
Math. Ann. (2016) 364:1025–1041
DOI 10.1007/s00208-015-1235-7 Mathematische Annalen

Homological stability for completed homology

Frank Calegari1 · Matthew Emerton2

Received: 25 November 2014 / Revised: 19 May 2015 / Published online: 16 June 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract We prove that the completed homology groups of GLn(Z) in fixed degree
stabilize as N goes to infinity. We also prove that the action of Hecke operators on
stable cohomology is trivial, in a precisely defined sense.
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1026 F. Calegari, M. Emerton

1 Introduction

Let GLn(Z, M) denote the principal congruence subgroup of GLn(Z) of level M ,
explicitly, the group of invertible matrices with integer coefficients which are congruent
to the identity modulo M . A theorem of Charney [13] and (independently) Maazen [20]
shows that, for fixed d, the homology groups

Hd(GLn(Z, 1), Z) = Hd(GLn(Z), Z)

are stable, that is, they are independent of n for n sufficiently large. Moreover, the
natural transition maps induced from the inclusions GLn ⊂ GLn+1 in this range are
isomorphisms. In [14], Charney extends this result to prove a stability theorem for
congruence subgroups. In particular, she proves that the homology groups

Hd

(
GLn(Z, M), Z

[
1

M

])

are also stable as n → ∞. Note that the analogous result with coefficients in R is
(in both cases) a consequence of a theorem of Borel [6]. The result is no longer true
if one does not invert primes dividing the level. For example, if p > 2 is prime, it
is an elementary consequence of the congruence subgroup property [5,21] that the
homomorphism

H1(GLn(Z, p), Z) → GLn(Z, p)/GLn(Z, p2) � (Z/pZ)n2−1

is an isomorphism for n ≥ 3, and the latter group is certainly not stable. The starting
point for the Church–Farb theory of representation stability [12] is the observation
that, as a representation of SLn(Fp), the right hand side has a description which is
independent of n (it is the adjoint representation). Alternatively, one might view this
calculation as saying that all the cohomology of GLn(Z, p) in degree 1 (for n ≥ 3)
arises via pullback from the homology of congruence subgroups of the local p-adic lie
group GLn(Zp). This latter homology is evidently insensitive to the finer arithmetic
properties of GLn(Z), and so it is natural to try to excise the cohomology arising
for “local” reasons and consider what remains. This is exactly what is achieved by
replacing the homology groups by completed homology groups, as first defined and
studied in [8,9,16].

Fix a tame level M , and let �n(pk) = GLn(Z, Mpk) denote the principal congru-
ence subgroup of level Mpk . Recall that the completed homology and cohomology
groups are defined as follows [9]:

H̃∗,n(Fp) := lim
←−

H∗(�n(pr ), Fp) H̃∗
n (Fp) := lim

−→
H∗(�n(pr ), Fp),

H̃∗,n(Zp) := lim
←−

H∗(�n(pr ), Zp) H̃∗
n (Qp/Zp) := lim

−→
H∗(�n(pr ), Qp/Zp).

Our main result is as follows:
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Homological stability for completed homology 1027

Theorem 1.1 The modules H̃d(Zp) and H̃d(Fp) stabilize as n → ∞ and are finite

Zp-modules and Fp-vector spaces respectively. Moreover, the action of SLn(Qp) on

either module is trivial.

The question of computing these groups and understanding their relationship to
arithmetic and K -theory will be taken up in the companion paper [7], although
see Sect. 5.1 for some immediate consequences of stability of completed homol-
ogy for classical homology groups. (We confine ourselves here to the non-obvious
remark that all the classical homology groups at level �n(pr ) can be recovered from
the completed homology groups.) It is possible to extract from our argument explicit
bounds for n in terms of d which imply that H̃d(Zp) and H̃d(Fp) are stable (see
Remark 5.14); however, these bounds are presumably not optimal. It may even be the
case that n − 1 > d would suffice.

Our second result concerns the action of Hecke operators on cohomology classes
in low degree. Let � = �n(M) for some level M . If p is prime and F is a field
of characteristic p, then each of the cohomology groups Hd(�, F) admits a natural
action of a commutative ring T of Hecke operators T�,k for 1 ≤ k ≤ n and for
primes � not dividing Mp. Let [c] ∈ Hd(�, F) denote an eigenclass for the action
of T with eigenvalues a(�, k) ∈ F. A theorem of Scholze [23] (Conjecture B of [2])
says that, associated to [c], there exists a continuous semisimple Galois representation
ρ : GQ → GLn(F) unramified outside Mp such that

∑
(−1)k�k(k−1)/2a(�, k)X k = det(I − ρ(Frob�)

−1 X). (�)

We determine exactly which Galois representations arise in low degree relative to n.
Let ω : GQ → F× denote the mod-p cyclotomic character.

