degrees 0, . . . , l0 together with a differential d = 0 and an isomorphism

H l0(T )
∼→ H/� of k-modules.

Let O� = O[z1, . . . , z j ] and for each O-module or O-algebra M, we let

M� := M ⊗O O�. For any O-algebra A, we regard A as a quotient of A�

via the map sending each zi to 0.

Suppose that, for each integer N ≥ 1, DN is a perfect complex of SN/�
N -

modules with the following properties:

(a) There is an isomorphism DN ⊗SN
SN/mSN

� T .

(b) For each M ≥ N ≥ 0 with M ≥ 1 and each n ≥ 1, there is an action

of R∞ on the on the cohomology of the complex D�
M ⊗SM

SN/�
n that

commutes with that of S�
M . If, in addition, N ≥ N ′ ≥ 0 and n ≥ n′ ≥ 1,

then the natural map H∗(D�
M ⊗SM

SN/�
n)→ H∗(D�

M ⊗SM
SN ′/�

n′)

is compatible with the R∞-actions.

(c) For each N ≥ 1, there is a surjective map φN : R∞ → R, and for each

n ≥ 1 we are given an isomorphism

H l0(D�
N ⊗S�

N
O/� n) = H l0(DN ⊗SN

O/� n) � H/� n

of R∞-modules where R∞ acts on H/� n via φN . Moreover, these iso-

morphisms are compatible for fixed N and varying n.

(d) For M, N and n as above, the image of S�
M in EndO(H

∗(D�
M⊗SM

SN/�
n))

is contained in the image of R∞ and moreover, the image of the augmenta-

tion ideal of S�
N (that is, the kernel of S�

N → O) is contained in the image

of ker(φN ).
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Let a ⊂ S�
∞ denote the kernel of the map S�

∞ → O sending each element of

(Zp)
q to 1 and each zi to 0. Then the following holds: there is a perfect complex

P∞ of finitely generated S∞-modules concentrated in degrees 0, . . . , l0 such

that

(i) The complex P�
∞ is a projective resolution, of minimal length, of its top

degree cohomology H l0(P�
∞).

(ii) There is an action of R∞⊗̂OS�
∞ on H l0(P�

∞) extending the action of S�
∞

and such that H l0(P�
∞) is a finite R∞-module.

(iii) The R∞-depth of H l0(P∞) is equal to 1+ j + q − l0(= dim R∞).

(iv) There is a surjection φ∞ : R∞ � R and an isomorphism ψ∞ :
H l0(P�

∞)/a
∼→ H of R∞-modules where R∞ acts on H via φ∞. More-

over, the image of a in End(H l0(P�
∞)) is contained in that of ker(φ∞).

Proof For each N ≥ 1, let aN denote the kernel of the natural surjection
S∞ � SN and let bN denote the open ideal of S�

∞ generated by � N , aN and
(zN

1 , . . . , z
N
j ). Choose a sequence of open ideals (dN )N≥1 of R such that

• dN ⊃ dN+1 for all N ≥ 1;
• ∩N≥1dN = (0);
• � N R ⊂ dN ⊂ � N R + AnnR(H) for all N .

(As in the proof of Theorem 2.3, one can take dN to be the ideal generated by
� N and AnnR(H)

N ).
Define a patching datum of level N to be a 3-tuple (φ, ψ, P) where

• φ : R∞ � R/dN is a surjection in CO;
• P is a perfect complex of S∞/(aN + � N )-modules such that P ⊗

S∞/mS∞ � T ;
• For each N ≥ N ′ ≥ 0, each N ≥ n′ ≥ 1 and each ideal I of O� with
(zN

1 , . . . , z
N
j ) ⊂ I ⊂ (z1, . . . , z j ), the cohomology groups H i (P� ⊗S�

∞

S�
N ′/(I + �

n′)) carry an action of R∞ that commutes with the action of
S�
∞ and these R∞-actions are compatible for varying N ′, n′ and I ;

• ψ : H l0(P�⊗S�
∞

S�
∞/(a+� N ))

∼→ H/� N H is an isomorphism of R∞
modules (where R∞ acts on H/� N H via φ). (Note that ψ then gives rise
to an isomorphism of R∞-modules between H l0(P�⊗S�

∞
S�
∞/(a+� n′))

and H/� n′H for each N ≥ n′ ≥ 1).

We say that two such 3-tuples (φ, ψ, P) and (φ′, ψ ′, P ′) are isomorphic ifφ =
φ′ and there is an isomorphism of complexes P

∼→ P ′ of S∞-modules inducing
isomorphisms of R∞⊗̂OS∞-modules on cohomology which are compatible
with ψ and ψ ′ in degree l0. We note that, up to isomorphism, there are finitely
many patching data of level N . (This follows from the fact that R∞ and S∞
are topologically finitely generated, and that T is finite). If D is a patching
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datum of level N and 1 ≤ N ′ ≤ N , then D gives rise to a patching datum of
level N ′ in an obvious fashion. We denote this datum by D mod N ′.

For each pair of integers (M, N ) with M ≥ N ≥ 1, we define a patching
datum DM,N of level N as follows: the statement of the proposition gives a
homomorphism φM : R∞ � R and an SM/�

M -complex DM . We take

• φ to be the composition R∞
φM
� R � R/dN ;

• P to be DM ⊗S∞ S∞/(aN +� N ) = DM ⊗SM
SN/�

N ;

• ψ : H l0
(P�⊗S�

∞
S�
∞/(a+� N )) = H l0(D�

M ⊗S�
M

O/� N )
∼→ H/� N to

be the given isomorphism.

To see that the third condition in the definition of a patching datum is satisfied,
let I be an ideal of O� with (zN

1 , . . . , z
N
j ) ⊂ I ⊂ (z1, . . . , z j ), and let 1 ≤

n′ ≤ N , 0 ≤ N ′ ≤ N . Then we have

H i (P� ⊗S�
∞

S�
N ′/(I +�

n′)) = H i (D�
M ⊗SM

SN ′/�
n′)⊗

O� O
�/I,

and hence, by assumption (b), this space carries an R∞-action that commutes
with the S�

∞-action and is compatible for varying I , N ′ and n′. Thus, DM,N is
indeed a patching datum of level N .

Since there are finitely many patching data of each level N ≥ 1, up to
isomorphism, we can find a sequence of pairs (Mi , Ni )i≥1 such that

• Mi ≥ Ni , Mi+1 ≥ Mi , and Ni+1 ≥ Ni for all i ;
• DMi+1,Ni+1 mod Ni is isomorphic to DMi ,Ni

for all i ≥ 1.

For each i ≥ 1, we write DMi ,Ni
= (φi , ψi , Pi ) and we fix an isomorphism

between DMi+1,Ni+1 mod Ni and DMi ,Ni
. We define

• φ∞ : R∞ � R to be the inverse limit of the φi ;
• P∞ := lim←−i

Pi where each transition map is the composite of Pi+1 �

Pi+1/(�
Ni +aNi

)with the isomorphism Pi+1/(�
Ni +aNi

)
∼→ Pi coming

from the chosen isomorphism between DMi+1,Ni+1 mod Ni and DMi ,Ni
.

• ψ∞ to be the isomorphism of R∞-modules H l0(P�
∞)/a = H l0(P�

∞/a)
∼→

H (where R∞ acts on H via φ∞) arising from the isomorphisms ψi .

Then P∞ is a perfect complex of S∞-modules concentrated in degrees
0, . . . , l0 such that H∗(P�

∞) carries an action of R∞⊗̂OS�
∞ (extending the

action of S�
∞). The image of S�

∞ in EndO(H
∗(P�

∞)) is contained in the image
of R∞. (Use assumption (d), and the fact that the image of R∞ is closed in
EndO(H

∗(P�
∞)) (with its profinite topology)). It follows that H i (P�

∞) is a
finite R∞-module for each i . Moreover, since S�

∞ is formally smooth over O,
we can and do choose a homomorphism ı : S�

∞ → R∞ in CO, compatible
with the actions of S�

∞ and R∞ on H∗(P�
∞).
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Modularity lifting beyond the Taylor–Wiles method

Since dimS�
∞
(H∗(P�

∞)) = dimR∞(H
∗(P�

∞)) and dim R∞ = dim S�
∞ − l0,

we deduce that H∗(P�
∞) has codimension at least l0 as an S�

∞-module. By
Lemma 6.2 (with S = S�

∞ and P = P�
∞) we deduce that P�

∞ is a resolution
of minimal length of H l0(P�

∞) and that

depthS�
∞
(H l0(P�

∞)) = dim(S�
∞)− l0 = 1+ j + q − l0.

Finally note that the image of of a in End(H l0(P�
∞)) is contained in that of

ker(φ∞) by assumption (d). ��
Theorem 6.4 Keep the notation of the previous theorem and suppose in addi-

tion that R∞ is p-torsion free.

(1) If R∞ is formally smooth over O, so R � O[x1, . . . , xq+ j−l0], then H is

a free R-module.

(2) If R∞[1/p] is irreducible, then H is a nearly faithful R-module (in the

terminology of [11]).

(3) More generally, H is nearly faithful as an R-module providing that

every irreducible component of Spec(R∞[1/p]) is in the support of

H l0(P∞)[1/p].
Proof Suppose first of all that R∞ � O[x1, . . . , x j+q−l0]. Since depthR∞
(H l0(P�

∞)) = dim R∞, applying the Auslander–Buchsbaum formula again,
we deduce that H l0(P�

∞) is free over R∞. Let ı : S�
∞ → R∞ be as in

the proof of Theorem 6.3. Then, the existence of the isomorphism ψ∞ :
H l0(P�

∞)/aH l0(P�
∞)

∼→ H tells us that R∞/ ı(a)R∞ acts freely on H and
hence ker(φ∞) ⊂ ı(a)R∞. On the other hand, the freeness of H l0(P�

∞) over
R∞ and the fact that the image of a in End(H l0(P�

∞)) is contained in that of
ker(φ∞) imply that ı(a)R∞ ⊂ ker(φ∞). We deduce that ı(a)R∞ = ker(φ∞)
and that R acts freely on H , as required.

For the remaining cases, to show that H is nearly faithful as an R-module, it
suffices to show that H l0(P�

∞) is nearly faithful as an R∞-module. To see this,
suppose H l0(P�

∞) is nearly faithful as an R∞-module. Then H l0(P�
∞)/a

∼=
H is nearly faithful as an R∞/ ı(a)R∞-module. The action of R∞ on this
module also factors through R∞/ ker(φ∞) = R. Thus we see that Rred �

(R∞/ ı(a)R∞)red and it suffices to show this map is an isomorphism. However,
the fact that H l0(P�

∞) is nearly faithful as an R∞-module together with the fact
that the image of a in End(H l0(P�

∞)) is contained in that of ker(φ∞) imply
that

ı(a)+ N ⊂ ker(φ∞)+ N

where N is the ideal of nilpotent elements in R∞. From this it follows imme-
diately that (R∞/ ı(a))red � Rred, as required.
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Since R∞ is p-torsion free, all its minimal primes have characteristic 0. Thus
H l0(P�

∞) is nearly faithful as an R∞-module if and only if each irreducible
component of Spec(R∞[1/p]) lies in the support of H l0(P�

∞)[1/p]. Part
(3) follows immediately. For part (2), note that since depthR∞(H

l0(P�
∞)) =

dim R∞, the support of H l0(P�
∞) is a union of irreducible components of

Spec(R∞) of maximal dimension. Since H l0(P�
∞) �= {0}, the result follows.

��

Remark 6.5 It follows from the proof of the previous theorem that for H l0(P�
∞)

to be nearly faithful as an R∞-module, it is necessary that R∞ be equidimen-
sional.

To implement the level-changing techniques of [11], we will need the fol-
lowing refinement of Theorem 6.3.

