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Decays of pentaquarks in hadrocharmonium and molecular scenarios
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We consider decays of the hidden charm LHCb pentaquarks in the hadrocharmonium and molecular
scenarios. In both pictures the LHCb pentaquarks are essentially nonrelativistic bound states. We develop a
semirelativistic framework for calculation of the partial decay widths that allows the final particles to be
relativistic. Using this approach we calculate the decay widths in the hadrocharmonium and molecular
pictures. Molecular hidden charm pentaquarks are constructed as loosely bound states of charmed and
anticharmed hadrons. Calculations show that molecular pentaquarks decay predominantly into states with
open charm. Strong suppression of the molecular pentaquark decays into states with hidden charm is
qualitatively explained by a relatively large size of the molecular pentaquark. The decay pattern of
hadrocharmonium pentaquarks that are interpreted as loosely bound states of excited charmonium v’ and
nucleons is quite different. This time dominate decays into states with hidden charm, but suppression of the
decays with charm exchange is weaker than in the respective molecular case. The weaker suppression is
explained by a larger binding energy and respectively smaller size of the hadrocharmonium pentaquarks.
These results combined with the experimental data on partial decay widths could allow to figure out which

of the two theoretical scenarios for pentaquarks (if either) is chosen by nature.

DOI: 10.1103/PhysRevD.98.114037

I. INTRODUCTION

Pentaquarks discovered by the LHCb collaboration [1,2]
are the first experimental sighting of exotic baryons. It is
probably not by chance that these baryons contain a heavy
quark-antiquark pair, with quark masses larger than the
scale of strong interactions. Internal structure of the LHCb
pentaquarks remains at this moment unknown. Numerous
models of the exotic pentaquarks were proposed in the
literature, see, e.g., recent reviews [3-8] and references
therein.

We will concentrate on the popular molecular and
hadrocharmonium scenarios for the LHCb pentaquarks
as they were realized in [9,10] (see also [11]). Neither
of these scenarios can be justified on purely theoretical
grounds, both are based on some physically reasonable
conjectures about the nature of QCD at low energies. Both
in the hadrocharmonium and the molecular pictures penta-
quark is assumed to be a nonrelativistic bound state of two
hadrons. The main difference between the two models is in

.*_meides @g.uky.edu
"Victor.Petrov @ thd.pnpi.spb.ru

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2018,/98(11)/114037(20)

114037-1

the nature of forces that bind constituents into a pentaquark.
The idea of the hadrocharmonium picture [12—14] is that
almost static heavy quark and antiquark inside an exotic
baryon form a small color singlet state—one of excitations
of charmonium. Light valence quarks inside hadrocharmo-
nium also form a color singlet state (nucleon) and occupy a
much larger volume. Interaction between an almost static
color singlet heavy quark-antiquark pair and a large color
singlet nucleon is due to the long range color dipole forces
and effectively the small static ¢¢ pair probes the long
wavelength gluon field inside the large light nucleon.
Heavy quarkonium interaction with nuclei was considered
in [15,16], see also references in [17]. A QCD motivated
potential that depends on the charmonium chromoelectric
polarizability and nucleon stress-energy distribution
describes charmonium-nucleon interaction, and one can
find the spectrum of hidden charm baryons solving the
Schrodinger equation [9,10]. Literally, the hadrocharmo-
nium picture is justified in the large N, and heavy quark
limit when the mass of the nucleon becomes large and its
size remains constant, while the heavy quark-antiquark pair
occupies a small volume and is effectively static [12,13].

The molecular scenario of hidden charm pentaquarks
initiated in [18] is qualitatively vastly different. In this
scenario heavy quark and valence light quark(s) form a
color singlet open charm heavy hadron, while the heavy
antiquark forms another open charm hadron with the
remaining light valence quark(s). These open charm
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hadrons interact via exchange of light mesons and form a
loosely bound pentaquark where the open charm constitu-
ent hadrons and, respectively, heavy quark and antiquark
are at rather large distances. The problem with this scenario
is that meson exchanges generate attraction at large dis-
tances but are too singular at short distances and fail to hold
the constituents far enough to avoid fall to the center. Some
kind of hard core should arise and meson exchanges do
not provide any effective repulsion at small distances.
Therefore the hard core is not under theoretical control
while the wave function in the molecular scenario tends
to be concentrated there and critically depends on the
hard core properties, see, e.g., [10] and references in the
reviews [4,5,7].

Currently both the molecular and hadrocharmonium
descriptions of the LHCb pentaquarks are plausible, one
cannot choose between them on purely theoretical grounds.
Taking into account uncertainty of the theoretical situation,
one needs to find experimentally observable signatures that
could help to figure out which of the two scenarios (if any)
is realized by nature. In principle, there are many ways to
explore internal structure of hadrons, the most straight-
forward approach is just to measure their form factors.
Information on the electromagnetic form factors of penta-
quarks could immediately resolve the confrontation of the
hadrocharmonium and molecular scenarios. However, one
cannot expect any experimental data on the form factors of
the LHCb pentaquarks any time soon. The next best option
to explore internal structure of pentaquarks is to measure
decays widths.

We expect that the dominant contributions to the total
width come from two-particle decays. In the hadrocharmo-
nium picture decays with emission of additional pions are
strongly suppressed due to small phase volume and pseudo-
Goldstone nature of pions [9]. The constituents of the
molecular pentaquark are unstable with respect to decays
D*—=D+rm and £. — A, + &, and have finite but small
widths. Three-particle decays P, (4450) — £ D are banned
kinematically, My (2455) + M(1865) + M, (140) =
4460 MeV > Mp (4450). Decays P, — A D"z are allowed
kinematically, ~ M, (2286) + Mp.(1865) + M ,(140) =
4436 MeV < Mp (4450) but they are suppressed due to a
small available phase volume and derivative coupling of
pions.

Both in the hadrocharmonium and molecular pictures
there are two qualitatively different classes of two-particle
pentaquark decay processes. Decays of one kind occur
without charm exchange between the constituents and the
decay products carry the same charm as the constituents. In
decays of the other kind charm is exchanged and the decay
products have charm quantum numbers that do not coincide
with the ones of the constituents.

Calculations of the pentaquark decays are impeded by
numerous obstacles: apparent ultraviolet divergences,
uncertainty of the cutoff momenta, need to introduce more

or less arbitrary form factors, etc. We describe decay
processes of nonrelativistic loosely bound pentaquarks
by t-channel exchanges between the constituent hadrons."
In transitions without charm exchange interaction is due to
the lightest mesons without open charm. In the case when
charm of the constituents changes they exchange by the
lightest mesons with open charm. A naive expectation is
that in each case (hadrocharmonium and molecular penta-
quarks) decays without charm exchange dominate and
decays with charm exchange are suppressed. This pattern
of decays could allow to choose between the hadrochar-
monium and molecular pictures of pentaquarks if and when
the experimental data for decays will be available.

Let us quantify these expectations. Notice that to
exchange charm the constituents should come very close
to each other, at a relative distance ~1/m,. The probability
of this to happen in a nonrelativistic bound state is
proportional to |y (0)|?/m3, where w(r) is the bound state
wave function. But y(0) ~ k¥, where k = \/2pue, u is the
reduced mass of the system and ¢ is the binding energy.
Then suppression of decays with exchange of charm is
described by the factor

In a hadrocharmonium pentaquark y is about the nucleon
mass and in a molecular pentaquark u ~ m,.. For the
P.(4450) constructed in [9,10] binding energy is €=~
176 MeV in the hadrocharmonium case, and it is ¢~
15 MeV in the molecular case. At face value suppression of
decays with charm exchange is expected in both pictures
and it is stronger in the molecular picture. We will see
below that these expectations hold and discuss what
happens.

Our principal goal is to find out if measurements of
partial widths for decays in the channels with open and
hidden charm can help to figure our which of the two
scenarios (hadrocharmonium and molecular) of the hidden
charm pentaquarks is realized in nature. To this end we
develop a semirelativistic approach to calculation of the
decays. Let us emphasize that despite bound states both in
the hadrocharmonium and the molecular pictures are non-
relativistic, loop momenta are in principle arbitrary and the
final decay momentum is sometimes relativistic. In the
semirelativistic approach we make a physically reasonable
assumption that the intermediate virtual particles in the loop
diagrams are always not far from their mass shell what
allows to treat them nonrelativistically. On the other hand,
our approach allows to treat the exchanged particle as well
as the final particles relativistically. Below we consider
decays of the hadrocharmonium and molecular pentaquarks

'Processes with the s-channel annihilation of heavy c-quarks
are suppressed due to the Zweig-Okubo-lizuka rule.
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from [10] in this approach. We start with the basic features
of the semirelativistic approximation that allows one to
calculate the pentaquark decays with a reasonable accuracy.
We use Feynman diagrams to derive the interaction potentials
for different decays, calculate decay widths of hadrochar-
monium and molecular pentaquarks,2 make predictions for
relative rates of different decays in each picture and compare
the patterns of decays in hadrocharmonium and molecular
scenario.

II. SEMIRELATIVISTIC APPROXIMATION
FOR PENTAQUARKS DECAYS

A. Kinematics

The first task is to derive a practical general formula
for calculation of the pentaquark decays. We consider
pentaquarks as loosely bound states of two particles with
binding energy € (Mp = M, + Mg+ €) much smaller
than the reduced mass of the constituents, |e¢| < p =
MsMg/(M, + Mpg). The constituent particles are close
to the mass shell and are nonrelativistic, €/u ~ v>/c?. In the
case of the LHCb pentaquark P.(4450) constructed as a
bound state of y/(3686) and the nucleon N(940) [9,10]
=749 MeV, € = 176 MeV, ¢/u ~ v*/c* ~0.23 and the
relativistic correction to the binding energy is about
v?/(4c¢*) ~6%. The accuracy of the nonrelativistic
approximation for other systems and processes considered
below is roughly the same. We will use the nonrelativistic
approximation in calculation of widths of loosely bound
states ignoring off-mass shellness of the constituents. We
expect the obtained results to have error bars about 6-8%.

Pentaquark decays both in the hadrocharmonium and
molecular pictures are due to the diagrams with the
t-channel exchange of the type represented in Fig. 1, where
A and B are the pentaquark constituents, and 1 and 2 are the
decay products. To make the discussion more transparent
we temporarily ignore spins of all particles. The final
particles with masses M and M, as well as the exchanged
virtual particle C, could have masses significantly smaller
than the masses M, p of the constituents and are not
necessarily nonrelativistic. We need to use relativistic
kinematics for these particles. Then the decay width of
the pentaquark has the form

k E\E
r 9292 1522

= — dQ
R4 M, k

/d3re‘”‘"V(r,k)l//(r) 2, (2)

where k is the three-momentum of the final particle / and
we integrate over its directions, w(r) is the normalized
nonrelativistic wave function of the initial pentaquark

2Decays of pentaquarks in the molecular picture were dis-
cussed in the literature earlier, see, e.g., [19-23] and references
therein. To the best of our knowledge decays in the hadrochar-
monium picture were never discussed before.

k
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FIG. 1. Generic diagram for pentaquark decay.

