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We consider decays of the hidden charm LHCb pentaquarks in the hadrocharmonium and molecular
scenarios. In both pictures the LHCb pentaquarks are essentially nonrelativistic bound states. We develop a
semirelativistic framework for calculation of the partial decay widths that allows the final particles to be
relativistic. Using this approach we calculate the decay widths in the hadrocharmonium and molecular
pictures. Molecular hidden charm pentaquarks are constructed as loosely bound states of charmed and
anticharmed hadrons. Calculations show that molecular pentaquarks decay predominantly into states with
open charm. Strong suppression of the molecular pentaquark decays into states with hidden charm is
qualitatively explained by a relatively large size of the molecular pentaquark. The decay pattern of
hadrocharmonium pentaquarks that are interpreted as loosely bound states of excited charmonium ψ 0 and
nucleons is quite different. This time dominate decays into states with hidden charm, but suppression of the
decays with charm exchange is weaker than in the respective molecular case. The weaker suppression is
explained by a larger binding energy and respectively smaller size of the hadrocharmonium pentaquarks.
These results combined with the experimental data on partial decay widths could allow to figure out which
of the two theoretical scenarios for pentaquarks (if either) is chosen by nature.
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I. INTRODUCTION

Pentaquarks discovered by the LHCb collaboration [1,2]
are the first experimental sighting of exotic baryons. It is
probably not by chance that these baryons contain a heavy
quark-antiquark pair, with quark masses larger than the
scale of strong interactions. Internal structure of the LHCb
pentaquarks remains at this moment unknown. Numerous
models of the exotic pentaquarks were proposed in the
literature, see, e.g., recent reviews [3–8] and references
therein.
We will concentrate on the popular molecular and

hadrocharmonium scenarios for the LHCb pentaquarks
as they were realized in [9,10] (see also [11]). Neither
of these scenarios can be justified on purely theoretical
grounds, both are based on some physically reasonable
conjectures about the nature of QCD at low energies. Both
in the hadrocharmonium and the molecular pictures penta-
quark is assumed to be a nonrelativistic bound state of two
hadrons. The main difference between the two models is in

the nature of forces that bind constituents into a pentaquark.
The idea of the hadrocharmonium picture [12–14] is that
almost static heavy quark and antiquark inside an exotic
baryon form a small color singlet state—one of excitations
of charmonium. Light valence quarks inside hadrocharmo-
nium also form a color singlet state (nucleon) and occupy a
much larger volume. Interaction between an almost static
color singlet heavy quark-antiquark pair and a large color
singlet nucleon is due to the long range color dipole forces
and effectively the small static cc̄ pair probes the long
wavelength gluon field inside the large light nucleon.
Heavy quarkonium interaction with nuclei was considered
in [15,16], see also references in [17]. A QCD motivated
potential that depends on the charmonium chromoelectric
polarizability and nucleon stress-energy distribution
describes charmonium-nucleon interaction, and one can
find the spectrum of hidden charm baryons solving the
Schrödinger equation [9,10]. Literally, the hadrocharmo-
nium picture is justified in the large Nc and heavy quark
limit when the mass of the nucleon becomes large and its
size remains constant, while the heavy quark-antiquark pair
occupies a small volume and is effectively static [12,13].
The molecular scenario of hidden charm pentaquarks

initiated in [18] is qualitatively vastly different. In this
scenario heavy quark and valence light quark(s) form a
color singlet open charm heavy hadron, while the heavy
antiquark forms another open charm hadron with the
remaining light valence quark(s). These open charm
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hadrons interact via exchange of light mesons and form a
loosely bound pentaquark where the open charm constitu-
ent hadrons and, respectively, heavy quark and antiquark
are at rather large distances. The problem with this scenario
is that meson exchanges generate attraction at large dis-
tances but are too singular at short distances and fail to hold
the constituents far enough to avoid fall to the center. Some
kind of hard core should arise and meson exchanges do
not provide any effective repulsion at small distances.
Therefore the hard core is not under theoretical control
while the wave function in the molecular scenario tends
to be concentrated there and critically depends on the
hard core properties, see, e.g., [10] and references in the
reviews [4,5,7].
Currently both the molecular and hadrocharmonium

descriptions of the LHCb pentaquarks are plausible, one
cannot choose between them on purely theoretical grounds.
Taking into account uncertainty of the theoretical situation,
one needs to find experimentally observable signatures that
could help to figure out which of the two scenarios (if any)
is realized by nature. In principle, there are many ways to
explore internal structure of hadrons, the most straight-
forward approach is just to measure their form factors.
Information on the electromagnetic form factors of penta-
quarks could immediately resolve the confrontation of the
hadrocharmonium and molecular scenarios. However, one
cannot expect any experimental data on the form factors of
the LHCb pentaquarks any time soon. The next best option
to explore internal structure of pentaquarks is to measure
decays widths.
We expect that the dominant contributions to the total

width come from two-particle decays. In the hadrocharmo-
nium picture decays with emission of additional pions are
strongly suppressed due to small phase volume and pseudo-
Goldstone nature of pions [9]. The constituents of the
molecular pentaquark are unstable with respect to decays
D�→Dþπ and Σc → Λc þ π, and have finite but small
widths. Three-particle decaysPcð4450Þ → ΣcD̄π are banned
kinematically, MΣc

ð2455Þ þMD̄ð1865Þ þMπð140Þ ¼
4460 MeV > MPc

ð4450Þ.DecaysPc → ΛcD̄�π are allowed
kinematically, MΛc

ð2286Þ þMD̄� ð1865Þ þMπð140Þ ¼
4436 MeV < MPc

ð4450Þ but they are suppressed due to a
small available phase volume and derivative coupling of
pions.
Both in the hadrocharmonium and molecular pictures

there are two qualitatively different classes of two-particle
pentaquark decay processes. Decays of one kind occur
without charm exchange between the constituents and the
decay products carry the same charm as the constituents. In
decays of the other kind charm is exchanged and the decay
products have charm quantum numbers that do not coincide
with the ones of the constituents.
Calculations of the pentaquark decays are impeded by

numerous obstacles: apparent ultraviolet divergences,
uncertainty of the cutoff momenta, need to introduce more

or less arbitrary form factors, etc. We describe decay
processes of nonrelativistic loosely bound pentaquarks
by t-channel exchanges between the constituent hadrons.1

In transitions without charm exchange interaction is due to
the lightest mesons without open charm. In the case when
charm of the constituents changes they exchange by the
lightest mesons with open charm. A naive expectation is
that in each case (hadrocharmonium and molecular penta-
quarks) decays without charm exchange dominate and
decays with charm exchange are suppressed. This pattern
of decays could allow to choose between the hadrochar-
monium and molecular pictures of pentaquarks if and when
the experimental data for decays will be available.
Let us quantify these expectations. Notice that to

exchange charm the constituents should come very close
to each other, at a relative distance ∼1=mc. The probability
of this to happen in a nonrelativistic bound state is
proportional to jψð0Þj2=m3

c, where ψðrÞ is the bound state
wave function. But ψð0Þ ∼ κ3=2, where κ ¼ ffiffiffiffiffiffiffiffi

2μϵ
p

, μ is the
reduced mass of the system and ϵ is the binding energy.
Then suppression of decays with exchange of charm is
described by the factor

jψð0Þj2
m3

c
¼

�
μ

mc

�3
2

�
ϵ

mc

�3
2

: ð1Þ

In a hadrocharmonium pentaquark μ is about the nucleon
mass and in a molecular pentaquark μ ∼mc. For the
Pcð4450Þ constructed in [9,10] binding energy is ϵ ≈
176 MeV in the hadrocharmonium case, and it is ϵ ≈
15 MeV in the molecular case. At face value suppression of
decays with charm exchange is expected in both pictures
and it is stronger in the molecular picture. We will see
below that these expectations hold and discuss what
happens.
Our principal goal is to find out if measurements of

partial widths for decays in the channels with open and
hidden charm can help to figure our which of the two
scenarios (hadrocharmonium and molecular) of the hidden
charm pentaquarks is realized in nature. To this end we
develop a semirelativistic approach to calculation of the
decays. Let us emphasize that despite bound states both in
the hadrocharmonium and the molecular pictures are non-
relativistic, loop momenta are in principle arbitrary and the
final decay momentum is sometimes relativistic. In the
semirelativistic approach we make a physically reasonable
assumption that the intermediate virtual particles in the loop
diagrams are always not far from their mass shell what
allows to treat them nonrelativistically. On the other hand,
our approach allows to treat the exchanged particle as well
as the final particles relativistically. Below we consider
decays of the hadrocharmonium and molecular pentaquarks

1Processes with the s-channel annihilation of heavy c-quarks
are suppressed due to the Zweig-Okubo-Iizuka rule.
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from [10] in this approach. We start with the basic features
of the semirelativistic approximation that allows one to
calculate the pentaquark decays with a reasonable accuracy.
WeuseFeynmandiagrams to derive the interactionpotentials
for different decays, calculate decay widths of hadrochar-
monium and molecular pentaquarks,2 make predictions for
relative rates of different decays in each picture and compare
the patterns of decays in hadrocharmonium and molecular
scenario.

II. SEMIRELATIVISTIC APPROXIMATION
FOR PENTAQUARKS DECAYS

A. Kinematics

The first task is to derive a practical general formula
for calculation of the pentaquark decays. We consider
pentaquarks as loosely bound states of two particles with
binding energy ϵ (MPc

¼ MA þMB þ ϵ) much smaller
than the reduced mass of the constituents, jϵj ≪ μ ¼
MAMB=ðMA þMBÞ. The constituent particles are close
to the mass shell and are nonrelativistic, ϵ=μ ∼ v2=c2. In the
case of the LHCb pentaquark Pcð4450Þ constructed as a
bound state of ψ 0ð3686Þ and the nucleon Nð940Þ [9,10]
μ ¼ 749 MeV, ϵ ¼ 176 MeV, ϵ=μ ∼ v2=c2 ∼ 0.23 and the
relativistic correction to the binding energy is about
v2=ð4c2Þ ∼ 6%. The accuracy of the nonrelativistic
approximation for other systems and processes considered
below is roughly the same. We will use the nonrelativistic
approximation in calculation of widths of loosely bound
states ignoring off-mass shellness of the constituents. We
expect the obtained results to have error bars about 6–8%.
Pentaquark decays both in the hadrocharmonium and

molecular pictures are due to the diagrams with the
t-channel exchange of the type represented in Fig. 1, where
A and B are the pentaquark constituents, and 1 and 2 are the
decay products. To make the discussion more transparent
we temporarily ignore spins of all particles. The final
particles with masses M1 and M2 as well as the exchanged
virtual particle C, could have masses significantly smaller
than the masses MA;B of the constituents and are not
necessarily nonrelativistic. We need to use relativistic
kinematics for these particles. Then the decay width of
the pentaquark has the form

Γ ¼ g21g
2
2

k
4π2

E1E2

MPc

Z
dΩk

����
Z

d3re−ik·rVðr; kÞψðrÞ
����2; ð2Þ

where k is the three-momentum of the final particle 1 and
we integrate over its directions, ψðrÞ is the normalized
nonrelativistic wave function of the initial pentaquark

