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Abstract We prove new modularity lifting theorems for p-adic Galois repre-
sentations in situations where the methods of Wiles and Taylor—Wiles do not
apply. Previous generalizations of these methods have been restricted to situ-
ations where the automorphic forms in question contribute to a single degree
of cohomology. In practice, this imposes several restrictions—one must be
in a Shimura variety setting and the automorphic forms must be of regular
weight at infinity. In this paper, we essentially show how to remove these
restrictions. Our most general result is a modularity lifting theorem which, on
the automorphic side, applies to automorphic forms on the group GL(n) over
a general number field; it is contingent on a conjecture which, in particular,
predicts the existence of Galois representations associated to torsion classes in
the cohomology of the associated locally symmetric space. We show that if this
conjecture holds, then our main theorem implies the following: if E is an ellip-
tic curve over an arbitrary number field, then E is potentially automorphic and
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satisfies the Sato—Tate conjecture. In addition, we also prove some uncondi-
tional results. For example, in the setting of GL(2) over Q, we identify certain
minimal global deformation rings with the Hecke algebras acting on spaces
of p-adic Katz modular forms of weight 1. Such algebras may well contain
p-torsion. Moreover, we also completely solve the problem (for p odd) of
determining the multiplicity of an irreducible modular representation p in the
Jacobian J1(N), where N is the minimal level such that p arises in weight
two.
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1 Introduction

In this paper, we prove a new kind of modularity lifting theorem for p-adic
Galois representations. Previous generalizations of the work of Wiles [1] and
Taylor—Wiles [2] have (essentially) been restricted to circumstances where the
automorphic forms in question arise from the middle degree cohomology of
Shimura varieties. In particular, such approaches ultimately rely on a “numer-
ical coincidence” (see the introduction to [3]) which does not hold in general,
and does not hold in particular for GL(2)/F if F is not totally real. A second
requirement of these generalizations is that the Galois representations in ques-
tion are regular at oo, that is, have distinct Hodge—Tate weights for all v|p.
Our approach, in contrast, does not a priori require either such assumption.
When considering questions of modularity in more general contexts, there
are two issues that need to be overcome. The first is that there do not seem
to be “enough” automorphic forms to account for all the Galois representa-
tions. In [4-6], the suggestion is made that one should instead consider integral
cohomology, and that the torsion occurring in these cohomology groups may
account for the missing automorphic forms. In order to make this approach
work, one needs to show that there is “enough” torsion. This is the problem
that we solve in some cases. A second problem is the lack of Galois repre-
sentations attached to these integral cohomology classes. In particular, our
methods require Galois representations associated to torsion classes which do
not necessarily lift to characteristic zero, where one might hope to apply the
recent results of [7]. We do not resolve the problems of constructing Galois
representations in this paper, and instead, our results are contingent on a con-
jecture which predicts that there exists a map from a suitable deformation
ring R™IM to a Hecke algebra T. In a recent preprint, Scholze [8] has con-
structed Galois representations associated to certain torsion classes. If one can
show that these Galois representations satisfy certain local-global compatibil-
ity conditions (including showing that the Galois representations associated to
cohomology classes on which U, for v| p is invertible are reducible after restric-
tion to the decomposition group at v), then our modularity lifting theorems
for imaginary quadratic fields would be unconditional. There are contexts,
however, in which the existence of Galois representations is known; in these
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cases we can produce unconditional results. In principle, our method currently
applies in two contexts:

Betti To Galois representations conjecturally arising from tempered
7 of cohomological type associated to G, where G is reductive
with a maximal compact K, maximal Q-split torus A, and
lp = rank(G) — rank(K) — rank(A) is arbitrary,

Coherent To Galois representations conjecturally arising from tempered
7 associated to G, where (G, X) is a Shimura variety over a
totally real field F, and such that mr, is a non-degenerate limit
of discrete series at £ infinite places and a discrete series at
all other infinite places.

In practice, however, what we really need is that (after localizing at a suitable
maximal ideal m of the Hecke algebra T) the cohomology is concentrated
in lp 4+ 1 consecutive degrees. (This is certainly true of the tempered repre-
sentations which occur in Betti cohomology. According to [9], the range of
cohomological degrees to which they occur has length [y + 1. In the coher-
ent case, the value of /y will depend on the infinity components 7, allowed.
That tempered representations occur in a range of length [y, then follows
from [10, Theorems 3.4 and 3.5] together with knowledge of L-packets at
infinite primes). The specialization of our approach to the case £y = 0 exactly
recovers the usual Taylor—Wiles method.

The following results are a sample of what can be shown by these methods
in case Betti, assuming (Conjecture B of Sect. 9.3) the existence of Galois
representations in appropriate degrees satisfying the expected properties.

Theorem 1.1 Assume Conjecture B. Let F be any number field, and let E be
an elliptic curve over F. Then the following hold:

(1) E is potentially modular.
(2) The Sato-Tate conjecture is true for E.

The proof of Theorem 1.1 relies on the following ingredients. The first
ingredient consists of the usual techniques in modularity lifting (the Taylor—
Wiles—Kisin method) as augmented by Taylor’s lhara’s Lemma avoidance
trick [11]. The second ingredient is to observe that these arguments continue
to hold in a more general situation, provided that one can show that there is
“enough” cohomology. Ultimately, this amounts to giving a lower bound on
the depth of certain patched Hecke modules. Finally, one can obtain such a
lower bound by a commutative algebra argument, assuming that the relevant
cohomology occurs only in a certain range of length /. Conjecture B amounts
to assuming both the existence of Galois representations together with the
vanishing of cohomology (localized at an appropriate m) outside a given range.
We deduce Theorem 1.1 from a more general modularity lifting theorem, see
Theorem 5.16.
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The following result is a sample of what can be shown by these methods
in case Betti assuming only Conjecture A concerning the existence of Galois
representations for arithmetic lattices in GL (OF) for an imaginary quadratic
field F. Unlike Conjecture B, it appears that Conjecture A may well be quite
tractable in light of the work of [8]. Let O denote the ring of integers in a
finite extension of Q, let z be a uniformizer of O, and let O/w = k be the
residue field. Say that a representation p : Gr — GL(O) is semi-stable if
p|1, is unipotent for all finite v not dividing p, and semi-stable in the sense of
Fontaine [12] if v| p. Furthermore, for v|p, we say that p| D, is finite flat if for
all n > 1 each finite quotient p|D, mod @" is the generic fiber of a finite
flat O-group scheme, and ordinary if p| D, is conjugate to a representation of

the form
€X1 *
0 x

where x; and y» are unramified and € is the cyclotomic character.

Theorem 1.2 Assume Conjecture A. Let F /Q be an imaginary quadratic field.
Let p > 3 be unramified in F. Let

o :Grp — GLy(0)

be a continuous semi-stable Galois representation with cyclotomic determi-
nant unramified outside finitely many primes. Let p : G — GLj(k) denote
the mod-w reduction of p. Suppose that

(1) Ifv|p, the representation p|D, is either finite flat or ordinary.

(2) The restriction of p to G is absolutely irreducible.

(3) p is modular of level N (p), where N (p) is the product of the usual prime-
to- p Artin conductor and the primes v|p where p is not finite-flat.

4) p is minimally ramified.

Then p is modular, that is, there exists a regular algebraic cusp form mw for
GL(2)/F such that L(p,s) = L(m, s).

It is important to note that the condition (3) is only a statement about the
existence of a mod-p cohomology class of level N (p), not the existence of a
characteristic zero lift. This condition is the natural generalization of Serre’s
conjecture.

It turns out that—even assuming Conjecture A—this is not enough to prove
that all minimal semi-stable elliptic curves over F' are modular. Even though
the Artin conjecture for finite two-dimensional solvable representations of G ¢
is known, there are no obvious congruences between eigenforms arising from
Artin L-functions and cohomology classes over F. (Over Q, this arose from
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the happy accident that classical weight one forms could be interpreted via
coherent cohomology). One class of mod-p Galois representations known to
satisfy (3) are the restrictions of odd Galois representations p : Gg — GL2(k)
to G r. One might imagine that the minimality condition is a result of the lack
of Thara’s lemma; however, Thara’s lemma and level raising are known for
GL(2)/F (see [6]). The issue arises because there is no analogue of Wiles’
numerical criterion for Gorenstein rings of dimension zero.
We deduce Theorem 1.2 from the following more general result.

Theorem 1.3 Assume conjecture A. Let F'/Q be an imaginary quadratic field.
Let p > 3 be unramified in F. Let

0:Gr — GLy(k)

be a continuous representation with cyclotomic determinant, and suppose that:

(1) If v|p, the representation p|D, is either finite flat or ordinary.

(2) p is modular of level N = N (p).

(3) PIG F(,) is absolutely irreducible.

(4) If p is ramified at x where Np;g(x) = —1 mod p, then either p|Dy is
reducible or p|l is absolutely irreducible.

Let R™" denote the minimal finite flat (respectively, ordinary) deformation ring
of p with cyclotomic determinant. Let Ty, be the algebra of Hecke operators
acting on H{(Yo(N), O) localized at the maximal ideal corresponding to p.
Then there is an isomorphism:

lel'l Tm ,

and there exists an integer i > 1 such that Hy(Yo(N), O)w is free of rank
as a Ty-module. If H (Yo(N), O)yq ® Q # O, then n = 1. If dim(Ty,) = 0,
then Ty, is a complete intersection.

Note that condition 4—the non-existence of “vexing primes” x such that
NFr;@(x) = —1 mod p—is already a condition that arises in the original
paper of Wiles [1]. It could presumably be removed by making the appropri-
ate modifications as in either [13,14] or [15] and making the corresponding
modifications to Conjecture A.

Our results are obtained by applying a modification of Taylor—Wiles to the
Betti cohomology of arithmetic manifolds. In such a context, it seems difficult
to construct Galois representations whenever [y # 0. Following [16,17], how-
ever, we may also apply our methods to the coherent cohomology of Shimura
varieties, where Galois representations are more readily available. In contexts
where the underlying automorphic forms 7 are discrete series at infinity, one
expects (and in many cases can prove, see [18]) that the integral coherent coho-
mology localized at a suitably generic maximal ideal m of T vanishes outside
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the middle degree. If m is a limit of discrete series, however, (so that we
are in case Coherent) then the cohomology of the associated coherent sheaf
can sometimes be shown to be non-zero in exactly in the expected number of
degrees, in which case our methods apply. In particular, a priori, the Coherent
case appears more tractable, since there are available methods for constructing
Galois representations to coherent cohomology classes in low degree [19,20].
However, our methods still lead to open conjectures concerning the existence
of Galois representations, since the usual methods for constructing represen-
tations on torsion classes (using congruences) only work with Hecke actions
on H(X, &) rather than H' (X, &) for i > 0, and we require Galois repre-
sentations coming from the latter groups.

In this paper, we confine our discussion of the general Coherent case to
addressing the problem of constructing suitable complexes (see Sect. 7.2).
We expect, however, that our methods may be successfully applied to prove
unconditional modularity lifting theorems in a number of interesting cases
in small rank. The most well known example of such a situation is the case
of classical modular forms of weight 1. Such modular forms contribute to
the cohomology of H O9(X1(N), w) and H'(X|(N), ®) in characteristic zero,
where X (N) is a modular curve, and w is the usual pushforward m.wg; x, ()
of the relative dualizing sheaf along the universal generalized elliptic curve.
Working over Z, for some prime p { N, the group H 0(X|(N), w) is torsion
free, but H'(X|(N), @) is not torsion free in general, as predicted by Serre
and confirmed by Mestre (Appendix A of [21]). In order to deal with vexing
primes, we introduce a vector bundle £, which plays the role of the locally
constant sheaf F); of section Sect. 6 of [15]—see Sect. 3.9 for details. We also
introduce a curve Xy which sits in the sequence X{ (M) — Xy — Xo(M)
for some M dividing the Serre conductor of p and such that the first map has
p-power degree. Note that if p has no vexing primes, then L, is trivial of
rank 1, and if p is not ramified at any primes congruent to 1 mod p, then
Xy = X1(N). In this context, we prove the following result:

Theorem 1.4 Suppose that p > 3. Let p : Go — GLy(k) be an odd con-
tinuous irreducible Galois representation of Serre level N. Assume that p
is unramified at p. Let R™™ denote the universal minimal unramified-at-p
deformation ring of p. Then there exists a quotient Xy of X1(N) and a vector
bundle L, on Xy suchthat if T denotes the Hecke algebra ole Xy, oQLy),
there is an isomorphism

min "~
R — Ty

where w is the maximal ideal of T corresponding to p. Moreover, H' (Xy, o ®
L) is free as a Ty-module.

@ Springer



F. Calegari, D. Geraghty

Note that even the fact that there exists a surjective map from R™™ to
T, is non-trivial, and requires us to prove a local-global compatibility result
for Galois representations associated to Katz modular forms of weight one
over any Z,-algebra (see Theorem 3.11). We immediately deduce from The-
orem 1.4 the following:

Corollary 1.5 Suppose that p > 3. Suppose also that p : Gg — GL2(O) is
a continuous representation satisfying the following conditions.

(1) For all primes v, either p(I,) > (1) or dim(p™) = dim(p™) = 1.
(2) 0 is odd and irreducible.
(3) p is unramified at p.

Then p is modular of weight one.

It is instructive to compare this theorem and the corollary to the main the-
orem of Buzzard-Taylor [22] (see also [23]). Note that the hypothesis in that
paper that p is modular is no longer necessary, following the proof of Serre’s
conjecture [24]. In both cases, if p is a deformation of p to a field of char-
acteristic zero, we deduce that p is modular of weight one, and hence has
finite image. The method of [22] applies in a non-minimal situation, but it
requires the hypothesis that o(Frob,) has distinct eigenvalues. Moreover, it
has the disadvantage that it only gives an identification of reduced points on
the generic fibre (equivalently, that R™"[1/p]d = Ty, [1/p], although from
this by class field theory—see Lemma 4.14 and the subsequent remarks after
the proof—one may deduce that R™"[1/p] = Tw[1/p]), and says nothing
about the torsion structure of H!(X|(N), w). Contrastingly, we may deduce
the following result:

Corollary 1.6 Suppose that p > 3. Let p : Gg — GLa(k) be odd, contin-
uous, irreducible, and unramified at p. Let (A, m) denote a complete local
Noetherian O-algebra with residue field k and p : G — GL2(A) a minimal
deformation of p. Then p has finite image.

This gives the first results towards Boston’s strengthening of the Fontaine—
Mazur conjecture for representations unramified at p (See [25], Conjecture 2).

It is natural to ask whether our results can be modified using Kisin’s method
to yield modularity lifting results in non-minimal level. Although the formal-
ism of this method can be adapted to our context, there is a genuine difficultly
in proving that the support of Spec(T[1/p]) hits each of the components of
Spec(Rx[1/p]) whenever the latter has more than one component. In certain
situations, we may apply Taylor’s trick [11], but this can not be made to work
in general. However, suppose one replaces the “minimal” condition away from
p with the following condition:

e If p is special at x { p, and p is unramified at x, then x = 1 mod p.
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In this context our methods should yield that the deformation ring R acts
nearly faithfully on H'(X{(M), ®)m for an appropriate M. This is sufficient
for applications to the conjectures of Fontaine-Mazur and Boston.

In the process of proving our main result, we also completely solve the
problem (for p odd) of determining the multiplicity of an irreducible mod-
ular representation p in the Jacobian J;(N*)[m], where N* is the minimal
level such that p arises in weight two. In particular, we prove that when p
is unramified at p and p(Frob,) is a scalar, then the multiplicity of o is two
(see Theorem 4.8). (In all other cases, the multiplicity was already known to
be one—and in the exceptional cases we consider, the multiplicity was also
known to be >2).

Finally, we outline here the structure of the paper, which has two parts.
In Part 1, we treat the case where /o = 1 in two specific instances—namely,
the case of classical modular forms of weight 1 (Sect. 3) and the case of
automorphic forms on GL(2) over a quadratic imaginary field that contribute
to the Betti cohomology (Sect. 5). The ideas from commutative algebra and the
abstract Taylor—Wiles patching method necessary to treat these two situations
are developed in Sect. 2. The ‘multiplicity two’ result mentioned above is
proved in Sect. 4.

In Part 2, we treat the case of general /y. In contrast to Part 1, we only treat
the Betti case in detail (more specifically, we consider the Betti cohomology
of the locally symmetric spaces associated to GL(n) over a general number
field). Section 6 contains the results from commutative algebra and the abstract
Taylor—Wiles style patching result that underlie our approach to the case of
general [g. These techniques are more ‘derived’ in nature than the techniques
that treat /o = O or 1, and in particular rely on the existence of complexes which
compute cohomology and satisfy various desirable properties. The existence
of such complexes is proved in Sect. 7 (in both contexts—Betti cohomology
and coherent cohomology). In Sect. 8, we consider the Galois deformation side
of our arguments. In Sect. 9, we consider cohomology and Hecke algebras.
This section contains Conjecture B on the existence of Galois representations
as well our main modularity lifting theorem. Finally, Sect. 10 contains the
proof of Theorem 1.1 above.

Notation

In this paper, we fix aprime p > 3 and let O denote the ring of integers in a finite
extension K of Q. We let o denote a uniformizer in O and let k = O/w be
the residue field. We denote by C the category of complete Noetherian local
(O-algebras with residue field k. The homomorphisms in C are the continuous
O-algebra homomorphisms. If G is a group and x : G — k* is a character,
we denote by (x) : G — O the Teichmiiller lift of x.
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If F is afield, we let G r denote the Galois group Gal (f/ F) for some choice
of algebraic closure F/F. Welete : Gp — Z; denote the p-adic cyclotomic
character. If F is a number field and v is a prime of F, we let O, denote the
ring of integers in the completion of F at v and we let 7, denote a uniformizer
in O,. We denote Gf, by G, and let I, C G, be the inertia group. We also
let Frob, € G,/I, denote the arithmetic Frobenius. We let Art : F — W}E’
denote the local Artin map, normalized to send uniformizers to geometric
Frobenius lifts. We will also sometimes denote the decomposition group at
v by D,. If R is a topological ring and « € R*, we let A(x) : G, - R*
denoted the continuous unramified character which sends Frob, to «, when
such a character exists. We let Ay and A%o denote the adeles and finite adeles
of F respectively. If F = Q, we simply write A and A*°.

If P is a bounded complex of S-modules for some ring S, then we let
H*(P) = @;H'(P). Any map H*(P) — H*(P) will be assumed to be
degree preserving. If R is aring, by a perfect complex of R-modules we mean
a bounded complex of finitely generated projective R-modules.

If R is a local ring, we will sometimes denote the maximal ideal of R by
mg.

Part 1. [y equals 1

2 Some commutative algebra I

This section contains one of the main new technical innovations of this paper.
The issue, as mentioned in the introduction, is to show that there are enough
modular Galois representations. This involves showing that certain modules
Hy (consisting of modular forms) for the group rings Sy := O[(Z/pNZ)]
compile, in a Taylor—Wiles patching process, to form a module of codimen-
sion one over the completed group ring S := O[(Z,)?]. The problem then
becomes to find a suitable notion of “codimension one” for modules over a
local ring that

(1) is well behaved for non-reduced quotients of power series rings over O
(like Sy),

(2) can be established for the spaces Hy in question,

(3) compiles well in a Taylor—Wiles system.

It turns out that the correct notion is that of being “balanced”, a notion
defined below. When [y > 1, we shall ultimately be required to patch more
information than simply the modules Hy; rather, we shall patch entire com-
plexes (see Sect. 6).
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2.1 Balanced modules

Let S be a Noetherian local ring with residue field k and let M be a finitely
generated S-module.

Definition 2.1 We define the defect ds(M) of M to be

ds(M) = dimy Tor%(M, k) — dimy Tors(M, k)
= dimy M/mgM — dimy Tor§(M, k).

Let
> P—>.---. > P> P> M—>0

be a (possibly infinite) resolution of M by finite free S-modules. Assume
that the image of P; in P;_ is contained in mgP;_; for each i > 1. (Such
resolutions always exist and are often called ‘minimal’). Let r; denote the
rank of P;. Tensoring the resolution over S with k we see that P;/mgP; =
ToriS (M, k) and hence that r; = dimy Torg(M, k).

Definition 2.2 We say that M is balanced it dg(M) > 0.

If M is balanced, then we see that it admits a presentation
§4 581 5 M0

with d = dimg M/msM.

2.2 Patching

We establish in this section an abstract Taylor—Wiles style patching result
which may be viewed as an analogue of Theorem 2.1 of [26]. This result will
be one of the key ingredients in the proofs of our main theorems.

Proposition 2.3 Suppose that

(1) R is an object of Co and H is a finite R-module which is also finite over
O’.

(2) g = 1 is an integer, and for each integer N > 1, Sy := O[An] with
Ay = (Z/pN1)%;

(3) Roo = O[xl, ey xq_l];

(4) for each N > 1, ¢n : Rooc — R is a surjection in Co and Hy is an
Ry ®0 Sy-module.

(5) For each N > 1 the following conditions are satisfied
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(a) the image of Sy in Endp(Hy) is contained in the image of Rx and
moreover, the image of the augmentation ideal of Sy in Endp(Hy) is
contained in the image of ker(¢n);

(b) there is an isomorphism ¥y : (HN)aAy S H of Roo-modules (where
R acts on H via ¢y );

(c) Hpy is finite and balanced over Sy (see Definition 2.2).

Then H is a free R-module.

Proof Let Soo = O[(Z))7] and let a denote the augmentation ideal of Sy (that
is, the kernel of the homomorphism So, — O which sends each element of
(Z,)? to 1). Foreach N > 1, let ay denote the kernel of the natural surjection
Seo = Sy and let by denote the open ideal of S, generated by @™ and ay.
Letd = dimy(H /@ H). We may assume that d > 0 since otherwise H = {0}
and the result is trivially true. Choose a sequence of open ideals (0x)y>1 of
R such that

e 0y DOy forall N > 1;
e Ny>10n = (0);
e VR coy C @ R+ Anng(H) forall N.

(For example, one can take 0y to be the ideal generated by w® and

Anng(H)"N. These are open ideals since R/Anng(H) C Endp(H) is finite
as an O-module).
Define a patching datum of level N to be a 4-tuple (¢, X, ¥, P) where

e ¢ : Ryy — R/0y is a surjection in Cp;

o X isan Roo® Sso-module such that the action of S, on X factors through
Soo/by and X is finite over Sxo;

e Vv : X/aX = H/w™ H is an isomorphism of Ry, modules (where R
acts on H/w ™ H via ¢);

e P is a presentation

(Soo /M) = (Sso/bN)? — X — 0.

We say that two such 4-tuples (¢, X, ¥, P)and (¢’, X', ¥, P’) are isomorphic
if

o =0
e there is an isomorphism X S X of ROO®OSOO modules compatible with
Y and v, and with the presentations P and P’.

We note that there are only finitely many isomorphism classes of patching
data of level N. (This follows from the fact that R, and S are topologically
finitely generated). If D is a patching datum of level N and 1 < N’ < N, then
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D gives rise to patching datum of level N in an obvious fashion. We denote
this datum by D mod N’.

For each pair of integers (M, N) with M > N > 1, we define a patching
datum Dy n of level N as follows: the statement of the proposition gives a
homomorphism ¢j : Roc — R and an Ry ® Spr-module Hy,. We take

e ¢ to be the composition Rooc = R — R/0y;

e Xtobe Hy/by;

e V: X/aX S H /by to be the reduction modulo " of the given isomor-
phism rps : Hyr/aHy = H;

e P to be any choice of presentation

(Soo/bA)? = (Sso/bN)Y — X — 0.

(The facts that Hys/aH)y = H and ds, (Hy) > 0 imply that such a
presentation exists).

Since there are finitely many patching data of each level N > 1, up to
isomorphism, we can find a sequence of pairs (M;, N;);>1 such that

e M; > N;, M1 > M;, and N;;1 > N; forall i;
® Dy, N, mod N; is isomorphic to Dy, n; foralli > 1.

Foreachi > 1, wewrite Dy, N, = (¢i, X;, Vi, P;) and we fix an isomorphism
between the modules X;1/by, X;11 and X; giving rise to an isomorphism
between Dy, N, mod N; and Dy, n,. We define

® (oo : Roc = R to be the inverse limit of the ¢;;

o X 1= 1<i£1i X; where the map X; | — X; is the composition X; | —
Xit1/by, = Xi;

e  to be the isomorphism of Ry-modules X/aXs — H (Where Ry

acts on H via ¢) arising from the isomorphisms ¥;;
e P, to be the presentation

Sgo—>Sgo—>Xoo—>0

obtained from the P;. (Exactness follows from the Mittag—Leffler condition).

Then X is an Roo®oSoo—module, and the image of S in Endp(Xso)
is contained in the image of Ry. (By condition 5a, the image of S in
each Endp(X;) is contained in the image of R.,. The same containment
of images then holds in each Homp (X0, X;) and hence in Endp(X«) =
1<ir_ni Homp (X, X;)). It follows that X, is a finite Rso-module. Since
Seo 1s formally smooth over O, we can and do choose a homomorphism
1 : S0 = Roo in Cp, compatible with the actions of Sy, and R, on Xoo.
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Since dimgs (Xoo) = dimpg, (Xo) and dim Ry, < dim So, we deduce
that dimg_ (Xoo) < dim Seo. It follows that the first map Sgo — Sgo in the
presentation Py, is injective. (Denote the kernel by K. If K # (0), then
K ®s,., Frac(Sso) # (0) and hence X oo ®s,, Frac(So) # (0), which is impos-
sible). We see that P, is a minimal projective resolution of X ., and by the
Auslander-Buchsbaum formula, we deduce that depthg  (Xoo) = dim(Seo) —
1. Since depthyp_(Xoo) = depthg (Xoo), it follows that depthy (Xoo) =
dim(R~), and applying the Auslander—Buchsbaum formula again, we deduce
that X is free over R. Using this and the second part of condition (5a), we
also deduce that 1 (a) C ker(¢o).

Finally, the existence of the isomorphism ¥ : Xoo/aX S H tells us
that H is free over R/ 1(a) Roo. However, since the action of Ry, on H also
factors through the quotient R,/ ker(¢oo) = R and since 1(a) C ker(¢oo),
we deduce that R /1(a) Ro = R and that R acts freely on H. O

3 Weight one forms
3.1 Deformations of Galois representations
Let

p: Gg — GLa(k)

be a continuous, odd, absolutely irreducible Galois representation. Let us sup-
pose that |G , is unramified; this implies that p remains absolutely irreducible
when restricted to G - Let S (p) denote the set of primes of Q at which p
is ramified and let T (p) C S(p) be the subset consisting of those primes x
such that x = —1 mod p, p|Gy is irreducible and p|/, is reducible. Follow-
ing Diamond, we call the primes in 7' (p) vexing. We further assume that if
x € S(p) and p|G, is reducible, then ﬁlx # (0). Note that this last condition
is always satisfied by a twist of p by a character unramified outside of S(p).

Let Q denote a finite set of primes of Q disjoint from S(p) U {p}. (By
abuse of notation, we sometimes use Q to denote the product of primes in Q).
For objects R in Cp, a deformation of p to R is a ker(GL,(R) — GL»(k))-
conjugacy class of continuous lifts p : Gg — GL2(R) of p. We will often
refer to the deformation containing a lift p simply by p.

Definition 3.1 We say that a deformation p : Gg — GL2(R) of p is minimal
outside Q if it satisfies the following properties:

(1) The determinant det(p) is equal to the Teichmiiller lift of det(pp).
2) If x ¢ QU S(p) is a prime of Q, then p|G, is unramified.
(3) If x € T(p), then p(I,) = B(L).
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4) If x € S(p) — T(p) and p|G is reducible, then p’* is a rank one direct
summand of p as an R-module.

If Q is empty, we will refer to such deformations simply as being minimal.

Note that condition 2 implies that p is unramified at p. The functor that
associates to each object R of Cp the set of deformations of p to R which are
minimal outside Q is represented by a complete Noetherian local O-algebra
R . This follows from the proof of Theorem 2.41 of [27].If Q = ¥, we will
sometimes denote Ry by R™IN et H é (Q, adoﬁ) denote the Selmer group
defined as the kernel of the map

H'(Q.2d"p) — P H'(Qx.2d’)/Lg

where x runs over all primes of Q and
e Lo, =H'(G,/I, (ad"0)x) if x ¢ O;
e Lo, =H'Q,,ad")ifx € 0.
Let H é (Q, ad°5(1)) denote the corresponding dual Selmer group.

Proposition 3.2 The reduced tangent space Hom(Rp /mo, k(€] /€% of Ro
has dimension

dimy Hj(Q. ad’p(1)) — 1+ > dimy H(Qy. adp(1)).
xeQ

Proof The argument is very similar to that of Corollary 2.43 of [27]. The
reduced tangent space has dimension dimg Hé (Q, adoﬁ). By Theorem 2.18
of op. cit. this is equal to

dimy Hp(Q. ad’5(1)) + dim H°(Q. ad"p) — dimy H*(Q, ad’p(1))
+ D (dimy Lo,x — dime H(Qu, ad’p)) — 1,

X

where x runs over all finite places of Q. The final term is the contribution at the
infinite place. The second and third terms vanish by the absolute irreducibility
of p and the fact that p|G , is unramified. Finally, as in the proof of Corollary
2.43 of loc. cit. we see that the contribution at the prime x vanishes if x ¢ Q,
and equals dimy HY(Qy,, adoﬁ(l)) ifx € Q. |

Suppose that x = 1 mod p and p(Frob, ) has distinct eigenvalues for each
x € 0.Then HY(Q,, adoﬁ( 1)) isone dimensional for x € Q and the preceding
proposition shows that the reduced tangent space of Ry has dimension

dimg Hjy(Q. ad"p(1)) — 1 + #0.
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Using this fact and the argument of Theorem 2.49 of [27], we deduce the
following result. (We remind the reader that p| G (¢, is absolutely irreducible,
by assumption).

Proposition 3.3 Let g = dimy Hé (Q, ads(1)). Then ¢ > 1 and for any
integer N > 1 we can find a set Q n of primes of Q such that

(1) #On =g¢.

2) x =1 mod pror eachx € Qy.

(3) For each x € Qy, p is unramified at x and p(Froby) has distinct eigen-
values.

@) Hp (Q.ad’s(1)) = (0).

In particular, the reduced tangent space of R, has dimension q — 1 and R,
is a quotient of a power series ring over O in g — 1 variables.

We note that the calculations on the Galois side are virtually identical to
those that occur in Wiles’ original paper, with the caveat that the tangent space
is of dimension “one less” in our case. On the automorphic side, this —1 will
be a reflection of the fact that the Hecke algebras will not (in general) be flat
over O and the modular forms we are interested in will contribute to one extra
degree of cohomology.

3.2 Cohomology of modular curves
3.2.1 Modular curves

We begin by recalling some classical facts regarding modular curves. Fix
an integer N > 5 such that (N, p) = 1, and fix a squarefree integer Q
with (Q, Np) = 1. Let X{(N), X1 (N; Q), and X[ (N Q) denote the modular
curves of level I'{(N), ['{(N) N To(Q), and ' (N) N "1 (Q) respectively as
smooth proper schemes over Spec(O). To be precise, we take X1(N) and
X1 (N Q) to be the base change to Spec(QO) of the curves denoted by the same
symbols in [28, Proposition 2.1]. Thus, X{(N Q) represents the functor that
assigns to each O-scheme S the set of isomorphism classes of triples (E, an )
where E/S is a generalized elliptic curve and ayg : uyo <> E[NQ]is an
embedding of group schemes whose image meets every irreducible component
in each geometric fibre. Given such a triple, we can naturally decompose
anyo = ay X ag into its N and Q-parts. The group (Z/N QZ)* acts on
X1(N Q) in the following fashion: a € (Z/N QZ)* sends a pair (E, ang)
to (a)(E,ayg) = (E,a oang). We let X{(N; Q) be the smooth proper
curve over Spec(O) classifying triples (E, ay, Cg) where E is a generalized
elliptic curve, ay : uy < E[N] is an embedding of group schemes and
Co C E[Q]is a subgroup étale locally isomorphic to Z/QZ and such that
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the subgroup Q + an (un) of E meets every irreducible component of every
geometric fibre of E. Then X (N, Q) is the quotient of X{(N Q) by the action
of (Z)QZ)* C (Z/N QZ)* and the map X{(N Q) — X1(N; Q) is étale; on
points it sends (E, anyg) to (E, an, ap(iLg)).

For any modular curve X over O, let Y C X denote the corresponding
open modular curve parametrizing genuine elliptic curves. Let 7 : £ —> X
denote the universal generalized elliptic curve, and let w := mywe,x, where
wg  x 1s the relative dualizing sheaf. Then the Kodaira—Spencer map (see [29],
A1.3.17) induces an isomorphism w®? ~ Q} jooverY, which extends to an

isomorphism w®? ~ Q% 0(00), where oo is the reduced divisor supported
on the cusps. If R is an O-algebra, we let Xg = X X gpeco SpecR. If M is an
O-module and .Z is a coherent sheaf on X, we let %) denote . Qo M.
We now fix a subgroup H of (Z/NZ)*. We let X (resp. X1(Q), resp.
X0(Q)) denote! the quotient of X{(N) (resp. X1(NQ), resp. X{(N; Q))
by the action of H. Note that each of these curves carries an action of
(Z/NZ)*/H. We assume that H is chosen so that X is the moduli space
(rather than the coarse moduli space) of generalized elliptic curves with

F'g(N) := {(? Z) €lp(N):d mod N € H}—level structure.

3.2.2 Modular forms with coefficients

The map j : Xo/mm — X is a closed immersion. If . is any O-flat
sheaf of Ox-modules on X, this allows us to identify H(Xo Jam, j* L) with
H(X, %o /wm). For such a sheaf ., we may identify .Zx o with the direct
limit li_r)n f@/wm.

3.2.3 Hecke operators

Let T"" denote the commutative polynomial algebra over the group ring
O[(Z/N QZ)*] generated by indeterminates 7, Uy for x { pN Q prime and
y|Q prime. If a € (Z/N QZ)*, we let (a) denote the corresponding element
of TV, We recall in this section how the Hecke algebra T"™" acts on coherent
cohomology groups.

We have an étale covering map X((Q) — Xo(Q) with Galois group
(Z/QZ)*.Let Abeaquotientof Agp := (Z/QZ)* andlet XA (Q) — Xo(Q)
be the corresponding cover. We will define an action of TV on the groups
H (XA(Q), L) for A an O-module, i = 0, 1 and £ equal to the bundle w®"

I we apologize in advance that this is not entirely consistent with the usual notation for modular
curves. The alternative was to adorn the object X with the (fixed throughout) level structure
at N coming from p, which the first author felt too notationally cumbersome.
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or ®"(—00). If CA(Q) C Xa(Q) denotes the divisor of cusps, we will also
define an action of T"™Y on HO(Ca(Q), a)f’” ).