Proposition 6.6 Let SN and O� be as in Theorem 6.3. Suppose we are

given two sets of data (Ri
∞, Ri , H i , T i , (Di

N )N≥1, (φ
i
N )N≥1)i=1,2 satisfying

assumptions (1)–(3) and (a)–(d) of Theorem 6.3, for i = 1, 2. Suppose also

that we are given:

• isomorphisms of k-algebras

R1
∞/�

∼−→ R2
∞/�

R1/�
∼−→ R2/�,

• an isomorphism of R1/�
∼→ R2/� -modules

H1/�
∼−→ H2/�,

• an isomorphism, for each M ≥ N ≥ 0, of SN/� -modules

H l0(D1
M ⊗SM

SN/�)
∼−→ H l0(D2

M ⊗SM
SN/�)

which induces (after tensoring over O with O�) an isomorphism of R1
∞⊗O

S�
N/�

∼→ R2
∞ ⊗O S�

N/� -modules

H l0((D1
M)

� ⊗SM
SN/�)

∼−→ H l0((D2
M)

� ⊗SM
SN/�)

such that for each M ≥ 1 the square

H l0(D1
M ⊗SM

O/�) −−−→ H l0(D2
M ⊗SM

O/�)
⏐⏐�

⏐⏐�
H1/� −−−→ H2/�
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commutes. Then we can find complexes P
i,�
∞ for i = 1, 2 satisfying conclu-

sions (i)–(iv) of Theorem 6.3 as well as the following additional property:

• There is an isomorphism of R1
∞/�

∼→ R2
∞/� -modules

H l0(P1,�
∞ )/�

∼−→ H l0(P2,�
∞ )/�

such that the square

H l0(P
1,�
∞ )/(a+�) −−−→ H l0(P

2,�
∞ )/(a+�)

⏐⏐�
⏐⏐�

H1/� −−−→ H2/�

commutes.

Proof This can be proved in much the same way as Theorem 6.3; we omit the
details. ��

In practice, we will apply Prop 6.6 in a situation where we are primarily
interested in the collection of data indexed by i = 1. For the data indexed by
i = 2, the ring R2

∞[1/p] will be irreducible and hence H2 will be a nearly
faithful R2-module by Theorem 6.4. Proposition 6.6 will then allow us to
deduce that H1 is a nearly faithful R1-module, following the arguments of [11].

7 Existence of complexes

In this section, we prove the existence of the appropriate perfect complexes
of length l0 which are required for patching. In both cases—the Betti case or
the coherent case—the setting is similar: we have a covering space X�(Q)→
X0(Q) of manifolds or an étale map X�(Q) → X0(Q) of schemes over
O, each with covering group �, which is a finite abelian group of the form
(Z/pN Z)q . In both cases, the cohomology localized at a maximal ideal m

of the corresponding Hecke algebra T is assumed to vanish outside a range
of length l0. The key point is thus to construct complexes of the appropriate
length whose size is bounded (in the sense of condition (a) of Theorem 6.3)
independently of Q, so that one may apply our patching result.

7.1 The Betti case

We put ourselves in the following somewhat general situation. Let X0(Q)

denote the locally symmetric space associated to a reductive group G over some
number field F and a compact open subgroup K0(Q) of G(A∞F ). Similarly let
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X�(Q) be associated to a normal subgroup K�(Q) ⊂ K0(Q) with quotient
�, a finite abelian group. In practice, Q will represent a set of Taylor–Wiles
primes. See Sect. 9 for the specific compact open subgroups that we will choose
when G = PGL(n). Let R = O[�] and let a denote the augmentation ideal
of R. Recall that by a perfect complex of R-modules, we mean a bounded
complex of finite free R-modules. If Y is a topological space, we let C(Y )

denote the complex of O-valued singular chains on Y .

Lemma 7.1 There exists a perfect complex of R-modules C together with a

quasi-isomorphism

C → C(X�(Q))

of complexes of R-modules. In particular, we have isomorphisms:

H∗(C ⊗O O/� N ) = H∗(X�(Q),O/�
N )

H∗(C ⊗R R/(a+� N )) = H∗(X0(Q),O/�
N )

for all integers N.

Proof By [43, Sect. II.5 Lemma 1], there exists a perfect complex of R-
modules C together with a quasi-isomorphism C → C(X�(Q)) of complexes
of R-modules. (Mumford only guarantees that the final term of the complex is
flat, but since R is local, this final term is also free). Since C and C(X�(Q))

are bounded complexes of flat R-modules, we have

H∗(C ⊗R A)
∼−→ H∗(C(X�(Q))⊗R A)

for every R-algebra A by [43, Sect. II.5 Lemma 2]. Taking A = R/� N gives
the first isomorphism. For the second isomorphism, the fact that X�(Q) →
X0(Q) is a covering map with group � implies that

C(X�(Q))⊗R R/a
∼→ C(X0(Q)).

Thus, taking A = R/(a+� N ) gives the second isomorphism. ��

Letγ ∈ G(A∞,p)with associated Hecke operator Tγ : H∗(X�(Q),O/� N )

→ H∗(X�(Q),O/� N ) for N ≤ ∞ (where we define O/�∞ := O).

Lemma 7.2 Let C be as in Lemma 7.1. Then the action of Tγ on homology

may be lifted to a map

Tγ : C → C

of complexes of R-modules.
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Proof Let A = O/� N for N ≤ ∞ and let K ⊂ G(A∞F ) be the compact
open subgroup with X K = X�(Q) (this was called K�(Q) above). Let K ′ =
γ Kγ−1 ∩ K and K ′′ = K ∩ γ−1Kγ . Note that right multiplication by γ
gives an isomorphism: γ : X K ′ → X K ′′ . The operator Tγ is equal, up to an
invertible scalar which we may ignore, to the composition:

Hi (X K , A)
tr→ Hi (X K ′, A)

γ∗→ Hi i(X K ′′, A)→ Hi (X K , A),

where the first map is the transfer (or corestriction) map. Thus Tγ is induced
by the corresponding composition of morphisms of complexes

C(X K )
tr→ C(X K ′′)

γ∗→ C(X K ′)→ C(X K ),

(after tensoring over O with A). Denote this composition T̃γ . Restricting to C

(by means of the quasi-isomorphism C → C(X K ) of Lemma 7.1), we obtain
T̃γ : C → C(X K ) which also gives rise to Tγ on homology. We thus have a
diagram

C
T̃γ−−−→ C(X K )�⏐⏐

C

of complexes of R-modules with the vertical morphism being a quasi-
isomorphism. Since C is perfect, the morphism T̃γ can be lifted to a morphism
Tγ : C → C making the diagram commute. (See [70, Tag 08FQ] for example).

��

Let T denote a Hecke algebra generated over O by a collection of operators
Tγ . Then, for any T ∈ T, we we can express T as a polynomial in the operators
Tγ and thus lift the action of T on homology to an endomorphism T : C → C .

Lemma 7.3 For T ∈ T, let CT := lim
→

T nC. Then CT is a perfect complex of

R-modules whose homology is

lim
→

T n H∗(C).

Proof Since R is complete, the functor M → lim
→

T n M on finitely generated

R-modules is exact and and lim
→

T n M is in fact a direct summand of M (the

other factor being the submodule of M on which T is topologically nilpotent).
A direct summand of a projective module is projective, and the equality of
homology follows from the exactness of the functor. ��
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We now assume that � is of p-power order. Thus R = O[�] is local and
we let mR be the maximal ideal of R.

Lemma 7.4 (Nakayama’s Lemma for perfect complexes) Let T ∈ T be as

above. Then there exists a perfect complex of R-modules D which is quasi-

isomorphic to CT and such that

dim Dn/mR = dim Hn(CT ⊗ R/mR) = dim lim
→

T m Hn(X0(Q), k)

for all n. Moreover, the length of D is at most l0, where l0 is the range of

cohomology groups such that lim
→

T n H∗(C) is non-zero.

Proof By Lemma 1 of Mumford ([43], Chap. II.5) again, one may find a perfect
complex K quasi-isomorphic to CT and such that K is bounded of length l0.
Assume that the differential d on D is non-zero modulo mR from degree n+1
to n. Then by Nakayama’s Lemma, there exists a direct sum decomposition of
perfect complexes of R-modules

K � L ⊕ J,

where Ji is zero for i �= n+1, n and d : Jn+1 → Jn is an isomorphism of free
rank 1 R-modules. Thus, L is also a perfect complex of R-modules which is
quasi-isomorphic to K . Replacing K by L and using induction, we eventually
arrive at a complex D so that d is zero modulo mR , from which the equality
of dimensions follows by Nakayama’s Lemma. ��

In practice, the Hecke algebra T will be of the form Tan[Ux : x ∈ Q]where
Tan is the subalgebra generated by good Hecke operators away from Q and p.
We say that two maximal ideals of T give rise to the same Galois representation
if they contract to the same ideal of Tan. In practice, we will be interested in
localizing the homology groups H∗(X�(Q),O/� N ) at a particular maximal
ideal m of T. The residue field of m will be equal to k. In order to apply the
above lemmas, we take the Hecke operator T to be

∏

x∈Q

Px ◦
∏

i∈�
Pi ,

where �, Px and Pi are chosen as follows: for each of the finitely many
maximal ideals n of T which occurs in H∗(X�(Q), k), choose an O-algebra
homomorphism φn : T → k with kernel n. We let � index the collection of
such maximal ideals n of T which give rise to a Galois representation distinct
from m. This is equivalent to φn and φm differing on Tan. Thus, for i ∈ �
corresponding to a maximal ideal n, there exists a good Hecke operator Ti such
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that φn(Ti ) �= φm(Ti ). Let Fi (T ) denote the minimal polynomial over E of the
Teichmuller lift of φn(Ti ) to E . By Hensel’s Lemma, the element φm(Ti ) ∈ k

is not a root modulo � of Fi (T ). Hence Pi = Fi (Ti ) is an element of n but
not of m. For the maximal ideals n with the same Galois representation as m,
for all x |Q by construction there will be a projector Px which commutes with
the action of the diamond operators and cuts out the localization at m. (For
example, if G = GL(2), then Px can be taken to be lim(Ux − βx )

n! for x |Q,
where Ux − αx ∈ m and αx , βx are arbitrary lifts of the (distinct) eigenvalues
of r(Frobx ) to O). In particular, we have

lim
→

T n H∗(��(QN ),O/�
N ) = H∗(��(QN ),O/�

N )m.

Thus, letting D be as in Lemma 7.4 for this choice of T , we have that D is a
perfect complex of R-modules such that:

• Dn �= 0 if and only if Hn(X0(Q), k)m �= {0},
• Hn(D ⊗O O/� N ) ∼= Hn(X�(Q),O/�

N )m, for all n, N , and
• Hn(D ⊗R R/(a+� N )) ∼= Hn(X0(Q),O/�

N )m for all n, N .

7.2 The Coherent case

We now explain how to prove the existence of appropriate complexes in the
setting of coherent cohomology. The setting will be as follows. We will have
an étale map Y = X�(Q) → X = X0(Q) with Galois group �, a finite
abelian p-group. The spaces X and Y will be proper and smooth over Spec(O);
they will arise as integral models of the Shimura varieties associated to some
reductive group G over a number field F and some compact open subgroups
K�(Q) ⊂ K0(Q) ⊂ G(A∞F ). In the case that these Shimura varieties are not
compact, X and Y will be arithmetic toroidal compactifications, as constructed
in [71]. We will be given an automorphic vector bundle E on Y (in the case
of a toroidal compactification, this will either be a canonical or subcanonical
extension) which pulls back to a bundle also denoted by E on X . We will be
interested in producing a perfect complex of R/� n-modules computing

Hi (Y,E ⊗O/� n)m

where m is a maximal ideal of the Hecke algebra generated by ‘good’ Hecke
operators at the unramified primes together with certain operators at the primes
in the set of auxiliary Taylor–Wiles primes Q; here the homology group is
defined as

Hi (Y,E ⊗O/� n) := H i (Y,E ∗ ⊗OY
ωY ⊗O O/� n)∨
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where ωY is the determinant of �1
Y/O. The reader may wonder why we intro-

duce here the non-standard concept of “coherent homology.” The reason is
a mixture of both the practical and the psychological. In both the Betti and
Coherent case, the modules which patch are obtained by taking the Pontrya-
gin duals of the non-zero cohomology group in lowest degree with coefficients
in E/O. In Betti cohomology, the groups Hq0(X,E /O)∨m may be identified
with the non-zero homology group of highest degree with coefficients in O,
namely Hq0+l0(X,O)m. This identification is essentially a consequence of
Poincaré duality (the manifolds X have boundary, but the ideals m are cho-
sen specifically so that the cohomology of the boundary becomes trivial after
localization at m). In the coherent case, our use of the terminology “homol-
ogy” is thus to preserve the analogy, but also as a convenient shorthand for
the necessary operation of taking coefficients of our sheaves in E /O and then
taking Pontryagin duals. One could also make these analogies more precise
by comparing Poincaré duality to Serre and Verdier duality.

