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ABSTRACT
A crucial challenge for data-parallel clusters is achiev-
ing high application-level communication efficiency for
structured traffic flows (a.k.a. Coflows) from distributed
data processing applications. A range of recent works
focus on designing network scheduling algorithms with
predetermined Coflow placement, i.e. the endpoints of
subflows within a Coflow are preset. However, the under-
lying Coflow placement problem and its decisive impact
on scheduling efficiency have long been overlooked.
It is hard to find good placements for Coflows. At

the intra-Coflow level, constituent flows are related and
therefore their placement decisions are dependent. Thus,
strategies extended from flow-by-flow placement is sub-
optimal due to negligence of the inter-flow relationship
in a Coflow. At the inter-Coflow level, placing a new
Coflow may introduce contentions with existing Coflows,
which changes communication efficiency. This paper is
the first to study the Coflow placement problem with
careful considerations of the inter-flow relationship in
Coflows. We formulate the Coflow placement problem
and propose a Coflow placement algorithm. Under re-
alistic traffic in various settings, our algorithm reduces
the average completion time for Coflows by up to 26%.
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1 INTRODUCTION
Achieving high efficiency in servicing structured traffic
flows called Coflows [4] is a crucial challenge in modern
data-parallel clusters. A Coflow represents a collection
of flows between two groups of machines, and a Coflow’s
performance depends on its slowest flow. Coflow aware
scheduling benefits distributed data processing applica-
tions by avoiding straggler [5, 6] and improving resource
utilization [8].
A growing body of recent work [5, 6, 10, 16] mainly

focus on optimizing the network scheduling algorithm
to improve Coflows’ performance. They assume prede-
termined Coflow placement, i.e. the endpoint locations
of a Coflow are preset. However, a Coflow’s placement
can be more flexible in practice. For example, a cluster
scheduler usually can choose among multiple machines
to place the tasks in a newly submitted job, or the tasks
for the successor stage in a staged job. Similarly, a user
can also choose among multiple nodes with data copies
to read from in a distributed storage system. These place-
ment decisions would impose decisive impact on Coflows’
performance (§ 3), but the underlying Coflow placement
problem has long been overlooked.

In this paper, we set out to explore the Coflow place-
ment problem. Coflow placement is much more challeng-
ing due to the inter-flow relationship in a Coflow. For
example, in a one-to-many (or many-to-one) Coflow, all
constituent flows share the same sender (or receiver)
location. In a many-to-many Coflow, the relationship
is even more complex because any member flow shares
its two endpoints with two different groups of flows re-
spectively. Therefore, placement decisions for flows in a
Coflow are dependent, i.e. a flow’s placement may decide
the placement for other flows. As a result, negligence of
such inter-flow relationship would result in poor place-
ment decisions for certain member flows and delay the
completion of the whole Coflow (§ 3.1).
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To begin addressing these challenges, we propose 2D-
Placement, the first placement algorithm for Coflows
that considers Coflow’s inter-flow relationship. Our algo-
rithm optimizes Coflow placement at two levels. At the
intra-Coflow level, 2D-Placement leverages the inter-flow
relationship to identify critical endpoints that require bet-
ter placement. At the inter-Coflow level, 2D-Placement
mitigates Coflows’ contentions on their critical endpoints.
Under realistic traffic, 2D-Placement improves the aver-
age Coflow completion time by up to 26% when compared
with the state-of-the-art placement algorithm.

2 PROBLEM FORMULATION
We start by describing the conceptual models used to
study the Coflow placement problem.

Coflow: A Coflow represents a collection of indepen-
dent flows that share a common performance goal. A
Coflow is defined by the endpoints and byte size of each
flow within the Coflow. The traffic demand of a Coflow
can be expressed with a matrix 𝐷, where 𝑑𝑖,𝑗 ∈ 𝐷 indi-
cates flow 𝑓𝑖,𝑗 transfers 𝑑𝑖,𝑗 amount of data from sender
𝑠𝑖 to receiver 𝑟𝑗 .

Network Model: Topology designs such as Fat-tree
or Clos [3, 9] enable building a network with full bisection
bandwidth in datacenters. We model the network fabric
as one non-blocking 𝑁 -port switch with link bandwidth
𝐵, as assumed in previous studies on Coflow [5, 6, 10].
Switch ports are connected to nodes, which can be host
machines or ToR switches. Under this model, only edge
links are congested and the core is congestion free.

