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ABSTRACT

We implement a steady, one-dimensional flow model for the X-ray jet of CentaurusA
in which entrainment of stellar mass loss is the primary cause of dissipation. Using over
260ks of new and archival Chandra/ACIS data, we have constrained the temperature,
density and pressure distributions of gas in the central regions of the host galaxy of
CentaurusA, and so the pressure throughout the length of its jet. The model is con-
strained by the observed profiles of pressure and jet width, and conserves matter and
energy, enabling us to estimate jet velocities, and hence all the other flow properties.
Invoking realistic stellar populations within the jet, we find that the increase in its
momentum flux exceeds the net pressure force on the jet unless only about one half
of the total stellar mass loss is entrained. For self-consistent models, the bulk speed
only falls modestly, from ∼ 0.67c to ∼ 0.52c over the range of 0.25− 5.94kpc from the
nucleus. The sonic Mach number varies between ∼ 5.3 and 3.6 over this range.

Key words: stars: low mass – galaxies: active – galaxies: individual: Centaurus A –
galaxies: jets – X-rays: galaxies

1 INTRODUCTION

Extragalactic radio sources in elliptical galaxies are pow-
ered by relatively narrow jets that propagate through the
galactic atmospheres of their parent ellipticals. De Young
(1986) evaluated the momentum transfer by extragalac-
tic jets to the ambient gas and asserted that the momen-
tum transfer of lower-power flows will cause the jets to
decelerate, while Bicknell (1994) noted that ‘FR I/BLLac
unification requires the initially relativistic jets to have
been decelerated somewhere between the parsec and kilo-
parsec scale’. Begelman et al. (1982) stressed that a jet
can slow down without being completely decollimated but

⋆ E-mail: swch@protonmail.ch

only in the presence of an external galactic pressure gra-
dient. The idea that jets are thermal-pressure confined
on kpc scales has been supported by observations of jet
geometry (e.g. Chan & Henriksen 1980; Bridle et al. 1980)
and the need for an extra confining agent, in addition
to magnetic hoop stresses, which cannot function alone
(e.g. Eichler 1982, 1993; Begelman 1995; Kohler et al. 2012).
There is a good deal of evidence (e.g. Laing et al. 1999;
Laing & Bridle 2002b; Canvin & Laing 2004; Canvin et al.
2005; Laing et al. 2006; Kharb et al. 2012; Perucho et al.
2014; Meyer et al. 2017) that Fanaroff-Riley class I (FR I;
Fanaroff & Riley 1974) jets decelerate from relativistic to
subrelativistic speeds progressively over scales of ∼ 0.1 −
15 kpc, the likely cause of this slowing being mass en-
trainment (e.g. Fanti et al. 1982; De Young 1986; Bicknell
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2 S. Wykes et al.

1994; Komissarov 1994; Bowman et al. 1996; Laing & Bridle
2002a,b; Hubbard & Blackman 2006; Wykes et al. 2015).

To allow a jet flow, extragalactic jets must be charge
neutral, with electrons and positrons (or electrons and heav-
ier positively-charged particles, or some mixture of these;
see e.g. Fan et al. 2018) flowing outwards with similar den-
sities and speeds (e.g. Begelman et al. 1984). The velocity
and density of jets, and even more so the pressure, are dif-
ficult to ascertain rigorously. Little is also known about the
element abundances in the material that the jets might ac-
quire, with the work by Wykes et al. (2015) predicting an
admixture of solar-like composition on kpc scales in the FR I
source CentaurusA, being a notable exception. Jets with
a pure electron-positron content are in principle not ruled
out by energy and density considerations (e.g. Bicknell et al.
2001; Carvalho & O’Dea 2002), although they may be diffi-
cult to keep stable over long distances because of their com-
paratively low momentum. Croston et al. (2005) argued for
effectively electron-positron jets in FR IIs based on pressure-
balance needs,1 and recently Snios et al. (2018) have shown
that a model including such a jet is tenable in the FR II
source CygnusA using momentum flux and kinetic power es-
timates. A large-sample comparison by Croston et al. (2018)
of FR I and FR II lobe particle content, inferred from com-
parison of internal plasma conditions with the external pres-
sure, provides evidence that the two populations are physi-
cally different systems with different particle content.

Classed as FR I, CentaurusA can be regarded
as a misaligned BLLac in the unification scheme
(e.g. Chiaberge et al. 2001). It is the nearest radio galaxy at
3.8±0.1Mpc (Harris et al. 2010) – at which distance 1 arcsec
corresponds to 18.4 pc – and is hosted by the elliptical galaxy
NGC5128. The parent elliptical has a stellar content largely
made of two distinct old populations (Rejkuba et al. 2011):
about 75 per cent of age about 12Gyr and approximately
25 per cent of about 3Gyr. The galaxy mass-to-light ra-
tio (M/L) is lower than typical for ellipticals (e.g. Hui et al.
1995; Peng et al. 2004a).

The considerably brighter of the twin jets, referred to
as ‘the jet’ in what follows, has attracted observers’ atten-
tion since the late 1970s. Evident in ultraviolet, optical and
infrared images is a prominent dust lane, rich in cold and
warm gas and young stars, crossing the central parts of
the galaxy (e.g. Dufour et al. 1979; Ebneter & Balick 1983;
Eckart et al. 1990; Quillen et al. 2006). The dust lane ren-
ders the jet undetectable at optical to ultraviolet wave-
lengths over its inner ∼ 1 kpc, and it also leads to contami-
nation of surface brightness profiles at the wavelengths from
far-infrared to X-ray over that region, making the kind of
studies attempted in this work challenging.

NGC5128/Centaurus A’s interstellar medium (ISM)
and its jets have been subject of numerous studies in X-
rays with Chandra (Kraft et al. 2000, 2001, 2002, 2003, 2008;
Karovska et al. 2002; Hardcastle et al. 2003, 2006, 2007;
Kataoka et al. 2006; Worrall et al. 2008; Croston et al.
2009; Goodger et al. 2010). The extended X-ray emis-
sion from the ISM of the host galaxy NGC5128 has
been well modelled as a thermal plasma with a β model

1 An admixture of hadrons, in quantities and energies that do
not affect the lobe pressure constraints, is allowed.
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Figure 1. Background-subtracted, exposure-corrected Chandra

image in the 0.6–2.0 keV energy range of CentaurusA’s jet and
its surroundings. Superposed are regions used in the spectral de-
projection method (described in Section 2.2), for which the point
sources were excised. Both eastern and north-eastern (‘western’)
sectors, consisting of eight regions each, originate at 10.5 arcsec
(193 pc projected) from the nucleus and extend out to 300 arcsec
(∼ 5.5 kpc projected). The conical diameter of the jet at the sec-
tor’s base is ∼ 3.7 arcsec (∼ 68 pc).

(Cavaliere & Fusco-Femiano 1976), with β ∼ 0.40 be-
tween ∼ 2 and 11 kpc projected distance from the nucleus
(Kraft et al. 2003). Chandra imaging provides tight con-
straints on the jet width, and the data also allow us to place
some limits on its bounding pressure.

The north-east-oriented jet that is currently active is
traced out to ∼ 5 kpc projected length in existing radio im-
ages (e.g. Hardcastle et al. 2003; Neff et al. 2015); its X-ray
counterpart (Fig. 1) blends into the northern inner lobe at
about 4.5 kpc projected (e.g. Hardcastle et al. 2006, 2007).
No apparent disturbances occur in the galactic atmosphere
surrounding the jet. On the south-western side, only a knotty
structure up to ∼ 2 kpc projected can be reliably associated
with a jet with the current X-ray data (e.g. Hardcastle et al.
2007) and no diffuse X-ray emission from the counterjet has
yet been seen. Where detected, the dominant X-ray radia-
tion from both the diffuse emission and the knotty struc-
tures is unambiguously synchrotron (e.g. Hardcastle et al.
2006; Goodger et al. 2010). The jet is viewed at an an-
gle to the line of sight of approximately 50◦ (Tingay et al.
1998; Hardcastle et al. 2003). Its opening angle, as measured
from radio data, is 12◦ on sub-pc and pc scales, and 15◦

further out (e.g. Horiuchi et al. 2006; Goodger et al. 2010;
Müller et al. 2014). The brightness of the radio jets declines
with distance from the nucleus more slowly than expected
from an adiabatic jet, implying copious particle acceleration
to compensate for the reduction in jet brightness from the
expansion of the jet.

The jet exhibits apparent component speeds up to
∼ 0.80c (intrinsic speed of ∼ 0.63c for an inclination of
50◦) at around 0.5 kpc projected, measured from radio data
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(Hardcastle et al. 2003; Goodger et al. 2010). Snios et al.
(2019) confirm these component speeds using X-ray data.
With the measured apparent component speeds of 0.1 −
0.3c (intrinsic speed ∼ 0.1 − 0.3c) at subparsec scales
(Tingay et al. 2001; Müller et al. 2014), this points towards
jet acceleration downstream (until it turns into a deceler-
ation) or to sampling of different jet layers (discussed in
general, in conjunction with a spine-sheath scenario, by
Piner & Edwards 2018). Worrall et al. (2008) show that the
X-ray knots in the jet display a transverse trend in spec-
tral index and so do not all lie at similar distances from the
jet axis. Relying on sophisticated models for stellar mass
loss into the jet, Wykes et al. (2015) showed that Centau-
rusA’s jet with power ∼ (1−2)×1043 erg s−1 (Croston et al.
2009; Wykes et al. 2013; Neff et al. 2015) can be slowed
down to subrelativistic speeds with mass injection of 2.3 ×
10−3 M⊙ yr−1.

Kraft et al. (2003) speculated that the asymmetry of
the inner lobes was induced by the differences in the envi-
ronmental pressure of the host galaxy. If stellar material is
entrained, the jet width is sensitive to initial and boundary
conditions, so that relatively small changes in its surround-
ings can transform the jet into a lobe. This could account for
the asymmetric morphology of CentaurusA on these scales
(e.g. Kraft et al. 2003).

In the present paper, we rely on the pressure external
to the CentaurusA jet, on the scale of the galactic atmo-
sphere, derived from combined archival and new Chandra

observations, and assume that the jet is approximately at
pressure equilibrium with the bordering gas at any given
point along its length. The fluid-like nature of the jet (ow-
ing to the transported magnetic fields) allows us to use an
idealised, one-dimensional fluid model to calculate the runs
of the jet velocity, energy distribution and mass-flow rate
through the jet, to ascertain downstream parameters. Mass,
energy and momentum conservation form the foundation of
much of our analysis. The basic question is ‘Is there a self-
consistent solution for the jet velocity, assuming local pres-
sure equilibrium and mass input from stars alone (i.e. no
external entrainment)? If so, what are the variations of ve-
locity, density, mass flow, Mach number and so on along the
jet?’ The main novel features in the paper are the ability to
use the known profiles of width and pressure in the model of
the jet, and to model mass loss of realistic stellar populations
tested against direct observational parameters.