(a loosely bound state of particles A and B) in its rest
frame, and the effective potential g1g2Vðr; kÞ (g1;2 are the
respective coupling constants) is in the general case a
function of the relative coordinate r and the final momen-
tum k. Notice the relativistic energies E1;2 in Eq. (2) instead
of the masses M1;2 in the standard nonrelativistic formula.
They arise because the final particles could be relatively
light and relativistic.
The integral in Eq. (2) can be simplified when the bound

state wave function ψðrÞ is a superposition of terms with
different angular momenta ψðrÞ ¼ P

lRlðrÞYlmðθ;ϕÞ and
VðrÞ is a central potential. In such case we expand the
exponential in spherical harmonics, use their orthogonality
and obtain the decay amplitude as a sum of partial waves

Mif ¼
Z

d3re−ik·rVðr; kÞψðrÞ

¼ 4π
X
l

ð−iÞlMðljlÞYlm

�
k
k

�
; ð3Þ

where

MðljlÞ ¼
Z

∞

0

r2drRlðrÞjlðkrÞVðrÞ; ð4Þ

and jlðkrÞ is a spherical Bessel function.
The total decay width obtained after integration over

angles in this case is

Γ ¼ g21g
2
2

4kE1E2

MPc

X
l

jMðljlÞj2: ð5Þ

In the calculations below the interaction potential is often a
tensor, so the matrix elements similar to MðljÞ are non-
diagonal in l, in other words orbital momentum changes in
decays. The total angular momentumwith account for spins
is of course conserved.
The effective potential Vðr; kÞ

Vðr; kÞ ¼
Z

d3q
ð2πÞ3 e

iq·rVðq; kÞ ð6Þ

can be calculated in terms of the relativistic scattering
amplitude AAþB→1þ2ðq; kÞ with the nonrelativistic initial
particles

FIG. 1. Generic diagram for pentaquark decay.

2Decays of pentaquarks in the molecular picture were dis-
cussed in the literature earlier, see, e.g., [19–23] and references
therein. To the best of our knowledge decays in the hadrochar-
monium picture were never discussed before.
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g1g2Vðq; kÞ ¼ −
AAþB→1þ2ðq; kÞffiffiffiffiffiffiffiffiffiffi

2MA
p ffiffiffiffiffiffiffiffiffiffi

2MB
p ffiffiffiffiffiffiffiffi

2E1

p ffiffiffiffiffiffiffiffi
2E2

p : ð7Þ

The square roots in this relationship convert the relativis-
tically normalized scattering amplitude to the normalization
used in nonrelativistic quantum mechanics. It is convenient
to rescale the potential so that it coincides with the
amplitude AAþB→1þ2ðq; kÞ

Vðq; kÞ → Vðq; kÞffiffiffiffiffiffiffiffiffiffi
2MA

p ffiffiffiffiffiffiffiffiffiffi
2MB

p ffiffiffiffiffiffiffiffi
2E1

p ffiffiffiffiffiffiffiffi
2E2

p : ð8Þ

Then the total width in Eq. (5) acquires the form

Γ ¼ g21g
2
2

4kE1E2

MPc

P
ljMðljlÞj2

2MA2MB2E12E2

: ð9Þ

Below we will use a natural generalization of this formula
for particles with spin.
Our strategy is to use the standard Feynman rules with

free initial and final particles to calculate the scattering
amplitudes with the nonrelativistic initial particles. Then
we convert the scattering amplitudes into effective poten-
tials Vðr; kÞ, expand the integrand in Eq. (2) in spherical
harmonics (with account for spin, if necessary), calculate
the angular integrals analytically and finish with computing
the remaining radial integrals numerically, using the wave
functions obtained in [10].
Let us illustrate the logic of calculations still assuming

that all particles in Fig. 1 are scalars. In this case the
rescaled potential is just

Vðk; qÞ ¼ 1

M2
C − ðk − qÞ2 : ð10Þ

All external momenta are on mass shell and

M2
C − ðk − qÞ2 ¼

�
M2

C − ðMA −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 þ k2
q

Þ2
�
þ ðk − qÞ2

≡M2�ðCÞ þ ðk − qÞ2; ð11Þ

and

Vðk; qÞ ¼ 1

M�ðCÞ2 þ ðk − qÞ2 : ð12Þ

In this simple case the potential is a function only of
ðk − qÞ2 and its Fourier transform is just the Yukawa
potential. Notice that its radius is determined not by the
mass of the exchanged particle MC but by the effective

mass M�ðCÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

C − ðMA −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 þ k2
p

Þ2
q

.

B. Tensor, spin, and isospin structure
of decay potentials

In the nonrelativistic approximation one-pion exchange
in Fig. 1 generates a relatively long-range effective poten-
tial between Σc and D̄� that was used in [10] in discussion
of the molecular pentaquark

VðqÞ ¼ −4
gAΣc

gAD�

F2
π

ðt1 · t2Þ
ðsð1Þ · qÞðsð2Þ · qÞ

m2
π þ q2

; ð13Þ

where gAΣc
and gAD� are the axial charges of Σc and D�,

respectively, and matrix elements of the spin and isospin
operators ti and Si should be calculated between the state
vectors of the respective particles. In coordinate space the
momentum-dependent factor turns into a superposition of a
central and tensor potentials (we temporarily omit the
coupling constants)

WijðrÞ ¼ 4

Z
d3q
ð2πÞ3

qiqj
m2

π þ q2
eiq·r

¼ VcðrÞδij þ ð3ninj − δijÞVtðrÞ; ð14Þ

where ni ¼ ri=r and

VcðrÞ ¼
m2e−mr

3πr
;

VtðrÞ ¼ ½3þ 3mrþ ðmrÞ2� e
−mr

3πr3
: ð15Þ

There is also an additional term proportional to δðrÞ on the
right-hand side in Eq. (14). We omit it as unphysical in
calculations of the bound state energies, because it arises
from the distances where the one-pion exchange makes no
sense due to finite sizes of all particles, see [10] for details.
The spin and isospin matrices in Eq. (13) act in the space of
spin and isospin states of the constituents. In [10] we used
the potentials in Eqs. (13) and (15) together with the similar
potentials that arise from σ, ρ, ω and η exchanges to
construct a loosely bound pentaquark state Pcð4450Þ. All
potentials were regularized at small distances about
0.15 fm, for details of the regularization see Eq. (31,32)
in [10].
Decays of molecular pentaquarks without charm

exchange can go via exchanges by a pion and other light
mesons. We expect that the one-pion contribution, without
account for exchanges by other mesons, gives a reasonable
estimate of decay widths. Unlike the case of the binding
potential, one-particle exchange decay amplitudes describe
transitions from one pair of particles to another. After
calculations pion exchange reduces to the potentials of the
same type as in Eqs. (14) and (15), the only differences are
that we use the nondiagonal axial charges (see also [24]),
and substitute mπ → m�ðπÞ and q2 → ðk − qÞ2, compare
Eq. (11). Decays of the molecular and hadrocharmonium
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pentaquarks with exchange of charm go via D-meson and
other heavy hadron exchanges. The respective effective
potentials do not coincide with the ones in Eqs. (14) and
(15), but still depend on spin, isospin and orbital momenta.
This allows us to give a universal description of the strategy
of further calculations. Consider, e.g., a molecular penta-
quark decay. The bound state wave function of the
molecular pentaquark [10] is a superpositions of the states
jl ¼ 0; S ¼ 3=2i, jl ¼ 2; S ¼ 1=2i, and jl ¼ 2; S ¼ 3=2i,
where l is the orbital momentum and S is the total spin of
the pentaquark. Each of the components of the molecular
ΣcD̄� wave function is in its turn a superposition of
one-particle spin-isospin states of the constituents. In terms
of these spin-isospin states of the constituents the ΣcD̄�
the wave function of the pentaquark in the state
jj ¼ 3=2; j3; t ¼ 1=2; t3i has the form

Ψ3
2
;j3;

1
2
;t3ðrÞ ¼

X
C

3
2
j3
SS3;lm

CSS3
1
2
sð1Þ
3
;1sð2Þ

3

C
1
2
t3

1tð1Þ
3
;1
2
tð2Þ
3

RlSðrÞ
× YlmðnÞΣsð1Þ

3
tð1Þ
3

D̄�
sð2Þ
3
tð2Þ
3

; ð16Þ

where Σ
sð1Þ
3
tð1Þ
3

and D̄�
sð2Þ
3
tð2Þ
3

are normalized to unity spin-

isospin states of Σc and D̄� with the spin projection sðiÞ3 and

the isospin projection tðiÞ3 , j3, t3 are the third components of
the pentaquark spin and isospin, YlmðnÞ are spherical

harmonics, C
3
2
j3
SS3;lm

, CSS3
1
2
sð1Þ
3
;1sð2Þ

3

, C
1
2
t3

1tð1Þ
3
;1
2
tð2Þ
3

are the Clebsch-

Gordan coefficients, and RlSðrÞ are the radial wave func-
tions in the states jl; Si. Summation runs over spin and
isospin projections of the constituents and includes also
summation over three available l, S combinations.
We consider a one-particle exchange scattering ampli-

tude as an operator that acts on the initial wave function in
Eq. (16) and transforms it in a superpositions of products
of spin-isospin one-particle states of the final particles with
the coefficients that are coordinate wave functions of their
relative motion. Like in Eq. (16) these coordinate wave
functions are themselves superpositions of products of
radial wave functions and spherical harmonics. The final
orbital momenta arise automatically by addition of orbital
momenta of the initial wave function and of the interaction
potential and do not coincide with the initial orbital
momenta, only the total angular momentum is conserved
in the general case. Next we project this wave function
on the final plane wave, compare Eq. (3). We obtain a
superposition of matrix elements of the potentialMðl; SjLÞ
[compare Eq. (4)], with the coefficients that are spin-
isospin wave functions of the final particles. Unlike the
expression in Eq. (4) the radial wave function RlSðrÞ carries
now a second index S because it depends on the total spin
of the bound state. In addition the final angular momentum
L in the integral forMðl; SjLÞ does not necessarily coincide
with the initial angular momentum l since the potential is
in the general case a coordinate space (as well as spin and

isospin) tensor. These matrix elements Mðl; SjLÞ are decay
amplitudes of the initial state jl; Si into a final state with the
total orbital momentum L and spin-isospin quantum
numbers of the coefficients.
To calculate the decay width in any channel we apply the

operator arising from the respective one-particle exchange
amplitude to the wave function Eq. (16) of the pentaquark
with fixed quantum numbers. Then we obtain the decay
amplitude as a superposition of matrix elements Mðl; SjLÞ,
square it, calculate the integrals over directions of the final
momentum k and thus obtain the decay width. We will fill
some technical gaps in this schematic discussion consid-
ering the decays below.