Scheduling objective: We follow the standard ob-
jectives used in studies on Coflow scheduling. At the
intra-Coflow level, the objective is to minimize the Co-
flow Completion Time (CCT), which is the duration
to finish all flows in a Coflow to speed up application
level performance. For a Coflow 𝐶, denote its arrival
time as 𝑡Arr, and the finish time of the flow 𝑓𝑖,𝑗 ∈ 𝐶
as 𝑡𝐹𝑖,𝑗 . Hence CCT is defined as max

𝑓𝑖,𝑗∈𝐶
(𝑡𝐹𝑖,𝑗 − 𝑡Arr). At

the inter-Coflow level, the objective is to minimize the
sum of CCTs for a set of Coflows {𝐶1, ..., 𝐶𝐾}, so as to
reduce the average latency at the application level, i.e.

min
𝐾∑︁

𝑘=1

(CCT 𝑘). (1)

Problem statement: In an online scenario where
𝐾 Coflows arrive at various time 𝑡𝐴𝑟𝑟

1 < ... < 𝑡𝐴𝑟𝑟
𝐾 ,

we want to decide the placement for each Coflow 𝐶𝑘,
which is the mapping from 𝐶𝑘’s sender 𝑠𝑖 (receiver 𝑟𝑗)
to the node behind one of the input (output) ports, so
that our objective Equation (1) is achieved. The place-
ment of a Coflow 𝐶𝑘 can be represented by mapping

functions 𝑃 𝑠
𝑘 : {𝑠𝑖} → {𝑖𝑛.1, ..., 𝑖𝑛.𝑁} for senders and

𝑃 𝑟
𝑘 : {𝑟𝑗} → {𝑜𝑢𝑡.1, ..., 𝑜𝑢𝑡.𝑁} for receivers. For a spe-

cific placement, Coflow 𝐶𝑘’s demand matrix 𝐷𝑘 can be
transformed to 𝐷′

𝑘 by setting 𝑑′𝑃 𝑠
𝑘 (𝑠𝑖),𝑃

𝑟
𝑘 (𝑟𝑗)

= 𝑑𝑠𝑖,𝑟𝑗 , so

that 𝑑′𝑖,𝑗 represents the amount of data requested by 𝐶𝑘

from input port 𝑖𝑛.𝑖 to output port 𝑜𝑢𝑡.𝑗 .
We assume when a Coflow arrives, its traffic demand

𝐷 is available, which can be obtained in many ways such
as user configurations or history of recurring jobs [12].
We do not impose assumptions on the arrival time or
the traffic demand of newly arriving Coflows. Thus, our
problem becomes deciding the placement of a new Coflow
𝐶𝐾 given the existing (𝐾 − 1) Coflows, so that the sum
of 𝐾 Coflows’ CCTs is minimized.

Problem analysis: The sum of CCTs is jointly de-
termined by Coflows’ placement and the network sched-
uling during runtime. First, Coflows’ placement decides
the optimal sum of CCTs achievable by any network
scheduling policy. Later in this paper, we will show how
Coflows’ placement changes this optimum (§ 3). Second,
after Coflows are placed, the sum of CCTs will be fur-
ther determined by the network scheduling policy, which
arbitrates bandwidth allocation for each Coflow.
In this paper, we focus on finding Coflow placement

that minimizes the sum of CCTs under the optimal
network scheduling, so as to optimize placement in a
general case independent of the network scheduler. We
do not have a conclusion on the hardness of such a
placement problem. Given a specific placement, finding
the optimal scheduling policy to minimize the sum of
CCTs is NP-hard [6, 13].

3 MOTIVATING EXAMPLES
This section presents two motivating examples to pro-
vide insights for our placement problem. To facilitate
discussion, we begin by introducing the methodology
and useful terms in our analysis.

Optimal Coflow priority: Given a specific place-
ment, the optimal scheduling policy is shown to be
equivalent to servicing Coflows in the optimal priority
order [13]. Specifically, each Coflow is assigned a unique
priority and lower-priority Coflows cannot finish sooner
by delaying a higher-priority Coflow. In our examples,
we enumerate all possible priority orderings and show
the CCTs derived from the best ordering that minimizes
the average CCT under a specific placement. As we will
show in our examples, Coflows’ placement decides the
performance upperbound for the network scheduler.