Theorem 1.2 Fix an integer d, and suppose that n is sufficiently large compared to d.

Let � = �n(M) for some level M prime to p. Then for any eigenclass [c] ∈ Hd(�, F),

there exists a character χ of conductor M and a Galois representation:

ρ = χ ⊗

(
1 ⊕ ω ⊕ ω2 ⊕ · · · ⊕ ωn−1

)
,

such that ρ(Frob�) satisfies �.

Remark 1.3 It follows from the argument that n ≥ 2d + 6 will suffice.

Remark 1.4 Theorem 1.2 remains true even when p|M ; see Remark 4.7.

This theorem should be interpreted as saying that the action of Hecke on stable

cohomology is trivial, which is indeed how we shall prove this theorem. Note that if
[c] comes from characteristic zero, then the result follows from a theorem of Borel [6],
which shows in particular that the only rational cohomology in low degrees arises from
the trivial automorphic representation.
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1028 F. Calegari, M. Emerton

Example 1.5 A special case of a construction due to Soulé [25] implies that K22(Z)

contains an element of order 691.1 Associated to this homotopy class is a stable class
[c] in H22(GLn(Z), F691) for all sufficiently large n. Our theorem implies that the
class [c] is associated to the representation ρ := 1 ⊕ ω ⊕ · · · ⊕ ωn−1 via �. On the
other hand, the existence of [c] corresponds—implicitly—to the existence of a non-

semisimple Galois representation � with �ss = 1⊕ω11 such that the extension class in
Ext1(ω11, 1) is unramified everywhere. Is there a generalization of Ash’s conjectures
that predicts the existence of a non-semisimple Galois representations associated to
Eisenstein Hecke eigenclasses?

Remark 1.6 That Theorem 1.2 (or something similar) might be true was suggested by
Akshay Venkatesh in discussions with the first author. (See [3] for a discussion of this
conjecture and some partial results.)

2 Arithmetic manifolds

Torsion free arithmetic groups are well known to act freely and properly discontin-
uously on their associated symmetric spaces. This allows one to translate questions
concerning the cohomology of arithmetic groups into questions about cohomology of
the associated arithmetic quotients. While one can study such spaces independently
of any adelic framework, it is more natural from the perspective of Hecke operators
to work in this generality, and this is the approach we adopt in this paper.

2.1 Cohomology of arithmetic quotients

Let K∞ denote a fixed maximal compact subgroup of GLn(R), and let K 0
∞ denote

the connected component containing the identity. One has isomorphisms K∞ � O(n)

and K 0
∞ � SO(n). Let A denote the adeles of Q. For any finite set of places S, let

A
S denote the adeles with the components at the places v|S missing, so (for example)

A
∞ denotes the finite adeles. Fix a compact open subgroup K � of GLn(A�,∞), let K�

denote a compact open subgroup of GLn(Z�), and let K = K �K�. Let

Y (K ) = GLn(Q)\GLn(A)/K 0
∞K �K�

denote the corresponding arithmetic quotient.
Assume that F is a finite field of characteristic p �= �. We now let 	n,� denote the

direct limit

	n,� =
lim
→
K�

Hd(Y (K ), F).

For K� sufficiently small, the quotient Y (K ) is a manifold consisting of a finite number
of connected components, all of which are K (π, 1) spaces. In particular, if K� is the

1 Indeed, K22(Z) � Z/691Z.
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Homological stability for completed homology 1029

level �k congruence subgroup, and K � is the open subgroup of tame level M , then
writing the associated space as Y (K , �k) there is an isomorphism

Hd(Y (K , �k), F) �
⊕

A

Hd(�(�k), F),

where A := Q×\A
∞,×/ det(K ) is a ray class group of conductor M times a power of

�, and � is the corresponding classical congruence subgroup of level M .
In the remainder of Sects. 2, 3 and 4, we fix K � to be the open subgroup of tame

level M .
The module 	n,� is endowed tautologically with an action of GLn(Q�) that is

admissible; that is, letting G(�k) denote the full congruence subgroup of GLn(Z�) of
level �k , we have that

dimF 	
G(�k)
n,� < ∞

for any k. This property records nothing more than the finite dimensionality of the
cohomology groups Hd(Y (K , �k), F).

3 Stability for � �= p

We use the following two key inputs to prove our result. The first is as follows:

Proposition 3.1 There is an isomorphism 	n,� → 	n+1,� for all n ≥ 2d + 6.

Proof For any fixed �-power congruence subgroup, this follows immediately from the
main result of Charney [14] (in particular, §5.4 Example (v), p. 2118). The theorem
then follow by taking direct limits. ��

Lemma 3.2 For n ≥ 2d + 6, the action of GLn(Q�) on 	n,� is via the determinant.