The remainder of the paper is partitioned as follows.
In Section 2, we document the X-ray observations, and de-
scribe the data reduction and analysis to obtain the principal
physical parameters of the ISM encountered by the jet. Sec-
tion 3 outlines the basic inputs for our analytic jet model. In
particular, we provide appropriate conservation law expres-
sions and outline our approach to extracting our proposed
1D jet flow model. Further, since the model depends on en-
trainment of local gas, it elucidates how we compute the
physically-motivated stellar inputs such as the mass-return
timescales for the NGC5128’s stellar populations. In Sec-
tion 4, we present the solutions for a mass-loaded jet. We
discuss the implications of our assumptions and of the find-
ings in Section 5, and conclude in Section 6. An appendix
provides the details of the input parameters and some inter-
mediate results.

Table 1. Chandra ACIS-S observations of Centaurus A used in
this paper.

ObsID Date taexp
(ks)

02978 03-09-2002 44.6
03965 14-09-2003 48.9
10722 08-09-2009 49.4
19521 17-09-2017 14.8
20794 19-09-2017 106.8

Total exposure time 264.5

a Net exposure after background flare removal.

2 DATA PREPARATION AND ANALYSIS

2.1 Chandra observations and data reduction

Previous analyses of the X-ray emission from the jet
surroundings within about 6 kpc of the nucleus of
NGC5128/CentaurusA revealed it to be dominated by ther-
mal and synchrotron radiation, collectively peaking at en-
ergies below 1.0 keV (e.g. Karovska et al. 2002; Kraft et al.
2003, 2008; Goodger et al. 2010). Since accurate spectral fit-
ting of the soft X-ray band is required for our analysis, we
opted for Chandra observations taken with the S3 chip of the
Advanced CCD Imaging Spectrometer (ACIS) as it provides
the greatest soft X-ray spectral sensitivity available with the
instrument.

The CentaurusA jet was initially observed with Chan-

dra on 3 September 2002 with the target positioned on the
S3 chip of ACIS in FAINT mode. Subsequent Chandra ob-
servations with identical telescope configuration were per-
formed in 2003, 2009 and 2017, all of which centred on the
nucleus. In a companion paper (Snios et al. 2019), these ob-
servations are used to place constraints on morphological
changes and proper motion of the X-ray bright knots in the
jet. An overview of the observations used in the present work
is given in Table 1.

All data were reprocessed using ciao v4.9, with the
caldb v4.7.6 calibration data base (Fruscione et al. 2006).
The ciao task deflare with default settings was run to dis-
pose of background flares. The resulting cleaned exposure
times, tabulated in Table 1, total 264.5 ks.

As a next step, readout streaks in the images caused by
the bright AGN core were removed using the task acisread-

corr. The readout_bkg routine was employed to estimate
the distribution of ‘out-of-time’ events, those due to events
that occur during frame transfer, for each observation. It
is these cleaned exposures corrected for out-of-time events
that we considered in the following analysis.

To simulate a background event file for each observa-
tion, blank-sky exposures were taken from caldb. Back-
ground rates were scaled to match observed rates in the
10–12 keV energy band. The spectra utilised in the subse-
quent analysis were binned to have a minimum of 1 count
per bin and were fitted over the energy range 0.6–2.0 keV us-
ing the C-statistic (e.g. Cash 1979; Humphrey et al. 2009),
cstat in xspec v12.9.1k (Arnaud 1996). Abundances were
scaled to the solar values of Anders & Grevesse (1989).

MNRAS 000, 1–20 (2018)
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Figure 2. Temperature, thermal electron number density and
thermal pressure profiles obtained from the spectral deprojection,
for the regions and sectors indicated in Fig. 1. The circles (black)
correspond to the eastern sector and the diamonds (purple) to the
western sector. Vertical bars are 1σ uncertainties on the projct

values. The fit (solid line, red-brown) corresponds to the derived
analytic expression (equation (1)).

2.2 Spectral analysis and deprojection of the ISM

In order to determine the physical properties of the ISM
in the vicinity of CentaurusA’s jet, we first carried out a
spectral deprojection, assuming spherical symmetry of the
ISM. The jet surroundings were divided into eastern and
western sectors relative to the jet, with each sector having
a base at 10.5 arcsec (193 pc projected) from the nucleus
(Fig. 1). Those bases are upstream of where the first X-ray
knots appear in the jet, but sufficiently far from the nucleus
to avoid contamination by it, from the wings of the point-
spread-function (PSF). Both pie slices were placed to trace
the edge of the jet as closely as possible without encoun-
tering non-thermal contamination from the jet itself. Each
sector was defined out to a galactocentric radius of 300 arc-
sec (∼ 5.5 kpc projected) – the X-ray jet itself is ∼ 4.5 kpc
long in projection, translating to a deprojected length at the
inclination of 50◦ of ∼ 5.9 kpc – and was adaptively divided
into regions (annuli) with a minimum of 4000 counts over
the 0.6–2.0 keV band in each. In order to avoid contamina-
tion of the spectra, all the point sources coincident with the
created sectors were masked to ∼ 3 times their FWHM, and
the AGN core out to a radius of 10 arcsec.

Each set of annular spectra was simultaneously fitted
using the xspec model projct∗

phabs
∗
vapec. The vapec

thermal model (Smith et al. 2001) was selected because it
allows the elemental abundances to be varied independently
of one another. Two additional thermal components were in-
cluded as a second model, to add small background correc-
tions. The first set of these thermal components accounts for
emission projected into the line of sight from regions outside

the deprojection region, assuming that the gas is distributed
as an isothermal β model (Cavaliere & Fusco-Femiano 1976;
see Nulsen et al. 2010 for further details on this method
of background correction). The β parameter for the model
(value ∼ 0.5) was established by fitting the surface bright-
ness profile over a 150 to 300 arcsec (∼ 2.8 to 5.5 kpc) range
(i.e. a cut, to avoid contamination from the dust lane on the
lower end and the turnover region of the jet as seen in ra-
dio on the higher end). The second thermal component of
the second model represents the thermal foreground emis-
sion from our Galaxy. Parameters of the vapec components
were used to obtain the profiles in Fig. 2.

The deprojection provides temperatures and abun-
dances directly for spherical shells corresponding to the re-
gions on the sky, while the electron densities are determined
from the norms of the vapec thermal models, assuming that
the density is uniform in the regions. Total pressures from
the gas in and near CentaurusA are given by ntot kT , where
the total adopted particle number density is ntot ≃ 1.93ne.
In measuring ne, abundances of oxygen, neon, magnesium
and silicon were individually allowed to vary for each sector.
All other elemental abundances were held fixed at 0.3 Z⊙ ex-
cept for helium which was set to 1.0 Z⊙. For regions within
the dust lane, hydrogen column densities were left free, while
all regions outside the lane were frozen at the Galactic H I

column density ofNH = 8.4×1020 cm−2 (Dickey & Lockman
1990; consistent with Kalberla et al. 2005 who obtained
NH = 8.0× 1020 cm−2, within our uncertainties).

The deprojected profiles are plotted in Fig. 2, and the
details of these results are provided in the appendix (Ta-
blesA1 and A2). Temperatures in both profiles are elevated
in the dust lane,2 less than 1.5 kpc from the nucleus, but
then converge to an average temperature of 0.65 keV out-
side the lane. The temperature profiles separate between
2.5–3.5 kpc, with the western sector decreasing in temper-
ature by 30 per cent relative to the east. This temperature
gradient could suggest the presence of a weak shock or some
filamentary structure in the western sector; however, no fea-
ture was found through follow-up X-ray photometric and
spectroscopic analyses. The electron densities in the two sec-
tors follow similar declines with distance, although they can
differ by up to 60 per cent. Deprojected pressures vary be-
tween the sectors by a factor of ∼2, yet good agreement is
seen at large distances from the centre. We used the com-
bined pressure results to derive an analytic expression for
pressure p in the range of ∼ 0.2 to 5.5 kpc radial distance
from the nucleus:

p(r) = (5.7± 0.9) × 10−11 (r/r0)
−1.5±0.2 dyncm−2 , (1)

where r0 = 1kpc is the radial distance to normalize the
gas density distribution. The analytic expression is repre-
sented by the solid line in Fig. 2. The corresponding ISM
mass density, for a constant ISM temperature of 0.65 keV
(see also Table 2), is compared to the mass density of the jet
obtained from the one-dimensional fluid model in Fig. 3; we
turn our attention to the fluid model in Section 3.

The thermal pressure in Fig. 2 can be considered to be
the total pressure, as the contribution from magnetic fields

2 NH was a free parameter in fits to establish the 1σ uncertainty
on temperature.
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and cosmic rays in the pc-kpc galactic atmosphere is negli-
gible (e.g. Croston et al. 2009).

To relate to other observations, the ISM pressure 1.5–
2 kpc west from the centre (i.e. not coincident with our cho-
sen sectors) as measured by Croston et al. (2009) ∼ 1.1 ×
10−11 dyncm−2. It is roughly a factor of 2 lower than our
deprojected value at the same distance from the nucleus. At
a location corresponding to the outer regions (>∼ 3.5 kpc) of
our eastern sector, the pressure from Kraft et al. (2008) is
approximately 3.0×10−12 dyncm−2, again a factor of about
2 lower than found in this work.

3 JET FLUID MODEL

Our objective is to make a quantitative model of flow
through the jet that matches observed properties of the jet
and its environment, and examine under what conditions
it is possible to decelerate a relativistic core jet to a sub-
relativistic flow. Here, we outline a physical model for this
purpose.

The CentaurusA jet is fairly well collimated and, apart
from the region close to the brightest X-ray knots, AX1A
and AX1C (see Goodger et al. 2010; Snios et al. 2019) at
about 350 pc (deprojected), its width varies smoothly with
distance from the nucleus; the modest opening angle of ∼
15◦ (Section 1) motivates an assumption of paraxial plasma
flow. This indicates that the jet is pressure-confined over
most of its length (Section 3.1) and that the jet flow does
not vary rapidly with time. These properties suggest the
use of a steady, one-dimensional flow model. Although such
a model is clearly approximate, it can provide estimates of
flow properties and some insight into the behaviour of the
jet.

Knotty substructures within the jet reveal local depar-
tures from the steady, one-dimensional flow. Following pre-
vious work (Hardcastle et al. 2003; Wykes et al. 2015), we
presume that the bulk of these knots are sites where the
jet interacts with stellar winds, which leads to dissipation
and turbulence. The turbulence likely adds to the effective
pressure of the jet fluid, but we assume that any turbulent
pressure can be lumped together with the ‘thermal’ pressure
of the jet plasma. The one-dimensional model requires the
turbulence and dissipation to be locally uniform when aver-
aged over regions approaching the width of the jet. Again,
this approximation will be poorest in the vicinity of knots
AX1A and AX1C. However, provided that mass, momentum
and energy are conserved, the model can be used to bridge
across regions where our detailed assumptions may not be
accurate.