(a loosely bound state of particles A and B) in its rest
frame, and the effective potential g,g,V(r,k) (g, are the
respective coupling constants) is in the general case a
function of the relative coordinate r and the final momen-
tum k. Notice the relativistic energies E| ; in Eq. (2) instead
of the masses M, in the standard nonrelativistic formula.
They arise because the final particles could be relatively
light and relativistic.

The integral in Eq. (2) can be simplified when the bound
state wave function y/(r) is a superposition of terms with
different angular momenta yw(r) = > ,R;(r)Y,, (0, ¢) and
V(r) is a central potential. In such case we expand the
exponential in spherical harmonics, use their orthogonality
and obtain the decay amplitude as a sum of partial waves

My :/d3re_ik"V(r,k)z//(r)

k
=47y (=)MDY,, (), 3
Semirn(p). o

where

Mty = /  RdR (NI kOV(). (@)

and j;(kr) is a spherical Bessel function.
The total decay width obtained after integration over
angles in this case is

4kE\E
= G == DMl 5)
In the calculations below the interaction potential is often a
tensor, so the matrix elements similar to M(I|) are non-
diagonal in /, in other words orbital momentum changes in
decays. The total angular momentum with account for spins
is of course conserved.
The effective potential V(r, k)

V) = / (217:)13 47V (g, k) (6)

can be calculated in terms of the relativistic scattering
amplitude Ay, p_1,,(q,k) with the nonrelativistic initial
particles
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_ Apip-142(4.k)

The square roots in this relationship convert the relativis-
tically normalized scattering amplitude to the normalization
used in nonrelativistic quantum mechanics. It is convenient
to rescale the potential so that it coincides with the
amplitude Ay _112(¢.k)

V(g.k)
Vig.k . 8
k) = T Ay 2E s ®)
Then the total width in Eq. (5) acquires the form
4KkE\E M()D))?
r— g KEE >lM(D)] ()

Mp, 2M,2My2E2E,

Below we will use a natural generalization of this formula
for particles with spin.

Our strategy is to use the standard Feynman rules with
free initial and final particles to calculate the scattering
amplitudes with the nonrelativistic initial particles. Then
we convert the scattering amplitudes into effective poten-
tials V(r,k), expand the integrand in Eq. (2) in spherical
harmonics (with account for spin, if necessary), calculate
the angular integrals analytically and finish with computing
the remaining radial integrals numerically, using the wave
functions obtained in [10].

Let us illustrate the logic of calculations still assuming
that all particles in Fig. 1 are scalars. In this case the
rescaled potential is just

Vik.q) = (10)

M% - (k—qg)*

All external momenta are on mass shell and

M2~ (k= g)? = [M% (M- o2 +k2>2] T (k—g)?

= M:(C) + (k- q)°, (11)

and
Vik.q) = ! 12
ok Y

In this simple case the potential is a function only of
(k —q)* and its Fourier transform is just the Yukawa
potential. Notice that its radius is determined not by the
mass of the exchanged particle M but by the effective

mass M, (C) = \/M% - (M, - \/m)z.

B. Tensor, spin, and isospin structure
of decay potentials

In the nonrelativistic approximation one-pion exchange
in Fig. 1 generates a relatively long-range effective poten-
tial between X, and D* that was used in [10] in discussion
of the molecular pentaquark

. s 2.
Vig =B 1) OO0y

where g¢ and g, are the axial charges of X, and D,
respectively, and matrix elements of the spin and isospin
operators ¢; and S; should be calculated between the state
vectors of the respective particles. In coordinate space the
momentum-dependent factor turns into a superposition of a
central and tensor potentials (we temporarily omit the
coupling constants)

&Pq  qq;
W..(r) =4 i ,igr
sy =4 [ Qi ml+ g
=0;)Vi(r),  (14)

= V.(r)d; + (3n;n;

where n; = r;/r and

mZe—mr
V. —
C(r) 3”r
V,(r) = B 4 3mr + (mr)?] o—s. (15)
3nr

There is also an additional term proportional to 5(r) on the
right-hand side in Eq. (14). We omit it as unphysical in
calculations of the bound state energies, because it arises
from the distances where the one-pion exchange makes no
sense due to finite sizes of all particles, see [10] for details.
The spin and isospin matrices in Eq. (13) act in the space of
spin and isospin states of the constituents. In [10] we used
the potentials in Egs. (13) and (15) together with the similar
potentials that arise from o, p, @ and 7 exchanges to
construct a loosely bound pentaquark state P.(4450). All
potentials were regularized at small distances about
0.15 fm, for details of the regularization see Eq. (31,32)
in [10].

Decays of molecular pentaquarks without charm
exchange can go via exchanges by a pion and other light
mesons. We expect that the one-pion contribution, without
account for exchanges by other mesons, gives a reasonable
estimate of decay widths. Unlike the case of the binding
potential, one-particle exchange decay amplitudes describe
transitions from one pair of particles to another. After
calculations pion exchange reduces to the potentials of the
same type as in Egs. (14) and (15), the only differences are
that we use the nondiagonal axial charges (see also [24]),
and substitute m, — m,(z) and ¢*> — (k —q)?, compare
Eq. (11). Decays of the molecular and hadrocharmonium
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pentaquarks with exchange of charm go via D-meson and
other heavy hadron exchanges. The respective effective
potentials do not coincide with the ones in Egs. (14) and
(15), but still depend on spin, isospin and orbital momenta.
This allows us to give a universal description of the strategy
of further calculations. Consider, e.g., a molecular penta-
quark decay. The bound state wave function of the
molecular pentaquark [10] is a superpositions of the states
l=0,8=3/2), |I=2,S=1/2), and |l =2,5 =3/2),
where [ is the orbital momentum and S is the total spin of
the pentaquark. Each of the components of the molecular
¥.D* wave function is in its turn a superposition of
one-particle spin-isospin states of the constituents. In terms
of these spin-isospin states of the constituents the X.D*

the wave function of the pentaquark in the state
lj =3/2,j3;t = 1/2,3) has the form
31 3/ S8 33
Wit (r) = > CYo c%sgf).lng> c Ig,).%IgZ)R,S(r)
X Ylm(n)Zsmtme(z) @) (16)
33 S35

where ES(I)I(I) and Dz@)
3

» are normalized to unity spin-
373 2

3

isospin states of . and D* with the spin projection sg’) and
the isospin projection t<3’), J3, t3 are the third components of
the pentaquark spin and isospin, Y, (n) are spherical

3 1
: )3 SS al3
harmonics, C.ZS'S3,lm’ C]Y(f) > Czlt(,) L are the Clebsch-
1

283 183 3 203
Gordan coefficients, and R;5(r) are the radial wave func-
tions in the states |/, S). Summation runs over spin and
isospin projections of the constituents and includes also
summation over three available /, S combinations.

We consider a one-particle exchange scattering ampli-
tude as an operator that acts on the initial wave function in
Eq. (16) and transforms it in a superpositions of products
of spin-isospin one-particle states of the final particles with
the coefficients that are coordinate wave functions of their
relative motion. Like in Eq. (16) these coordinate wave
functions are themselves superpositions of products of
radial wave functions and spherical harmonics. The final
orbital momenta arise automatically by addition of orbital
momenta of the initial wave function and of the interaction
potential and do not coincide with the initial orbital
momenta, only the total angular momentum is conserved
in the general case. Next we project this wave function
on the final plane wave, compare Eq. (3). We obtain a
superposition of matrix elements of the potential M(l, S|L)
[compare Eq. (4)], with the coefficients that are spin-
isospin wave functions of the final particles. Unlike the
expression in Eq. (4) the radial wave function R;s(r) carries
now a second index § because it depends on the total spin
of the bound state. In addition the final angular momentum
L in the integral for M(/, S|L) does not necessarily coincide
with the initial angular momentum / since the potential is
in the general case a coordinate space (as well as spin and

isospin) tensor. These matrix elements M (/, S|L) are decay
amplitudes of the initial state |/, S) into a final state with the
total orbital momentum L and spin-isospin quantum
numbers of the coefficients.

To calculate the decay width in any channel we apply the
operator arising from the respective one-particle exchange
amplitude to the wave function Eq. (16) of the pentaquark
with fixed quantum numbers. Then we obtain the decay
amplitude as a superposition of matrix elements M (/, S|L),
square it, calculate the integrals over directions of the final
momentum k and thus obtain the decay width. We will fill
some technical gaps in this schematic discussion consid-
ering the decays below.

III. DECAYS OF MOLECULAR
PENTAQUARKS

Let us recall the principal features of the molecular
pentaquark scenario considered in [10]. Exotic pentaquarks
in this picture are loosely bound states of hadrons with open
charm located at rather large distances. One could expect
that the interaction of the constituent hadrons in this case
would be dominated by the long-range one-pion exchange
and the pentaquark would resemble the deuteron, see, e.g.,
[25]. We considered this binding mechanism in [10] and
came to the conclusion that the effective distances are not
large enough to neglect exchanges by other light mesons,
besides pions. The pion exchange in [10] was regularized to
get rid of its unphysical too singular behavior at small
distances, and exchanges by o, p, @ and n were also
taken into account. Then we constructed the pentaquark
P.(4450) as a loosely bound state of X.(2455)
(I(J?) = 1(1/2%)) and D*(2010) (I(J¥) = 1/2(17)) with
the binding energy only 15 MeV and spin-parity (3/2)".
This pentaquark arises when the regularization parameter
A = 1300 MeV, with the root mean square radius 1.46 fm
and D-wave squared fraction about 4%, see [10] for more
details. An attempt to use the potential with the same
parameters in order to construct P.(4380) as a loosely
bound state of £}(2520) (I(J*) = 1(3/2%)) and D(1870)
(I(J?) = 1/2(07)) with the binding energy 10 MeV was
not successful. The main reason is that the would be
constituents X: and D do not interact via one-pion
exchange since the three-pseudoscalar vertex zDD is
banned by parity, and exchanges by the other light mesons
cannot provide the necessary binding. Therefore, if we
insist that the LHCb P.(4380) pentaquark should be a
loosely bound molecular state with a tiny binding energy its
nature in this picture remains an open question.

Small binding energy and large size of the molecular
pentaquark P.(4450) imply that the constituent hadrons are
nonrelativistic and this bound state can be described in the
potential approach. We constructed such molecular penta-
quark in [10]. Let us consider its decays due to one-particle
exchanges.

114037-5
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TABLE 1. Pentaquark P,(4450) decay widths in the molecular
picture.