First of all, if a € (Z/N QZ)* and L denotes either ®®" or ®"(—o00) on
X A(Q), then we have a natural isomorphism (a)*L S L. We may thus define
the operator (a) on Hi(XA(Q), L) as the pull back

H (Xa(0). £4) L5 HI(XA(Q). (@)*L4) = H (XA(Q). La).

When i = 0, this is just the usual action of the diamond operators (as in [28,
Sect. 3], for instance). We define the action of (a) on H(Ca, w%n ) in the same
way, using the fact that (a) preserves Cao(Q) C XaA(Q)

Now, let x be a prime number which does not divide pN Q. Welet XA (Q; x)
denote the modular curve over O obtained by adding I'g(x)-level structure to
XA (Q) (or equivalently, by taking the quotient of X{(N Q; x) by the appro-
priate subgroup of (Z/N QZ)*). We have two finite flat projection maps

i Xa(Q5x) = Xa(Q)

for i = 1, 2. The map | corresponds to the natural forgetful map on open
modular curves, extended by ‘contraction’ to the compactifications. The map
77 is defined on the open modular curves YA (Q; x) — YA(Q) by sending a
tuple (E, ayg, Cy) to the tuple (E' := E/Cy, a}]Q) where oz;VQ is the level
structure on E’ obtained from «y 9 by composing with the natural isomorphism
E[N Q] S OE [N Q]. The fact that the m; extend to the compactifications is
ensured by [30, Proposition 4.4.3]. We also have the ‘Fricke involution” wy :
Xa(Q; x) = Xa(Q; x)whichis defined on the open modular curve YA (X; x)
by sending a tuple (E, ang, Cy) as above to (E' := E/Cy, ozva, E[x]/Cy).
Note that this is not really an involution, since w?c (E,ang,Cyx) = (E,x o
ang, Cy) = (x)(E,ang, Cyx). We have m; = w1 o wy, and hence m5w =
(wy o )w = wiw. Let £ denote the universal elliptic curve over YA (Q; x)
and let and let C, C &£ denote the universal subgroup of order x. Let ¢ denote
the quotient map

E— &/C,.
Then pull back of differentials along ¢ defines a map of sheaves
$12 w0 — Tw
over YA (Q; x). This map extends over XA (Q; x) by [30, Proposition 4.4.3].
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We define the operator W, on H 0(x A(Q; x), o)) by setting W, to be the
composite

HO(XA(Q: 1), 0}) = S HOXA(Q. x), 7 Fo') Pz, H‘(XA(Q x), ).
Explicitly, we have:

fo(E9aNQa CX) = ¢*f(E/CXaa;\]Q5 E[x]/CX)'

Thus, using the identification x : E/E[x] S E together with the fact that we
have an equality w%(E, ang, Cx) = (x)(E,ayg, Cx), we see that:

W2 = x(x).

We will use this fact below .
We define Hecke operators 7y, on H' (XA (Q), L4), for L = «", by setting
x T to be the composition

®

H (XA(Q), La) — H (XA(Q, %), ﬂfﬁA) = H' (XA(Q;x), L)
" HI(XA(Q), La).

This is the same definition as in [31, p. 586] and recovers the usual definition
when i = 0. We define an action of Ty on the cohomology of £ = " (—00),
in a similar fashion: the operator x 7} is the composition

H' (XA(Q), ©®"(—00) 4) — H' (XA(Q, x), (m50®")(—00) 4)
®n )
B H (XA(Q; %), (T 0®")(—00) 4)

YO B (X A(Q), 0" (—00) 4).

(In the first map, we use that 75 *(®" (—00)) C (T ®®")(—o00) and in the last
map we use that the trace maps sections which vanish at the cusps to sections
which vanish at the cusps). Let CA(Q) C XA (Q) be the divisor of cusps, as
above, and define CA(Q; x) C Xa(Q; x) similarly. Then we define an action
of Ty on HY(CA(Q), o'y) by setting x T equal to the composition:

®n
HO(CA(Q). 0") — HOCa(Q. x). 150%™ U2 HOCA(Q: x)., o)
"I HO(CA(Q), 0®).
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(In this line, both ¢ and the trace map are obtained from the previous ones
by passing to the appropriate quotients). In this way the long exact sequence

- — H' (XA(Q), @®"(=00)4) — H' (Xa(Q), ®§")
— H'(CA(Q), 0F") — -+

is Ty-equivariant.

Remark 3.4 We note that the action of the operators 7y on H o A(0), a)f’")
is given by specializing ¢ equal to 0 in the usual g-expansion formula for
the action of T, (as in [28, Sect. 3], for instance). This expansion is with
respect to a local parameter ¢ at the cusp ‘oco’, but note that the group
(Z/N QZ)* acts transitively on the set of cusps in Ca (Q). In particular, sup-
pose f € H O(CA(Q), w,‘?" ) is a non-zero mod p eigenform for all T, (with
x prime to pN Q) and is of character x : (Z/NQZ)* — k™ in the sense
that (a) f = x(a)f for all a € (Z/N QZ)*. Then f cannot vanish at any
cusp and the formula [28, (3.5)] implies that for each x prime to pN Q, we
have T, (f) = (1 + x (x)x" 1 f. Thus, the semisimple Galois representation
naturally associated to f (in the sense that for x 1 pN Q, the representation
is unramified at x with characteristic polynomial X — T X + (x)x"~1) is
1 & xe" ! (where we also think of x as a character of G via class field
theory).

For x a prime dividing Q, the action of U, on HY(XA(Q), L4) (for
L = o®", or ®®"(—00)) and on H(CA(Q), ®%") is defined similarly. In
this case, we let X1 (N Q; x) denote the smooth O-curve parametrizing tuples
(E,ang, Cy) where E is a generalized elliptic curve,ang : uyg < E[N Q]
isanembeddingand C, C E[x]isasubgroup étale locally isomorphictoZ/xZ
such that ey o (N o) + Cy meets every irreducible component in every geo-
metric fiber and ay g (1x) + Cx = E*"[x]. We then let X A (Q; x) be the quo-
tient of X1 (N Q; x) by the same subgroup used to define X A (Q) as a quotient
of X1 (N Q). We have two projection maps 7; : XA (Q; x) — Xa(Q) where
my is the forgetful map and 75 sends (E, ayg, Cx) to (E' = E/Cy, a;VQ), as
above. By [30, Proposition 4.4.3], we have a map ¢/, : 75 — ;@ which
allow us to define U, by exactly the same formulas as above.

3.2.4 Properties of cohomology groups
Define the Hecke algebra
T ¢ Endo H(X1(Q), wk/0)

to be the subring of endomorphisms generated over O by the Hecke opera-
tors T, with (n, pN Q) = 1 together with all the diamond operators (a) for
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(a, NQ) = 1. (Here “an” denotes anaemic). Let T denote the (J-algebra gen-
erated by these same operators together with U, for x dividing Q. If 0 =1,
we let Ty = Tj;' denote T. The ring T*" is a finite O-algebra and hence
decomposes as a direct product over its maximal ideals T*" = [, Ta'. We
have natural homomorphisms

TaIl —> %n = T@, Tan — T

where the first is induced by the map HO(X, wK/0) = H(X(0), wK/0)
and the second is the obvious inclusion.

For each maximal ideal mg of Ty, there is a finite extension k" of Ty /my and
a continuous semisimple representation Gg — GLy (k") characterized by the
fact that for each prime x 1 Np, the representation is unramified at x and Frob,
has characteristic polynomial X 2_ T, X+ (x).(To see this, choose an extension
k" and a normalized eigenform f € H O(X, wy) such that the action of Ty on
f factors through mgy. Then apply [28, Proposition 11.1]). The representation
may in fact be defined over the residue field Ty /mg. The maximal ideal my is
said to be Eisenstein if the associated Galois representation is reducible and
non-Eisenstein otherwise. If mgy is non-Eisenstein, then there is a continuous
representation Gg — GL(Ty m,) which is unramified away from pN and
characterized by the same condition on characteristic polynomials.

Let my be a non-Eisenstein maximal ideal of Ty. By a slight abuse of
notation, we also denote the preimage of my in T*" by my. Note that the
resulting ideal my C T*" is maximal. The localization Ty, is a direct factor
of T whose maximal ideals correspond (after possibly extending O) to the
U,-eigenvalues on H 0(x, (Q), wi)[mg]. There is a continuous representation
Gq — GL(Ty,) whichis unramified away from pN Q and satisfies the same
condition on characteristic polynomials as above for x t pN Q. The following
lemma is essentially well known in the construction of Taylor—Wiles systems,
we give a detailed proof just to show that the usual arguments apply equally
well in weight one.

Lemma 3.5 Suppose that for each x| Q we have that x =1 mod p and that
the polynomial X* — T, X + (x) € Ty[X] has distinct eigenvalues modulo my.
Let m denote the maximal ideal of T containing myg and U, — ay for some
choice of root oy of X*> — Ty X + (x) mod my for each x|Q. Then there is a

T, -isomorphism

HO(X, 0k j0)my — H(X0(Q), 0K /0)m-
Proof We first of all remark that the localization H (X, wk /O)my 18 indepen-

dent of whether we consider my as an ideal of Ty or T?". To see this, it suffices
to note that T . Ty, m,, is surjective. This in turn follows from the fact that
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the Galois representation G — GL2(Ty m,) can be defined over the image
of Tﬁ{‘@ — Ty m,, and moreover that for x|Q, the operators T, and (x) are
given by the trace and determinant of Frob,.

By induction, we reduce immediately to the case when Q = x is prime. Let
w1, w2 ¢ Xo(x) — X denote the natural projection maps and let ¢12 : 75w —
7w be the map described in Sect. 3.2.3. We define ¢ := (], ¢12 o 7))
and ¥V = )lc(tr(%’)’;%)vx) where W, is the operator defined in Sect. 3.2.3 (with
N Q there playing the role of N here). These give a sequence of T*"-linear
morphisms

4 v
HY(X, wk/0)* = H’(Xo(), wg o) = H(X, 0k /0)’,
such that the composite map ¥ ¥ o ¥ is given by

x Tr(m) omf x~tr(m) oppomny
x~tr(my) o Wy o mf x M tr(y) o Wy 0 12 0 Ty

(x4 1) T, )
B T, (X)x+1))"

(On the first row, this follows from the definition of 7, and the fact that 7| has
degree x + 1; in the lower left corner we use the definition of 7 and the fact
that Wy o " = ¢12 o w} o | = ¢12 o 3 in the lower right corner we use
the facts that Wy o ¢12 o 71;‘ = Wf o ni“ and sz = x(x)).

If a, and B, are the roots of X2 -T. X+ (x) mod mg, then Ty = a, + By
mod my and (x) = a8,y mod my. Since x =1 mod p, we have

det(WY o) = x x4+ D (x) — T? = 4(x) — T?

X

=4da, Py — (o + ,Bx)2 = —(ay — ,Bx)z mod my.

By assumption, o, # B, and thus, after localizing at my, the composite map
VY o ¢ is an isomorphism.

We deduce that HO(X, wK/O)rzn(,, is a direct factor of H%(X((x), WK /O)my
as a Tf,{‘m -module. Consider the action of U, on the image of H O(X , WK /@)2.
Let V, denote the second component ¢ o 775 of the degeneracy map . Then
we have equalities of maps HO(X, wK/0) = HO(Xo(x), WK /O)

1
7o X=Uxonf‘+;vx and Uy o Vy = 7] o (x).
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To see that the first of these holds, note that:

* 1 *
(xf o T (F)(E, an, C) = — > $pf(E/D,¢poay),

DCE[x]

where the sum is over all order x subgroups D C E[x], and ¢p denotes the
quotient map £ — E/D. (This formula holds after base-change to an étale
extension over which the subgroups D are defined). Restricting the sum to
all D # Cy gives (Uy o n{)(f)(E, ay, Cy), while the remaining term is
%(q‘)]z omy)(f)(E, ay, Cy). For the second equality, we have:

1
(Ux o Vi)(IE, an, Cy) = T Z ¢T)+fo(E/(D + Cx), dp+c, 0 AN),
D#C,

where D is as above and ¢pc, is the quotient E — E/(D + Cy). Since
D+Cy = E[x]forall D # Cx,eachterm¢}k)+cxf(E/(D+Cx), dp+c,00N)
can be identified with x f (E, x o ay) = x{x) f (E, ). Since there exactly x
subgroups D # C,, and we divide by x, we deduce that U, o V, = 7{(x).

It follows that the action of U, on H(X((x), a)K/o)?W is given by the

matrix
T x{(x)
a=(5)

There is an identity (A — ay)(A — By) = 0 mod my in M>(Ty ). Since
ayx # By, by Hensel’s Lemma, there exist &, and By in Tg’ my such that (U, —
a) (U, — EX) = 0 on (Im ¥ ),,. It follows that U, — Ex is a projector (up to
a unit) from (Im ¥), to (Im ¥)y,. We claim that there is an isomorphism of
T},,-modules

H(X, 0k /0)my = (Im Yy = (H (X, 0k 0)*)m-

It suffices to show that there is a T -equivariant injection from HO(X,
WK /O)m, to the module (Im V' )m, such that the image has trivial intersection
with the kernel of U, — B, if there is such an injection, then, by symme-
try, there is also an injection from H%(X, wg /0)my to (Im )y, whose image
intersects the kernel of U, — «, trivially; by length considerations both injec-
tions are forced to be isomorphisms. We claim that the natural inclusion 7
composed with U, — By is such a map: from the computation of the matrix
above, it follows that
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~ T.f — B
Vs~ B (g) - ( xf_]f’xf> ,
which is non-zero whenever f is by examining the second coordinate.
We deduce that there is a decomposition of Ti -modules

H(Xo(x), wk/0)m = H(X, 0k /0)m; ® V

where V is the kernel of ¥ . It suffices to show that V[m] is zero. Let f €
VIm]. We may regard f as an element of HO(Xo(x), wy). It satisfies the
following properties:

(D) Urf = o f,

(2) () f =oxpBsf,

(3) (tr(mw) o Wy) f = 0.

The first two properties follow from the fact that f is killed by m, and the last

follows from the fact that f lies in the kernel of V.
We claim that

1 1
—(7Tik otr(my) o Wy) = Uy, + —W,.
X X

To see this, we will rewrite the relation 77 o Ty, = Uy o 7| + %Vx that we

established earlier. Since 7o = 7| o wy, we have that 7y, = }C tr(mry) o Wy o nf
and V, = W,om i" . The earlier relation can thus be written:

1 * x * 1 *
—myotr(m) o Wyony =Uyom| +—-Wyom/.
X X

Since " is fully faithful, the claim follows.

Now, property (3) above tells us that —xU, f = W, f. By (1), both sides
are k-multiples of f and applying —xU, f = W, f once more, we see that
x2U2f = W2 f. Since W2 = x(x), we deduce that xU2 f = (x) f. Thus, by
(1) and (2):

xo‘)%f = oy B f-
Since x =1 mod p and oy # By, we deduce that f = 0, as required. O
We have the following mild generalization of Lemma 3.5:

Lemma 3.6 Suppose Q = x is prime not dividing N p and the eigenvalues of
the polynomial X?—T. X+ (x) € Ty /mg[ X] do not have ratio x or x~ . Let
m denote the maximal ideal of T containing my and U, — ay for some choice
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of root o of X* — T X + (x) mod my. If the roots o, and By are distinct,

then there is a Ty -isomorphism

H(X, 0k /0)m; — H(Xo(x), 0k /0)m.-

If the roots oy and By are equal, then there is a T?,f“ﬂ -isomorphism

H(X, 0k j0)s, —> H*(X0(x). @K j0)m-

Proof The proof is essentially identical to Lemma 3.5. The only calculations

which are different are the following: If & and S, are the roots of X% — T\ X +

(x) mod mg,then T, = o,y + B, mod mygand (x) = o, S, mod my. Hence
det(¥" o) =x"1(x + D (x) — T?

N+ D2 — x(@x + 1))

27N @ = xB) (B — xax)  mod my.

This is non-zero under our assumptions. If the eigenvalues are distinct, we
proceed as before; the proof that the summand V of H 9(X0(0), wk /O)m 18
zero is also the same, since the final conclusion is that 8, = x@, mod my, a
contradiction. If the eigenvalues are equal, note that

Y (H (X, 0k /0)m,) = ¥ (H (X, 0k j0)my)m

since T acts on this space via the quotient Ty i, [ X]/(X 2T, X + (x)) (with
X corresponding to U, ), which is a local ring, by assumption. Thus, we can
decompose

HY(Xo(x), 0k /0)m = ¥ (H (X, 0k )0)my)* © V,

as a direct sum of T#"-modules. The same proof as above shows that V is zero.
0

Asin Sect.3.2.3,let A be aquotientof Ag := (Z/QZ)* andlet XA (Q) —
X0(Q) be the corresponding cover. If A is an O-module, we have defined an
action of the universal polynomial algebra T""V on the cohomology groups
H (XA(Q), L) for L = 0®" or ®"(—00). The ideal my gives rise to a
maximal ideal m of T after a choice of eigenvalue mod my for Uy for all x
dividing Q. Extending O if necessary, we may assume that T""" /m = k.

Let M — MY := Homp (M, K /O) denote the Pontryagin duality functor.

Lemma 3.7 Let A be a quotient of Ag. Then:
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() H' (XA (0), Lk ,0)" is p-torsion free for L a vector bundle on X 5(Q).
(2) Fori =0, 1, we have an isomorphism

H (XA(Q), ®(—00)kj0)m —> H (XA(Q), 0k /0O)n-

Proof The first claim is equivalent to the divisibility of H YXA(Q), Lk /O).
Since X 4 (Q) is flat over O, there is an exact sequence

0—>£k—>£1</of>£1</@—>0.

Taking cohomology and using the fact that XA (Q) is a curve and hence
H?(XA(Q), L) vanishes, we deduce that H(XA(Q), Lk /0)/@ = 0, from
which divisibility follows.

For the second claim, note that there is an exact sequence:

0— a)(—oo) - W —> a)|CA(Q) —> 0,

where Ca (Q) denote the divisor of cusps. The cohomology of Ca (Q) is con-
centrated in degree 0. Yet the action of Hecke on H 9(CA(Q), w) is Eisenstein
(by Remark 3.4), thus the lemma. |

If £ is a vector bundle on X A (Q), we define
H;(XaA(Q), £) := H'(Xa(Q), (2" ® LYk /0)”

fori = 0, 1, where £* is the dual bundle and Q! = Q}(A(Q) Jo can be iden-

tified with w®?(—o0) via the Kodaira—Spencer isomorphism. If A — A’ are
two quotients of (Z/QZ)* giving rise to a Galois cover m : XA(Q) —
Xa(Q) and L is vector bundle on Xa/(Q), then there is a natural map
e @ Hi(XA(Q), m*L) — H;(Xar(Q), L) coming from the dual of the
pullback 7* on cohomology. Verdier duality [32, Corollary 11.2(f)] gives an
isomorphism

D: H;(Xx(0), L) — H'(XA(0), L)

under which m, corresponds to the trace map tr(w) : H I=1(XA(0), T*L) —
H'™'(Xa(0), £).

We endow H;(Xa(Q), ®®") with a Hecke action by first identifying Q!
with w?(—o0) and then taking the Pontryagin dual of the Hecke action on
HY(XA(Q), 0> (—0o0)k /o). However, we note that for £ = ", the isomor-
phism D is not Hecke equivariant: extend O if necessary so that it contains a
primitive N Q-th root of unity ¢. Let w* be the operator on H 0(XA(0), w%’; o)
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associated to ¢ as in [31, Sect. 7.1]. Let ® denote the composition of isomor-
phisms:

H'(XA(Q), 0* " (—00)k/0) —> H(XA(Q), 2 ® " 2(c0))"
S HOXA(Q), o)
(w*)V

— H(XA(Q), 0",

where D is Verdier duality, and K S is the Kodaira—Spencer isomorphism.
Then by the proof of [31, Proposition 7.3], we have:

Dol =x""TY0d,

with the same relation holding for U,. We also have ® o (x) = (x) o ®. We
let W := ®" be the dual isomorphism

W HO(XA(Q), 0") — H{(XA(Q), &™).

When n = 1, ¥ is T-linear.

Proposition 3.8 Let A be a quotient of (Z) Q1) of p-power order. Then the
O[A]-module Hy(X A(Q), w)m is balanced (in the sense of Definition 2.2).

Proof Let M = Ho(XA(Q),w ® L)m and S = O[A], where £ = Ox.2
Consider the exact sequence of S-modules (with trivial A-action):

0-0230-k—0.
Tensoring this exact sequence over S with M, we obtain an exact sequence:
0— Torf(M, O)/w — Torf(M, k) > MA — Ma — M Qs k — 0.
Let r denote the O-rank of M. Then this exact sequence tells us that
ds(M) := dimy M ®s k — dimy Tor} (M, k) = r — dimy Tor} (M, O) /w.

We have a second quadrant Hochschild—Serre spectral sequence [33, Theorem
1I1.2.20, Remark I11.3.8]

HI(A, H (XA(0), (@' @ 07! ® LNk /0))
— H' (X0(0), ('@ 0! ® LY k/0).

2 We present the proof writing £ instead of Oy since we will use the same argument in the
proof of Theorem 3.30 with £ as a more general vector bundle on X.
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Applying Pontryagin duality, we obtain a third quadrant spectral sequence

Hi(A, Hi(XA(Q), ® ® L)) = Tor{ (Hj(Xa(Q), 0 ® L), 0)
= Hi1;j(X0(Q), »® L).

We claim that the differentials in the spectral sequence commute with the action
of T"™V on the individual terms. This follows from the fact that the Hochschild—
Serre spectral sequence, for a finite étale Galois cover w : X — Y with group
G,

H (G, H (X, n*F)) = H'1I(Y,F)

is functorial in F. Thus for example, to see that the differentials commute with

1
Ty = —tr(my) o p12 0 5,
X

(where w1, m @ X4«(Q;x) — X,.(Q) are the two projection maps and
% € {0, A}), we use the canonical isomorphisms H'(X.(Q; x),rr;‘a)) =
H (X.(Q),m jy*n}‘a)) and successively apply the functoriality of the spec-

tral sequence with (X, Y, F — F') taken to equal (XA (Q), Xo(Q),w —

M55 ®), (XA(Q5 %), Xo(Q; x), 75 (w) 2 i (@)) and (Xa(Q), Xo(Q),

« tr
T 47T (@) = o).

Localizing at m, we obtain an isomorphism Max = Ho(Xo(Q),® @ L)y
and an exact sequence

(H\(Xa(Q), 0 ® LD)m)a — H1(Xo(Q), w0 ® L) — Tor} (M, O) — 0.
To show that dg(M) > 0, we see that it suffices to show that H1(Xo(Q), v ®
L)m is free of rank r as an O-module. The module H{(Xo(Q),w ® L)
is p-torsion free by Lemma 3.7 (1). It therefore suffices to show that

dimg H(Xo(Q),w @ L)m ® K = r. In other words, by the definition of
r, it suffices to show that

dimg Ho(Xo(Q)k, ® ® L) = dimg H1(Xo(Q), ® ® L)n.
(Here we use the slight abuse of notation H! (X g, %)m = H (X, ¥)m ®o K).

At this point we will specialize to £ = Oyx. By definition of Hp and its
Hecke action, the left hand side above is:

dimg H2(Xo(Q)k, ©(—00))m.
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Using the isomorphism W, we see that the right hand side is equal to:

H(Xo(Q)k, ®)m

We are therefore reduced to showing that
dimg H"(Xo(Q)k, @(—00))m = dimg H*(Xo(Q)k, ®)m.

The result thus follows from Lemma 3.7 (2). O

3.3 Galois representations

Let N = N(p) where N (p) is the Serre level of p. We let H denote the p-part
of (Z/N(p)Z)*. Having fixed N and H, we let X denote the modular curve
defined at the beginning of Sect. 3.2. (We note that N > 5 by Serre’s conjecture,
and also that p is thus modular of the appropriate level, by Theorem 4.5 of [31]).
We add, for now, the following assumption:

Assumption 3.9 Assume that:
(1) The set T (p) is empty.

We address how to remove this assumption in Sect. 3.9. The only point at
which this assumption is employed is in Sect. 3.4.

Remark 3.10 A digression on representability and stacks. Several of the
modular curves we consider do not represent the corresponding moduli prob-
lems for elliptic curves with level structure (due to automorphisms). In such
cases, the object Xy (V) still exists as a smooth proper Deligne-Mumford
stack over Spec(Q), and the sheaf w descends to a sheaf on Xy (N) (if not
always to the corresponding associated scheme). For these stacks X, one can
still make sense of the cohomology groups H°(X, ) and show that they sat-
isfy many of the required properties. For example, suppose that ¥ — X is a
finite étale morphism of modular stacks with Galois group G, and that & = ¥
for some k. Then there is an isomorphism

HY(X, %)~ H(Y, £)C.

Taking Y to be representable (which is always possible for the X we consider),
and letting R be an O-algebra, one may identify H(X g, ) with the ring of
Katz modular forms of weight k over R as defined in [29].3

3 Here is a somewhat different example: let H C (Z/13Z)* denote the group of squares;
there is a finite étale map X1(13) — X g (13) with Galois group Z/3Z (viewing X (13) as a
stack). The underlying scheme of X g (13) is isomorphic over O (for p # 13) to the projective
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Instead of trying to adapt our arguments (when necessary) to the context of
stacks, we introduce the following fix. Choose any prime ¢ # 1 mod p with
g > 5 such that p is unramified at ¢ and such that the ratio of the eigenvalues
of p(Froby) is neither g nor g~ (we allow the possibility that the eigenvalues
are the same). The assumption on the ratio of the eigenvalues ensures that
© admits no deformations which are ramified and Steinberg (unipotent on
inertia) at ¢; the assumption that ¢ #% 1 mod p guarantees that there are
no other deformations of p which are ramified at ¢g. First, we claim that the
Chebotarev density theorem guarantees the existence of such primes. Since
det(pp) is unramified at p, the fixed field of ker(p) does not contain Q(¢,)
(note that p # 2). Hence, we may find infinitely many primes ¢ such that
the fixed field of ker(p) splits completely and ¢ # 1 mod p; such primes
satisfy the required hypothesis. We then add I'{(g) level structure and the
arguments proceed almost entirely unchanged (the assumption on g implies
that any deformation of p with fixed determinant is unramified at g). The only
difference is that the multiplicity of the corresponding Hecke modules will
either be the same or twice as expected—depending on whether o (Frob,) has
distinct eigenvalues or not—by Lemma 3.6.

By Serre’s conjecture [24] and by the companion form result of Gross [28]
and Coleman—Voloch [37], there exists a maximal ideal mg of Ty correspond-
ing to p. The ideal my is generated by @, T,, — Trace(p (Froby)) for all primes x
with (x, Np) = 1 and (x) — det(p (Frob,)) for all x with (x, N) = 1. Extend-
ing O if necessary, we may assume Ty/mg = k. Let Q be as in Sect. 3.2. For
each x € Q, assume that the polynomial X?> — T, X + (x) has distinct roots
in Ty/mg = k and choose a root o, € k of this polynomial. Let m denote the
maximal ideal of T generated by my and U, — «, for x € Q.

Theorem 3.11 (Local-Global Compatibility) There exists a deformation
po : Gg — GL2(Tw)

of p unramified outside N Q and determined by the property that for all
primes x satisfying (x, pN Q) = 1, Trace(pg(Froby)) = T. Let ,o/Q =

Footnote 3 continued

line, and hence, naively, one would expect H 0(X g (13), wz) to vanish. However, as noted by
Serre [34,35], there exists a Galois representation p : G — GL,(F3) with N(p) = 13,
k(p) = 2, and €(p) quadratic. (The representation p is induced from Q(4/—3)). The original
conjecture 3.2.49 of [36] asserts that p gives rise to a mod-3 modular form on X ;7 (13). However,
considering X g (13) as a stack, one finds, for p = 3, that the group

' (XH(B)FV “’2> =H’ <X1(l3)F3, a)2>Z/3Z

is indeed non-zero, even though the scheme underlying X g (13) has genus zero. This is in
accordance with Edixhoven’s reformulation of Serre’s conjecture (Conjecture 4.2 of [31]).
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po ® n, where n is the unique p-power order character satisfying n? =
(det(p)) det(,oQ)_l. Then ,O/Q is a deformation of p minimal outside Q. For a
prime x|Q, the restriction of p/Q to Dy is conjugate to a direct sum of residu-

ally unramified characters § ® (det(p))|p, & ! where & (Frob,) = o, mod m,
and such that the restriction of & to I, and hence via local class field theory
to L ® L, = Ay is compatible in the usual way with the diamond operators
in Ty

Remark 3.12 The existence of pg follows immediately by using congruences
between weight one forms and higher weight (using powers of the Hasse
invariant). The assumptions on x|Q imply that p|p, is p-distinguished and,
because there are no local extensions, totally split. Hence the required informa-
tion is preserved under congruences, and one is reduced once more to higher
weight, where this statement is known. Hence the main difficulty in proving
Theorem 3.11 is showing that the Galois representation is unramified at p.

Remark 3.13 Under the hypothesis that o(Frob,) has distinct eigenvalues,
Theorem 3.11 can be deduced using an argument similar to that of [28]. Under
the hypothesis that o (Frob ) has repeated eigenvalues but is not scalar, we shall
deduce this using an argument of Wiese [38] and Buzzard. When p(Frob) is
trivial, however, we shall be forced to find a new argument using properties
of local deformation rings. In the argument below, we avoid using the fact
that the Hecke eigenvalues for all primes / determine a modular eigenform
completely. One reason for doing this is that we would like to generalize our
arguments to situations in which this fact is no longer true; we apologize in
advance that this increases the difficulty of the argument slightly (specifically,
we avoid using the fact that 7}, in weight one can be shown to live inside the
Hecke algebra T, although this will be a consequence of our results).

Proof For each m > 0, we have H(X1(Q), wo/mm)m = H’(X1(Q),
wgjo)mlw™], and we let I, denote the annihilator of this space in Ty,. Since
Tw = @m Tw/ Iy, it suffices to construct, for each m > 0, a representation
po.m : G — GL2(Ty/ 1) satistfying the conditions of the theorem.

Fix m > 0 and let A be a lift of (some power of) the Hasse invariant such
that A=1 mod @w™; letn — 1 denote the weight of A. We may assume that
n — 1 is sufficiently divisible by powers of p (and (p — 1)) to ensure that
"' =1 mod . Multiplication by A induces a map:

HO(XI(g)»wK/O) re HO <X1(Q), a”f(/(f))

K/Olq] =————= K/Olq]
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This map is Hecke equivariant away from p on @ torsion; indeed, the diagram
is only commutative modulo ™.
Consider the map

¥ HO (X1(0), 0k 0)” "] —~ HO (X1(0), ) [™]

v HO (X1(0), wO/wm)2 —— H° (Xl(Q) wO/w’”)‘

defined by ¢ = (¢, ¢ o T), — U, 0 ¢). (The operator T, acts in this setting by
the results of Sect. 4 of Gross [28]). For ease of notation, we let T, (or ¢ o T},)
exclusively refer to the Hecke operator in weight one, and let U, denote the
corresponding Hecke operator in weight n. (The operator U, has the expected
effect on g-expansions, since the weight n is sufficiently large with respect
to m). On g-expansions modulo ™, we may compute that v = (¢, (p)V))
(see also 4.7 of [28]) . We claim that i is injective. It suffices to check this
on the O-socle, namely, on w-torsion. On g-expansions, ¢ is the identity
and V,(3_a,q") = ) a,q"’. Suppose we have an identity (p)V,f = g.
It follows that 8g = 0 in H*(X1(Q), womm)[w] = H*(X1(Q), @). By a
result of Katz [29], the & map has no kernel in weight < p — 2, and so in
particular no kernel in weight 1. Hence 1 is injective.

The action of U, in weight n on HO(X, (0), a)o/wm)2 via w_l is given by

where here T, is acting in weight one (cf. Prop 4.1 of [28]), and hence satisfies
the quadratic relatlon X2 —T» X+(p) = 0.Note thatthe actionof U, +(p)U !

on the image of ¥ is given by
T, 0
0 T1,)°

By Proposition 12.1 and the remark before equation (4.7) of [28], we
see that (p) = «f mod m and (U, — @)(U, — B) acts nilpotently on
v (H 0(X1(0), wo /wm) ), where a and B denote the (possibly non-distinct)
eigenvalues of p(Frob,) and @, ,3 are any lifts of o and 8 to O. Explicitly,
the only possible eigenvalues of U, modulo m in higher weight are deter-
mined by p, and are either equal to «, B, or 0. Yet U, acts invertibly on
v (H 0(X1(0), wo /wm)%), as can be seen by considering the matrix descrip-
tion of U, (which has invertible determinant given by (p)).
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Let Ti" denote the subalgebra of Endp(H 09(X1(0), wp,)) generated over
O by the operators T, for primes (x, NQp) = 1 and diamond operators {(a)
for (a, NQ) = 1. Let T,, denote the subalgebra of Endo(HO(Xl(Q), wy))
generated by T3" and U, for x dividing Q, and let T,, denote the subalgebra
generated by T, and U, (recall that we are denoting T), in weightn by U ). By a
slight abuse of notation, let my denote the maximal ideal of T3" corresponding
to p. Similarly, let m denote the maximal ideal of T, generated by my and
Uy —a, forx € Q. ~

Let My and Mg denote the ideals of T, containing m and U, —« or U, — 8
respectively. If « = 8, we simply write m = m, = mg. Note thatsincen > 1,
we have

H (X1(Q), 0%) ® O/™ = H° (Xl(Q),w’é/wm)

and hence we may regard the latter as a module for T, (and its sub-algebras T,
and T2"). The proof of Theorem 3.11 will be completed in Sections 3.4-3.7. O

3.4 Interlude: Galois representations in higher weight

In this section, we summarize some results about Galois representations asso-
ciated to ordinary Hecke algebras in weightn > 2. As above, leta and § be the
eigenvalues of p(Frob,). There is a natural map T, n — T, 7,. [f @ = B this
map is injective, otherwise, write T, r, for the image. There are continuous
Galois representations

Pna : G = GLa Ty my)
o : Go = GLa (T, &,)

with the following properties:

(a) The representation py, 4 is 0btaine~d from p, o by composing p, , with the
natural inclusion map T, n, — Ty &, -

(b) pn.« and p, o are unramified at all primes (x, pN Q) = 1 and the charac-
teristic polynomial of p, o (Froby) for such x is

X% — T X + x"Nx).