Almost certainly, the flow speed varies to some degree
with distance from the jet axis, violating our assumption of
a one-dimensional flow. We remark that, between projected
distances of ∼ 3 and 4.5 kpc from the nucleus, the X-ray jet
tapers from the full width of the radio jet to a sharp tip,
before disappearing. If the production of X-ray synchrotron
emission depends primarily on the flow speed, this abrupt
disappearance of the X-ray jet requires either a steep veloc-
ity gradient in this region, or that the X-ray synchrotron
emissivity is very sensitive to the flow speed. The weak de-
pendence of the velocity on distance from the AGN nucleus
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Figure 3. Jet internal mass density (solid purple line) and ISM
mass density (dashed black line) as a function of deprojected dis-
tance from the nucleus. Here, the ISM density is determined from
the pressure given by equation (1), assuming the ideal gas law and
a constant temperature of kT = 0.65 keV. The glitches upstream
in the jet, seen in this and the following figures, coincide with
the ‘flaring region’ at around 350 pc from the nucleus, associated
with the base (A1) knots (see e.g. Snios et al. 2019); the model is
unreliable around this point.

found in our models (see Section 4) would require the latter.
The taper at the end of the X-ray jet implies there is some
gradient in flow speed from the spine of the jet to its sheath.
However, if particle acceleration is very sensitive to the flow
speed, the required speed difference will be modest. Thus,
while the taper does imply some transverse velocity gradi-
ent in the jet, the one-dimensional flow model should provide
good, representative estimates of the flow properties.

We disregard plasma instabilities as these occur only
on scales of order the gyroradius. But, we need to be mind-
ful of fluid instabilities, despite them not being an actual
input in the model; they are relevant in the context of ex-
ternal entrainment and in the context of potential disrup-
tion of the jet. Blandford & Rees (1974) pointed out that
small-scale Kelvin-Helmholtz (KH) instabilities of the type
endemic to jet flows could have a short growth time, and
grow so rapidly that the overall mean jet flow could be re-
garded as steady. We have evaluated the length scales and
growth rates of KH modes for our model by solving the dis-
persion relation from Birkinshaw (1984, 1991). The internal
medium is taken to have a density 3 × 10−4 of the density
of the external medium (Fig. 3). The internal and external
sound speeds, for pressure balance, are then about 105 and
2 × 103 km s−1. Such a light and fast flow is relatively sta-
ble against the ordinary n = 0 (‘pinching’) type modes, but
quite unstable to the ordinary n = 1 (‘helical’) and higher-n
(‘fluting’) modes and the reflection modes of all n. The flow
supports a large number of unstable ordinary or reflection
modes of short wavelengths, less than about 10 jet radii, and
growth lengths of a few jet radii, with the growth length de-
creasing for higher-order modes of shorter wavelength. The
implication is that the effect of the KH instability is to cause
a jet flow initially bounded by a sharp velocity and density

MNRAS 000, 1–20 (2018)
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discontinuity to develop smoother velocity and density pro-
files, rather than to be disrupted. This is consistent with
the lack of observational evidence for large-scale KH insta-
bilities in CentaurusA. The region affected has to be quite
thin. The agreement between the X-ray and radio sizes (see
Section 3.2) also argues that any transition layer between
the jet and ISM must be narrow; otherwise, the radio jet
should be wider than the X-ray jet.

3.1 Fluid equations

If energy is conserved, the kinetic energy of any entrained
matter, as measured in the jet rest frame, is dissipated in
the jet fluid. We assume that entrainment of stellar mass loss
is the primary cause of dissipation within the jet, requiring
mass entrainment to be incorporated into the model flow
equations (e.g.Komissarov 1994). Assuming that the parti-
cle number in the jet is conserved, the flow of matter through
it can be tracked in terms of the proper (i.e.measured in the
fluid rest frame) density of rest mass ρj. The (smoothed)
rate per unit volume at which stars inject rest mass into the
jet is a relativistic scalar density, which we denote by α. The
conservation of matter is then expressed by the continuity
equation

∂

∂xµ
ρj U

µ = α , (2)

where xµ = (ct, r) refers to the 4-position and Uµ = Γj(c,v)
is the 4-velocity of the jet fluid. For steady flow, this reduces
to

∇ · ρj Γj v = α , (3)

where ∇· is the three-space divergence. If the one-
dimensional coordinate on which the jet properties depend
is s, we consider a volume V of the jet that is bounded on its
sides by the edges of the jet and on its ends by surfaces of
constant s, say s = s1 and s2 at the inner and outer ends, re-
spectively. Integrating equation (3) throughout V and using
the divergence theorem gives
∫

∂V

ρj Γj v · dA =

∫

V

α dV , (4)

where ∂V is the boundary of V. Since the flow velocity v is
parallel to the sides of the jet, they do not contribute to the
surface integral. If A(s) is the area of the surface within the
jet on which the coordinate has the value s, the flux of rest
mass through this surface is

Ṁ(s) = ρj(s) Γj(s) vj(s)A(s) , (5)

where vj(s) denotes the flow speed through the surface (the
values ρj(s), Γj(s) and vj(s) are well defined, since the flow
is one-dimensional). Thus, equation (4) gives

Ṁ2 − Ṁ1 =

∫

V

α dV , (6)

where Ṁ1 = Ṁ(s1) and Ṁ2 = Ṁ(s2).

We assume that the fluid is perfect (has isotropic
stresses in its local rest frame), so that the stress-energy
tensor has the form (Landau & Lifshitz 1959)

T µν = wUµ Uν/c2 + p gµν , (7)

where the Minkowski metric is gµν = diag(−1, 1, 1, 1), p is

the proper pressure and w = e+p is the proper enthalpy den-
sity, with e the proper energy density (including rest mass).
In the transrelativistic range considered here, it is appropri-
ate to partition the enthalpy as

w = ρj c
2 + h , (8)

so that h asymptotes to the more familiar, non-relativistic
enthalpy in the low-energy limit. The energy-momentum in-
jected into the jet fluid per unit of stellar mass loss can be
expressed in the form ǫV µ/c, where ǫ is the proper specific
energy (energy per unit mass) in the stellar winds, and V µ

is a time-like unit 4-vector, in which case the equation for
conservation of energy-momentum takes the form

∂

∂xµ
T µν = α ǫ V ν/c2 . (9)

In the rest frame of the host galaxy, the frame in which the
flow is steady, the net momentum introduced by stellar mass
loss is small and has little impact, so we take it to be exactly
zero.3 Some thermal energy will also be introduced to the
jet with the stellar winds, but this is negligible compared to
the thermal energy liberated by mixing stellar wind into the
fast-moving jet. Therefore, in the galaxy frame, we assume
V µ = (c, 0, 0, 0) and ǫ = c2. With these assumptions, for
steady flow, equations (7) and (9) give

∇ ·

[

w

c2
Γ2
j v

(

c
v

)]

+

(

0
∇p

)

= α

(

c
0

)

. (10)

We neglect anisotropic magnetic stresses.

The upper component of equation (10) expresses conser-
vation of energy for the steady flow. Integrating it through-
out the volume V described above gives

[

Aw Γ2
j vj

]2

1
=

∫

V

α c2 dV =
[

Ṁc2
]2

1
, (11)

where equation (6) has been used on the right-hand side.
Moving the terms from the right-hand side to the left and
using equations (8) and (5), we find that the jet power

Pj = Aw Γ2
j vj − Ṁc2 = (Γj − 1)Ṁc2 + AhΓ2

j vj (12)

remains constant in the jet. The first term on the right is the
kinetic power and the second term gives the power in internal
energy carried by the jet (‘thermal power’). Note that the
conserved jet power does not include rest-mass energy, since
that varies as mass is entrained by the jet.

The lower (3-space) components of equation (10) con-
tain the usual momentum equation

∇ ·
w

c2
Γ2
j vv +∇p = 0 , (13)

where vv is a dyadic (or tensor) product. The equation re-
quires the pressure to be continuous across the jet boundary.
In equation (13), the only contribution of the first term that
need not be parallel to v is proportional to v · ∇v. Thus,
the pressure gradient will be parallel to v, except where
the streamlines have significant curvature. Once more, the
abrupt expansion of the jet in the vicinity of knots AX1A
and AX1C means that at least some streamlines are strongly

3 On the other hand, stellar mass entrained into the jet is sub-
stantial; hence, the ‘0’-momentum component, mc, is not ne-
glected.
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Fluid model of the CentaurusA jet 7

curved there, so that the pressure may vary signficantly
across the streamlines. Not surprisingly, our assumption of
one-dimensional flow is likely to be poorest in this region. We
also point out that our assumption of one-dimensional flow
requires the jet to be irrotational: with ∇s the flow direc-
tion, the velocity is expressible as vj = f(s)∇s, from which
it follows that ∇ × v = 0. In practice, the large expansion
during outflow from the core will reduce any initial circula-
tion around the jet axis. Some circulation is expected due
to the speed difference between the spine and sheath, but,
as discussed in Section 3, that is probably not very large.

Because the jet speed is much greater than the free-fall
speed across the range of distances of interest, the direct
effect of gravity on the jet velocity and pressure will be neg-
ligible. The only significant external force on the jet is the
net pressure force from the surrounding regions, which is

included in the model.

Taking the dot product with a constant vector b, inte-
grating throughout the volume V, and using the divergence
theorem, equation (13) yields

0 =

∫

∂V

w

c2
Γ2
j (v · b)v · dA+

∫

V

b · ∇p dV

=

[

A
w

c2
Γ2
j vj v

∣

∣

∣

2

1
+

∫

V

∇pdV

]

· b , (14)

where, again, there is no contribution to the surface integral
from the sides of the jet, because v is parallel to the surface.
Since b is arbitrary, the vector in brackets must be zero. Its
first term is the increase in the jet momentum flux between
the surfaces at s = s1 and s = s2, while the second term is
minus the net pressure force on the jet in the volume V.