Decay mode  L*  k*MeV) m,° MeV) I MeV)
P. > AD 2 798 136 6.8

P, > 3D 2 529 128 1.4
P.— AD* 0,2 579 101 133
P.—¥D 0.2 360 107 0.2

P, >J/wN 0 820 1421 0.03
Total width 21.7

“Lowest allowed orbital momentum.
Final momentum.

“Effective exchanged mass.

dDecay width.

A. Decays into states with open charm

There are four open channels for the P.(4450) penta-
quark decays into states with open charm, see Table I. In the
case of the molecular pentaquark there is no charm
exchange in these decays and they can go via one-pion
exchanges. As mentioned above, exchanges by heavier
mesons are also allowed but we will account only for the
contribution of the pion exchange.

1. P, > A, +D decay

We start with the channel P. — A, + D. The initial
pentaquark has spin-parity 3/2~ and isospin 1/2, the final
A, carries spin-parity 1/2" and zero isospin, and the final
D is a pseudoscalar with isospin 1/2. The product of the
internal parities of A, and D is negative, so the final state in
the decay P,(4450) — A, + D can have only even angular
momenta. The final state with L =0 is banned by the
angular momentum conservation, so the lowest allowed
final orbital momentum is L = 2. The final decay momen-
tum is k=~ 798 MeV, and both final particles are non-
relativistic with a reasonable accuracy, E, =~ 2421 MeV
and (Ey —M,)/M, ~0.059, and Ep ~2029 MeV and
(Ep —Mp)/Mp ~0.087.

This decay is described by the diagram in Fig. 2. First we
calculate the relativistic scattering amplitude in Fig. 3.

X k— q), B *U

AR =gy n g Ao 05— syt po(q),

my — (k - q)
(17)

k
q A
ZC . ¢
p=£ 'k—q
DN T
P~ @rnrnrD
Dk

FIG. 2. Decay of molecular pentaquark P.(4450) into open
charm states D + A,.

s\,

1
Yq
1

)
SN )

FIG. 3. Amplitude T, + D* > A, + D.

where D*(q) is a four-vector isospinor, D is an isospinor,
>4 is a spinor isovector, and A (k) is a spinor. The coupling
constants and interaction Lagrangians can be found in
Table V and are discussed in Appendix A 1.

In the nonrelativistic approximation the denominator
of the propagator reduces to m?(x)+ (k—q)>, and
the interaction radius is determined by m,(7)=
{m2 - [(M} +Kk*): = My *} = 136 MeV. Using this
approximation for the initial and final particles and omit-
ting the coupling constants and certain square roots of
masses [to be restored in the final expression for the decay
width, compare Eq. (8)] we obtain the interaction potential
that acts as an operator on the initial pentaquark wave
function in Eq. (16)

(Alo"Z8) Wi (k — g)(D'e“ D), (18)
or in coordinate space
(ALo'S2) Wy (r) (D72 D). (19)

where W (r) is defined in Eq. (14) [now with m — m, (x)]
and D, D**, £¢, A, are nonrelativistic spin-isospin states
similar to the ones in Eq. (16).

It is convenient to represent W;, in terms of spherical
harmonics’

W, (1) = V(1) (= 1)1 748, i,

24n Lm+my
- Vf(r) \/ ?Clhll,;:nz st_ml_mZ’ (21)

where V.(r) and V,(t) are the regularized potentials in
Eq. (15), see discussion of the regularization below Eq. (15)
and in [10].

The transition operator in Eq. (19) should be applied to
the initial wave function of the molecular pentaquark. We
choose the initial pentaquark state with j; =3/2 and
t3 = 1/2. The interaction operator in Eq. (19) transforms

>We use conventions for spherical harmonics from [26], in
particular

1 5
=V )

. 15 .
ny(niting), Ypip=—1 E(”l +iny)®. (20)

N

oo =
g5
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it into the final wave function. After projection on the final
plane wave and spatial integration we obtain the decay
amplitude

3 1 3 3
X Y21 (n)DOTAI %:|

- [ (22 e (0.3) - (23]
X Yo (n) DY A _ ﬂ , (22)

where Al[+1/2] is the final A, with spin up or down,
n =k/|k|, and M (I, S|L) are radial matrix elements of
the potentials V., between the initial pentaquark state |/, S)
and the final two-particle state with the orbital momentum
L = 2 similar to the ones in Eq. (4). We see that interaction
in Eq. (19) generates only the transitions to the final states
in D-wave. Next we calculate module square of the
transition matrix element in Eq. (22), integrate over the
directions of the final momentum, and sum over all allowed
final states

Z M ?
f
1 3 3
- 9‘Mc (2,5‘2> +M, (0,5‘2) - M, (2,5‘2)

The decay width is calculated with a natural generalization
of Eq. (9)

2
(23)

5 L4kEE,

I |'/\/l—>f|2
I'=g19 e

Mp, (2M,)(2M5)(2M 4)(2M )’

(24)

where we plug in 91 = g}rZCAC’ 92 = 9zDD*> MA = MZE’

MB:MD*,MIIMA(:,MQIMD, El — 1/M/2\C +k2, E2:

V/M% +k?, and sum of matrix elements squared from
Eq. (23). We use Eq. (24) for calculations of all decay
widths below.

After numerical calculations we obtain I'(P. — A, +D) =
6.8 MeV.

2. Other open charm decays of molecular pentaquark

Calculation of other three decays of the molecular
pentaquark into states with an open charm
P.—»X.+D, P.->A.+D*", P.—Xi+D, (25
is similar to the calculations above. All these decays go via
the pion exchange, the final decay momenta are even

k
q )
z,

c ]
p—L k4
N
P-4 I.J'WV"D
ok

4

FIG. 4. Decay of molecular pentaquark P.(4450) into open
charm states D + X,.

smaller than in the decay P, — A, + D, see Table I, and the
decay products are nonrelativistic.

Decay P. — X, + D requires almost no new calcula-
tions. Spin-parity of X.(2455) are the same as spin-parity
of A, and like in the previous decay L = 2 is the lowest
allowed partial wave. The final momentum is k ~ 529 MeV,
and the final particles are again essentially nonrelativistic.
Kinetic energy of the D-meson is about 4% of its mass, and
kinetic energy of X, is about 2% of its mass.

The P, — X, + D decay amplitude in Fig. 4 can be
obtained from the decay amplitude P, — A, + D in Fig. 2.
Only the isotopic structure of the zX.X,. vertex is different
from the isotopic structure of the zA X, vertex, see the
respective interaction Lagrangians in Table V. The isotopic
factor factorizes in the decays amplitudes and the decay
width of P, — X, + D is equal to the decay width of
P, — A, + D times the ratio of the respective isotopic
factors squared.

The isospinor isotopic factor in the molecular pentaquark
wave function is Wi = (1/v/3)Z¢(z%) 4D} In the case of
P, — A, + D decay we apply to this wave function the
isotopic factor 7¢ in the transition operator in Eq. (19) and
obtain the final isotopic function

Phe?(D + A.) (ra7)3DPA, = V3S3DPA,.  (26)

1
V3
In the case of the P, — X. + D decay the isotopic factor in

the transition operator in the diagram in Fig. 4 is 7€, and
then the final isotopic wave function is

. _ 1 _
Yo (D+Z.) = 7 (2"2°) € ap DPEL
2i a\a ppsa
= \/§(T )§DPEE. (27)

Squaring the isotopic factors in the scattering amplitudes
and summing over all allowed final isotopic states we
obtain the isotopic factor contributions to the decay width
in both cases

®*(P, » A, + D) =3,

N

OO(P, >3, + D) = (¢“c) =4, (28)

[O]
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Spin and orbital structure of the matrix elements is identical
for both decays. Hence, the sum of matrix elements squared
for the decay P, — X, + D is 4/3 times larger than the sum
of matrix elements squared for the decay P, — A, + D,
and [compare Eq. (23)]

iw[w
f

1 3 3
=12IM .| 2,=|2 MNO, =12 -M,(2,=2

for P, - .+ D.

Calculating the width according to Eq. (24) we obtain
(P, —» %.+ D) =14MeV.

The P, — A.+ D* decay goes via the one-pion
exchange diagram in Fig. 5. The D*D*z interaction

|
Z: 3
. 2 = —

" 9)

X
»
N W

_|_
[\°]
=
I

2

1
[\

N = N= N =

+
~
=
n

+
NN NN | —
)
=
ST N N N

This sum is dominated by the second term that describes
transitions between the states with zero orbital momentum.
We substitute this sum in Eq. (24) and obtain
I'(P. — A.+ D*) = 13.3 MeV.

The P, — X + D decay goes via the one-pion exchange
diagram in Fig. 6. The zX}X. interaction Lagrangian and
coupling constant are in Table V. After calculations we
obtain the sum of matrix elements squared

ij M,
f

—2’Mc <2,§

1)-u(o) (1)
1) u ) w2

2\M.(0,=

w203

substitute it in Eq. (24) and calculate the width
(P, —» X+ D) =0.2 MeV.

2

2

. (31)

B. Decays into states with hidden charm

The P.(4450) — J/w + N decay is the only one kine-
matically allowed two-particle decay of the pentaquark into
states with hidden charm. This decay goes via diagrams

3 1
‘2) +2M,<0,5‘2) _m, <2,5’2)
3
2) om, <2,—’2> 3m, (o
3 3
) —-M, (2,5’2> —3M, <0,5'2> + M, (2,
) ,

1
2

3 I 3

o)+ M (2.22) =M, (2.-2) +2m, (2.2
oo (23) - (23) -2 (2

k
q A,

P o
P k=4
¢ -

s !
By

p_q\l..NVV"D*
Pk

FIG. 5. Decay of molecular pentaquark P.(4450) into open
charm states D* + A..

Lagrangian and coupling constant are in Table V. Let us
notice that both interaction constants in this decay are
found from the experimental data on decays, see discussion
in Appendix A 1.

We go through by now the standard steps and obtain a
rather cumbersome sum of matrix elements squared for
this decay

2+3M 030 +M 210 +2M 230 ’
c 72 t 72 t 72

3 1 3 2

—12 ) =2M,|2,=|2 M, 2,2

(30)

with exchange by a charmed meson or baryon in 7-channel,
e.g., D, D*, ., etc. We will account only for the
contribution of the diagram in Fig. 7 with the exchange
by the lightest charmed particle, the pseudoscalar D, that
we expect to provide a reasonable estimate of the total
decay width. The product of internal parities of J/y and N
is negative, so decay P.(4450) — J/w + N goes with the
lowest orbital momenta L = 0, 2. The decay momentum
k = 820 MeV in this decay is comparable with the nucleon
mass and one cannot use the nonrelativistic approximation
for the final nucleon.

As with the pion exchanges above, we start with
calculation of the relativistic scattering amplitude in
Fig. 8.

k

q 5
p o
e

DN
P-C@rnnn
Pk

FIG. 6. Decay of molecular pentaquark P.(4450) into open
charm states D + .
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N . N Jly
N -
P, D P, LD P
N ] N
o [)* N 7
U ‘JVWJ/,// NNy, N

FIG. 7. Decays of the molecular pentaquark P.(4450) into hidden charm states J/w + N.