III. DECAYS OF MOLECULAR
PENTAQUARKS

Let us recall the principal features of the molecular
pentaquark scenario considered in [10]. Exotic pentaquarks
in this picture are loosely bound states of hadrons with open
charm located at rather large distances. One could expect
that the interaction of the constituent hadrons in this case
would be dominated by the long-range one-pion exchange
and the pentaquark would resemble the deuteron, see, e.g.,
[25]. We considered this binding mechanism in [10] and
came to the conclusion that the effective distances are not
large enough to neglect exchanges by other light mesons,
besides pions. The pion exchange in [10] was regularized to
get rid of its unphysical too singular behavior at small
distances, and exchanges by σ, ρ, ω and η were also
taken into account. Then we constructed the pentaquark
Pcð4450Þ as a loosely bound state of Σcð2455Þ
(IðJPÞ ¼ 1ð1=2þÞ) and D̄�ð2010Þ (IðJPÞ ¼ 1=2ð1−Þ) with
the binding energy only 15 MeV and spin-parity ð3=2Þ−.
This pentaquark arises when the regularization parameter
Λ ¼ 1300 MeV, with the root mean square radius 1.46 fm
and D-wave squared fraction about 4%, see [10] for more
details. An attempt to use the potential with the same
parameters in order to construct Pcð4380Þ as a loosely
bound state of Σ�

cð2520Þ (IðJPÞ ¼ 1ð3=2þÞ) and D̄ð1870Þ
(IðJPÞ ¼ 1=2ð0−Þ) with the binding energy 10 MeV was
not successful. The main reason is that the would be
constituents Σ�

c and D̄ do not interact via one-pion
exchange since the three-pseudoscalar vertex πDD is
banned by parity, and exchanges by the other light mesons
cannot provide the necessary binding. Therefore, if we
insist that the LHCb Pcð4380Þ pentaquark should be a
loosely bound molecular state with a tiny binding energy its
nature in this picture remains an open question.
Small binding energy and large size of the molecular

pentaquark Pcð4450Þ imply that the constituent hadrons are
nonrelativistic and this bound state can be described in the
potential approach. We constructed such molecular penta-
quark in [10]. Let us consider its decays due to one-particle
exchanges.
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A. Decays into states with open charm

There are four open channels for the Pcð4450Þ penta-
quark decays into states with open charm, see Table I. In the
case of the molecular pentaquark there is no charm
exchange in these decays and they can go via one-pion
exchanges. As mentioned above, exchanges by heavier
mesons are also allowed but we will account only for the
contribution of the pion exchange.

1. Pc → Λc + D̄ decay

We start with the channel Pc → Λc þ D̄. The initial
pentaquark has spin-parity 3=2− and isospin 1=2, the final
Λc carries spin-parity 1=2þ and zero isospin, and the final
D̄ is a pseudoscalar with isospin 1=2. The product of the
internal parities of Λc and D̄ is negative, so the final state in
the decay Pcð4450Þ → Λc þ D̄ can have only even angular
momenta. The final state with L ¼ 0 is banned by the
angular momentum conservation, so the lowest allowed
final orbital momentum is L ¼ 2. The final decay momen-
tum is k ≈ 798 MeV, and both final particles are non-
relativistic with a reasonable accuracy, EΛ ≈ 2421 MeV
and ðEΛ −MΛÞ=MΛ ≈ 0.059, and ED̄ ≈ 2029 MeV and
ðED̄ −MD̄Þ=MD̄ ≈ 0.087.
This decay is described by the diagram in Fig. 2. First we

calculate the relativistic scattering amplitude in Fig. 3.

Aðq;kÞ¼gπΣcΛc
gπDD�Λ̄cðkÞγ5

ðk−qÞν
m2

π−ðk−qÞ2Σ
a
cD̄†τaD�νðqÞ;

ð17Þ

where D̄�νðqÞ is a four-vector isospinor, D̄ is an isospinor,
Σa
c is a spinor isovector, and ΛcðkÞ is a spinor. The coupling

constants and interaction Lagrangians can be found in
Table V and are discussed in Appendix A 1.

In the nonrelativistic approximation the denominator
of the propagator reduces to m2�ðπÞ þ ðk − qÞ2, and
the interaction radius is determined by m�ðπÞ ¼
fm2

π − ½ðM2
Λc

þ k2Þ12 −MΣc
�2g1

2 ¼ 136 MeV. Using this
approximation for the initial and final particles and omit-
ting the coupling constants and certain square roots of
masses [to be restored in the final expression for the decay
width, compare Eq. (8)] we obtain the interaction potential
that acts as an operator on the initial pentaquark wave
function in Eq. (16)

ðΛ†
cσiΣa

cÞWikðk − qÞðD̄†τaD̄�kÞ; ð18Þ

or in coordinate space

ðΛ†
cσiΣa

cÞWikðrÞðD̄†τaD̄�kÞ; ð19Þ

whereWikðrÞ is defined in Eq. (14) [now withm → m�ðπÞ]
and D̄, D̄�k, Σa

c , Λc are nonrelativistic spin-isospin states
similar to the ones in Eq. (16).
It is convenient to represent Wik in terms of spherical

harmonics3

Wm1m2
ðrÞ ¼ VcðrÞð−1Þ1−m1δm1;−m2

− VtðrÞ
ffiffiffiffiffiffiffiffi
24π

5

r
C1;m1þm2

1m1;1m2
Y2;−m1−m2

; ð21Þ

where VcðrÞ and VtðtÞ are the regularized potentials in
Eq. (15), see discussion of the regularization below Eq. (15)
and in [10].
The transition operator in Eq. (19) should be applied to

the initial wave function of the molecular pentaquark. We
choose the initial pentaquark state with j3 ¼ 3=2 and
t3 ¼ 1=2. The interaction operator in Eq. (19) transforms

FIG. 2. Decay of molecular pentaquark Pcð4450Þ into open
charm states D̄þ Λc.

TABLE I. Pentaquark Pcð4450Þ decay widths in the molecular
picture.

Decay mode La kb (MeV) m�
c (MeV) Γd (MeV)

Pc → ΛcD̄ 2 798 136 6.8
Pc → ΣcD̄ 2 529 128 1.4
Pc → ΛcD̄� 0, 2 579 101 13.3
Pc → Σ�

cD̄ 0, 2 360 107 0.2
Pc → J=ψN 0 820 1421 0.03

Total width 21.7
aLowest allowed orbital momentum.
bFinal momentum.
cEffective exchanged mass.
dDecay width.

FIG. 3. Amplitude Σc þ D̄� → Λc þ D̄.

3We use conventions for spherical harmonics from [26], in
particular

Y00¼
1ffiffiffiffiffi
4π

p ; Y20¼
ffiffiffiffiffiffiffiffi
5

16π

r
ð1−3n23Þ;

Y2;�1¼�
ffiffiffiffiffi
15

8π

r
n3ðn1� in2Þ; Y2;�2¼−

ffiffiffiffiffiffiffiffi
15

32π

r
ðn1� in2Þ2: ð20Þ
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it into the final wave function. After projection on the final
plane wave and spatial integration we obtain the decay
amplitude

Mi→f ¼
3ffiffiffi
5

p
�
Mc

�
2;
1

2

����2
�
þMt

�
0;
3

2

����2
�
−Mt

�
2;
3

2

����2
��

×Y21ðnÞD̄0†Λ†
c

�
1

2

�

−
6ffiffiffi
5

p
�
Mc

�
2;
1

2

����2
�
þMt

�
0;
3

2

����2
�
−Mt

�
2;
3

2

����2
��

×Y22ðnÞD̄0†Λ†
c

�
−
1

2

�
; ð22Þ

where Λ†
c½�1=2� is the final Λc with spin up or down,

n ¼ k=jkj, and Mc;tðl; SjLÞ are radial matrix elements of
the potentials Vc;t between the initial pentaquark state jl; Si
and the final two-particle state with the orbital momentum
L ¼ 2 similar to the ones in Eq. (4). We see that interaction
in Eq. (19) generates only the transitions to the final states
in D-wave. Next we calculate module square of the
transition matrix element in Eq. (22), integrate over the
directions of the final momentum, and sum over all allowed
final states

XZ
f
jMi→fj2

¼ 9

����Mc

�
2;
1

2

����2
�
þMt

�
0;
3

2

����2
�
−Mt

�
2;
3

2

����2
�����2: ð23Þ

The decay width is calculated with a natural generalization
of Eq. (9)

Γ ¼ g21g
2
2

4kE1E2

MPc

PR
fjMi→fj2

ð2M1Þð2M2Þð2MAÞð2MBÞ
; ð24Þ

where we plug in g1 ¼ gπΣcΛc
, g2 ¼ gπDD� , MA ¼ MΣc

,

MB¼MD� , M1¼MΛc
, M2¼MD, E1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Λc
þ k2

q
, E2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
D þ k2

p
, and sum of matrix elements squared from

Eq. (23). We use Eq. (24) for calculations of all decay
widths below.
After numerical calculations we obtain ΓðPc→ΛcþD̄Þ¼

6.8MeV.

2. Other open charm decays of molecular pentaquark

Calculation of other three decays of the molecular
pentaquark into states with an open charm

Pc → Σcþ D̄; Pc →Λcþ D̄�; Pc → Σ�
cþ D̄; ð25Þ

is similar to the calculations above. All these decays go via
the pion exchange, the final decay momenta are even

smaller than in the decay Pc → Λc þ D̄, see Table I, and the
decay products are nonrelativistic.
Decay Pc → Σc þ D̄ requires almost no new calcula-

tions. Spin-parity of Σcð2455Þ are the same as spin-parity
of Λc and like in the previous decay L ¼ 2 is the lowest
allowed partial wave. The final momentum is k≈ 529MeV,
and the final particles are again essentially nonrelativistic.
Kinetic energy of theD-meson is about 4% of its mass, and
kinetic energy of Σc is about 2% of its mass.
The Pc → Σc þ D̄ decay amplitude in Fig. 4 can be

obtained from the decay amplitude Pc → Λc þ D̄ in Fig. 2.
Only the isotopic structure of the πΣcΣc vertex is different
from the isotopic structure of the πΛcΣc vertex, see the
respective interaction Lagrangians in Table V. The isotopic
factor factorizes in the decays amplitudes and the decay
width of Pc → Σc þ D̄ is equal to the decay width of
Pc → Λc þ D̄ times the ratio of the respective isotopic
factors squared.
The isospinor isotopic factor in the molecular pentaquark

wave function is Ψiso
α ¼ ð1= ffiffiffi

3
p ÞΣa

cðτaÞαβD̄�
β. In the case of

Pc → Λc þ D̄ decay we apply to this wave function the
isotopic factor τa in the transition operator in Eq. (19) and
obtain the final isotopic function

Ψiso;α
fin ðD̄þ ΛcÞ ¼

1ffiffiffi
3

p ðτaτaÞαβD̄βΛc ¼
ffiffiffi
3

p
δαβD̄

βΛc: ð26Þ

In the case of the Pc → Σc þ D̄ decay the isotopic factor in
the transition operator in the diagram in Fig. 4 is τaϵabc and
then the final isotopic wave function is

Ψiso;α
fin ðD̄þ ΣcÞ ¼

1ffiffiffi
3

p ðτbτcÞαβεabcD̄βΣa
c

¼ 2iffiffiffi
3

p ðτaÞαβD̄βΣa
c: ð27Þ

Squaring the isotopic factors in the scattering amplitudes
and summing over all allowed final isotopic states we
obtain the isotopic factor contributions to the decay width
in both cases