Henceforth, we assume that the coordinate s can be
taken to be the radial distance r from the nucleus to the
point of interest. Since the opening angle of the jet is modest,
the upward component of the momentum flux through the
surface A normal to the jet axis is close to

Π = Aw Γ2
j β

2
j = (Pj/c+ Ṁc) βj , (15)

where βj = vj/c, while equations (8), (12) and (5) have been
used in turn to eliminate w, h and ρj to obtain the expres-
sion on the right. Most of the terms in equation (15) are
functions of r. The approximation in equation (15) amounts
to replacing the average value of cosψ over a level surface of
s by unity. For a conical jet with full opening angle ψ, the
actual average value is given by cos2(ψ/4) ≃ 0.996 for an
opening angle of 15◦. Similarly, the second term of the mo-
mentum equation can be approximated by the radial pres-
sure gradient, giving the increase in momentum flux due to
the external force, i.e. the net pressure force, on the jet as

Π2 − Π1 = −

∫

V

dpISM
dr

A(r) dr . (16)

Note that this result is exact if the flow is spherical. Below,
thrust is used to mean the momentum flux of the jet.

Before discussing further details, we reiterate that our
flow solution only relies on assuming that particle numbers
and energy are conserved. If the input parameters are rea-
sonable, and key properties, such as the jet power, have re-
mained nearly constant over the ∼ 5 kpc/0.5c ∼ 3 × 104 yr
required for the jet to flow through the region of the so-
lution, it should provide representative results. The model

may not be accurate in parts of the jet where some of our
assumptions are not well satisfied, but this will not cause
it to fail in other regions where the assumptions are better
met.

3.2 Model implementation

Using the results of the previous subsection, we model the jet
by solving equation (12) for the jet speed. There are several
parameters that must be evaluated in order to do this.

We adopt the jet power of Pj ∼ 1 × 1043 erg s−1 from
Croston et al. (2009). This power estimate is based on shock
dynamics and should be mostly independent of the jet com-
position. It is uncertain by a factor ∼ 2.4 We argue that the
power remains approximately constant along the jet length
(see equation (12)). This is reasonable given the small power
radiated and the apparent absence of disturbances surround-
ing the jet (Section 1).

The area of the jet at a given distance from the nu-
cleus was deduced from our Chandra images of the radio
galaxy (except that we use Very Large Array, VLA, data
where the X-ray jet tapers off at its most downstream re-
gion). We measured the transverse diameter of the X-ray or
radio jet from the images at 15 locations along its length,
where the diameter is taken to be the broadest extent of any
detectable X-ray or radio emission. Our measurement accu-
racy corresponds to approximately ±0.5 Chandra pixels, or
0.25 arcsec, for the X-ray data, and is similar for the radio
data. Here, the implicit assumption is that the physical jet
flow is not significantly larger than the region of observable
radio or X-ray emission; it cannot be smaller and we have
no reason to expect that it is larger. The fact that the X-
ray and radio diameters are in good agreement suggests that
there is no bias in using the X-ray data. The opening angles
corresponding to these measurements are given in TableA4
(this sampling rate is adequate, as adding more points only
increases the apparent noise in the solutions). Intermediate
values are found by linear interpolation. The flow equations
are solved at any nominated location, as required.

To determine the jet transverse area A(r), we assume
that the projected radius of the jet at the projected distance
r sin θ from the nucleus is equal to the actual jet radius rj
(X-ray to zero intensity) at r (Fig. 4). Here, θ is the incli-
nation of the jet to our line of sight. This approximation
is accurate, provided that the projected opening angle of
the jet ψ is modest. We also use the planar approximation,
A(r) = πrj(r)

2, for the jet area. If the jet flow is radial, the
total error due to these approximations would be <

∼ 1 per
cent, which is negligible compared to other sources of error.

The pressure in the jet is taken to match the pressure
profile given by equation (1). Assuming a fixed ratio of spe-
cific heats γ, this determines the enthalpy density as

h =
γ

γ − 1
p . (17)

4 A factor 2 seems reasonable to account for the uncertainties in
the external pressure, the geometry of the inner lobes (including
projection), the assumption of a constant speed of lobe expansion,
and the inner lobe age (also including projection), which are not
estimated by Croston et al. (2009).
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Figure 4. Jet radius as measured from Chandra images (see the
text) as a function of deprojected distance from the nucleus for
a jet inclination of 50◦. The near-linearity suggests a constant
opening angle, with a value of ψ ∼ 5.68/0.49 ∼ 11.6◦.

The value used for the ratio of specific heats, γ = 13/9, is
appropriate for hydrogen plasma in the temperature range
0.5 MeV<

∼ kT <
∼ 1 GeV, when the electrons are relativistic,

but the protons are not5 (relativistic electrons, subrelativis-
tic protons, where by number Ne ∼ Np and positrons are
already diluted to insignificance). As shown in Fig. 10, this
is the effective temperature range we find for the jet plasma.

Our assumptions so far determine everything but the
jet speed and Ṁ(r) in equation (12). To complete the solu-
tion, we need a value for one or the other of these. At the
innermost solution point, in the absence of other constraints
on the flux of rest mass, we specify the jet speed. Equation
(12) then decides the value of Ṁ(r) there. Knowing Ṁ(r) at
the first solution point and α(r), equation (6) can be used to
determine Ṁ(r) at any other point. Knowing Ṁ(r), equa-
tion (12) can now be solved for the flow speed. The rate
of stellar mass injection α(r) is discussed in the following
sections.

Having determined values for Ṁ(r) and vj(r), equation
(5) can be solved for the proper density of rest mass in the
jet plasma ρj(r). Combining that with the jet pressure in
the ideal gas law, we can establish an effective tempera-
ture kT for the jet plasma. For this purpose, we assume a
mean mass per particle of 0.59mH, typical of fully-ionized
gas with cosmic abundances. Although the particle distri-
bution is unlikely to be thermal, this value of kT should be
representative of the particle energies measured in the rest

5 The net ratio of specific heats is (ne cp,e + np cp,p)/(ne cV,e +
np cV,p), where ne and np are the number densities of electrons
and protons, respectively, cp,e and cp,p are the respective specific
heats per particle at constant pressure, and cV,e and cV,p are the
specific heats at constant volume. For hydrogen plasma,Ne = Np,
so the calculation reduces to (4+5/2)/(3+3/2). 13/9 is sensible in
our case, where it can be assumed that the electrons and protons
are in sufficiently close thermal contact that they act as a single
coupled thermal fluid.

frame of the jet plasma. Other jet properties, such as the
powers in internal and kinetic energy, and the sound speed
of the jet plasma, can be ascertained from these.

We consider ‘initial’ speed (speed at the start of the
modelled region, 193 pc projected distance from the nucleus)
of vj = 2c/3 = 0.667c (and so a Lorentz factor Γj = 1.34)
and inclination of the approaching jet θ = 50◦. After an ini-
tial exploration, we consider the effects of varying the initial
jet speed, Pj and θ, as these are less well constrained than
other parameters. As required by the one-dimensional flow
model, the velocity and density are taken to be constant
across the jet.

The steady one-dimensional flow solution is fully deter-
mined by the procedure above, so that the momentum equa-
tion (16) can be used as a consistency check on the solution.
In general, the momentum flux, equation (15), will depend
on the galactocentric radius r in a flow solution. It is possi-
ble that the jet loses an appreciable amount of momentum
due to effective viscous stresses at the jet boundary, but it is
very unlikely that the jet momentum flux could increase by
more than the amount due to the net pressure force, given
by equation (16). As discussed below, this proves to be a
significant constraint.

We remark in addition that the jagged features visible
in the plots of the flow solutions, due to their limited dy-
namic ranges, most evident in the temperature and Mach
number (Figs 10 and 11), reflect our discrete measurements
of the jet width (TableA4). At small radii, these are most af-
fected by the flare associated with knots AX1A and AX1C at
∼ 350 pc deprojected distance; almost certainly, these knots
play some role in producing the temperature peak seen in
this distance range in Fig. 10. More generally, the measure-
ments are also affected by knots near the jet margin and
regions where the edge of the jet is less well defined.

We wrote python codes to obtain the simulated jet ve-
locity profile, power distribution and mass-flow rate.6 These
simulations are not computationally expensive, and we used
a personal platform running Qubes 4.0.7 More demanding,
additional simulations to assess stellar mass-loss rates (Sec-
tion 3.2.3) were conducted on the University of Hertfordshire
cluster.8

3.2.1 ISM parameters

The ISM gas temperature is set to the mean value of 0.65 keV
(Section 2.2) and the pressure profile of the jet is assumed to
be as specified in equation (1). We note that this tempera-
ture is used solely to determine the density of the ISM from
the pressure in Fig. 2. Distance along the jet is related to the
observed (projected) distance, assuming a jet inclination of
50◦.

We need to determine the mass injection rate α. In the
following sections, we proceed by estimating the total den-
sity of gravitating matter and, from that, the stellar density.

6 The codes used for this paper are available from the authors
upon reasonable request.
7 https://www.qubes-os.org/
8 https://uhhpc.herts.ac.uk/
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Fluid model of the CentaurusA jet 9

A model for the stellar population is then used to determine
the rate at which the stars shed mass.

3.2.2 Stellar mass density

The gravitating mass distribution is approximated as singu-
lar isothermal sphere, with Keplerian velocity vK, requiring
the gravitating mass density given by

ρgrav =
v2K

4πGr2
. (18)

This approximation is satisfactory, although it becomes
poorer near the innermost solution point. We use vK =
250 kms−1 from Graham (1979), and other authors
(e.g. Hui et al. 1995) obtain similar results.

We take 75 per cent of the stellar population of
NGC5128 to be 12Gyr-old stars and the remaining 25
per cent to be 3Gyr old (Rejkuba et al. 2011; Wykes et al.
2015), or in the terminology of the model used below,
f1 = 0.75 and f2 = 0.25.9

The stellar M/L, in V -band, in the BaSTI population
synthesis models (Pietrinferni et al. 2004, 2006)10 for the
12Gyr population (alpha-enhanced, metallicity Z = 0.004
and mass-loss efficiency parameter11 η = 0.4) is 2.73, and
for the 3Gyr population (solar-scaled, Z = 0.008, η = 0.4)
the M/LV is 1.16. The younger stars will reduce the com-
posite value:

M/L =
f1ρ∗ + f2ρ∗

f1ρ∗/µ1 + f2ρ∗/µ2

=
f1 + f2

f1/µ1 + f2/µ2

, (19)

where f1+ f2 = 1, ρ∗ is the stellar mass density, and µ1 and
µ2 are the M/L of the older and younger populations re-
spectively. From the above stellar population M/LV values,
we obtain a composite modelled M/LV of about 2.04.