% ky,
—)—,—P—

U

Y

%

[}
- ,-}---‘\rer\rm

Up ky,

FIG. 8. Amplitude X, +D* = N +J/y.

Alg. k) = gZI,DNgJ/x//DD*e*yN (k)}’sfa

x - DIV (qp — qp)y24D;. (32)

MZD_qD

where D}(q) is a four-vector isospinor, £ is a spinor
isovector, N(k) is a spinor isospinor, and € is the
polarization vector of the final J/y. The coupling constants
and interaction Lagrangians can be found in Tables VI
and VII, and are discussed in Appendices A 2 and A 3.
Next we would like to make a nonrelativistic expansion
in the initial momentum ¢. The denominator of the propa-
gatorin Eq. (32) reduces to M?(D) + (k — q)* and the range

of the effective potential is determined by M, (D)
(M3 — (Mg, — Ey)*F = 1421 MeV  (Ey = /M3, + ).
This effective potential acts at shorter distances than
in the case of the molecular pentaquark decays into
states with open charm. The zero component of the trans-
ferred momentum My —\/M3 +k*=1208MeV is also
large. Hence, we cannot neglect the decay momentum
and zero component of the transferred momentum
in the nonrelativistic limit. As a result the coordinate-
dependent term W;.(r) in the transition operator

N-i-O'iZ?TaD}ké':;,lE'klmWik (33)

is more complicated than the similar term W, (r) from
Eq. (14) in a fully nonrelativistic case in Eq. (19). In the case
at hand

Wi(r) = 6y Ve(r) + Bning = 8y) V(1)

W

V(r)
M2(D

+ [i((llkiak + azkkai) + bk,kk] (34)

~—

The derivatives originate from the linear in the relative
momentum ¢ terms ¢;k; in the numerator of the momentum
space expressions. Due to these derivatives a new potential

0

Va(r) =

I

M. (D)

arises in W, (r) in Eq. (34) besides the potentials V. and V,
from Eq. (15) (M. (D) plays the role of the mass parameter in
all three potentials). We also keep the last bilinear in the final
momentum k;k; term in the square brackets in Eq. (34) that
cannot be legitimately omitted when the final momentum is
large. All these new terms are missing in the nonrelativistic
decays with exchange by an almost massless pseudo-
Goldstone pion, because its interaction vertex is always
proportional to its momentum. But nothing bans such
interaction terms for a heavy D.

The coefficients in Eq. (34) are functions of masses and
the final momentum

2My

) My —Ey
My+Ey’

EJ/W

=1

ap ar, = s b:—alaz, (36)

where E;;, = /My, + k* is the energy of the produced

J/y. Notice that these coefficients would be zero if masses
of the constituent . and the produced nucleon were close.

Further calculations go almost as in the case of the
nonrelativistic decays above. A new element is connected
with the scalar products like k - n (n = r/r) that arise after
differentiation in Eq. (34). We write them in terms of
spherical harmonicsk - n = —i /47;/3ka<"”>Y]m, where
k(=™ are spherical components of k. After application of
the transition operator the final wave function contains
products of different spherical harmonics that depend on
r/r and we use the Clebsch-Gordan coefficients to obtain
terms linear in spherical harmonics, integrate over angles
with the outgoing plane wave and obtain typical terms
Ji(kr)Yu(k/k). Unlike the decays considered above, now
such terms are multiplied by linear in the spherical
components of k factors. We calculate the radial integrals,
project each of the products of spherical harmonics of k/k
on a single spherical harmonic Y/, (k/k), square the
obtained sums and integrate over directions of k. Notice
that this calculation leads to the decay products with a final
orbital momentum L’ # L in M ([, S|L) (L is the label of the
spherical Bessel function in the respective radial integral).
The expression for the sum of matrix elements squared
turns out to be rather cumbersome. The dominant contri-
bution to this sum is supplied by the transitions from the
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component of the initial bound state wave function with
1 =0, S =3/2 that has the form
2bk?

6b%k* 3
2 =3(1 M. 0
If'M’*f' <+M5<D>+M4 ) ( 2’)
3 2
. IS‘M, <0,’2>
2
30bk? 3 3
— M, (0.=12|M.[0,=|0
MVYE) (2‘) (2)
2
, (37)

212
2(611 +az) k Md<0,%'l>

M:(D)
where we introduced matrix element of a new type

2

M, (1.S|L) = / ® drPR(Va(n)js(kr). (38)

that arises only for the odd values of L. The potential V ;(r)
in this integral is regularized in the same way as the
potentials V.(r) and V,(r) in Eq. (15).

The final nucleon is relativistic in this decay and the
general formula for the width in Eq. (24) changes

4kENE
_ 2 N=J/y
= 9px.N9J )yDD* M,
E.%/y/ Ey+My
X |Ml—>f|
(2Mp+)(2Ms,)(2Ey;,)(2Ey) 2Msy,

(39)

After numerical calculations we obtain decay width of
the molecular pentaquark into states with hidden charm
I'(P.(4450) -» N + J/y) = 0.03 MeV. Account for rela-
tivity of the final nucleon significantly affects this result,
the width decreases by 61% without the relativistic cor-
rections. The suppression of the decay into hidden charm
states is somewhat stronger that the one we could expect
from the estimates of the matrix elements discussed in the
next section. This additional suppression is due to the small
magnitude of the coupling constant g5, yp, see Table VI and
discussion in Appendix A 2. Let us emphasize that a rather
strong suppression due to smallness of the matrix elements
would survive even a significant increase of the coupling
constant.

C. Comparison of molecular pentaquark decays
into states with hidden and open charm

The results collected in Table I demonstrate that the decay
into states with hidden charm is suppressed in comparison
with the decays into states with open charm in the molecular
picture. As already mentioned in the Introduction this
happens because an exchange by a heavy charmed particle
is required in decays to the hidden charm states. Let us
recap the arguments given in the Introduction. We argued that
in order to decay into hidden charm state the constituents in
the molecular picture should come to a small distance
~1/m.. This is a tiny scale in comparison with the scale
of the wave function ~1/k > 1/m, and therefore this width
is proportional to [ d&rly(r)]* ~ |y (0)]*/m} ~ (x/m,)>.
For molecular pentaquark « = \/2ue ~ 182 MeV and
(x/m.)? ~3 x 1072, As we will show below this estimate
is too naive and the characteristic distance in molecular
decays into states with hidden charm is determined not by m,.
but by the mass of a heavy exchanged particle, with the
effective mass M, that grows only as /m, with m..

Let us try to improve the naive estimate of molecular
decays into states with hidden charm. Recall that the decay
amplitudes are sums of the overlap integrals similar to the
ones in Eqs. (4) and (38)

M(LSIL), 4, = A ® drPRis(r)V.e g Py (k). (40)

where the potentials are defined in Egs. (15) and (38). We
collected results of the numerical calculations of matrix
elements M(l, S|L) for a typical decay without charm
exchange in Table III and with charm exchange in
Table II, respectively.

In decays with charm exchange the effective mass M, is
much larger than the decay momentum k and the scale of
the wave function x, M, > k > «, see Table 1. Then

1
M, (L SIL) ~ / " e () (kr )V g (7)
0

G

The sum / + L > 2 in the integrals with the tensor potential
and the overlap matrix element is at most M, ~ (k/M)? at
I =0and L = 2. In the integral with the potential V ,(r) L
is always odd, and this integral is at most M, ~ k/M, at

TABLE II. Molecular pentaquark decay P. — J/y + N: matrix elements.

M(0,310)  M(2.4j0)  M(2.3)0)  M©O3[1) M3  M231)  M©O32)  M2.3)2) M(23[2)
V. 0.0232835 1.48x1073 =3.72x 1073 —433x1073 247 x 107* —6.44 x 107
V, -7.10 x 1073 —1.74 x 1072 -137x1072 637 x 10™* —1.64 x 1073
Va 776 x 1072 =3.11 x 107 7.96 x 1073
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TABLE III.  Molecular pentaquark decay P, — A, -+ D*: Matrix elements.

M(0.310) M(2,110) M(2.210) M(0,2]2) M(2,112) M(2,2]2)
V., -1.95x 1073 1.09 x 1074 —2.86 x 1074 —8.90 x 107* 6.97 x 1073 —1.86 x 10~*
v, 1.36 x 1072 —3.43x 1072 —2.96 x 1072 2.00 x 1073 —5.30 x 1073

[ =0 and L = 1. It enters the decay amplitude with an
additional factor k/M, and as a result contributes to the
decay amplitude at most (k/M,)?, exactly like the tensor
potential. Finally, naively the contribution of the central
potential V.. to the integral in Eq. (40) at [ = L = 0 seems
to be independent of M, when M, increases. This contra-
dicts the well-grounded physical expectations that
exchange by a very massive particle should supply negli-
gible contribute to the decay width. It is not hard to figure
out what happened. Calculating the Fourier transform in
Eq. (14) we have thrown away the o-function term as
unphysical in the case of exchange by a light pion.
However, the calculation above shows that for a heavy
exchange this d-function is necessary to restore the proper
dependence of the / = L =0 decay matrix element on
mass of the exchanged particle. It is easy to see that
restoration of J-function reduces to substitution
M. (0, S]0) - M_.(0,S|0) — Rys(0)/(127). We made this
subtraction in calculations of all molecular and hadrochar-
monium decays with charm exchange. The subtracted
matrix elements are at most (k/M,)?> and we conclude
that effectively all matrix elements in Eq. (40) decrease
with M, as (k/M.)?* or faster.

Molecular decays into open charm states go via
exchange by the light pion, only the potentials V., give
contribution to these decays, and m, ~ m,. Numerically, in
this case m, ~ k < k Then integration in Eq. (40) goes up
tor~1/k<l1/k~1/m, and

1
MSIL) g~ [ dr Vi), (42)
0
In this region the matrix element of the scalar potential
M(L,S|L), ~ (k/k)'(m./k)? is suppressed in comparison
with the matrix element of the tensor potential M ([, S|L), ~
(x/k)! ~ (m,/k)! by the factor (k/m,)?> ~ 15-30.
Now we can estimate ratio R of matrix elements for
decay into states with hidden and open charm

N\ L !
() /)@
M * kopen
where kgpe, and kpjq are decay momenta in the hidden
and open charm decays, respectively, and M, = M. (D).
We compare matrix elements for hidden charm decays with
the tensor matrix elements in open charm decays since

scalar matrix elements in open charm decays are sup-
pressed. Numerically for decays in Tables IT and III

R ~0.4' x 0.5% ~0.1-0.2. Respectively, we expect that
the hidden charm decays of the molecular pentaquark
should be suppressed by a factor 0.01-0.04, what is
compatible with the results in Table I. This suppression
is weaker than the naive suppression factor (k/m.)? ~ 107°
discussed above.