We begin with some commutative algebra.

Lemma 7.5 Let P be an O-module such that P is� -torsion free. Then P/� n

is free over O/� n for each n.

Proof If n = 1, then P/� is a module over a field k = O/� , and hence
admits a basis {xα}. Let {xα} denote any lift of this generating set to P . Let
Q ⊂ P denote the O-submodule generated by the xα . We claim that Q surjects
onto P/� n for all n, and moreover that P/� n is free on the images of the
generators xα of Q. We prove this by induction. It is true for n = 1 by
construction. Suppose that Q → P/� n is surjective. Let x ∈ P , and consider
the image of x in P/� n+1. After subtracting a suitable element of Q, we may
assume that the image of x in P/� n is trivial. Hence we may write x = � n y

for some y ∈ P . The image of y in P/� can be written as the image of an
element of Q, and so y = z + �w for z ∈ Q and w ∈ P . It follows that
x = � nz mod � n+1, and thus the image of x in P/� n+1 is contained in
the image of Q. It follows that Q → P/� n+1 is surjective. Let us now show
that that P/� n+1 is free over O/� n+1. Assume otherwise. Then there exists
a relation of the form

∑
rαxα ≡ 0 mod � n+1 P.

Reducing this equation modulo� , we deduce by construction that rα is divis-
ible by � for all α. Yet, since P is � -torsion free, any equality � x = � y

in P implies the equality x = y. Hence if we write rα = � sα , we obtain a
relation

∑
sαxα ≡ 0 mod � n P.

123



Modularity lifting beyond the Taylor–Wiles method

By induction, we deduce that sα is 0 in O/� n , and hence rα is trivial in
O/� n+1. In particular, P/� n+1 is freely generated by the images of the xα ,
completing the induction. ��

(As pointed out by the referee, Lemma 7.5 is also an immediate conse-
quence of the fact that P/�m is flat over O/�m and so automatically free
because O/�m is an Artinian local ring).

In the following lemma, � may be any finite abelian group.

Lemma 7.6 Let R = O[�]. If M is an R-module which is free over O/� n

and M/� is free over R/� , then M is free over R/� n .

Proof Let {yα} be an R/� = k[�] basis for M/� . Since R is a free O-
module, we may choose a finite basis {zi } for R over O. Note that {zi } is a
basis for k[�] over k, and zi ·yα is a basis for M/� over k. Lifting the elements
yα to elements yα of M , we see, as in the proof of the Lemma 7.5, that zi · yα
is a free basis for M as an O/� n module. We claim that yα is a free basis for
M as an R/� n-module. Assume otherwise, so that there is a relation

∑
rα yα = 0

with rα ∈ R/� n . We may uniquely write rα =
∑

sα,i zi with sα,i in O/� n .
We then deduce from the freeness of M over O/� n with zi yα as a basis that
sα,i = 0 for all α and all i , and hence rα = 0. ��

We now return to the situation described at the beginning of this section:
f : Y → X is an étale map of smooth proper O-schemes with Galois group�
abelian of p-power order. Let F be a coherent sheaf of OX -modules which is
� -torsion free. Following Nakajima [72], we take an affine covering of X by
affine schemes {Uα} (which are necessarily flat over Spec(O)). We thus obtain
a C̆ech complex D of O-flat O[�]-modules computing H i (Y, f ∗(F )). More
precisely, the terms of D are direct sums of modules of the form N ⊗A B,
where Spec(A) ⊂ X is an intersection of Uα’s with preimage Spec(B) ⊂
Y and N = �(Spec(A),F). Moreover, the complex D ⊗ O/� n computes
H i (Y, f ∗(F )⊗O/� n) for every n.

Lemma 7.7 Let Spec(B)→ Spec(A) be a finite Galois étale morphism of flat

O-algebras with Galois group�. Let R denote the local ring O[�]. Then, for

any A-module N which is flat over O, (N ⊗A B)/� n is a free R/� n-module

for each n.

Proof Let M = N ⊗A B. Then

M/� = (N ⊗A B)/� = N/� ⊗A/� B/�,
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and thus M/� is a projective R/� = k[�]-module by Lemma 1 of [72], and
is thus free. (A theorem of Kaplansky implies that a projective module P over
a local ring R is always free (see [73])). Note that M is flat over O since N

and A are flat over O and B is flat over A. It follows from Lemma 7.5 that
M/� n is free over O/� n . By Lemma 7.6, we deduce that M/� n is free over
R/� n . ��

It follows that D ⊗ O/� n is a bounded complex of projective R/� n-
modules computing the cohomology groups H i (Y, f ∗(F )/� n). We apply
this as follows. Let E denote the automorphic vector bundle introduced above
and take

F = E ∗ ⊗OX
ωX .

Applying Lemma 1 of [43], Ch.II.5 again, we may replace D ⊗ O/� n by
a quasi-isomorphic complex of R/� n-modules C∨n which is perfect. Then
dualizing this latter complex, we obtain a (chain) complex Cn whose homology
groups are

Hi (Y,E ⊗O/� n).

It remains to define an action of the Hecke algebra and cut out the localization
at m.

The Hecke algebra will be generated by operators Tγ where γ ∈ G(A
∞,p
F ).

Let L = K�(Q) ⊂ G(A∞) be the compact open subgroup corresponding to
Y = X�(Q). Let Lγ = γ Lγ−1 ∩ L . Then by choosing suitable polyhedral
cone decomposition data, there exists an arithmetic toroidal compactification
Y γ , proper and smooth over O, of the Shimura variety of level Lγ together
with maps π1, π2 : Y γ → Y where π1 is associated to the inclusion Lγ → L

and π2 is associated to right multiplication by γ on complex points. (See [71,
Sect. 6.4.3]). By [74, Thm. 2.15(4)(c)] and the fact that all automorphic vector
bundles are constructed from the Hodge bundle (see [18, Sect. 4.2]), there is
an isomorphism

φ : π∗2 E
∼−→ π∗1 E

of sheaves on Y γ . To define the Hecke operator Tγ , we follow the approach
of [75, p. 256] which avoids having to define the trace of π1 on cohomology.

Let A = O/� n and let F = E ∗ ⊗ ωX be as above. If M is an O-module
or a sheaf of O-modules on some space, we denote by MA the tensor product
M⊗O A. By Verdier duality, the group H i (Y, ( f ∗F )A) is Pontryagin dual to

Hd−i (Y,HomOY
( f ∗F , ωY )A) = Hd−i (Y, ( f ∗E )A)
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where d is the dimension of Y . Thus, to define an operator Tγ on
H i (Y, ( f ∗F )A), it suffices to define a pairing

H i (Y, ( f ∗F )A)⊗A Hd−i (Y, ( f ∗E )A)→ A.

We define the pairing by sending x ⊗ y to

tr(π∗1 (x) ∪ φπ∗2 (y))

where

• π∗1 (x)∪φπ∗2 (y) denotes the image of the cup product of π∗1 (x) and φπ∗2 (y)
under the natural map

Hd(Y γ , (E ∗ ⊗ ωY γ ⊗ E )A)→ Hd(Y γ , (ωY γ )A),

and
• tr denotes the trace isomorphism

Hd(Y γ , (ωY γ )A)→ A.

This defines the action of Tγ on cohomology. We now want to lift the action
of Tγ to an endomorphism the complex Cn introduced above.

Let YA = Y ×O A and let π : YA → SpecA be the structural morphism.
Then, since G := ( f ∗F )A is a �-equivariant sheaf on YA, we may regard
Rπ∗(G ) = RHom(OYA

,G ) as an object of the bounded derived category of
R = A[�]-modules Db(R). By Verdier duality, we have

RHom(RHom(OYA
,G ), A[0]) = RHom(G , ωYA

[d])

Thus, we have an equality (of Hom’s in the category Db(R)):

Hom(RHom(OYA
,G ), RHom(OYA

,G ))

= Hom(RHom(OYA
,G )

L
⊗ RHom(G , ωYA

[d]), A[0]),

and we define an element of T̃γ of the right hand side by composing

• the pullback under π∗1 ⊗ (φ ◦ π∗2 ),

RHom(OYA
,G )

L
⊗ RHom(G , ωYA

[d])

−→ RHom
(
OY

γ

A
, π∗1 G

) L
⊗ RHom

(
π∗1 G , ωY

γ

A
[d]
)
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• the composition morphism

RHom(OY
γ

A
, π∗1 G )

L
⊗ RHom(π∗1 G , ωY

γ

A
[d])→ RHom(OY

γ

A
, ωY

γ

A
[d]),

and
• the duality isomorphism

RHom(OY
γ

A
, ωY

γ

A
[d]) ∼−→ A[0].

Then T̃γ induces the Hecke operator

Tγ : H i (YA,G )→ H i (YA,G )

defined above. If Cn is the complex introduced above, then it comes equipped
with an isomorphism

C∨n
∼−→ Rπ∗(G ) = RHom(OYA

,G )

in Db(R) and we have a diagram:

C∨n −−−→ RHom(OYA
,G )

T̃γ−−−→ RHom(OYA
,G )

�⏐⏐
C∨n

Since C∨n is perfect, we can apply [70, Tag 08FQ] once again to lift T̃γ to
a morphism of complexes Tγ : C∨n → C∨n that induces the operator Tγ on
cohomology.

Now that we can lift a given Hecke operator T to the complex C∨n (and
hence to its dual Cn), we can show, exactly as in the previous section, that
given a maximal ideal m of the Hecke algebra, then for a judicious choice of
Hecke operator T , the complex

lim−→
m

T mCn

is a perfect complex of R-modules with homology equal to

Hi (Y,EA)m.
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8 Galois deformations

8.1 Outline of what remains to be done to prove Theorem 5.16

Given the patching result (Theorem 6.3) and the existence of complexes satisfy-
ing an appropriate boundedness condition (condition (a) of ibid)., to complete
the argument consists of the following steps. First, consider the minimal case
where there are no primes x � p such that ρ|Dx is ramified when r |Dx is
unramified. In this case, it suffices to construct a sequence QN of collections
of q primes N (x) ≡ 1 mod pN such that the corresponding Hecke rings
TQN

are all quotients of a fixed patched global deformation ring R∞ such that
R∞[1/p] is irreducible of the appropriate dimension. The usual Taylor–Wiles–
Kisin method (with some modifications due to Thorne) exactly produces the
desired sets QN , and the computation of R∞ (which is naturally a power series
over Rloc) is computed in the usual manner, except now its dimension is l0 less
than in the classical case. If one assumes vanishing of cohomology outside the
expected range and also assumes that the Hecke action of cohomology in that
range comes from Galois representations with the expected properties, then
one may construct a series of complexes (as in the last section) which all have
actions by R∞, and then using Theorem 6.3 the desired conclusions follow as
expected.

This leaves the case when there exist primes such that ρ|Ix is unipotent,
N (x) ≡ 1 mod p, and yet r |Dx is unramified. Here one uses Taylor’s
trick [11] to avoid Ihara’s lemma. The key calculation in Taylor’s paper requires
only that one has control over the depth of the patched module on which the
ring R∞ acts, as well as the structure mod� of various local deformation rings.
The required information concerning depth is exactly what one deduces in the
proof of Theorem 6.3. The only difference in this setting is that the relevant
dimension of R∞ is l0 less than the classical case, whereas the corresponding
depth of H l0(P∞) is also exactly l0 less than the classical case—this means
that the argument goes through as expected. We begin, however, by explain-
ing our method in the case of one-dimensional representations, in order to
demonstrate the method.

8.2 Modularity of one-dimensional representations

In this section, we apply our method to one-dimensional representations, that
is, to the case when G = GL(1)/F for an arbitrary number field F . We
will need to assume that F does not contain ζp. The arguments here are
(ultimately) somewhat circular, but they exhibit all the various aspects of the
general method. The invariant value of �0 for a field F of signature (r1, r2)

will be r1 + r2 − 1.
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Up to twist, there is only one residual Galois representation, namely, the
trivial representation

r : G F → F×p .

Minimal deformations of r consist of (everywhere) unramified representations.
Note that ad(r) = Fp and ad(r)(1) = μp. Let us consider the dimensions of the
associated Selmer group H1

L(F,Fp) and the dual Selmer group H1
L∗(F, μp).

Recall from the Greenberg–Wiles formula that:

|H1
L(F,Fp)|

|H1
L∗(F,Fp)|

=
|H0(F,Fp)|
|H0(F, μp)|

∏

v

|Lv|
|H0(Fv,Fp)|

.