The measured (i.e. including dark matter) M/LV for
NGC5128/CentaurusA can be retrieved from Hui et al.
(1995). An appropriate value for our modelled region
(4.5 kpc projected) follows from their figure 21b showing esti-
mated M/LB , and converts to M/LV ∼ 3.8 for our adopted
distance to CentaurusA. If the visible light comes from this
population of stars, the discrepancy between the stellar mod-
elled (BaSTI) M/LV ratio and the observed value must be
due to the presence of dark matter. The ratio of the pre-
dicted M/LV to the observed value then gives the fraction
of the gravitating mass in stars, f∗ ≃ 2.04/3.8 ≃ 0.54. The
mean stellar density is then

ρ∗ = f∗ ρgrav . (20)

9 The percentages of ∼ 75 per cent of old (∼ 12Gyr) and ∼ 25
per cent of younger (∼ 3Gyr) stars are based on simulated colour-
magnitude diagrams and refer to the percentage of stars. While
not strictly equal to mass fractions, given the relatively narrow
range of masses of surviving RGB stars that were probed, this is
close to mass-based grouping (see Rejkuba et al. 2011).
10 http://albione.oa-teramo.inaf.it/
11 η is defined by Reimers (1975), and McDonald & Zijlstra
(2015) provide its value.

3.2.3 Mass-return timescale

Averaged over the population of stars, the mean rate per
unit volume at which the stars shed mass can always be
expressed in the form

α =
ρ∗
τ

, (21)

where τ is called the mass-return timescale,

τ =
M∗

dM∗/dt
, (22)

with M∗ the mass of a representative population of stars at
time t. Here, we discuss the appropriate value of τ for the
stars in NGC5128.

For a population of stars born in a single event, the total
stellar mass-loss rate is

dMtot

dt
=

[ dN

dt

]

Minit

(Minit −Mfin) , (23)

where Mtot is the total mass of the population, dN
dt

|Minit
is

the stellar death rate, evaluated at Minit, and Minit and Mfin

refer to the considered initial and final stellar masses. The
term dN/dMinit comes from the initial mass function (IMF)
and the term dMinit/dt from stellar evolution models of the
change in stellar lifetime with mass.

Writing equation (21) for individual populations, we
have

α =
f1ρ∗
τ1

+
f2ρ∗
τ2

=
(f1 + f2)ρ∗

τ
, (24)

where ρ∗ is again the stellar mass density, τ1 and τ2 are the
mass-return timescales of the 12Gyr and the 3Gyr popula-
tions, respectively, and τ is the composite result.

Faber & Gallagher (1976) suggest an overall mass-loss
rate in large ellipticals of 1.5 × 10−11 M⊙ yr−1 L−1

⊙ . Since
we have a reasonable understanding of the stellar content
of NGC5128, we can compare the mass-loss rates and work
out the mass-return timescales in a more detailed fashion.

We use the stellar evolution code described
by Hurley et al. (2000) and stellar wind codes by
Cranmer & Saar (2011) (see Wykes et al. 2015 for the
details on the code handling), with a modification to
compute the mass-return timescale. In brief, the Single-Star
Evolution (SSE) routine by Hurley et al. (2000) is based
on a number of interpolation formulae as a function of
the initial mass, stellar age and metallicity, and provides
predictions for Ṁ for phases with high mass-loss rates. The
BOREAS routine by Cranmer & Saar (2011) is added to
fill in for the missing mass-loss rates; this routine computes
Ṁ for cool main-sequence stars and evolved stars (red giant
branch, RGB, not asymptotic giant branch, AGB).

Again, we consider 75 per cent of 12Gyr (Z = 0.004)
and 25 per cent of 3Gyr-old (Z = 0.008) stars. We adopt the
IMF as used by Wykes et al. (2015): x = 1.3 between 0.08
and 0.5M⊙ and x = 2.35 for 0.5M⊙ and higher masses (x
in the sense M−x

init). 10
8 stars are simulated to avoid small-

number effects associated with brief stages of substantial
mass-loss rate at the tip of the AGB, in 20 runs. We model
the 12 and 3Gyr populations separately, and compare with
direct observations. The retrieved mass-return timescale τ
is independent of the jet opening angle; it only depends on
the stellar population properties and the assumptions about
stellar evolution.
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Table 2. Key input values adopted for the kinematic model.

Parameter Value

CentaurusA distance 3.8Mpc
ISM gas temperature 0.65 keV
Power-law index for pressure profile −1.50
Normalizing radial distance 54.3 arcsec
ISM pressure at normalizing distance 5.7× 10−11 dyn cm−2

Circular velocity 250 km s−1

Observed M/LV 3.8
BaSTI modelled M/LV 12Gyr population 2.731
BaSTI modelled M/LV 3Gyr population 1.160
Mass-return timescale 12Gyr population 3.333× 1011 yr
Mass-return timescale 3Gyr population 5.952× 1010 yr
Fraction 12Gyr population 0.75
Fraction 3Gyr population 0.25
Entrained fraction 1.0 or 0.5
Jet power 1.0× 1043 erg s−1

Initial jet speed 0.667c
Jet ratio of specific heats 13/9
Jet viewing angle 50◦

Solution start 252 pc

For the 12Gyr (Z = 0.004) population, we obtain
a mass-loss rate per unit luminosity of (7.17 ± 0.14) ×
10−12 M⊙ yr−1 L−1

⊙ and a mass-loss rate per unit mass of
(3.00±0.07)×10−12 M⊙ yr−1 M−1

⊙ . The latter gives a mass-
return timescale of τ1 ∼ 3.33× 1011 yr.

While the mass-loss rate is somewhat below the
value for old populations in large ellipticals given by
Faber & Gallagher (1976), we have direct observational evi-
dence for a similar mass-return timescale in the nearby stel-
lar cluster 47Tucanae,12 which harbours a single popula-
tion of 11.95Gyr-old stars (McDonald & Zijlstra 2015) with
metallicity of Z = 0.003 (Roediger et al. 2014). Its total
mass is Mtot = 1.1 × 106 M⊙ (Lane et al. 2010) and the
stellar death rate amounts to 1 per 80 kyr (McDonald et al.
2011). The initial mass of a star Minit has been estimated as
0.89M⊙ (McDonald & Zijlstra 2015; Fu et al. 2018), while
the final mass is Mfin = 0.53M⊙ (Kalirai et al. 2009). Fol-
lowing equation (23), the resulting rate amounts to (1/8 ×
104)×(0.36/1.1×106 ) ∼ 4.09×10−12 yr−1, i.e. a mass-return
timescale τ1 ∼ 2.44 × 1011 yr, which is fairly close to the
modelled value above.

Separately modelling the 3Gyr (Z = 0.008) popula-
tion gives a mass-loss rate per unit luminosity of (1.57 ±
0.09) × 10−11 M⊙ yr−1 L−1

⊙ and a mass-loss rate per unit
mass (1.68 ± 0.10) × 10−11 M⊙ yr−1 M−1

⊙ , translating to a
mass-return timescale of τ2 ∼ 5.95 × 1010 yr (Table 2).

Direct observational data on 3Gyr-old populations
are sparse. At best, the open clusters NGC6791 and
NGC6819, which bound the 3Gyr-old population observed
in NGC5128/CentaurusA, can serve as well-studied lo-
cal comparisons where the stellar death rate can be esti-
mated. For NGC6791, aged ∼ 8.3Gyr, we find a death
rate of 1 star per ∼ 7Myr. Given its total mass of 5 ×
103 M⊙ (Corsaro et al. 2017),Minit ∼ 1.23M⊙ (Miglio et al.
2012) and Mfin ∼ 0.56M⊙ (Kalirai et al. 2009), relying

12 Stellar mass-loss rate is independent of the environment.
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Figure 5. Increase in jet thrust versus mass-flow rate, for an
initial jet speed of 0.667c, jet power of 1 × 1043 erg s−1 and a
jet inclination of 50◦. The solid line (purple) shows the increase
in jet momentum flux from the initial solution point to the final
one. The dashed (black) line signifies the net pressure force on the
whole of the modelled jet region. The dotted lines are the model
values.

again on equation (23) gives us a rate of (1/7 × 106) ×
(0.67/5 × 103) ∼ 1.91 × 10−11 yr−1, or a mass-return
timescale of τ2a ∼ 5.22 × 1010 yr. For NGC6819, with a
population of ∼ 2.4Gyr-old stars, we calculate a stellar
death rate of 1 per 6Myr. With Mtot = 2.6 × 103 M⊙

(Corsaro et al. 2017), Minit ∼ 1.64M⊙ (Handberg et al.
2017) and Mfin ∼ 0.57M⊙ (Kalirai et al. 2009), we have
(1/6 × 106) × (1.07/2.6 × 103) ∼ 6.86 × 10−11 yr−1, or a
mass-return timescale of τ2b ∼ 1.46 × 1010 yr. Then linear
interpolation leads to a mass-return timescale for the 3Gyr
population of τ2 ∼ 1.9 × 1010 yr (the detailed working on
those two clusters can be found in AppendixB). The result
is not as near as the modelled value for the 12Gyr popula-
tion; none the less, it constitutes a valuable check.

Since the modelled values of the mass-loss rate per lu-
minosity and mass-loss rate per mass are in essence the
M/L ratios, and represent the R-band, we can compare to
the BaSTI population synthesis models (see Section 3.2.2).
The modelled M/L for the 12Gyr stars gives 2.39 while the
BaSTI M/LR is 2.48, and the modelled M/L of the 3Gyr
population is 0.93 while the BaSTI M/LR = 1.04. These are
in reasonable agreement, and increase the confidence in the
modelled mass-return timescales.

4 SOLUTIONS FOR MASS-LOADED JET

Following the procedure outlined in Section 3, we solve the
energy equation (12) for the flow speed as a function of dis-
tance from the nucleus r. The model parameters used are
listed in Table 2. The initial jet speed determines the value
of Ṁ , the flux of rest mass, at the innermost solution point,
and then equation (6) is used to determine Ṁ(r) at all other
locations.

For reasons discussed in Section 1, mass is likely de-
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posited in the jet from stellar winds. The material from the
surrounding ISM may represent another mass source, but
Wykes et al. (2013, 2015) argue that such external entrain-
ment, if occurring in CentaurusA, is only a small fraction of
the mass injected by stars. Another effect needing consider-
ation before we proceed further is whether all the material
lost from stars to the jet is effectively mixed into it, and
if not, what is the maximum amount of stellar mass loss
allowed by a physically consistent model.