IV. HADROCHARMONIUM DECAYS

A. Decays into states with hidden charm

In the hadrocharmonium picture the LHCb pentaquark
P.(4450) is interpreted as a bound state of y’ and the
nucleon [9,10] (see also [11]). It is described by a non-
relativistic wave function that is a product of the S-wave
coordinate wave function and the spin 3/2 and isospin 1/2
factor. The partial decay width of the hadrocharmonium
pentaquark I'(P.(4450) — J/w + N) ~ 11 MeV was cal-
culated in [9,10]. As mentioned above this is the only one
kinematically allowed two-particle pentaquark decay chan-
nel into states without open charm.

B. Decays into states with open charm

Hadrocharmonium decays into states with open charm
go via exchange by heavy hadrons. As in the molecular
decays we will take into account only exchanges by the
lightest particle with open charm, namely by D-meson.
We expect that the respective partial widths are reasonably
well approximated by this exchange. The inverse size k =
V2ue = 506 MeV of the hadrocharmonium pentaquark
wave function is determined by its binding energy € =
178 MeV and reduced mass u = 720 MeV. Recall that in
the case of the molecular pentaquark we obtained
x = 182 MeV. Hence, the hadrocharmonium wave func-
tion is less extended and is larger at the origin than the
molecular one. This favors decays with exchange of charm
and one can expect that the hadrocharmonium decays into
states with open charm have larger partial widths than the
molecular pentaquark decay into J/wN. It is harder to
anticipate relative magnitude of partial decay widths into
states with open charm in the hadrocharmonium and
molecular pictures. On the one hand larger at the origin
and less extended hadrocharmonium wave function could
probably enhance decay rates into the four channels with
open charm. On the other hand the effective masses of the
exchanged particles in these decays are much higher than
in the case of the molecular pentaquark (compare Tables I
and IV), what works in the opposite direction. Only
calculations will show which effect is more pronounced.
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FIG. 9. Decay of hadrocharmonium pentaquark P.(4450) into
states with open charm A, + D.

1. P, - A +D

Consider first the hadrocharmonium decay P, — A, + D.
Kinematics of this decay was already discussed above. This
decay can go via exchange by the D-meson and heavier
particles with open charm. As already explained we calculate
the partial decay width due to the diagram with the
pseudoscalar D exchange in Fig. 9 and expect that this
exchange provides a reasonable estimate of the total partial
decay width into A, and D.

As usual we first calculate the relativistic scattering
amplitude N +y’ — A.+ D in Fig. 10 (momenta are
labeled as in the figure)

A(q,k) = gA(.DNgy/DD/_\c ("‘/\C)?’SDT

1
X M= (qp + kp )" @N,  (44)
D eD

where @, (q) is a four-vector that describes initial y/, N is
a spinor isospinor, D is an isospinor, and A.(k,) is a
spinor. The isospin indices are contracted along the virtual
D line. The coupling constants and interaction Lagrangians
are collected in Tables VI and VII and discussed in
Appendices A2 and A 3.

In the nonrelativistic expansion in the initial momentum
¢q the denominator of the propagator in Eq. (44) reduces to
M?2(D) + (k — q)* and the range of the effective potential is
determined by M, (D) = [M},— (E, —My)*)~ 1133 MeV

(Ex, = (M} + k2)?). The relativistic amplitude in the
n0nrelat1v1st1c limit reduces to the transition operator

(Al'NYWy (r) (D7), (45)

where W, (r) has the same form as in Eq. (34) with the
natural kinematic substitutions and

qN k\c
M
Y q;
’VVW“- >i“
,/, D

FIG. 10. Amplitude N +y' > A, + D.

2My

a4 =1-—""N_
Ep + My,

a=-1, b=-aa,. (46)

We preserved the external momentum k in the transition
operator. Next we apply the transition operator to the initial
wave function [compare Eq. (22)] and calculate the sum of
matrix elements squared of the transition amplitude [com-
pare Eq. (23)]

Y Mg
f
2 272
—3lu, (0.3 £ @t K
2 3MZ:(D)
3b%k* 3 2
——|M.| 0,5]0
M:(D) 2
6bk> 3 3
——M -0 |M =12 . 47
o™ (030) (03P) “
The partial decay width is [compare Eq. (39)]

AkE, Ep
= 9a.onY%DD i,

2

3
M,(0.2)1
(03)

+

+

I'(P. - A.+ D)

1
* M) (2M,) RE, ) 2Ep)

MA + Ej,
2MN i |M|l—>f

~0.6 MeV (48)

2. Other open charm decays of
hadrocharmonium pentaquark

Calculations of other three decays of the hadrocharmo-
nium pentaquark into the open charm states
P.—»%.+D, P.->A.+D*, P.—>Xi+D, (49)
are similar to the calculations above. All these decays go
via exchange by the lightest particle with an open charm,
D-meson. Kinematics for all these decays was already
considered above and we will not repeat this discussion.

The P, — . + D decay is described by the D-exchange
diagram in Fig. 11, that is similar to the D-exchange for
P, — A, + D. Effective mass of the exchanged D-meson
in this decay is M, (D) = 1005 MeV. The amplitude for
this decay differs from the decay P, — A, + D only by the

FIG. 11. Decay of hadrocharmonium pentaquark P.(4450) into
states with open charm X, + D.
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FIG. 12. Decay of hadrocharmonium pentaquark P,.(4450) into
states with open charm X, 4+ D*.

isospin factor that generates an enhancement factor 3 in the
width. On the other hand the relationship between the

coupling constants gs yp = ga np/ (3\/§) [see Eq. (A19)
in Appendix A 2] supply a suppression factor for the P, —
Y. + D decay. After replacement of the coupling constants,
masses and multiplication by 3 we can use Eq. (48) for
calculation of the P, — X, + D partial decay width. We
obtain I'(P, - X. + D) = 0.036 MeV, see Table IV. The
suppression by an order of magnitude ~1/9 relative to
the decay P. — A, + D comes mainly from the ratio of the
coupling constants squared times three from the isotopic
factor, difference between the masses of . and A, plays an
insignificant role.

To calculate the partial decay width P, — A, + D* (see
Fig. 12) we go through the by now standard steps: calculate
the relativistic scattering amplitude N + vy’ — A, + D*,
make the nonrelativistic approximation for the constituent
hadrons, derive an expression for the transition operator
and calculate the decay amplitude. The sum of the matrix
elements squared for the decay P, — A, + D* turns out

to be
3 2 3 2
i'Ml’*f 'MC<0,§O) +5’M,<0,§‘2)
(a1+a2)2k2 3 2
—=—M,| 0,=|1
T 3m2(p) “A\72
3b)k* 2
#MC 0’_0
M (D) 2
10bk? 3 3
—M_.(0,=-10 |M,{0,=]0], 50
oy (030w (03p) 0
where
My—E, My
a,= —— ay=l—-———, b=-aja,.
M, +My—Mpy, My—+E\,

(51)

FIG. 13. Decay of hadrocharmonium pentaquark P,.(4450) into
states with open charm D + ;.

FIG. 14. Amplitude N 4y’ — X + D.

The partial width is
4kE\ Ep-
Mp,
X
(2My)(2M,)2E ) (2Ep:)

XZ: M, ~ 42MeV. (52)
f

(P, —»A +D")= g?\CNDgi/DD*

My +E\,
oMy

The P.— Xi+ D decay goes via the D-exchange
diagram in Fig. 13. The Z*ND interaction Lagrangian
(notice absence of y°!) is in Table VI. We again go through
the standard steps: calculate the relativistic scattering
amplitude in Fig. 14, use this amplitude with the non-
relativistic initial particles to derive the transition operator,
obtain the decay amplitude, sum matrix elements squared
and calculate the decay width T'(P, — X;+ D) =
0.42 MeV.

V. DISCUSSION OF RESULTS

We calculated the total and partial decay widths of the
hadrocharmonium and molecular pentaquarks P.(4450)
constructed in [9,10]. One could expect that decays into
states with open charm dominate in the case of the
molecular pentaquark, while the decay to J/wN would
be the dominant mode for the hadrocharmonium penta-
quark, see discussion in the Introduction. The calculations
above confirm these expectations both for the molecular

TABLE 1IV. Pentaquark P.(4450) decay widths in the hadro-
charmonium picture.

Decay mode L* k" (MeV) M, (D) (MeV) I (MeV)
P.—>J/wN 0 820 11

P, - AD 2 798 1133 0.6

P, —>3.D 2 529 1005 0.04
P.—>AD* 02 579 1218 4.2
P,->xD 02 360 959 0.4
Total width 16.2

“Lowest allowed orbital momentum.
Final momentum.

Effectlve exchanged mass.

Decay width.
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and hadrocharmonium pentaquarks, see Tables I and IV.
Total decay widths of the molecular and hadrocharmonium
pentaquarks are comparable and are about a few dozen
MeV in both scenarios. Taking into account uncertainties of
the phenomenological coupling constants and unaccounted
for relativistic corrections to the semirelativistic approxi-
mation used in the calculations these total widths are
comfortably compatible with the width I'=39+5+
19 MeV measured experimentally [1,2].

We expect that the results for the relative magnitudes of
partial decays widths in different open channels are more
reliable than their absolute values. This happens because in
the ratios of the partial widths values of the poorly known
interaction constants often cancel and the ratios are more
dependent on the matrix elements of the perturbation
potentials between the initial and final wave functions.
The partial decay width of the molecular pentaquark into
the hidden charm states J/ywN is strongly suppressed, it is
about one, two, or three orders of magnitude smaller than
the partial widths for decays into different channels with
open charm, see Table 1.* The suppression can be under-
stood if we recall that the molecular pentaquark has a
relatively large size, its root mean square radius is about
1.5 fm [10]. To decay into states with hidden charm
constituents of the molecular pentaquark need to exchange
by a heavy charmed meson. In other words they should
come very close to one another what is impeded by the
large size of the loosely bound state wave function. The
detailed considerations of the matrix elements in Sec. III C
provide a quantitative justification for these conclusions.

The decay pattern of the hadrocharmonium pentaquark
also looks as expected. The hadrocharmonium decays into
states with open charm are suppressed in comparison with
the hadrocharmonium decays into hidden charm states.
Quantitatively this suppression is weaker than the suppres-
sion of the hidden charm decays in the case of the
molecular pentaquark, compare the results in Tables I
and IV. One of the partial widths for hadrocharmonium
decay into open charm states (P, — A.D) is only two and a
half times smaller than the partial decay width to J/wD*.
To decay into states with open charm constituents in the
hadrocharmonium should come close to one another what
happens when they exchange by a heavy charmed meson.
The relatively weaker suppression of such hadrocharmo-
nium processes in comparison with the respective molecu-
lar case decays is due to a larger binding energy and
respectively smaller size (about 0.5 fm) of the hadrochar-
monium bound state.