Demand bottleneck: To capture the key character-
istic of Coflow demand 𝐷, we leverage a useful metric,
the bottleneck. For a given traffic demand matrix 𝐷,
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Figure 1: Coflow placement should avoid delaying bottleneck
endpoint. (a) Placing 3-by-2 𝐶2 onto a 4-by-4 network with
active flows from 3-by-3 𝐶1. (b-e) All possible placements of
𝐶2. Cells with two colors indicate links shared by two Coflows.
Cell numbers are the aggregated traffic size on the link. The
optimal priority order is 𝐶1, 𝐶2. Thus CCT 1 is insensitive
to 𝐶2 placement, so only CCT 2 is considered. (b) Optimal
placement with 𝐶2’s bottleneck 𝑟1 on the least congested
𝑜𝑢𝑡.4. (c) Suboptimal placement due to delay of 𝐶2’s bottle-
neck 𝑟1 on 𝑜𝑢𝑡.3 (d) Suboptimal placement due to delay of
𝐶2’s bottleneck 𝑟1 on 𝑜𝑢𝑡.2 (e) Suboptimal placement due to
delay of 𝐶2’s bottleneck 𝑟1 on 𝑜𝑢𝑡.1. For fair comparison, we
assume all Coflow traffic should traverse the network.

we define its bottleneck as 𝐿(𝐷) = max(max
𝑗

𝑁1∑︀
𝑖=1

𝑑𝑖,𝑗 ,

max
𝑖

𝑁2∑︀
𝑗=1

𝑑𝑖,𝑗), where 𝑁1 and 𝑁2 is the number of rows

and columns in 𝐷 respectively. 𝐿 is maximum of column
sums and row sums of 𝐷. For example, in Figure 1, the
bottlneck of 𝐶2’s demand matrix is 90 at 𝑟1. Ideally
when there is only one Coflow in the network, 𝐿(𝐷)/𝐵
(where 𝐵 is the link bandwidth) is the lowerbound of
CCT for all requested traffic to traverse the network.

3.1 Intra-Coflow Bottleneck Delay
Ideally when the available bandwidth for the newly ar-
riving Coflow is uniform across the entire network, the
Coflow’s CCT is less sensitive to placement and mainly
depends on the bottleneck of its demand matrix. In prac-
tice, however, the available bandwidth for the new Coflow
is usually not uniform due to heterogeneous workload or
reserved bandwidth for important workload. In this case,
we must avoid placing a Coflow’s bottleneck sender (or

receiver), i.e. endpoint that gives the bottleneck, onto a
port with insufficient inbound (or outbound) bandwidth,
because such bottleneck endpoint(s) is more likely to
delay CCT than the other non-bottleneck endpoints. For
example, in Figure 1, we should place 𝐶2’s bottleneck
endpoint 𝑟1 on output port 𝑜𝑢𝑡.4 (Figure 1b), because
higher priority 𝐶1 already claims outbound bandwidth
from 𝑜𝑢𝑡.1, 𝑜𝑢𝑡.2, and 𝑜𝑢𝑡.3. In other words, none of
𝑜𝑢𝑡.1, 𝑜𝑢𝑡.2 or 𝑜𝑢𝑡.3 provides as much available outbound
bandwidth as 𝑜𝑢𝑡.4, and thus placing 𝐶2’s bottleneck
endpoint on any of these busier ports (Figure 1c,d,e)
would delay 𝐶2’s bottleneck and extend CCT.

In contrast, placing the non-bottleneck 𝑟2 on the busier
ports is less harmful, as shown in various solutions in
Figure 1b, because non-bottlenecks can tolerate certain
amount of delay before they exceed the bottleneck to
effectively increase CCT. Note that in Figure 1, 𝐶1 is
prioritized under the optimal priority ordering, and thus
CCT 1 is insensitive to 𝐶2’s placement. To minimize the
sum of CCTs, only CCT 2 is concerned.