The possible local contributions come from v|p, v|∞, and the H0 term. We
assume that ζp /∈ F .

(1) The contribution from
|H0(F,Fp)|
|H0(F, μp)|

is p, because ζp /∈ F . Thus the con-

tribution to dim H1
L(F,Fp)− dim H1

L∗(F, μp) is 1.
(2) Let v|∞, so Fv = R or Fv = C. The groups H0(R,Fp) and H0(C,Fp)

are both one-dimensional. Hence, the contribution to dim H1
L(F,Fp) −

dim H1
L∗(F, μp) at the infinite places is −r1 − r2.

(3) Let v|p. Let kv be the residue field of Fv . The group H0(Fv,Fp) is always
1-dimensional. The Selmer condition Lv ⊂ H1(Fv,Fp) is defined to be
the classes that are unramified when restricted to inertia. By inflation–
restriction, there is a map:

0 → H1(Gal(kv/kv),Fp)→ H1(Fv,Fp)→ H1(Iv,Fp).

Since H1(Gal(kv/kv),Fp) is clearly one-dimensional, the contribution of
these terms is 1− 1 = 0 for each v|p.

It follows that

dim H1
L(F,Fp)− dim H1

L∗(F, μp) = −(r1 + r2 − 1).

We can, in fact, deduce this equality directly by computing both terms via
class field theory. The first group has dimension dim Cl(F)/p. For the second,
recall that for v|p the group L∗v is one-dimensional and is dual to the unramified
classes in H1(Fv,Fp). This dual consists of classes which are finite flat. So
we are interested in H1

fppf(OF , μp), which sits in the exact sequence:

0 → O
×
F /O

×p
F → H1

fppf(OF , μp)→ Cl(F)[p] → 0

123



Modularity lifting beyond the Taylor–Wiles method

by Hilbert’s theorem 90 (Proposition III 4.9 of [33]). Hence the difference in
ranks is

dim O
×
F /O

×p
F = r1 + r2 − 1,

as follows from Dirichlet’s unit theorem and the assumption that ζp /∈ F .
Now let us consider the corresponding symmetric space. The natural space

to consider is

Y := JF/F× = F×\A×F/U K∞

where U is the maximal compact subgroup of the finite adeles, and K∞ is
the connected component of the identity of the maximal compact subgroup of
F× ⊗ R. For a set Q of auxiliary primes, we would also like to consider the
space

YQ = F×\A×F/UQ

where , for v ∈ Q with N (v) ≡ 1 mod pn , one replaces O×v by O
×pn

v , the
unique subgroup of index pn . In the corresponding notation for GL(n), we
have Y = Y0(Q) and YQ = Y1(Q). It is slightly more aesthetically pleasing
to work with the compact part of this space:

X Q := F×\A×F/UQ A0
∞,

where A0
∞ is the identity component of the R-points of the maximal Q-split

torus in the centre. Note that YQ is an R-bundle over X Q , and so, from the
cohomological viewpoint, the extra factor of R does not change any of the
cohomology groups. What, geometrically, is X Q? The component group is
the maximal quotient of the ray class group of conductor Q and exponent pn .
The fibres are coming from the infinite primes. The group K∞ is r2 copies
of S1 coming from the complex places. The fibres of YQ are then exactly the
connected components of the cokernel of the map

O
×
F → R×r1 × C×r2/K∞,

which is (S1)r1+r2−1 × R. Passing to X Q excises the factor of R. Hence the
components of X Q consist simply of a product of circles. Let us examine the
cohomology of X Q . In degree zero, the cohomology is

Zp[RCl(Q)/pn],
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by class field theory. Let πv ∈ Ov be a uniformizer, and suppose that (v, Q) =
1. Then the Hecke operator Tπ acts on the component groups via the image of
[πv] ∈ RCl(Q). For v|Q, we also have diamond operators for α ∈ O×v . There
is a corresponding Galois representation

ρQ : G F → T×Q,

which is exactly the Galois representation coming from class field theory; the
diamond operators correspond, via the local Artin map, to the representation
of the inertia subgroups at v|Q. If we localize at the maximal ideal m of TQ

corresponding to ρ, we obtain a deformation of ρ which is ramified only at Q.
On the other hand, the action of TQ on the higher cohomology groups simply
propagates from H0 using the Künneth formula, and so one obtains the same
action on all cohomology groups. If RQ denotes the deformation ring of ρ
unramified outside Q, we obtain a surjection

RQ → TQ,m,

moreover, both rings are naturally modules over the ring of diamond operators
Zp[�Q] = Zp[U/UQ], acting on the left via Yoneda’s lemma and local class
field theory, and on the right via Hecke operators; and this action is the same.

In this setting, a Taylor–Wiles prime v is a prime N (v) ≡ 1 mod pn

which satisfies a Galois condition and an automorphic condition. The auto-
morphic condition is that there is no extra cohomology when passing from
X to X0(Q). Since X = X0(Q), this is tautologically true. The Galois
condition is that we have to be able to choose |Q| = dim H1

L∗(F, μp) =
dim H1

L(F,Fp)+ �0 primes which exactly annihilate the dual Selmer group,
which is H1

L∗(F, μp) = H1
fppf(F, μp). This group sits inside H1(F, μp) =

F×/F×p, by Hilbert’s Theorem 90 in the classical version. By Kummer theory,
the corresponding elements give rise to extensions F(α1/p, μp). What does
it mean to annihilate this class by allowing ramification at a prime N (v) ≡ 1
mod pn? Allowing ramification at v in the Selmer group corresponds to assum-
ing that the classes in the dual Selmer group split completely at v. That is, we
want to choose primes v so that the class is non-trivial under the map

H1(F, μp)→ H1(Fv, μp) = H1(Fv,Fp).

Note that μp = Fp as a Gal(Fv/Fv)-module if N (v) ≡ 1 mod p. This
amounts to asking that the element Frobv in Gal(F(α1/p, ζp)/F) is non-trivial,
and that N (v) ≡ 1 mod pn . By the Chebotarev density theorem, this is
possible unless F(α1/p) ⊂ F(ζpn ). Note that α ∈ F . This can happen if
α = ζp. So we have to assume that ζp /∈ F , although we have already made this
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assumption previously. More generally, if α1/p ∈ F(ζpn ), then, since F(ζpn )

is Galois an abelian over F , it must be the case that F(α1/p) is also Galois
an abelian over F . This implies that F(ζp) ⊂ F(α1/p), and a consideration
of degrees implies that ζp ∈ F . Hence, if ζp /∈ F , we may choose suitable
primes to annihilate the dual Selmer group.

The invariant �0 = r1+r2−1 exactly matches the dimensions of cohomol-
ogy which are supported on m and the number of elements in the dual Selmer
group which have to be annihilated (the dimension of X Q is equal to �0, so the
cohomology vanishing results in degrees > �0 are automatic). Our patching
result then allows us to deduce that there is an isomorphism

Runr � Zp[Cl(OF )⊗ Zp],

and hence an isomorphism between the Galois group of the maximal unrami-
fied abelian p-power extension of F and the class group of F .

Remark 8.1 The circularity of this argument comes from the application of
Greenberg–Wiles, which requires the full use of class field theory. Even though
we only apply this theorem in the seemingly innocuous case of M = Fp, in
fact the general proof of the Euler characteristic formula reduces exactly to
this case by inflation.

8.3 Higher dimensional Galois representations

In this section, we apply our methods to Galois representations of regular
weight over number fields. When the relevant local deformation rings are all
smooth, the argument is similar to the corresponding result for imaginary
quadratic fields in Sect. 5 that corresponds to the case n = 2 and l0 = 1.
However, in order to prove non-minimal modularity theorems, it is necessary
to consider non-smooth rings, following Kisin. The main reference for many
of the local computations below is the paper [3].

8.4 The invariant l0

Let F be a number field of signature (r1, r2). The invariants l0 and q0 may be
defined explicitly by the following formula, where “rank” denotes rank over
R.

l0 := r1 (rank(SLn(R))− rank(SOn(R)))+ r2 (rank(SLn(C))− rank(SUn(C)))

=

⎧
⎪⎪⎨
⎪⎪⎩

r1

(
n − 1

2

)
+ r2(n − 1), n odd,

r1

(
n − 2

2

)
+ r2(n − 1), n even.
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2q0 + l0 := r1 (dim(SLn(R))− dim(SOn(R)))+ r2 (dim(SLn(C))− dim(SUn(C)))

= r1

(
n2 − 1−

n(n − 1)

2

)
+ r2

(
2(n2 − 1)− (n2 − 1)

)
.

The invariants l0 and 2q0+ l0 arise as follows: 2q0+ l0 is the (real) dimension
of the locally symmetric space associated to G := ResF/Q(PGL(n)), and
[q0, . . . , q0 + l0] is the range such that cuspidal automorphic π for G which
are tempered at∞ contribute to cuspidal cohomology (see Theorem 6.7, VII,
p. 226 of [9]). (In particular, q0 is an integer).

Let V be a representation of G F of dimension n over a field of charac-
teristic different from 2, and assume that the action of G Fv is odd for each
v|∞. Explicitly, this is the trivial condition for complex places, and for real
places v|∞ says that the action of complex conjugation cv ∈ G Fv satisfies
Trace(cv) ∈ {−1, 0, 1}. Then, via an elementary calculation, one has:

∑

v|∞
dim H0(Fv, ad0(V )) =

⎧
⎪⎪⎨
⎪⎪⎩

r1

(
n2 + 1

2
− 1

)
+ r2(n

2 − 1), n odd,

r1

(
n2

2
− 1

)
+ r2(n

2 − 1), n even.

Thus, in both cases we see that:

∑

v|∞
dim H0(Fv, ad0(V )) = [F : Q]

n(n − 1)

2
+ l0. (1)

8.5 Deformations of Galois representations

Let p > n be a prime that is unramified in F and assume that Frac W (k)

contains the image of every embedding F ↪→ Qp. Fix a continuous absolutely
irreducible representation:

r : G F → GLn(k).

We assume that:

• For each v|p, r |Gv is Fontaine–Laffaille with weights [0, 1, . . . , n− 1] for
each τ : OF → k factoring through OFv .

• For each v � p, r |Gv has at worst unipotent ramification and NF/Q(v) ≡ 1
mod p if r is ramified at v.

• The restriction r |Gv is odd for each v|∞.

We also fix a continuous character

ξ : G F → O
×
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lifting det(r) and with

• ξ |Iv = εn(n−1)/2 for all v|p, and
• ξ |Iv = 1 for all v � p.

For example, we can simply take ξ = εn(n−1)/2.
Let Sp denote the set of primes of F lying above p. Let R denote a finite

set of primes of F disjoint from Sp that contains all primes at which r ramifies
and is such that NF/Q(v) ≡ 1 mod p for each v ∈ R. Let Q denote a
finite set of primes of F disjoint from R ∪ Sp. Finally, let S = Sp

∐
R and

SQ = S
∐

Q. In what follows, R will consist of primes away from p where
we allow ramification and Q will consist of Taylor–Wiles primes.

8.5.1 Local deformation rings

For v|p, let Rv denote the framed Fontaine–Laffaille O-deformation ring with
determinant ξ |G Fv

and τ -weights equal to [0, 1, . . . , n−1] for each τ : OF ↪→
W (k). By [3] Proposition 2.4.3, Rv is formally smooth over O of relative
dimension n2 − 1+ [Fv : Qp]n(n − 1)/2.

For each v ∈ R, choose a tuple χv = (χv,1, . . . , χv,n) of distinct characters

χv,i : Iv −→ 1+mO ⊂ O
×

such that
∏

i χv,i is trivial. We introduce the following framed deformation
rings for each v ∈ R:

• Let R1
v denote the universal framed O-deformation ring of r |Gv correspond-

ing to lifts of determinant ξ and with the property that each element σ ∈ Iv
has characteristic polynomial (X − 1)n .

• Let R
χv
v denote the universal framed O-deformation ring of r |Gv corre-

sponding to lifts of determinant ξ and with the property that each element
σ ∈ Iv has characteristic polynomial

∏
i (X − χv,i (σ )).