Proof By [14], the action of SLn(Z�) on H∗(�(�m), F) is trivial in the stable range
(see also Corollary 7 of [3]), and hence the action of SLn(Z�) on 	n,� is also trivial.
Let V be an irreducible sub-quotient of 	n,�. The only admissible representations
of GLn(Q�) that are trivial on SLn(Z�) are given by characters (the normal closure
of SLn(Z�) inside SLn(Q�) is the entire group), and it follows that every irreducible
constituent of 	n,� is a character. Since the action of GLn(Q�) on the extension of
any two characters still acts through the determinant, the result follows for 	n,�. ��

Remark 3.3 One easy way to see that SLn(Z�) must act trivially on H∗(�(�m), F) in
the stable range is that the latter module has fixed dimension for all n, whereas the
smallest non-trivial representation of SLn(Z�) over F has unbounded dimension as n

increases.

We now sketch two further proofs of Lemma 3.2 (one incomplete). The first proof
“explains” the triviality of the action of SLn(Q�) by showing that 	n,� is very small
in a precise way.
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1030 F. Calegari, M. Emerton

Proposition 3.4 For sufficiently large n, there is, for all m, an isomorphism

Hd(�(�), F) � Hd(�(�m), F).

Proof The main result of [14] identifies the stable cohomology groups H∗(�(�), F)

as well as the groups H∗(�(�m), F) with the cohomology of the homotopy fibre of
the map BSL(Z)+ → BSL(Z/M�)+ and BSL(Z)+ → BSL(Z/M�m)+ respectively
(under the assumption that F has characteristic prime to M�). The natural map between
these fibre sequences induces an isomorphism on F-homology, trivially for BSL(Z)+

and for BSL(Z/M�m)+ → BSL(Z/M�)+ by Gabber’s rigidity theorem [17]. By the
Zeeman comparison theorem, this implies the result for the homotopy fibre. ��

More details of this argument can be found in the companion paper [7] (see
Remark 1.20). Alternatively, one can prove the result directly in this case, since the
transfer map from �(�m) to �(�) is an isomorphism over any ring such that � is
inverted (the group �(�)/�(�m) is an �-group), and hence it suffices to show that the
SLn(Z�) action on Hd(�(�m), F) is trivial. Lemma 3.2 is an easy consequence of
Proposition 3.4. For our next argument, we begin with the following:

Proposition 3.5 Let V̂ be an irreducible admissible infinite dimensional representa-

tion of GLn(Q�) in characteristic zero. Then the Gelfand–Kirillov dimension of V̂ is

at least n − 1.

Proof The Gelfand–Kirillov dimension of V̂ can be interpreted in two ways. On the
one hand, it is that value of d ≥ 0 for which dim V G(�k) � �dk ; on the other hand, if we
pull back the Harish–Chandra character to a neighbourhood of 0 in g, the Lie algebra
of GLn(Q�), via the exponential map, then a result of Howe and Harish–Chandra
shows that the resulting function χ admits an expansion

χ =
∑

O

cOμ̂O,

where the sum ranges over the nilpotent GLn(Q�)-orbits in g
∨, and μ̂O denotes the

Fourier transform of a suitably normalized GLn(Q�)-invariant measure on O (see e.g.
the introduction of [18], whose notation we are following here, for a discussion of these

ideas); the Gelfand–Kirillov dimension of V̂ is then also equal
1

2
maxO | cO �=0 dim O

(as one sees by pairing the characteristic function of G(�k)—pulled back to g—against
χ ). Since V̂ has Gelfand–Kirillov dimension 0 if and only if it is finite dimensional,
and since the minimal non-zero nilpotent orbit in g has dimension 2(n − 1) (see §1.3
p. 459 and Table 1 on p. 460 of [24]), the proposition follows. ��

Let V be an irreducible sub-quotient of 	n,�. Since the cohomology of pro-� groups
vanishes in characteristic p �= �, we deduce that, for all k,

dim V G(�k ) ≤ dim 	
G(�k )
n,� = dim 	

G(�k )
m,� ,
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where m = 2d + 6 is fixed, and where the equality follows from Proposition 3.1. Yet,
for a fixed m, there is the trivial inequality relating the growth of cohomology to the
growth of the index (up to a constant) and thus

dim 	
G(�k )
m,� � [GLm(Z�) : G(�k)] � �km2

.

The bound on invariant growth then implies that the Gelfand–Kirillov dimension of
V̂ is at most m2. Suppose that V lifted to a (necessarily irreducible) representation
V̂ in characteristic 0. We deduce a corresponding bound for the invariants of V . By
Proposition 3.5, this is a contradiction for sufficiently large n unless V̂ and thus V

is one-dimensional. In general, it follows from the main theorem of Vignéras ([27],
p.182) that any irreducible admissible irreducible representation V of GLn(Q�) over
F lifts to a virtual representation [V̂ ] in characteristic 0. We expect that [V̂ ] may
be chosen to contain a unique irreducible representation of largest Gelfand–Kirillov
dimension. If this is so, then the bound of Proposition 3.5 applies also to mod-p

representations of GLn(Q�), and it would follow that every irreducible constituent of
	n,� is a character. Since the action of GLn(Q�) on the extension of any two characters
still acts through the determinant, this would yield a third proof of Proposition 3.2.