Hence, we have Observation 1: When only the CCT of
the Coflow to be placed is concerned, the Coflow’s place-
ment should avoid delaying the bottleneck. To achieve
this goal, bottleneck endpoint(s) should be placed at
ports with sufficient bandwidth resource.
It is interesting to note that, without considering a

Coflow’s bottleneck, flow-level placement strategy may
be suboptimal for Coflow placement. For example, prior
work proposes to place a Coflow’s constituent flows se-
quentially in the decreasing order of their flow sizes
using a flow-level placement algorithm, because “large
flows are more likely to be the critical flows to deter-
mine CCT” [14]. However, such strategy would yield
suboptimal solutions, as shown in the first column of
Figure 1c and Figure 1d. Under this flow-level strategy,
the non-critical 𝑓3,2, despite its largest flow size, takes
over 𝑜𝑢𝑡.4, leaving suboptimal ports of 𝑜𝑢𝑡.2 or 𝑜𝑢𝑡.3 for
the bottleneck receiver 𝑟2 of 𝐶2.

3.2 Inter-Coflow Bottleneck Contention
So far we have considered an easier case in § 3.1 where
only one Coflow is concerned in placement. While the
optimal placement in this easier case is non-trival to find,
our problem would become even more challenging when
the new Coflow introduces contention among multiple
Coflows and thus changes multiple Coflows’ CCTs.
Consider Figure 2 that follows our previous example.

Assume shortly after we adopt the optimal placement
of 𝐶2, an incast Coflow 𝐶3 arrives. None of the output
ports is an easy choice for the new Coflow: placing 𝐶3

on 𝑜𝑢𝑡.1 introduces contention with 𝐶1; placing 𝐶3 on
𝑜𝑢𝑡.2 or 𝑜𝑢𝑡.3 results in contentions with both 𝐶1 and



APNET ’17, August 3–4, 2017, Hong Kong, China X. S. Huang et al.

4+64+90=158

C
2

C
1

(d)(b)

(a) Coflow traffic demand
C

3

(c)

4+62+112=174

2 2
2

2 2

out.1 2 3 4

in.1

2

3

4

30
30
30

50

s
3

r
1

s
1

s
2

20
20
20

22
222
2

30
30
30

50

220
2 22
2

22 2

30
30
30

5020

2 2
2

2

7030
30
30

20

22

(e)

4+60+150=2144+64+100=168

2 2
2

2 2

50
50
50

50

How to place?

network state

Figure 2: Coflow placement should avoid contentions among
critical endpoints with heavy traffic load. (a) Placing incast
𝐶3 onto a 4-by-4 network with active flows from 𝐶1 and 𝐶2.
Optimal priority order is 𝐶1, 𝐶3, 𝐶2. (b-e) All possible place-
ments of 𝐶3. CCTs are presented in CCT 1+CCT 3+CCT 2.
(b) Optimal placement, placing 𝐶3 on 𝑜𝑢𝑡.1. (c) Suboptimal
placement, delaying 𝐶2 on 𝑖𝑛.1. (d) Suboptimal placement,
delaying 𝐶2 on 𝑜𝑢𝑡.3. (e) Suboptimal placement, delaying 𝐶2

on 𝑜𝑢𝑡.4. Legends and assumptions follow Figure 1.

𝐶2; and placing 𝐶3 on 𝑜𝑢𝑡.4 leads to contention with 𝐶2.
The optimal placement is 𝑜𝑢𝑡.1 (Figure 2b). In Figure 2e,
𝑜𝑢𝑡.4 is suboptimal due to contentions among the heavy
bottlenecks of 𝐶3 and 𝐶2. In Figure 2c, 𝑜𝑢𝑡.2 is subopti-
mal because 𝐶3 delays 𝐶2’s non-bottleneck endpoint 𝑠1
and prolongs CCT 2. Similarly, 𝑜𝑢𝑡.3 is suboptimal due
to delay on 𝑟1 of 𝐶2, as shown in Figure 2d.

It is interesting to compare the suboptimal solutions in
Figure 2c and Figure 2d. Although both solutions intro-
duce contentions among all Coflows, however, Figure 2c
is slightly better even though it involves contentions with
𝐶1’s bottlenecks. We observe contentions with 𝐶1 is less
harmful because 𝐶1’s traffic is relatively light and the
resulting delay in 𝐶3 is less dominant in the overall CCT.
In contrast, contentions with 𝐶2 should be treated more
carefully due to the potentially large delay caused by
𝐶3 on 𝐶2. In Figure 2d, 𝐶3’s incast receiver with heavy
load would significantly delay 𝐶2 on 𝑜𝑢𝑡.3, resulting in
drastically inflated CCT for 𝐶2 when compared with
Figure 2c.