*Recent nonobservation of the pentaquark resonance in the
formation reaction y + p — J/y + p [27] could be interpreted as
an indication of the molecular nature of the LHCb pentaquark.
However, it is hard to reconcile this result with the initial LHCb
discovery of the pentaquark in the invariant mass distribution of
J/wN. Clearly more work is needed and it is too early to come to
any definite conclusions.

We see that the decay patterns of the molecular and
hadrocharmonium pentaquarks are vastly different. In the
molecular scenario decays into J/y are strongly sup-
pressed, while the opposite happens in the hadrocharmo-
nium case when a less pronounced suppression of decays
into states with open charm is predicted. Total decay widths
are comparable in both scenarios and are about a few dozen
MeV. Comparison of these decay patterns with the exper-
imental data would hopefully help to reveal which of the
two theoretical scenarios for pentaquarks (if either) is
chosen by nature.
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APPENDIX A: INTERACTION LAGRANGIANS
AND INTERACTION CONSTANTS

A number of phenomenological interaction Lagrangians
was used in calculations in the main body of this paper.
Coupling constants in these Lagrangians were discussed in
the literature many times, see, e.g., [19,20,24,28-42] and
references therein. There is no universal agreement on the
values of some of these constants, while decay widths
obtained above critically depend on these values. There are
three groups of relevant Lagrangians that describe: (1) pion
interaction with charmed hadrons, (2) D-boson interactions
with baryons, and (3) D-boson interaction with heavy
mesons. The interaction Lagrangians and coupling con-
stants are collected in Tables V-VII. The interaction
constants in these tables are known with vastly different
degree of reliability. We tried to use the value of this or that
constant obtained with a minimal number of theoretical
assumptions. Below we discuss how these values arise and
how accurate they are.

1. Pion interaction constants in Table V

Pion interactions with heavy baryons and mesons are
usually described in the framework of the heavy quark
effective theory combined with the spontaneously broken
SU(3), x SU(3), chiral symmetry of light quarks, see,
e.g., [28-30] and references therein. It is worth mentioning
that pion interactions can be formulated in the pseudoscalar
and axial forms that are equivalent in the nonrelativistic
limit. Connection between the respective coupling con-
stants for the pion-nucleon interaction is provided by the
classical Goldberger-Treiman relationship

M
9NN = QJAVNF—N (Al)

where ¢y is the nucleon axial charge and g,yy is the
pseudoscalar interaction constant.
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TABLE V. Pion interactions.

Interacting particles

Interaction Lagrangian

Coupling constant

TE A, —igey A AlyPZ, -7 + He. Grs.a, = 19.2°
L2, —igps s €ane PLysPen + Hee. Gps,s, = 11.06"

* i Spa b = _ 9.7
”Zcz(r lg,,zl b Zcﬂ eachL.@,,ﬂ” + H.c. gﬂX(.Zﬁ = T Z_AZZCC
zDD* igzpp (D' O#2D — D' 0*zDY,) Gupp = 12.12¢
nD*D* Gape € D, 0,70,D;, Guppr = 6.25 GeV~!

“From [y (55 > Ant) = 1.89501% and T'(Z2 — A.z7) = 1.830/g MeV, see Appendix A 1 and [19].

"See Appendix A 1.
“See Appendix A 1.

From Loy (D*7(2010) » D7) = 56.5+£ 0.1 keV and ey, (D*7(2010) — D7) = 25.6 + 0.6 keV, See

Appendix A 1 and [20].

Relationships of this type exist not only for diagonal
interactions but also for nondiagonal vertices, e.g., for the
XA, interaction. Axial form of the interaction is dictated
by the Goldstone nature of pions and the axial charge can
be calculated, at least in principle, see, e.g., [24,31].

Experimental data on the decay widths X/* — Azt
and X0 — A.z~ [43], provides direct access to the inter-
action constant g,s _. With the Lagrangian in Table V one
obtains

_ gzerL,A(. k(EAL. -M A(.)
47[ ME

IS, - A, +7) . (A2)

c

where k is the decay momentum and E,_is the energy
of the final A.. We obtain g,y » = 19.3 from the decay
Tt > Azt and gz o = 19.1 from the decay 30— A 7™
We used the average g,z o = 19.2 (compare [19,28,32]) in
the calculations above.

There is no experimental data for the XX .z coupling, so
we have chosen a roundabout way to determine the
respective interaction constant. As mentioned above axial
interaction constants can be in principle calculated theo-
retically if one knows form factors of the respective axial
currents. Unfortunately, currently there is no effective way
to calculate these form factors in QCD.5 It was suggested
long time ago [31] to use the naive constituent quark model
to calculate diagonal and transitional axial charges. The
quark model predicts g5 , =2/ V3 ~1.154 to be com-
pared with the value we calculate from the experimental
decay widths 95.A, = az A F /My, ~0.727 (we neglect
here mass difference of X. and A,). It is clear that the
accuracy of the quark model leaves much to be desired.
We expect that it predicts ratios of axial constants more
accurately than the axial constants themselves. The ratio
of the axial constants g5 , , and ¢§ y in the quark model

is g8 A /05y =1/ V3. The ratio of the respective

It could be a good problem for the lattice gauge theory
calculations.

pseudoscalar constants is proportional to the ratio of the
axial constants and we obtain

gﬂchc ~1 10 (A3)

1
9rz.x, = \/§

We used this value in calculations of the pentaquark decay
widths. Other estimates of this constant g,s s ~10.76
[19,33] are based on the assumption that g5 v = ggss.
This value is consistent with our estimate.

The axial interaction Lagrangian X;> 7z is in Table V.
There is no y° in this Lagrangian since contraction of the
positive-parity Rarita-Schwinger spin-vector %", spinor
and the axial vector 0,7 is a true scalar. The interaction has
the gradient form, and the dimensionful interaction con-
stant is proportional to the respective transitional axial
constant. Naive quark model [28,32] predicts that ratio of
the 2*X, and £,X, axial charges is v/3/2. We parameterize
the dimensionful interaction constant g,y y: in terms of the
dimensionless g, s

- 9rz.5:
T o S— A4
97:262( \/m ZMZ( ( )
and calculate its value
V3 My,
Jrs,5: = | Gaz,x, ®0.88g,5 s =9.7.  (AS5)
2 \[ My,

This constant was used in calculations of the pentaquark
decay width.

The constant g,pp+ is extracted from the experimental
data on (D**(2010) — D°z* and (D**(2010) - D*z°)
decays [43]. The decay width calculated with the
Lagrangian in Table V is

Gapp K

[(D™),, = =
o= g MR

(A6)
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TABLE VI. Nucleon interactions.

Interacting particles

Interaction Lagrangian

Coupling constant

ACND igAuNDNysAcD + H.c. g/\(,ND =45
2.ND —igz(_NDNyST -2.D + H.c. gs.vp = 0.9
END gs:npN 74 2ca0,D} + Hee. gz:np = 0.55 GeV™!

Combined with the experimental data this expression gives
9.pp+- cited in Table V.

The constant g,p+p+ can be obtained from g,pp- using
the heavy quark relationship (see, e.g., [34]) 9,pp- =

9o /N MpM .

2. Nucleon interactions
a. A ND interaction and A, semileptonic decays

Nucleon-charmed baryon-D-meson interaction constants
were obtained in the literature from the SU(4) invariant
Lagrangians, see, e.g., [19,33,35], and references therein.
The QCD sum rules were also used to obtain the value of
ga,np [39-41], and produced gy yp = 7.9 £ 0.9, what is
significantly smaller than the SU(4) prediction g, yp =
—13.7 [35].

In view of such uncertainty we would like to go another
route and connect the D-meson interaction constants with
the experimental data on the weak semileptonic decay
A, = A+ e +v,. The idea is to determine the constant
ga,ap from the experimental data on this decay and then
use the SU(3) flavor symmetry to calculate g, yp in terms
of 9A.AD-

Our approach to finding g ap is similar to the
Goldberger-Treiman derivation of the relationship between
the pseudoscalar interaction constant g,yy and the nucleon
axial charge in Eq. (Al). The decay A, > A+ et 4+, is
described by six form factors

(Alsytc|lA) = Ap + @)l f1(4?) + i6"q,f(4%)
+ ¢"f3(q*)] A (p).
(Msr*rclA.) = Ap + @) [r*91(¢?) + i q,9:(¢)

+¢"93(*)Ir°Ac(p). (A7)
The transferred momentum squared ¢”> is an invariant
mass of the lepton pair and is kinematically bounded,

\/? <My —My <Mp. The lepton masses can be
safely neglected in the theoretical description of the A, —
A + et + v, decay. Then the form factors f5 and g5 do not
enter the decay amplitude due to conservation of the lepton
currents.

The form factors have poles in g at the masses of
mesons with the respective quantum numbers but they are
outside the kinematically allowed region. Let us calculate
lowest mass pseudoscalar charmed meson D contribution

to the form factor g;. We choose the pseudoscalar form for
the A.AD interaction
Lp = iga apAr’AD, (A8)
and use the standard definition for the D-meson decay
constant
(Olsy*y>c|D(p)) = —ifpp*. (A9)
where fp ~ 212 MeV [43].

We approximate the pseudoscalar form factor of a
pointlike axial current by the pole contribution

B S/ pga.np

Nt (A10)

93

and we would like to determine the constant g, 5p from
the experimental data on the semileptonic decay A, —
A+ e +v,. However, as mentioned above this form
factor g; does not contribute to the A, > A+e" + v,
decay. To overcome this difficulty we consider the c-quark
to be heavy enough to use the heavy quark approximation.
According to the heavy quark theory only two of the six
form factors describing a typical heavy-light transition in
Eq. (A7) are independent (see, e.g., [44]), and

fi=ug. fa=f=0=g. (A11)
Thus the form factors g, and f, coincide with the form
factor g; in Eq. (A10). Numerous models for the form
factors f, f2, g1, and g, were constructed in [45-50]
and compared with the experimental data on the A, —
A + e" + v, decay. Parametrizations of the form factors in
these works depend on many parameters, and the simple
pole ansatz in Eq. (A10) was never used. We considered the
g*-dependent form factors in [45-50] as experimental data
and used the HQET relationships in Eq. (A11) to fit them
not far from the pole with the simple pole ansatz in
Eq. (A10).° As a result of these fits we obtained approxi-
mate values of the coupling constant gy ap.