Remark 3.6 In a preliminary version of this paper, we made the error of assuming that
any irreducible GLn(Q�)-representation V in characteristic p lifted to a characteristic
zero representation V̂ . We thank Jean-François Dat for pointing out to us that this is not
always the case, and also for suggesting a possible approach to proving our modified
expectation via induction on the ordering of partitions associated to V . Because of
the availability of other arguments, however, we have not made a serious attempt to
carry this out. Although this alternate argument is therefore incomplete, it is the one
that is most amenable to generalization to the case of � = p (see Sect. 5), and so—for
psychological reasons—we have presented it here.

4 Hecke operators

Let g ∈ GLn(A∞) be invertible. Associated to g one has the Hecke operator T (g),
defined by considering the composition:

H•(Y (K ), F) → H•(Y (gK g−1 ∩ K ), F)

→ H•(Y (K ∩ g−1 K g), F) → H•(Y (K ), F),

the first map coming from the obvious inclusion, the second an isomorphism coming
from the conjugation by g, and the final coming from the corestriction map. The Hecke
operators preserve H•(Y (K ), F), but not necessarily the cohomology of the connected
components. Indeed, the action on the component group is via the determinant map on
GLn(A∞) and the natural action of A

∞,× on A. The Hecke operator T�,k is defined by
taking g to be the diagonal matrix consisting of k copies of � and n−k copies of 1. The
algebra T of endomorphisms generated by T�,k on H∗(Y (K ), F) for � prime to the
level of K generates a commutative algebra. For any such T = T (g), let 〈T 〉 denote
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1032 F. Calegari, M. Emerton

the isomorphism of H∗(Y (K ), F) that acts by permuting the components according
to the image of det(g) in A.

There are many definitions of the notion of “Eisenstein” in many different contexts.
For our purposes, the following very restrictive definition is appropriate:

Definition 4.1 A cohomology class [c] ∈ Hd(Y (K ), F) is Eisenstein if T [c] =

〈T 〉 deg(T )[c] for any Hecke operator T . A maximal ideal m of T is Eisenstein if
and only if m contains T − deg(T ) for all T with 〈T 〉 = 1 in A.

If [c] ∈ Hd(�, F) is a Hecke eigenclass such that T [c] = deg(T )[c] for all 〈T 〉 = 1,
then [c] is necessarily Eisenstein, and moreover T [c] = χ(〈T 〉) deg(T )[c] for some
character χ : A → F× of A. By class field theory, χ corresponds to a finite order
character of GQ of conductor dividing M . A easy computation of deg(T�,k) then
implies that � will be satisfied with ρ equals χ ⊗ (1 ⊕ ω ⊕ · · · ⊕ ωn−1) if and only if
[c] is Eisenstein.

Lemma 4.2 If [c] is a Hecke eigenclass such that T [c] = det(T )[c] for almost all T

with 〈T 〉 = 1 in A, then [c] is Eisenstein.

Proof It suffices to show that T [c] = det(T )[c] for all T of level prime to Mp with
〈T 〉 = 1 in A. This is an immediate consequence of the Cebotarev density theorem
and the fact that there exists a Galois representation associated to [c] by [23]. ��

4.1 Proof of Theorem 1.2

Given any eigenclass [c] ∈ Hd(Y (K ), F), consider its image [ι(c)] in 	n,�. If this
image is non-zero, we can determine the eigenvalues of [c] by determining those
of [ι(c)]. Since the GLn(Q�)-action on 	n,� factors through det, the action of any
g ∈ GLn(Q�) on [ι(c)], as well as the action of the deg(T (g)) representatives in
the double coset decomposition of g, is via 〈T 〉; hence T [ι(c)] − 〈T 〉 deg(T )[ι(c)] is
zero in 	n,�. It follows that either [c] is Eisenstein or it lies in the kernel of the map
Hd(Y (K ), F) → 	n,�. Hence Theorem 1.2 follows by induction from the following
Lemma.

Lemma 4.3 Suppose that for every non-Eisenstein maximal ideal m of T the coho-

mology groups H i (Y (L), F)m vanish for all i < d, where L = K �L� is any

compact normal open subgroup L� ⊂ GLn(Z�). If [c] lies in the kernel of the map

Hd(Y (K ), F) → 	n,�, then [c] is Eisenstein.