(c) If E isafield of characteristic zero, and ¢ : Tnﬁ — Eisahomomorphism,
then ¢ o p, «|G p is equivalent to a representation of the form

<e"—1x<¢<<p>)/¢<vp>> * )
0 Mo (Up))

where A(z) denotes the unramified character sending Frob,, to z.
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These results follow from standard facts about Galois representations
attached to classical ordinary modular forms, together with the fact that there
is an inclusion

Ty m, = Tum, = 1_[ E;

with E; running over a finite collection of finite extensions of K corresponding
to the ordinary eigenforms of weight n and level I'1 (N Q).

Theorem 3.14 Under Assumption 3.9, p, o is a deformation of p that satisfies
conditions (2) and (4) of Definition 3.1, with the exception of the condition of
being unramified at p.

This follows from the choice of N and H together with the local Langlands
correspondence and results of Diamond-Taylor and Carayol (see [15, Lemma
5.1.1]). (The choice of H ensures that for each prime x # p, det(p, «)|/; has
order prime to p). Note that without Assumption 3.9, the representation p,
still satisfies condition (2) of Definition 3.1; the issue is that p, , may have
extra ramification at those primes not in 7' (p).

We now fix one of the eigenvalues of p(Frob)), « say, and write m = M.
The existence of p, o gives B := Ti’ﬁ the structure of a T, s[Ggl-module.
Recall that G, is the decomposition group of G at p.

Lemma 3.15_Suppose that p(Frob,,) is not a scalar. Then there exists an exact
sequence of T, &[G p1-modules

0 A—-B—->C—=0

such that:

(1) A and C are free 'ff‘n,ﬁ-modules of rank one. _
(2) The sequence splits B ~ A ® C as a sequence of T, g -modules.
(3) The action of G, on C]’%lctors through Gy, = G /1), and Frobenius acts
via the operator U, € T, .
(4) The action of G, on A is unramified and is via the character e a(p)
u;h.
p

Proof Let C denote the maximal Tn,a—quotient on which Frob,, acts by U,,.
The construction of C is given by taking a quotient, and thus its formulation is
preserved under taking quotients of B. Since B is free of rank two, B/m has
dimension 2. The action of U, on C/m is, by definition, given by the scalar «.
Yet B/m as a G ,-representation is given by p, and p(Frob ) either has distinct
eigenvalues « and 8 or is non-scalar by definition. Hence dim C/m = 1, and by
Nakayama’s lemma, C is cyclic. On the other hand, by well-known properties
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of the Galois actions arising from classi~cal modular forms, we see that C ® Q
has rank one, and thus C is free as a T, z-module. It follows that B — C
splits, and that A is also free of rank one. Considering once more the local
Galois structure of representations arising from classical modular forms, it
follows that G, acts on A ® Q via e”_lk((p)UI;l). Since T, # is O-flat, the
action of G, on A itself is given by the same formula, proving the lemma. O

When p(Frob,) is scalar, there does not exist such a decomposition. Instead,
in Sect. 3.7, we shall study the local properties of p, o and py, o using finer
properties of local deformation rings.

3.5 Proof of Theorem 3.11, case 1: a # B, p(Frob,) has distinct
eigenvalues

We claim there is an isomorphism of T""V-modules:

HY(X1(Q), ©0/mm)m = (W H(X1(Q), ®0/mm) )i,

obtained by composing ¢ with the Tn—equivariant projection onto (Y H(X
(0), wo /wm)z){ﬁa. The argument is similar to the proof of Lemma 3.5. We
know that U, satisfies the equation X 2 _ TpX + (p) = 0 on the image of
¥ but we may not use Hensel’s Lemma to deduce that there exist a and B
in Ty /1, such that (U, — &)(Up — B) = 0 on the m-part of the image
of v, since we do not know a priori that T), lies in Ty,. Instead, we note
the following. Since U, acts invertibly on the image of ¥/, we deduce from
the equality 7, = U;l(p) + U, that T, — o — B lies in M, and Mg, and
thus acts nilpotently on HO(X, (Q), 0O /mm)m. It follows that Ty, /1,,[T)] C
End(H°(X1(Q), wo/wm)m) is a local ring with maximal ideal m which acts
on H(X; (Q), w0 wm)m. The operator U, does satisfy the quadratic relation
X2 — TpX + (p) = 0 over Tny/1;n[Tp], and hence by Hensel’s Lemma there
exists & and g in Ty /1,,[T,] such that (U, — @)(U, — B) = 0 on the m-part
of the image of yr. The argument then proceeds as in the proof of Lemma 3.5,
noting (tautologically) that HO(X, (), wojm)@ = HO(XI(Q), WO /™ )m-
It follows from the result just established that Tw/In[Tp][U,] C End
(Im(y)#,) is a quotient of T}, 7, and Ty, /I, is the corresponding quotient of
T, . m,. Note that the trace of any lift of Frobenius on the corresponding quo-
tient of p, « is equal to U, + (p)Up_l, which is equal to T}, in End(Im(v/),,).
(We use here, as below, that €”~! is trivial modulo ™). In particular, this
implies that T, € Ty /1,,. We now define pg ;, to be the composition of p; 4
with the surjection Tn,m%—» Tw/In, and pg », to be py o on the corresponding
quotient Ty, /1, [Up] of Tnﬁa. (Since U, = ainTy/I, [Up], the correspond-
ing quotients of T, n, and T, 5, are the same). The character v defined by
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the formula v := (detp) det(,oQ,m)_1 is thus unramified outside Q and of
p-power order. Since p > 2, v admits a square root 7 (also unramified outside
Q). We have established that p’Q7m = po,m ® n satisfies all the conditions of
Definition 3.1, except the condition that it be unramified at p. Equivalently, it
suffices to show that pp ;, is unramified at p. By Lemma 3.15, we may write

- ~ (AMB
po.mlGp = ( ((?) )»(*&))'

By symmetry, we could equally well have defined pg ,, by regarding Ty, /1,
as a quotient of Ty.my. (Note that the Chebotarev density theorem and [39,
Théoreme 1] imply that pg ,, is uniquely determined by the condition that
Tracepg, n (Froby) = T\ for all (x, pN Q) = 1). It follows that we also have

~ - (Al
po.mlGp = ( (oa) A(*E))'

Since o # B, this forces pg m|Gp to split as a direct sum of the unramified
character A() and A(ﬂ) (Moreover, we see that T, = U ( )+ Up

o+ ,8 Trace(pg,m (Froby)) € Ty).

3.6 Proof of Theorem 3.11, case 2: « = 8, p(Frob,) non-scalar

We will assume below that @ = B is a generalized eigenvalue of p(Frob,,), and
furthermore that o (Frob,) is non-scalar. However, we first prove the lemma
below.

Lemma 3.16 (Doubling) Without any assumption on p(Frob,), the action of
T n.f on W(HO(Xl (0), (,l)O/w—m) ) factors through a quotient isomorphic to

T/ In[TH11X1/(X* — T, X + (p)),

where U, acts by X.

Proof The action of ’T‘n,ﬁ certainly contains T), := U, + (p)U, ! and more-
over U, also satisfies the indicated relation. Thus it suffices to show that U,
does not satisfy any further relation. Such a relation would be of the form
AU, + B = 0 for operators A, B in Ty, /1,,[T,]. By considering the action of
U, as a matrix on the image of , however thls would imply an identity:

T, 1 1 0y _(0 0
(o) oo 1)=(0)
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from which one deduces that A = B = 0 (the fact that one can deduce the
vanishing of the entries is equivalent to the injectivity of ). O

Following Wiese [38], we call this phenomenon “doubling”, because the
corresponding quotient of T, 7 contains two copies of the image of T, . We
show that this implies that the corresponding Galois representation is unram-
ified.

Note that the trace under p, o of any lift of Frobenius is sent to U, +
(p)U, ! =T, in T/, and so this in particular implies that T, € T/l
The image of T, i, under the map

Tym = Tos = T/ InlT,1U,]
is given by T /1y = Tw/Ln[Tp]. We thus obtain a Galois representation

po.m G — GLo(Tw/Ip).

As in Sect. 3.5, it suffices to prove that pg ,, is unramified at p. Consider the
Galois represen@tion ﬁQ, m : GQ = GL2(Tw/1y[U,]) obtained by tensoring
over T, m with T, 5. By Lemma 3.16, there is an isomorphism

T/ InlUpl = Tua /Iy @ T/ I

as a Tp/I,,-module. Since pp ,, is obtained from pg , by tensoring with a
doubled module, it follows that there is an isomorphism pp » =~ p.m ® PO.m
as a Ty, /1,,[G p]-module (or even Ty /1,,[Ggl-module).

Lemma 3.17 Let (R, m) be a local ring, and let N, M, and L be R[G p]-
modules which are free R-modules of rank two. Suppose there is an exact
sequence of R[G p]-modules

O>N->Mé&M-—>L—>0
which is split as a sequence of R-modules. Suppose that L /m is indecompos-

able as a R[G )-module. Then N ~ M ~ L as R[G p]-modules.

Proof This is Proposition 4.4 of Wiese [38] (we use L here instead of Q in [38]
to avoid notational conflicts). Note that the lemma is stated for F,-algebras R
and the stated condition is on the sub-module N rather than the quotient L,
but the proof is exactly the same. O

We apply this as follows. Consider the sequence of T‘n,a—modules consid-
ered in Lemma 3.15. If we tensor this sequence with the quotient of T,
corresponding to the doubling isomorphism

Tm/lm[Up] = Tm/lm ) Tm/lm,
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then the corresponding quotient of B is pg,»,, which, by doubling, is free of
rank 4 over Ty, /I,, andas a Ty /1,,[G ]-module is given by pg ,» @ po,m- The
corresponding quotients A and C are similarly free over Ty, /I, of rank 2. The
action of Frob, on L/m is given by U,,. Since U, does not lie in m—as this
would contradict doubling—it follows that (U, — ) acts nilpotently but non-
trivially on L /m, and hence L /m is indecomposable (indeed, by construction,
L /m is free of rank one over k[U,1/(U, — «)?). Hence, by the lemma above,
there are isomorphisms L >~ pg ,, as a G ,-module. Yet L is a quotient of C,
which is by construction unramified, and thus pg ,, is also unramified. Finally,
we note that the trace of Frobenius at p is given by U, + (p)U,, I = Ty, so
T, = Trace(pg,n (Froby)).

3.7 Proof of Theorem 3.11, case 3: « = 8, p(Frob,) scalar

The construction of the previous section gives a representation pg ,, which
satisfies all the required deformation properties with the possible exception
of knowing that pg ;, is unramified at p. In order to deal with the case when
p(Frob,) is scalar, we shall have to undergo a closer study of local deformation
rings. Suppose that

7:G, — GLy(k)

is trivial. (If )p is scalar, it is trivial after twisting). We introduce some local
framed universal deformation rings associated to p. Fix a lift ¢, € G, of
Frob,,.

In the definition below, an eigenvalue of a linear operator is defined to be a
root of the corresponding characteristic polynomial.

Definition 3.18 For A in Cp, let D(A) denote the set of framed deformations
of p to A, and let D(A) denote the framed deformations together Witll an
eigenvalue « of ¢,. Let these functors be represented by rings RV and RUMY
respectively.

There is a natural inclusion R™Y — RV apd RUMY jg isomorphic to a
quadratic extension of R" (given by the characteristic polynomial of ¢)).
Kisin constructs certain quotients of R"™" which capture characteristic zero
quotients with good p-adic Hodge theoretic properties. Let € denote the cyclo-
tomic character, let w denote the Teichmiiller lift of the mod- p reduction of €,
andlet x = ew™!, 50 x =1 mod . We modify the choice of ¢p if neces-

: n—1 i n—1 .
sary so that x (¢,) = 1. Let R"":X" " and R"™:X"  denote the quotients of
R"™Y and R"™V corresponding to deformations with determinant x”~!.
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Theorem 3.19 Fix an integer n > 2.

. . . S Suniv. y"—1
(1) There exists a unique reduced O-flat quotient R™ of R*™V-X""" such that
points on the generic fiber of RT correspond to representations p : G p—>

GLy(E) such that:
N Xn_l)" (a—l) %
P 0 @)

(2) Thering Rfisan integral domain which is normal, Cohen—Macaulay, and
of relative dimension 4 over Q.

Proof Part 1 of this theorem is due to Kisin. For part 2, the fact that Rfisan
integral domain follows from the proof of Lemma 3.4.3 of [40]. The rest of
part 2 follows from the method and results of Snowden [41]. More precisely,
Snowden works over an arbitrary finite extension of Q, containing Q,(¢p),
and assumes thatn = 2,50 x = ew~! = €. However, this is exactly the hardest
case—since for us p # 2, x"~! # €, our deformation problem consists of a
single potentially crystalline component. In particular, the arguments of [41]
show that R" ® k is an integral normal Cohen-Macaulay ring of dimension
four, which is not Gorenstein, and is identified (in the notation of ibid). with
the completion of By at b = (1, 1; 0). O

Let RT denote the image of R"™" in R. We also define the following rings:

Definition 3.20 Let R"™ denote the largest quotient of R" corresponding to
unramified deformations of p. Let R"" denote the corresponding quotient of
R'.

Runiv‘

We are now in a position to define two ideals of

Definition 3.21 The unramified ideal .% is the kernel of the map RV
R"". The doubling ideal ¢ is the annihilator of R"/RT as an R™"-module.

Lemma 3.22 There is an equality ¢ = 7.

Proof We first prove the inclusion ¢ C .. By definition, RN/ J acts
faithfully on RY /R, and it is the largest such quotient. Hence it suffices to
show that R /.7 acts faithfully on

(R"/R") ® R™ /.7 ~ (R").7)/(RT ) .9).
Since ﬁ*/ﬂ ~ R" and R'/.# ~ R it suffices to show that IAQJ‘"“/Runr

is a faithful R"™ = R"™V/_#_-module. (It is not a priori obvious that the map
R"™ — R"™ is injective, so the notation R"™/R"™ is slightly misleading;
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however, we prove it is so by explicit computation below). Let @™ denote the
greatest power of o dividing (x"~!(g) — 1)O for all g in the decomposition
group at p. By considering determinants, R"™ (and R"™) is annihilated by
@™ . The moduli space of matrices ¢ in O/w™ which are trivial modulo @
and have determinant one, that is, with

¢:<l+¢1 $2 )
¢ 14+¢4)’

is represented by:

O/ (p1, d2. 3, P4/ (D1 + P4 + P10 — $203).

We show shortly that this ring is isomorphic to R""; admit this for a moment.
The corresponding moduli space R"" of such matrices together with an eigen-
value @ = 1 + B is represented by

R~ RMM[B1/(B> — (41 + a)B — (#1 + du)) = R™™ @ R™,

where the last isomorphism is as an R"""-module. Clearly R""" acts faithfully
on (R" @ R"™)/R"™ ~ R"™, proving the inclusion # C .#. We now prove
the equality of rings above. It suffices to prove it for R"". By construction,
the ring above certainly surjects onto R™_ Hence, it suffices to show that this
ring is naturally a quotient of R. As in Snowden, the ring RY represents the
functor given by deformations to A with eigenvalue « satisfying the following
equations:

(1) ¢ € M>(A) has determinant 1.

(2) «a is aroot of the characteristic polynomial of ¢.

(3) Trace(g) = x" " '(g) + 1 for g € I,

@ (g-DE@-DH=u""@®-DE —-Dforg g el
5) (g=D@—a)=x"""g - D@ —a)forgel,
©) (p—a)g—1) = (" —a)g—1)forg e,

To understand where these equations come from, one should imagine writing
down the following equations:

-1 n—1
ppp) =¢~ (ao Z) p(g) = (X O(g) T) g el

We caution, however, that although one can find such a basis for any represen-
tation when A is a field, we do not claim that there exists any universal such
basis (indeed, we presume that there does not). Returning to our argument, it
is now trivial to observe that the quotient of R in which g € I p 1s the identity
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is equal to the ring we asserted to be R" above (and that the image of RV
in this ring is what we asserted to be R""").

We now prove the opposite inclusion, namely that . C _¢. Instead of
writing down a presentation of RY, it will suffice to note the following, which
follows from the explicit description above: The ring R R is generated over O
by the following elements which all lie in the maximal ideal:

(1) Parameters ¢; (for i = 1 to 4) corresponding to the image of p(¢,) — 1,

(2) Parameters x;; for i = 1 to 4 and a finite number of j corresponding to
the image of inertial elements m; = p(g;) — 1.

(3) Anelement B, where o = 1 + B is an eigenvalue of p(¢)).

Moreover, R' is generated as a sub-algebra by ¢; and the x; j» and B satisfies

B — (¢1 + da)B — (1 + ps4) = 0.

Since the determinant of ¢ is one, it follows that o +a~! = 2 + ¢1 + ¢4. By
definition, there is a decomposition of R-modules I?f/ 7 = R/ B BRT/ 7
with each summand being free over R/ ' # . From the equality (6), we deduce
that the relation

(¢ —Dmj— (1 +dpa)m; = (@' —1 =1 —pa)m; = —(a — Dm;

holds in Mg(ﬁT), and hence also in MQ(EJ’//). Yet by assumption, over
R/ ¥, the modules R/ ¥ and BRT/ _# have trivial intersection, from which
it follows that Bm ; = 0 in M>(B RY/ 7). In particular, since the latter module
is generated by 8, we must have x;; € _# foralli and j. Since .¥ is generated
by x;;, we deduce that .# C ¢, and hence that .¥ = 7. O

Remark 3.23 Why might one expect an equality .# = _#? One reason is
as follows. The doubling ideal ¢ represents the largest quotient of R on
which the eigenvalue of Frobenius « cannot be distinguished from its inverse
a~!. Slightly more precisely, it is the largest quotient for which there is an
isomorphism ﬁ*// — Iﬂﬁ// fixing the image of R' and sending o to o ™!

It is clear that such an isomorphism exists for unramified representations.
Similarly, for a ramified ordinary quotient, one might expect that the « can
be distinguished from o ~! by looking at the “unramified quotient line” of the
representation. Indeed, for characteristic zero representations this is clear—
one even has RT[I/w] o~ ﬁ*[l/w].

Lemma 3.24 There is a surjection Ty m Q@ pt R — T,,ﬁ

Proof Recall that T = Ty mlUpl. Since U, 1s glven as an eigenvalue of
Frobenius, Tn & naturally has the structure of a Roniv_ -algebra. We claim that
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the map from RV to ’AIJ‘nﬁ factors through R*. Since ”f‘n’fﬁ acts faithfully on
a space of modular forms, there is an injection:

Tn’fﬁ —> l_[ E,‘

into a product of fields corresponding to the Galois representations associated
to the ordinary modular forms of weightn and level I'; (N Q). By the construc-
tion of RT, it follows that the map from R"™" to this product factors through
via R'. This also implies that the map from R"™" to T, & (and hence to T, )
factors through R, and hence there exists a map

Tn,m ® gt ﬁT — Tn,ﬁs

sending o € RftoU p- Yet the image of this map contains both T), , and U),,
and is thus surjective. |

Definition 3.25 Let the global doubling ideal ##° be the annihilator of
T, 7/Thm as an R-module.

Since there is a surjection T), i @ p+ Rf > ’T‘n,\’ﬁ, it follows that rT‘”ﬁ/Tn,m
is a quotient of

(Tom @pt RN/ Tom = (Tom @pt RN/ Tm Qpt RY = Tyn @+ RT/RY

as an R'-module. In particular, by considering the action on the last factor, we
deduce that # C _¢&°° In particular, .# C _#8° or equivalently, on any
quotient of T, i on which the corresponding quotient of T, & is doubled (in
the sense that the quotient of T, # is free of rank 2 as a module for the image
of Ty m), the action of the Galois group at p is unramified. In particular, by
Lemma 3.16, this applies to the quotient of T, # given by Tw /1y [T)1[U)p].
Specifically, as in the previous sections, we obtain corresponding Galois rep-
resentations:

pom: Go = GLa(Tw/In).  Boum : G = GLa(Tu/InlU,)).

(The trace of any lift of Frobenius on this quotient is equal to U, + (p)U,, I =
Ty, and so T), € Tw/1,). From the discussion above, we deduce that pg
and thus pg , is unramified at p, and that Trace(pg , (Frob,)) = T),. The
rest of the argument follows as in Case 3.5, and this completes the proof of
Theorem 3.11 O
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3.8 Modularity lifting

We now return to the situation of Sect. 3.1. Taking Q = 1 in Theorem 3.11,
we obtain a minimal deformation p" : Gg — GL2(Ty n,) of p and hence
a homomorphism ¢ : R™" — Ty, m, which is easily seen to be surjective.
Recall that Assumption 3.9 is still in force.

Theorem 3.26 The map ¢ : R™" — Ty m, is an isomorphism and Ty w, acts
freely on Hy(X, @)m,,.

Proof We view Hy(X, @), as an R™M"_module via . Since ¢ is surjective,
to prove the theorem, it suffices to show that Hy(X, )m, is free over R™".
To show this, we will apply Proposition 2.3.

We set R = R™" and H = Hy(X, ®)m, and we define

q := dimy H (Gq,ad’p(1)).

Note that ¢ > 1 by Proposition 3.3. As in Proposition 2.3, we set Sy =
oz, pN 7)7] for each integer N > 1 and we let R, denote the power series
ring O[xy, ..., x4—1]. For each integer N > 1, fix a set of primes Qy of Q
satisfying the properties of Proposition 3.3. We can and do fix a surjection
¢N : Roo — Rg, foreach N > 1. We let ¢y denote the composition of ¢y
with the natural surjection Rp, — R™". Let

Aoy = [ @/o)*

xeQn

and choose a surjection Ag, — Ay = (Z/pNZ)q. Let XAy (QN) —
Xo(Qn) denote the corresponding Galois cover. For each x € Qy, choose
an eigenvalue o, of p(Froby). We let T, denote the Hecke algebra denoted
T in Sect. 3.2.4 with the Q of that section taken to be the current Qy. We
let m denote the maximal ideal of Ty, generated by my and U, — «, for
each x € On. We set Hy := Hy(Xay(ON), w0)m. Then Hy is naturally
an O[An] = Sy-module. By Theorem 3.11, we deduce the existence of a
surjective homomorphism Rg, — Ty m. Since Tp, m acts on Hy, we get

an induced action of R, on Hy (via ¢y and the map Roy — Toym). We
can therefore view Hy as a module over Ry ®¢ Sy.

To apply Proposition 2.3, it remains to check points (5a)—(5¢). We check
these conditions one by one:

(a) The image of Sy in Endp(Hy) is contained in the image of Ry, by
construction (see Theorem 3.11). The second part of condition 5a is a
consequence of the following: for each x € Qy, the restriction to G of
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the universal representation G — GL2(Rg, ) is of the form x,, @ xp,
where each summand is of rank 1 over Rp, and where ., lifts A(oy).
By restricting xo, to I, for each x € Qy, we obtain, by local class field
theory, amap O[Ag,] — Rg, . The quotient of Ry, by the image of the
augmentation ideal of O[A, ] is just Rmin,

(b) As in the proof of Proposition 3.8, we have a Hochschild—Serre spectral
sequence

Tor®™ (Hj(Xap (ON), @)m, O) = Hi1;(Xo(ON), ®)m.

We see that (Hy)ay = Ho(Xo(Qn), @)m. Then, by Lemmas 3.5 and 3.7
we obtain an isomorphism (Hy)ay = Ho(X, w)m, = H, as required.

(c) Themodule Hy is finite over O and hence over Sy . Proposition 3.8 implies
that ds, (Hy) > 0.

We may therefore apply Proposition 2.3 to deduce that H is free over R,
completing the proof. O

We now deduce Theorem 1.4, under Assumption 3.9, from the previous
result. In the statement of Theorem 1.4, we take Xy = X = X{(N)/H and
Ls = Oy and, as in the statement, we let T be the Hecke algebra of H (X, w)
(generated by prime-to-N p Hecke operators) and m the maximal ideal of T
corresponding to p. Analogous to the discussion preceding Proposition 3.8),
we have a Hecke equivariant isomorphism Hy(X, w) = H'(X, w) which thus
gives rise to an isomorphism Ty m,, S Th.

We also show that Hy(X, @)m, has rank one as a Ty y,-module: this fol-
lows by multiplicity one for GL(2)/Q if Ho(X, wg)m, is non-zero. In the
finite case, we argue as follows. By Nakayama’s lemma it suffices to show
that HO(X, wx(—00))[my] has dimension one. We claim that U, € Ty m,
for all x|N. This is a consequence of the assumption that N(p) = N as we
now explain. Suppose that x||N. Then the Tﬁl—representation has a unique
invariant Tp,-line on which Frob, acts by Uy, and so Uy € Ty,. On the other
hand, if x2|N , then U, = 0 is also in Ty,. Since we have also shown that
T, € Ty m, we may deduce this from the fact that g-expansion is com-
pletely determined by the Hecke eigenvalues T, for all (x, N) = 1 and U, for
all x|N.

3.9 Vexing primes
In this section, we detail the modifications to the previous arguments which

are required to deal with vexing primes. To recall the difficulty, recall that a
prime x different from p is vexing if:
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(1) p|D; is absolutely irreducible.
(2) pll; ~ & @ &€ is reducible.
(3) x=—1 mod p.
The vexing nature of these primes can be described as follows: in order to
realize p automorphically, one must work with I'; (x") structure where x”
is the Artin conductor of p|D,. However, according to local Langlands, at
such a level we also expect to see non-minimal deformations of p, namely,
deformations with p|I, >~ ¢ (§) @ wil (£¢), where  is a character of (F2)*
of p-power order. Diamond [13] was the first to address this problem by
observing that one can cut out a smaller space of modular forms by using the
local Langlands correspondence. The version of this argument in [15] can be
explained as follows. By Shapiro’s Lemma, working with trivial coefficients at
level I (x") is the same as working at level prime to x where one now replaces
trivial coefficients Z by a local system F corresponding to the group ring of
the corresponding geometric cover. In order to avoid non-minimal lifts of o,
one works with a smaller local system JF, cut out of F by a representation o
of the Galois group of the cover to capture exactly the minimal automorphic
lifts of p. The representation o corresponds to a fixed inertial type at x. In
our setting (coherent cohomology) we may carry out a completely analogous
construction. Thus, instead, we shall construct a vector bundle £, on X. We
then replace H*(X|(N), w) by the groups H*(X|(N), w ® Ly). The main
points to check are as follows:
(1) Thespaces HO(X(N), ®®"®Ly) forn > 1doindeed cut out the requisite
spaces of automorphic forms.
(2) This construction is sufficiently functorial so that all the associated coho-
mology groups admit actions by Hecke operators.
(3) These cohomology groups inject into natural spaces of g-expansions.
(4) This construction is compatible with arguments involving the Hochschild—
Serre spectral sequence and Verdier duality.

We start by discussing some more refined properties of modular curves, in
the spirit of Sect. 3.2.1. Let S(p), T (p) and Q be as in Sect. 3.1. Let P(p)
denote the set of x € S(p) — T (p) where p is ramified and reducible.

We will now introduce compact open subgroups V <1 U C GL,(A*) and
later we will fix a representation o of U/ V on a finite free O module W,. (In
applications, U, V and o will be chosen to capture all minimal modular lifts of
p. If the set of vexing primes 7 (p) is empty, then U = V and all minimal lifts
of p will appear in H 0(Xy, w). As indicated above, there is a complication if
T (p) is non-empty. In this case, minimal modular lifts of p will appear in the
o* := Hom(co, O)-isotypical part of HO(Xy, w)).

For each prime x € S(p), let ¢, denote the Artin conductor of p|G,. Note
that ¢, is even when x € T (p). For x € S(p), we define subgroups V, C
U, C GLy(Z,) as follows:

@ Springer



F. Calegari, D. Geraghty

o If x € P(p), we let
x %
Uy = x:{gEGI—Q(Zx):gE(O d)
mod x*, d € (Z/x“)™ has p — power order}.

e If x € T(p), then let U, = GL»(Z,) and
Vy = ker (GL2(Zy) —> GLo(Z/x%/?)) .
o If x € S(p) — (T'(p) U P(p)),

U, =V, = {g € Gly(Zy) : g = (g ’;) mod x}

For x a prime not in S(p), we let
Ux = Vx = GLZ(ZX)

Finally, if x is any rational prime, we define subgroups U;, C Up, C
GL2(Zy) by:

Uox = {g € GLy(Zy) : g = (g :) mod x}
ES ES
Ul,x = {g €GLly(Zy) : g = (O ]) mod x} .

We now set

U=[[ve U@ =]]U:x][]Uix

x¢Q xeQ
V=[]Ve. Vi@ =[]V x ][]V
x x¢Q xeQ

fori =0, 1. For W equal to one of U, V, U; (Q) or V;(Q), we have a smooth
projective modular curve Xy over Spec(Q) which is a moduli space of gen-
eralized elliptic curves with W-level structure®. Let Yy C Xw be the open
curve parametrizing genuine elliptic curves and let j : Yy < X denote the

4 Again, in order to obtain a representable moduli problem, we may need to introduce auxiliary
level structure at a prime ¢ as in Sect. 3.3. This would be necessary if every prime in S(p) were
vexing, for example.
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inclusion. Asin Sect. 3.2, weletw : £ — Xy denote the universal generalized
elliptic curve, we let  := mywe, x,, and we let oo denote the reduced divisor
supported on the cusps. If M is an O-module and L is a sheaf of O-modules
on Xy, then we denote by £, the sheaf Lo M on Xw. If R is an O-algebra,
we will sometimes denote Xy X spec(0) Spec(R) by Xw, g.

There is a natural right action of U/V on Xy coming from the description
of Xy as a moduli space of generalized elliptic curves with level structure

[42, Sect. IV]. It follows from [42, IV 3.10] that we have Xy /(U/V) = Xy.
Away from the cusps, the map Yy — Yy is étale and Galois with Galois group
U/V and the map Xy — Xy is tamely ramified. Similar remarks apply to
the maps Xy, (o) — Xy;(p) fori =0, 1.

The natural map Xy, (0) — Xy, () is étale and Galois with Galois group

Ag =[] Uox/Uis = []@/0)".
xeQ xeQ

3.9.1 Cutting out spaces of modular forms

LetG=U/V =[],y GL2(Z /x¢/?) and let o denote a representation of G
on a finite free O-module W,. We will now proceed to define a vector bundle
L on X such that
HO (Xu, 0®" @0y Ls) — (H® (Xv, 0®") @0 W,)°
= Homojg) (W;, H'(Xv, 0®"),
where W is the O-dual of W,. The sheaf £, will thus allow us to extract
the W}-part of the space of modular forms at level V. We shall also define a

cuspidal version £3"° C L, which extracts the W*-part of the space of cusp
forms at level V:

H'(Xy, 0®" @0y L) — (H'(Xy, 0®"(—00)) @0 Wy)°
= Homoyg) (W), H(Xy, 0®"(—0))).

The definitions are as follows. Let f denote the natural map Xy — Xy
and define

Ly = (f«(Ox, ®0 Wy ))°
L = (f(Ox, (—00) ®0 Wy))C,

where G acts diagonally in both cases. Note that
Lo = (fif"(Ox, ®0 We))? = ((fOxy) ®0 Wo)©
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by the projection formula. Similarly, by arguing locally, we see that
LY = (f(Ox, (=00)) ®0 We)7.

For i = 0, 1 we denote the pull back of L, to Xy, (p) also by L. This
notation is justified since, by flatness of the map Xy, o) — Xu, the pullback
is isomorphic to ( f; (O Xv,(0) KXo WU))G’ where we continue to denote by f the
natural map Xv,(g) — Xy, (). When we use the same notation for sheaves on
different spaces, the underlying spaces will always be clear from the context.

On Xy, (o) we reserve the notation Ef,“b for ( f (OXV,-<Q) (—00)) ®o W,)C.

The pull back of Eﬁ,”b on Xy to Xy;(p) is a sub-sheaf of Lf,”b on Xy, (o) (the
quotient being supported at ramified cusps).

We now discuss Hecke actions on cohomology. Let X denote Xy, (g) and
let X (V) denote Xy, (p) for some choice of i = 0 or 1. Let f denote the map
X (V) — X. (Note that if Q is empty, then we recover f : Xy — Xy). Let
x ¢ S(p) U{p}. Asin Sect. 3.2.3, we have a modular curve X¢(x), obtained
from X by the addition of an appropriate level structure at x, together with
degeneracy maps w1, 72 : Xo(x) — X. (The level structure at x depends on
whether or not x € Q). We define Xo(V; x) similarly, starting from X (V).
The natural map Xo(V; x) — Xo(x) is again denoted f. Then note that we
have a natural isomorphism

$(0)12 15 Lo N 7 Lo

of sheaves on X¢(x). Indeed fori = 0, 1, by flatness of the map 7; : Xo(x) —
X, the pullback 7" L, is canonically isomorphic to

(f+(Oxovix) ®0 Wo))C,

independently of i. (The only point to note is that the morphism X¢(x) X, x
X (V) — Xo(x) is canonically isomorphic to Xo(V; x) — Xp). Similarly, if
a € Z is coprime to the elements of S(p) U Q, we have a morphism (a) :
X — X which corresponds to multiplication by a on the level structure. Then
(a)* Ly is canonically isomorphic to L.

Let M denote an O-module and let n be an integer. Then using the iso-
morphisms 75 L, > n{Ly of the previous paragraph, and following the
definitions of Sect. 3.2.3, we can define Hecke operators on the cohomology
of " ® Ly ®» M. For example, xT, is defined as the composite (taking
M = O for simplicity):
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H (Xy, 0" ® Lo) —> HI (Xo(U; x), 70" @ L)

$®¢1(0), H (Xo(U; x), 7" @ L)

tr(my)

— H'(Xy, " ® Lo).
fLet £3"° denote the sheaf

(f+(Oxovix) ®0 Wo))C,

on Xo(U; x). (In what follows we will be using Ef}‘b and L, to denote sheaves
on both Xy and X((U; x), but the underlying space will be clear in each
instance). We then have canonical inclusions

ALY, w5 (L) C L3

of sheaves on Xo(U; x). Note also that the composition of morphisms of
sheaves on Xy;

tr(y)
14 (L) > 714 (Lo) = T4 (] Lo) —> Lo

factors through the sheaf Ef,“b. This then allows us to define Hecke operators
on the cohomology of 0" ® L3'° ®p M.
In summary, we have operators:

e T, and (a) on
H Xy, o" ®0yx, £ ®0 M) and H’ (Xy, " ®oy, Lo ®0 M)

for all x ¢ S(p) U {p} and a coprime to the elements of S(p), and
o Ty, Uy, (a) on

H! (X, (0)- " ®0y,, £3° ®0 M) and H' (Xy,(g). " ®0y, Lo ®0 M)

forall x ¢ S(p) U QU {p},y € QO and a coprime to the elements of
S(p) Y Q.

Part (2) of the following lemma shows that £, and Ef,“b do indeed allow us
to extract the W} -part of the space of modular forms at level V.