We let

R1
loc :=

(⊗̂
v∈Sp

Rv

) ⊗̂ (⊗̂
v∈R R1

v

)

R
χ
loc :=

(⊗̂
v∈Sp

Rv

) ⊗̂ (⊗̂
v∈R R

χv
v

)

Lemma 8.2 The rings R1
loc and R

χ
loc have the following properties:

(1) Each of R1
loc and R

χ
loc is p-torsion free and equidimensional of dimension

1+ |Sp ∪ R|(n2 − 1)+ [F : Q]
n(n − 1)

2
.

123



F. Calegari, D. Geraghty

(2) We have a natural isomorphism:

R1
loc/�

∼−→ R
χ
loc/�.

(3) The topological space SpecR
χ
loc is irreducible.

(4) Every irreducible component of SpecR1
loc/� is contained in a unique

irreducible component of SpecR1
loc.

Proof This follows from [76, Lemma 3.3] using [11, Proposition 3.1] and the
properties of the Fontaine–Laffaille rings Rv recalled above. ��

For each v ∈ Q, we assume that:

• r |Gv ∼= sv ⊕ ψv where ψv is a generalized eigenspace of Frobenius of
dimension 1.

Moreover, we let Dv denote the deformation problem (in the sense of [3,
Defn. 2.2.2]) consisting of lifts r of r |Gv of determinant ξ and of the form
ρ ∼= sv ⊕ ψv where sv (resp. ψv) lifts sv (resp. ψv) and Iv acts via (possibly
different) scalars on sv and ψv . Let

Lv ⊂ H1(Gv, ad0(r))

denote the Selmer condition determined by all deformations of r |Gv to k[ε]/ε2

of type Dv . Then

dimk Lv − h0(Gv, ad0(r)) = 1.

8.5.2 Global deformation rings

We now consider the following global deformation data:

SQ = (r ,O, SQ, ξ, (Dv)v∈Sp∪Q, (D
1
v)v∈R)

S
χ
Q = (r ,O, SQ, ξ, (Dv)v∈Sp∪Q, (D

χ
v )v∈R),

where Dv , D1
v and D

χ
v are the local deformation problems determined by the

rings Rv , R1
v and R

χv
v for v ∈ Sp or v ∈ R. A deformation of r to an object of

CO is said to be of type SQ (resp. S
χ

Q) if:

(1) it is unramified outside SQ ;
(2) it is of determinant ξ ;
(3) for each v ∈ Sp ∪ Q, it restricts to a lifting of type Dv and for v ∈ R, to a

lifting of type D1
v (resp. D

χ
v ).
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If Q = ∅, we will denote SQ and S
χ
Q by S and Sχ . The functor from CO to

Sets sending R to the set of deformations of type SQ (resp. SχQ) is represented
by an object RSQ

(resp. R
S
χ
Q

).

We will also need to introduce framing. To this end, let

T = Sp ∪ R.

Let R
�T

SQ
(resp. R

�T

S
χ
Q

) denote the object of CO representing the functor sending

R in CO to the set of deformations of r of type SQ (resp. S
χ
Q) framed at each

v ∈ T . (We refer to Definitions 2.2.1 and 2.2.7 of [3] for the notion of a framed
deformation of a given type, replacing the group Gn of op. cit. with GLn where
appropriate).

We have natural maps

RSQ
−→ R

�T

SQ

R1
loc −→ R

�T

SQ

coming from the obvious forgetful maps on deformation functors. Similar
maps exist for the ‘χ -versions’ of these rings. The following lemma is imme-
diate:

Lemma 8.3 The map

RSQ
−→ R

�T

SQ

is formally smooth of relative dimension n2|T | − 1. The same statement holds

for the corresponding rings of type S
χ
Q .

We now consider the map R1
loc → R

�T

SQ
. For this, we will need to consider

the following Selmer groups:

H1
L(Q),T

(G F , ad0r)

:= ker

⎛
⎝H1(G F,SQ

, ad0r)→
⊕

x∈T

H1(Gx , ad0r)
⊕⊕

x∈Q

H1(Gx , ad0r)/Lx

⎞
⎠

H1
L(Q)⊥,T (G F , ad0r(1))

:= ker

⎛
⎝H1(G F,SQ

, ad0r(1))→
⊕

x∈Q

H1(Gx , ad0r(1))/L⊥x

⎞
⎠ .

123



F. Calegari, D. Geraghty

Proposition 8.4 (1) The ring R
�T

SQ
(resp. R

�T

S
χ
Q

) is a quotient of a power series

ring over R1
loc (resp. R

χ
loc) in

h1
L,T (G F , ad0r)+

∑

v∈T

h0(Gv, adr)− h0(G F , adr) variables.

(2) We have

h1
L,T (G F , ad0r) = h1

L⊥,T (G F , ad0r(1))+ h0(G F , ad0r)

−h0(G F , ad0r(1))

+
∑

v∈Q

(dimk Lv − h0(Gv, ad0r))

−
∑

v∈T∪{v|∞}
h0(Gv, ad0r).

Proof The first part follows from the argument of [52, Lemma 3.2.2] while the
second follows from Poitou–Tate duality and the global Euler characteristic
formula (c.f. the proof of [52, Proposition 3.2.5]). ��

8.6 The numerical coincidence

By choosing a set of Taylor–Wiles primes Q to kill the dual Selmer group, one
deduces the following.

Proposition 8.5 Assume that r(G F(ζp)) is big and let q ≥ h1
L⊥,T

(G F , ad0r(1))

be an integer. Then for any N ≥ 1, we can find a tuple
(

Q,
(
ψv
)
v∈Q

)
where

(1) Q is a finite set of primes of F disjoint from S with |Q| = q.

(2) For each v ∈ Q, we have r |Gv ∼= sv ⊕ ψv where ψv is a generalized

eigenspace of Frobenius of dimension 1.

(3) For each v ∈ Q, we have NF/Q(v) ≡ 1 mod pN .

(4) The ring R
�T

SQ
(resp. R

�T

S
χ
Q

) is a quotient of a power series ring over R1
loc

(resp. R
χ
loc) in

q + |T | − 1− [F : Q]
n(n − 1)

2
− l0.

variables.

Proof Suppose given a tuple (Q, (ψv)v∈Q) satisfying the first three properties.
Let ev ∈ adr denote the Gv-equivariant projection onto ψv . Then, as in [3,
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Proposition 2.5.9] (although we work here with a slightly different deformation
problem at each v ∈ Q) we have

0 −→ H1
L(Q)⊥,T (G F , ad0r(1)) −→ H1

L⊥,T (G F , ad0r(1)) −→ ⊕v∈Qk

where the last map is given by [φ] �→ (tr(evφ(Frobv)))v . The argument of [3,
Proposition 2.5.9] can then be applied to deduce that one may choose a tuple
(Q, (ψ x )x∈Q) satisfying the first three required properties and such that

H1
L(Q)⊥,T (G F , ad0r(1)) = {0}.

The last property then follows from Proposition 8.4, equation (1) and the fact
that

dimk Lv − h0(Gv, ad0r) = 1 if v ∈ Q.

��

9 Homology of arithmetic quotients

Let A denote the adeles of Q, and A∞ the finite adeles. Similarly, let AF and
A∞F denote the adeles and finite adeles of F . Let G = ResF/QPGL(n), and
write G∞ = G(R) = PGLn(R)

r1 × PGLn(C)
r2 . Let K∞ denote a maximal

compact of G∞ with connected component K 0
∞. For any compact open sub-

group K of G(A∞), we may define an arithmetic orbifold Y (K ) as follows:

Y (K ) := G(Q)\G(A)/K 0
∞K .

It has dimension 2q0 + l0 in the notation above. We will specifically be inter-
ested in the following K . Let S = Sp ∪ R and SQ = S ∪ Q be as in Sect. 8.
We follow the convention that the cohomology of Y (K ) is the orbifold coho-
mology in the sense of Remark 5.3.

9.1 Arithmetic quotients

Let K Q =
∏
v K Q,v and L Q =

∏
v L Q,v denote the open compact subgroups

of G(A) such that:

(1) If v ∈ Q, K Q,v is the image in PGL(Ov) of {g ∈ GLn(Ov) | g stabilizes �
mod πv} where � is a fixed line in kn

v .
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(2) If v ∈ Q, L Q,v ⊂ K Q,v is the normal subgroup with quotient group k×v .
Explicitly,

K Q,v =
(

1 ∗
0 GLN−1(Ov)

)
mod πv,

L Q,v =
(

1 ∗
0 SLN−1(Ov)

)
mod πv.

(3) If v /∈ SQ K Q,v = L Q,v = PGLn(Ov).
(4) If v ∈ R, K Q,v = L Q,v = the Iwahori Iw(v) subgroup ofPGLn(Ov)

associated to the upper triangular unipotent subgroup.

When Q = ∅, we let Y = Y (K∅). Otherwise, we define the arithmetic
quotients Y0(Q) and Y1(Q) to be Y (K Q) and Y (L Q) respectively. They are the
analogues of the modular curves corresponding to the congruence subgroups
consisting of �0(Q) and �1(Q). (Rather, they are the appropriate analogues
in the PGL-context).

For each v ∈ R, let Iw1(v) ⊂ Iw(v) denote the pro-v Iwahori. We fix a
character

ψv = ψv,1 × · · · × ψv,n : Iw(v)/Iw1(v) ∼= (k×v )n/(k×v ) −→ 1+mO ⊂ O
×.

The collection of charactersψ = (ψv)v∈R allows us to define a local system of
free rank 1 O-modules O(ψ) on Yi (Q) for i = 1, 2: let π : Ỹi (Q)→ Yi (Q)

denote the arithmetic quotient obtained by replacing the subgroup Iw(v)
with Iw1(v) for each v ∈ R. Then, a section of O(ψ) over an open sub-
set U ⊂ Yi (Q) is a locally constant function f : π−1(U ) → O such that
f (γ u) = ψ(γ ) f (u) for all γ ∈ Iw(v)/Iw1(v). We let H i

ψ (Yi (Q),O) and

Hi,ψ (Yi (Q),O) denote H i (Yi (Q),O(ψ)) and Hi (Yi (Q),O(ψ)). Note that
if ψ = 1 is the collection of trivial characters, then O(ψ) ∼= O and hence
H i
ψ (Yi (Q),O) ∼= H i (Yi (Q),O).

9.2 Hecke operators

We recall the construction of the Hecke operators. Let g ∈ G(A∞) be an
invertible matrix trivial at each place v ∈ R. For K ⊂ G(A∞) a compact open
subgroup of the form K Q or L Q , the Hecke operator T (g) is defined on the
homology modules H•,ψ (Y (K ),O) by considering the composition:

H•,ψ (Y (K ),O)→ H•,ψ (Y (gK g−1 ∩ K Q),O)

→ H•,ψ (Y (K ∩ g−1K g),O)→ H•,ψ (Y (K ),O),
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the first map coming from the corestriction map, the second coming from the
map Y (gK g−1 ∩ K ,O)→ Y (K ∩ g−1K g,O) induced by right multiplica-
tion by g on G(A) and the third coming from the natural map on homology.
The maps on cohomology H•

ψ (Y (K ),O) are defined similarly. (Since, con-
jecturally, the cohomology of the boundary will vanish after localizing at the
relevant m, we may work either with cohomology or homology, by duality).
The Hecke operators act on H•

ψ (Y (K ),O) but do not preserve the homology

of the connected components. For α ∈ A
∞,×
F , we define the Hecke operator

Tα,k by taking

g = diag(α, α, . . . , 1, . . . , 1)

consisting of k copies of α and n − k copies of 1. We now define the Hecke
algebra.

Definition 9.1 Let Tan
Q,ψ denote the subring of

End
⊕

k,n

H k
ψ (Y1(Q),O/�

n)

generated by Hecke endomorphisms Tα,k for all k ≤ n and all α which are
units at primes in SQ . Let TQ,ψ denote the O-algebra generated by the same
operators with Tα for α non-trivial at places in Q. If Q = ∅, we write Tψ for
TQ,ψ .

If a ⊆ OF is an ideal prime to the level, we may define the Hecke operator Ta,k

as (1/NF/Q(a)
k)Tα,k where α ∈ A

×,∞
F is any element which represents the

ideal a and such that α is 1 for each component dividing the level. In particular,
if a = x is prime, then Tx is uniquely defined when x is prime to the level but
not when x divides the level.