Hence, we have Observation 2: Coflow placement should
avoid contentions on endpoints with heavy traffic load.
When contentions among Coflows are unavoidable, the
delay in the overall CCT caused by contentions is re-
lated to the amount of contenting traffic. This is because
longer traffic queues at the contention points (e.g. at the
edge links in our problem) usually result in longer traffic
delay, and on the other hand, shorter queue shorter de-
lay. For example, the worst solution shown in Figure 2d
would create a much longer queue waiting at 𝑜𝑢𝑡.4 than
any queue in the other solutions.

4 ALGORITHM DESIGN
To the best of our knowledge, no efficient algorithm is
known to solve our problem optimally in polynomial time.
Thus, we focus on designing good placement heuristic.

We observe placement schemes extended from flow
level strategy are insufficient (§ 3.1) due to negligence of
the inter-flow relationship, since flow level metrics (e.g.
flow size) does not necessarily reflect on the key features
at the Coflow level (e.g. bottleneck). To characterize the
inter-flow relationship in a Coflow’s demand 𝐷, we derive
the aggregated traffic demand at the senders (receivers),
which can be represented by vectors 𝐿𝑠[.] for senders
and 𝐿𝑟[.] for receivers (Line 1 in Algorithm 1). Vector
elements indicate the traffic load at an endpoint, and
endpoints with heavier load are are more likely to become
the bottleneck and delay CCT due to heavier contentions
at the intra-Coflow level.
To characterize the inter-Coflow contentions, we cal-

culate the traffic load on each input and output port
by aggregating the remaining demand from all existing
Coflows, which can be represented by vectors 𝐸𝑠[.] for
input ports and 𝐸𝑟[.] for output ports. Under a set of
active Coflows C, we have ∀𝑖𝑛.𝑖 : 𝐸𝑠[𝑖𝑛.𝑖] =

∑︀
𝐶∈C

∑︀
𝑗

𝑑′𝑖,𝑗 ,

and ∀𝑜𝑢𝑡.𝑗 : 𝐸𝑟[𝑜𝑢𝑡.𝑗] =
∑︀

𝐶∈C

∑︀
𝑖

𝑑′𝑖,𝑗 , where 𝑑′𝑖,𝑗 ∈ 𝐷′ is

a Coflow 𝐶’s traffic demand from 𝑖𝑛.𝑖 to 𝑜𝑢𝑡.𝑗 (𝑑′𝑖,𝑗 = 0
if demand is fulfilled or never requested).

𝐸𝑠[.] and 𝐸𝑟[.] are generic measurements which con-
sider all active Coflows in the network, and they are
independent of the underlying network scheduler. 𝐸𝑠[.]
and 𝐸𝑟[.] offer an estimation of the length of traffic
queues behind each port. They are useful to indicate the
overall traffic delay associated with a port, because ports
with higher values are more likely to have longer traffic
queues, which leads to larger average delay, even though
the network scheduler may try to orchestrate resource al-
location among Coflows to trade off their delays. Besides,
these measurements are more practical because they do
not involve bookkeeping the states for each individual
flow as required in prior work for flow placement [14].
By leveraging these measurements that characterize

a Coflow’s traffic demand and the underlying network
states, we design our Coflow placement algorithm, 2D-
Placement, as shown in Algorithm 1. 2D-Placement
consists of two steps. First, 2D-Placement calculates the
traffic demand requested on each endpoint for the Coflow
to place, i.e. 𝐿𝑠[.] and 𝐿𝑟[.], as shown in Line 1. Second,
2D-Placement considers each sender (or receiver) in the
descending order of their requested demand, and place
the sender (or receiver) onto the input (or output) port
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Algorithm 1 2D-Placement