Lemma 3.27 Let X denote Xy (resp. Xy, (o) fori = 0or 1), let X (V) denote
Xy (resp. Xv,(g)y) and let f denote the map X (V) — X. Then
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(1) The sheaves L'ff“b and Ly are locally free of finite rank on X.
(2) If Aisan O-algebraandV is a coherent locally free sheaf of Ox ,-modules,
then

H(X4,V oy, (Lo)a) — (HYX(V)a, [*V) @0 Wo)©
H(X4,V ®oy, (L3*)4) — (H (X(V)a, (f*V)(—00)) ®0 Wo).

Proof We give the proof for L ; the case of Ef,“b is treated in exactly the same
way. Let Y (resp. Y (V)) denote the non-cuspidal open subscheme of X (resp.
X(V)). We have L; |y = f«(Oyv) Qo W4)C since the inclusion ¥ — X
is flat. Since the map Y (V) — Y is étale, it follows from [43, Sect. III.12
Theorem 1 (B)] (and its proof) that L, |y = Oy ® W,. To show that L, is
locally free of finite rank on X, it remains to check that its stalks at points of
X — Y are free. Let x be a point of X — Y. We can and do assume that for
each point x’ of X (V) lying above x, the natural map on residue fields is an
isomorphism. We have

G
Ea,x = (@ OXV,X’ & WG’) .

X' x

Choose some point x” +> x and let I (x"/x) C G be the inertia group of x’.
Then projection onto the x’-component defines an isomorphism

G
(ED Oxw.xr ® W") = (Ox vy ® W) 07

x> x

Now I (x’/x) is abelian of order prime to p (see [42, Sect. VI.5]). Extending O,
we may assume that each character x of /(x’/x) is defined over O. Let W ,
and Oy, ' , denote the x-parts of W, and Oy, /. Then W, = &, W, , and
similarly Ox (v) v = @, Ox (v),x, - BEach Wy (resp. Ox (v v, ) is free over
O (resp. Ox ), being a summand of a free module. (Note that f is finite flat).
We now have

~ I ! ~
Loy — (Oxv)x ® Wo) ez @ Wo.x ®0 Ox vy x5t
X

which is free over Oy .. This establishes part (1).
We now turn to part (2). We first of all note that the proof of the previous
part shows that

(Lo)a —> (fu(Oxv), ®0 Wo))C,
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as sheaves on X 4. Now, let V' be as in the statement of the lemma. Then,

Y ®oy, (Lo)a =V @0y, (f+(Oxv), ®0 Wo))°
= (V®oy, f+(Oxv), ®0 Wo))®
= (fuf (V@0 Wo ).

Here G acts trivially on V and the third isomorphism follows from the projec-
tion formula. Taking global sections we obtain,

H' X4, V® (Lo)a) = (HO X (V)a, f¥(V @0 Wy))©
= (H' (X (V)a, £* (V) ®0 W,)°,
as required. O

Let X and X (V) be as in the statement of the previous lemma. Let o™ =
Homp (W, O) be the dual of the representation o. We now consider the dual
vector bundle £} = Homp,(Ly, Ox) and its relation to L,+. In addition,
we let A denote an (O-algebra and we consider the situation base changed to
SpecA. First of all, note that we have an isomorphism

X(V)a/G > Xa

and in particular, Ox, — fi (Oxvy,)%. (When A = O, this follows from
[42, Sect. IV Proposition 3.10]. The same argument works when A = k. These
two cases, and the flatness of X (V') over O, imply the result when A = O/@".
The general result follows from this by [44, Proposition A7.1.4]. Alternatively,
as pointed out to us by the referee, one can see directly that X (V)4/G = X4
by applying the argument of the proof of Lemma 3.27 (1)). We have shown in
the proof of Lemma 3.27 (2) that

(Lo)a = (f(Ox vy, ®0 Wo))C,

as sheaves on X 4. By the projection formula, we therefore also have

(Lo)a = (fu(Oxvy,) ®0 Wo)©.

Applying this with o* in place of o, we see that

(Lo)a = (f+(Oxv),) ®0 Homo (W, , 0))°
G
= (Homf*(ox(v)A)(f*(OX(V)A) ®o W, f*(OX(V)A)))
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Since Oy, = f*((’)x(v)A)G, we have a map
(Lox)a —> Homoy ((Lo)a, Ox,) = (Lo)}

given by restriction to G-invariants. This map is induced from the correspond-
ing map L,+ — L over SpecO. In addition, when restricted to Y4, this map
is an isomorphism since the equivalence of [43, Sect. III.12 Theorem 1 (B)]
for locally free sheaves is compatible with taking duals. In particular, the map
Ls+ — L is injective and remains injective after base change to SpecA, for
all A.

Lemma 3.28 The injection Lo+ — L7 restricts to an isomorphism

~

L3 s (LF)(—00).

U*
Similarly, we have
(L) (—00) = Lo+

Proof The second statement follows immediately from the first by reversing
the roles of o and o *. Thus, we consider the first statement. Away from the
cusps, all three inclusions

L3 s Lov s L5 and (L) (—o00) — L

are isomorphisms. It therefore suffices to show that at each closed point x of
C, the natural map gives rise to an isomorphism

(LYY 5 (L) (—00))

along the formal completions at x. Extending O if necessary, we may assume
that all cusps of X and X (V) are defined over O and for each point x’ of X (V)
lying over x, there is a uniformizer g at x” so the map
O)A(,x - O)A((V),x'
is isomorphic to
Olg‘] — Olgl.
Here, ¢ = #I(x’/x) and we may assume that O contains the primitive e-th

roots of unity and the inertia group 7(x’/x) is isomorphic to u, C O* via
o~ #. Choose a primitive e-th root of unity ¢ and fori =0,...,e — 1,
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let x; : I(x'/x) = e — O be the character which sends ¢ to ¢’. Then, the
Xi-part of (’))A((V) . is given by

O)A((V)’x/,xi = ql(’)[qe] C O[CI]
Thus, as in the proof of Lemma 3.27, we have

e—1

Lo)e 2P a'Olg‘1®0 W, 1.
i=0

Taking duals over O)A(’ . = Olg°], we obtain

e—1
£ =P g 0lg1®0 (Homo(W, -1, 0)).
i=0

Note that Homp (W s O) = Ws+ ,, and since ¢ is a uniformizer at x, we
obtain, under the natural map, identifications

e—1
(L) (=00)} =g " Olg°1 @0 Wor
i=0

e
= @qu[qe] ®0 Wa*,x»*]'
i=I '
This is precisely (L';ib)jc\ by the proof of Lemma 3.27 (1). O

We deduce the following.
Corollary 3.29 Ifn > 1, then

H' (X, 0®" ® Ly) = {0}
and hence
HX, 0®" ® Ly ®0 O)o™) = (H(X(V), 0®") ®0 W,)C @0 O/w™.

Moreover, the analogous result holds for n > 2 if we replace L, by Ef,‘ﬂ’.

Proof The second statement follows immediately from the first and from
Lemma 3.27 (2) by considering the long exact sequence in cohomology asso-
ciated to the short exact sequence

0 — 0®" Qoy Lo 2EN 0®" oy Lo — (0% @0y Ls) /™ —> 0.
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To prove the first statement, it suffices to show that H L(Xx, o®" ®oy
Ly ®o k) = {0}. By Serre duality, this is equivalent to the vanishing of
HO(Xy, ®@) ®oy L (—00)). By Lemma 3.28, we are therefore reduced
to showing HO(Xy, ®*" ®oy ,Ci“,})) = 0. However, by Lemma 3.27 (2)
again, we have

HO(Xy, 02" @0, L3) = (HY(X (V)i, 0@ (=00)) @0 Wo+)©

O—*
which vanishes since n > 1. The case of Ef,“b is proved in the same way. 0O
3.9.2 The proof of Theorem 1.4 in the presence of vexing primes

To complete the proof of Theorem 1.4, it suffices to note the various modifica-
tions which must be made to the argument. For vexing primes x, let ¢, denote
the conductor of p (which is necessarily even). We define a O-representation
W, of GLz(Z/xCx/ 27) to be the representation o as in Sect. 5 of [15]. The
collection o = (0y)xer(p) gives rise to a sheaf L, on Xy as above. Let Ty
denote the ring of Hecke operators acting on Hy(Xy, w ® L) generated by
Hecke operators away from S(p) U {p}. The analogue of Theorem 3.26 is as
follows:

Theorem 3.30 The map ¢ : R™" — Ty w, is an isomorphism and Ty n, acts
freely on Hy(Xy, ® @ Lg)m,,-

Proof The proof is the same as the proof of Theorem 3.26; we indicate below
the modifications that need to be made.

(1) (Lemma 3.5): Exactly the same argument shows that there is an isomor-
phism of Hecke modules:

H(Xy, (@ ® Lo)k/0)my — H'(Xuy(0), (@ ® Lo)k/0)m.
The only point to note is that there is an operator
W : H Xy, (@ ® Lo)kj0) = H(Xyg@)s (@ ® Lo)k/0)
such that Wf = x(x) and
I, 1
—my otr(my) o Wy = Uy + —Wy.
X X
To see this, one can note that the corresponding operator W, on

HO(XVO(X), wg /o) (defined in Sect. 3.2.3) commutes with the action of
G = U/ V, and hence induces the desired operator W, on
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H° (Xup(), (@ ® Lo)kj0) = (H (Xvyx), 0 10) ®0 Wo)©.

(2) (Proposition 3.7 (2)): The corresponding statement holds: namely, the
natural map

H (Xu,(0), (@ ® L) k/0)m = H (Xu,(0), (@ ® L) K/O)m

is an isomorphism for i = 0, 1 whenever m is non-Eistenstein. Indeed,
if Cy,(0) C Xv, (o) is the cuspidal subscheme, then we have an exact
sequence of sheaves on Xy, (p):

0 — w®£ZUb — a)®£a — (f*((w ®O WO‘)'CVA(Q)))Gv

and it suffices to show that the cohomology of the last term (which is con-
centrated in degree 0) is Eisenstein. However, the argument of Remark 3.4
(noting that the group [ [, .7 GL2(Zx) X [[ cp@) Z5 acts transitively
on the set of cusps in Xy, (p)) shows that

H (X, (0)» (fxl(@ @ Wo)ley, o)) = (H(Cya(0): @) ®0 Wo)©

is Eisenstein, which gives the desired result.
(3) (Proposition 3.8): We need to show that the O[A]-module M =
Hy(XA(Q), w® Ly )m is balanced. First of all note that Q;(A (0)/0 QL: =

w*(—00) ® Lr = 0*® £;”*b by Lemma 3.28, and hence

Hi(Xu,(0), @" ® Ly) = H (Xu,0), (@ ® L)k j0)Y.

We use this to endow the left hand side with a Hecke action.
We now modify definitions of ® and W from Sect. 3.2.4: let ® denote the
composition of isomorphisms:

_ . D _
H](XUA(Q), (a)2 "® ,Cf.,u*b)](/o) — HO(XUA(Q), QR " 2 ® Lg(OO))v

Ks¥
=2 H'(Xy,(0), " ® Lo)Y,

where D is Verdier duality, and K S is the Kodaira—Spencer isomorphism,
and we have used Lemma 3.28. Then by the proof of [31, Proposition 7.3],
we have:

SoT, = xl_nTXt’v o P,

forall x prime to N Q, and the same relation holds for the operators U, with
y| Q. Wealsohave ®o(a) = {a=Yo® for x|N Q because D switches (a)*
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with (a)y = (a~1)*V. The transposed operators 7! and U’ are defined in
[31]. We have:

(TLF)(E. ang) = > ¢"* f(E, ayo)

qb:(E’,a;VQ)—)(E,otNQ)

where the sum is over all x-isogenies ¢ such that ¢ o o)y, o = ang.In
the definition of T}, we can replace the sum over ¢ by the sum over
the corresponding dual isogenies E — E’. However, note that if ¢ :
(E’, “fv Q) — (E, ayg) is compatible with level structures at N Q, then
sois ¢’ : (E,ang) — (E',x o a;\,Q). In this way we see that

T = (x™"T,

X

on HO(XUA(Q), ™). The Pontryagin dual ¥ := ®V is thus an isomor-
phism

U HY(Xy,(0) 0" ® Lo) — Hi(Xu,0), @" ® Ly)
such that

Wox'"x™ W) =T oW
Wo(y' "U) =Uyow
Yo (a )y =(a)oWw.

Now, with £ = L, the proof of Proposition 3.8 proceeds in exactly the
same manner, up to the point where it suffices to show that

dimg Ho(Xyy0),k» @ ® Lo)m = dimg H1(Xyy(0),k, © @ Lo)m-
As before, by definition, the left hand side of this is equal to
dimg HO(XUO(Q),K, o® .Cf,‘ib)m,
which in turn, by point (2) above, is equal to:
dimg H'(Xuy(0),k+ @ ® Lo*)m,

On the other hand, using the isomorphism W, we see that the right hand
side is equal to:

dimg H*(Xyy(0), @" ® Lo )m*
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where m* is a maximal ideal of the polynomial ring R generated over O
by the operators Ty, U;, (a). Specifically, let « : T — T/m = k be the
reduction map. Then m* is the kernel of the map 8 : R — k defined by:
B(Ty) = a((x)Ty), BUL) = a(Uy), and B((a)) = a((a~")).

Thus, we need to see that HO(XUO(Q),K, WQ Ly )m+ and HO(XUO(Q),K, w®
Ls+)m have the same dimension. One way to see this is as follows: after
choosing an embedding K — C, we can identify both sides in terms
of automorphic representations of GL;/Q which are limits of discrete
series at oo, unramified outside S(p) U Q and satisfy appropriate local
conditions at the primes in S(p) U Q. The operation which sends each such
automorphic representation 7 to its contragredient then interchanges

H(Xuy0).5, © ® Lo)ms @k Cand H(Xyy(0).x, @ ® Lo*)m @k C,

from which the result follows.
(4) (Theorem 3.11): The analogue of this theorem is true. Namely, let T denote
the subalgebra of endomorphisms of

HO(XUI(Q)’ (0 ® Ls)k/0)

generated by the operators 7, Uy and (a). For each x € Q, we assume
that the Hecke polynomial X 2 — T X + (x) has distinct roots in T /my
and we let ax be one of these roots. Let m be the ideal of T generated by
my and U, — o, for x € Q. Then there is a Galois representation

po : Go — GL2(Tw)

deforming p, unramified away from S(p) U {p} and such that Frob, has
trace T, for all x ¢ S(p) U {p}. Moreover ,ob = po ® n, where 7 is
defined as before, is a deformation of p minimal outside Q.

This is proved as follows: as before it suffices to fix an m > 1 and work
with the quotient Ty,/J,,, of Ty, acting faithfully on H 0(x U1(0), (@ ®
Ls)0/wm)m. Then we have

H(Xp,(0), (@ ® L&)o/mm)m € H(Xv,(0), ©0/mm)m @0 Wi .
From this inclusion and the arguments of Sections 3.3—-3.7, we immedi-
ately deduce the existence of pg over Ty /J,, such that ,o’Q satisfies all

the conditions of Definition 3.1, except possibly for condition (3). More
precisely, we construct a deformation over the Hecke algebra of

H(Xv,(0)» ©0/wm)m
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which satisfies these properties exactly as we did in Sections 3.3-3.7.
(The new level structures at the primes in 7' (p) do not affect the argu-
ments; the only essential difference is that the modular curves are no longer
geometrically connected. Thus, in any argument involving g-expansions,
one needs to consider g-expansions at a cusp on each connected com-
ponent instead of at the single cusp oco. Note, however, that the use
of g-expansions was only used for the following two facts: the iden-
tity ¢ o T, — Up o ¢ = (p)V), and the claim that 0V, = 0, which was
used to show that (¢, ¢ o T, — U, o ¢) was injective. On the other hand,
the group [] rer(p) OL2(Zy) acts invertibly on X, (@) and hence also the
cohomology group above, acts transitively on the set of connected com-
ponents, and commutes with the Hecke operators at p. Hence it suffices
to check these identities on the component at co, where the required con-
clusions follow from our previous computation). We then use the above
inclusion of Hecke modules to deduce the result over the algebra Ty, /J,,;.
It remains to show that condition (3) of Definition 3.1 holds. For this, we
use that fact that multiplication by a high power of a lift of the Hasse
invariant of level Xy, (g) realizes

H(Xy,00), (@ ® Lo)0jmrm)m

as a Hecke equivariant subquotient of
(H°(Xv,(0), @)m ®0 Wy)©

for some sufficiently large n. (This follows from Corollary 3.29). It there-
fore suffices to show that the deformation of p over the Hecke algebra
of

(H'(Xv,(0), ©®)m ®0 Wy)C

satisfies condition (3) of Definition 3.1. However, this is precisely the point
of the representation W : it cuts out the automorphic representations giving
rise to minimal deformations of p at the primes in 7 (o) (see [15, Lemma
5.1.1]). (Note that, since 7 is large, the space HO(le(Q), ")y 1S torsion
free). This completes the proof. O

Theorem 1.4 follows from the previous result and Verdier duality as in
Sect. 3.8. We remark that Hy(X, @ ® L), is of rank one over Ty 1, when
Hy(X, wg ® L )m, is non-zero. This follows from multiplicity one for GL(2)
and [15, Lemma 4.2.4(3)].
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4 Complements
4.1 Multiplicity two

Although this is not needed for our main results, we deduce in this section some
facts about global multiplicity of Galois representations in modular Jacobians.
Recall that k£ denotes a finite field of odd characteristic, O denotes the ring of
integers of some finite extension K of Q, with uniformizer = and O/ = k.

We recall some standard facts about Cohen—Macaulay rings from [45],
Sect. 21.3 (see also [46]). Let (A, m, k) be a complete local Cohen—Macaulay
ring of dimension n. Then A admits a canonical module w4. Moreover, if
(x1, ... x;) is aregular sequence for A, and B = A/(x1, ..., X;), then

wp ;= wa @4 B
is a canonical module for B. It follows that
wp Qa A/m=wy ®4 (B®p B/m) =wp Qp B/m.

If m = n, so B is of dimension zero, then Hom(*, wp) is a dualizing functor,
and so

dimg B[m] = dim; wp ® B/m = dim; wg ® A/m.

Moreover, we have the following:

Lemma 4.1 Let A be a finite flat local Z,-algebra. Suppose that A is Cohen—
Macaulay. Then Homg, ,(A, Z ) is a canonical module for A.

Proof More generally, if A is a module-finite extension of a regular (or Goren-
stein) local ring R, then (by Theorem 21.15 of [45]) Hom (A, R) is acanonical
module for A. o

Finally, we note the following:

Lemma 4.2 [f B is a complete local Cohen—Macaulay O-algebra and admits
a dualizing module wp with | generators, then the same is true for the power
series ring A = B[Ty, ..., T,]. Moreover, the same is also true for B®oC,
for any complete local O-algebra C which is a complete intersection.

Proof For power series rings this is a special case of the discussion above. Con-
sider now the case of BRoC. By assumption, C is a quotient of O[T, .. ., T,]
by a regular sequence. Hence B®oC is a quotient of B[T1, ..., T,] by a reg-
ular sequence, and the result follows from the discussion above applied to the
maps B[Ty,...,T,] - B and B[T, ..., T,] — B@@C respectively. ]
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As an example, this applies to B[A] for any finite abelian group A of p-
power order, since O[A] is a complete intersection. _

Letp : G, — GL;(k) be unramified with p(Frob,) scalar. Let R denote
the framed deformation ring of ordinary representations of weight n over O-
algebras with fixed determinant (together with a Frobenius eigenvalue « acting
on an “unramified quotient”) as in Theorem 3.19.

Theorem 4.3 R is a complete normal local Cohen—Macaulay ring of rela-
tive dimension 4 over O. Let wg: denote the canonical module of R'. Then
dimg wp: /m = 3.

Proof Following the previous discussion, to determine dimy w g+ /m, it suffices
to find a regular sequence of length 5 ( = dim RY), take the quotient C, and
compute dimy C[m]. Since Rt is O-flat, w is regular, and thus we may choose
@ as the first term of our regular sequence. Yet the method of Snowden shows
that R" ® k is given by the following relations (the completion of B; at b =
(1, 1; 0) in the notation of [41]):

_f(a b _ (P _
m_<c _a),n_¢>—1d_(¢3 ¢4),ﬂ_a—1,

mn = fm, Py(a) =0, m* =0, det(¢) = 1
Explicitly, in terms of equations, this is given by the quotient A of

kla, b, c, ¢1, P2, ¢3, P4, Bl

by the following relations:

G1+da+dr1da—dap3 =0, 7 — (@1 +¢a)B — (1 + 1) = O,
ap) +bp3 = aB, apy + bps = b, —a¢3 + cp| = cB,
apyg — cpy = a,B,a2 + bc = 0.

For a complete local k-algebra (R, m) with residue field &, let

Hg(t) = dimg(m"/m" " e Z[1]
n=0

denote the corresponding Hilbert series. We define a partial ordering of ele-
ments of Z[¢] as follows: say that

o0 o0
Z ant" > Z bt"
n=0 n=0

whenever a,, > b,, for all n.
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Lemma 4.4 Let x € m9. We have

HR/x(t) -4
— 1"~ > Hn(t) - s
1 = HRO- T

and equality holds if and only if x is a regular element. Moreover, if there is
an isomorphism

R~ gr(R) = @m"/mnﬂ,

and x is pure of degree d, then equality holds if and only if x is a regular
element.

Proof There is an exact sequence as follows:
R/m" - R/m" — R/(x,m") — 0.

The kernel of the first map certainly contains m"~¢/m". If Hg(¢) = 3_ a,t"
and Hg/x(t) = ) b,t", it follows that

mtd—1 3 Hpryx (1)

(I=n

coefficient of ¢

m—+d—1
= Z b, = dim R/(x, m" %)
n=0

dim coker(R/m" ¢ — R/m"+?)

= dimker(R/m"*¢ — R/m"+%)

> dimm™/m"+4

= am + au+1 + -+ AGntd—1
= coefficient of "¢V in Hr(t)(1 +1 + - - + 1971,

This proves the inequality. (Note that the coefficients of " for n < d are
automatically the same). On the other hand, assume that x is not a regular
element. By assumption, there exists a non-zero element y € R such that
xy = 0. By Krull’s intersection theorem, there exists an m such that y ¢ m™.
For such an m, it follows that the kernel of R/m”*¢ — R/m™*t4 is strictly
bigger than m” /m”*¢, and the inequality above is strict. Finally, assume that
x is a regular element, and that R >~ gr(R). Then the kernel of the map with
n = m + d above is precisely m” /m”+¢_and we have equality.

Note that, in the non-graded case, the converse is not true, namely, x may
be regular of degree one and yet the equality Hg/, () = Hg(t)(1 — 1) fails; as
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an example one may take R = k[¢°, ¢, ¢'] and x = ¢°. Then x is regular,
but

Hgyx(t) 14264224+ 142 +2 48340
= >
1—1¢ 1 —1¢ 1—1¢

= Hg(1).

The point is that x is no longer regular in gr(R). (In fact, R is a Cohen—
Macaulay domain, but the depth of gr(R) is zero; this example was taken
from [47]).

Let B ~ A/B. The equation B2 — (¢1 +d4) 8 — (¢1 +¢4) = 0in A becomes
¢1 + ¢4 = 01in B, and hence B is the quotient of

kla, b, c, ¢1, 2, ¢3]

by the following relations:

—¢7 — a3 = 0,
a1 +bgp3 =0,apy — bp1 =0, —ag3 + cdp1 =0, —agy
—cdp =0,a%> + be = 0.

All the relations in B are pure of degree two, and hence there is an isomorphism
B ~ gr(B).

Lemma 4.5 The first few terms of Hg(t) are
Hp(t) =146t + 15> 4 -

Proof Clearly dim(B/m) = 1. B is a quotient of a power series ring S =
kla, b, c, ¢1, P2, ¢3]. Moreover, since all the relations are quadratic, we have

dim m/m2 = dim ms/mé = 6.

The six generators of S give rise, a priori, to
: 2 3 7
dimmg/mg = ) =21

generators of m?/m3. Note, however, that we have 6 quadratic relations. In
order to prove that dimm?/m> = 21 — 6 = 15, it suffices to show that these
six relations are linearly independent. Choose a basis of m% / mg coming from
the lexiographic ordering a > b > ¢ > ¢ > ¢ > ¢3. With respect to this
basis, the matrix of relations is as follows:
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a2

ab
ac
agi
agpn
a3
b2
bc
b
b
by
o2
coi
ch2
cP3
1
D192
h193
¢; 0
dop3 —1
¢3 0

coocoo
looco

coo~—~00O0O
|
—

=NeloNeoloBoNeololeoE=heNololNolo)
|
—_
eNeoloBoloBoNeoR=R=

o |
—_

()
N eoNeoNeoNeNoNoNoeNoNell e lNoe oo No ol oo o)

oNeloBoNeolololeoholoReoloReol =R =Nelo ool

S OO OO O OO OO OO

S OO OO OO OO, OO OO OO
|
—

S OO OO OO

The minor consisting of rows 1, 4, 6, 9, 14, and 16 has determinant 1, and
hence the result follows. O

Recall (Theorem 3.4.1 of [41]) that A is, in addition to being Cohen—
Macaulay, also a domain. Since 8 # 0 (it is non-zero in m/m?), it follows that
B is a regular element, and hence B = A/p is also Cohen—Macaulay.

Lemma 4.6 [f1 C B is an ideal generated by a regular sequence of elements
of pure degree one of length 3, then

Hp,r(t) =1+ 3t.

Moreover, if I is any ideal generated by three pure elements of degree one such
that Hg,;(t) = 1+ 3t, then the generators of I consist of a regular sequence.

Proof Let R be a complete local Cohen—Macaulay Noetherian graded k-
algebra with residue field k. Replacing R by R ®; k does not effect the Hilbert
series of R. Assume that dim(R) > 1, so that m is not an associated prime. We
claim that R ®; k admits a regular element x € m of pure degree one. Without
loss of generality, we assume that k = k. The set of zero divisors is the union
of the associated primes. By assumption, m is not one of the associated primes.
Hence, for every associated prime p, the image of p in m/m? is proper (since
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otherwise p = m by Nakayama’s Lemma). Because R is Noetherian, there
exist only finitely many associated primes. Hence the union of the images of
all such p cut out a finite number of proper linear subspaces of m/m?. Since k
is infinite, such a union misses an infinite number of points, and hence there
exists an x € m\m? which is not a zero-divisor. By induction, there exists a
regular sequence of length dim(R) generated by pure degree one elements. It
follows that, after a finite extension, B admits a regular sequence of length 3
generated by pure degree one elements. By Lemma 4.4 (in the graded case),
if I is the corresponding ideal, then

Hp/(t)=Hp(t)(1 —1)* =(1+6t+15t> +--)(1 —1)> = 1 + 3t + O(1%).

If m is the maximal ideal of B/I, we deduce that m?/m? = 0, and thus by
Nakayama’s Lemma that m2 =0, and Hp s1(t) =1+ 3t. Conversely, if I is
any ideal generated by three pure elements such that Hg/; () = 1 + 3¢, then
by Lemma 4.4, we deduce that the three generators of I consist of a regular
sequence. O

Lemma 4.7 {8, a, ¢o + ¢3, b + ¢ + ¢1} is a regular sequence in A.

Proof 1t suffices to show that {a, ¢> + @3, b+ c+ ¢} isregularin B = A/B.
By Lemma 4.6, it suffices to show that the Hilbert series of B/I with [ =
(a,p20 +P3.b+c+ ¢1)is 1 +3t. If C = B/I, then we compute that C is
given by the quotient of

kb, c, 2]
by the following relations:

—(b+¢)* +¢3 =0,
by =0,b(b+¢)=0,(h+c)c=0,—cgy =0, bc=0.

Letx = b,y = ¢, and z = ¢». Then, from the second, fifth, and sixth relations,
we deduce that

xz=yz=xy=0.
Combining this with the third and fourth equations yields:
x2=x2+xy=0, y2=xy—|—y2=0.
The first equation yields

Z=—=x?—y’—2xy+2=0.
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It follows that C is a quotient of

klx,y,z1/(x*, y*, 22, xy, x2, y2).
On the other hand, since all the relations are trivial in m2, we have
dim(m/m?) = 3. Hence the Hilbert polynomial of C is 1 43¢, and the sequence
is regular in A. o

Since dim C[m] = 3, this completes the proof. O

From now until the end of Sect. 4.1, we let p : Gg — GL3(k) be an
absolutely irreducible modular (= odd) representation of Serre conductor N =
N (p) and Serre weight k(p) with p+1 > k(p) > 2. This is an abuse of notation
as we have already fixed a representation p in Sect. 3.1 but we hope it will not
lead to confusion. Assume that o has minimal conductor amongst all its twists
at all other primes (one can always twist p to satisfy these condition). One
knows that p occurs as the mod-p reduction of a modular form of weight 2
and level N*, where N* = N if k = 2 and Np otherwise. Let T denote the ring
of endomorphisms of J; (N*)/Q generated by the Hecke operators 7; for all
primes / (including p), and let m denote the maximal ideal of T corresponding
to p. Assume that p > 3.

Theorem 4.8 (Multiplicity one or two) If p is either ramified at p or unram-
ified at p and p(Frob,) is non-scalar, then Ji(N*)[m] =~ p, that is, m
has multiplicity one. If p is unramified at p and p(Frob,) is scalar, then
JI(N*)[m] >~ 0 @ p, that is, m has multiplicity two.

Remark 4.9 By results of Mazur [48] (Proposition 14.2), Mazur—Ribet [49]
(Main Theorem), Gross [28] (Proposition 12.10), Edixhoven [31] (Thm. 9.2),
Buzzard [50], and Wiese [51] Cor. 4.2, the theorem is known except in the
case when p is unramified at p and p(Frob,) is scalar. In this case, Wiese [51]
has shown that the multiplicity is always at least two. Thus our contribution
to this result is to show that the multiplicity is exactly two in the scalar case.

Remark 4.10 It was historically the case that multiplicity one was an ingredient
in modularity lifting theorems, e.g., Theorem 2.1 of [1]. It followed that the
methods used to prove such theorems required a careful study of the geometry
of J1 (N*). However, a refinement of the Taylor—Wiles method due to Diamond
showed that one could deduce multiplicity one in certain circumstances while
simultaneously proving a modularity theorem (see [26]). Our argument is in
the spirit of Diamond, where it is the geometry of a local deformation ring
rather than J; (N*) that is the crux of the matter.

Proof Let G denote the part of the p-divisible group of J;(N*) which is
associated to m. By [28], Prop 12.9, as well as the proof of Prop 12.10, recall
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there is an exact sequence of groups
0— T,G° - T,G — T,G° - 0

which is stable under Ty,. Moreover, T), GY is free of rank one over Ty, and
T,G* = Hom(T,G", Z,).

We may assume that p is unramified at p and p(Frob,) is scalar. Thus
N* = pN (since p is odd). Let M denote the largest factor of N which is
only divisible by the so called “harmless” primes, that is, the primes v such
that v = 1 mod p and such that p|G, is absolutely irreducible. Define the
group & as follows:

d:=7Z,® H(Z/xZ)X
x|M

® measures the group of Dirichlet characters (equivalently, characters of Gq)
congruent to 1 mod @ which preserve the set of lifts of p of minimal con-
ductor under twisting (by assumption, p has minimal conductor amongst its
twists, so an easy exercise shows that these are the only twists with this
property). Extending O if necessary, we may assume that each character

b e d = Hom(CD,G;) is valued in O*. For ¢ € ®, and let x4 denote
the character € - (pe~!)¢ of Gq. For v|N* we define a quotient R, = R, 4 of
the universal framed deformation ring with determinant x of p| G, as follows:

(1) Whenv = p, R, = Ry 4 is the ordinary framed deformation ring R of
Sect. 3.7 (with n = 2).

(2) Whenv # p, Ry = R, ¢ is the unrestricted framed deformation ring with
determinant x4|G,.

The isomorphism types of these deformation rings do not depend on ¢. Let
R = Ry denote the (global) universal deformation ring of p corresponding
to deformations with determinant x4 which are unramified outside N* and
which are classified (after a choice of framing) by R, for each v|N*. Let R”
denote the framed version of R, with framings at each place v|N*. Let T
be the anaemic weight 2, level I'; (N*) ordinary Hecke algebra (so it does not
contain U,) which acts on

Sp =P TN, x. 0),
X

where x runs over all the characters of (Z/NpZ)* with x|® = ¢. Note that

SSUII(N). 0) Q=P S, ® Q.
3
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The reason for dealing with the harmless primes in this manner is as follows.
For all non-harmless v # p, the conductor-minimal deformation ring of p|G,
(which classifies deformations which appear at level I'{ (N)) is isomorphic to
the ring R, 4 (up to unramified twists). Equivalently, for non-harmless primes,
any characteristic zero lift p of p is uniquely twist equivalent to a lift of
minimal conductor. The only time this is not true is when v = 1 mod p
and p has trivial invariants under /,. Since we are assuming that p|g, is
minimally ramified amongst all its twists, this only happens when p|g, is
absolutely irreducible and v = 1 mod p. However, the naive conductor-
minimal deformation deformation ring at a harmless prime is equal to the
unrestricted deformation ring and does not have fixed inertial determinant,
and one needs the determinant to be fixed for the Taylor—Wiles method to
work correctly.

Consider the Galois representation p : G — GLZ(TZI}m) associated to

eigenforms in Sy. The character e~ ! det p can be regarded as a character x :
(Z/NpZ)* — (Tfy}m * with x|® = ¢. Let ¢ denote the restriction of x
t0Z,® ]_[XJ[M (Z/xZ)*, which we may regard as a character of Gq. After

1/2

twisting p by ¥~ /%, we obtain a Galois representation

Gq — GLy(T%,)

with determinant xy = € - (pe~1Y¢ which is classified by R = Ry. Our
hypotheses on p (that p is absolutely irreducible and unramified at p) imply
that p|Gq(,) 1s absolutely irreducible. Kisin’s improvement of the Taylor—
Wiles method yields an isomorphism Rg[1/p] > Tg‘fm[l /p]. (Here we apply
the Taylor—Wiles type patching results Proposition 3.3.1 and Lemma 3.3.4 of
[52]—as in the proof of Theorem 3.4.11 of ibid.—except that the rings denoted
B and D in the statements of these results may no longer be integral domains
in our situation (though their generic fibres will be formally smooth over K by
Lemma 4.11 below). This is due to the fact that the rings R, ¢ defined above
may have multiple irreducible components for certain v # p. On the other
hand, the only place in [52] where the assumption that B and D be integral
domains is used is in the first paragraph of the proof of Lemma 3.3.4. In our
case, it will suffice to show that each irreducible component of R, 4 is in the
support of Sg. This follows from now standard results on the existence of
modular deformations with prescribed local inertial types). |

Now, R™ is (non-canonically) a power series ring over R, and is realized as
a quotient of

—

<RT®®U|NRU> [x1,...,x,] > RV
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by a sequence of elements that can be extended to a system of parameters;
this last fact follows from the proof of Prop 5.1.1 of [41] and the fact that
R is finite over O (for the most general results concerning the finiteness of
deformation rings over O, see Theorem 10.2 of [53]). As a variant of this, we
may consider deformations of p together with an eigenvalue « of Frobenius
at p. Globally, this now corresponds to a modified global deformation ring
R= R¢ and the corresponding framed version R™, where we now map to the
full Hecke algebra Ty,. There are surjections:

Rioclxt, - .., xn] —<R’®® ) [x1.....5] > RY > R —> R/w.