ΦisoðPc → Λc þ D̄Þ ¼ 3;

ΦisoðPc → Σc þ D̄Þ ¼ 4

3
ðτaτaÞαα ¼ 4: ð28Þ

FIG. 4. Decay of molecular pentaquark Pcð4450Þ into open
charm states D̄þ Σc.
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Spin and orbital structure of the matrix elements is identical
for both decays. Hence, the sum of matrix elements squared
for the decay Pc → Σc þ D̄ is 4=3 times larger than the sum
of matrix elements squared for the decay Pc → Λc þ D̄,
and [compare Eq. (23)]

XZ
f
jMi→fj2

¼ 12

����Mc

�
2;
1

2

����2
�
þMt

�
0;
3

2

����2
�
−Mt

�
2;
3

2

����2
�����2 ð29Þ

for Pc → Σc þ D̄.
Calculating the width according to Eq. (24) we obtain

ΓðPc → Σc þ D̄Þ ¼ 1.4 MeV.
The Pc → Λc þ D̄� decay goes via the one-pion

exchange diagram in Fig. 5. The D�D�π interaction

Lagrangian and coupling constant are in Table V. Let us
notice that both interaction constants in this decay are
found from the experimental data on decays, see discussion
in Appendix A 1.
We go through by now the standard steps and obtain a

rather cumbersome sum of matrix elements squared for
this decay

XZ
f
jMi→fj2 ¼

3

5

����Mc

�
2;
3

2

����2
�
þ 2Mt

�
0;
3

2

����2
�
−Mt

�
2;
1

2

����2
�����2 þ 3

����Mc

�
0;
3

2

����0
�
þMt

�
2;
1

2

����0
�
þ 2Mt

�
2;
3

2

����0
�����2

þ 1

5

����2Mc

�
2;
1

2

����2
�
þ 2Mc

�
2;
3

2

����2
�
þ 3Mt

�
0;
3

2

����2
�
− 2Mt

�
2;
1

2

����2
�
þMt

�
2;
3

2

����2
�����2

þ 6

5

����2Mc

�
2;
1

2

����2
�
−Mc

�
2;
3

2

����2
�
− 3Mt

�
0;
3

2

����2
�
þMt

�
2;
1

2

����2
�
þMt

�
2;
3

2

����2
�����2

þ 2

5

����4Mc

�
2;
1

2

����2
�
þMc

�
2;
3

2

����2
�
−Mt

�
2;
1

2

����2
�
þ 2Mt

�
2;
3

2

����2
�����2: ð30Þ

This sum is dominated by the second term that describes
transitions between the states with zero orbital momentum.
We substitute this sum in Eq. (24) and obtain
ΓðPc → Λc þ D̄�Þ ¼ 13.3 MeV.
The Pc → Σ�

c þ D̄ decay goes via the one-pion exchange
diagram in Fig. 6. The πΣ�

cΣc interaction Lagrangian and
coupling constant are in Table V. After calculations we
obtain the sum of matrix elements squared

XZ
f
jMi→fj2

¼ 2

����Mc

�
2;
3

2

����2
�
−Mt

�
0;
3

2

����2
�
−Mt

�
2;
1

2

����2
�����2

þ 2

����Mc

�
0;
3

2

����0
�
þMt

�
2;
1

2

����0
�
−Mt

�
2;
3

2

����2
�����2; ð31Þ

substitute it in Eq. (24) and calculate the width
ΓðPc → Σ�

c þ D̄Þ ¼ 0.2 MeV.

B. Decays into states with hidden charm

The Pcð4450Þ → J=ψ þ N decay is the only one kine-
matically allowed two-particle decay of the pentaquark into
states with hidden charm. This decay goes via diagrams

with exchange by a charmed meson or baryon in t-channel,
e.g., D, D�, Σc, etc. We will account only for the
contribution of the diagram in Fig. 7 with the exchange
by the lightest charmed particle, the pseudoscalar D, that
we expect to provide a reasonable estimate of the total
decay width. The product of internal parities of J=ψ and N
is negative, so decay Pcð4450Þ → J=ψ þ N goes with the
lowest orbital momenta L ¼ 0, 2. The decay momentum
k ¼ 820 MeV in this decay is comparable with the nucleon
mass and one cannot use the nonrelativistic approximation
for the final nucleon.
As with the pion exchanges above, we start with

calculation of the relativistic scattering amplitude in
Fig. 8.

FIG. 5. Decay of molecular pentaquark Pcð4450Þ into open
charm states D̄� þ Λc.

FIG. 6. Decay of molecular pentaquark Pcð4450Þ into open
charm states D̄þ Σ�

c.
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Aðq; kÞ ¼ gΣcDNgJ=ψDD�ϵ�νN̄ðkÞγ5τa

×
1

M2
D − q2D

ϵμναβkJ=ψμ ðqD − qD̄� ÞβΣa
cD̄�

α; ð32Þ

where D̄�
αðqÞ is a four-vector isospinor, Σa is a spinor

isovector, NðkÞ is a spinor isospinor, and ϵν is the
polarization vector of the final J=ψ . The coupling constants
and interaction Lagrangians can be found in Tables VI
and VII, and are discussed in Appendices A 2 and A 3.

Next we would like to make a nonrelativistic expansion
in the initial momentum q. The denominator of the propa-
gator in Eq. (32) reduces toM2�ðDÞ þ ðk − qÞ2 and the range
of the effective potential is determined by M�ðDÞ ¼
½M2

D − ðMΣc
− ENÞ2�12 ¼ 1421 MeV (EN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ k2
p

).
This effective potential acts at shorter distances than
in the case of the molecular pentaquark decays into
states with open charm. The zero component of the trans-
ferred momentum MΣc

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Nþk2
p

¼1208MeV is also
large. Hence, we cannot neglect the decay momentum
and zero component of the transferred momentum
in the nonrelativistic limit. As a result the coordinate-
dependent term WikðrÞ in the transition operator

N̄†σiΣa
cτ

aD̄�
l ϵ

�
mεklmWik ð33Þ

is more complicated than the similar term WikðrÞ from
Eq. (14) in a fully nonrelativistic case in Eq. (19). In the case
at hand

WikðrÞ ¼ δikVcðrÞ þ ð3nink − δikÞVtðrÞ

þ ½iða1ki∂k þ a2kk∂iÞ þ bkikk�
3VcðrÞ
M2�ðDÞ : ð34Þ

The derivatives originate from the linear in the relative
momentum q terms qikk in the numerator of the momentum
space expressions. Due to these derivatives a new potential

VdðrÞ ¼
∂
∂r

�
3VcðrÞ
M�ðDÞ

�
ð35Þ

arises inWikðrÞ in Eq. (34) besides the potentials Vc and Vt
fromEq. (15) (M�ðDÞ plays the role of themass parameter in
all three potentials).We also keep the last bilinear in the final
momentum kikk term in the square brackets in Eq. (34) that
cannot be legitimately omitted when the final momentum is
large. All these new terms are missing in the nonrelativistic
decays with exchange by an almost massless pseudo-
Goldstone pion, because its interaction vertex is always
proportional to its momentum. But nothing bans such
interaction terms for a heavy D̄.
The coefficients in Eq. (34) are functions of masses and

the final momentum

a1¼1−
2MΣc

MNþEN
; a2¼

MΣc
−EN

EJ=ψ
; b¼−a1a2; ð36Þ

where EJ=ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MJ=ψ þ k2

q
is the energy of the produced

J=ψ . Notice that these coefficients would be zero if masses
of the constituent Σc and the produced nucleon were close.
Further calculations go almost as in the case of the

nonrelativistic decays above. A new element is connected
with the scalar products like k · n (n ¼ r=r) that arise after
differentiation in Eq. (34). We write them in terms of
spherical harmonics k · n ¼ −i

ffiffiffiffiffiffiffiffiffiffi
4π=3

p P
mk

ð−mÞY1m, where
kð−mÞ are spherical components of k. After application of
the transition operator the final wave function contains
products of different spherical harmonics that depend on
r=r and we use the Clebsch-Gordan coefficients to obtain
terms linear in spherical harmonics, integrate over angles
with the outgoing plane wave and obtain typical terms
jLðkrÞYLMðk=kÞ. Unlike the decays considered above, now
such terms are multiplied by linear in the spherical
components of k factors. We calculate the radial integrals,
project each of the products of spherical harmonics of k=k
on a single spherical harmonic YL0Mðk=kÞ, square the
obtained sums and integrate over directions of k. Notice
that this calculation leads to the decay products with a final
orbital momentum L0 ≠ L inMðl; SjLÞ (L is the label of the
spherical Bessel function in the respective radial integral).
The expression for the sum of matrix elements squared
turns out to be rather cumbersome. The dominant contri-
bution to this sum is supplied by the transitions from the

FIG. 7. Decays of the molecular pentaquark Pcð4450Þ into hidden charm states J=ψ þ N.

FIG. 8. Amplitude Σc þ D̄� → N þ J=ψ .
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component of the initial bound state wave function with
l ¼ 0, S ¼ 3=2 that has the form

XZ
f
jMi→fj2 ¼ 3

�
1þ 2bk2

M2�ðDÞ þ
6b2k4

M4�ðDÞ
�����Mc

�
0;
3

2

����0
�����2

þ 15

����Mt

�
0;
3

2

����2
�����2

þ 30bk2

M2�ðDÞMt

�
0;
3

2

����2
�
Mc

�
0;
3

2

����0
�

þ 2ða1 þ a2Þ2k2
M2�ðDÞ

����Md

�
0;
3

2

����1
�����2; ð37Þ

where we introduced matrix element of a new type

Mdðl; SjLÞ ¼
Z

∞

0

drr2RlSðrÞVdðrÞjLðkrÞ; ð38Þ

that arises only for the odd values of L. The potential VdðrÞ
in this integral is regularized in the same way as the
potentials VcðrÞ and VtðrÞ in Eq. (15).
The final nucleon is relativistic in this decay and the

general formula for the width in Eq. (24) changes

Γ¼ g2DΣcN
g2J=ψDD�

4kENEJ=ψ

MPc

×
E2
J=ψ

ð2MD� Þð2MΣc
Þð2EJ=ψÞð2ENÞ

EN þMN

2MΣc

XZ
f
jMi→fj2:

ð39Þ

After numerical calculations we obtain decay width of
the molecular pentaquark into states with hidden charm
ΓðPcð4450Þ → N þ J=ψÞ ¼ 0.03 MeV. Account for rela-
tivity of the final nucleon significantly affects this result,
the width decreases by 61% without the relativistic cor-
rections. The suppression of the decay into hidden charm
states is somewhat stronger that the one we could expect
from the estimates of the matrix elements discussed in the
next section. This additional suppression is due to the small
magnitude of the coupling constant gΣcND, see Table VI and
discussion in Appendix A 2. Let us emphasize that a rather
strong suppression due to smallness of the matrix elements
would survive even a significant increase of the coupling
constant.