Remark 9.2 It would be more typical to define TQ,ψ as the subring of endo-
morphisms of

End
⊕

k

H k
ψ (Y1(Q),O),

except that it would not be obvious from this definition that TQ,ψ acts on
H k
ψ (Y1(Q),O/�

n) for any n. It may well be true (for the m we consider) that

TQ,ψ acts faithfully on the module H
q0+l0
ψ (Y1(Q),O)—and indeed (at least

for Q = ∅) this (conjecturally) follows when Theorem 5.16 applies and (in
addition) Rloc is smooth. Whether one can prove this directly is an interesting
question. (The claim is obvious when the cohomology occurs in a range of
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length l0 = 0, and also follows in the case l0 = 1 given known facts about the
action of TQ on cohomology with K coefficients).

9.3 Conjectures on existence of Galois representations

Let m denote a maximal ideal of Tan
Q,ψ , and let Tan

Q,ψ,m denote the completion.
It is a local ring which is finite (but not necessarily flat) over O.

Conjecture B There exists a semisimple continuous Galois representation

rm : G F → GLn(T
an
Q,ψ/m) with the following property: if λ /∈ SQ is a

prime of F, then rm is unramified at λ, and the characteristic polynomial of

rm(Frobλ) is

Xn − Tλ,1 Xn−1 + · · · + (−1)i NF/Q(λ)
i(i−1)/2Tλ,i Xn−i

+ · · · + (−1)nNF/Q(λ)
n(n−1)/2Tλ,n,

in Tan
Q,ψ/m[X ]. Note that this property determines rm uniquely by the Cheb-

otarev density theorem. If rm is absolutely irreducible, we say that m is

non-Eisenstein. In this case we further predict that there exists a deforma-

tion rm : G F → GLn(T
an
Q,ψ,m) of rm unramified outside SQ and such that the

characteristic polynomial of rm(Frobλ) is given by the same formula as above.

In addition, suppose that rm
∼= r (where r is the representation introduced in

Sect. 8.5). Suppose also that the set of primes Q consists of a set of Taylor–

Wiles primes, that is, a set of primes as constructed in Proposition 8.5; this is

an empty condition when Q = ∅. We conjecture that rm enjoys the following

properties:

(1) If v|p, then rm|Gv is Fontaine–Laffaille with all weights equal to

[0, 1, . . . , n − 1].
(2) If v ∈ Q, then rm|Gv is a lifting of type Dv where Dv is the local deforma-

tion problem specified in Sect. 8.5.1.

(3) If v ∈ R, then the characteristic polynomial of rm(σ ) for each σ ∈ Iv is

(X − ψv,1(Art−1
v (σ ))) . . . (X − ψv,n(Art−1

v (σ ))).

(4) (a) The localizations H i
ψ(Y1(Q),O/�

m)m vanish unless i ∈ [q0, . . . , q0+
l0].

(b) The localizations H i
ψ (∂Y1(Q),O/�

m)m vanish for all i , where

∂Y1(Q) is the boundary of the Borel–Serre compactification of Y1(Q).

(5) For x ∈ Q, let Px (X) = (X − αx )Qx (X) denote the characteristic poly-

nomial of r(Frobx ) where αx = ψ x (Frobx ). Let mQ denote the maximal

ideal of TQ,ψ containing m and Vx − αx for all x |Q, where Vx = Tx,1,
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which is well defined modulo m. Then there is an isomorphism

lim
k→∞

∏

x∈Q

Qx (Vx )
k! : H∗

ψ (Y,O/�
m)m

∼→ H∗
ψ (Y0(Q),O/�

m)mQ
,

It follows that rm is a deformation of r of type SQ (resp. S
χ
Q) if each ψv is the

trivial character (resp. ψv = χv for each v ∈ R). In this case, we obtain a

surjection RSQ
� Tan

Q,1,m

(
resp. R

S
χ
Q

� Tan
Q,χ,m

)
.

Some form of this conjecture has been suspected to be true at least as far back
as the investigations of F. Grunewald in the early 70’s (see [59,60]). Related
conjectures about the existence of rm were made for GL(n)/Q by Ash [61],
and for GL(2)/F by Figueiredo [62]. One aspect of this conjecture is that it
implies that the local properties of the (possibly torsion) Galois representations
are captured by the characteristic zero local deformation rings R�

v for primes
v. One might hope that such a conjecture is true in maximal generality, but
we feel comfortable making the conjecture in this case because the relevant
local deformation rings (including the Fontaine–Laffaille deformation rings)
reflect an honest integral theory, which is not necessarily true of all the local
deformation rings constructed by Kisin, (although the work of Snowden [41]
gives hope that at least in the ordinary case that local deformation rings may
capture all integral phenomena). By dévissage, conditions 4 and 5 are satisfied
if and only if they are satisfied for n = 1, e.g., with coefficients in the residue
field k = O/� .

Remark 9.3 Part (4)(a) of Conjecture B may be verified directly in a number
of small rank cases, in particular for GL(2)/F when F is CM field of degree
either 2 or 4, or for GL(3)/Q. In the latter two cases (where (q0, l0) = (2, 2)
and (2, 1) respectively), the key point is that the lattices in question satisfy the
congruence subgroup property [77], which yields vanishing for both (H1)m

and (by duality, considering both m and m∗) (Hq0−1
c )m where m is a non-

Eisenstein maximal ideal. On the other hand, the vanishing of (Hq0−1
c )m also

implies the vanishing of (Hq0−1)m after localization at m, since the cohomol-
ogy of the boundary vanishes after localization at m. (In these cases, we are
implicitly using the fact that we know enough about the boundary of the locally
symmetric varieties in question to also resolve Part (4)(b) of Conjecture B).

Remark 9.4 In stating Conjecture B, we have assumed that Q is divisible only
by Taylor–Wiles primes. To modify the conjecture appropriately for more
general Q, one would have to modify condition 2 to allow for more general
quotients of the appropriate local deformation ring (which would involve a
mix of tamely ramified principal series and unipotent representations) and one
would also drop condition 5.
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Remark 9.5 Condition 4 of Conjecture B says that we could also have formu-
lated our conjecture for compactly supported cohomology, or equivalently for
homology. The complexes we eventually patch are computing

H∗(Y,O/� n)∨m = H∗
c (Y,O/�

n)∨m = H∗(Y,O/�
n)m∗

for the dual maximal ideal m, so it may have made more sense to work
with homology. Indeed, in the homological formulation, we wouldn’t need to
assume anything about the vanishing of the homology of the boundary local-
ized at m. However, for historical reasons, we continue to work in the present
setting, with the understanding that the real difficulty in Conjecture B lies (after
Scholze [8]) with proving the non-vanishing of (co-)homology groups in the
required range after localization at m and proving local-global compatibility,
especially at v|p.

The reason for condition 5 of Conjecture B is that the arguments of Sect. 3
of [3] (in particular, Lemma 3.2.2 of ibid). often require that the GLn(Fx )-
modules M in question are O-flat. However, it may be possible to remove
this condition, we hope to return to this point later (it is also true that slightly
weaker hypotheses are sufficient for our arguments). On the other hand, we
have the following:

Lemma 9.6 If n = 2, then condition 5 of Conjecture B holds for all Taylor–

Wiles primes.

Proof By induction, it suffices to prove the result when Q = {x} consists of
a single such prime. For simplicity, we drop ψ from the notation. The two
natural degeneracy maps induce maps:

φ : H∗(Y,O/� n)2 → H∗(Y0(x),O/�
n),

φ∨ : H∗(Y0(x),O/�
n)→ H∗(Y,O/� n)2

such that the composition φ∨ ◦ φ is the matrix
(

N (x)+ 1 Tx

Tx N (x)+ 1

)
,

which has determinant T 2
x − (1+ N (x))2. If the eigenvalues of ρ(Frobx ) are

αx and βx , then αxβx ≡ N (x) ≡ 1 mod p. If x is a Taylor–Wiles prime,
then by assumption, αx is distinct from βx , or equivalently, αx �≡ ±1 mod p.
It follows that T 2

x − (1 + N (x))2 /∈ m, and hence φ∨ ◦ φ is invertible after
localizing at m. In particular, the maps φ and φ∨ induce a splitting

H∗(Y0(x),O/�
n)m � H∗(Y,O/� n)2m ⊕W,

H∗(Y0(x),O/�
n)m̃ � H∗(Y,O/� n)m̃ ⊕Wm̃
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for some Tan
Q,m-module W ⊂ H∗(Y0(x),O/�

n), and m̃ = (m,Ux − αx ).
(Here, by abuse of notation, αx denotes any lift of αx ∈ O/� to O/� n). It
suffices to prove that W is trivial. One approach is to try to show that some
w ∈ W generates either the Steinberg representation Sp or Sp ⊗ χ for the
quadratic unramified character χ of F×x , and then deduce that the action of Ux

on w is via ±1, contradicting the assumption on m. However, the map

H∗(Y0(x),O/�
n)→

(
lim
→

H∗(Y (xm),O/� n)
)U0(x)

is a priori neither surjective nor injective, which causes some complications
with this approach. Hence we proceed somewhat differently (although see
Remark 9.8 below). The following argument is implicit in the discussion of
Ihara’s Lemma in Chapter 4 of [6].

Recall that there exists a decomposition

Y �
∐
�i\H,

where the �i are congruence subgroups commensurable with PGL2(OF ) and
H denotes the corresponding locally symmetric space. The finitely many con-
nected components of Y will naturally be a torsor over a ray class group
corresponding to the level of Y . Let � be one such subgroup. Denote by �1

the intersection � ∩ PSL2(OF ). By construction, �/�1 is an elementary two
group, which we denote by�. Recall that we are assuming that k = O/� has
odd characteristic p. Then, by Hochschild–Serre, there is an isomorphism

H∗(�,O/� n) � H∗(�1,O/� n)�.

By construction, for a Taylor–Wiles prime x , the level structure of Y at x

is maximal. For convenience, let us also assume that x is trivial in the ray
class group corresponding to the component group of Y (this is equivalent
to imposing a further congruence condition on x , but is imposed only for
notational convenience in the argument below). For such a prime x , we may
form the amalgam

G := �1 ∗�1
0(x)
�1

of �1 with itself along the subgroup �1
0(x) := �0(x) ∩ �1. Then G will be a

congruence subgroup of the S-arithmetic group PSL2(OF [1/x])with the same
level structure of �1 at primes away from x . (Without the extra assumption on
x , one would have to amalgamate different pairs of lattices �i occurring in the
decomposition of Y according to the action of the ray class group, cf. Sect. 4.1.4
of [6]. The argument would then proceed quite similarly, but it would require
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more notation) The long exact sequence of Lyndon for an amalgam (See [78],
p. 169) gives rise to the following exact sequence:

· · · → H i−1(G,O/� n)→ H i (�1,O/� n)2 → H i (�1
0(x),O/�

n)→ · · ·

We claim that this sequence is equivariant with respect to the Hecke operator
Ux2 , which acts on H∗(G,O/� n) by 1. First, recall the definition of Ux2 . It is
defined to be 1/N (x)2 times the operator induced by taking the double coset
operator for �1

0(x) corresponding to the matrix:

(
π2

x 0
0 1

)
.

Since this operator only depends on the matrix up to scalar, one may equally
take the matrix to be

g :=
(
πx 0
0 π−1

x

)
.

With this normalization, the matrix g lies in G. In particular, the corresponding
map on H∗(G,O/� n) is given by multiplication by the degree of this operator
on �1

0(x), which is N (x)2, and thus (after normalizing) it follows that Ux2 acts
by 1. It follows that if we localize the sequence at any ideal m such that Ux2−1
is invertible, then there is an isomorphism

H i (�1,O/� n)2m � H i (�1
0(x),O/�

n)m.

To recover the isomorphism for Y , it suffices to repeat this argument for each
lattice �i . On H∗(Y0(x),O/�

n), however, the operator Ux satisfies U 2
x =

Ux2 . In particular, since neither αx nor βx is equal to ±1, we deduce (for the
maximal ideal m of interest) that there is an isomorphism

H i (Y,O/� n)2m � H i (Y0(x),O/�
n)m.