Since R is finite over O, it follows that R /o is Artinian. Again, as in the proof
of Prop 5.1.1 of [41] (see also Proposition 4.1.5 of [54]), the kernel of the
composition of these maps is given by a system of parameters, one of which
is @ . On the other hand, we have:

Lemma 4.11 The rings R, = R, ¢ for v # p are complete intersections.
Moreover, their generic fibres R,[1/ p] are formally smooth over K.

Proof There are three cases in which R, is not smooth. In two of these cases,
we shall prove that R, is a power series ring over O[A] for some finite cyclic
abelian p-group A. Since O[A] is manifestly a complete intersection with
formally smooth generic fibre, this suffices to prove the lemma in these cases.
In the other case, we will show that R, is a quotient of a power series ring
by a single relation. This shows that it is a complete intersection. The three
situations in which R, is not smooth correspond to primes v such that:

(1) v=1 mod p, p|G, is reducible, and p|I, >~ x & 1 for some ramified x.

(2) v=—1 mod p, p|G, is absolutely irreducible and induced from a char-
acter &.

(3) v=1 mod p, p" is 1-dimensional and p*|G, is unramified.

Suppose that v is a vexing prime (the second case). Any conductor-minimal
deformation of p is induced from a character of the form (&)Y over the
quadratic unramified extension of Q,, where ¥ mod @ is trivial. It follows
that v is tamely ramified, and in particular, up to unramified twist, it may be
identified with a character of F:z of p-power order. We may therefore write
down the universal deformation explicitly, which identifies R, with a power
series ring over O[A], where A is the maximal p-quotient of F:Z

Suppose that we are in the first case, and so, after an unramified twist,
p|Gy = x @ 1. All R,-deformations of p are of the form ((x)¥ ® v~ 1) ®
(xe{x ~I1)1/2 where v = 1 mod @ . It follows that ¥ is tamely ramified, and
in particular, decomposes as an unramified character and a character of F,’ of
p-power order. We may therefore write down the universal framed deformation
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explicitly, which identifies R, with a power series ring over O[A], where A
is the maximal p-quotient of F ;.

In the third case, the deformation rings are not quite as easy to describe
explicitly, so we use a more general argument. As noted by the referee, the
following argument may also be easily modified to deal with the first two
cases. We first note that R, 4 is a quotient of a power series ring over O in
dim Z'(G,, ad’p) = 4 variables by at most dim H%(G,, ad’p) = 1 rela-
tion. Closed points on the generic fiber of R, 4 correspond to lifts p of p|G,
which are either unramified twists of the Steinberg representation or lifts which
decompose (after inverting p) into a sum x4 @ v~ ! with ¢ |1, of p-power
order. The completion of R,[1/p] at such a point is the corresponding charac-
teristic O deformation ring of the lift p (see Proposition 2.3.5 of [52]). In each
case, we have dim H?(G,, ad”p) = 0 and hence this ring is a power series
ring (over the residue field at the point) in dim Z (G, ad’ p) = 3 variables.
It follows that R, = Ol[xy, x2, x3, x4]/(r) for some r # 0 and R,[1/p] is
formally smooth over K. This concludes the proof of the lemma. |

By Lemma4.2, it follows that Rjoc[x1, . .., X;]1is Cohen—Ma~caulay, and hence
the sequence of parameters giving rise to the quotient R/w is a regular
sequence. In particular, R is Cohen—Macaulay and @ -torsion free. Moreover,
again by Lemma 4.2, the number of generators of the canonical module of of
Rioclx1, ..., xu] (anthence of R) is equal to the number of generators of the
canonical module of R, which is 3, by Theorem 4.3. Since patching arguments
may also be applied to the adorned Hecke algebras Ty, The method of Kisin
y1e1ds an isomorphism R[1 /Pl = Ty ml[1/p] (note that 4 R* is a domain, and

'[1/p] is formally smooth). Since (as proven above) R is O- flat, it follows
that R >~ Ty 1. In particular, we deduce that Ty , is Cohen-Macaulay, and
that dim wr,, ,, /m = 3. There is an isomorphism as follows:

)

where, since p is odd, we write every element of ) uniquely as a square.
If Ty w denotes the Hecke action on Sy m ® K, then twisting by ¢ induces
an isomorphism Ty2 ., >~ T m ®0 O(¢), since this is precisely the effect
twisting has on the action of the diamond operators. (Here O(¢) = O with

5 One may take r to be C(T') — T, where C is the Chebyshev-type polynomial determined by
the relation C (¢ + til) =tV + 1Y, and T is the trace of a generator of tame inertia (note
that T — 2 € mg, ). The generic fibre of Ry has (¢ + 1)/2 geometric components, where g is
the largest power of p dividing v — 1 (see also Theorem 1.0.1(A2.2) of [55]). One component
corresponds to lifts of p on which inertia is nilpotent, and in particular has trace 7" = 2. The
remaining (¢ — 1)/2 components corre ]pond to representations which are finitely ramified of
order dividing g, on which 7' = ¢ + ¢~ for some primitive g-th root of unity ¢ # 1.
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the @ action twisted by ¢). If Ty, is the Hecke ring at full level I'{ (N*), then
the restriction map induces an inclusion map

Ton > P Tpm>Tia®@0W).

Since Ty, is local, the image lands inside T n ® O[P]. Because the map
above is an isomorphism after tensoring with K, and since all the relevant
spaces of modular forms are @ -torsion free, we have an isomorphism Ty, >~
T m ®o O[P]. Hence, applying Lemma 4.2 once more, we deduce that Ty,
is Cohen—-Macaulay and dim o, /m = 3

Since Ty, is finite over Z,, we deduce by Lemma 4.1 that Hom(Ty,, Z)) is
the canonical module of Ty, and thus Hom(Ty,, Z,)/m also has dimension
three. Yet we have identified Hom(Ty,, Z,) with 7,G¢, and it follows that
dim G°[m] = dim T,G¢/m = 3, and hence

dim J; (N*)[m]— — dim G[m] = —(d1rn G[m] + dim G¢[m]) = —— = 2.

Remark 4.12 1f Xg(N*) = X1 (N*)/H is the smallest quotient of X1(N™*)
where one might expect p to occur, a similar argument shows that Jg (N*)[m]
has multiplicity two if p is unramified and scalar at p, and has multiplicity
one otherwise, providing that p # 3 and p is not induced from a character of
Q(+/—3). The only extra ingredient required is the result of Carayol (see [56],
Proposition 3 and also [57], Proposition 1.10).

Remark 4.13 We expect that these arguments should also apply in pr1n01ple
when p = 2; the key point is that one should instead use the quotient R
of R (in the notation of [41], Sect. 4), corresponding to crystalline ordlnary
deformations. The special fibre of RT is (in this case) also given by 31, and thus
one would deduce that the mult1p11c1ty of p is two when p(Froby) is scalar,
assuming that p is not induced from a quadratic extension. The key point to
check is that the arguments above are compatible with the modifications to the
R = T method for p = 2 developed by Khare—Wintenberger and Kisin (in
particular, this will require that p is not dihedral).

4.2 Finiteness of deformation rings

Lemma 4.14 Let F/Q be a number field, let k be a finite field, and let S denote
a finite set of places not containing any v|p. Let G f s denote the Galois group
of the maximal extension of F unramified outside S. Let

p:Gps— GLy(k)
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be a continuous absolutely irreducible representation, and let R denote the
universal deformation ring of p. Suppose that the Galois representation asso-
ciated to any Q,-point of R has finite image, and suppose that there are

only finitely many Gp-points of R. Then R[1/p] is reduced; equivalently,
R[1/pI™d = R[1/p].

Proof Because S is a finite set of primes, it follows from the discussion
in Sect. 1 p. 387 of [58] that R is a complete local Noetherian W (k)-algebra.
The assumption that R has only finitely many Q p-pointsimplies that R[1/ plred
is isomorphic to a product of finitely many fields indexed by prime ideals p™¢
of R[1/p]™d. Since Spec(R[l/p]red) and Spec(R[1/ p]) are naturally isomor-
phic as sets, there is a bijection between primes p of R[1/p] and p'd of
R[1/p]™d. Hence R[1/p] is a Noetherian semi-local ring, which therefore
decomposes as a direct sum of its localizations over all finite ideals p. It suf-
fices to show that the localizations of R[1/p] and R[1/p]™? at every prime
p are isomorphic. Denote this localization of R[1/p] by (A, m). Note that
A/m = A/p = R[1/p]*d/p™d ~ E for some finite extension E of Q,. We
have Galois representations as follows:

Gr.s — GL2(R) — GL2(R[1/p]) — GL2(A) — GLz(A/mz) — GLa(E)

To show that A = E, it suffices, by Nakayama’s Lemma, to show that A /m? =
A/m. Because E is of characteristic zero, the map A/m?> — E splits, and
A/m? has the structure of an E-algebra. If A/m?> # A/m, then the map
A/m? — A/m factors through a surjection A/m> — E[e]/€>. Because p is
absolutely irreducible, the ring R is generated by the traces of the images of
elements of G ¢ s (Proposition 4, S1.8 of [58]). It follows that the traces of the
elements of G r g generate R[1/p] and all its quotients over W (k) ® Q. It thus
suffices to show that the images of the elements of G s in GL2(E[€]/ €2) all
have traces in E. Consider the corresponding Galois representation

p:Grs— GLa(E[el/€?).

The composite to GL,(E) has finite image by assumption. Denote the corre-
sponding finite image Galois representation over E by V. Hence p arises from
some extension

O—-V-—->W-—=V-—=0.

Consider the restriction of this representation to a finite extension L/F such
that G, s acts trivially on V. Then the action of G, on W factors through a
Z ,-extension which is unramified outside primes outside those above S, and
is in particular unramified at all primes v|p. Such extensions are trivial by
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class field theory. Hence the extension splits over G s. However, because
G s has finite image in G g, the extension also splits over G ¢ s, because
the inflation map is injective (the kernel is computed by H' of a finite group
acting in characteristic zero). It follows that the extension is trivial over G 5.
Yet this implies that the trace of the image of any element lies in E, which
completes the proof. O

If o : Gg,s — GLy(k) as above is modular, then one can often deduce
the assumptions (and hence the conclusions) of Lemma 4.14 from work of
Buzzard-Taylor and Buzzard [22,23].

5 Imaginary quadratic fields

In this section, we apply our methods to Galois representations of regular
weight over imaginary quadratic fields. The argument, formally, is very simi-
lar to what happens to weight one Galois representations over G¢. The most
important difference is that we are not able to prove the existence of Galois
representations associated to torsion classes in cohomology, and so our results
are predicated on a conjecture that suitable Galois representations exist (Con-
jecture A).

5.1 Deformations of Galois representations

Let F be an imaginary quadratic field, and let p > 3 be a prime that is
unramified in F. Suppose that v|p is a place of F and A is an Artinian local
(0-algebra. We say that a continuous representation p : G, — GLj(A) is
finite flat if there is a finite flat group scheme F/Op, such that p = F(F,) as
Z,[G,]-modules, and det(p|I,) is the cyclotomic character. We say that p is
ordinary if p is conjugate in GL;(A) to a representation of the form

€X1
0 x
where x; and x, are unramified.
Let

0 :Gr — GLy(k)
be a continuous Galois representation such that the restriction
ﬁ: GF(Cp) — GLz(k)
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is absolutely irreducible. Let S(p) denote the set of primes not dividing p
where p is ramified. We assume the following:

(1) det(p) is the mod-p reduction of the cyclotomic character.
(2) p is either ordinary or finite flat at v|p.
(3) If x € S(p), then either:
(a) p|ly is irreducible.
(b) p|1; is unipotent.
(¢) p|D, is reducible, and p|I, is of the form ¢ @ L.
(d) If p|Dy is irreducible and p|I, is reducible, then Np,g(x) # —1
mod p.

Let Q denote a finite set of primes in O not containing any primes above p
and not containing any primes at which p is ramified. For objects R in Cp, we
say that a representation p : G — GL3(R) is unipotent if, after some change
1 =%
0 1
For objects R in Cp, we may consider lifts p : G — GL2(R) of p with the
following properties:

(1) det(p) = €.

(2) If v|p, then (p ®g (R/m%))|Gy is finite flat or ordinary for all n > 1.

(3) If v|p and p|G, is finite flat, then (p ®g (R/m’%))|G, is finite flat for all
n>1.

4) Ifx ¢ QU S(p) U {v|p}, then p|G is unramified.

(5) S:Ifx € S(p), and p|l, is unipotent, then p|I, is unipotent.

6) P:Ifx € S(B), and p|L, ~ ¥ @ ¥, then p|I, ~ (V) & ()~ L.

(7) M : If x € S(p), p|Dy is irreducible, and p|I, = ¥ @ ¥» is reducible,
then p|lx = (Y1) & (V2).

(8) H: If p|I, is irreducible, then p (1) = ©(I). (This also follows automat-
ically from the determinant condition).

of basis, the image of p is a subgroup of the matrices of the form

Incases 6 and 7 (and 8), there is an isomorphism p (/) = o(l).Forx € S(p),
we say that p| Dy is of type Special, Principal, Mixed, or Harmless respectively
if is of the type indicated above. Note that primes of type M are called vexing
by [14], but we have eliminated the most troublesome of the vexing primes,
namely those x with Nr/(x) = —1 mod p. The corresponding deformation
functor is represented by a complete Noetherian local O-algebra Ry (this
follows from the proof of Theorem 2.41 of [27]). If O = ¥, we will sometimes
denote Rp by R™" Let H é (F, ad’p) denote the Selmer group defined as the
kernel of the map

H'(F, ad’p) — @ HY(F,ad’p)/L g

X

where x runs over all primes of F and
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o Lo =H"G,/I, (ad’p)") if x ¢ QU {v|p};
e Lo, =H'(F,ad’p)ifx € Q and x { p;
e Lo, = H!(F,,ad’p) if v|p and v ¢ Q;

(The group Hfl(Fv, adoﬁ) is defined as in Sect. 2.4 of [27]). Let H é(F ,ad"
p(1)) denote the corresponding dual Selmer group.

Proposition 5.1 The reduced tangent space Hom(Rp /mo, k(€] /€2 of Ro
has dimension at most

dimy Hjy (F,ad’p(1)) — 1+ Y dimy HO(Fy, ad’p(1)).
xeQ

Proof The argument follows along the exact lines of Corollary 2.43 of [27].
The only difference in the calculation occurs at v| p and at v = oo. Specifically,
when v|p and p splits, the contribution to the Euler characteristic formula
(Theorem 2.19 of [27]) is

> _(dimy H{ (Fy, ad’p) — dimg HO(Fy, 2d"p)).
vlp

which, by Proposition 2.27 of [27], is at most 2. However, the contribution at
the prime at cois — dimy H owc, adoﬁ) = —3. When p isinert, the contribution
at p is

dimy H{ (F,, ad’p) — dimy H(F,, ad’p)

which is also at most 2 (see, for instance, Corollary 2.4.3 of [3] and note that
there is an inclusion H' (GF,/1F,. k) C Hf1 (Fp,adp) N H! (F)p, k) where we
view k as the scalar matrices in adp). |

Suppose that Nr,g(x) = 1 mod p and p(Frob,) has distinct eigenvalues
for each x € Q. Then H°(F,, ad’p) is one dimensional for x € Q and
the preceding proposition shows that the reduced tangent space of Ry has
dimension at most

dimg Hjy(F, ad’B(1)) — 1 + #Q.

We now show that one may choose a judicious set of primes (colloquially
referred to as Taylor—Wiles primes) to annihilate the dual Selmer group.

Proposition 5.2 Ler g = dimy HQ} (F, ad5 (1)) and suppose that p|G F(zp) 1S
absolutely irreducible. Then q > 1 and for any integer N > 1 we can find a
set Qn of primes of F such that
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(1) #0y = q.

(2) Nrjg(x) =1 mod pror each x € Qy.

(3) For each x € Qp, p is unramified at x and p (Froby) has distinct eigen-
values.

@) Hp, (F.ad’p(1) = (0).

In particular, the reduced tangent space of R, has dimension at most g — 1
and R, is a quotient of a power series ring over O in q — 1 variables.

Proof That ¢ > 1 follows immediately from Proposition 5.1. Now suppose
that Q is a finite set of primes of F' containing no primes dividing p and no
primes where p is ramified. Suppose that p(Frob,) has distinct eigenvalues
and Nr/Q(x) =1 mod p for each x € Q. Then we have an exact sequence

0 — H},(F,ad’p(1)) — Hj(F,ad’p(1)) — @HI(GX/IX, ad’s(1)).
xeQ

Moreover, for each x € Q, the space H 1(G, /1, adoﬁ(l)) is one-dimensional
over k and is isomorphic to adoﬁ/ (p(Frob,) — 1)(ad®p) via the map which
sends a class [y] to y (Froby). It follows that we may ignore condition (1): if
we can find a set Q ~ satisfying conditions (2), (3) and (4), then #Q N > g and
by removing elements of Oy if necessary, we can obtain a set Q y satisfying
(D-(4).

By the Chebotarev density theorem, it therefore suffices to show that for
each non-zero class [y] € HQ} (F, adoﬁ(l)), we can find an element o0 € Gp
such that

[ OlGF(CpN) = 1;
e p(0) has distinct eigenvalues;
e y(0) ¢ (p(0) — 1)(ad"p).

The existence of such a o can be established exactly as in the proof of Theo-
rem 2.49 of [27]. O

5.2 Homology of arithmetic quotients

Let A denote the adeles of Q, and A the finite adeles. Similarly, let Ar
and A’ denote the adeles and finite adeles of F. Let G = Resg/QPGL(2),
and write Goo = G(R) = PGL,(C). Let K, denote a maximal compact of
G with connected component K (O)o. For any compact open subgroup K of
G(A®™), we may define an arithmetic orbifold Y (K) as follows:

Y(K) = GQ\GA)/KLK.
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Remark 5.3 If K is a sufficiently small (neat) compact subgroup, then Y (K)
is a manifold. Moreover, it will also be a a (disjoint union of) K (i, 1) spaces,
since each component is the quotient of a contractible space. Recall that for a
K (7r, 1)-manifold M, there is a functorial isomorphism

H"(my (M), ) >~ H" (M, %)

for all n. For orbifolds M = I'\H of a similar shape (with contractible H),
the cohomology of M as an orbifold satisfies the same formula. Note that the
cohomology in this sense may differ from the cohomology of the underlying
space. (For example, the underlying manifold of PSLy(Z) is the punctured
sphere which is contractible, whereas the underlying orbifold has interesting
cohomology). We take the convention that, for any K, the cohomology of
Y (K) is understood to be the cohomology in the orbifold sense, namely, that
the cohomology of each component is the cohomology of the corresponding
arithmetic lattice. The main advantage of this approach is that, for any finite
index normal subgroup K’ < K, the corresponding map of orbifolds

Y(K') — Y(K)

is a covering map with Galois group K /K'. This approach is the analogue (in
the world of PEL Shimura varieties) of working with stacks rather than the
underlying schemes at non-representable level.

We will specifically be interested in the following K. Let S() and Q be as
above.

5.2.1 Arithmetic quotients

If v is a place of F and ¢ > 1 is an integer, we define

Co(v©) = {g € PGL,(0)) | g = <(1) :) mod JT,i}

T () = {g € PGL(0,) | g = <(1) T) mod ng}

r,w)= {g € PGLy(0Oy) | g= ((1) Z mod 7, d has p — power order}
Let Ko =[], Kg,vand Ly =[], L., denote the open compact subgroups
of G(A) such that:
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(D) IfveQ, Kgy=T1().

Q) Ifve Q,Lgy=To).

(3) If visnotin S(p) U {v|p} U Q, then Ko , = Lo, = PGL2(O,).

4) If v|p, then Kg, = Lo, = GL2(O,) if p|D, is finite flat. Otherwise,
KQ’U = Lvi = F()(U).

(5) If v e S(p), Kg,uv = Lo,y is defined as follows:
(a) If pis of type S at v, then K¢ , = I'p(v).
(b) If o is of type P, M or H at v, then K¢y, = I';,(v°), where c is the

conductor of p|D,.

We define the arithmetic quotients Yo(Q) and Y1(Q) to be Y (L) and
Y (K o) respectively. These spaces are the analogues of the modular curves
corresponding to the congruence subgroups consisting of I'g(Q) and I'1(Q)
intersected with a level specifically tailored to the ramification structure of p.
Topologically, they are a finite disconnected union of finite volume arithmetic
hyperbolic 3-orbifolds.

5.2.2 Hecke operators

We recall the construction of the Hecke operators. Let g € G(A) be an invert-
ible matrix. For K C G(A®°) a compact open subgroup, the Hecke operator
T (g) is defined on the homology modules Ho (Y (K), O) by considering the
composition:

Ho(Y(K),O) = H,(Y(gKg ' NK),0) - H,(Y(KNg~'Kg),O)
— HJ(Y(K), O),

the first map coming from the corestriction (= transfer) map, the second com-
ing from the map Y (¢Kg~' N K, ©®) — Y (K Ng~'Kg, ©) induced by right
multiplication by g on G(A) and the third coming from the natural map on
homology. (We recall that, since we are viewing these spaces as orbifolds, the
map Y (gKg~'NK) — Y(K) is always a covering map). The Hecke operators
acton He(Y (K), O) but do not preserve the homology of the connected com-
ponents. The group of components is isomorphic, via the determinant map,
to

FX\AR > JAS 2 det(K).

This is the mod-2 reduction of a ray class group. For « € A‘}o’ *, we define the
Hecke operator 7y, by taking
(a0
£=\o 1)
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Ifae A;O’ " is a unit at all finite places, we denote the corresponding operator
by («) and refer to it as a diamond operator; it acts as an automorphism on
Y (K) for all the K considered above.

Definition 5.4 Let Taé‘ denote the sub-O-algebra of Endp H{(Y1(Q), O) gen-
erated by Hecke endomorphisms 7;, for all « which are trivial at primes in
QU S(p) U {v|p}. Let Ty denote the O-algebra generated by the same oper-
ators together with 7, for « non-trivial at places in Q. If Q = J, we write
T= TQ) for TQ.

These rings are commutative. If ¢ € O is a global unit, then T¢ acts by the
identity. If a € Op is an ideal prime to the level, we may define the Hecke
operator T, as T, where o € A;’OO is any element which represents the ideal
a and such that « is 1 for each component dividing the level. In particular, if
a = x is prime, then 7, is uniquely defined when x is prime to the level but
not when x divides the level.

5.3 Conjectures on existence of Galois representations

Let m denote a maximal ideal of T, and let Ty , denote the completion. It
is a local ring which is finite (but not necessarily flat) over O.

Definition 5.5 We say that m is Eisenstein if T), — 2 € m for all but finitely
primes A which split completely in some fixed abelian extension of F'. We say
that m is non-Eisenstein if it is not Eisenstein.

We say that m is associated to p if foreach A ¢ S(p) U Q U {v|p}, we have
an inclusion 7, — Trace(p (Frob,)) € m.

Conjecture A Suppose that m is non-Eisenstein and is associated to p, and

that Q is a set of primes v such that N(v) =1 mod p, p is unramified at v,

and p(Froby) has distinct eigenvalues. Then there exists a continuous Galois

representation p = py : Gr — GL2(T g w) with the following properties:

(D) If A ¢ S(p) U Q U{v|p} is a prime of F, then p is unramified at A, and
the characteristic polynomial of p (Frob,) is

X? — T3 X 4+ Npjg(h) € To.mlX].

) Ifv e S(p), then:
(a) If p| Dy is of type S, then p|l, is unipotent.
(b) IfP|Dy is of type P, so that D1y = & Y=, then plly = (V) @
(v)—.
) If v € Q, the operators Ty for o€ F) C A;O’X are invertible. Let ¢
denote the character of D, = Gal(F,/F,) which, by class field theory, is
associated to the resulting homomorphism:
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F) — Tam
given by sending x to Ty. By assumption, the image of ¢ mod m is unrami-
fied, and so factors through F,) /O)¢ ~ Z, and so ¢ (Frob,) mod miswell
defined; assume that ¢ (Frob,) # 1 mod m. Then p|D, ~ ¢e & ¢~ .
@4) If v|p, then p|D, is finite flat, and if p|D, is ordinary, then p|D, is
ordinary.

Some form of this conjecture has been suspected to be true at least as far back
as the investigations of F. Grunewald in the early 70’s (see [59,60]). Related
conjectures about the existence of p,, were made for GL(n)/Q by Ash [61],
and for GL(2)/F by Figueiredo [62]. Say that a deformation of pg of p is
minimal outside Q if it arises from a quotient of the ring R¢ of Sect. 5.1.

Lemma 5.6 Assume Conjecture A. Assume that there exists a maximal ideal
m of To associated to p. Suppose that Q consists entirely of Taylor—Wiles
primes. Then there exists a representation: pg : G — GL2(Tg m) whose
traces generate T g w and such that pg is a minimal deformation of p outside
QO with cyclotomic determinant.

Proof By Conjecture A, the representation pg := pmy to T 1 is such a rep-
resentation. Moreover, assumption 3 above guarantees (by Hensel’s Lemma)
that the T, for o| Q lie in the O-subalgebra generated by traces. O

5.3.1 Properties of homology groups

Let my denote a non-Eisenstein maximal ideal of Ty. We have natural homo-
morphisms

T - T" =Ty, T4 < Ty

induced by the map H;(Y1(Q), O) — H;(Y, O) and by the natural inclusion.
(The surjectivity of this map is an immediate consequence of the interpretation
of these groups in terms of group cohomology and the fact that the abelian-
ization of PSL,(F,) is trivial for N (x) > 3). The ideal my of Ty pulls back to
an ideal of T"ﬂ‘QIl which we also denote by my in a slight abuse of notation. The
ideal my may give rise to multiple maximal ideals m of Ty.

Remark 5.7 If x ¢ Q U S(p) U {v|p} is prime, then there is an operator
T, € TaQ“. If x € Q, then we let U, denote the operator U, := T , where
7., by abuse of notation, is the adele which is trivial away from x and the
uniformizer i, at x. However, this operator is only well defined up to a diamond
operator (), where @ € O C A%O’X. On the other hand, by Conjecture A,
the image of U, modulo m is well defined, because the associated character ¢
is unramified.
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If x ¢ S(p) U {v|p} is a prime of F such that Nr,g(x) = 1 mod p and
o (Frob, ) has distinct eigenvalues, then the representation p| G, does not admit
ramified semistable deformations. The following lemma is the homological
manifestation of this fact.

Lemma 5.8 Suppose that for each x € Q we have that Ng,(x) =1 mod p
and that the polynomial X 2_T.X+Np 1Q(x) € Ty[X]hasdistinct eigenvalues
modulo my. Let m denote the maximal ideal of T ¢ containing my and Uy — o,
for some choice of root a,, of X*> — T, X +1 mod m for each x € Q. Then
there is an isomorphism of Ty @-modules

Hi(Y0(Q), OV — Hi(Y, Q).

Proof Note that, by the universal coefficient theorem, we have H!(Y, K /O) =
Hi (Y, ©)Y (and similarly for Yo (Q)). We proceed as in the proof of Lemma 3.5
to deduce that there is an isomorphism

H'(Yo(x), K/O)w = H' (Y, K/O), @ V.

In light of the universal coefficient theorem, it suffices to show that V = 0.
The remainder of the proof now proceeds as in Lemma 3.5. O

There is a natural covering map Y1 (Q) — Yo(Q) with Galois group

Ag = [ ©@r/x).
xeQ

If u is a finitely generated O[A g]-module, it gives rise to a local system on
Yo(Q). Let T""V be the polynomial algebra generated analogously to the one
in Sect. 3.2.3 by Hecke endomorphisms 7, for all « which are trivial at primes
in QU S(p) U {v|p} and by U, for x € Q (see Remark 5.7). We have an
action of TV on the homology groups H;(Yo(Q), i) and the Borel-Moore
homology groups Hl.B M (Yo(Q), ). The ideal my gives rise to a maximal ideal
m of TU"V after a choice of eigenvalue mod m for U, for all x dividing Q.

We let A denote a quotient of Ag and YA (Q) — Y(Q) the corresponding
Galois cover. Further suppose that A is a p-power order quotient of A . Then
O[A] is a local ring. Note that by Shapiro’s Lemma there is an isomorphism
Hi(Yo(Q), O[A]) = Hi(YA(Q), O).

Lemma 5.9 Let u be a finitely generated O[Al-module. Then:

(1) H;(Yo(Q), w)m = (0) fori =0, 3.
(2) If n is p-torsion free, then Hy(Yo(Q), W)m is p-torsion free.
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(3) Foralli, we have an isomorphism

H;i (Yo(Q), 1w — HEM (Y0(Q), 11)m.

Proof Consider part (1). By Nakayama’s Lemma, we reduce to the case
when u = k. Yet H3(Yo(Q), k) = 0 and the action of Hecke operators on
Hy(Yo(Q), k) (which preserve the connected components) is via the degree
map, and this action is Eisenstein (in the sense that the only m in the support
of Hy are Fisenstein). For part (2), since u is O-flat (by assumption), there is
an exact sequence

0> u—>u— u/o— 0.

Taking cohomology, localizing at m, and using the vanishing of H3(Yo(Q), (t)m
from part (1), we deduce that H2(Yo(Q), mlw] = 0, hence the result. For
part (3), there is a long exact sequence

= Hi(3Y0(Q), ) — Hi(Yo(Q), 1) — HEM (Yo(0), 1)
— H;_10Y0(Q), ) = ---

from which we observe that it suffices to show that H; (8 Yy(Q), it)m vanishes
for all i. (The action of Hecke operators on the boundary is the obvious one
coming from topological considerations. For an explicit exposition of the rele-
vant details, see p. 107 of [63]). By Nakayama’s Lemma, we once more reduce
to the case when . = k. The cusps are given by tori (specifically, elliptic curves
with CM by some order in OF), and since the cohomology with constant coef-
ficients of tori is torsion free, the case when . = k reduces to the case when
w = O and then & = K. We claim that the action of T"™" on the homology of
the cusps in characteristic zero given by a sum of algebraic Grossencharacters
for the field F'; such a representation is Eisenstein by class field theory. This
follows from the work of [64]; an explicit reference is Sect. 2.10 of [65]. O

Proposition 5.10 The O[Al-module H1(Yo(Q), O[ADm = H(YA(Q), O)m
is balanced (in the sense of Definition 2.2).

Proof The argument is almost identical to the proof of Proposition 3.8. Let
M denote the module H;(Yo(Q), O[A])m and S = O[A]. Consider the exact
sequence of S-modules (with trivial A-action):

0-0205k—0
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where @ denotes a uniformizer in O. Tensoring this exact sequence over S
with M, we obtain an exact sequence:

0— Torf(M, O)/w — Torf(M, k) > Mpn — MpA - M ®sk — 0.

Let r denote the O-rank of M. Then this exact sequence tells us that

ds(M) = dimy M ®g k — dimy Tor{ (M, k) = r — dimy Tor} (M, O) /.
We have a Hochschild—Serre spectral sequence

H;(A, Hj(Yo(Q), $)) = Tor} (Hj(Yo(Q), 5), 0) = Hi1j(¥o(Q), O).
We obtain an action of TU"¥ on the spectral sequence by essentially the same
argument as that of Proposition 3.8. Localizing at m, and using the fact that
H;(Yo(Q), S)m = (0) fori = 0,3 by Lemma 5.9 (1), we obtain an exact
sequence

(Hy(Yo(Q). S)m)a = Ha(Yo(Q), O) — Tor} (M, O) — 0.

To show that dg(M) > 0, we see that it suffices to show that H»(Yy(Q), O)m
is free of rank r as an O-module. By Lemma 5.9 (2), it then suffices to show

that dimg H(Yo(Q), K)w = r. Inverting @ and applying Hochschild—Serre
again, we obtain isomorphisms

(H; (Yo(Q), S ®0 K)m)a — Hi(Yo(Q), K)m

fori = 1, 2. It follows that r = dimg H(Y9(Q), K)n. By Poincaré duality,
we have

dimg H>(Yo(Q), K)m = dimg HEM (Y9(Q), K)m.

(Because we are working with PGL, the dual maximal ideal m™* is identified
with m). Finally, by Lemma 5.9 (3), we have

dimg Hy(Yo(Q), K)m = dimg HEM (Yo(Q), K)m,

as required. |

5.4 Modularity lifting

We now associate to p the ideal my of Ty which is generated by (=, T), —
Trace(p(Frob,))) where A ranges over all primes A ¢ S(p) U {v|p} of F.

@ Springer



Modularity lifting beyond the Taylor—Wiles method

We make the hypothesis that my is a proper ideal of Ty. In other words, we
are assuming that p is ‘modular’ of minimal level and trivial weight. Since
Ty/myg — k it follows that my is maximal. Since p is absolutely irreducible,
it follows by Chebotarev density that my is non-Eisenstein.

We now assume that Conjecture A holds for mgy. In other words, there is a
continuous Galois representation

Pm : Gp — GL2(Tyy,)

satisfying the properties of Conjecture A. The definition of my and the Cheb-
otarev density theorem imply that py,, mod my is isomorphic to p. Properties
(1)—=(4) of Conjecture A then imply that p, gives rise to a homomorphism

Q: R™MIn _, T,

such that the universal deformation pushes forward to p,. The following is
the main result of this section.

Theorem 5.11 If we make the following assumptions:
(1) the ideal wmy is a proper ideal of Ty, and
(2) Conjecture A holds for all Q,

then the map ¢ : R™" — Ty, is an isomorphism and Ty w, acts freely on
Hl (Y7 O)m;)j

Proof By property (1) of Conjecture A, the map ¢ : R™" — Ty m, is sur-
jective. To prove the theorem, it therefore suffices to show that H; (Y, O)m,
is free over R™" (where we view H;(Y, O)y, as an R™"-module via ¢). To
show this, we will apply Proposition 2.3.

We set R = R™" and H = H, (Y, O)m,, and we define

q = dimy H; (G, ad’p).