C. Comparison of molecular pentaquark decays
into states with hidden and open charm

The results collected in Table I demonstrate that the decay
into states with hidden charm is suppressed in comparison
with the decays into states with open charm in the molecular
picture. As already mentioned in the Introduction this
happens because an exchange by a heavy charmed particle
is required in decays to the hidden charm states. Let us
recap the arguments given in the Introduction.We argued that
in order to decay into hidden charm state the constituents in
the molecular picture should come to a small distance
∼1=mc. This is a tiny scale in comparison with the scale
of the wave function ∼1=κ ≫ 1=mc and therefore this width
is proportional to

R
d3rjψðrÞj2 ∼ jψð0Þj2=m3

c ∼ ðκ=mcÞ3.
For molecular pentaquark κ ¼ ffiffiffiffiffiffiffiffi

2μϵ
p

≈ 182 MeV and
ðκ=mcÞ3 ∼ 3 × 10−3. As we will show below this estimate
is too naive and the characteristic distance in molecular
decays into stateswith hidden charm is determined not bymc
but by the mass of a heavy exchanged particle, with the
effective mass M� that grows only as

ffiffiffiffiffiffi
mc

p
with mc.

Let us try to improve the naive estimate of molecular
decays into states with hidden charm. Recall that the decay
amplitudes are sums of the overlap integrals similar to the
ones in Eqs. (4) and (38)

Mðl; SjLÞc;d;t ¼
Z

∞

0

drr2RlSðrÞVc;d;tðrÞjLðkrÞ: ð40Þ

where the potentials are defined in Eqs. (15) and (38). We
collected results of the numerical calculations of matrix
elements Mðl; SjLÞ for a typical decay without charm
exchange in Table III and with charm exchange in
Table II, respectively.
In decays with charm exchange the effective mass M� is

much larger than the decay momentum k and the scale of
the wave function κ, M� ≫ k > κ, see Table I. Then

Mc;d;tðl; SjLÞ ∼
Z 1

M�

0

drr2ðκrÞlðkrÞLVc;d;tðrÞ

∼
�

κ

M�

�
l
�

k
M�

�
L Vc;d;tð 1

M�
Þ

M3�
: ð41Þ

The sum lþ L ≥ 2 in the integrals with the tensor potential
and the overlap matrix element is at most Mt ∼ ðk=M�Þ2 at
l ¼ 0 and L ¼ 2. In the integral with the potential VdðrÞ L
is always odd, and this integral is at most Md ∼ k=M� at

TABLE II. Molecular pentaquark decay Pc → J=ψ þ N: matrix elements.

Mð0; 3
2
j0Þ Mð2; 1

2
j0Þ Mð2; 3

2
j0Þ Mð0; 3

2
j1Þ Mð2; 1

2
j1Þ Mð2; 3

2
j1Þ Mð0; 3

2
j2Þ Mð2; 1

2
j2Þ Mð2; 3

2
j2Þ

Vc 0.0232835 1.48 × 10−3 −3.72 × 10−3 −4.33 × 10−3 2.47 × 10−4 −6.44 × 10−4

Vt −7.10 × 10−3 −1.74 × 10−2 −1.37 × 10−2 6.37 × 10−4 −1.64 × 10−3

Vd 7.76 × 10−2 −3.11 × 10−3 7.96 × 10−3
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l ¼ 0 and L ¼ 1. It enters the decay amplitude with an
additional factor k=M� and as a result contributes to the
decay amplitude at most ðk=M�Þ2, exactly like the tensor
potential. Finally, naively the contribution of the central
potential Vc to the integral in Eq. (40) at l ¼ L ¼ 0 seems
to be independent of M� when M� increases. This contra-
dicts the well-grounded physical expectations that
exchange by a very massive particle should supply negli-
gible contribute to the decay width. It is not hard to figure
out what happened. Calculating the Fourier transform in
Eq. (14) we have thrown away the δ-function term as
unphysical in the case of exchange by a light pion.
However, the calculation above shows that for a heavy
exchange this δ-function is necessary to restore the proper
dependence of the l ¼ L ¼ 0 decay matrix element on
mass of the exchanged particle. It is easy to see that
restoration of δ-function reduces to substitution
Mcð0; Sj0Þ → Mcð0; Sj0Þ − R0Sð0Þ=ð12πÞ. We made this
subtraction in calculations of all molecular and hadrochar-
monium decays with charm exchange. The subtracted
matrix elements are at most ðk=M�Þ2 and we conclude
that effectively all matrix elements in Eq. (40) decrease
with M� as ðk=M�Þ2 or faster.
Molecular decays into open charm states go via

exchange by the light pion, only the potentials Vc;t give
contribution to these decays, and m� ∼mπ . Numerically, in
this case m� ∼ κ ≪ k Then integration in Eq. (40) goes up
to r ∼ 1=k ≪ 1=κ ∼ 1=m� and

Mðl; SjLÞc;t ∼
Z 1

k

0

drr2ðκrÞlVc;tðrÞjLðkrÞ: ð42Þ

In this region the matrix element of the scalar potential
Mðl; SjLÞc ∼ ðκ=kÞlðm�=kÞ2 is suppressed in comparison
with the matrix element of the tensor potentialMðl; SjLÞt ∼
ðκ=kÞl ∼ ðm�=kÞl by the factor ðk=m�Þ2 ∼ 15–30.
Now we can estimate ratio R of matrix elements for

decay into states with hidden and open charm

R ∼
�
khid
M�

�
L
��

m�
kopen

�
l
; ð43Þ

where kopen and khid are decay momenta in the hidden
and open charm decays, respectively, and M� ¼ M�ðDÞ.
We compare matrix elements for hidden charm decays with
the tensor matrix elements in open charm decays since
scalar matrix elements in open charm decays are sup-
pressed. Numerically for decays in Tables II and III

R ∼ 0.4l × 0.5L ∼ 0.1–0.2. Respectively, we expect that
the hidden charm decays of the molecular pentaquark
should be suppressed by a factor 0.01–0.04, what is
compatible with the results in Table I. This suppression
is weaker than the naive suppression factor ðκ=mcÞ3 ∼ 10−6

discussed above.

IV. HADROCHARMONIUM DECAYS

A. Decays into states with hidden charm

In the hadrocharmonium picture the LHCb pentaquark
Pcð4450Þ is interpreted as a bound state of ψ 0 and the
nucleon [9,10] (see also [11]). It is described by a non-
relativistic wave function that is a product of the S-wave
coordinate wave function and the spin 3=2 and isospin 1=2
factor. The partial decay width of the hadrocharmonium
pentaquark ΓðPcð4450Þ → J=ψ þ NÞ ≈ 11 MeV was cal-
culated in [9,10]. As mentioned above this is the only one
kinematically allowed two-particle pentaquark decay chan-
nel into states without open charm.

B. Decays into states with open charm

Hadrocharmonium decays into states with open charm
go via exchange by heavy hadrons. As in the molecular
decays we will take into account only exchanges by the
lightest particle with open charm, namely by D-meson.
We expect that the respective partial widths are reasonably
well approximated by this exchange. The inverse size κ ¼ffiffiffiffiffiffiffiffi
2μϵ

p ¼ 506 MeV of the hadrocharmonium pentaquark
wave function is determined by its binding energy ϵ ¼
178 MeV and reduced mass μ ¼ 720 MeV. Recall that in
the case of the molecular pentaquark we obtained
κ ¼ 182 MeV. Hence, the hadrocharmonium wave func-
tion is less extended and is larger at the origin than the
molecular one. This favors decays with exchange of charm
and one can expect that the hadrocharmonium decays into
states with open charm have larger partial widths than the
molecular pentaquark decay into J=ψN. It is harder to
anticipate relative magnitude of partial decay widths into
states with open charm in the hadrocharmonium and
molecular pictures. On the one hand larger at the origin
and less extended hadrocharmonium wave function could
probably enhance decay rates into the four channels with
open charm. On the other hand the effective masses of the
exchanged particles in these decays are much higher than
in the case of the molecular pentaquark (compare Tables I
and IV), what works in the opposite direction. Only
calculations will show which effect is more pronounced.

TABLE III. Molecular pentaquark decay Pc → Λc þ D̄�: Matrix elements.

Mð0; 3
2
j0Þ Mð2; 1

2
j0Þ Mð2; 3

2
j0Þ Mð0; 3

2
j2Þ Mð2; 1

2
j2Þ Mð2; 3

2
j2Þ

Vc −1.95 × 10−3 1.09 × 10−4 −2.86 × 10−4 −8.90 × 10−4 6.97 × 10−5 −1.86 × 10−4

Vt 1.36 × 10−2 −3.43 × 10−2 −2.96 × 10−2 2.00 × 10−3 −5.30 × 10−3
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1. Pc → Λc + D̄

Consider first the hadrocharmoniumdecayPc → Λc þ D̄.
Kinematics of this decay was already discussed above. This
decay can go via exchange by the D-meson and heavier
particleswith open charm.As already explainedwe calculate
the partial decay width due to the diagram with the
pseudoscalar D exchange in Fig. 9 and expect that this
exchange provides a reasonable estimate of the total partial
decay width into Λc and D̄.

As usual we first calculate the relativistic scattering
amplitude N þ ψ 0 → Λc þ D̄ in Fig. 10 (momenta are
labeled as in the figure)

Aðq; kÞ ¼ gΛcDNgψ 0DDΛ̄cðkΛc
Þγ5D̄†

×
1

M2
D − q2eD

ðqD̄ þ kD̄�ÞαΦαN; ð44Þ

where ΦαðqÞ is a four-vector that describes initial ψ 0, N is
a spinor isospinor, D is an isospinor, and ΛcðkΛÞ is a
spinor. The isospin indices are contracted along the virtual
D̄ line. The coupling constants and interaction Lagrangians
are collected in Tables VI and VII and discussed in
Appendices A 2 and A 3.