To address the latter point, we plot the increase in mo-
mentum flux of the jet (jet thrust) versus mass-flow rate
in Fig. 5. The solid line here shows the increase in jet mo-
mentum flux from the initial solution point to the final one
versus the final flux of rest mass through the jet. The low-
est value of Ṁfin corresponds to the case that no mass is
entrained by the jet in the region modelled. The dashed
horizontal line shows the external pressure force on the jet,
i.e. the net pressure force on the whole of the modelled jet
region. The expansion rate of the jet is such that, if no mass
were entrained, the jet momentum flux would be inferred
to decrease. As outlined in Section 3, equation (16) is not
used to solve for the jet properties, so that the increase in
jet momentum flux provides a constraint on the solution.
The jet may experience drag due to its interaction with the
surrounding medium or with stationary obstacles within it,
in which case the increase in the jet momentum flux could
be less than the net pressure force on the jet. However, it
is implausible that the momentum flux of the jet increases
by more than the net pressure force. From Fig. 5, this limits
the total mass flux at the final point to . 4.2×1022 g s−1, or
≃ 40 per cent of the mass shed by stars within the jet. We
are unable to find an acceptable model parameter set that is
consistent with equation (16) if all of the stellar mass loss is
entrained. However, the simplified flow model together with
the substantial uncertainties in the flow parameters prevent
us placing tight constraints on the maximum fraction of the
stellar mass loss that can be entrained. Assuming that the
drag on the jet is negligible, we have reduced the entrain-
ment rate by a constant factor to match the distribution
of the pressure force on the jet. Allowing for the substantial
uncertainties here, we have adopted a reduction factor of 0.5
as representative (see Fig. 8).

Plots 6 through 11 show flow solutions for the parameter
set in Table 2, with entrained fractions of 1 and 0.5. We also
discuss the effects of changing the initial jet speed, the jet
power, its inclination and the jet width in the remainder of
this section.

The criteria for an acceptable model are: (i) the ad-
mitted solutions for the jet velocity need to stay above the
lower limits from observations; (ii) the run of jet thrust incre-
ment should approximately match the run of the net pres-
sure force. The physical assumption is that momentum in
the jet is conserved. If the increase in thrust does not match
the increase in momentum flux, then there must be forces
on the jet that we have not accounted for. That could be
the case, but it would be difficult to quantify and is out of
the scope of this paper; (iii) the ratio of kinetic to thermal
power in the jet should decline with distance from the nu-
cleus. If there was no dissipation, as the pressure decreased,
the thermal energy would be transformed into kinetic en-
ergy, so that the kinetic energy would keep increasing and
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Figure 6. Jet velocity versus deprojected distance from the nu-
cleus, for entrained fractions of 1 (purple line) and 0.5 (green line),
for an initial jet speed of 0.667c, jet power of 1×1043 erg s−1 and
an inclination angle of 50◦, obtained from solution to equation
(12). Lower limits on speeds from observations, including error
bars, are indicated: at 350, 410 and 672 pc, the intrinsic com-
ponent speeds of the A-group knots based on radio data analy-
sis by Goodger et al. (2010) (triangles, brown), and at 438 pc to
1.76 kpc a mean value of the intrinsic component speeds of the A,
B and C-group knots based on X-ray data analysis performed by
Snios et al. (2019) (triangles, cobalt blue).

the thermal energy decreasing. Dissipation converts kinetic
energy to thermal energy, forcing this back in the other di-
rection. This does not necessarily bring the kinetic and ther-
mal fluxes together; however, if the jet is to be decelerated
significantly as discussed above, it has to become subsonic.

Plotted in Fig. 6 is βj, the ratio of the jet speed vj to
the speed of light, against the physical distance from the
nucleus. To connect to observations, we include the intrinsic
speeds from the proper motion measurements: radio proper
motions of βj,app = 0.534+0.06

−0.02 , 0.338+0.22
−0.15 and 0.802+0.15

−0.09

(Goodger et al. 2010) give through the Doppler formula βj =
βj,app/(sin θ+βj,app cos θ) intrinsic speeds of βj = 0.481+0.04

−0.01 ,
0.344+0.17

−0.12 and 0.626+0.07
−0.04 , respectively, and the X-ray proper

motion of βj,app = 0.68+0.20
−0.20 (Snios et al. 2019) leads to βj =

0.565+0.11
−0.11 . These are treated as lower limits to the bulk-

flow speed. Keeping other things equal, increasing the initial
jet bulk-flow speed causes the thermal power to rise at the
expense of kinetic power (Fig. 7). With a higher speed, the
mass flow must be lower to satisfy equation (12). A higher
velocity better fits both the thermal power and momentum-
pressure force gauges of the model; models with initial jet
velocity of less than 0.65c are difficult to sustain (and at any
rate, they are barely supported by observations) but models
with initial velocity ≥ 0.65c work well. At the higher end,
the limit for a reasonable model is 0.70c. A velocity drop to
∼ 0.47c towards the end of the jet with the full entrainment
and to ∼ 0.52c in the entrainment reduced by 50 per cent is
representative of most of the runs. A smaller versus larger
inclination angle causes the terminal velocity to respectively
increase and decrease.

Fig. 7 compares the kinetic and thermal components of
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Figure 7. Jet power distribution for entrained fractions of 1 (pur-
ple) and 0.5 (green), for an initial jet speed of 0.667c, jet power of
1×1043 erg s−1 and a jet inclination of 50◦, as a function of depro-
jected distance from the nucleus. The solid lines indicate the ki-
netic power, the dashed lines the thermal power (AΓ2

j vj(w−ρjc
2),

see also equation (12)).

the jet power, given by the two terms on the right-hand side
of equation (12). It is clear from the figure that the kinetic
power is dominant throughout the jet. The kinetic power is
even more dominant for higher jet powers and for smaller
inclination angles. The ratio of initial velocity to terminal
velocity in Fig. 6, expressed in terms of (Γj − 1), shows a
decrease in (Γj −1) of 0.342/0.133 ∼ 2.57 (full entrainment)
and 0.342/0.171 ∼ 2.0 (reduced entrainment). The ratio of
final Ṁ over initial Ṁ in Fig. 9 represents an increase of
6.7/2.8 ∼ 2.39 (full entrainment) and of 4.8/2.8 ∼ 1.71 (re-
duced entrainment). Those values are sufficiently close to
one another and support the assumption that the jet power
Pj does not significantly change and the thermal part of the
proper enthalpy density h can be neglected.

Fig. 8 displays the thrust increment, or increase in jet
momentum flux from the initial solution point ∆Π and the
cumulative net pressure force (defined on the right in equa-
tion (16)). The net pressure force acting on the jet can in-
crease its momentum flux. The net pressure force is fully
determined by the pressure profile and jet area, so it does
not depend on other jet properties. Changes in the initial
speed do affect the thrust increment in the sense that higher
speeds give higher ∆Π. Both the momentum flux and the net
pressure force are affected by the pressure: increasing the
pressure will generally reduce the momentum flux, while in-
creasing the net pressure force. Fig. 5 lead to the conclusion
that the best choice of injection rate is about 40 per cent
of the total mass-loss rate from the stars; however, this only
provided the comparison at one location. From Fig. 8, we can
conclude it should be somewhat greater. AppendixC addi-
tionally shows the behaviour of the jet momentum in case
of zero mass entrainment (Fig. C2): the apparent drop in
jet momentum strongly suggests that the jet entrains mass.
The jet velocity diminishes only marginally for zero mass
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Figure 8.Momentum flux increment (solid line) and net pressure
force (dashed line, black), for entrained fractions of 1 (purple)
and 0.5 (green), for an initial jet speed of 0.667c, jet power of
1 × 1043 erg s−1 and a jet inclination of 50◦, as a function of
deprojected distance from the nucleus. Neither the increase in
the momentum flux, nor the net pressure force is used in the
solution.
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Figure 9. Mass-flow rate for entrained fractions of 1 (purple line)
and 0.5 (green line), for an initial jet speed of 0.667c, jet power
of 1 × 1043 erg s−1 and a jet inclination of 50◦, as a function of
deprojected distance from the nucleus.

entrainment (Fig. C1), corroborating this interpretation. See
the appendix for further discussion.

In Fig. 9, the run of the mass-flow rate Ṁ (obtained
from equation (11)) is plotted versus distance from the nu-
cleus. Ṁ increases monotonically outwards. As obvious from
equation (12), if h is negligible, Pj ∝ (Γj − 1)Ṁ . Smaller in-
clination angles θ reduce the deprojected volume of the jet,
hence lowering Ṁ at a fixed projected radius and vice versa.
The resulting value for θ = 50◦ is Ṁ ∼ 6.7 × 1022 g s−1

(∼ 1.1 × 10−3 M⊙ yr−1) and ∼ 4.8 × 1022 g s−1 (∼ 7.6 ×
10−4 M⊙ yr−1) for respectively the full and the reduced en-
trainment. This is within an order of magnitude of the value
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Figure 10. Jet ‘temperature’ for entrained fractions of 1 (purple
line) and 0.5 (green line), for an initial jet speed of 0.667c, jet
power of 1×1043 erg s−1 and a viewing angle of 50◦, as a function
of deprojected distance from the nucleus.
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Figure 11. Sonic Mach number for entrained fractions of 1 (pur-
ple line) and 0.5 (green line), for an initial jet speed of 0.667c, jet
power of 1×1043 erg s−1 and a jet inclination of 50◦, as a function
of deprojected distance from the nucleus.

of Ṁ ∼ 1.4 × 1023 g s−1 (∼ 2.3 × 10−3 M⊙ yr−1) derived by
Wykes et al. (2015). This rate of mass injection is also suf-
ficient to slow down CentaurusA’s ∼ 1× 1043 erg s−1 jet (as
already demonstrated by Wykes et al. 2015), but generally
not FR II jets (e.g.Komissarov 1994; Hubbard & Blackman
2006; Perucho 2014; Perucho et al. 2014).

Fig. 10 shows the effective temperature of the jet, ob-
tained from the pressure and jet density, using the ideal gas
law, p = ρjkT/(µmH), where the pressure is as defined in
equation (1) and the proper density of the jet is obtained
from equation (5). The jet plasma is unlikely to be in thermal
equilibrium. Nevertheless, the value of kT obtained this way
should be representative of the typical particle energies. The

temperature profile in the figure is ranging between ∼ 4.7
and 8.6MeV, which supports our choice for the input ratio of
specific heats (relativistic electrons, subrelativistic protons).
Within the model, relativistic protons are not required. In-
creasing the rate of entrainment raises Ṁ along the jet. With
all other parameters in the energy equation (12) fixed, this
reduces the solution for the jet speed and, combined with
the direct effect of lower Ṁ in equation (5), increases the
value of the jet density. Since the pressure is fixed, the tem-
perature must drop with decreasing entrainment fraction;
the curve of full entrainment in Fig. 10 demonstrates this
behaviour, and the curve of 50 per cent entrainment shows
a radially raising trend. The glitches are more evident in this
plot due to the small temperature range covered.