Note that ¢ > 1 by Proposition 5.2. As in Proposition 2.3, we set Ay, = Z?,
and let Ay = (Z/pNZ)4 for each integer N > 1. We also let R, denote
the power series ring O[xy, ..., x4—1]. It remains to show that conditions 4
and 5 of Proposition 2.3 are satisfied. For this we will use the existence of
Taylor—Wiles primes together with the results established in Sect. 5.2.

For eachinteger N > 1, fix a set of primes QO y of F satisfying the properties
of Proposition 5.2. We can and do fix a surjection (75N : Roo — R, for each
N > 1. We let ¢y denote the composition of $N with the natural surjection
Rgp, — R™™. Let

Agy = ] ©r/x)*

XEQN
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and choose a surjection Ag, — Ay. Let YA, (Qn) — Yo(Qp) denote the
corresponding Galois cover. We set Hy := H{ (YA, (QOn), O)m where mis the
ideal of Tp,, which contains my and U, — a, for each x € Q, for some choice
of a. Then Hy is naturally an O[Ay] = Sy-module. Applying Conjecture
A'to Tg, m, we deduce the existence of a surjective homomorphism Rp, —
Toy.m. Since T, m acts on Hy, we get an induced action of R on Hy (via
¢y and the map Ry, — Tp, m). We can therefore view Hy as a module over
Roo ®0 Sy. To apply Proposition 2.3, it remains to check points (5a)—(5¢).
We check these conditions one by one:

(a) The image of Sy in Endp(Hpy) is contained in the image of Ry, by Con-
jecture A, because it is given by the image of the diamond operators. The
second part of condition (5a) follows from Conjecture A part (3) (exactly
as in the proof of Theorem 3.26).

(b) We have a Hochschild—Serre spectral sequence

Tor®™ (H;(Yay (On), O)m) = Hit;(Yo(ON), O

Applying part (1) of Lemma 5.9, we see that (Hy)ay, = H1(Yo(Qn), O)m.
Then, by Lemma 5.8 we see that (Hy)ay = H{(Y,O)n, = H, as
required.

(c) Hpy is finite over O and hence over Sy. Proposition 5.10 implies that
dsy(Hy) = 0.

We may therefore apply Proposition 2.3 to deduce that H is free over R and
the theorem follows. O

If H1(Y, O)m, ® Q # 0, then we may deduce that the multiplicity u for H
as a Ty m,-module is one by multiplicity one for PGL(2)/F. The proof also
exhibits Ty m, as a quotient of a power series ring in ¢ — 1 variables by ¢ ele-
ments. In particular, if dim(Tgy w,) = 0, then Ty 1, is a complete intersection.
From these remarks we see that Theorem 1.3 follows from Theorem 5.11.

5.5 The distinction between GL and PGL

The reader may wonder why, when considering Galois representations over
imaginary quadratic fields, we consider the group G = PGL rather than GL.
When F = Q or an imaginary quadratic field, the associated locally symmetric
spaces are very similar (the same up to components), and working with PGL
has the disadvantage of forcing the determinant to be cyclotomic rather than
cyclotomic up to finite twist. The main reason we use PGL is related to an
issue which arises (and was pointed out to us by the referee) when the class
number of F is divisible by p. Suppose that p is a modular representation of
level one, and suppose that the minimal fixed determinant deformation ring
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is O. Then, if the class group of OF is Z/pZ, the minimal Hecke ring Ty, is
expected to be of the form O[Z/ pZ] rather than O, and the map R™" — T,
will not be surjective. The issue is that the Hecke algebra even at minimal
level sees the twists of the corresponding automorphic form by characters of
the class group. If these characters have p-power order, they contribute to the
localization of T at any maximal ideal m. This is analogous to what might
happen classically if one has a representation p over Q of tame level N; one
has to be careful in choosing a minimal level, since the Hecke algebra of X1 (N)
will contain spurious twists if N — 1 is divisible by p. The latter issue is easily
resolved by a careful choice of level structure at N, namely, replacing X1(N)
by X (N) which is the quotient of X{(N) by the p-Sylow subgroup of the
group (Z/NZ)* of diamond operators. However, it is not possible to avoid the
class group in this way by choosing appropriate level structure, because the
level structure only sees ramification. One fix is to work with PGL, but there is
another fix for imaginary quadratic fields F* which we sketch now. The natural
approach is to replace the spaces Y, Yo(Q) and Y1 (Q) by their quotients by the
group Cl,(OF) := Cl(OF) ® Z,. For example, the natural level structure at
Y admits a ring of diamond operators which act via an extension of C1(OF) by
a group of order prime to p, and hence there is a canonical splitting and thus a
canonical quotient Y /Cl,(OF) which gives the “correct” space. Note that, for
p odd, the group Cl,(OF) acts freely on the components, so this quotient is
given explicitly by a subset of the connected components of Y. In the example
above, the natural ring of Hecke operators Ty, acting on Y (now generated by 7,
such that the image of () in C1(OF) has order prime to p) will be isomorphic
to O. This construction, however, is not as canonical as one would like. For
example, the ring of diamond operators on Y(Q) naturally acts through a
group whose p-Sylow subgroup is RCl,(Q) = RCI(Q) ® Z,,, the (p-part of
the) ray class group of conductor Q. This group surjects onto Cl,(OF), but
there is no natural section. It seems that the Taylor—Wiles method still applies as
long as one restricts the set of Taylor—Wiles primes to x € Q such that the map

RCl,(Q) — Cl,(Op)

splits. This imposes a further Chebotarev condition on the Taylor—Wiles primes
x € QO which corresponds to x splitting completely in a metabelian extension
of F. Explicitly, if a € Cl,(OF) has p-power order A, let a" = (a). The
necessary condition on x is that (assuming p is prime to the order of the unit
group of F') that

Nx)—1
a 7 =1 modx,

or equivalently that x splits completely in F(«'/?, ¢ »). We ultimately decided,
however, to impose the simplifying assumption that det(p) is cyclotomic, in
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part because the main example of interest concerns elliptic curves over F
which naturally have cyclotomic determinant.

Remark 5.12 A different approach to modularity lifting for GL is to allow the
determinant to vary, specifically, to fix the determinant only up to a character
which is ramified only at the Taylor—Wiles primes in Q (and so not at v|p).
This is possibly the most general way to proceed, although it requires working
with €9 > 0 even for GL(2)/F for totally real fields of degree [F : Q] > 1.
We give some indication of this method by considering the case of GL(1) in
Sect. 8.2. The general case of GL(n) is then a fibre product of this argument
with the fixed determinant arguments for PGL(n).

Remark 5.13 Our methods may easily be modified to prove an R™" = T,
theorem for ordinary representations in weights other than weight zero (given
the appropriate modification of Conjecture A). In weights which are not invari-
ant under the Cartan involution (complex conjugation), one knows a priori for
non-Eisenstein ideals m that Ty, is finite. Note that in this case it is some-
times possible to prove unconditionally that R™"[1 /p] = 0, see Theorem 1.4
of [66].

Remark 5.14 One technical tool that is conspicuously absent when lp = 1 is
the technique of solvable base change. When proving modularity results for
GL(2) over totally real fields, for example, one may pass to a finite solvable
extension to avoid various technical issues, such as level lowering (see [67]).
However, if F is an imaginary quadratic field, then every non-trivial extension
H /F has at least two pairs of complex places, and the corresponding invariant
lp = rank(G) — rank(K) for PGL(2)/H is at least 2 (more precisely, it is
equal to the number of complex places of H). This means that when lp = 1,
our techniques are mostly confined to the approach used originally by Wiles,
Taylor—Wiles, and Diamond [1,2,26].

Remark 5.15 Our techniques also apply to some other situations in which
lo = 1 (the Betti case). One may, for example, consider 2-dimensional rep-
resentations over a field F with one complex place. If [F : Q] is even, there
exists an inner form for GL(2)/F which is compact at all real places of
F, and the corresponding arithmetic quotient is a finite volume arithmetic
hyperbolic manifold which is compact if [F : Q] > 2. (If [F : Q] is
odd, one would have to require that p be ramified with semi-stable reduc-
tion at at least one prime A 1 p). Nonetheless, we obtain minimal lifting
theorems in these cases, modulo an analogue of Conjecture A. Similarly, our
methods immediately produce minimal lifting theorems for GL(3)/Q, mod-
ulo an appropriate version of Conjecture A. Similarly, our methods should
also apply to other situations in which 7 is a holomorphic limit of discrete
series (the Coherent case). One case to consider would be odd ordinary irre-
ducible Galois representations p : G — GLZ(GP) of a totally real field F
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which conjecturally arise from Hilbert modular forms exactly one of whose
weights is one. Other examples of particular interest include the case in which
p : Gg — GSpyu(Q)p) is the Galois representation associated to an abelian
surface A/Q, or p : Gg — GL3(Q)) is the Galois representation associ-
ated to a Picard Curve (see the appendix to [68]). We hope to return to these
examples in future work.

Part 2. [y arbitrary.

In this second part of the paper, our main result is a conditional modularity
lifting theorem for n-dimensional p-adic representations of the Galois group of
an arbitrary number field. In this generality, we are forced to work in a situation
where the automorphic forms in question occur in a range of cohomological
degrees of arbitrary length /p. We could have presented our arguments in both
the coherent cohomology setting and the Betti cohomology setting, but for
concreteness, we have decided to treat only the latter case in detail.

We now state our main (conditional) modularity lifting theorem; it will be
used in Sect. 10 to prove Theorem 1.1. Let O denote the ring of integers in a
finite extension of Q, let & be a uniformizer of O, and let O/ = k be the
residue field. Recall that a representation Gal(C/R) — GL,(O) is odd if the
image of ¢ has trace in {—1, 0, 1}, and let € denote the cyclotomic character.

Theorem 5.16 Assume Conjecture B. Let F /Q be an arbitrary number field,
and n a positive integer. Let p > n be unramified in F. Let

r:Grg — GL,(O)

be a continuous Galois representation unramified outside a finite set of primes.
Denote the mod-w reduction of r by v : G — GL,, (k). Suppose that

(1) Ifv|p, the representation r|D, is crystalline.

(2) Ifvlp, then gr' (r ®z,, Bpr)P* = Ounlessi € {0, 1, ..., n — 1}, in which
case it is free of rank 1 over O ®g,, Fy.

(3) The restriction of 7 to F (C ,,) is absolutely irreducible, and the field

F(ad® (7)) does not contain F(&p).

(4) In the terminology of [3], Definition 2.5.1, 7 is big.
(5) If v|oo is any real place of F, then r|Gf, is odd.
(6) If r is ramified at a prime x, then r|l, is unipotent. Moreover, if, further-

more, T is unramified at x, then N(x) =1 mod p.

(7) The determinant of r is €"*~1D/2,
(8) Either:

(a) There exists a cuspidal automorphic representation wy of GL,,(AF)
such that: o, has trivial infinitesimal character for all v|oco, good
reduction at all v|p, and the p-adic Galois representation r,(w) both
satisfies condition 6 and the identity r ,(w) =T.

@ Springer



F. Calegari, D. Geraghty

(b) 7 is Serre modular of minimal level N (), and r is ramified only at
primes which ramify in7.

Then r is modular, that is, there exists a regular algebraic cusp form m for
GL, (A F) with trivial infinitesimal character such that L(r,s) = L(rx, ).

This theorem will follow immediately from Theorem 9.19, proved below.
As in Theorem 1.2, condition 8b is only a statement about the existence of a
mod-p cohomology class of level N (7), not the existence of a characteristic
zero lift; this condition is the natural generalization of Serre’s conjecture. On
the other hand, the usual strategy for proving potential modularity usually
proceeds by producing characteristic zero lifts which are not minimal, and
thus condition 8a will be useful for applications. If conditions 1, 2, and 3
are satisfied, then conditions 5 and 6 are satisfied after a solvable extension
which is unramified at p. Moreover, if ¥ admits an automorphic lift with
trivial infinitesimal character and good reduction at p, then condition 8a is
also satisfied after a solvable extension which is unramified at p. Condition 8b,
however, is not obviously preserved under cyclic base change.

Note that it will be obvious to the expert that our methods will allow for
(conditional) generalizations of these theorems to other contexts (for example,
varying the weight) but we have contented ourselves with the simplest possible
statements necessary to deduce Theorem 1.1. We caution, however, that several
techniques are not available in this case, in particular, the lifting techniques of
Ramakrishna and Khare—Wintenberger require that [y = 0.

6 Some commutative algebra II

The general difficulty in proving that Ry, = T is to show that there are
enough modular Galois representations. If the cohomology we are interested
in occurs in a range of degrees of length /o, then we would like to show that
in at least one of these degrees that the associated modules Hy (which are
both Hecke modules and modules for the group rings Sy := O[(Z/ pN 7)1))
compile, in a Taylor—Wiles patching process, to form a module of codimension
lo over the completed group ring So, := O[(Z,)?]. The problem then becomes
to find a find a suitable notion of “codimension /y” for modules over a local
ring that

(1) is well behaved for non-reduced quotients of power series rings over O
(like Sy),

(2) can be established for the spaces Hy in question,

(3) compiles well in a Taylor—Wiles system.

It turns out to be more effective to patch together a series of complexes
Dy of length [y whose cohomology computes the cohomology of I'1 (Qy)
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localized at m. The limit of these patched complexes will then turn out to be
a length [y resolution of an associated patched module.
It will be useful to prove the following lemmas.

Lemma 6.1 Let S be a Noetherian local ring. If N is an S-module with depth
n,and0 # M C N, then dim(M) > n.

Proof Let p be an associated prime of M (and hence of N). Then p is the
annihilator of some 0 # m € M, and it suffices to prove the result for M
replaced by mS C M. On the other hand, for a Noetherian local ring, one has
the inequality (see [69], Theorem 17.2)

n = depth(N) < min dim S/p < dim(M).
Ass(N)

We deduce from this the following:

Lemma 6.2 Let lg > 0 be an integer and let S be a Noetherian regular local
ring of dimension n > ly. Let P be a perfect complex of S-modules which is
concentrated in degrees 0, . . ., ly. Then codim(H™*(P)) < ly, and moreover,
if equality occurs, then:

(1) P is a projective resolution of Hb(p),

(2) HY(P) has depth n — lg and has projective dimension l.

Proof Let 8! : P! — Pi*! denote the differential and let m < Iy denote the
smallest integer such that H”(P) # 0. Consider the complex:

P~ pl ... pm

By assumption, this complex is exact until the final term, and thus it is a
projective resolution of the S-module K™ := P”/Im(8" ). It follows that
the projective dimension of K™ is < m. On the other hand, we see that

H™(P) = ker(8™)/Im(s™ ") € K™,
and thus
codim(H" (P))=n—dim(H" (P)) <n—depth(K™) = proj.dim(K™) <m,

where the central inequality is Lemma 6.1, and the second equality is the
Auslander—Buchsbaum formula.
Suppose that codim(H*(P)) > ly. Then it follows from the argument

above that the smallest m for which H™(P) is non-zero is m = I,
that codim(H(P)) = Iy, that P is a resolution of H"(P), and that
proj.dim(H" (P)) = Iy, completing the argument. O
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6.1 Patching

We establish in this section an abstract Taylor—Wiles style patching result
which may be viewed as an analogue of Theorem 2.1 of [26] and Proposi-
tion 2.3, but also including refinements due to Kisin.

Theorem 6.3 Let g and j be non-negative integers with g + j > lo, and let
Seo = Ol(Zp)?]. For each integer N > 0, let Sy := O[An] with Ay =
(Z/pN7Z)4. For each M > N > 0 and each ideal I of O, we regard Sy/1
(and in particular, O/ = So/1) as a quotient of Sy via the quotient map
Ay — Ay and reduction modulo 1.

(1) Let Ry be an object of Co of Krull dimension 1 + j + g — lo.

(2) Let R be an object of Co, and let H be an R-module.

(3) Let T be a complex of finite-dimensional k-vector spaces concentrated in
degrees 0, . .., lg together with a differential d = 0 and an isomorphism

Hlo(T) > H /@ of k-modules.

Let OY = O[zy, ..., zj] and for each O-module or O-algebra M, we let
MP .= M ®0 OF. For any O-algebra A, we regard A as a quotient of AP
via the map sending each z; to 0.

Suppose that, for each integer N > 1, Dy is a perfect complex of Sy /" -
modules with the following properties:

(@) There is an isomorphism Dy ®s, Sn/msy = T.

(b) For each M > N > 0 with M > 1 and each n > 1, there is an action
of Roo on the on the cohomology of the complex DEI ®sy Sn/@" that
commutes with that of SAE,'I. If, in addition, N > N' > Oandn > n’ > 1,
then the natural map H*(DEI ®sy Sn/o") — H*(DE[ ® sy SN//w”/)
is compatible with the Rx-actions.

(c) For each N > 1, there is a surjective map ¢n : Rooc — R, and for each
n > 1 we are given an isomorphism

H (DY ®50 O/w") = H"(Dy ®s, O/w") ~ H/w"

of Roo-modules where Roo acts on H/@"™ via ¢n. Moreover, these iso-
morphisms are compatible for fixed N and varying n.

(d) For M, N andn as above, the image ofSAul in Endo(H*(DE]@)sM Sy /™))
is contained in the image of R~ and moreover, the image of the augmenta-
tion ideal of Sﬁ (that is, the kernel of SE — Q) is contained in the image

of ker(¢n).
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Leta C SODo denote the kernel of the map SODo — O sending each element of
(Z,)? to 1 and each z; to 0. Then the following holds: there is a perfect complex
P of finitely generated Soo-modules concentrated in degrees 0, . . ., ly such
that

(1) The complex PODo is a projective resolution, of minimal length, of its top

degree cohomology H" (Po%).

(ii) There is an action of Res®o SODO on H (PE)) extending the action of SOD<>
and such that H IO(PE)) is a finite Roo-module.

(iii) The Roo-depth of H(Pso) is equalto 1 + j + g — lo(= dim Ryo).

(iv) There is a surjection ¢oo : Rso — R and an isomorphism V¥ :
Hl(’(PE,)/a S H of Roo-modules where Ry acts on H via ¢oo. More-
over, the image of a in End(H o (PE))) is contained in that of ket (¢so).

Proof For each N > 1, let ay denote the kernel of the natural surjection
Seo = Sy and let by denote the open ideal of SEO generated by o™, ay and
(Z{V s zj.v ). Choose a sequence of open ideals (0x)xy>1 of R such that

e 0y DOyygforall N > 1;
o Ny>10n = (0);
e wNRcoy Cc @R+ Anng(H) forall N.

(As in the proof of Theorem 2.3, one can take 0y to be the ideal generated by
@™ and Anng (H)N).
Define a patching datum of level N to be a 3-tuple (¢, 1, P) where
e ¢ : Ry, — R/0y is a surjection in Cp;
e P is a perfect complex of Soo/(ay + @™)-modules such that P ®
Soo/Mms,, =T
e Foreach N > N’ > 0,each N > n’ > 1 and each ideal I of O with
(Z{V, e Z;y) c I C (z1,...,2j), the cohomology groups Hi(PH ®s0
S]E, /I + w”/)) carry an action of R, that commutes with the action of
SODO and these Rxo-actions are compatible for varying N’, n’ and I,
o Y Hlo(pH ®g0 SODO/(a + o)) = H/wNH is an isomorphism of Ry,
modules (where Ry acts on H/ @ N H via ¢). (Note that Y then gives rise
to an isomorphism of Ry,-modules between H hpHg sO SODO /(a+a@™))

and H/@" H foreach N > n’ > 1).

We say that two such 3-tuples (¢, ¥, P) and (¢, ¥', P’) are isomorphicif ¢ =
¢’ and there is an isomorphism of complexes P S P’ of Sao-modules inducing
isomorphisms of R®oSx-modules on cohomology which are compatible
with ¢ and v/ in degree lp. We note that, up to isomorphism, there are finitely
many patching data of level N. (This follows from the fact that Ry, and Soo
are topologically finitely generated, and that T is finite). If D is a patching
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datum of level N and 1 < N’ < N, then D gives rise to a patching datum of
level N’ in an obvious fashion. We denote this datum by D mod N’.

For each pair of integers (M, N) with M > N > 1, we define a patching
datum Dy y of level N as follows: the statement of the proposition gives a
homomorphism ¢y : Roae — R and an Sy /oo™ -complex Dj;. We take

e ¢ to be the composition Ry, &4 R — R/0yn;
e Ptobe Dy ®s.. Soo/(ay + @) = Dy ®s,, Sn/&";
. gl pO O Ny — gl pd Ny N
ey :H (P ®0 Seo/la+w™) =H (DM®SA:|4 O/w™) — H/o" to
be the given isomorphism.

To see that the third condition in the definition of a patching datum is satisfied,
let I be an ideal of O~ with (zjlv,...,zﬁ-v) CclIlC(z1,...,zj),andlet 1 <
n’ < N,0 < N’ < N.Then we have

H' (P2 @4 S§./(I + @) = H (D ®s,, Sn'/o™) @0 O7/1,

and hence, by assumption (b), this space carries an Ry;-action that commutes
with the S -action and is compatible for varying I, N" and n’. Thus, Dy y is
indeed a patching datum of level N.

Since there are finitely many patching data of each level N > 1, up to
isomorphism, we can find a sequence of pairs (M;, N;);>1 such that

e M; > N;, Mi11 > M;,and N;y1 > N; for all i;
® Dy, N, mod N; is isomorphic to Dy, n, foralli > 1.

For eachi > 1, we write Dy, v, = (¢i, Vi, P;) and we fix an isomorphism
between Dy, N, mod N; and Dy, n,. We define

® (o : Roo — R to be the inverse limit of the ¢;;
o Py = l(ir_ni P; where each transition map is the composite of P;y; —

P,-+1/(wN" +ay;,) with the isomorphism P,~+1/(wN" +ay;) = P; coming
from the chosen isomorphism between Dy, n;,, mod N; and Dy, ;.

e s to be the isomorphism of Reo-modules H(PY)/a = H(PY/a) S
H (where Ry acts on H via ¢ ) arising from the isomorphisms ;.

Then P is a perfect complex of S,o-modules concentrated in degrees
0,...,1ly such that H *(PE)) carries an action of ROC@OSODO (extending the
action of S)). The image of S5 in Endo(H*(PLY)) is contained in the image
of Rso. (Use assumption (d), and the fact that the image of Ry is closed in
Endp(H *(Po%)) (with its profinite topology)). It follows that H'’ (PO%) is a
finite Roo-module for each i. Moreover, since S, His formally smooth over O,
we can and do choose a homomorphism : : S?o) — Ry in Cp, compatible
with the actions of SODo and R, on H *(PE)).
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Since dimSODO(H*(PODO)) = dimg_ (H*(PY)) and dim Ry = dim S5 — Iy,
we deduce that H *(PODO) has codimension at least [y as an SEo-module. By

Lemma 6.2 (with S = SJ and P = PJ)) we deduce that PJ is a resolution
of minimal length of H IO(PODO) and that

depthyy (H(P)) = dim(S) —lo =1+ j +4 — lo.

Finally note that the image of of a in End(H IO(PODO)) is contained in that of
ker(¢oo) by assumption (d). O

Theorem 6.4 Keep the notation of the previous theorem and suppose in addi-
tion that Ry is p-torsion free.

(1) If R is formally smooth over O, so R ~ O[xy, ..., Xg4 -1y, then H is
a free R-module.

(2) If Rol1/p] is irreducible, then H is a nearly faithful R-module (in the
terminology of [11]).

(3) More generally, H is nearly faithful as an R-module providing that
every irreducible component of Spec(Rso[1/p]) is in the support of
H(Py)[1/p].

Proof Suppose first of all that Rog >~ Ol[xy, ..., Xj44-1,]. Since depthg_
(H IO(PODO)) = dim R, applying the Auslander—-Buchsbaum formula again,
we deduce that HIO(PODO) is free over Ryo. Let 1 : SEO — R be as in
the proof of Theorem 6.3. Then, the existence of the isomorphism ¥, :
HIO(PE))/aHZO(PE)) = H tells us that Roo/1(a) R acts freely on H and
hence ker(¢oo) C 1(a) Rso. On the other hand, the freeness of H ZO(POE) over
R~ and the fact that the image of a in End(H ZO(PE))) is contained in that of
ker(¢oo) imply that 1 (a) R C ker(¢oo). We deduce that 1 (a) Roo = ker(¢oo)
and that R acts freely on H, as required.

For the remaining cases, to show that H is nearly faithful as an R-module, it
suffices to show that H' (PO%) is nearly faithful as an R.,-module. To see this,
suppose H ZO(PE)) is nearly faithful as an R.-module. Then H ZO(PO%) Ja =
H is nearly faithful as an Ry /1(a) Rso-module. The action of Ry on this
module also factors through Rs/ ker(¢o) = R. Thus we see that R™4 —
(Rxo/1 (@) Roo)™ and it suffices to show this map is an isomorphism. However,
the fact that H'0 (PO%) is nearly faithful as an Ry,-module together with the fact
that the image of a in End(H0(PL))) is contained in that of ker(¢o) imply
that

1(a)+ N C ker(¢po) + N

where N is the ideal of nilpotent elements in Ry,. From this it follows imme-
diately that (Rso/1(a))™d — R™ as required.

@ Springer



F. Calegari, D. Geraghty

Since R is p-torsion free, all its minimal primes have characteristic 0. Thus
H IO(PODO) is nearly faithful as an R..-module if and only if each irreducible
component of Spec(Rs[1/p]) lies in the support of Hl"(PO%)[l /p]. Part
(3) follows immediately. For part (2), note that since depthy (H 10(PE,)) =

dim R, the support of Hl"(PO%) is a union of irreducible components of
Spec(R) of maximal dimension. Since H lO(PO%) # {0}, the result follows.
]

Remark 6.5 Tt follows from the proof of the previous theorem that for A (PODO)
to be nearly faithful as an R..-module, it is necessary that R, be equidimen-
sional.

To implement the level-changing techniques of [11], we will need the fol-
lowing refinement of Theorem 6.3.

Proposition 6.6 Let Sy and OV be as in Theorem 6.3. Suppose we are
given two sets of data (Réo, R, H!, T, (Djv)Nzl, (¢5V)Nzl)i:1,2 satisfying
assumptions (1)—(3) and (a)—(d) of Theorem 6.3, for i = 1, 2. Suppose also
that we are given:

e isomorphisms of k-algebras
Rl jo — R%/w
Rl/w = Rz/w,
e an isomorphism of R' | = R? /@ -modules
1 -~ 2
H /w —> H /wa
e an isomorphism, for each M > N > 0, of Sy /@ -modules
H®(Dy ®s), Sn/@) — H"(D}; ®s,, Sn /o)

which induces (after tensoring over O with OF) an isomorphism of Réo Ro
S%,l/ZD' > Rgo Ro SE,/w-modules

HY (D) ®sy, Sn/@) — HO((Dy)" ®s,, Sn /)
such that for each M > 1 the square

H"(D}, ®s,, O/w) —— H"(D}, ®s,, O/w)

l |

H')w — H?/w
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commutes. Then we can find complexes Pé’OD fori = 1,2 satisfying conclu-
sions (i)—(iv) of Theorem 6.3 as well as the following additional property:

e There is an isomorphism of R},O J = RCZ)O /@ -modules
H (PSP jw — HY(PED) /o
such that the square

HY(PL) /(o + @) —— HO(PED)/(a+ o)

l l

H'/w — H?/w
commutes.

Proof This can be proved in much the same way as Theorem 6.3; we omit the
details. O

In practice, we will apply Prop 6.6 in a situation where we are primarily
interested in the collection of data indexed by i = 1. For the data indexed by
i = 2, the ring R2_[1/p] will be irreducible and hence H? will be a nearly
faithful R?-module by Theorem 6.4. Proposition 6.6 will then allow us to
deduce that H ! is a nearly faithful R'-module, following the arguments of [11].

7 Existence of complexes

In this section, we prove the existence of the appropriate perfect complexes
of length /y which are required for patching. In both cases—the Betti case or
the coherent case—the setting is similar: we have a covering space XA (Q) —
X0o(Q) of manifolds or an étale map XA (Q) — Xo(Q) of schemes over
O, each with covering group A, which is a finite abelian group of the form
(Z/pN1Z)4. In both cases, the cohomology localized at a maximal ideal m
of the corresponding Hecke algebra T is assumed to vanish outside a range
of length /g. The key point is thus to construct complexes of the appropriate
length whose size is bounded (in the sense of condition (a) of Theorem 6.3)
independently of Q, so that one may apply our patching result.

7.1 The Betti case
We put ourselves in the following somewhat general situation. Let Xo(Q)

denote the locally symmetric space associated to areductive group G over some
number field /" and a compact open subgroup Ko(Q) of G(AY’). Similarly let
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XA (Q) be associated to a normal subgroup Ka(Q) C Ko(Q) with quotient
A, a finite abelian group. In practice, Q will represent a set of Taylor—Wiles
primes. See Sect. 9 for the specific compact open subgroups that we will choose
when G = PGL(n). Let R = O[A] and let a denote the augmentation ideal
of R. Recall that by a perfect complex of R-modules, we mean a bounded
complex of finite free R-modules. If Y is a topological space, we let C(Y)
denote the complex of O-valued singular chains on Y.

Lemma 7.1 There exists a perfect complex of R-modules C together with a
quasi-isomorphism
C — C(Xa(Q))

of complexes of R-modules. In particular, we have isomorphisms:

H.(C ®p O/w™) = H (XA (Q), O/
H(C ®g R/(a+ o)) = Ho(Xo(Q), O/ ™)

for all integers N.

Proof By [43, Sect. II.5 Lemma 1], there exists a perfect complex of R-
modules C together with a quasi-isomorphism C — C (X (Q)) of complexes
of R-modules. (Mumford only guarantees that the final term of the complex is
flat, but since R is local, this final term is also free). Since C and C(XA(Q))
are bounded complexes of flat R-modules, we have

Hi(C ®r A) —> Hy(C(XA(Q)) ®r A)

for every R-algebra A by [43, Sect. 1.5 Lemma 2]. Taking A = R/w " gives
the first isomorphism. For the second isomorphism, the fact that XA (Q) —
Xo(Q) is a covering map with group A implies that

C(Xa(Q)) ®& R/a = C(Xo(Q)).

Thus, taking A = R/(a + @) gives the second isomorphism. O

Lety € G(A®P)withassociated Hecke operator T, : Hy(XA(Q), O/wh)
— H.(XA(Q), O/w™N) for N < co (where we define O/ > := O).

Lemma 7.2 Let C be as in Lemma 1.1. Then the action of T, on homology
may be lifted to a map

I,.C—>C
of complexes of R-modules.
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Proof Let A = O/w! for N < oo and let K C G(A}) be the compact
open subgroup with Xx = XA (Q) (this was called KA (Q) above). Let K’ =
YKy~ ' N K and K” = K N y~'Ky. Note that right multiplication by y
gives an isomorphism: y : Xg» — Xg». The operator T, is equal, up to an
invertible scalar which we may ignore, to the composition:

Hi(Xk.A) = Hi(Xg, A) 5 Hii Xgr, A) > Hi(Xk. A),

where the first map is the transfer (or corestriction) map. Thus 7), is induced
by the corresponding composition of morphisms of complexes

C(Xg) > C(Xgn B C(Xg) —> C(Xg),

(after tensoring over O with A). Denote this composition fy. Restricting to C
(by means of the quasi-isomorphism C — C(Xk) of Lemma 7.1), we obtain
T, : C — C(Xg) which also gives rise to T, on homology. We thus have a
diagram

T,
¢ — C(Xk)

I

C

of complexes of R-modules with the vertical morphism being a quasi-
isomorphism. Since C is perfect, the morphism 7, can be lifted to a morphism
T, : C — C making the diagram commute. (See [70, Tag 08FQ] for example).

O

Let T denote a Hecke algebra generated over O by a collection of operators
T, . Then, forany T € T, we we can express T  as a polynomial in the operators
T,, and thus lift the action of 7 on homology to an endomorphism 7" : C — C.
Lemma 7.3 For T €T, let Cy :=1im T"C. Then Cr is a perfect complex of

—

R-modules whose homology is

lim 7" H,(C).
—

Proof Since R is complete, the functor M — lim 7" M on finitely generated
—
R-modules is exact and and lim 7" M is in fact a direct summand of M (the

re
other factor being the submodule of M on which 7 is topologically nilpotent).
A direct summand of a projective module is projective, and the equality of
homology follows from the exactness of the functor. |
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We now assume that A is of p-power order. Thus R = O[A] is local and
we let mp be the maximal ideal of R.

Lemma 7.4 (Nakayama’s Lemma for perfect complexes) Let T € T be as
above. Then there exists a perfect complex of R-modules D which is quasi-
isomorphic to Ct and such that

dim D, /mg = dim H,(Cr ® R/mg) = dim lim 7" H,(Xo(Q), k)
—_

for all n. Moreover, the length of D is at most ly, where ly is the range of
cohomology groups such that lim T" H*(C) is non-zero.
—

Proof By Lemma 1 of Mumford ([43], Chap. I1.5) again, one may find a perfect
complex K quasi-isomorphic to Cr and such that K is bounded of length /j.
Assume that the differential d on D is non-zero modulo mg from degree n 4 1
to n. Then by Nakayama’s Lemma, there exists a direct sum decomposition of
perfect complexes of R-modules

K>~L&J,

where J; is zero fori #n+1,nandd : J,+1 — J, is anisomorphism of free
rank 1 R-modules. Thus, L is also a perfect complex of R-modules which is
quasi-isomorphic to K. Replacing K by L and using induction, we eventually
arrive at a complex D so that d is zero modulo mg, from which the equality
of dimensions follows by Nakayama’s Lemma. O

In practice, the Hecke algebra T will be of the form T?"[U, : x € Q] where
T?" is the subalgebra generated by good Hecke operators away from Q and p.
We say that two maximal ideals of T give rise to the same Galois representation
if they contract to the same ideal of T?". In practice, we will be interested in
localizing the homology groups Hy(Xa(Q), O/w V) at a particular maximal
ideal m of T. The residue field of m will be equal to k. In order to apply the
above lemmas, we take the Hecke operator T to be

[[Ae]]P

xeQ ieQ

where €2, P, and P; are chosen as follows: for each of the finitely many
maximal ideals n of T which occurs in H, (X (Q), k), choose an O-algebra
homomorphism ¢, : T — k with kernel n. We let Q index the collection of
such maximal ideals n of T which give rise to a Galois representation distinct
from m. This is equivalent to ¢, and ¢y, differing on T*". Thus, for i € Q
corresponding to a maximal ideal n, there exists a good Hecke operator 7; such
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that ¢ (T;) # ¢m(T;). Let F; (T) denote the minimal polynomial over E of the
Teichmuller lift of ¢, (7;) to E. By Hensel’s Lemma, the element ¢, (T;) € k
is not a root modulo @ of F;(T). Hence P; = F;(T;) is an element of n but
not of m. For the maximal ideals n with the same Galois representation as m,
for all x| Q by construction there will be a projector Py which commutes with
the action of the diamond operators and cuts out the localization at m. (For
example, if G = GL(2), then P, can be taken to be lim(Uy — ,Bx)’” for x| Q,
where U, — o,y € m and o, By are arbitrary lifts of the (distinct) eigenvalues
of ¥ (Frob,) to O). In particular, we have

lim 7" H (T a(Qn), O/@™) = Hi(Ta(Qn), O/w ™.