Proof By assumption, the class [c] lies in the kernel of the map

Hd(Y (K ), F) → Hd(Y (L), F)

for some L as above. There is a Hochschild–Serre spectral sequence:

E
i j
2 = H i (K/L , H j (L , F)) → H i+ j (K , F).
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This spectral sequence is compatible with Hecke operators T away from Mp and �.
By Lemma 4.2, we may detect whether a class is Eisenstein by considering Hecke
operators away from �. Localizing the spectral sequence at a non-Eisenstein maximal
ideal m, we deduce that E

i j
2 vanishes for j < d. Hence the first d rows vanish, and

we are left with an isomorphism:

Hd(Y (K ), F)m = H0(K/L , Hd(Y (L), F)m) = Hd(Y (L), F)
K/L
m .

It follows that if [c] is not Eisenstein, then it is trivial. The result follows. ��

This completes the proof of Theorem 1.2.

Remark 4.4 By the universal coefficient theorem, one has

	∨
n,� := Hom(	n,�, F) = lim

←−
Hd(Y (K ), F).

Suppose that one defines

	∨
n,�(Z�) = lim

←−
Hd(Y (K ), Z�).

Then it follows from Lemma 3.2 for d and d + 1 that the action of GLn(Q�) on
	∨

n,�(Z�) is via the determinant for sufficiently large n.

Remark 4.5 One can ask whether a Hecke operator T with 〈T 〉 trivial in A acts via the
degree on the entire cohomology group Hd(�, Z). Our argument shows that, for such
T , the image of T −deg(T ) on Hd(�, Z) is—in the terminology of [15]—congruence;
i.e., it lies in the kernel of the map Hd(�, Z) → Hd(�(M), Z) for some M .

Remark 4.6 The main theorem and its proof remain valid, and essentially unchanged,
if one replaces GLn(Z) by GLn(OF ) for any number field F .

Remark 4.7 Theorem 1.2 remains valid if M is divisible by p. To see this, one may
(using Theorem 1.1) repeat the entire argument replacing the usual cohomology groups
with completed cohomology. The key point is to notice that Proposition 3.4 (and hence
Lemma 3.2 and Proposition 3.1) also holds for completed cohomology. To prove this,
one may argue exactly as in Remark 3.3, namely, by Theorem 1.1, the completed
cohomology groups at tame level �m (with any additional fixed tame level M) will be
finite dimensional and independent of n for sufficiently large n, and hence the action
of SLn(Z�) on these groups will necessarily be trivial, and so (by the transfer map)
these groups will not depend on m for m ≥ 1.

5 Stability for � = p

It is natural to wonder whether the methods of the previous sections can be extended to
� = p. One obvious obstruction is that the naïve notion of stability fails, even for d = 1
(as noted in the introduction). We proceed instead by using completed cohomology,
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1034 F. Calegari, M. Emerton

whose definition for a finite field F we recall below. It is completed cohomology that
is the correct analogue of the modules 	n,� defined above.

We fix, once and for all, a tame level M , and let �(pk) = �n(pk) denote the
principal congruence subgroup of SLn(Z) of level Mpk .

Definition 5.1 The completed cohomology groups H̃d
n are defined as follows [9]:

H̃d
n := lim

−→
Hd(�(pk), F)

Although this definition is formally the same as 	n,�, the theory when � = p is
quite different to the � �= p case, due to the non-semisimple nature of representations
of pro-p groups on mod-p vector spaces. However, we still prove the following result:

Theorem 5.2 (Stability of completed cohomology) For n sufficiently large, the mod-

ules H̃d
n are finite dimensional over F and are independent of n.

Remark 5.3 We have an isomorphism H̃d,n := Hom(H̃d
n , F) � lim

←−
Hd(�(pk), F). If

we define

H̃d,n(Zp) := lim
←−

Hd(�(pk), Zp),

then Theorem 5.2 also implies, by Nakayama’s lemma, that H̃d,n(Zp) is a finite Zp-
module for sufficiently large n. Hence Theorem 5.2 implies Theorem 1.1.

Remark 5.4 Theorem 5.2 is immediate when d = 0 and d = 1. Indeed, for d = 0 one
has H̃0

n (F) = F for all n, while for d = 1 one has H̃1
n (F) = 0 for all n ≥ 3 by the

congruence subgroup property.

The proof of Theorem 5.2 will occupy most of the remainder of the paper. We
begin by recalling some facts concerning non-commutative Iwasawa theory. Let
K = SLn(Zp) and let K (pk) denote the principal congruence subgroups of K . By
construction, the module H̃d

n is naturally a module over the completed group ring
� = �Fp := Fp[[K (p)]]. If M is a �-module, then let M∨ := Hom(M, Fp) be
the dual �-module. By Nakyama’s Lemma, H̃d,n is finitely generated, which implies
(by definition) that H̃d

n is co-finitely generated. The ring � is Auslander regular [26],
which implies that there is a nice notion of dimension and co-dimension of finitely
generated �-modules. One characterization of dimension for modules is given by the
following result of Ardakov and Brown [1]:

Proposition 5.5 If M is finitely generated and M∨ is the co-finitely generated dual,

then M has dimension at most m if and only if, as k increases without bound,

dim(M∨)K (pk ) � pmk .