Fig. 11 displays the internal sonic Mach number of the
jet, defined here as

M =
vj
cs

, (25)

with cs the internal sound speed. The expression for the
sound speed for a relativistic fluid depends on the proper
pressure and density of the jet, and does not require the
temperature to be well defined:

( cs
c

)2

=
φ

1 + φ/(γ − 1)
, (26)

where the parameter φ = γp/(ρc2), and the ratio of spe-
cific heats γ is the input value (Section 3.2) γ = 13/9. At
a temperature of 6.5MeV (Fig. 10), the sound speed in the
jet is about 0.14c, which means that pressure changes are
communicated very rapidly across the jet. As illustrated in
Fig. 11, the Mach number spans a range of M = 3.6 − 5.3;
it declines as more material is entrained in the jet. The flow
is not subsonic by the end of the visible X-ray jet: this is
consistent with the thermal power remaining below the ki-
netic power by that end (Fig. 7). If the internal density is
much smaller than the external density, a Mach number 3.6
shock would not necessarily be visible in X-rays and so not
disagree with the Chandra observations of the jet. On the
other hand, the ‘flare point’ indicated in figures 2 and 3 of
Hardcastle et al. (2006), seen in X-ray/infrared/radio bands
just before the X-ray jet tapers off, could represent a shock.

5 DISCUSSION

While our model draws analogies to seminal works
such as those by Blandford & Rees (1974), Bicknell
(1994), Komissarov (1994), Bowman et al. (1996) and
Laing & Bridle (2002a), there are a number of differences.
The work by Laing & Bridle (2002a) in particular, on the
FR I source 3C 31, differs from our method as follows.
(i) In 3C31, pressure equilibrium was not assumed every-
where. The jet was allowed to be out of equilibrium at the
start of the flaring region (rapid expansion). Pressure equi-
librium at large distances was required, at least in the ‘ref-
erence’ model. Such a model may not be appropriate for
CentaurusA, which does not show heavy flaring.
(ii) The mass injection was not set a priori in 3C 31, since ex-
ternal entrainment was included. For CentaurusA, we con-
sider internal stellar mass loss to be more important.
(iii) The area and the angle to the line of sight were fixed,
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since these were determined relatively well by the kinematic
model.
(iv) Velocity versus distance were at least constrained (to
within variation across the jet width).
(v) The equation of state was relativistic.
(vi) The jet flow was not required to be irrotational and
one-dimensional.
(vii) The work found lower (relativistic) Mach numbers than
the Mach numbers in our work on CentaurusA.

Among the strengths of our model, it is configured to
match a number of observed properties of the jet. In par-
ticular, the power, initial speed and profile of the jet are
constrained by observations, and the pressure profile of the
jet is matched to that of the adjacent ISM, as required for
a steady, pressure-confined flow. The model is also consis-
tent with an entrainment rate that is comparable to the
estimated stellar mass-loss rate within the jet. This means
that entraining the stellar mass loss would produce a dissi-
pation rate in the jet close to that required to account for
the observed pressure profile and width of the jet. These are
testing constraints, since the mass-loss rate could have been
orders of magnitude different.

Among the less fortunate features of the model, it is
unsatisfactory that we need to reduce the entrainment rate
by a factor of roughly 2 in order to get models that conserve
momentum. There are two possible causes for this. The first
is that the jet does not entrain all of the stellar mass loss.
In that case, it is surprising that the entrained fraction is
so close to unity. In particular, the results of Cooper et al.
(2009) suggest that it should be much smaller. The second
possibility is that the approximations of our model are too
crude. This is hard to evaluate without more sophisticated
modelling, but it is certainly possible that a more realistic
flow model might account for the apparent discrepancy of a
factor of 2. The steady flow model remains promising, but a
more realistic implementation is required to determine if it
can fully account for the properties of the CentaurusA jet.

Some lesser issues are considered below.

We could ask at what level a potential ISM strati-
fication will affect the deduced pressure, as the ISM gas
is likely to deviate significantly from spherical symmetry
(e.g. Croston et al. 2009). Our regions cross sharp features
in the ISM gas; hence, there must be multiple temperatures
and partial covering absorption that we do not account for.
NGC5128 has a complex history. Then, while all compo-
nents must be in the same potential, they may have dif-
ferent assembly histories and therefore different kinematics
(e.g. Peng et al. 2004b), which makes comparisons difficult.

It is not obvious that core jets (VLBI-scale jets embed-
ded in VLA-scale cores) are in pressure equilibrium with
the surrounding ISM. In fact, it is more likely that this
is not the case (see e.g. Begelman et al. 1984 and Bicknell
1994) and that they are either in free expansion, magneti-
cally self-confined, or confined by a slower-moving wind or
a galactic fountain. Whatever the mechanism, this is not
expected to affect our pressure analysis because our lower
sector border is placed at ∼ 190 pc (projected) from the nu-
cleus where the jet width has already expanded to ∼ 70 pc,
and so is likely confined by the ISM (Bicknell 1994 quotes a
limiting jet diameter of ∼ 30 pc and distance from the nu-
cleus of the order of 300 pc). The recently discovered galac-

tic fountain narrowly following the jet to at least 180 pc
projected downstream (Israel et al. 2017), with pressure of
about 8× 10−11 dyncm−2, could be responsible for a mod-
erate extra external pressure on these scales. Since, in addi-
tion, this concerns a relatively small portion of our designed
sector area, we are confident that the presence of the galactic
fountain does not significantly impact on our deductions.

We used the disc rotation speed of Graham (1979)
to estimate the gravitating matter density in NGC5128,
since there is evidence of significant departures from full
hydrostatic equilibrium in the hot ISM (Kraft et al. 2009).
Evidence against full hydrostatic equilibrium also exists
for some other systems (Ascasibar & Markevitch 2006;
Vazza et al. 2018).

Using a magnetic equation of state in the fluid model
would increase the ratio of specific heats and hence increase
the difference between the thermal and kinetic power and
also between the momentum flux increment and net pressure
force, and so make the model perform worse. However, at
kpc jet scales, the effect of magnetic fields is not dominant
(e.g. Sikora et al. 2005; Komissarov et al. 2007) and we feel
justified in neglecting it.

That local dissipation (and particle acceleration) is re-
quired to explain the observations of jets has been recognised
for some time (e.g. Ferrari et al. 1979; Bicknell & Melrose
1982; Begelman et al. 1984). However, it affects internal
pressure or momentum only at a very low level.

As also pointed out by Blandford & Rees (1974) and
Porth & Komissarov (2015), and shown above (Section 3),
it seems unlikely that all instabilities could be suppressed;
however, they may not grow sufficiently to alter entirely the
nature of the flow and disrupt the jet. Interestingly, the limit
on Ṁ applies to the entrainment via stellar mass loss as
well as the entrainment from the jet boundary. Specifically,
Wykes et al. (2013) calculated the mean inflow rate along
the boundary to be∼ 3.0×1021 g s−1 (∼ 4.7×10−5 M⊙ yr−1)
for the jet within 3 kpc from the nucleus, approaching an
order of magnitude smaller than the rate required by the
models presented here.

Wykes et al. (2013, 2015) did not investigate the inter-
action of the jet with clouds potentially drifting into its path.
Our modelling here shows that the properties of the jet can
be accounted for reasonably well if the jet entrains a sub-
stantial fraction of the mass shed into it by stars (and since
the model is approximate, possibly all of it). The work done
on a slowly-moving obstacle in the jet is negligible, so if the
brightest knots are due to interaction with molecular clouds,
they will not alter the jet power appreciably, but they could
reduce the jet momentum flux, in which case we have over-
estimated the amount of mass entrained by the jet. Except
in the unlikely event that the jet is less effective at entrain-
ing mass from stellar winds than from molecular clouds, any
molecular clouds cannot have a great impact compared to
the mass shed by the stars. We have no evidence for clouds
in the vicinity of the CentaurusA X-ray jet; the presence
of clouds is merely demonstrated for the ‘middle regions’
(e.g. Salomé et al. 2017 and references therein), several kpc
beyond the extent of the X-ray jet.

With the power, pressure and cross-sectional area of the
jet fixed by observations, specifying the speed of the jet at
the initial point in the power equation (12) determines the
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kinetic power and the flux of rest mass. Despite the un-
certainties in the jet parameters, the large initial disparity
between the kinetic and thermal powers of the jet (Fig. 7)
is hard to avoid. Changing this significantly would require a
substantially smaller jet power or substantially greater ini-
tial speed. The initial dominance of the kinetic power is the
main reason for the high jet momentum flux and Mach num-
ber throughout the modelled region. The relatively high final
internal Mach number of the jet, about 4, could present a
challenge to understanding the flow of the jet beyond the
modelled region.

The greatest simplification in the fluid model is
the assumption of a constant jet speed across the
width of the jet. We know from modelling of other
sources (e.g. Ghisellini et al. 2005; Gopal-Krishna et al.
2007; Laing & Bridle 2014; Sob’yanin 2017) that this is not
likely to be accurate. As discussed in Section 3, the conical
tip on the jet places some constraint on the velocity differ-
ence between the spine and sheath. It probably is not large.
On the other hand, we cannot say that it is insufficient to
account for the modest discrepancy in the entrained mass.
At any rate, concentrating the energy around the jet spine
and the momentum in the sheath, i.e. designing a multizone
analytical model, would no longer allow the model to be
fully determined by the data. Then numerical HD or MHD
simulations would be more appropriate. The model accounts
reasonably well for the observed properties, but requires only
about half of the stellar mass loss to be entrained. This sug-
gests that a more accurate flow model that entrains all of
the stellar mass loss might well be fully consistent with the
observed properties of the jet.

6 SUMMARY

We have presented results for a steady, one-dimensional hy-
drodynamical model for flow in the jet of CentaurusA. The
pressure profile of the jet is constrained by pressures in the
ISM of NGC5128 determined from ∼ 260 ks of new and
archival Chandra/ACIS observations in regions adjacent to
the jet. The width of the jet is also determined from radio
and X-ray data. The flow model conserves particle num-
ber and energy, while conservation of momentum is used to
provide an additional constraint. This tests the scenario of
decelerating flows via stellar-mass entrainment pertaining to
FR I jets. The main results are as follows.

(1) The pressure profile of the host galaxy atmosphere
adjacent to the jet is adequately modelled as a power law
of the form p(r) ∝ r−1.5, decreasing from ∼ 1.4 × 10−10 to
∼ 6.2×10−12 dyncm−2 between 0.2 and 5.5 kpc deprojected
distance from the nucleus. We find an internal jet density of
about 3× 10−4 of the density of the surrounding ISM.

(2) Based on mass-to-light ratios of the 12 and 3 Gyr
stellar populations in NGC5128/CentaurusA, we estimate
the fraction of gravitating mass in stars to be ∼ 0.54.
Relying on stellar evolution models, we compute a mass-
return timescale of about 3.33× 1011 yr for the NGC5128’s
∼ 12Gyr-old (Z ∼ 0.004) population and ∼ 5.95 × 1010 yr
for its ∼ 3Gyr (Z ∼ 0.008) population; this agrees with
mass-return timescales from direct observations of similar
stars in nearby stellar clusters.