Thus, letting D be as in Lemma 7.4 for this choice of 7', we have that D is a
perfect complex of R-modules such that:

e D, # 0if and only if H,(Xo(Q), k)m # {0},
e H,(D®p O/wN) = Hy(Xa(Q), O/, forall n, N, and
e H(D®g R/(a+aN)) = Hy(X0(Q), O/ N) forall n, N.

7.2 The Coherent case

We now explain how to prove the existence of appropriate complexes in the
setting of coherent cohomology. The setting will be as follows. We will have
an étale map ¥ = Xa(Q) - X = Xo(Q) with Galois group A, a finite
abelian p-group. The spaces X and Y will be proper and smooth over Spec(O);
they will arise as integral models of the Shimura varieties associated to some
reductive group G over a number field F and some compact open subgroups
KA(Q) C Ko(Q) C G(AY). In the case that these Shimura varieties are not
compact, X and Y will be arithmetic toroidal compactifications, as constructed
in [71]. We will be given an automorphic vector bundle & on Y (in the case
of a toroidal compactification, this will either be a canonical or subcanonical
extension) which pulls back to a bundle also denoted by & on X. We will be
interested in producing a perfect complex of R/z"-modules computing

where m is a maximal ideal of the Hecke algebra generated by ‘good’ Hecke
operators at the unramified primes together with certain operators at the primes

in the set of auxiliary Taylor—Wiles primes Q; here the homology group is
defined as

H, (Y, ®O/w") := H (Y, & @0, oy ®0 O/w™)”
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where wy is the determinant of Q; s The reader may wonder why we intro-
duce here the non-standard concept of “coherent homology.” The reason is
a mixture of both the practical and the psychological. In both the Betti and
Coherent case, the modules which patch are obtained by taking the Pontrya-
gin duals of the non-zero cohomology group in lowest degree with coefficients
in E/0O. In Betti cohomology, the groups H% (X, &/0O),, may be identified
with the non-zero homology group of highest degree with coefficients in O,
namely Hg,1,(X, O)m. This identification is essentially a consequence of
Poincaré duality (the manifolds X have boundary, but the ideals m are cho-
sen specifically so that the cohomology of the boundary becomes trivial after
localization at m). In the coherent case, our use of the terminology “homol-
ogy” is thus to preserve the analogy, but also as a convenient shorthand for
the necessary operation of taking coefficients of our sheaves in ¢’/O and then
taking Pontryagin duals. One could also make these analogies more precise
by comparing Poincaré duality to Serre and Verdier duality.
We begin with some commutative algebra.

Lemma 7.5 Let P be an O-module such that P is w -torsion free. Then P /w"
is free over O /aw" for each n.

Proof If n = 1, then P/w is a module over a field k = O/w, and hence
admits a basis {X}. Let {x,} denote any lift of this generating set to P. Let
Q C P denote the O-submodule generated by the x,,. We claim that Q surjects
onto P/ew" for all n, and moreover that P/w" is free on the images of the
generators x, of Q. We prove this by induction. It is true for n = 1 by
construction. Suppose that O — P /@ " is surjective. Let x € P, and consider
the image of x in P /e +!. After subtracting a suitable element of Q, we may
assume that the image of x in P/ " is trivial. Hence we may write x = "y
for some y € P. The image of y in P/ can be written as the image of an
element of O, andso y = z + ww for z € Q and w € P. It follows that
x = w"z mod w"t!, and thus the image of x in P/w"*! is contained in
the image of Q. It follows that 0 — P /w”t! is surjective. Let us now show
that that P /o "+ is free over O/ +!. Assume otherwise. Then there exists
a relation of the form

Zraxa =0 mod &"'P.

Reducing this equation modulo @, we deduce by construction that r,, is divis-
ible by @ for all . Yet, since P is w-torsion free, any equality wx = wy
in P implies the equality x = y. Hence if we write r, = @ sy, we obtain a
relation

Zsaxa =0 mod w"P.
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By induction, we deduce that s, is 0 in O/@", and hence r, is trivial in
O/w™ !, In particular, P/t is freely generated by the images of the xg,
completing the induction. O

(As pointed out by the referee, Lemma 7.5 is also an immediate conse-
quence of the fact that P/ ™ is flat over O/@™ and so automatically free
because O/@™ is an Artinian local ring).

In the following lemma, A may be any finite abelian group.

Lemma 7.6 Let R = O[A] If M is an R-module which is free over O/w"
and M /@ is free over R/, then M is free over R/ ".

Proof Let {y,} be an R/ = k[A] basis for M/w. Since R is a free O-
module, we may choose a finite basis {z;} for R over O. Note that {z;} is a
basis for k[A] over k, and z; -y, is a basis for M /@ over k. Lifting the elements
y, to elements y, of M, we see, as in the proof of the Lemma 7.5, that z; - y,
is a free basis for M as an O/@" module. We claim that y,, is a free basis for
M as an R/w"-module. Assume otherwise, so that there is a relation

Zra)’a:()

with r, € R/@". We may uniquely write ro, = ) 54,iz; With so; in O/@".
We then deduce from the freeness of M over O/w" with z;y, as a basis that
Sq,i = 0 for all « and all i, and hence r, = 0. O

We now return to the situation described at the beginning of this section:
f Y — X is an étale map of smooth proper O-schemes with Galois group A
abelian of p-power order. Let .% be a coherent sheaf of Oy-modules which is
w -torsion free. Following Nakajima [72], we take an affine covering of X by
affine schemes {U,} (which are necessarily flat over Spec(Q)). We thus obtain
a Cech complex D of O-flat O[ A]-modules computing H' (Y, f*(.%)). More
precisely, the terms of D are direct sums of modules of the form N ®4 B,
where Spec(A) C X is an intersection of U,’s with preimage Spec(B) C
Y and N = I'(Spec(A), F). Moreover, the complex D ® O/w" computes
H(Y, f*(F)Q® O/w") for every n.

Lemma 7.7 Let Spec(B) — Spec(A) be a finite Galois étale morphism of flat
O-algebras with Galois group A. Let R denote the local ring O[A]. Then, for
any A-module N which is flat over O, (N ® 4 B)/@" is a free R /w"-module
for each n.

Proof Let M = N ®4 B. Then

M/w = (N ®a B)/w = N/w Qa/w B/,
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and thus M /@ is a projective R/ = k[A]-module by Lemma 1 of [72], and
is thus free. (A theorem of Kaplansky implies that a projective module P over
a local ring R is always free (see [73])). Note that M is flat over O since N
and A are flat over O and B is flat over A. It follows from Lemma 7.5 that
M /" is free over O/@". By Lemma 7.6, we deduce that M /@ " is free over
R/w". O

It follows that D ® O/w" is a bounded complex of projective R/w"-
modules computing the cohomology groups H' (Y, f*(.%)/@"). We apply
this as follows. Let & denote the automorphic vector bundle introduced above
and take

F =E&* Koy wx.

Applying Lemma 1 of [43], Ch.IL.5 again, we may replace D ® O/w" by
a quasi-isomorphic complex of R/@w"-modules C,” which is perfect. Then
dualizing this latter complex, we obtain a (chain) complex C,, whose homology
groups are

H:(Y,&® O/o").

It remains to define an action of the Hecke algebra and cut out the localization
atm.

The Hecke algebra will be generated by operators T, where y € G(A;o’p ).
Let L = KA(Q) C G(A®) be the compact open subgroup corresponding to
Y = Xa(Q).Let LY = yLy~! N L. Then by choosing suitable polyhedral
cone decomposition data, there exists an arithmetic toroidal compactification
Y7, proper and smooth over O, of the Shimura variety of level L” together
with maps 71, 72 : YV — Y where 7 is associated to the inclusion LY — L
and 1y is associated to right multiplication by y on complex points. (See [71,
Sect. 6.4.3]). By [74, Thm. 2.15(4)(c)] and the fact that all automorphic vector
bundles are constructed from the Hodge bundle (see [18, Sect. 4.2]), there is
an isomorphism

¢:5E —> TiE
of sheaves on Y. To define the Hecke operator 7, we follow the approach
of [75, p. 256] which avoids having to define the trace of 71 on cohomology.
Let A= O/w" and let ¥ = &* ® wyx be as above. If M is an O-module
or a sheaf of O-modules on some space, we denote by M 4 the tensor product

M ®0 A. By Verdier duality, the group H' (Y, (f*.%) 4) is Pontryagin dual to

HY™H(Y, Homo, (f*F, wy)a) = HT/(Y, (f*&)a)
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where d is the dimension of Y. Thus, to define an operator 7), on
H'(Y, (f*%)4), it suffices to define a pairing

HI(Y, (f*F)a) @4 HITI (Y, (f*E)a) — A
We define the pairing by sending x ® y to

(i’ (x) U ¢y (v))

where

o 7 (x)U¢m; (y) denotes the image of the cup product of 77 (x) and ¢ (y)
under the natural map

HIQY?, (6 @ wyr @ E)a) —> HLYY, (wyr)a),

and
e tr denotes the trace isomorphism

Hd(Yy, (wyv)a) — A.

This defines the action of 7,, on cohomology. We now want to lift the action
of T}, to an endomorphism the complex C), introduced above.

Let Y4 =Y xp Aandletw : Y4 — SpecA be the structural morphism.
Then, since & := (f*.%)4 is a A-equivariant sheaf on Y4, we may regard
Rm(9) = RHom(Oy,, ¥) as an object of the bounded derived category of
R = A[A]-modules D’(R). By Verdier duality, we have

RHom(RHom(Oy,,¥), A[0]) = RHom(¥, wy,[d])
Thus, we have an equality (of Hom’s in the category D”(R)):

Hom(RHom(Oy,, %), RHom(Oy,, ¥))

= Hom(RHom(Oy,, ¥) é RHom(¥, wy,[d]), A[O]),

and we define an element of i, of the right hand side by composing

e the pullback under 7{ ® (¢ o 75),

L
RHom(Oy,,¥) ® RHom(¥, wy,[d])

—> RHom (OYX’ nf%) (§L§ RHom (nf%, wyy [d])
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e the composition morphism

L
RHom((’)YX, 779) ® RHom(n{¥, wyy [d]) — RHom((’)Y:, wyy [dn,

and
e the duality isomorphism

RHom((’)YX, wyy [d]) — A[O0].
Then f}, induces the Hecke operator
T, : H'(Ys,9) — H' (Ya,9)

defined above. If C;, is the complex introduced above, then it comes equipped
with an isomorphism

c’/ 5 Rn(9) = RHom(Oy,,9)

in D?(R) and we have a diagram:

T,
C,, —— RHom(Oy,,¥) —r, RHom(Oy,,9)
C\/

Since C,/ is perfect, we can apply [70, Tag 08FQ] once again to lift f}, to
a morphism of complexes 7}, : C,/ — C,’ that induces the operator 7}, on
cohomology.

Now that we can lift a given Hecke operator T to the complex C,’ (and
hence to its dual C,), we can show, exactly as in the previous section, that
given a maximal ideal m of the Hecke algebra, then for a judicious choice of
Hecke operator T, the complex

li_r)nT'"C,,
m

is a perfect complex of R-modules with homology equal to

H; (Y, EA)m.
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8 Galois deformations
8.1 Outline of what remains to be done to prove Theorem 5.16

Given the patching result (Theorem 6.3) and the existence of complexes satisfy-
ing an appropriate boundedness condition (condition (a) of ibid)., to complete
the argument consists of the following steps. First, consider the minimal case
where there are no primes x 1 p such that p|Dy is ramified when 7| D, is
unramified. In this case, it suffices to construct a sequence Q y of collections
of ¢ primes N(x) = 1 mod p" such that the corresponding Hecke rings
T, are all quotients of a fixed patched global deformation ring R, such that
Rxo[1/ plisirreducible of the appropriate dimension. The usual Taylor—Wiles—
Kisin method (with some modifications due to Thorne) exactly produces the
desired sets Q y, and the computation of R, (which is naturally a power series
over R|y) is computed in the usual manner, except now its dimension is /g less
than in the classical case. If one assumes vanishing of cohomology outside the
expected range and also assumes that the Hecke action of cohomology in that
range comes from Galois representations with the expected properties, then
one may construct a series of complexes (as in the last section) which all have
actions by R, and then using Theorem 6.3 the desired conclusions follow as
expected.

This leaves the case when there exist primes such that p|/, is unipotent,
N(x) = 1 mod p, and yet 7|D, is unramified. Here one uses Taylor’s
trick [11] to avoid Ihara’s lemma. The key calculation in Taylor’s paper requires
only that one has control over the depth of the patched module on which the
ring R acts, as well as the structure mod @ of various local deformation rings.
The required information concerning depth is exactly what one deduces in the
proof of Theorem 6.3. The only difference in this setting is that the relevant
dimension of R is /g less than the classical case, whereas the corresponding
depth of H0(P.) is also exactly /o less than the classical case—this means
that the argument goes through as expected. We begin, however, by explain-
ing our method in the case of one-dimensional representations, in order to
demonstrate the method.

8.2 Modularity of one-dimensional representations

In this section, we apply our method to one-dimensional representations, that
is, to the case when G = GL(1)/F for an arbitrary number field F. We
will need to assume that F' does not contain ¢,. The arguments here are
(ultimately) somewhat circular, but they exhibit all the various aspects of the
general method. The invariant value of £ for a field F of signature (rq, r2)
willbe r;y +rp — 1.
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Up to twist, there is only one residual Galois representation, namely, the
trivial representation

F:GF—>F;.

Minimal deformations of 7 consist of (everywhere) unramified representations.
Note thatad(r) = F,andad(7)(1) = . Letus consider the dimensions of the
associated Selmer group H Ll (F, F,) and the dual Selmer group H Ll* (F, itp).
Recall from the Greenberg—Wiles formula that:

|H} (F,Fp)|  |HY(F.F),)| I |Ly|
|HL.(F,¥,)|  [HOF, up)l + LIHO(F,, F)p)|

v

The possible local contributions come from v|p, v|oco, and the H 0 term. We

assume that ¢, ¢ F.

|H(F,F))| .

—-————1is p, because ¢, ¢ F. Thus the con-

|HO(F, pp)|
tribution to dim HLI(F, F,) — dim HLI*(F, wp)is 1.

(2) Let v|oo, so Fy = Ror F, = C. The groups HOR, F,) and HO(C, F,)
are both one-dimensional. Hence, the contribution to dim H Ll(F JFp) —
dim Hi* (F, up) at the infinite places is —r| — r3.

(3) Letv|p. Letk, be the residue field of F,,. The group HO(F,, F,) is always
1-dimensional. The Selmer condition L, C H'(F,, F,) is defined to be
the classes that are unramified when restricted to inertia. By inflation—
restriction, there is a map:

(1) The contribution from

0 — H'(Gal(k,/k,),Fp) — H'(F,,F,) — H'(I,, Fp).

Since H' (Gal(k, /kv), Fp) is clearly one-dimensional, the contribution of
these terms is 1 — 1 = O for each v|p.

It follows that

dim H} (F,Fp) —dim H}.(F, np) = —(r1 + 12 — 1).
We can, in fact, deduce this equality directly by computing both terms via
class field theory. The first group has dimension dim CI(F')/ p. For the second,
recall that for v| p the group L} is one-dimensional and is dual to the unramified

classes in H'(F,, F,). This dual consists of classes which are finite flat. So
we are interested in Hflppf(O F» p), which sits in the exact sequence:

0— O3 /O — Hg(OF. pp) — CIF)[p]l > 0
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by Hilbert’s theorem 90 (Proposition III 4.9 of [33]). Hence the difference in
ranks is

dim O /O =ri+r -1,

as follows from Dirichlet’s unit theorem and the assumption that ¢, ¢ F.
Now let us consider the corresponding symmetric space. The natural space
to consider is

Y = Jp/F* = F*\AY/UKx

where U is the maximal compact subgroup of the finite adeles, and K, is
the connected component of the identity of the maximal compact subgroup of
F* ® R. For a set Q of auxiliary primes, we would also like to consider the
space

Yo = F*\A;/Ug

where , for v € Q with N(v) = 1 mod p", one replaces O, by ox? n, the
unique subgroup of index p”. In the corresponding notation for GL(n), we
have Y = Yp(Q) and Yo = Y1(Q). It is slightly more aesthetically pleasing
to work with the compact part of this space:

Xo = FX\AF/UQAgO,

where Ago is the identity component of the R-points of the maximal Q-split
torus in the centre. Note that Y is an R-bundle over X, and so, from the
cohomological viewpoint, the extra factor of R does not change any of the
cohomology groups. What, geometrically, is X o? The component group is
the maximal quotient of the ray class group of conductor Q and exponent p”.
The fibres are coming from the infinite primes. The group K, is r» copies
of S! coming from the complex places. The fibres of Yo are then exactly the
connected components of the cokernel of the map

Op = R x C*"? /K,
which is (S1)"1172~1 x R. Passing to X o excises the factor of R. Hence the

components of X ¢ consist simply of a product of circles. Let us examine the
cohomology of X ¢. In degree zero, the cohomology is

Z,[RCI(Q)/p"],
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by class field theory. Let 7, € O, be a uniformizer, and suppose that (v, Q) =
1. Then the Hecke operator 7}, acts on the component groups via the image of
[y] € RCI(Q). For v|Q, we also have diamond operators for « € O,°. There
is a corresponding Galois representation

,oQ:GF—>T5,

which is exactly the Galois representation coming from class field theory; the
diamond operators correspond, via the local Artin map, to the representation
of the inertia subgroups at v|Q. If we localize at the maximal ideal m of Ty
corresponding to p, we obtain a deformation of p which is ramified only at Q.
On the other hand, the action of T g on the higher cohomology groups simply
propagates from H° using the Kiinneth formula, and so one obtains the same
action on all cohomology groups. If Ry denotes the deformation ring of p
unramified outside Q, we obtain a surjection

RQ — TQ’m,

moreover, both rings are naturally modules over the ring of diamond operators
Z,[Apl =7Z,[U/Ug]l, acting on the left via Yoneda’s lemma and local class
field theory, and on the right via Hecke operators; and this action is the same.

In this setting, a Taylor—Wiles prime v is a prime N(v) = 1 mod p”
which satisfies a Galois condition and an automorphic condition. The auto-
morphic condition is that there is no extra cohomology when passing from
X to Xo(Q). Since X = Xo(Q), this is tautologically true. The Galois
condition is that we have to be able to choose |Q| = dim H Ll JFp) =
dim H Ll (F,Fp) + £o primes which exactly annihilate the dual Selmer group,
which is HLl*(F, Wp) = Hf}npf(F’ i p). This group sits inside HY\(F, Up) =
F>*/F*P byHilbert’s Theorem 90 in the classical version. By Kummer theory,
the corresponding elements give rise to extensions F(a!/?, u p)- What does
it mean to annihilate this class by allowing ramification at a prime N (v) = 1
mod p"? Allowing ramification at v in the Selmer group corresponds to assum-
ing that the classes in the dual Selmer group split completely at v. That is, we
want to choose primes v so that the class is non-trivial under the map

HY(F, u,) — H'(Fy, up) = H'(F,, F)).

Note that u, = F, as a Gal(F,/F,)-module if N(v) = 1 mod p. This
amounts to asking that the element Frob,, in Gal(F (« /p, ¢p)/ F)is non-trivial,
and that N(v) = 1 mod p". By the Chebotarev density theorem, this is
possible unless F(a'/?) C F(¢pn). Note that o € F. This can happen if
a = {p.Sowehavetoassumethat{, ¢ F,although we have already made this
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assumption previously. More generally, if «'/? € F (&pn), then, since F(&pn)
is Galois an abelian over F, it must be the case that F(«!/P) is also Galois
an abelian over F'. This implies that F(¢,) C F («'/P), and a consideration
of degrees implies that ¢, € F. Hence, if ¢, ¢ F, we may choose suitable
primes to annihilate the dual Selmer group.

The invariant £y = r| +r» — 1 exactly matches the dimensions of cohomol-
ogy which are supported on m and the number of elements in the dual Selmer
group which have to be annihilated (the dimension of X ¢ is equal to £, so the
cohomology vanishing results in degrees > ¢ are automatic). Our patching
result then allows us to deduce that there is an isomorphism

RY™ ~ Z,[CI(OF) ® Z,],

and hence an isomorphism between the Galois group of the maximal unrami-
fied abelian p-power extension of F and the class group of F.

Remark 8.1 The circularity of this argument comes from the application of
Greenberg—Wiles, which requires the full use of class field theory. Even though
we only apply this theorem in the seemingly innocuous case of M = F,, in
fact the general proof of the Euler characteristic formula reduces exactly to
this case by inflation.

8.3 Higher dimensional Galois representations

In this section, we apply our methods to Galois representations of regular
weight over number fields. When the relevant local deformation rings are all
smooth, the argument is similar to the corresponding result for imaginary
quadratic fields in Sect. 5 that corresponds to the case n = 2 and [y = 1.
However, in order to prove non-minimal modularity theorems, it is necessary
to consider non-smooth rings, following Kisin. The main reference for many
of the local computations below is the paper [3].

8.4 The invariant [,

Let F be a number field of signature (r{, r2). The invariants /y and gg may be
defined explicitly by the following formula, where “rank™ denotes rank over
R.

lo := rq (rank(SL; (R)) — rank(SO, (R))) + ro (rank(SL,, (C)) — rank(SU, (C)))
n—1

2

n—2

2

1 +rp(n—1), nodd,

r +rp(n — 1), neven.

@ Springer



F. Calegari, D. Geraghty

290 + lo == r1 (dim(SL,, (R)) — dim(SO, (R))) + r2 (dim(SLy (C)) — dim(SU,(C)))
=7 <n2 - "(”2_ l)) tr (2(n2 S P 1)).

The invariants [g and 2qg + o arise as follows: 2gg + [ is the (real) dimension
of the locally symmetric space associated to G := Resp,@(PGL(n)), and
[qo, - - ., go + lo] is the range such that cuspidal automorphic 7 for G which
are tempered at co contribute to cuspidal cohomology (see Theorem 6.7, VII,
p. 226 of [9]). (In particular, gg is an integer).

Let V be a representation of Gr of dimension n over a field of charac-
teristic different from 2, and assume that the action of G, is odd for each
v]oo. Explicitly, this is the trivial condition for complex places, and for real
places v|oo says that the action of complex conjugation ¢, € G, satisfies
Trace(cy) € {—1, 0, 1}. Then, via an elementary calculation, one has:

241
r el 1 +r2(n2 —1), nodd,
Y " dim HO(F,., ad®(V)) = 2

2
n 2
v|oo ri (—2 — 1) +rm°—1), n even.

Thus, in both cases we see that:

Zdim HO(F,,ad’(V)) = [F : Q]"(”T_l) + 1. (1)

v|oo

8.5 Deformations of Galois representations

Let p > n be a prime that is unramified in F and assume that Frac W (k)
contains the image of every embedding F — Q,,. Fix a continuous absolutely
irreducible representation:

7 :Gr — GL, (k).

We assume that:

e For each v|p, 7|, is Fontaine-Laffaille with weights [0, 1, ..., n — 1] for
each T : Or — k factoring through OF, .

e For each v { p, 7|, has at worst unipotent ramification and Nr,q(v) = 1
mod p if 7 is ramified at v.

e The restriction r|¢, is odd for each v|oo.

We also fix a continuous character

%’ZGF—>OX
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lifting det(7) and with

o &, = €"=D/2 for all v| p, and
e &l =1forallv{p.

For example, we can simply take £ = ¢"*=1/2,

Let S, denote the set of primes of F' lying above p. Let R denote a finite
set of primes of F' disjoint from S, that contains all primes at which 7 ramifies
and is such that Ng/g(v) = 1 mod p for each v € R. Let Q denote a
finite set of primes of F disjoint from R U S,. Finally, let S = S, [ [ R and
So = S]] Q. In what follows, R will consist of primes away from p where
we allow ramification and Q will consist of Taylor—Wiles primes.

8.5.1 Local deformation rings

For v|p, let R, denote the framed Fontaine—Laffaille O-deformation ring with
determinant & |g Fy and r-weightsequalto [0, 1, ...,n—1]foreacht : O —
W (k). By [3] Proposition 2.4.3, R, is formally smooth over O of relative
dimension n? — 1 + [F, : Q,ln(n — 1)/2.

Foreach v € R, choose atuple x, = (xv.1, - - - » Xv.n) Of distinct characters

Xvi:lhy — 1+mp C O

such that []; xy,; is trivial. We introduce the following framed deformation
rings for each v € R:

e Let R! denote the universal framed O-deformation ring of 7|, correspond-
ing to lifts of determinant & and with the property that each element o € I,
has characteristic polynomial (X — 1)".

e Let R} denote the universal framed O-deformation ring of 7lg, corre-
sponding to lifts of determinant & and with the property that each element
o € I, has characteristic polynomial [ [;(X — x,i (0)).

We let
1 . o) (o
Ry == (@veSpRv> ® <®veRR$)
Rl)(()c = (®U€Sp RU) ® (®veRRl))(U)

Lemma 8.2 The rings RlloC and Rl)f)c have the following properties:

(1) Eachof R\  and R

loc loc IS p-torsion free and equidimensional of dimension

nn—1)

1+1S, UR|(n*> — 1) +[F : Q] >
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(2) We have a natural isomorphism:

X

1 ~
R/ —> Ry./o.

(3) The topological space Spech)f)C
(4) Every irreducible component of SpecR

irreducible component of Spechloc.

is irreducible.

lloc/ @ is contained in a unique

Proof This follows from [76, Lemma 3.3] using [11, Proposition 3.1] and the
properties of the Fontaine—Laffaille rings R, recalled above. |

For each v € Q, we assume that:

e 7lg, =5, P 4, where v, is a generalized eigenspace of Frobenius of
dimension 1.

Moreover, we let D, denote the deformation problem (in the sense of [3,
Defn. 2.2.2]) consisting of lifts r of 7|g, of determinant & and of the form
o = sy @ ¥y, where s, (resp. ) lifts 5 (resp. Ev) and [, acts via (possibly
different) scalars on s, and vr,. Let

L, C H (G, ad’ (7))

denote the Selmer condition determined by all deformations of 7| G, to k[€]/ €2
of type D,. Then

dimg L, — h°(G,, ad’ (7)) = 1.
8.5.2 Global deformation rings

We now consider the following global deformation data:

So = (. 0,80.&, (Dy)yes,uo: (D))ver)
Sé = (77 Ov SQ? Sa (DU)UESPUQ’ (Dl))()UGR)v

where D,, D}j and DY are the local deformation problems determined by the
rings Ry, R} and R} for v € Sporv € R. A deformation of 7 to an object of
Co is said to be of type Sp (resp. Sé) if:

(1) it is unramified outside S¢p;

(2) itis of determinant &;

(3) foreach v € §, U Q, it restricts to a lifting of type D, and forv € R,to a
lifting of type D}) (resp. DY).
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If Q@ = ¥, we will denote S and Sé by S and §%. The functor from Co to
Sets sending R to the set of deformations of type Sp (resp. S é) is represented
by an object Rs,, (resp. Rsé)-

We will also need to introduce framing. To this end, let

T=S,UR.

Let REQT (resp. REXT ) denote the object of Cp representing the functor sending
Q

R in Cp to the set of deformations of 7 of type S (resp. S é) framed at each
v € T.(We refer to Definitions 2.2.1 and 2.2.7 of [3] for the notion of a framed
deformation of a given type, replacing the group G, of op. cit. with GL,, where
appropriate).

We have natural maps
— REQT

1 Or
Rloc ? RSQ

RSQ

coming from the obvious forgetful maps on deformation functors. Similar
maps exist for the ¢ x-versions’ of these rings. The following lemma is imme-
diate:

Lemma 8.3 The map

is formally smooth of relative dimension n*|T | — 1. The same statement holds
for the corresponding rings of type S é

We now consider the map RllOC — REQT. For this, we will need to consider
the following Selmer groups:

1 (O
H[:(Q),T(GF’ ad"’7)

:= ker (HI(GF,SQ, 2d’r) — P H' (G, ad"") P P H' (G, adOr)/Lx)

xeT xeQ

Hp oy 7 (GF ad’F(1)

‘= ker (HI(GF’SQ, ad’7(1)) > P H' (G ador(l))/Lj‘) .
xeQ
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Proposition 8.4 (1) The ring REQT (resp. REXT ) is a quotient of a power series
0

1
loc

X

ring over R, (resp. R} ) in
hp 1(Gr,ad’F) + > h%(Gy, adF) — h%(G r, adF) variables.

veT

(2) We have

hp (G, ad’?) = hy, ((Gr,ad F(1) + 1%(GF, adF)
—h%(GF, ad®F(1))
+ Y (dimg Ly — h%(Gy, adF))
veQ
— Z h°(G,, ad’F).

veT U{v|oo}

Proof The first part follows from the argument of [52, Lemma 3.2.2] while the
second follows from Poitou—Tate duality and the global Euler characteristic
formula (c.f. the proof of [52, Proposition 3.2.5]). O

8.6 The numerical coincidence

By choosing a set of Taylor—Wiles primes Q to kill the dual Selmer group, one
deduces the following.

Proposition 8.5 Assume thatv(G F@p)) isbigandletq > h 2 L (GF, ad%7(1))
be an integer. Then for any N > 1, we can find a tuple (Q, (Jv)ve Q) where

(1) Q is a finite set of primes of F disjoint from S with |Q| = q.
(2) For each v € Q, we have 7|g, = 5, @ ¥, where V{r, is a generalized
eigenspace of Frobenius of dimension 1.

(3) Foreachv € Q, we have Np,g(v) =1 mod pN.

1

(4) The ring R?QT (resp. Rgg ) is a quotient of a power series ring over R, .

X

(resp. R{,.) in

nn—1) _

lp.
> 0

qg+IT|—1-[F:Q]

variables.

Proof Suppose givenatuple (Q, (,)ve o) satistying the first three properties.
Let e, € adr denote the G,-equivariant projection onto v,. Then, as in [3,
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Proposition 2.5.9] (although we work here with a slightly different deformation
problem at each v € Q) we have

0 — Hyp1 1 (Groad’F(1) — Hyy 1 (Gr.ad’7 (1) — Bueok

where the last map is given by [¢] — (tr(e,¢ (Froby))),. The argument of [3,
Proposition 2.5.9] can then be applied to deduce that one may choose a tuple
(Q, (¥ )xep) satisfying the first three required properties and such that

Hl

oyt (Gr,ad’F (1) = (0).

The last property then follows from Proposition 8.4, equation (1) and the fact
that

dimg L, — h°(G,, ad%%) =1 ifv € Q.

9 Homology of arithmetic quotients

Let A denote the adeles of Q, and A the finite adeles. Similarly, let A7 and
A%’ denote the adeles and finite adeles of F. Let G = Resr/QPGL(n), and
write Goo = G(R) = PGL,,(R)"! x PGL,,(C)"2. Let K, denote a maximal
compact of G, with connected component K 80. For any compact open sub-
group K of G(A®®), we may define an arithmetic orbifold Y (K) as follows:

Y (K) := GQ\G(A)/KLK.

It has dimension 2gg + /o in the notation above. We will specifically be inter-
ested in the following K. Let S = S, U R and Sgp = S U Q be as in Sect. 8.
We follow the convention that the cohomology of Y (K) is the orbifold coho-
mology in the sense of Remark 5.3.

9.1 Arithmetic quotients

Let Ko =[], Kg,vand Ly =[], L., denote the open compact subgroups
of G(A) such that:

(1) Ifv € Q, Kg,yistheimage in PGL(O,) of {g € GL,(O,) | g stabilizes £
mod 7, } where £ is a fixed line in k.
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(2) If ve Q,Lp,y C Kg,y is the normal subgroup with quotient group k5.
Explicitly,

1 *
Kov= <O GLN—l(Oy)> mod 7y,

1 *
Logyv= <O SLN](OU)) mod 7.

3) Ifv ¢ SoKgpw = Lg,v=PGL,(Oy).
4) If v € R, Kg,v = Lg,, = theIwahori Iw(v) subgroup ofPGL, (O,)
associated to the upper triangular unipotent subgroup.

When QO = @, we let Y = Y (Kp). Otherwise, we define the arithmetic
quotients Yo(Q) and Y1 (Q) tobe Y (K ) and Y (L o) respectively. They are the
analogues of the modular curves corresponding to the congruence subgroups
consisting of I'g(Q) and I'1(Q). (Rather, they are the appropriate analogues
in the PGL-context).

For each v € R, let Iw;(v) C Iw(v) denote the pro-v Iwahori. We fix a
character

Yo = Yo1 X o0 X Yy Iw)/Iw (v) = (k)" / (k) — 1+ mo C OF.

The collection of characters ¥ = (v/,)yer allows us to define a local system of
free rank 1 O-modules O(yr) on Y;(Q) fori = 1,2:letw : Y;(Q) — Y;(Q)
denote the arithmetic quotient obtained by replacing the subgroup Iw(v)
with Iw;(v) for each v € R. Then, a section of O(i) over an open sub-
set U C Y;(Q) is a locally constant function f : 7~ 1(U) — O such that
flyu) = ¥(y)f(u) for all y € Iw(v)/Iwq(v). We let Hé/(Yi(Q), 0) and
H; 4 (Yi(Q), O) denote H (Y;(Q), O(¥)) and H;(Y;(Q), O()). Note that
if ¥ = 1 is the collection of trivial characters, then O(y) = O and hence
Hy, (Yi(Q), 0) = H'(Y;(Q), 0).

9.2 Hecke operators

We recall the construction of the Hecke operators. Let g € G(A™) be an
invertible matrix trivial at each place v € R. For K C G(A®°) a compact open
subgroup of the form K or L, the Hecke operator 7'(g) is defined on the
homology modules H, y (Y (K), O) by considering the composition:

Hoy(Y(K),0) — Hoy(Y(gKg™' N Kp), O)
— Hey(Y(KNg 'Kg),0) — H,y(Y(K),O),
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the first map coming from the corestriction map, the second coming from the
map Y(gKg™ ' NK,O) - Y(K Ng~'Kg, ©) induced by right multiplica-
tion by g on G(A) and the third coming from the natural map on homology.
The maps on cohomology HIZ(Y (K), O) are defined similarly. (Since, con-
jecturally, the cohomology of the boundary will vanish after localizing at the
relevant m, we may work either with cohomology or homology, by duality).
The Hecke operators act on le (Y(K), O) but do not preserve the homology

of the connected components. For o € A%O’ ", we define the Hecke operator
Ty k by taking

g =diag(ev, v, ..., 1,..., 1)

consisting of k copies of « and n — k copies of 1. We now define the Hecke
algebra.