The following is the natural analogue of Proposition 3.5 in this context.

Conjecture 5.6 Let M be a finitely generated Zp[[K (p)]]-module. If M is infinite

dimensional over F, then the dimension of M is at least n − 1.
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Homological stability for completed homology 1035

Remark 5.7 The analogue of this conjecture for �Qp is true by Theorem A of [4]. In
particular, if any finitely generated pure �Fp -module M is the reduction of a p-torsion
free �Zp = Zp[[K (p)]]-module, then the conjecture is true. Such a lifting always
exists for commutative regular local rings, but it is unclear whether one should expect
it to hold for �.

Our arguments proceed in a manner quite similar to the � �= p case. One missing
ingredient is that Proposition 3.1 is no longer valid. We use the central stability results
of Putman [22] as a replacement.

Let (Vn) be a collection of representations of Sn . Recall from [22] that a sequence

. . . Vn−1
φn−1

Vn

φn

Vn+1 . . .

is centrally stable if:

(1) The φ∗ are equivariant with respect to the natural inclusions on symmetric groups,
(2) For each n, the morphism IndSn+1

Sn
Vn → Vn+1 induced by φn identifies Vn+1 with

the (unique) maximal quotient of IndSn+1
Sn

Vn such that the 2-cycle (n, n + 1) acts
trivially on φn−1(Vn−1).

Lemma 5.8 If Theorem 5.2 holds for j < d, then the modules H̃d,n are centrally

stable for sufficiently large n.

Proof We first give an argument which is essentially taken directly from Putman [22],
and we follow his argument closely. The lemma follows immediately from Theo-
rem 2.1 of [22] with the extra hypothesis that the characteristic p is sufficiently large
compared to d. We shall explain how the extra assumption (that the completed coho-
mology groups H̃ j,n in smaller degree j < d are actually stable rather than centrally
stable) renders the use of this supplementary characteristic hypothesis unnecessary.

Putman considers a spectral sequence (Theorem 5.2 of [22], as applied in §5.3)
at a fixed level, which we may take to be �(pk). These spectral sequences admit
compatible maps when one varies the level. Taking the inverse limit of these sequences,
one obtains a corresponding spectral sequence for completed homology. In order for
this sequence to degenerate at the relevant terms on page 2, it suffices to show that
the appropriate E2

i, j are actually zero, as in Claim 4 (§5.3) of [22]. At finite level,
Putman establishes this vanishing in Claim 3, which invokes Proposition 4.5 of [22],
and it is this proposition which requires an assumption on the characteristic. However,
we are assuming in addition that the modules H̃ j,n for j < d are finite dimensional
vector spaces that are stable, namely, they are (eventually) independent of n and have a
trivial Sn-action. Thus the required claim reduces to showing that the (n +1)st central
stability complex for the trivial sequence:

F → F → F → · · ·

of modules for the symmetric group is exact, without any assumption on the character-
istic. This is a very special case of Proposition 6.1 of [22], but can be verified directly in
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this case. Ultimately, the assumption on the characteristic is used (see Theorem E, §7
of [22]) for the implication: central stability ⇒ Specht stability, however, one can
make this deduction unconditionally in the case of the trivial (stable) sequence. Hence
one deduces—as in Putman—that the H̃d,n are centrally stable.

We now give an alternate proof. Theorem D of [11] gives a direct proof that the
groups Hd(�n(pk), F) are centrally stable. If one can establish that the range (in n)
where these groups become centrally stable is bounded independently of k, then one
gets an immediate and direct proof that the H̃d,n are centrally stable without any
induction hypothesis. However, this is a direct consequence of Theorem C′ of [10],
proving the Lemma. ��

Corollary 5.9 If Theorem 5.2 holds for j < d, then the dimension of H̃d,n as a

�Fp -module is bounded independently of n.

Proof This is obvious for any fixed collection of n. Yet, for n sufficiently large, central
stability implies that the natural map

IndSn+1
Sn

H̃d,n → H̃d,n+1

induced by the n + 1 embeddings of SL(n) into SL(n + 1) is surjective. Passing
to cohomology, the natural maps H̃d

n+1 → H̃d
n induce homomorphisms from the

�n+1(pk)-invariants of H̃d
n+1 to the �n(pk)-invariants of H̃d

n . In particular, the dimen-
sion of the �n+1(pk)-invariants of H̃d

n+1 is at most n + 1 times the dimension of the
�n(pk)-invariants of H̃d

n , and so it follows by Proposition 5.5 that H̃d,n+1 has Iwasawa
dimension bounded by the Iwasawa dimension of H̃d,n . ��

Remark 5.10 Using Putman’s spectral sequence, one may prove unconditionally that

dimF Hd(�(pk), F) � pmk

for some constant m that does not depend on n (although the implied constant does
depend on n). This leads to an alternate proof of Corollary 5.9 via the Hochschild–Serre
spectral sequence and Proposition 5.5.