Taking m̃ = (m,Ux − αx ) and applying the projections lim
n→∞

(Ux − βx )
n and

lim
n→∞

(Ux − αx )
n gives the necessary isomorphism. ��

Remark 9.7 As noted in [6], the group PSL2(Fx ) decomposes as an amal-
gam whereas PGL2(Fx ) does not—this is the reason for the reduction step
to the PSL2 case above. One could proceed above with PGL2, but then
the amalgams would more naturally be subgroups of PGL2(OF [1/x])(ev) ⊂
PGL2(OF [1/x]) consisting of matrices whose determinant has even valuation
at x (cf. Chapter 4 of [6]). In either case, one deduces as above that U 2

x acts
by +1 on H∗(G,O/�m).
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Remark 9.8 The proof of this lemma is related to the proof of Lemmas 3.5
and 5.8. However, in those cases, it was only necessary to prove equality in
the lowest degree, which is more elementary. Indeed, if q0 denotes the lowest
degree in which Hq0(Y,O/�)m is nonzero, then, by Hochschild–Serre, the
kernel of the map

Hq0(X0(x),O/�
n)→ Hq0(X1(x),O/�

n)

has a filtration by terms of the form H i (�, H j (X1(x),O/�
n)) for j < q0.

Since (by assumption) the coefficients of this expression are trivial after local-
ization at m for j < q0, the kernel vanishes and the map above is injective.
Hence the argument above using the representation  generated by w ∈ W

applies in this case. Analysis of this spectral sequence suggests, however, that
the map localized at m will not (in general) be injective for i > q0 when l0 > 0.

9.4 An approach to Conjecture B part 5

In this section, we present an informal approach to proving part 5 of Conjec-
ture B under a stronger assumption that r has enormous image, at least in the
analogous case of GL(n) (from which it should be easy to deduce the corre-
sponding claim for PGL, since manifolds for the former are circle bundles over
manifolds for the latter, and so have highly related Hecke actions). Here, by
enormous image, we require (in addition to bigness) the existence of suitable
Taylor–Wiles primes x such that r(Frobx ) has distinct eigenvalues. We thank
David Helm for some helpful remarks concerning the deformation theory of
unramified principal series.

9.4.1 Local preliminaries

Let F/Q be a number field, let x be a prime in F such that N (x) ≡ 1 mod p.
Let G = GLn(Fx ), and let D ⊂ B ⊂ P ⊂ G denote the Borel subgroup
B and a parabolic subgroup P with Levi factor L := GLn−1(Fx )× F×x , and
D � (F×x )n the Levi of B. Let G(Ox ) = GLn(Ox ), let U (x) ⊂ G(Ox ) denote
the full congruence subgroup of level x , and let U0(x) ⊂ G(Ox ) denote the
largest subgroup containing U (x) whose image in GLn(Ox/�x ) stabilizes a
line, chosen compatibly with respect to P . Suppose that N (x) ≡ 1 mod p.

Let ρ : Gx → GLn(k) be a continuous semi-simple representation. We say
that an irreducible admissible mod-p representation π is associated to ρ if

rec(π) = WD(ρ)
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under the semi-simple local Langlands correspondence of Vignéras [79]. The
following is well known.

Lemma 9.9 Let ρ : Gx → GLn(k) be unramified with distinct eigenvalues.

Then rec(π) = ρ if and only ifπ is the irreducible unramified mod-p principal

series:

π = n-indG
B (χ),

where χ : (F×x )n → k× factors through (F×x /O
×
x )

n and sends each uni-

formizer to a distinct eigenvalue of ρ(Frobx ).

In addition, we have the following:

Lemma 9.10 Let π be the unramified principal series in Lemma 9.9, and let

π ′ denote any irreducible admissible representation of G such that π ′ �� π .

Then Ext1(π, π ′) = Ext1(π ′, π) = 0.

Proof The supercuspidal support of π consists of the distinct characters χi . If
either extension group is non-zero, then, by Theorem 3.2.13 of [80], it follows
that π ′ has the same supercuspidal support as π . But this implies that π ′ is a
quotient of π , and hence is isomorphic to π . ��

Definition 9.11 Let C denote the category of locally admissible G-modules
over A := O/� k such that every irreducible subquotient of M ∈ C is asso-
ciated to π .

Under our assumptions on ρ, we may give a quite precise description of the
finite length elements M ∈ C .

Lemma 9.12 Suppose that M ∈ C has finite length as a G-module. Then

there exists a finite length A-module MB and a character

χ̃ : B → Aut(MB)

whose irreducible constituents correspond to the character χ , and such that

M � n-indG
B (MB).

Proof The irreducible constituents of the parabolic restriction resB
G(π) consist

of the characters χw for w in the Weyl group W of G. By assumption, all
the eigenvalues of ρ(Frobx ) are distinct, and hence all the characters χw are
distinct. In particular, Exti (χv, χw) = 0 for all i if v �= w ∈ W . It follows
that resB

G(M) admits a decomposition

resB
G(M) �

⊕

W

Mw
B ,
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where the irreducible constituents of Mw
B are χw for w ∈ W . Moreover,

lengthA(M
w
B ) = lengthG(M) is finite for any w ∈ W . Let MB := M id

B . There
is a natural map

M → n-indG
B resB

G(M) =
⊕

W

n-indG
B Mw

B → n-indG
B MB .

Note that M and n-indG
B MB are elements of C of the same length, and all

the irreducible constituents of n-indG
B Mw

B for w �= id are distinct from π .
Thus, by comparing lengths, to prove that the composite of these maps is an
isomorphism it suffices to prove that the first map is injective. If K denotes
the kernel, then resB

G(K ) = 0. Yet this contradicts the assumption that M (and
hence K ) lies in C , since resB

G(π) �= 0. ��

Recall that D ⊂ B denotes the Levi of B, which is (F×)n . Since χ is trivial
on D(Ox ), Any finite deformation χ̃ of D(F) which deforms χ has pro-p

image after restriction to D(Ox ), and thus factors through

(
lim
←

F×/F×pm
)n

�
(

Zp ⊕ lim
←

k×/k×pm
)
.

The universal deformation of this group can be given quite explicitly:

Corollary 9.13 Let q = |k× ⊗ Zp|. Then n-indG
B induces an equivalence of

categories between the category of direct limits of finite length modules over

the ring R below and and C :

R :=
n⊗

i=1

A[T ]/(T q − 1)⊗O A[X ].

Using this description of C , we may prove the following:

Lemma 9.14 The category C has enough injectives. The functor M → MU (x)

from C to G(k) := G(Ox )/U (x) � GLn(k)-modules takes injectives to

acyclic modules.

Proof One may explicitly observe that the appropriate category of R-modules
has enough injectives. The composite functor from R-modules to G(k)-
modules can be described explicitly as follows. Given a deformation χ̃ ,
recall that χ̃ factors through (k× × Z)n . Hence the restriction χ̃ |D(k) to
(k×)n = D(k) ⊂ B(k) is well defined, and one has

(
n-indG

B (χ̃)
)U (x)

� IndG(k)
B(k)

(
χ̃ |D(k)

)
.

123



F. Calegari, D. Geraghty

Since finitely generated injective A[T ]/(T q − 1)-modules are free, it follows
that the image of an injective module has a filtration whose pieces are iso-
morphic to � := IndG(k)

B(k)(ψ), where ψ is the universal deformation over k of

D(k) to k[k×/k×q ]. Yet� is a direct summand of IndG(k)
B(k)k[D(k)] and thus of

k[G(k)]; hence it is injective and acyclic. ��
Remark 9.15 Since the group U (x) is pro-p, the higher cohomology of U (x)

vanishes. Hence, for any subgroup U (x) ⊂ � ⊂ G(Ox ), by Hochschild–Serre
there are identifications

H i (�,M) � H i (�/U (x),MU (x)).

Any injective G(k)-module is also injective as a �/U (x) ⊂ G(k)-module.
Hence, by Lemma 9.14, the derived functors of M �→ M� are well defined,
and they coincide with H i (�,M).

Suppose that the roots of P(T ) = (T − α)Q(T ) are the Satake parameters
of π . The Hecke algebra of U0(x) contains the operator V = V�x correspond-
ing to the double coset of the diagonal matrix with n − 1 entry 1 and the final
entry �x . The operator P(V ) is zero on πU0(x) and thus acts nilpotently on
MU0(x). In particular, if

eα := lim
→

Q(V )n!,

then eα is a projection of MU0(x) onto the localization of MU0(x) at the ideal
(V − α) for any lift of α to O.

We shall now define two functors F and G on the category C , defined on
objects by

F (M) := MG(Ox ), G (M) := eαMU0(x).

There is a natural transformation: ι : F → G defined by the composition of
the obvious inclusion MG(Ox ) ↪→ MU0(x) with eα . Note that F and G are
left exact. Since C has enough injectives (Lemma 9.14), we have associated
right derived functors RkF and RkG respectively. Hence, since eα is exact, we
may (see Remark 9.15) identify these right derived functors with the following
cohomology groups:

RkF (M) � H k(G(Ox ),M), RkG (M) � eαH k(U0(x),M).

Theorem 9.16 The natural transformation ι : F → G is an isomorphism of

functors. In particular, there is an isomorphism

ι∗ : H k(G(Ox ),M)→ eαH k(U0(x),M).
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Remark 9.17 One should compare Theorem 9.16 to Lemma 3.2.2 of [3], which
implies that ι∗ is an isomorphism for k = 0 and modules M ∈ C of the form
N⊗O/� n where N is admissible and flat over O and N⊗O K is semi-simple.
The (implicit) assumptions on ρ in [3] are, however, somewhat weaker; one
only need assume that the particular eigenvalue α has multiplicity one, and
moreover the assumption that M is an element of C is relaxed (although, for the
module M in Sect. 3 of [3] for which Lemma 3.2.2 is applied, one may deduce
from local-global compatibility that M ∈ C ). We expect that Theorem 9.16
is true under these weaker assumptions as well, and possibly even under the
generalization of Lemma 3.2.2 of [3] due to Thorne (Proposition 5.9 of [53]),
see Remark 9.18 following the proof.

Proof For F = F or G , one has F(M) = lim
→

F(Mi ) as the limit runs over

all finite length submodules Mi , hence it suffices to prove the isomorphism
for M of finite length. In particular, we may assume that M = n-indG

B MB for
some finite deformation χ̃ of χ . Then we have an isomorphism

F (M) � (MB)
D(Ox ).

Let χ̃(m) denote the restriction of χ̃ to F×x whose irreducible constituents cor-
respond to the unramified character which takes the value αm on a uniformizer
for some eigenvalue αm of ρ(Frobx ). Let χ̃(m̂) denote the restriction of χ̃
to (F×x )

n−1 corresponding to the other n − 1 eigenvalues. Then there is an
isomorphism

MU0(x) �
n⊕

m=1

(χ̃(m)⊗ n-ind(χ̃(m̂)))L(Ox )

�
n⊕

m=1

(MB)
D(Ox ).

Moreover, the action of V on each factor is given by the coset corresponding
to �x × Id ∈ L(Fx ), which acts via χ̃ (m)(�x ), and the normalized sum of
the invariants is equal to the image of MG(Ox ). In particular, the operator eα
projects onto the mth factor such that α = αm , which is an isomorphism. ��

Remark 9.18 The proof of this result, is, to some extent, “by explicit com-
putation.” Here is a different approach which may work under the weaker
assumption that α has multiplicity one but there is no other assumption on
the eigenvalues of ρ(Frobx ). First one establishes, for irreducible π ∈ C ,
that there is an isomorphism F (π) � G (π). This is essentially already done
in Sect. 3 of [3]. Now proceed by induction on the length of M . Suppose now
that the claim is true for modules of length< length(M). By assumption, there
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is an inclusion π ⊂ M , let N denote the quotient. By induction, there is a long
exact sequence as follows:

0 � F (π) � F (M) � F (N ) � R1F (π)

0 � G (π)

�������
� G (M)

�

� G (N )

�������
� R1G (π)

�

By the five lemma, it suffices to show that R1F (π)→ R1G (π) is injective.
By Hochschild–Serre, one has isomorphisms

R1F (π) � H1(GLn(k), π
U (x)), R1G (π) � eαH1(U0(k), π

U (x)),

which (in principle) one might be able to compute explicitly for the relevant
π .

9.4.2 Applications to Taylor–Wiles primes

We now define the modules M j as follows:

M j := lim
m→∞

H j (X (xm),O/� n)m.

The modules M j are filtered (as G = GLn(Fx )-modules) by the the admissible
module M j [m]. By assumption, any representation π ⊂ M j [m] lies in C , and
hence M j ∈ C by Lemma 9.10. By Hochschild–Serre, we have two spectral
sequences, namely,

H i (G(Ox ),M j )⇒ H i+ j (X,O/� n)m∅,

eαH i (U0(x),M j )⇒ eαH i+ j (X0(x),O/�
n)m∅ = H i+ j (X0(x),O/�

n)m.