(3) The simple fluid model of the jet whose solutions
are irrotational and anisentropic, and ensure conservation
of particles and energy, captures the gross features well.
For this model, not all mass lost by stars into the jet is
entrained/well-mixed; the entrained fraction is 0.5, corre-
sponding to ∼ 4.8 × 1022 g s−1, or ∼ 7.6× 10−4 M⊙ yr−1. A
more accurate hydrodynamical model may allow all of the
stellar mass loss to be entrained.

(4) The jet is best modelled as an initially moderately
relativistic flow with intrinsic velocity ∼ 0.67c, declining to
∼ 0.52c by the end of the X-ray jet, with a jet power of
∼ 1.0×1043 erg s−1 and inclination ∼ 50◦. The temperature
profile of the jet varies in the range ∼ 8.6−4.7MeV, and the
sonic Mach number in the range ∼ 5.3 − 3.6. The injection
of stellar wind material appears to be able to account for
virtually all the internal dissipation.
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APPENDIX A: SPECTRAL ANALYSIS

DETAILS AND ISM DEPROJECTION RESULTS

Here, we present an overview of the spectral deprojection
data used in Section 2.2. Tables A1 and A2 include the in-
ner annulus diameter din, the outer annulus diameter dout,
the H I column density NH, and the deprojected tempera-
ture kT , electron density ne and pressure p. The H I column
density was freed for the regions within the dust lane, while
for all other regions this was frozen to the Galactic column
density.

The abundances of CentaurusA’s ISM are also available
from the model fits. The results are presented in TableA3.
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Table A1. Inner and outer sector borders (distance from nucleus, projected values), column densities, and the best-fitting deprojected
temperature, electron density and pressure of the thermal emission of CentaurusA’s ISM near the main jet. The error bars indicate 90
per cent confidence intervals. Results for the eastern sector.

din dout NH kT ne p
(kpc) (kpc) (1022 cm−2) (keV) (10−3 cm−3) ( 10−11 dyn cm−2)

0.19 0.86 0.59+0.06
−0.06 0.95+0.06

−0.06 45.94+2.80
−2.68 13.42+1.76

−1.60

0.86 1.48 1.06+0.23
−0.17 1.09+0.21

−0.15 25.64+1.63
−3.44 8.64+2.35

−2.16

1.48 2.07 0.084 0.74+0.02
−0.02 14.66+0.32

−0.30 3.34+0.18
−0.17

2.07 2.60 0.084 0.79+0.18
−0.06 7.43+0.34

−0.27 1.81+0.52
−0.21

2.60 3.16 0.084 0.73+0.06
−0.06 6.18+0.29

−0.29 1.40+0.19
−0.17

3.16 3.78 0.084 0.64+0.05
−0.05 5.33+0.24

−0.24 1.05+0.13
−0.13

3.78 4.57 0.084 0.68+0.09
−0.09 2.67+0.23

−0.24 0.56+0.13
−0.11

4.57 5.53 0.084 0.63+0.04
−0.03 3.13+0.17

−0.25 0.61+0.07
−0.07

Note. Foreground contamination: kT = 0.213 keV, Abund = 1 (fixed), Norm = 1.41× 10−4. β model: kT = 0.628 keV (uses the
outermost shell’s temperature), Abund = 0.3 (fixed), NH = 0.084× 10−22 cm−2 (fixed), Norm = 4.39× 10−4 (uses the outermost

shell’s normalization).

Table A2. Same as TableA1 but for the western sector.

din dout NH kT ne p
(kpc) (kpc) (1022 cm−2) (keV) (10−3 cm−3) ( 10−11 dyn cm−2)

0.19 0.86 0.75+0.07
−0.07 1.01+0.10

−0.10 45.39+2.87
−2.63 14.22+2.41

−2.09

0.86 1.48 0.16+0.04
−0.04 0.78+0.04

−0.05 16.10+0.96
−0.90 3.88+0.46

−0.44

1.48 2.07 0.084 0.77+0.04
−0.05 9.02+0.33

−0.32 2.15+0.21
−0.20

2.07 2.60 0.084 0.53+0.10
−0.10 4.64+0.40

−0.42 0.76+0.22
−0.20

2.60 3.16 0.084 0.42+0.11
−0.06 4.34+0.38

−0.34 0.56+0.21
−0.12

3.16 3.78 0.084 0.64+0.05
−0.07 4.35+0.21

−0.21 0.86+0.12
−0.13

3.78 4.57 0.084 0.64+0.15
−0.08 3.03+0.18

−0.18 0.60+0.19
−0.11

4.57 5.53 0.084 0.64+0.02
−0.02 3.18+0.06

−0.04 0.62+0.03
−0.03

Table A3. Elemental abundances for the eastern and western
sectors from spectral deprojection fits. Only values for the re-
gions outside the dust lane are considered. [α/Fe] is defined as
log(α/Fe)ISM. The error bars indicate 90 per cent confidence in-
tervals.

Element ratio Eastern sector Western sector

[O/Fe] 0.74+0.05
−0.05 1.06+0.05

−0.05

[Ne/Fe] 0.44+0.08
−0.09 0.45+0.08

−0.11

[Mg/Fe] 0.39+0.04
−0.05 0.46+0.06

−0.07

[Si/Fe] 0.41+0.05
−0.05 0.41+0.06

−0.07

Table A4. Locations along the length of the X-ray jet where the
jet angular width was measured. The distances from nucleus were
selected such that they sample areas where the jet width changes
sharply, and to also sufficiently cover the entire jet. The error bars
reflect the 0.5 Chandra pixel uncertainty.

Distance Opening
from nucleus angle

(kpc, projected) (◦)

0.136 20.4+1.8
−1.9

0.204 16.5+1.0
−1.2

0.258 16.9+1.0
−1.0

0.317 16.7+0.8
−0.8

0.376 14.4+0.7
−0.6

0.453 15.0+0.6
−0.6

0.543 14.5+0.5
−0.5

0.634 14.6+0.4
−0.4

0.833 14.5+0.3
−0.3

0.996 14.5+0.3
−0.2

1.222 13.9+0.2
−0.2

1.584 13.7+0.1
−0.2

2.127 13.4+0.1
−0.2

3.983 13.6+0.1
−0.1

4.526 13.1+0.1
−0.1

a

a Measurement from VLA observations.
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APPENDIX B: NGC6791 AND NGC6819

ANALYSIS

NGC6791 is a metal-rich open cluster of age ∼ 8.3Gyr
with total mass of about 5000M⊙ (Corsaro et al. 2017).
There are roughly 30 stars in or brighter than the red
clump (van Loon et al. 2008), a criterion that includes the
upper-RGB, core-helium-burning and AGB phases of evo-
lution. The initial masses of evolved stars in NGC6791 are
Minit ∼ 1.23M⊙, reducing to ∼ 1.14M⊙ by the red clump
itself (Miglio et al. 2012). Stellar evolutionary tracks with
mass Minit = 1.2M⊙, metallicity Z = 0.04 and helium frac-
tion Y = 0.026 were extracted from Bertelli et al. (2008),
indicating that these phases of evolution last ∼ 210Myr.
Hence, the stellar death rate in NGC6791 is 1 star per
∼ 7Myr, or ∼ 2.9 × 10−11 yr−1 M−1

⊙ . White dwarf masses
in the cluster are ∼ 0.56M⊙ (Kalirai et al. 2009); hence,
stars return ∼ 0.67M⊙ to the ISM each, giving a mass-loss
rate of ∼ 1.91 × 10−11 yr−1, or a mass-return timescale of
∼ 5.22 × 1010 yr.

NGC6819 is a solar-metallicity cluster of age ∼ 2.4Gyr
with total mass of approximately 2600M⊙ (Corsaro et al.
2017). There are roughly 39 stars in or brighter than the
RGB bump (and this includes ∼ 9 that have experienced
some form of ‘non-standard evolution’), which began with
Minit ∼ 1.64M⊙, with negligible mass lost before the red
clump (Handberg et al. 2017). A stellar evolution track with
Minit = 1.6M⊙, Z = 0.017 and Y = 0.023 (Bertelli et al.
2008) indicates that stars first attaining the luminosity of
the bottom of the RGB bump have ∼ 234Myr left to live.
This yields a stellar death rate in NGC6819 of 1 star per
6Myr, or ∼ 6.4×10−11 yr−1 M−1

⊙ . The cluster’s white dwarfs
are ∼ 0.57M⊙ in mass (Kalirai et al. 2009); hence, each star
returns ∼ 1.07M⊙ to the ISM, giving a mass-loss rate of
∼ 6.86× 10−11 yr−1, or a mass-return timescale of ∼ 1.46×
1010 yr.

The anticipated uncertainties in these timescales are
∼ 35 per cent from Poisson noise, lack of completeness, and
inclusion of non-members in the star counts; ∼ 20 per cent
in the calculation of evolutionary timescales, due to simpli-
fications made in the input parameters, applicability of the
individual tracks used and uncertainties from the treatment
of late-stage stellar evolution; and ∼ 5 per cent in the total
mass lost by each star giving a total uncertainty in the final
timescale of ∼ 40 per cent. Hence, a reasonable estimate for
the mass-return timescale for the 3Gyr-old population of
CentaurusA would be ∼ (1.9 ± 0.5) × 1010 yr. We add that
metal-poor stars as we consider in CentaurusA will evolve
faster. The mass-return timescale will be increased by about
10 per cent for half of solar metallicity.

APPENDIX C: SOLUTIONS FOR UNLOADED

JET

To demonstrate the effect of zero mass entrainment, we re-
plot the jet velocity, and the momentum flux increment and
net pressure force versus distance from the nucleus, in re-
spectively Figs C1 and C2.

Fig. C1 shows that the jet velocity for zero entrainment
drops slightly as the jet propagates. This could be due to
external drag and the effect of the small quantity of material
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Figure C1. Same as Fig. 6 but for entrained fraction of 0 (green
line) over the modelled region.
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Figure C2. Same as Fig. 8 but for entrained fraction of 0 (green
line) over the modelled region.

that is entrained ‘in front’ of the modelled region, or to how
sensitive the decrease is to our assumed parameters.

The apparent decrease in jet momentum for zero en-
trainment in Fig. C2 tells us that either there is apprecia-
ble external drag on the jet, or it entrains mass. We can-
not firmly rule out the former possibility, although the drag
might not be large given the marginal zero-entrainment ve-
locity drop. The X-ray knots might be sites where the jet
interacts with nearly-stationary obstacles that it does not
entrain, so they tap momentum from the jet – though not
appreciable energy. However, the fact that entraining the
mass shed by stars produces about the right change in mo-
mentum flux indicates that our interpretation is the more
likely. If the mass shed by the stars was not accelerated
to speeds comparable to the jet, it would not exert nearly
enough drag to account for the momentum loss; therefore,
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it needs to be ‘fully’ entrained to get the adequate change
in momentum flux.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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