®Some of the papers [45-50] where written before the
branching ratio T'(A, — Ae™v)/T, changed from 2% to 3.6%
[43]. To account for this change we rescaled the old results by the
square root of the new and old branching ratios.
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The SU(3) flavor symmetry of light quarks combined
with the heavy quark theory provides a relationship
between gy ap and g, yp. Light quarks in A, are in the
flavor antitriplet 3 state, while A is a member of the flavor
octet 8, and the light quark in the current in Eq. (A7) (as
well as in the D-meson) is in the fundamental flavor
representation 3. Then matrix elements of the flavor triplet
Jp currents between different flavor octet states and A, are
proportional to the Clebsch-Gordon coefficients

(H,aljg|H,,a) ~ ng,sp”

(A12)
where a is an SU(3) octet index, while a and f are
antitriplet and triplet indices, respectively. We use this
relationship and Eq. (A7) to obtain

3
9AND = \/;QAFAD-

Fitting the form factors in [45-50] with the pole ansatz and
using Eq. (A13) we obtained g, yp in the interval 3.5-5.5.
These values are much smaller than g, yp = 13.7 [35]
from the SU(4) symmetry widely accepted in the literature.
We think that [35] strongly overestimates g, yp and used
ga,np = 4.5 in the calculations above. This is, of course,
only a not too accurate estimate of this coupling constant.

(A13)

b. £.ND interaction and quark model

We estimate the coupling constant gy yp using the
constant g, yp from Eq. (A13). Unfortunately, there is
no SU(3) flavor relationship between gy yp and ga yp
since light quarks in X, and A, are in different flavor
representations (6 and 3, respectively). One can obtain such
a relationship in the constituent quark model. We start with
the proton, A., Z., and D quark model wave functions.
Quarks in a nucleon are in the antisymmetric color state and
hence the remaining wave function is symmetric. It is a
product of a symmetric coordinate wave function
fa(ri,ro,r3) and a symmetric spin-flavor function. The
proton wave function with spin up has the form (we
suppress the antisymmetric color factor)

1
3v2

idTu3 —u usz dTu2u3 - quT

W) = —2ululdt + 20l dbul + 24 ulul — utuld]

_dT”2”3]fN("1"'2J‘%) (Al4)

Respectively, the A, and " wave functions (again with
spin up) are

1

WL, =5 ellids + diuf —wyd} = djus]f (ri.rars),
1

‘P§;+ = 76[24”;”; - CIM%@ - CI”;”i]fzc("h"%%),

(A15)

where the coordinate wave functions f, (ry,r,.r;) and
fx,(ry.ry,r3) are symmetric with respect to the permuta-
tion r, <> r;. The D°-meson wave function is

1
V2

Transitions A, - N+ D and £, - N 4+ D in the quark
model happen when a heavy c-quark emits a hard gluon
that creates a light quark-antiquark pair. The heavy spec-
tator c-quark picks up the light antiquark and forms
D-meson, and the light quark joins the remaining two
light quarks to form a nucleon. Emission of a hard gluon
followed by the creation of a light quark-antiquark pair is
effectively described by a flavor singlet operator S. Hence,
the coupling constants gs_yp and g, _yp are proportional to
the overlap integrals

W), = —[cla) + c]ad)fp(ri.r).  (Al6)

9s.ND = (DN|S|AC>, 9IA.ND = <DN|S|Zc>- (A17)
We assume that the coordinate wave functions f»_(ry,r,.73)

and fy (ry,r,.r3) coincide. Then

1 B \f
9s.ND = 69, 9AND = 79

where ¢ is one and the same overlap integral of the
coordinate wave functions.
Thus we obtain the quark model prediction

(A18)

9A.ND

gZND—V

Numerically, gz yp = 1.35 what is again less than g5 yp =
2.69 used in the literature, see, e.g., [33].

(A19)

c. X;ND interaction and heavy quark theory

We consider c-quark as a heavy quark and use the heavy
quark theory to connect coupling constants of the X.ND
and XIND interactions. Due to the heavy quark spin
symmetry heavy-light isodoublet mesons (cg), namely
the pseudoscalar D-meson with spin zero and the vector
D*-meson with spin one form a spin doublet. This doublet
in the covariant notation can be written as a two-index
matrix field

147

HOM) =+

(D) +iDW)y], (A20)
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where v is the heavy quark four-velocity, and D(*) and

D;" (D" = 0) are pseudoscalar and transverse vector
field, respectively. The first index of the two-index matrix
field H() is the spinor index of the heavy c-quark and the
second is spinor index of the light quark (for notation and
more details see [44]). The field H")(x) transforms
bilinearly under the Lorentz transformations.

Spin of light quarks in the isotriplet heavy baryons (cqq)
is one and these baryons form a spin doublet with spins 1,/2
and 3/2. This doublet is described by the heavy quark
theory field

v 1 v *(v
Sl(4 : = __(}//4 + UM)VSZE’ ) +2Cl(4 )7

= (A21)

where the =) and Zﬁ/(f) are spinor and Rarita-Schwinger
fields, respectively. Both fields satisfy the heavy quark
theory Dirac equations # 25@ = Z@ and ZE.,U) = ZS?. The
Rarita-Schwinger field satisfies also the standard additional

conditions v”Zﬁ,(f) :y”Z:,(,w =0, that are necessary to

reduce the number of independent components of the field
describing the particle with spin 3/2 to four. Easy to see

that due to transversality of the field Zz,(f)

field S\ satisfies the condition v#S.” = 0.
The simplest interaction Lagrangian preserving all sym-
metries of the strong interactions has the form

the spin-doublet

Lp=igS" ey  HMO,N + H.c., (A22)

where N is the four-component nucleon field.

In the logic of the heavy quark theory interaction with
light degrees of freedom should not change velocity of the
heavy quark, and emission of a light nucleon with small but
nonzero velocity should be considered as a first order
correction to the heavy quark limit. This explains why the
derivative in the interaction Lagrangian in Eq. (A22) is
applied to the nucleon field, what makes the interaction
vertex proportional to the nucleon velocity. The interaction
Lagrangian in Eq. (A22) is therefore by construction a first
order correction to the heavy quark limit and we avoid a
hard task of calculating corrections on the background of
large zero order term contributions.

We are looking for a relationship between the £.ND and
2ZiND interaction constants so the term with D* in
Eq. (A22) can be omitted, and effectively

1+¢
2

H®) - iDW)y5 (A23)
Then after substitution of the explicit expression for the

field 5\ in Eq. (A22) one obtains

. 1 -, Sk 1- 75 . )
Lp—ig 73722”)7,5 (7/4 + v/t) + 26/(4v> GﬂyTlDu)auN

+H.c., (A24)
The heavy quark theory X:ND interaction term turns into

Ls:np = —igSe DN + Hee., (A25)

In the transformations leading to this expression we used

the conditions on the field Zz,(f) below Eq. (A21), the
explicit expression o** = i(y*y* — ¢"), and allowed our-
selves integration by parts. Obviously this heavy quark
theory interaction coincides with the respective effective
Lagrangian in Table VI, and, hence gs:yp = g.

Similar calculations with the field &

quark theory £.ND interaction term

lead to the heavy

Ls vp = igV3E P ' DWIO,N + He.  (A26)
As discussed above this Lagrangian is a first order
correction to the heavy quark limit due to the explicit
derivative of the light nucleon field. Hence, it is legitimate
to let v# = (1,0) in all other terms. Then only the time
derivative proportional to the light nucleon mass survives
in the expression above, and the interaction term in
Eq. (A26) coincides with the respective phenomenological
Lagrangian in Table VI, and we conclude that (recall that

9siND = 9)

g _ 9s.ND
SIND /3 M, .

(A27)

We use gy yp calculated above and obtain gs:yp =
0.55 GeV~!. This value is much smaller than gs:iNDp =

6.5 GeV~! cited in [19]. The authors of [19] made an
assumption that gs:yp = gs-ygx. Thus assumption can be
justified in the framework of the heavy quark symmetry if
one considers both the s- and c-quarks as heavy quarks. In
its turn gsyx was calculated in [37,38] from SU(3) flavor
symmetry. The value of gs:y, obtained above is only an
estimate but we expect it to be more reliable than the one in
[19] since simultaneous use of the SU(3) flavor symmetry
and heavy quark theory for s- and c-quarks hardly can be
justified.

3. Charmonium interactions

Generalized vector dominance and/or QCD sum rules
can be used to calculate J/y and y’ interaction constants
with D meson, see, e.g., [42] for a review. The basic
assumption of the generalized vector dominance is that
photon interacts with D via transitions into virtual vector
mesons. Consider vector meson V that is a bound state of
cc quarks. The zero component of the c-quark electric

114037-18



DECAYS OF PENTAQUARKS IN HADROCHARMONIUM AND ...

PHYS. REV. D 98, 114037 (2018)

TABLE VII. Charmonium interactions.

Interacting particles

Interaction Lagrangian

Coupling constant

J/wDD —~igyppy,(0,DD' — D3, DY)
w'DD _igqf’DDU/L(aﬂDDT — D(?”DT)
J/wDD* s gy

v —91/(,,D*D€’“"”/’8,,x//l,(Da' JdyD — D" 04Dy,)
W/DD*

~9yp p€" O, (Dy 04D — DT 0,D};)

gDDJ/y/ = 744-‘l
9ppy = 12.51°

gJ/l//D*D =249 GCV_IC
gypp- =3.52 GeV~1¢

*Generalized vector dominance, see Appendix A 3 and [36].
Generalized vector dominance, see Appendix A 3 and [36].
“Generalized vector dominance and heavy quarks symmetry, see Appendix A 3 and [36].
Generalized vector dominance and heavy quarks symmetry, see Appendix A 3 and [36].

current j?’c) = Q.cr*c (Q. is the c-quark charge) measures
electric charge of the c-quark in D meson. At zero

momentum transfer (D)| j(()c>|D> ~ Q.. On the other hand

due to vector dominance the same matrix element is
proportional to gpyp(1/M%)Q.fyMy, where My is the
vector meson mass and its decay constant fy, is defined by
the relationship (0|cy#c|V) = fyMye". Comparing these
two expressions for the current matrix element we obtain
gppy = My /fy. The vector meson decay constant fy is
determined from the partial decay width

4 2 2 M2
T(V > ete) = %fﬁvﬁ , (A28)
and
1AMV = ete)
_ . (A29
fv 240, \/ - (A29)

Experimentally I'(J/y —eTe™)=5.55+0.141+0.02 keV
and I'(y’ — e*e”) =2.33 £0.04 keV [43]. Then f, =~
416.3 MeV and f,, = 294.68 MeV [34], and

M,

’

M,
9jjwpD = 7 = 7.44,
fy W

The dimensionful constants g,pp- and g, pp- are calcu-
lated from the heavy quark relationships (see, e.g., [36])

g _ Y91ypp  [Mp-
1/yDD* = ,
A% M//l// MD
_ 9ypp [Mp
M, \|' M,

9y'DD* (A31)

[1] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 115,
072001 (2015).

[2] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 117,
082003 (2016); 117, 109902(E) (2016); 118, 119901
(2017).

[3] R.F. Lebed, R. E. Mitchell, and E. S. Swanson, Prog. Part.
Nucl. Phys. 93, 143 (2017).