Definition 9.1 Let T"aw denote the subring of

End (P Hy, (Y1(Q). O/>™)

k,n

generated by Hecke endomorphisms 7y i for all k < n and all & which are
units at primes in Sgp. Let T  denote the O-algebra generated by the same
operators with T, for & non-trivial at places in Q. If Q = ), we write T, for

TQ’ w .

If a € Op is anideal prime to the level, we may define the Hecke operator Ty &
as (1/Np/o (@)%) Ty k where a € A;’Oo is any element which represents the
ideal a and such that « is 1 for each component dividing the level. In particular,

if a = x is prime, then 7} is uniquely defined when x is prime to the level but
not when x divides the level.

Remark 9.2 1t would be more typical to define T¢ y as the subring of endo-
morphisms of

End P Hj (Y1(Q), 0),
k

except that it would not be obvious from this definition that Ty y acts on
H{; (Y1(Q), O/w™) for any n. It may well be true (for the m we consider) that

T,y acts faithfully on the module HgOHO(Yl(Q), (O)—and indeed (at least
for Q = ) this (conjecturally) follows when Theorem 5.16 applies and (in
addition) Ry is smooth. Whether one can prove this directly is an interesting
question. (The claim is obvious when the cohomology occurs in a range of
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length [p = 0, and also follows in the case [y = 1 given known facts about the
action of Ty on cohomology with K coefficients).

9.3 Conjectures on existence of Galois representations

Let m denote a maximal ideal of T3 |, and let T |, - denote the completion.
It is a local ring which is finite (but not necessarlly ﬂat) over O.

Conjecture B There exists a semisimple continuous Galois representation
m : GF — GLn(Tg"w/m) with the following property: if A ¢ Sg is a
prime of F, then 7y, is unramified at A, and the characteristic polynomial of
rm(Frob,) is

Xn _ T)L,IXn_l 44 (_l)iNF/Q()\‘)i(i—l)/QT)L’iXl’l—i
+oo 4 (=)' NE )" V2T,

in Tan / m[X]. Note that this property determines 7, uniquely by the Cheb-
otarev denszly theorem. If 7y is absolutely irreducible, we say that m is
non-Eisenstein. In this case we further predict that there exists a deforma-
tionry : Gr — GL, (Tan 0.v.m ) Of T unramified outside Sy and such that the
characteristic polynomial of rm (Froby,,) is given by the same formula as above.
In addition, suppose that roy =7 (Where T is the representation introduced in
Sect. 8.5). Suppose also that the set of primes Q consists of a set of Taylor—
Wiles primes, that is, a set of primes as constructed in Proposition 8.5; this is
an empty condition when Q = (. We conjecture that ry enjoys the following
properties:

(1) If v|p, then rulg, is Fontaine—Laffaille with all weights equal to
[0,1,...,n—1].
(2) If v € Q, then rylg, is a lifting of type D, where Dy, is the local deforma-
tion problem specified in Sect. 8.5.1.
(3) If v € R, then the characteristic polynomial of ro (o) for each o € I, is
(X — ¥ 1 (AT, 1 (0))) ... (X = Py n (A1t (0))),
(4) (a) Thelocalizations HI’p(Yl(Q), O/@™)m vanishunlessi € [qo, ..., go+
lo].
(b) The localizations Hfﬁ 0Y1(Q), O/aw™)m vanish for all i, where
aY1(Q) is the boundary of the Borel-Serre compactification of Y1(Q).
(5) Forx € Q, let Py(X) = (X — ay) Q. (X) denote the characteristic poly-
nomial of ¥ (Frob, ) where oy = Wx (Froby). Let mg denote the maximal
ideal of T y containing m and Vy — ay for all x|Q, where V, = T i,
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which is well defined modulo m. Then there is an isomorphism

Jim [T Qx(V)™ s Hj(Y, O/w™)m = H(Yo(Q). O/t Imy.
xeQ

It follows that ry, is a deformation of  of type Sg (resp. S é ) if each Vry is the
trivial character (resp. Yy = xy for each v € R). In this case, we obtain a

an

surjection Rs, — Tg‘ Im \resp. Rsé Ty m)

Some form of this conjecture has been suspected to be true at least as far back
as the investigations of F. Grunewald in the early 70’s (see [59,60]). Related
conjectures about the existence of 7y, were made for GL(n)/Q by Ash [61],
and for GL(2)/F by Figueiredo [62]. One aspect of this conjecture is that it
implies that the local properties of the (possibly torsion) Galois representations
are captured by the characteristic zero local deformation rings Rl‘):I for primes
v. One might hope that such a conjecture is true in maximal generality, but
we feel comfortable making the conjecture in this case because the relevant
local deformation rings (including the Fontaine—Laffaille deformation rings)
reflect an honest integral theory, which is not necessarily true of all the local
deformation rings constructed by Kisin, (although the work of Snowden [41]
gives hope that at least in the ordinary case that local deformation rings may
capture all integral phenomena). By dévissage, conditions 4 and 5 are satisfied
if and only if they are satisfied for n = 1, e.g., with coefficients in the residue
fieldk = O/w.

Remark 9.3 Part (4)(a) of Conjecture B may be verified directly in a number
of small rank cases, in particular for GL(2)/F when F is CM field of degree
either 2 or 4, or for GL(3)/Q. In the latter two cases (where (go, lo) = (2, 2)
and (2, 1) respectively), the key point is that the lattices in question satisfy the
congruence subgroup property [77], which yields vanishing for both (H ')y,
and (by duality, considering both m and m™*) (cho_l)m where m is a non-
Eisenstein maximal ideal. On the other hand, the vanishing of (Hfofl)m also
implies the vanishing of (H9°~ "), after localization at m, since the cohomol-
ogy of the boundary vanishes after localization at m. (In these cases, we are
implicitly using the fact that we know enough about the boundary of the locally
symmetric varieties in question to also resolve Part (4)(b) of Conjecture B).

Remark 9.4 In stating Conjecture B, we have assumed that Q is divisible only
by Taylor—Wiles primes. To modify the conjecture appropriately for more
general Q, one would have to modify condition 2 to allow for more general
quotients of the appropriate local deformation ring (which would involve a
mix of tamely ramified principal series and unipotent representations) and one
would also drop condition 5.

@ Springer



F. Calegari, D. Geraghty

Remark 9.5 Condition 4 of Conjecture B says that we could also have formu-
lated our conjecture for compactly supported cohomology, or equivalently for
homology. The complexes we eventually patch are computing

H*(Y,O/o")y = HX (Y, O/o"),, = H (Y, O/ )=

for the dual maximal ideal m, so it may have made more sense to work
with homology. Indeed, in the homological formulation, we wouldn’t need to
assume anything about the vanishing of the homology of the boundary local-
ized at m. However, for historical reasons, we continue to work in the present
setting, with the understanding that the real difficulty in Conjecture B lies (after
Scholze [8]) with proving the non-vanishing of (co-)homology groups in the
required range after localization at m and proving local-global compatibility,
especially at v|p.

The reason for condition 5 of Conjecture B is that the arguments of Sect. 3
of [3] (in particular, Lemma 3.2.2 of ibid). often require that the GL, (Fy)-
modules M in question are O-flat. However, it may be possible to remove
this condition, we hope to return to this point later (it is also true that slightly
weaker hypotheses are sufficient for our arguments). On the other hand, we
have the following:

Lemma 9.6 Ifn = 2, then condition 5 of Conjecture B holds for all Taylor—
Wiles primes.

Proof By induction, it suffices to prove the result when Q = {x} consists of
a single such prime. For simplicity, we drop i from the notation. The two
natural degeneracy maps induce maps:

¢ H*(Y,0/o")? - H*(Yo(x), O/w"),
¢V H*(Yo(x), O/w™) — H*(Y,O/o™)?

such that the composition ¢ o ¢ is the matrix
N(x)+1 T,
T, Nx)+1)’

which has determinant sz — (14 N(x))2 If the eigenvalues of p(Frob,) are
oy and By, then axfy = N(x) = 1 mod p. If x is a Taylor—Wiles prime,
then by assumption, «, is distinct from g, or equivalently, &, # =1 mod p.
It follows that sz — (1 4+ N(x))? ¢ m, and hence ¢ o ¢ is invertible after
localizing at m. In particular, the maps ¢ and ¢" induce a splitting

H*(Yo(x), O/ = H*(Y, O/™)?2 & W,
H*(Yo(x), O/ ~ H*(Y,O/o")a & Wa
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for some T‘B -module W C H*(Yy(x), O/ww"), and m = (m, Uy — ay).
(Here, by abuse of notation, «, denotes any lift of o, € O/ to O/w™). It
suffices to prove that W is trivial. One approach is to try to show that some
w € W generates either the Steinberg representation Sp or Sp ® x for the
quadratic unramified character x of ., and then deduce that the action of U,
on w is via 1, contradicting the assumption on m. However, the map

* n . * m n Uo(x)
H* (Yo(x), O/m™) — <1£nH Y ™), O/w ))

is a priori neither surjective nor injective, which causes some complications
with this approach. Hence we proceed somewhat differently (although see
Remark 9.8 below). The following argument is implicit in the discussion of
Ihara’s Lemma in Chapter 4 of [6].

Recall that there exists a decomposition

v ~[[rix,

where the I'; are congruence subgroups commensurable with PGL,(OF) and
‘H denotes the corresponding locally symmetric space. The finitely many con-
nected components of Y will naturally be a torsor over a ray class group
corresponding to the level of Y. Let I' be one such subgroup. Denote by I'!
the intersection I' N PSLy(OF). By construction, I'/ I'!is an elementary two
group, which we denote by ®. Recall that we are assuming that k = O/w has
odd characteristic p. Then, by Hochschild—Serre, there is an isomorphism

H*(T,0/o™) ~ H*T', 0/a™®

By construction, for a Taylor—Wiles prime x, the level structure of Y at x
is maximal. For convenience, let us also assume that x is trivial in the ray
class group corresponding to the component group of Y (this is equivalent
to imposing a further congruence condition on x, but is imposed only for
notational convenience in the argument below). For such a prime x, we may
form the amalgam

7l 1
G =T *F(l)(x) r

of I'! with itself along the subgroup Fé (x) := To(x) NT!. Then G will be a
congruence subgroup of the S-arithmetic group PSL, (OF[1/x]) with the same
level structure of I'! at primes away from x. (Without the extra assumption on
x, one would have to amalgamate different pairs of lattices I'; occurring in the
decomposition of Y according to the action of the ray class group, cf. Sect. 4.1.4
of [6]. The argument would then proceed quite similarly, but it would require
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more notation) The long exact sequence of Lyndon for an amalgam (See [78],
p. 169) gives rise to the following exact sequence:

o> H7YG, 0/™) - HI(T!, O/o™)? - H (T (x), O/o") — - -

We claim that this sequence is equivariant with respect to the Hecke operator
U2, which acts on H*(G, O/@") by 1. First, recall the definition of U ». It is
defined to be 1/N (x)? times the operator induced by taking the double coset
operator for F(l) (x) corresponding to the matrix:

2 0
0 1/)°

Since this operator only depends on the matrix up to scalar, one may equally
take the matrix to be
7 0
8 = 0 nx—l :

With this normalization, the matrix g lies in G. In particular, the corresponding
mapon H*(G, O/w™) is given by multiplication by the degree of this operator
on F(l) (x), which is N (x)?, and thus (after normalizing) it follows that U > acts
by 1. It follows that if we localize the sequence at any ideal m such that U > — 1
is invertible, then there is an isomorphism

H (T, 0/™): ~ H (T (x), O/a™")m.

To recover the isomorphism for Y, it suffices to repeat this argument for each
lattice T';. On H*(Yp(x), O/ ™), however, the operator U, satisfies U f =
U 2. In particular, since neither o, nor f, is equal to +1, we deduce (for the
maximal ideal m of interest) that there is an isomorphism

H(Y,0/om™)?2 ~ H (Yo(x), O/ ).

Taking m = (m, Uy — «,) and applying the projections lim (U, — By)" and
n—oo

lim (U, — a,)" gives the necessary isomorphism. |
n—oo

Remark 9.7 As noted in [6], the group PSLy(F,) decomposes as an amal-
gam whereas PGL;(Fy) does not—this is the reason for the reduction step
to the PSL, case above. One could proceed above with PGL,, but then
the amalgams would more naturally be subgroups of PGL,(Or[1/x])©") C
PGL,(OF[1/x]) consisting of matrices whose determinant has even valuation
at x (cf. Chapter 4 of [6]). In either case, one deduces as above that U 3 acts
by +1 on H*(G, O/@™).
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Remark 9.8 The proof of this lemma is related to the proof of Lemmas 3.5
and 5.8. However, in those cases, it was only necessary to prove equality in
the lowest degree, which is more elementary. Indeed, if go denotes the lowest
degree in which H%°(Y, O/w ) is nonzero, then, by Hochschild—Serre, the
kernel of the map

H?(Xo(x), O/w") - HI(X(x), O/w")

has a filtration by terms of the form H'(A, H/ (X1 (x), O/@")) for j < qo.
Since (by assumption) the coefficients of this expression are trivial after local-
ization at m for j < qo, the kernel vanishes and the map above is injective.
Hence the argument above using the representation IT generated by w € W
applies in this case. Analysis of this spectral sequence suggests, however, that
the map localized at m will not (in general) be injective fori > go whenly > 0.

9.4 An approach to Conjecture B part 5

In this section, we present an informal approach to proving part 5 of Conjec-
ture B under a stronger assumption that 7 has enormous image, at least in the
analogous case of GL(n) (from which it should be easy to deduce the corre-
sponding claim for PGL, since manifolds for the former are circle bundles over
manifolds for the latter, and so have highly related Hecke actions). Here, by
enormous image, we require (in addition to bigness) the existence of suitable
Taylor—Wiles primes x such that 7(Frob, ) has distinct eigenvalues. We thank
David Helm for some helpful remarks concerning the deformation theory of
unramified principal series.

9.4.1 Local preliminaries

Let F/Q be a number field, let x be a prime in F such that N(x) =1 mod p.
Let G = GL,(Fy),and let D C B C P C G denote the Borel subgroup
B and a parabolic subgroup P with Levi factor L := GL,_1(Fy) x F.*, and
D ~ (F)"the Leviof B.Let G(Oy) = GL,(Oy),letU(x) C G(O,) denote
the full congruence subgroup of level x, and let Up(x) C G(O,) denote the
largest subgroup containing U (x) whose image in GL, (O, /@) stabilizes a
line, chosen compatibly with respect to P. Suppose that N(x) =1 mod p.
Letp : G, — GL, (k) be a continuous semi-simple representation. We say
that an irreducible admissible mod- p representation 7 is associated to p if

rec(r) = WD(p)
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under the semi-simple local Langlands correspondence of Vignéras [79]. The
following is well known.

Lemma 9.9 Let p : G, — GL, (k) be unramified with distinct eigenvalues.
Thenrec(mw) = p if and only if v is the irreducible unramified mod- p principal
series:

7 = n-ind§ (x),

where x : (F)" — k> factors through (F/O)" and sends each uni-
Sformizer to a distinct eigenvalue of p(Froby).

In addition, we have the following:

Lemma 9.10 Let 7w be the unramified principal series in Lemma 9.9, and let
7’ denote any irreducible admissible representation of G such that &' % 7.
Then Ext!(r, n') = Ext! (7', 7) = 0.

Proof The supercuspidal support of 7 consists of the distinct characters ;. If
either extension group is non-zero, then, by Theorem 3.2.13 of [80], it follows
that 7/ has the same supercuspidal support as 7. But this implies that 77’ is a
quotient of 77, and hence is isomorphic to 7. |

Definition 9.11 Let 4" denote the category of locally admissible G-modules
over A := O/w* such that every irreducible subquotient of M € ¥ is asso-
ciated to 7.

Under our assumptions on p, we may give a quite precise description of the
finite length elements M € €.

Lemma 9.12 Suppose that M € € has finite length as a G-module. Then
there exists a finite length A-module M g and a character

X : B — Aut(Mp)

whose irreducible constituents correspond to the character x, and such that
M =~ n-ind§ (Mp).

Proof The irreducible constituents of the parabolic restriction resg (7r) consist
of the characters x* for w in the Weyl group W of G. By assumption, all
the eigenvalues of p(Frob, ) are distinct, and hence all the characters x % are
distinct. In particular, Ext! (x?, x*) = 0 for all i if v # w € W. It follows
that resg (M) admits a decomposition

resg(M) ~ @ My,
w
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where the irreducible constituents of My are x* for w € W. Moreover,
length s (M) = length; (M) is finite for any w € W. Let Mp := M}?. There
is a natural map

M — n-indgresg (M) = @n-indgMg’ — n—indgMB.
w

Note that M and n—indgM p are elements of € of the same length, and all
the irreducible constituents of n—indgM}g for w # id are distinct from 7.
Thus, by comparing lengths, to prove that the composite of these maps is an
isomorphism it suffices to prove that the first map is injective. If K denotes
the kernel, then resg (K) = 0. Yet this contradicts the assumption that M (and
hence K) lies in €, since resg(n) # 0. O

Recall that D C B denotes the Levi of B, whichis (F*)". Since y is trivial
on D(Oy), Any finite deformation ¥ of D(F) which deforms yx has pro-p
image after restriction to D(O,), and thus factors through

<limFX/FX1’m)n ~ (2, @ limk* /K1)

The universal deformation of this group can be given quite explicitly:

Corollary 9.13 Let g = [k* ® Z,|. Then n—indg induces an equivalence of
categories between the category of direct limits of finite length modules over
the ring R below and and € :

R = ®A[T]/(Tq - 1) ®0 A[X].
i=1

Using this description of %, we may prove the following:

Lemma 9.14 The category € has enough injectives. The functor M — MY™)
from € to G(k) = G(Oy)/U(x) =~ GL,(k)-modules takes injectives to
acyclic modules.

Proof One may explicitly observe that the appropriate category of R-modules
has enough injectives. The composite functor from R-modules to G (k)-
modules can be described explicitly as follows. Given a deformation ¥,
recall that x factors through (k* x Z)". Hence the restriction X|p) to
(k)" = D(k) C B(k) is well defined, and one has

) ~\U™ G(k) [~
<n—1ndg (X)) ~ IndB((k)) (X |D(k)) .
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Since finitely generated injective A[T]/(T9 — 1)-modules are free, it follows
that the image of an injective module has a filtration whose pieces are iso-

morphic to & := Indg((]]f)) (), where v is the universal deformation over k of

D (k) to k[k*/k>*1]. Yet @ is a direct summand of Indg((,/;))k[D(k)] and thus of

k[G (k)]; hence it is injective and acyclic. O
Remark 9.15 Since the group U (x) is pro- p, the higher cohomology of U (x)
vanishes. Hence, for any subgroup U (x) C I' C G(O,), by Hochschild—Serre
there are identifications

H (T, M)~ H'(I'/U (x), MY™).

Any injective G (k)-module is also injective as a ['/U (x) C G (k)-module.
Hence, by Lemma 9.14, the derived functors of M +— M" are well defined,
and they coincide with H*(I", M).

Suppose that the roots of P(T) = (T — ) Q(T) are the Satake parameters
of . The Hecke algebra of Uy(x) contains the operator V = V, correspond-
ing to the double coset of the diagonal matrix with n — 1 entry 1 and the final
entry . The operator P(V) is zero on wY0™) and thus acts nilpotently on
MUY™) In particular, if

eq 1= 1lim Q(V)",

then e, is a projection of MY0™) onto the localization of MY0™) at the ideal
(V — ) for any lift of « to O.

We shall now define two functors .# and ¢ on the category %, defined on
objects by

FM) =M G(M) = eg M.

There is a natural transformation: ¢ : .# — ¢ defined by the composition of
the obvious inclusion MY©x) < MU with ¢,. Note that .# and & are
left exact. Since % has enough injectives (Lemma 9.14), we have associated
right derived functors RX.Z and R¥¥ respectively. Hence, since ¢, is exact, we
may (see Remark 9.15) identify these right derived functors with the following
cohomology groups:

REFZ (M) ~ HY(G(O,), M), R*4(M) ~ e, H*(Uy(x), M).

Theorem 9.16 The natural transformation « : F — 9 is an isomorphism of
functors. In particular, there is an isomorphism

st HY(G(Oy), M) — ey H (Up(x), M).
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Remark 9.17 One should compare Theorem 9.16 to Lemma 3.2.2 of [3], which
implies that ¢, is an isomorphism for £ = 0 and modules M € ¥ of the form
N®QO/w" where N is admissible and flat over © and N ®» K is semi-simple.
The (implicit) assumptions on p in [3] are, however, somewhat weaker; one
only need assume that the particular eigenvalue « has multiplicity one, and
moreover the assumption that M is an element of ¢’ is relaxed (although, for the
module M in Sect. 3 of [3] for which Lemma 3.2.2 is applied, one may deduce
from local-global compatibility that M € %’). We expect that Theorem 9.16
is true under these weaker assumptions as well, and possibly even under the
generalization of Lemma 3.2.2 of [3] due to Thorne (Proposition 5.9 of [53]),
see Remark 9.18 following the proof.

Proof For F = .% or ¢, one has F(M) = lim F(M;) as the limit runs over
—

all finite length submodules M;, hence it suffices to prove the isomorphism
for M of finite length. In particular, we may assume that M = n—indgM p for
some finite deformation X of x. Then we have an isomorphism

F (M) = (Mp)P .

Let X (m) denote the restriction of x to F. whose irreducible constituents cor-
respond to the unramified character which takes the value ¢, on a uniformizer
for some eigenvalue «,, of p(Frob,). Let x(m) denote the restriction of X
to (F)"~! corresponding to the other n — 1 eigenvalues. Then there is an
isomorphism

MY = @ (Fm) @ n-ind (7 (7)) -

m=1

n
~ D).
m=1

Moreover, the action of V on each factor is given by the coset corresponding
to wy, x Id € L(Fy), which acts via ¥ (m)(wy), and the normalized sum of
the invariants is equal to the image of M¢(©x)_ In particular, the operator e
projects onto the mth factor such that « = «;;,, which is an isomorphism. O

Remark 9.18 The proof of this result, is, to some extent, “by explicit com-
putation.” Here is a different approach which may work under the weaker
assumption that o has multiplicity one but there is no other assumption on
the eigenvalues of p(Frob, ). First one establishes, for irreducible 7 € ¥,
that there is an isomorphism .% (;r) >~ ¢ (;r). This is essentially already done
in Sect. 3 of [3]. Now proceed by induction on the length of M. Suppose now
that the claim is true for modules of length < length(M). By assumption, there
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is an inclusion 7 C M, let N denote the quotient. By induction, there is a long
exact sequence as follows:

0 — F(n) — F(M) — F(N) — R'"Z(n)

]

0 —— Y() — Y(M) — 9(N) — R'9Y(n)

By the five lemma, it suffices to show that R'.Z(n) - R'Y(7) is injective.
By Hochschild—Serre, one has isomorphisms

R'Z(m) ~ H'(GL,(k), 7Y™, R'%(n) = ea H' Up(k), 7V ™),

which (in principle) one might be able to compute explicitly for the relevant
7.

9.4.2 Applications to Taylor-Wiles primes
We now define the modules M as follows:
M; = lim H/(X(x™), O/ " ).
m—00
The modules M are filtered (as G = GL,, (F)y)-modules) by the the admissible
module M ;j[m]. By assumption, any representation 7 C M ;[m] lies in ¢, and
hence M; € ¢ by Lemma 9.10. By Hochschild-Serre, we have two spectral

sequences, namely,

H'(G(Oy), M;) = H'™ (X, 0/ ),
ea H' (Up(x), Mj) = e H M (Xo(x), O/ ), = HT (Xo(x), O/ )m.

There is a natural map between these spectral sequences given by ... By The-
orem 9.16, these maps are isomorphisms, and hence we deduce that the map:

eo : H*(X, O/")m, = H*(Xo(x), O/ ),

is an isomorphism, as required.

9.5 Modularity lifting

In this section we prove our main theorem on modularity lifting. We note that
Theorem 5.16 follows from it immediately as a corollary.
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~

We assume the existence of a maximal ideal m of T := Ty with 7,
We assume also that 7 (G r(¢,)) 1s big.

For eachinteger N > 1, let Q y be a set of primes satisfying the conclusions
of Proposition 8.5. We also assume that Conjecture B holds for each of the
sets On.

Foreach N, there is a natural covering map Y1 (Qn) — Yo(Qn) with Galois

group

r.

A= []©r/x)".
xeQ

Choose a surjection A — Ay = (Z/pNZ)? and let YAy (QOn) — Yo(ON)
be the corresponding sub-cover. For each 0 < M < N, we regard Ay as a
quotient of Ay in the natural fashion. This gives rise to further sub-covers

YAy (ON) = Yo(ON).
_ By Conjecture B and the results of Sect. 7.1, there exists a perfect complex

Dy of free Sy = O[A y]-modules such that

oD N 1S concenirated in degrees qo, . . ., qgo + lo,
e the complex Dy ®s, Sny/ms, has trivial differentials,
e foreachi,n > 1and0 < M < N, we have anisomorphism of Sy-modules

H;(Dy ®@sy Su/@")Z | lim [T Qx(V)™ | Hi(Ya, (Qw). O/@" ).
xeQ

Note that we have

H*(Y1(QN), O/ = H (Y1(QN), O/ )s,

where the equivalence comes from the fact that we are assuming the cohomol-
ogy of the boundary vanishes after localization at m.

Similarly, working with the local system associated to our choice of char-
acters x = (Xv)ver, there exists a perfect complex D])f, of free Sy-modules
satisfying the first two properties above as well as:

e foreachi,n > 1and0 < M < N, we have anisomorphism of Sy-modules
H; (51)\(, Qsy Su/@")

-~ nlif%ol_[Qx(Vx)n! Hiy (Ya,(ON), O/t ).
xeQ
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Note that we have

Hy(Y1(On), O/ = Hi y (Y1(QN), O/ )i,

again by Conjecture B part (4)).
Since

H*(Y,O/w) = H;(Y, O/w),

the ideal m induces a maximal ideal of T,, := Ty ,, which we also denote by m
in a slight abuse of notation. By Conjecture B, we have surjections Rs — Ty,
and Rs, — Ty m.

Theorem 9.19 If we regard H(Y, K /O)y, as an Rs-module via the map
Rs — Ty, then it is a nearly faithful Rs-module.

Proof We will apply the results of Sect. 6.1. For each N > 1, we have chosen
a set of Taylor—Wiles primes Q y satisfying the assumptions of Proposition 8.5
(for some fixed choice of ¢q). Let

-1
g=q+IT|—1—[F:Q]n(nT)—lo

be the integer appearing in part (4) of this proposition. We will apply Propo-
sition 6.6 with the following:

o Let Soo = O[(Z))?] and Sy = O[Ay] as in the statement of Proposition

6.3.
e Let j =n?|T|—1and OF = Olzy, ..., z;].
e Let
1 _ pl
Ry = Ryc[x1, ..., xg]
Rgo = Rl)(()c[xl, ce Xgl

Note each R._ is p-torsion free and equidimensional of dimension 1 +
q + j — lp by Lemma 8.2. In addition, we have a natural isomorphism
Rl jo = R w.

o Let (R, HY) = (Rs, HY(Y, K/0)Y) and (R, H®) = (Rsx, H)‘?O(Y,
K /0)y). Note that we have natural compatible isomorphisms R'/w >
R*/w and H' /o — H?/w. -

elet7T =T =77 be the complex with 7" = Hi"by, O/w), and with
all differentials d : T* — T'*! equal to 0.
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e For each N > 1, let YA, (Qn) — Yo(Qp) denote the subcover of
Y1(On) — Yo(Qpn) with Galois group Ay = (Z/pN)q ‘We introduced
above perfect (homological) complexes of Sy-modules D ~ and DX above;
they are concentrated in degrees qo, ..., go + lo. We now regard these
as cohomologlcal complexes concentrated in degrees 0, ..., lo. Then we
let D1 (resp D? %) denote the perfect complex of Sy- modules Dy JaoV
(resp. DZ N/ @). Note that the cohomology of D1 (resp. D3 y) computes
H*(YAN(Q N, Ofa )y (resp. HY(Yay (On), O/wN )o)s after a shift in
degree by go. We can and do assume that va ®Sy/mgy, =T fori =1, 2.

e Choose representatives for the universal deformations of type Sp, and
S éN which agree modulo . This gives rise to isomorphisms

Or ~ .
Rs,, = Rsgylz1s--.. 2l
I:’ ~
RSXT —> Rgx [z1,..., 2]
on on

In the notation of Proposition 6.3, the rings on the right hand side can
be written RS and RY, . By Proposition 8.5, we can and do choose
SQN SQ

surjections Réo —» REQ and Rgo —» REI . Composing these with the
N

oN
O _ pl m) _
natural maps RSQN —» RSQN —» Rs = R' and RSéN —» RSéN — Rsx =
R?, we obtain surjections ¢}\, : Rl — R'and d)N : RZ, — R2.

We have now introduced all the necessary input data to Proposition 6.6. We
now check that they satisfy the required conditions.

e Foreach M > N > 0 with M > 1 and each n > 1, we have an action
of Rs,,, (resp. Rsx ) on the cohomology H* (YA, (Qum), O/ )y (resp.
Hy(Yay(Qm), (’)/zzr")m) by Conjecture B. Applying the functor, X +>

& 1 0

X, and using the surjection R, — Rg Soy (resp. Roo —» RSéN ), we obtain

an action of Réo (resp. Rgo) on H*(DII‘,’[D@SM Sy /™) (resp. H*(Di;F@SM

Sn/@™)).
Thus condition (b) of Proposition 6.3 is satisfied for both sets of patching data.
Condition (d) follows from Conjecture B, while condition (c) is clear. Finally,
we note that we have isomorphisms

HO (D} s, Sy /) = HOYay (@), O/e)P S HY (Ya (Qu), O/

= Ho (D} ®s,, Sy /)

forall M > N > 0 with M > 1. These isomorphisms are compatible with the

actions of Réo and give rise to the commutative square required by Proposi-
tion 6.6.
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We have now satisfied all the requirements of Proposition 6.6 and hence we
obtain two complexes PO%D and POZC;D. By Lemma 8.2, SpecR%O is irreducible,

and hence by Theorem 6.4 H IO(POZC;D) is nearly faithful as an Rgo—rnodule.
Thus

H(PLY) /o = H(PEY) jor

is nearly faithful over R;o/w > Rgo/w. ByLemmag8.2and[11,Lemma?2.2],
it follows that H (P;C;D) is nearly faithful over Réo providing that H lo (Polém)
is p-torsion free. However, each associated prime of H l"(Polc;D) is a minimal
prime of Rgo and by Lemma 8.2, all such primes have characteristic 0. Thus
p cannot be a zero divisor on H IO(POIC;D) and the result of Taylor applies. By
conclusion (iv) of Proposition 6.3 we deduce that H! = H% (Y, K/ 0) is
nearly faithful over R! = Rg, as required. O

10 Proof of Theorem 1.1

In this section, we prove Theorem 1.1

Proof Let A be an elliptic curve over a number field K. If A has CM, then the
result is well known, so we may assume that Endc(A) = Z. Let

r=Sym* 'p: Gx - GL2(Q))

denote the representation corresponding to the (2n — 1)th symmetric power of
the Tate module of A. To prove Theorem 1.1, it suffices (following, for example,
the proof of Theorem 4.2 of [81]) to prove that for each n, there exists a p
such that r is potentially modular. We follow the proof of Theorem 6.4 of [76].
(The reason for following the proof of Theorem 6.4 instead of Theorem 6.3 of
ibid. is that the latter theorem proceeds via compatible families arising from
the Dwork family such that V[A]; is ordinary but not crystalline, which would
necessitate a different version of Theorem 5.16). In particular, we make the
following extra hypothesis:

e There exists a prime p which is totally split in K, and such that p + 1 is
divisible by an integer N> which is greater than n and prime to the con-
ductor of A. Moreover, the mod-p representation p4 : Gx — GL(F))
associated to A[p] is surjective, A has good reduction at all v|p, and for
all primes v|p we have

pa:Gq, = Indg;wz
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(This is a non-trivial condition on A, we consider the general case below). It
then suffices to find sufficiently large primes p and /, a finite extension L/K,
an integer N with N > n+ 1 and p + 1 = NN, (as in the statement of
Theorem 6.4 of Sect. 4 of [76]) and primes A, A’ of Q(¢y)™ (with A dividing
p and 1 dividing /) and a point ¢ € To(L) on the Dwork family such that:

(1) VIAL =Flg, .

(2) VIM'1; ~ ¥|g,, where r’ is an ordinary weight O representation which
induced from Gy for some suitable CM field M /Q of degree 2n.

(3) p splits completely in L.

(4) A and V are semistable over L.

(5) 7lg, and 7|, satisfy all the hypotheses of Theorem 5.16 with the possible
exception of residual modularity.

This can be deduced (as in the proof of Theorem 6.4 of [76]) using the theo-
rem of Moret—Bailly (in the form of Proposition 6.2 of ibid) and via character
building. By construction, the modularity of r follows from two applications
of Theorem 5.16, once applied to the A’-adic representation associated to V
(using 7’ and the residual modularity coming from the induction of a Grossen-
character) and once to the A-adic representation associated to Symzn_l(A),
using the residual modularity coming from V.

For a general elliptic curve E, we reduce to the previous case as follows. It
suffices to find a second elliptic curve A, a number field L /K, and primes p
and ¢ such that:

(1) The mod- p representationr = (SymZ”_ 15 £)|G, satisfies all the hypothe-
ses of Theorem 5.16 with the possible exception of residual modularity.

(2) A and E are semistable over L and have good reduction at all primes
dividing p and g.

(3) p and g split completely in L.

(4) p-+1isdivisible by an integer N> > n+ 1 which is prime to the conductor
of A.

(5) Elg] =~ Alq] as G -modules, and the corresponding mod-p representa-
tion is surjective.

(6) The mod-p representation p4 : G — GL(F)) associated to A is sur-

jective, and DlGq, Iﬂdgpz w2
P

This lemma also follows easily from Proposition 6.2 of [76], now applied to
twists of a modular curve. We deduce as above (using the mod-g representa-
tion) that Sym>"~!(A) is potentially modular over some extension which is
unramified at p, and then use Theorem 5.16 once more now at the prime at p
to deduce that Sym?*~!(E) is modular. O

Remark 10.1 1t is no doubt possible to also deal with even symmetric powers
using the tensor product idea of Harris [82].
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