We prove Theorem 5.2 by induction. By the proceeding corollary, the dimension
of H̃d,n must be bounded independently of n. If we assume Conjecture 5.6, then we
immediately deduce that this dimension is actually zero for sufficiently large n, and
hence H̃d,n is finite and the action of SLn(Qp) on H̃d,n is trivial. In particular, the
action of Sn must also be either trivial, or via the sign character, for sufficiently large
n. By Lemma 5.8, we also deduce that the sequence H̃d,n is centrally stable. This rules
out the possibility that Sn acts via the sign character (for large enough n), since these
do not fit into a centrally stable sequence. It follows that we must have a centrally
stable sequence of trivial Sn-representations. Yet a centrally stable sequence of trivial
modules is stable, and hence H̃d,n stabilizes.

How may we upgrade this to an unconditional proof? One thing to observe is that
the modules H̃d,n have an action of SLn(Qp) that has not been exploited. For technical
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reasons, it is actually more convenient to have an action of the group GLn(Qp). In
order to upgrade the action of SLn(Qp) to GLn(Qp), one should take the direct limit
(in cohomology) as follows:

lim
→
K p

Hd(Y (K ), F).

From now on, we use H̃d
n to denote this limit (rather than the limit over the cohomology

of congruence subgroups that it denoted up till now).
With this new definition, H̃d

n is cofinitely generated over Fp[[GLn(Zp)]] rather than
�Fp = Fp[[SLn(Zp)]]. It then suffices to show that these completions are eventually
stable and finite over the ring Fp[[det(GLn(Zp))]] = Fp[[Z

×
p ]]. Instead of appealing

to a general conjecture concerning finitely generated �Fp -modules, we only need
consider such modules whose dual admits a smooth admissible action of GLn(Qp). In
particular, it suffices to show that the only irreducible GLn(Qp)-representations that
occur as sub-quotients of these completions are either trivial or have large dimension.
So, instead of proving Conjecture 5.6, it suffices to prove the following:

Conjecture 5.11 Let π be an irreducible infinite-dimensional smooth admissible rep-

resentation of GLn(Qp), and let π∨ = Hom(π, Fp). Then the dimension of π∨ as a

�Fp -module is ≥ n − 1.

Although this conjecture is presumably easier than Conjecture 5.6, we still do not
know how to prove it. Instead, we prove the following two lemmas:

Lemma 5.12 Let π be an irreducible infinite-dimensional smooth admissible rep-

resentation of GLn(Qp), and let π∨ = Hom(π, Fp). If π is not a supercuspidal

representation, then the dimension of π∨ as a �Fp -module is ≥ n − 1.

Lemma 5.13 Suppose that Theorem 5.2 holds for j < d, and suppose that n is

sufficiently large. Then any infinite-dimensional irreducible smooth admissible repre-

sentation π that occurs as a sub-quotient of H̃d
n+1 is not supercuspidal.

Taken together, these lemmas serve as a replacement for either Conjecture 5.6 or
5.11, and imply the main theorem. To recapitulate the argument, from Lemma 5.13,
we deduce that every irreducible constituent of H̃d

n+1 is not supercuspidal. From
Lemma 5.12, we deduce that either H̃d

n+1 contains a representation of dimension at
least n, which contradicts the uniformly bounded dimension of H̃d

n+1 for all n, or the
only irreducible constituents of H̃d

n+1 are finite, in which case the action of SLn(Qp)

is also trivial.

Proof of Lemma 5.12 Let G denote GLn(Qp) and let B denote a Borel of G. The
Lemma is easy to verify directly for the Steinberg representation, for which the Iwa-
sawa dimension of the dual is equal to dim(G/B). By the main theorem of [19], we
may therefore assume that there exists a proper parabolic P with Levi M such that:

π = IndG
P (σ1 ⊗ · · · ⊗ σr ) = IndG

P (σ ).
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The dual of such an induced representation has dimension equal to the sum of the
dimension of the dual of σ and the dimension of G/P , and hence has dimension at
least equal to that of G/P . It is easy enough to prove this directly, but we instead give
a proof here using the characterization of dimension coming from Proposition 5.5
(which applies just as well to GLn(Zp) as it does to SLn(Zp)).

Using the Iwasawa decomposition G = K P (where now K denotes GLn(Zp)), we
see that we may rewrite π (thought of as a K -representation) as π = IndK

P∩K (σ ). A
short calculation then shows, since the level pk congruence subgroup K (pk) is normal
in K , that

π K (pk ) = IndG(Z/pk )

P(Z/pk )

(
σ M∩K (pk )

)
.