Input: Coflow to place 𝐶new , remaining load 𝐸𝑠[.] and 𝐸𝑟[.]
Output: Placement of all senders 𝑃 𝑠(.) and receivers 𝑃 𝑟(.)
1: for all (𝑠𝑖, 𝑟𝑗 , 𝑑𝑖,𝑗) in 𝐶new do ◁ Requested load
2: Load on sender 𝐿𝑠[𝑠𝑖] += 𝑑𝑖,𝑗
3: Load on receiver 𝐿𝑟[𝑟𝑗 ] += 𝑑𝑖,𝑗
4: end for
5: for all 𝑠𝑖 in the descending order of 𝐿𝑠[.] do
6: 𝑃 𝑠(𝑠𝑖) = argmin𝐸𝑠[.] ◁ Place sender
7: 𝐸𝑠[𝑃 𝑠(𝑠𝑖)] += 𝐿𝑠[𝑠𝑖] ◁ Update load on port
8: end for
9: for all 𝑟𝑗 in the descending order of 𝐿𝑟[.] do

10: 𝑃 𝑟(𝑟𝑗) = argmin𝐸𝑟[.] ◁ Place receiver
11: 𝐸𝑟[𝑃 𝑟(𝑟𝑗)] += 𝐿𝑟[𝑟𝑗 ]
12: end for

with the minimum traffic load as described by 𝐸𝑠[.] (or
𝐸𝑟[.]), as shown in Line 6 (or Line 10).
Our algorithm simultaneously achieves the two goals

desired for Coflow placement. First, by sorting endpoints’
traffic load, we prioritize endpoints that are more likely
to become the bottleneck due to heavier intra-Coflow
contentions, and place these critical endpoints on a port
with more resource. Second, by finding a port with less
traffic load, we reduce the amount of contending traffic
across Coflows and thus the delay of queue waiting.

Examples Our algorithm obtains the optimal solu-
tions for both examples shown in Figure 1 and Figure 2.
In Figure 1, we start by placing heavy sender 𝑠3 with
more demand onto the least loaded input port 𝑖𝑛.1 and
heavy receiver 𝑟1 onto 𝑜𝑢𝑡.4, yielding the optimal solu-
tion as shown in the left most column of Figure 1b. In
Figure 2, our algorithm will select the least loaded input
ports 𝑖𝑛.4, 𝑖𝑛.2, 𝑖𝑛.3 for senders and the least loaded
output port 𝑜𝑢𝑡.1 for the only receiver of 𝐶3, yielding
the optimal solution in Figure 2b.

Complexity To record network states, our algorithm
only requires two vectors of size 𝑁 , i.e. 𝐸𝑠[.] and 𝐸𝑟[.],
where 𝑁 is the number of ports. To place a Coflow with
𝑛𝑠 senders, and 𝑛𝑟 receivers, our algorithm need to calcu-
late and sort 𝐿𝑠[.] and 𝐿𝑟[.], while 𝐸𝑠[.] and 𝐸𝑟[.] can be
updated dynamically and computed asynchronously for
fast look up of less loaded ports. Thus, our algorithm’s
time complexity is 𝑂(𝑛2) where 𝑛 = max(𝑛𝑠, 𝑛𝑟).

5 EVALUATIONS

5.1 Methodology
Simulator:We implement a flow-level simulator [2] with
various algorithms for Coflow placement and network
scheduling. We implement two network schedulers for
Coflows, i.e. Varys [6] and Aalo [5]. Both schedulers are
designed to optimize the average CCT for a set of Coflows
with predetermined placement, by prioritizing Coflows

that are expected to finish faster with smaller bottleneck
of their network demand 𝐿(𝐷′). Varys assumes accurate
Coflow traffic request, and Aalo tries to approximate
Varys with unknown Coflow sizes so as to tolerate error
in the requested demand.

Workload: We use a realistic workload based on a
one-hour MapReduce trace collected from a Facebook
production cluster [1]. The trace contains more than 500
Coflows observed in a 150-port fabric with exact inter-
arrival times. The Coflows are in various structures (one-
to-one, one-to-many, many-to-one and many-to-many).

Baseline: We compare against Neat [14], a state-of-
the-art flow placement algorithm optimized with the
awareness of network scheduling policy. To place a Co-
flow, Neat sequentially considers each constituent flow
in their descending order of byte sizes, so as to avoid
straggler flows and reduce the average CCT. Upon plac-
ing each flow, Neat opportunistically selects a node that
minimizes the estimated sum of flow completion time
(FCT) for the endpoint whose location is undetermined.
To estimate the sum of FCTs for a flow’s placement,
Neat requires all flow and Coflow states, as well as the
traffic priority under a specific network scheduling policy.
In our evaluation, Neat uses the same traffic priority
adopted by the network schedulers, i.e. prioritizing small
Coflows that are expected to finish faster.