In the nonrelativistic expansion in the initial momentum
q the denominator of the propagator in Eq. (44) reduces to
M2�ðDÞ þ ðk − qÞ2 and the range of the effective potential is
determined byM�ðDÞ¼ ½M2

D− ðEΛc
−MNÞ2�12≈1133MeV

(EΛc
¼ ðM2

Λc
þ k2Þ12). The relativistic amplitude in the

nonrelativistic limit reduces to the transition operator

ðΛ†
cσiNaÞWikðrÞðD†aψ 0

kÞ; ð45Þ

where WikðrÞ has the same form as in Eq. (34) with the
natural kinematic substitutions and

a1 ¼ 1−
2MN

EΛc
þMΛc

; a2 ¼ −1; b¼ −a1a2: ð46Þ

We preserved the external momentum k in the transition
operator. Next we apply the transition operator to the initial
wave function [compare Eq. (22)] and calculate the sum of
matrix elements squared of the transition amplitude [com-
pare Eq. (23)]XZ

f
jMi→fj2

¼ 3

����Mt

�
0;
3

2

����2
�����2 þ ða1 þ a2Þ2k2

3M2�ðDÞ
����Md

�
0;
3

2

����1
�����2

þ 3b2k4

M4�ðDÞ
����Mc

�
0;
3

2

����0
�����2

þ 6bk2

M2�ðDÞMc

�
0;
3

2

����0
�
Mt

�
0;
3

2

����2
�
: ð47Þ

The partial decay width is [compare Eq. (39)]

ΓðPc → Λc þ D̄Þ ¼ g2ΛcDNg
2
ψ 0DD

4kEΛc
ED

MPc

×
1

ð2MNÞð2Mψ 0 Þð2EΛc
Þð2EDÞ

×
MΛc

þ EΛc

2MN

XZ
f
jMj2i→f

≈ 0.6 MeV ð48Þ

2. Other open charm decays of
hadrocharmonium pentaquark

Calculations of other three decays of the hadrocharmo-
nium pentaquark into the open charm states

Pc → Σcþ D̄; Pc →Λcþ D̄�; Pc → Σ�
cþ D̄; ð49Þ

are similar to the calculations above. All these decays go
via exchange by the lightest particle with an open charm,
D-meson. Kinematics for all these decays was already
considered above and we will not repeat this discussion.
The Pc → Σc þ D̄ decay is described by theD-exchange

diagram in Fig. 11, that is similar to the D-exchange for
Pc → Λc þ D̄. Effective mass of the exchanged D-meson
in this decay is M�ðDÞ ¼ 1005 MeV. The amplitude for
this decay differs from the decay Pc → Λc þ D̄ only by the

FIG. 9. Decay of hadrocharmonium pentaquark Pcð4450Þ into
states with open charm Λc þ D̄.

FIG. 10. Amplitude N þ ψ 0 → Λc þ D̄.
FIG. 11. Decay of hadrocharmonium pentaquark Pcð4450Þ into
states with open charm Σc þ D̄.
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isospin factor that generates an enhancement factor 3 in the
width. On the other hand the relationship between the
coupling constants gΣcND ¼ gΛcND=ð3

ffiffiffi
3

p Þ [see Eq. (A19)
in Appendix A 2] supply a suppression factor for the Pc →
Σc þ D̄ decay. After replacement of the coupling constants,
masses and multiplication by 3 we can use Eq. (48) for
calculation of the Pc → Σc þ D̄ partial decay width. We
obtain ΓðPc → Σc þ D̄Þ ¼ 0.036 MeV, see Table IV. The
suppression by an order of magnitude ∼1=9 relative to
the decay Pc → Λc þ D̄ comes mainly from the ratio of the
coupling constants squared times three from the isotopic
factor, difference between the masses of Σc and Λc plays an
insignificant role.
To calculate the partial decay width Pc → Λc þ D̄� (see

Fig. 12) we go through the by now standard steps: calculate
the relativistic scattering amplitude N þ ψ 0 → Λc þ D̄�,
make the nonrelativistic approximation for the constituent
hadrons, derive an expression for the transition operator
and calculate the decay amplitude. The sum of the matrix
elements squared for the decay Pc → Λc þ D̄� turns out
to be

XZ
f
jMj2i→f ¼

����Mc

�
0;
3

2

����0
�����2 þ 5

����Mt

�
0;
3

2

����2
�����2

þ 2ða1 þ a2Þ2k2
3M2�ðDÞ

����Md

�
0;
3

2

����1
�����2

þ 2bð1þ 3bÞk4
M4�ðDÞ

����Mc

�
0;
3

2

����0
�����2

þ 10bk2

M2�ðDÞMc

�
0;
3

2

����0
�
Mt

�
0;
3

2

����0
�
; ð50Þ

where

a1¼
MN−EΛc

Mpsi0 þMN−MΛc

; a2¼1−
2MN

MNþEΛc

; b¼−a1a2:

ð51Þ

The partial width is

ΓðPc→ΛcþD̄�Þ¼g2ΛcNDg
2
ψ 0DD�

4kEΛc
ED�

MPc

×
ðMψ 0 þMN−EΛc

Þ2
ð2MNÞð2Mψ 0 Þð2EΛc

Þð2ED� Þ
MΛc

þEΛc

2MN

×
XZ

f
jMj2i→f ≈ 4.2MeV: ð52Þ

The Pc → Σ�
c þ D̄ decay goes via the D-exchange

diagram in Fig. 13. The Σ�ND interaction Lagrangian
(notice absence of γ5!) is in Table VI. We again go through
the standard steps: calculate the relativistic scattering
amplitude in Fig. 14, use this amplitude with the non-
relativistic initial particles to derive the transition operator,
obtain the decay amplitude, sum matrix elements squared
and calculate the decay width ΓðPc → Σ�

c þ D̄Þ ¼
0.42 MeV.

V. DISCUSSION OF RESULTS

We calculated the total and partial decay widths of the
hadrocharmonium and molecular pentaquarks Pcð4450Þ
constructed in [9,10]. One could expect that decays into
states with open charm dominate in the case of the
molecular pentaquark, while the decay to J=ψN would
be the dominant mode for the hadrocharmonium penta-
quark, see discussion in the Introduction. The calculations
above confirm these expectations both for the molecular

TABLE IV. Pentaquark Pcð4450Þ decay widths in the hadro-
charmonium picture.

Decay mode La kb (MeV) M�ðDÞc (MeV) Γd (MeV)

Pc → J=ψN 0 820 11
Pc → ΛcD̄ 2 798 1133 0.6
Pc → ΣcD̄ 2 529 1005 0.04
Pc → ΛcD̄� 0,2 579 1218 4.2
Pc → Σ�

cD̄ 0,2 360 959 0.4

Total width 16.2
aLowest allowed orbital momentum.
bFinal momentum.
cEffective exchanged mass.
dDecay width.

FIG. 12. Decay of hadrocharmonium pentaquark Pcð4450Þ into
states with open charm Σc þ D̄�.

FIG. 13. Decay of hadrocharmonium pentaquark Pcð4450Þ into
states with open charm D̄þ Σ�

c.

FIG. 14. Amplitude N þ ψ 0 → Σ�
c þ D̄.
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and hadrocharmonium pentaquarks, see Tables I and IV.
Total decay widths of the molecular and hadrocharmonium
pentaquarks are comparable and are about a few dozen
MeV in both scenarios. Taking into account uncertainties of
the phenomenological coupling constants and unaccounted
for relativistic corrections to the semirelativistic approxi-
mation used in the calculations these total widths are
comfortably compatible with the width Γ ¼ 39� 5�
19 MeV measured experimentally [1,2].
We expect that the results for the relative magnitudes of

partial decays widths in different open channels are more
reliable than their absolute values. This happens because in
the ratios of the partial widths values of the poorly known
interaction constants often cancel and the ratios are more
dependent on the matrix elements of the perturbation
potentials between the initial and final wave functions.
The partial decay width of the molecular pentaquark into
the hidden charm states J=ψN is strongly suppressed, it is
about one, two, or three orders of magnitude smaller than
the partial widths for decays into different channels with
open charm, see Table I.4 The suppression can be under-
stood if we recall that the molecular pentaquark has a
relatively large size, its root mean square radius is about
1.5 fm [10]. To decay into states with hidden charm
constituents of the molecular pentaquark need to exchange
by a heavy charmed meson. In other words they should
come very close to one another what is impeded by the
large size of the loosely bound state wave function. The
detailed considerations of the matrix elements in Sec. III C
provide a quantitative justification for these conclusions.
The decay pattern of the hadrocharmonium pentaquark

also looks as expected. The hadrocharmonium decays into
states with open charm are suppressed in comparison with
the hadrocharmonium decays into hidden charm states.
Quantitatively this suppression is weaker than the suppres-
sion of the hidden charm decays in the case of the
molecular pentaquark, compare the results in Tables I
and IV. One of the partial widths for hadrocharmonium
decay into open charm states (Pc → ΛcD̄) is only two and a
half times smaller than the partial decay width to J=ψD̄�.
To decay into states with open charm constituents in the
hadrocharmonium should come close to one another what
happens when they exchange by a heavy charmed meson.
The relatively weaker suppression of such hadrocharmo-
nium processes in comparison with the respective molecu-
lar case decays is due to a larger binding energy and
respectively smaller size (about 0.5 fm) of the hadrochar-
monium bound state.

We see that the decay patterns of the molecular and
hadrocharmonium pentaquarks are vastly different. In the
molecular scenario decays into J=ψ are strongly sup-
pressed, while the opposite happens in the hadrocharmo-
nium case when a less pronounced suppression of decays
into states with open charm is predicted. Total decay widths
are comparable in both scenarios and are about a few dozen
MeV. Comparison of these decay patterns with the exper-
imental data would hopefully help to reveal which of the
two theoretical scenarios for pentaquarks (if either) is
chosen by nature.
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APPENDIX A: INTERACTION LAGRANGIANS
AND INTERACTION CONSTANTS

A number of phenomenological interaction Lagrangians
was used in calculations in the main body of this paper.
Coupling constants in these Lagrangians were discussed in
the literature many times, see, e.g., [19,20,24,28–42] and
references therein. There is no universal agreement on the
values of some of these constants, while decay widths
obtained above critically depend on these values. There are
three groups of relevant Lagrangians that describe: (1) pion
interaction with charmed hadrons, (2)D-boson interactions
with baryons, and (3) D-boson interaction with heavy
mesons. The interaction Lagrangians and coupling con-
stants are collected in Tables V–VII. The interaction
constants in these tables are known with vastly different
degree of reliability. We tried to use the value of this or that
constant obtained with a minimal number of theoretical
assumptions. Below we discuss how these values arise and
how accurate they are.

1. Pion interaction constants in Table V

Pion interactions with heavy baryons and mesons are
usually described in the framework of the heavy quark
effective theory combined with the spontaneously broken
SUð3ÞL × SUð3ÞR chiral symmetry of light quarks, see,
e.g., [28–30] and references therein. It is worth mentioning
that pion interactions can be formulated in the pseudoscalar
and axial forms that are equivalent in the nonrelativistic
limit. Connection between the respective coupling con-
stants for the pion-nucleon interaction is provided by the
classical Goldberger-Treiman relationship

gπNN ¼ gANN
MN

Fπ
; ðA1Þ

where gANN is the nucleon axial charge and gπNN is the
pseudoscalar interaction constant.

4Recent nonobservation of the pentaquark resonance in the
formation reaction γ þ p → J=ψ þ p [27] could be interpreted as
an indication of the molecular nature of the LHCb pentaquark.
However, it is hard to reconcile this result with the initial LHCb
discovery of the pentaquark in the invariant mass distribution of
J=ψN. Clearly more work is needed and it is too early to come to
any definite conclusions.
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Relationships of this type exist not only for diagonal
interactions but also for nondiagonal vertices, e.g., for the
πΣcΛc interaction. Axial form of the interaction is dictated
by the Goldstone nature of pions and the axial charge can
be calculated, at least in principle, see, e.g., [24,31].
Experimental data on the decay widths Σþþ

c → Λcπ
þ

and Σ0
c → Λcπ

− [43], provides direct access to the inter-
action constant gπΣcΛc

. With the Lagrangian in Table Vone
obtains

ΓðΣc → Λc þ πÞ ¼ g2πΣcΛc

4π

kðEΛc
−MΛc

Þ
MΣc

; ðA2Þ

where k is the decay momentum and EΛc
is the energy

of the final Λc. We obtain gπΣcΛc
¼ 19.3 from the decay

Σþþ
c →Λcπ

þ and gπΣcΛc
¼ 19.1 from the decay Σ0

c→Λcπ
−.