Now for k > 0, the representation inside the induction is nonzero. Hence

dim π K (pk ) ≥
[
G

(
Z/pk

)
: P

(
Z/pk

)]
∼ pmk,

where m = dim(G/P). As claimed, this gives a lower bound of dim(G/P) on the
Iwasawa dimension of π .

The minimum value of dim(G/P) amongst all proper parabolics is n − 1, and so
the lemma follows. ��

Proof of Lemma 5.13 Let M ⊂ GLn+1(Qp) denote the Levi subgroup Q×
p ×GLn(Qp)

of GLn+1(Qp), and let P be the corresponding parabolic. Associated to P is a natural
arithmetic group �P ⊂ GLn+1(Z). Let �P (pk) = �P ∩�n+1(pk). The group �P (pk)

is a semi-direct product:

�P

(
pk

)
�

(
pkZ

)n
� �n

(
pk

)
.

Let us compute the completed cohomology groups of �P . There is a Hochschild–Serre
spectral sequence:

H i
(
�n

(
pk

)
, H j

((
pkZ

)n
, Fp

))
⇒ H i+ j

(
�P

(
pk

)
, Fp

)
.

There is an isomorphism H j (pnZ, Fp) = ∧ j (Fp)
n , but the composition maps from

�P (pk) to �P (pk+1) induce the zero map on these cohomology groups unless j = 0.
Hence, taking direct limits, we get an isomorphism:

H̃d
P := lim

−→
Hd(�P (pn), Fp) � H̃d

n .

Omit the degree d from the notation. We therefore have maps as follows:

H̃n+1 → H̃P → H̃n .

The first map is P-equivariant, the second is an isomorphism, and the composition is
the natural map. It follows that there exists a G-equivariant map

H̃n+1 → IndG
P H̃n .
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Note that Sn+1∩ P = Sn , and hence the right hand side includes the induction from H̃n

from Sn to Sn+1. If n is sufficiently large with respect to d, then we deduce, by central
stability (which we know under our hypotheses by Lemma 5.8), that we actually have
an injection:

H̃n+1 → IndG
P H̃n .

To complete the proof of the lemma, it suffices to show that no constituent of the
right hand side is supercuspidal. But this also follows immediately from Herzig’s
classification of irreducible admissible representations of G [19], since H̃n is a smooth
admissible M-representation, where M is the Levi of P . ��

Remark 5.14 It is possible to give explicit bounds on n in terms of d which guarantee
that H̃d,n is stable. Suppose that the sequence H̃d,n is centrally stable for n at least m.
Then, using (the proof of) Corollary 5.9, we deduce that the dimensions of H̃d,n

for n ≥ m are at most the dimension of H̃d,m , which is at most the dimension of �m,Fp ,
which is m2 − 1. Then, using Lemmas 5.13 and 5.12, we deduce that H̃d,n is finite
as long as n − 1 > m2 − 1, or when n > m2. Using the bounds on m coming
from [10], it follows that one can take m to be 11 · 2d−2, and so H̃d,n is independent
of n for n ≥ 121 · 4d−2.

5.1 Consequences for classical cohomology groups

The homology (or cohomology) of arithmetic groups with F coefficients can be recov-
ered from completed homology via the Hochschild–Serre spectral sequence [9]. For
example, if we take our arithmetic group to be the principal congruence subgroup
�(p) of SLn(Z), then, recalling that G(p) is the principal subgroup of SLn(Zp), this
spectral sequence has the form

E
i, j
2 := H i

(
G(p), H̃ j

)
�⇒ H i+ j

(
�(p), F

)
.

As noted above, H̃0 = F, and Theorem 5.2 implies that each H̃ j is finite with trivial
G(p)-action. Hence Theorem 5.2 implies that the cohomology group Hd(�(p), F)

has a filtration with graded pieces consisting of three types of classes: those arising
via pullback from Hd(G(p), F), those arising via (higher) transgressions from H j of
G(p) for j < d, and those arising from H̃d (which do not depend on n). In this optic,
the notion of representation stability developed by Church and Farb [12] is then seen
(in this context) to have its origin in the mod-p cohomology of p-adic Lie groups,
rather than in the properties of arithmetic groups.

One interpretation of Theorem 5.2 is that the � = p and � �= p theories after com-
pletion are quite similar. The difference in phenomenology between these two cases is
then a consequence of the vanishing of H i (G(�k), F) when k ≥ 1 and the characteris-
tic p of F is not �. Another way to state these results is to say that the only irreducible
GLn(A∞)-representations occurring inside cohomology in sufficiently small degree
are one-dimensional.
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5.2 Relation to K -theory

Even knowing that H̃d is finite, it is not at all apparent how to compute it. One might
wonder whether there is some interpretation of H̃d in terms of K -theory (some related
speculation along these lines occurs in §8.3 of [15]). This question is taken up in the
companion paper [7].
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