To evaluate Coflow placement with CCTs, a Coflow’s
requested demand should trigger actual traffic in the
network. To do so, we require all placement algorithms
to select distinct nodes for all senders and receivers for
a Coflow whose 𝑛𝑠 + 𝑛𝑟 ≤ 𝑁 , where 𝑁 is the number of
nodes, and 𝑛𝑠 (𝑛𝑟) is the number of senders (receivers)
in the Coflow. For a Coflow whose 𝑛𝑠 + 𝑛𝑟 > 𝑁 , we
allow reusing nodes between senders and receivers, but
senders (or receivers) should reside on distinct nodes.

5.2 Coflow Performance Improvement
Improvement in average CCT: We begin our eval-
uation by comparing the average CCT under various
scenarios involving different network schedulers and a
range of traffic load. To evaluate performance under dif-
ferent traffic load, we scale up (down) the Coflow’s traffic
size with a factor, while preserving Coflows’ structures
and arrival time. Scale factor less than 1 means lighter
traffic load than the default setting of the trace.
Table 1 shows 2D-Placement improves the average

CCT by up to 26%. When scale factor > 1.5, CCTs
inflate significantly due to overly high load. When scale
factor is between 0.25 and 0.5, 2D-Placement remains
the better placement scheme with normalized average
CCT ≤ 0.98. Under extremely light load with scale factor
< 0.25, 2D-Placement and Neat are close in performance,
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Scale factor ×0.5 ×0.75 ×1 ×1.25 ×1.5
Aalo 0.87 0.82 0.77 0.77 0.87
Varys 1.00 0.96 0.79 0.74 0.78

Table 1: 2D-Placement’s average CCT normalized on Neat’s
average CCT. Normalized average CCT less than 1 means
2D-Placement is better.

since the available bandwidth for a Coflow is generally
sufficient across the entire network, and therefore Coflow
performance is less sensitive to placement and mainly
depends on its demand bottleneck. This agrees with our
previous observation (§ 3.1). Under medium or heavy
workload that would result in heterogeneous network
load and thus the available bandwidth for a Coflow is
not uniformly distributed, Coflow placement is critical
to improve Coflow performance.

Improvement in individual CCT: To compare two
placement schemes more closely, we examine the indi-
vidual CCTs under the default setting without traffic
scaling. We begin with the metric used in previous Co-
flow studies [5, 6, 16], which is the CCT ratio between
competing schemes. We find 2D-Placement is 0.995×
(0.998×) of Neat on average under Aalo (Varys) schedul-
ing. On a per Coflow basis, 2D-Placement only slightly
improves over Neat.

At first glance, this seems to disagree with our previous
results, which show much more drastic improvement in
the average CCT. However, it is not hard to explain the
difference. Prioritized Coflows are indifferent to place-
ment, because the network scheduler usually allows these
traffic to preempt bandwidth resource and thus their
CCTs mainly depends on their demand bottleneck. Un-
der both Varys and Aalo, smaller Coflows are prioritized.
Since there are many more small Coflows in the trace,
the pairwise comparison does not make much difference.

On the other hand, large Coflows are more sensitive to
Coflow placement for several reasons. First, when they
are less prioritized by the underlying network scheduler,
they are more likely to be delayed due to waiting after
or sharing bandwidth with other Coflows. Second, due
to large traffic size, large Coflows usually stay in the
network for longer time, and thus they are more likely
to experience interruptions from new arrivals of higher
or equal priority traffic. In our evaluation, large Co-
flows benefit from 2D-Placement, resulting in a drastic
improvement in the average CCT.
We confirm our observations with Figure 3. We con-

sider a Coflow to be large if the ratio of its demand
bottleneck over link bandwidth 𝐿(𝐷)/𝐵 ≥ 60 (i.e. the
Coflow takes at least 60 seconds to finish) under the orig-
inal setting of the trace. Large Coflows account for 4.2%
of all Coflows and 95.6% of all bytes. All large Coflows
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Figure 3: Individual CCT reduction of 2D-Placement from
Neat. (a) Aalo. (b) Varys. Coflows are spread along the x-axis
on the bottleneck 𝐿 of their traffic demand 𝐷. 2D-Placement
is better with larger values.

are many-to-many Coflows with up to 147 senders and
145 receivers.