There is a natural map between these spectral sequences given by ι∗. By The-
orem 9.16, these maps are isomorphisms, and hence we deduce that the map:

eα : H∗(X,O/� n)m∅ � H∗(X0(x),O/�
n)m,

is an isomorphism, as required.

9.5 Modularity lifting

In this section we prove our main theorem on modularity lifting. We note that
Theorem 5.16 follows from it immediately as a corollary.
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We assume the existence of a maximal ideal m of T := T∅,1 with rm
∼= r .

We assume also that r(G F(ζp)) is big.
For each integer N ≥ 1, let QN be a set of primes satisfying the conclusions

of Proposition 8.5. We also assume that Conjecture B holds for each of the
sets QN .

For each N , there is a natural covering map Y1(QN )→ Y0(QN )with Galois
group

�̃ :=
∏

x∈Q

(OF/x)
×.

Choose a surjection �̃ � �N := (Z/pN Z)q and let Y�N
(QN ) → Y0(QN )

be the corresponding sub-cover. For each 0 ≤ M ≤ N , we regard �M as a
quotient of �N in the natural fashion. This gives rise to further sub-covers
Y�M

(QN )→ Y0(QN ).
By Conjecture B and the results of Sect. 7.1, there exists a perfect complex

D̃N of free SN = O[�N ]-modules such that

• D̃N is concentrated in degrees q0, . . . , q0 + l0,
• the complex D̃N ⊗SN

SN/mSN
has trivial differentials,

• for each i , n ≥ 1 and 0 ≤ M ≤ N , we have an isomorphism of SN -modules

Hi (D̃N ⊗SN
SM/�

n)∼=

⎛
⎝ lim

n→∞

∏

x∈Q

Qx (Vx )
n!

⎞
⎠ Hi (Y�M

(QN ),O/�
n)m∗ .

Note that we have

H∗(Y1(QN ),O/�
n)∨m � H∗(Y1(QN ),O/�

n)m∗,

where the equivalence comes from the fact that we are assuming the cohomol-
ogy of the boundary vanishes after localization at m.

Similarly, working with the local system associated to our choice of char-
acters χ = (χv)v∈R , there exists a perfect complex D̃

χ
N of free SN -modules

satisfying the first two properties above as well as:

• for each i , n ≥ 1 and 0 ≤ M ≤ N , we have an isomorphism of SN -modules

Hi (D̃
χ
N ⊗SN

SM/�
n)

∼=

⎛
⎝ lim

n→∞

∏

x∈Q

Qx (Vx )
n!

⎞
⎠ Hi,χ (Y�M

(QN ),O/�
n)m∗ .
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Note that we have

H∗
χ (Y1(QN ),O/�

n)∨m � H∗,χ (Y1(QN ),O/�
n)m∗,

again by Conjecture B part (4)).
Since

H∗(Y,O/�) ∼= H∗
χ (Y,O/�),

the ideal m induces a maximal ideal of Tχ := T∅,χ , which we also denote by m

in a slight abuse of notation. By Conjecture B, we have surjections RS � Tm

and RSχ � Tχ,m.

Theorem 9.19 If we regard Hq0(Y, K/O)∨m as an RS-module via the map

RS � Tm, then it is a nearly faithful RS-module.

Proof We will apply the results of Sect. 6.1. For each N ≥ 1, we have chosen
a set of Taylor–Wiles primes QN satisfying the assumptions of Proposition 8.5
(for some fixed choice of q). Let

g = q + |T | − 1− [F : Q]
n(n − 1)

2
− l0

be the integer appearing in part (4) of this proposition. We will apply Propo-
sition 6.6 with the following:

• Let S∞ = O[(Zp)
q ] and SN = O[�N ] as in the statement of Proposition

6.3.
• Let j = n2|T | − 1 and O� = O[z1, . . . , z j ].
• Let

R1
∞ = R1

loc[x1, . . . , xg]
R2
∞ = R

χ
loc[x1, . . . , xg].

Note each Ri
∞ is p-torsion free and equidimensional of dimension 1 +

q + j − l0 by Lemma 8.2. In addition, we have a natural isomorphism
R1
∞/�

∼→ R2
∞/� .

• Let (R1, H1) = (RS, Hq0(Y, K/O)∨m) and (R2, H2) = (RSχ , H
q0
χ (Y,

K/O)∨m). Note that we have natural compatible isomorphisms R1/�
∼→

R2/� and H1/�
∼→ H2/� .

• Let T = T 1 = T 2 be the complex with T i = H i−l0(Y,O/�)∨m and with
all differentials d : T i → T i+1 equal to 0.
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• For each N ≥ 1, let Y�N
(QN ) → Y0(QN ) denote the subcover of

Y1(QN ) → Y0(QN ) with Galois group �N = (Z/pN )q . We introduced
above perfect (homological) complexes of SN -modules D̃N and D̃

χ
N above;

they are concentrated in degrees q0, . . . , q0 + l0. We now regard these
as cohomological complexes concentrated in degrees 0, . . . , l0. Then we
let D1

N (resp. D2
N ) denote the perfect complex of SN -modules D̃N/�

N

(resp. D̃
χ
N/�

N ). Note that the cohomology of D1
N (resp. D2

N ) computes
H∗(Y�N

(QN ),O/�
N )∨m (resp. H∗

χ (Y�N
(QN ),O/�

N )∨m), after a shift in

degree by q0. We can and do assume that Di
N ⊗ SN/mSN

∼= T for i = 1, 2.
• Choose representatives for the universal deformations of type SQN

and
S
χ
QN

which agree modulo� . This gives rise to isomorphisms

R
�T

SQN

∼−→ RSQN
[z1, . . . , z j ]

R
�T

S
χ
QN

∼−→ R
S
χ
QN

[z1, . . . , z j ].

In the notation of Proposition 6.3, the rings on the right hand side can
be written R�

SQN
and R�

S
χ
QN

. By Proposition 8.5, we can and do choose

surjections R1
∞ � R�

SQN
and R2

∞ � R�

S
χ
QN

. Composing these with the

natural maps R�
SQN

� RSQN
� RS = R1 and R�

S
χ
QN

� R
S
χ
QN

� RSχ =

R2, we obtain surjections φ1
N : R1

∞ � R1 and φ2
N : R2

∞ � R2.

We have now introduced all the necessary input data to Proposition 6.6. We
now check that they satisfy the required conditions.

• For each M ≥ N ≥ 0 with M ≥ 1 and each n ≥ 1, we have an action
of RSQN

(resp. R
S
χ
QN

) on the cohomology H∗(Y�N
(QM),O/�

n)m (resp.

H∗
χ (Y�N

(QM),O/�
n)m) by Conjecture B. Applying the functor, X �→

X�, and using the surjection R1
∞ � R�

SQN
(resp. R2

∞ � R
S
χ
QN

), we obtain

an action of R1
∞ (resp. R2

∞) on H∗(D1,�
M ⊗SM

SN/�
n) (resp. H∗(D2,�

M ⊗SM

SN/�
n)).

Thus condition (b) of Proposition 6.3 is satisfied for both sets of patching data.
Condition (d) follows from Conjecture B, while condition (c) is clear. Finally,
we note that we have isomorphisms

H l0 ((D1
M )

� ⊗SM
SN /�) = H l0 (Y�N

(QM ),O/�)
� ∼→ H

l0
χ (Y�N

(QM ),O/�)
�

= H l0 ((D2
M )

� ⊗SM
SN /�)

for all M ≥ N ≥ 0 with M ≥ 1. These isomorphisms are compatible with the
actions of Ri

∞ and give rise to the commutative square required by Proposi-
tion 6.6.
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We have now satisfied all the requirements of Proposition 6.6 and hence we
obtain two complexes P

1,�
∞ and P

2,�
∞ . By Lemma 8.2, SpecR2

∞ is irreducible,
and hence by Theorem 6.4 H l0(P

2,�
∞ ) is nearly faithful as an R2

∞-module.
Thus

H l0(P1,�
∞ )/� ∼= H l0(P2,�

∞ )/�

is nearly faithful over R1
∞/�

∼→ R2
∞/� . By Lemma 8.2 and [11, Lemma 2.2],

it follows that H l0(P
1,�
∞ ) is nearly faithful over R1

∞ providing that H l0(P
1,�
∞ )

is p-torsion free. However, each associated prime of H l0(P
1,�
∞ ) is a minimal

prime of R1
∞ and by Lemma 8.2, all such primes have characteristic 0. Thus

p cannot be a zero divisor on H l0(P
1,�
∞ ) and the result of Taylor applies. By

conclusion (iv) of Proposition 6.3 we deduce that H1 = Hq0(Y, K/O)∨m is
nearly faithful over R1 = RS , as required. ��

10 Proof of Theorem 1.1

In this section, we prove Theorem 1.1

Proof Let A be an elliptic curve over a number field K . If A has CM, then the
result is well known, so we may assume that EndC(A) = Z. Let

r = Sym2n−1ρ : G K → GL2n(Qp)

denote the representation corresponding to the (2n−1)th symmetric power of
the Tate module of A. To prove Theorem 1.1, it suffices (following, for example,
the proof of Theorem 4.2 of [81]) to prove that for each n, there exists a p

such that r is potentially modular. We follow the proof of Theorem 6.4 of [76].
(The reason for following the proof of Theorem 6.4 instead of Theorem 6.3 of
ibid. is that the latter theorem proceeds via compatible families arising from
the Dwork family such that V [λ]t is ordinary but not crystalline, which would
necessitate a different version of Theorem 5.16). In particular, we make the
following extra hypothesis:

• There exists a prime p which is totally split in K , and such that p + 1 is
divisible by an integer N2 which is greater than n and prime to the con-
ductor of A. Moreover, the mod-p representation ρA : G K → GL2(Fp)

associated to A[p] is surjective, A has good reduction at all v|p, and for
all primes v|p we have

ρA : GQp � Ind
Qp

Q
p2
ω2.
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(This is a non-trivial condition on A, we consider the general case below). It
then suffices to find sufficiently large primes p and l, a finite extension L/K ,
an integer N2 with N2 > n + 1 and p + 1 = N1 N2 (as in the statement of
Theorem 6.4 of Sect. 4 of [76]) and primes λ, λ′ of Q(ζN )

+ (with λ dividing
p and λ′ dividing l) and a point t ∈ T0(L) on the Dwork family such that:

(1) V [λ]t � r |GL
,

(2) V [λ′]t � r ′|GL
, where r ′ is an ordinary weight 0 representation which

induced from GL M for some suitable CM field M/Q of degree 2n.
(3) p splits completely in L .
(4) A and V are semistable over L .
(5) r |GL

and r ′|GL
satisfy all the hypotheses of Theorem 5.16 with the possible

exception of residual modularity.

This can be deduced (as in the proof of Theorem 6.4 of [76]) using the theo-
rem of Moret–Bailly (in the form of Proposition 6.2 of ibid) and via character
building. By construction, the modularity of r follows from two applications
of Theorem 5.16, once applied to the λ′-adic representation associated to V

(using r ′ and the residual modularity coming from the induction of a Grossen-
character) and once to the λ-adic representation associated to Sym2n−1(A),
using the residual modularity coming from V .

For a general elliptic curve E , we reduce to the previous case as follows. It
suffices to find a second elliptic curve A, a number field L/K , and primes p

and q such that:

(1) The mod-p representation r = (Sym2n−1ρE )|GL
satisfies all the hypothe-

ses of Theorem 5.16 with the possible exception of residual modularity.
(2) A and E are semistable over L and have good reduction at all primes

dividing p and q.
(3) p and q split completely in L .
(4) p+1 is divisible by an integer N2 > n+1 which is prime to the conductor

of A.
(5) E[q] � A[q] as GL -modules, and the corresponding mod-p representa-

tion is surjective.
(6) The mod-p representation ρA : GL → GL2(Fp) associated to A is sur-

jective, and ρA|GQp
� Ind

Qp

Q
p2
ω2.

This lemma also follows easily from Proposition 6.2 of [76], now applied to
twists of a modular curve. We deduce as above (using the mod-q representa-
tion) that Sym2n−1(A) is potentially modular over some extension which is
unramified at p, and then use Theorem 5.16 once more now at the prime at p

to deduce that Sym2n−1(E) is modular. ��

Remark 10.1 It is no doubt possible to also deal with even symmetric powers
using the tensor product idea of Harris [82].
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