We used the average gπΣcΛc
¼ 19.2 (compare [19,28,32]) in

the calculations above.
There is no experimental data for the ΣcΣcπ coupling, so

we have chosen a roundabout way to determine the
respective interaction constant. As mentioned above axial
interaction constants can be in principle calculated theo-
retically if one knows form factors of the respective axial
currents. Unfortunately, currently there is no effective way
to calculate these form factors in QCD.5 It was suggested
long time ago [31] to use the naive constituent quark model
to calculate diagonal and transitional axial charges. The
quark model predicts gaΣcΛc

¼ 2=
ffiffiffi
3

p
∼ 1.154 to be com-

pared with the value we calculate from the experimental
decay widths gaΣcΛc

¼ gπΣcΛc
Fπ=MΣc

∼ 0.727 (we neglect
here mass difference of Σc and Λc). It is clear that the
accuracy of the quark model leaves much to be desired.
We expect that it predicts ratios of axial constants more
accurately than the axial constants themselves. The ratio
of the axial constants gaΣcΛcπ

and gaΣcΣc
in the quark model

is gaΣcΛc
=gaΣcΣc

¼ 1=
ffiffiffi
3

p
. The ratio of the respective

pseudoscalar constants is proportional to the ratio of the
axial constants and we obtain

gπΣcΣc
¼ 1ffiffiffi

3
p gπΣcΛc

≈ 11.0: ðA3Þ

We used this value in calculations of the pentaquark decay
widths. Other estimates of this constant gπΣcΣc

≈ 10.76
[19,33] are based on the assumption that gπΣcΣc

¼ gπΣΣ.
This value is consistent with our estimate.
The axial interaction Lagrangian Σ�

cΣcπ is in Table V.
There is no γ5 in this Lagrangian since contraction of the
positive-parity Rarita-Schwinger spin-vector Σ̄�μ

c , spinor Σ�
c

and the axial vector ∂μπ is a true scalar. The interaction has
the gradient form, and the dimensionful interaction con-
stant is proportional to the respective transitional axial
constant. Naive quark model [28,32] predicts that ratio of
the Σ�

cΣc and ΣcΣc axial charges is
ffiffiffi
3

p
=2. We parameterize

the dimensionful interaction constant g̃πΣcΣ�
c
in terms of the

dimensionless gπΣcΣ�
c

g̃πΣcΣ�
c
¼ gπΣcΣ�

cffiffiffiffiffiffiffiffiffiffiffi
2MΣ�

c

p ffiffiffiffiffiffiffiffiffiffiffi
2MΣc

p ; ðA4Þ

and calculate its value

gπΣcΣ�
c
¼

ffiffiffi
3

p

2

ffiffiffiffiffiffiffiffiffi
MΣ�

c

MΣc

s
gπΣcΣc

≈ 0.88gπΣcΣc
¼ 9.7: ðA5Þ

This constant was used in calculations of the pentaquark
decay width.
The constant gπDD� is extracted from the experimental

data on ðD�þð2010Þ → D0πþ and ðD�þð2010Þ → Dþπ0Þ
decays [43]. The decay width calculated with the
Lagrangian in Table V is

ΓðD�þÞtot ¼
g2πDD�

8π

k3

M2
D�

: ðA6Þ

TABLE V. Pion interactions.

Interacting particles Interaction Lagrangian Coupling constant

πΣcΛc −igπΣcΛc
Λ̄†
cγ5Σc · π þ H:c: gπΣcΛc

¼ 19.2a

πΣcΣc −igπΣcΣc
ϵabcΨ̄a

Σγ5Ψb
Σπ

c þ H:c: gπΣcΣc
¼ 11.06b

πΣcΣ�
c ig̃πΣcΣ�

c
Σ̄�μ;a
c ϵabcΣb

c∂μπ
c þ H:c: g̃πΣcΣ�

c
¼ 9.7ffiffiffiffiffiffiffiffi

2MΣ�c
p ffiffiffiffiffiffiffiffi

2MΣc

p c

πDD� igπDD� ðD�†
μ ∂μπD −D†∂μπD�

μÞ gπDD� ¼ 12.12d

πD�D� gπD�D�ϵμναβD�†
μ ∂νπ∂αD�

β
gπD�D� ¼ 6.25 GeV−1

aFrom ΓexpðΣþþ
c → Λcπ

þÞ ¼ 1.89þ0.09
−0.18 and ΓðΣ0

c → Λcπ
−Þ ¼ 1.83þ0.11

−0.19 MeV, see Appendix A 1 and [19].
bSee Appendix A 1.
cSee Appendix A 1.
dFrom ΓexpðD�þð2010Þ → D0πþÞ ¼ 56.5� 0.1 keV and ΓexpðD�þð2010Þ → Dþπ0Þ ¼ 25.6� 0.6 keV, See

Appendix A 1 and [20].

5It could be a good problem for the lattice gauge theory
calculations.
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Combined with the experimental data this expression gives
gπDD� cited in Table V.
The constant gπD�D� can be obtained from gπDD� using

the heavy quark relationship (see, e.g., [34]) gπD�D� ¼
gπDD�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDMD�

p
.

2. Nucleon interactions

a. ΛcND interaction and Λc semileptonic decays

Nucleon-charmed baryon-D-meson interaction constants
were obtained in the literature from the SUð4Þ invariant
Lagrangians, see, e.g., [19,33,35], and references therein.
The QCD sum rules were also used to obtain the value of
gΛcND [39–41], and produced gΛcND ¼ 7.9� 0.9, what is
significantly smaller than the SUð4Þ prediction gΛcND ¼
−13.7 [35].
In view of such uncertainty we would like to go another

route and connect the D-meson interaction constants with
the experimental data on the weak semileptonic decay
Λc → Λþ eþ þ νe. The idea is to determine the constant
gΛcΛD from the experimental data on this decay and then
use the SUð3Þ flavor symmetry to calculate gΛcND in terms
of gΛcΛD.
Our approach to finding gΛcΛD is similar to the

Goldberger-Treiman derivation of the relationship between
the pseudoscalar interaction constant gπNN and the nucleon
axial charge in Eq. (A1). The decay Λc → Λþ eþ þ νe is
described by six form factors

hΛjs̄γμcjΛci ¼ Λ̄ðpþ qÞ½γμf1ðq2Þ þ iσμνqνf2ðq2Þ
þ qμf3ðq2Þ�ΛcðpÞ;

hΛjs̄γμγ5cjΛci ¼ Λ̄ðpþ qÞ½γμg1ðq2Þ þ iσμνqνg2ðq2Þ
þ qμg3ðq2Þ�γ5ΛcðpÞ: ðA7Þ

The transferred momentum squared q2 is an invariant
mass of the lepton pair and is kinematically bounded,ffiffiffiffiffi
q2

p
≤ MΛc

−MΛ < MD. The lepton masses can be
safely neglected in the theoretical description of the Λc →
Λþ eþ þ νe decay. Then the form factors f3 and g3 do not
enter the decay amplitude due to conservation of the lepton
currents.
The form factors have poles in q2 at the masses of

mesons with the respective quantum numbers but they are
outside the kinematically allowed region. Let us calculate
lowest mass pseudoscalar charmed meson D contribution

to the form factor g3. We choose the pseudoscalar form for
the ΛcΛD interaction

LP ¼ igΛcΛDΛ̄γ
5ΛcD; ðA8Þ

and use the standard definition for the D-meson decay
constant

h0js̄γμγ5cjDðpÞi ¼ −ifDpμ; ðA9Þ

where fD ≈ 212 MeV [43].
We approximate the pseudoscalar form factor of a

pointlike axial current by the pole contribution

g3 ¼
fDgΛcΛD

M2
D − q2

; ðA10Þ

and we would like to determine the constant gΛcΛD from
the experimental data on the semileptonic decay Λc →
Λþ eþ þ νe. However, as mentioned above this form
factor g3 does not contribute to the Λc → Λþ eþ þ νe
decay. To overcome this difficulty we consider the c-quark
to be heavy enough to use the heavy quark approximation.
According to the heavy quark theory only two of the six
form factors describing a typical heavy-light transition in
Eq. (A7) are independent (see, e.g., [44]), and

f1 ¼ g1; f2 ¼ f3 ¼ g2 ¼ g3; ðA11Þ

Thus the form factors g2 and f2 coincide with the form
factor g3 in Eq. (A10). Numerous models for the form
factors f1, f2, g1, and g2 were constructed in [45–50]
and compared with the experimental data on the Λc →
Λþ eþ þ νe decay. Parametrizations of the form factors in
these works depend on many parameters, and the simple
pole ansatz in Eq. (A10) was never used. We considered the
q2-dependent form factors in [45–50] as experimental data
and used the HQET relationships in Eq. (A11) to fit them
not far from the pole with the simple pole ansatz in
Eq. (A10).6 As a result of these fits we obtained approxi-
mate values of the coupling constant gΛcΛD.

TABLE VI. Nucleon interactions.

Interacting particles Interaction Lagrangian Coupling constant

ΛcND igΛcNDN̄γ5ΛcDþ H:c: gΛcND ¼ 4.5
ΣcND −igΣcNDN̄γ5τ · ΣcDþ H:c: gΣcND ¼ 0.9
Σ�
cND gΣ�

cNDN̄iτ
a
ikΣ

�μ
ca∂μD

†
k þ H:c: gΣ�

cND ¼ 0.55 GeV−1

6Some of the papers [45–50] where written before the
branching ratio ΓðΛc → ΛeþνÞ=Γtot changed from 2% to 3.6%
[43]. To account for this change we rescaled the old results by the
square root of the new and old branching ratios.
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The SUð3Þ flavor symmetry of light quarks combined
with the heavy quark theory provides a relationship
between gΛcΛD and gΛcND. Light quarks in Λc are in the
flavor antitriplet 3̄ state, while Λ is a member of the flavor
octet 8, and the light quark in the current in Eq. (A7) (as
well as in the D̄-meson) is in the fundamental flavor
representation 3. Then matrix elements of the flavor triplet
jβ currents between different flavor octet states and Λc are
proportional to the Clebsch-Gordon coefficients

hH; ajjβjHc; αi ∼ C8α
3̄α;3β

; ðA12Þ

where a is an SUð3Þ octet index, while α and β are
antitriplet and triplet indices, respectively. We use this
relationship and Eq. (A7) to obtain

gΛcND ¼
ffiffiffi
3

2

r
gΛcΛD: ðA13Þ

Fitting the form factors in [45–50] with the pole ansatz and
using Eq. (A13) we obtained gΛcND in the interval 3.5–5.5.
These values are much smaller than gΛcND ¼ 13.7 [35]
from the SUð4Þ symmetry widely accepted in the literature.
We think that [35] strongly overestimates gΛcND and used
gΛcND ¼ 4.5 in the calculations above. This is, of course,
only a not too accurate estimate of this coupling constant.