[4] A. Ali, J. S. Lange, and S. Stone, Prog. Part. Nucl. Phys. 97,
123 (2017).

[5] A. Esposito, A. Pilloni, and A. D. Polosa, Phys. Rep. 668, 1
(2017).

[6] S.L. Olsen, T. Skwarnicki, and D. Zieminska, Rev. Mod.
Phys. 90, 015003 (2018).

[7]1 F-K. Guo, C. Hanhart, U.-G. Meifsner, Q. Wang, Q. Zhao,
and B.-S. Zou, Rev. Mod. Phys. 90, 015004 (2018).

[8] M. Karliner, J. L. Rosner, and T. Skwarnicki, Annu. Rev.
Nucl. Part. Sci. 68, 17 (2018).

[9] M. 1. Eides, V. Yu. Petrov, and M. V. Polyakov, Phys. Rev. D

93, 054039 (2016).

[10] M. 1. Eides, V. Yu. Petrov, and M. V. Polyakov, Eur. Phys.
J. C 78, 36 (2018).

[11] M. N. Anwar, M. A. Bedolla, J. Ferretti, and E. Santopinto,
arXiv:1807.01207.

[12] A. Sibirtsev and M. B. Voloshin, Phys. Rev. D 71, 076005
(2005).

[13] S. Dubynskiy and M. B. Voloshin, Phys. Lett. B 666, 344
(2008).

[14] X. Li and M. B. Voloshin, Mod. Phys. Lett. A 29, 1450060
(2014).

[15] S.J. Brodsky, I. Schmidt, and G. F. de Teramond, Phys. Rev.
Lett. 64, 1011 (1990).

[16] M. Luke, A.V. Manohar, and M. J. Savage, Phys. Lett. B
288, 355 (1992).

[17] M. B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008).

114037-19


https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevLett.117.082003
https://doi.org/10.1103/PhysRevLett.117.082003
https://doi.org/10.1103/PhysRevLett.117.109902
https://doi.org/10.1103/PhysRevLett.118.119901
https://doi.org/10.1103/PhysRevLett.118.119901
https://doi.org/10.1016/j.ppnp.2016.11.003
https://doi.org/10.1016/j.ppnp.2016.11.003
https://doi.org/10.1016/j.ppnp.2017.08.003
https://doi.org/10.1016/j.ppnp.2017.08.003
https://doi.org/10.1016/j.physrep.2016.11.002
https://doi.org/10.1016/j.physrep.2016.11.002
https://doi.org/10.1103/RevModPhys.90.015003
https://doi.org/10.1103/RevModPhys.90.015003
https://doi.org/10.1103/RevModPhys.90.015004
https://doi.org/10.1146/annurev-nucl-101917-020902
https://doi.org/10.1146/annurev-nucl-101917-020902
https://doi.org/10.1103/PhysRevD.93.054039
https://doi.org/10.1103/PhysRevD.93.054039
https://doi.org/10.1140/epjc/s10052-018-5530-9
https://doi.org/10.1140/epjc/s10052-018-5530-9
http://arXiv.org/abs/1807.01207
https://doi.org/10.1103/PhysRevD.71.076005
https://doi.org/10.1103/PhysRevD.71.076005
https://doi.org/10.1016/j.physletb.2008.07.086
https://doi.org/10.1016/j.physletb.2008.07.086
https://doi.org/10.1142/S0217732314500606
https://doi.org/10.1142/S0217732314500606
https://doi.org/10.1103/PhysRevLett.64.1011
https://doi.org/10.1103/PhysRevLett.64.1011
https://doi.org/10.1016/0370-2693(92)91114-O
https://doi.org/10.1016/0370-2693(92)91114-O
https://doi.org/10.1016/j.ppnp.2008.02.001

MICHAEL I. EIDES and VICTOR YU. PETROV

PHYS. REV. D 98, 114037 (2018)

[18] M. B. Voloshin and L. B. Okun, Pis’ma Zh. Eksp. Teor. Fiz.
23, 369 (1976) [JETP Lett. 23, 333 (1976)].

[19] Y.-H. Lin, C.-W. Shen, F.-K Guo, and B.-S. Zou, Phys. Rev.
D 95, 114017 (2017).

[20] C.-W. Shen, E.-K. Guo, J.-J. Xie, and B.-S. Zou, Nucl. Phys.
A954, 393 (2016).

[21] Q.-F Lii and Y.-B. Dong, Phys. Rev. D 93, 074020 (2016).

[22] C. W. Shen and Y. H. Lin, Phys. Part. Nucl. Lett. 15, 402
(2018).

[23] K. Azizi, Y. Sarac, and H. Sundu, Phys. Lett. B 782, 694
(2018).

[24] J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meifiner,
and W. Weise, Eur. Phys. J. C 77, 760 (2017).

[25] N. A. Tornqvist, Phys. Rev. Lett. 67, 556 (1991).

[26] L.D. Landau and E.M. Lifshitz, Quantum Mechanics,
3rd ed. (Butterworth-Heinemann, Amsterdam, 2003).

[27] E. Chudakov on behalf of the GlueX Collaboration,
Proceedings of the 23d International Spin Symposium,
Ferrara (2018), http://spin2018.unife.it/.

[28] T.-M. Yan, H.-Y. Cheng, Ch.-Y. Cheung, G.-L. Lin, Y. C. Lin,
and H.-L. Yu, Phys. Rev. D 46, 1148 (1992); 55, 5851(E)
(1997).

[29] P. Cho, Phys. Lett. B 285, 145 (1992).

[30] Y. Shimizu, D. Suenaga, and M. Harada, Phys. Rev. D 93,
114003 (2016).

[31] D.O. Riska and G. E. Brown, Nucl. Phys. A679, 577 (2001).

[32] Y.-R. Liu and M. Oka, Phys. Rev. D 85, 014015 (2012).

[33] E.J. Garzon and J.-J. Xie, Phys. Rev. C 92, 035201 (2015).

[34] D.-Y. Chen and Y.-B. Dong, Phys. Rev. D 93, 014003 (2016).

[35] W. Liu, C. M. Ko, and Z. W. Lin, Phys. Rev. C 65, 015203
(2001).

[36] D.-Y. Chen, X. Liu, and T. Matsuki, Phys. Rev. D 88,
014034 (2013).

[37] Y. Oh, C.M. Ko, and K. Nakayama, Phys. Rev. C 77,
045204 (2008).

[38] M. Doring, C. Hanhart, F. Huangb, S. Krewalda, U.-G.
MeiBner, and D. Ronchen, Nucl. Phys. AS851, 58
(2011).

[39] F. S. Navarra and M. Nielsen, Phys. Lett. B 443, 285
(1998).

[40] F. S. Navarra and M. Nielsen, Nucl. Phys. B, Proc. Suppl.
74, 214 (1999).

[41] F. O. Durées, F. S. Navarra, and M. Nielsen, Phys. Lett. B
498, 169 (2001).

[42] M.E. Bracco, M. Chiapparini, F.S. Navarra, and M.
Nielsen, Prog. Part. Nucl. Phys. 67, 1019 (2012).

[43] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,
030001 (2018).

[44] A.V. Manohar and M. B. Wise, Heavy Quark Physics
(Cambridge University Press, Cambridge, England, 2000).

[45] J. W. Hinson et al. (CLEO Collaboration), Phys. Rev. Lett.
94, 191801 (2005).

[46] Y.-L. Liu, M.-Q. Huang, and D.-W. Wang, Phys. Rev. D 80,
074011 (2009).

[47] T. Gutsche, M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij,
and P. Santorelli, Phys. Rev. D 93, 034008 (2016).

[48] R.N. Faustov and V. O Galkin, Eur. Phys. J. C 76, 628
(2016).

[49] C.-F. Li, Y.-L. Liu, K. Liu, C.-Y. Cui, and M.-Q. Huang,
J. Phys. G 44, 075006 (2017).

[50] M. M. Hussain and W. Roberts, Phys. Rev. D 95, 053005
(2017).

114037-20


https://doi.org/10.1103/PhysRevD.95.114017
https://doi.org/10.1103/PhysRevD.95.114017
https://doi.org/10.1016/j.nuclphysa.2016.04.034
https://doi.org/10.1016/j.nuclphysa.2016.04.034
https://doi.org/10.1103/PhysRevD.93.074020
https://doi.org/10.1134/S1547477118040209
https://doi.org/10.1134/S1547477118040209
https://doi.org/10.1016/j.physletb.2018.06.022
https://doi.org/10.1016/j.physletb.2018.06.022
https://doi.org/10.1140/epjc/s10052-017-5309-4
https://doi.org/10.1103/PhysRevLett.67.556
http://spin2018.unife.it/
http://spin2018.unife.it/
http://spin2018.unife.it/
https://doi.org/10.1103/PhysRevD.46.1148
https://doi.org/10.1103/PhysRevD.55.5851
https://doi.org/10.1103/PhysRevD.55.5851
https://doi.org/10.1016/0370-2693(92)91314-Y
https://doi.org/10.1103/PhysRevD.93.114003
https://doi.org/10.1103/PhysRevD.93.114003
https://doi.org/10.1016/S0375-9474(00)00362-6
https://doi.org/10.1103/PhysRevD.85.014015
https://doi.org/10.1103/PhysRevC.92.035201
https://doi.org/10.1103/PhysRevD.93.014003
https://doi.org/10.1103/PhysRevC.65.015203
https://doi.org/10.1103/PhysRevC.65.015203
https://doi.org/10.1103/PhysRevD.88.014034
https://doi.org/10.1103/PhysRevD.88.014034
https://doi.org/10.1103/PhysRevC.77.045204
https://doi.org/10.1103/PhysRevC.77.045204
https://doi.org/10.1016/j.nuclphysa.2010.12.010
https://doi.org/10.1016/j.nuclphysa.2010.12.010
https://doi.org/10.1016/S0370-2693(98)01247-7
https://doi.org/10.1016/S0370-2693(98)01247-7
https://doi.org/10.1016/S0920-5632(99)00165-6
https://doi.org/10.1016/S0920-5632(99)00165-6
https://doi.org/10.1016/S0370-2693(01)00011-9
https://doi.org/10.1016/S0370-2693(01)00011-9
https://doi.org/10.1016/j.ppnp.2012.03.002
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevLett.94.191801
https://doi.org/10.1103/PhysRevLett.94.191801
https://doi.org/10.1103/PhysRevD.80.074011
https://doi.org/10.1103/PhysRevD.80.074011
https://doi.org/10.1103/PhysRevD.93.034008
https://doi.org/10.1140/epjc/s10052-016-4492-z
https://doi.org/10.1140/epjc/s10052-016-4492-z
https://doi.org/10.1088/1361-6471/aa68f1
https://doi.org/10.1103/PhysRevD.95.053005
https://doi.org/10.1103/PhysRevD.95.053005