For small Coflows on the left of x-axis in Figure 3,
their CCT are not much different under 2D-Placement
or Neat, because their traffic is prioritized. For large
Coflows where most of the bytes come from, we observe
Neat performs worse on average. This is because Neat’s
estimated sum of FCTs does not necessarily translate to
the sum of CCTs as in our objective. Neat’s estimation
is based on a simplified assumption: for Coflows that
share a link, each Coflow will assign proportionally equal
traffic (with respect to each Coflow’s total traffic size) on
the link that the Coflows are contending for. However,
such assumption usually does not hold true in practice
because Coflows have varying structures and do not split
traffic in the same way. As a result, Neat may make poor
placement decisions for Coflows due to its overly simpli-
fied assumption. Besides, Neat’s estimation is prone to
error when the runtime traffic priority deviates from the
priority as assumed by Neat (see below “Sensitivity to
network scheduling”).
In contrast, 2D-Placement achieves better CCTs for

large Coflows: 2D-Placement is only 0.85× (0.92×) of
Neat on average under Aalo (Varys) scheduling. A large
Coflow is hard to place because it usually has more
senders, more receivers and larger traffic volume, and
yet a large Coflow is also more sensitive to placement
which has long term impact on the Coflow’s performance.
2D-Placement allows large Coflows to finish faster, which
translates to a more favorable average CCT.

Sensitivity to network scheduling: We compare
how one placement scheme performs under different net-
work schedulers with the default traffic settings. Note
that even under the same settings, Aalo is usually worse
than Varys because it may temporarily allow Coflows
to violate the smallest-Coflow-first priority due to lack
of precise knowledge of Coflow sizes. Nevertheless, for
small Coflows that are prioritized under both schedulers,
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neither placement scheme makes much difference. Thus,
for small Coflows, Aalo is 1.27× (1.30×) of Varys on
average under 2D-Placement (under Neat). However, for
large Coflows that are more sensitive to placement, 2D-
Placement allows Aalo to perform much closer to Varys.
Under 2D-Placement, Aalo is only 1.65× of Varys on
average for large Coflows. Under Neat, however, Aalo
becomes much worse with 1.88× of Varys on average for
large Coflows. Neat optimizes placement based on a spe-
cific traffic priority used in the network scheduler. How-
ever, when the network scheduler does not fully observe
the priority during runtime, Neat may make poor place-
ment decisions due to estimation errors. For example, a
high priority Coflow assumed by Neat could be delayed
in practice, which prolongs the average CCT. In contrast,
the load and demand metrics used 2D-Placement are
generic measurements that optimize the CCTs by re-
ducing contentions. 2D-Placement is independent on the
underlying network scheduler and thus is more tolerable
to dynamics in network scheduling during runtime.

6 RELATED WORK
To the best of our knowledge, this work is the first to
study Coflow placement problem with considerations
of the inter-flow relationship in Coflows. A range of
recent proposals [5, 6, 10, 16] demonstrate improved
application-level communication efficiency with Coflow
aware network scheduling under predetermined Coflow
placement. Coflow placement problem is different from
task placement [7, 11, 15], which is more interested in
individual task performance or the cluster wide metrics
such as resource utilization. In contrast, the performance
of a Coflow must consider all constituent flows. As a re-
sult, flow placement strategies [14] may yield suboptimal
solution due to negligence of the inter-flow relationship
in a Coflow. Different from designs [12] that speed up
Coflow completion by colocating senders and receivers
to reduce Coflow traffic demand, our work optimizes
placement in a general scenario where colocation is not
feasible, e.g. in the case where storage nodes do not host
computation tasks from data processing jobs.

7 CONCLUSION
Coflow placement, despite its decisive impact on Coflows’
performance, is a problem long been overlooked. This
paper presents the first study on the Coflow placement
problem with careful considerations of the inter-flow re-
lationship in Coflows. Avoiding bottleneck delay and
reducing bottleneck contention are the keys to good
placement for Coflows. We design a Coflow placement
algorithm that simultaneously achieves these desirable
goals. Evaluations show our algorithm improves the aver-
age CCT by up to 26%. We demonstrate the benefits of

exploiting inter-flow relationship in finding good place-
ments for Coflows, which enables the underlying network
scheduler to achieve better Coflow performance.
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