b. ΣcND interaction and quark model

We estimate the coupling constant gΣcND using the
constant gΛcND from Eq. (A13). Unfortunately, there is
no SUð3Þ flavor relationship between gΣcND and gΛcND

since light quarks in Σc and Λc are in different flavor
representations (6 and 3̄, respectively). One can obtain such
a relationship in the constituent quark model. We start with
the proton, Λc, Σc, and D quark model wave functions.
Quarks in a nucleon are in the antisymmetric color state and
hence the remaining wave function is symmetric. It is a
product of a symmetric coordinate wave function
fNðr1; r2; r3Þ and a symmetric spin-flavor function. The
proton wave function with spin up has the form (we
suppress the antisymmetric color factor)

Ψ↑
p ¼ 1

3
ffiffiffi
2

p ½2u↑1u↑2d↓3 þ 2u↑1d
↓
2u

↑
3 þ 2d↓1u

↑
2u

↑
3 − u↓1u

↑
2d

↑
3

− u↓1d
↑
2u

↑
3 − u↑1u

↓
2d

↑
3 − d↑1u

↓
2u

↑
3 − u↑1d

↑
2u

↓
3

− d↑1u
↑
2u

↓
3 �fNðr1; r2; r3Þ: ðA14Þ

Respectively, the Λc and Σþþ
c wave functions (again with

spin up) are

Ψ↑
Λc

¼ 1

2
c↑1 ½u↑2d↓3 þ d↓2u

↑
3 − u↓2d

↑
3 − d↑2u

↓
3 �fΛc

ðr1; r2; r3Þ;

Ψ↑
Σþþ
c

¼ 1ffiffiffi
6

p ½2c↓1u↑2u↑3 − c↑1u
↓
2u

↑
3 − c↑1u

↑
2u

↓
3 �fΣc

ðr1; r2; r3Þ;

ðA15Þ

where the coordinate wave functions fΛc
ðr1; r2; r3Þ and

fΣc
ðr1; r2; r3Þ are symmetric with respect to the permuta-

tion r2 ↔ r3. The D0-meson wave function is

Ψ0
D ¼ 1ffiffiffi

2
p ½c↓1 ū↑2 þ c↑1 ū

↓
2 �fDðr1; r2Þ: ðA16Þ

Transitions Λc → N þD and Σc → N þD in the quark
model happen when a heavy c-quark emits a hard gluon
that creates a light quark-antiquark pair. The heavy spec-
tator c-quark picks up the light antiquark and forms
D-meson, and the light quark joins the remaining two
light quarks to form a nucleon. Emission of a hard gluon
followed by the creation of a light quark-antiquark pair is
effectively described by a flavor singlet operator S. Hence,
the coupling constants gΣcND and gΛcND are proportional to
the overlap integrals

gΣcND ¼ hDNjSjΛci; gΛcND ¼ hDNjSjΣci: ðA17Þ

Weassume that the coordinatewave functions fΛc
ðr1; r2; r3Þ

and fΣc
ðr1; r2; r3Þ coincide. Then

gΣcND ¼ 1

6
g; gΛND ¼

ffiffiffi
3

2

r
g; ðA18Þ

where g is one and the same overlap integral of the
coordinate wave functions.
Thus we obtain the quark model prediction

gΣcND ¼ gΛcND

3
ffiffiffi
3

p : ðA19Þ

Numerically, gΣcND ≈ 1.35 what is again less than gΣcND ¼
2.69 used in the literature, see, e.g., [33].

c. Σ�
cND interaction and heavy quark theory

We consider c-quark as a heavy quark and use the heavy
quark theory to connect coupling constants of the ΣcND
and Σ�

cND interactions. Due to the heavy quark spin
symmetry heavy-light isodoublet mesons (cq̄), namely
the pseudoscalar D-meson with spin zero and the vector
D�-meson with spin one form a spin doublet. This doublet
in the covariant notation can be written as a two-index
matrix field

HðvÞðxÞ ¼ 1þ =v
2

½D�ðvÞ þ iDðvÞγ5�; ðA20Þ
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where vμ is the heavy quark four-velocity, and DðvÞ and

D�ðvÞ
μ (vμD�ðvÞ

μ ¼ 0) are pseudoscalar and transverse vector
field, respectively. The first index of the two-index matrix
field HðvÞ is the spinor index of the heavy c-quark and the
second is spinor index of the light quark (for notation and
more details see [44]). The field HðvÞðxÞ transforms
bilinearly under the Lorentz transformations.
Spin of light quarks in the isotriplet heavy baryons (cqq)

is one and these baryons form a spin doublet with spins 1=2
and 3=2. This doublet is described by the heavy quark
theory field

SðvÞμ ¼ −
1ffiffiffi
3

p ðγμ þ vμÞγ5ΣðvÞ
c þ Σ�ðvÞ

cμ ; ðA21Þ

where the ΣðvÞ
c and Σ�ðvÞ

cμ are spinor and Rarita-Schwinger
fields, respectively. Both fields satisfy the heavy quark

theory Dirac equations =vΣðvÞ
c ¼ ΣðvÞ

c and =vΣðvÞ
cμ ¼ ΣðvÞ

cμ . The
Rarita-Schwinger field satisfies also the standard additional

conditions vμΣ�ðvÞ
cμ ¼ γμΣ�ðvÞ

cμ ¼ 0, that are necessary to
reduce the number of independent components of the field
describing the particle with spin 3=2 to four. Easy to see

that due to transversality of the field Σ�ðvÞ
cμ the spin-doublet

field SðvÞμ satisfies the condition vμSðvÞμ ¼ 0.
The simplest interaction Lagrangian preserving all sym-

metries of the strong interactions has the form

LP ¼ igS̄ðvÞν σμνγ5HðvÞ∂νN þ H:c:; ðA22Þ

where N is the four-component nucleon field.
In the logic of the heavy quark theory interaction with

light degrees of freedom should not change velocity of the
heavy quark, and emission of a light nucleon with small but
nonzero velocity should be considered as a first order
correction to the heavy quark limit. This explains why the
derivative in the interaction Lagrangian in Eq. (A22) is
applied to the nucleon field, what makes the interaction
vertex proportional to the nucleon velocity. The interaction
Lagrangian in Eq. (A22) is therefore by construction a first
order correction to the heavy quark limit and we avoid a
hard task of calculating corrections on the background of
large zero order term contributions.
We are looking for a relationship between the ΣcND and

Σ�
cND interaction constants so the term with D� in

Eq. (A22) can be omitted, and effectively

HðvÞ →
1þ =v
2

iDðvÞγ5: ðA23Þ

Then after substitution of the explicit expression for the

field S̄ðvÞμ in Eq. (A22) one obtains

LP → ig

�
1ffiffiffi
3

p Σ̄ðvÞ
c γ5ðγμ þ vμÞ þ Σ̄�ðvÞ

cμ

�
σμν

1 − =v
2

iDðvÞ∂νN

þ H:c:; ðA24Þ

The heavy quark theory Σ�
cND interaction term turns into

LΣ�
cND ¼ −igΣ̄�ðvÞ

cμ ∂μDN þ H:c:; ðA25Þ

In the transformations leading to this expression we used

the conditions on the field Σ�ðvÞ
cμ below Eq. (A21), the

explicit expression σμν ¼ iðγμγν − gμνÞ, and allowed our-
selves integration by parts. Obviously this heavy quark
theory interaction coincides with the respective effective
Lagrangian in Table VI, and, hence gΣ�

cND ¼ g.

Similar calculations with the field Σ̄ðvÞ
c lead to the heavy

quark theory ΣcND interaction term

LΣcND ¼ ig
ffiffiffi
3

p
Σ̄ðvÞ
c γ5vνDðvÞ∂νN þ H:c: ðA26Þ

As discussed above this Lagrangian is a first order
correction to the heavy quark limit due to the explicit
derivative of the light nucleon field. Hence, it is legitimate
to let vμ ¼ ð1; 0Þ in all other terms. Then only the time
derivative proportional to the light nucleon mass survives
in the expression above, and the interaction term in
Eq. (A26) coincides with the respective phenomenological
Lagrangian in Table VI, and we conclude that (recall that
gΣ�

cND ¼ g)

gΣ�
cND ¼ gΣcNDffiffiffi

3
p

MN

: ðA27Þ

We use gΣcND calculated above and obtain gΣ�
cND ¼

0.55 GeV−1. This value is much smaller than gΣ�
cND ¼

6.5 GeV−1 cited in [19]. The authors of [19] made an
assumption that gΣ�

cND ¼ gΣ�NK . Thus assumption can be
justified in the framework of the heavy quark symmetry if
one considers both the s- and c-quarks as heavy quarks. In
its turn gΣ�NK was calculated in [37,38] from SUð3Þ flavor
symmetry. The value of gΣ�

cND obtained above is only an
estimate but we expect it to be more reliable than the one in
[19] since simultaneous use of the SUð3Þ flavor symmetry
and heavy quark theory for s- and c-quarks hardly can be
justified.

3. Charmonium interactions

Generalized vector dominance and/or QCD sum rules
can be used to calculate J=ψ and ψ 0 interaction constants
with D meson, see, e.g., [42] for a review. The basic
assumption of the generalized vector dominance is that
photon interacts with D via transitions into virtual vector
mesons. Consider vector meson V that is a bound state of
cc̄ quarks. The zero component of the c-quark electric
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current jμðcÞ ¼ Qcc̄γμc (Qc is the c-quark charge) measures
electric charge of the c-quark in D meson. At zero
momentum transfer hDjj0ðcÞjDi ∼Qc. On the other hand
due to vector dominance the same matrix element is
proportional to gDVDð1=M2

VÞQcfVMV , where MV is the
vector meson mass and its decay constant fV is defined by
the relationship h0jc̄γμcjVi ¼ fVMVϵ

μ. Comparing these
two expressions for the current matrix element we obtain
gDDV ¼ MV=fV . The vector meson decay constant fV is
determined from the partial decay width

ΓðV → eþe−Þ ¼ 4πα2

3

f2VQ
2
c

MV
; ðA28Þ

and

fV ¼ 1

2αQc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3MVΓðV → eþe−Þ

π

r
: ðA29Þ

Experimentally ΓðJ=ψ → eþe−Þ¼ 5.55�0.14�0.02 keV
and Γðψ 0 → eþe−Þ ¼ 2.33� 0.04 keV [43]. Then fψ ≈
416.3 MeV and fψ 0 ≈ 294.68 MeV [34], and

gJ=ψDD ¼ Mψ

fψ
¼ 7.44; gψ 0DD ¼ Mψ 0

fψ 0
¼ 12.51: ðA30Þ

The dimensionful constants gψ 0DD� and gJ=ψDD� are calcu-
lated from the heavy quark relationships (see, e.g., [36])

gJ=ψDD� ¼ gJ=ψDD

MJ=ψ

ffiffiffiffiffiffiffiffiffi
MD�

MD

s
;

gψ 0DD� ¼ gψ 0DD

Mψ 0

ffiffiffiffiffiffiffiffiffi
MD�

MD

s
: ðA31Þ
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