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Abstract. Our previous kinetic transport theoretical development for energetic particle 
acceleration by and large-scale transport through solar wind regions with numerous dynamic 
small-scale flux ropes in the strong guide/background field limit is further analyzed and 
extended. The basic flux-rope acceleration mechanisms and the issue of compressibility are 
further clarified by applying concepts such as magnetic curvature and shear flow to these 
structures. A set of new coupled focused-transport-MHD turbulence equations is presented for 
modeling coherent and stochastic energetic particle acceleration by small-scale flux ropes self-
consistently. Furthermore, test particle coherent and stochastic acceleration rates are compared 
for the different flux-rope acceleration mechanisms, and stochastic acceleration and pitch-angle 
scattering rates for flux ropes and Alfvén waves are compared, for energetic protons at Earth. 

 
 
 

1. Introduction 
From recent observations near 1 AU we learned: (i) Solar wind regions near primary current sheets 
(the heliospheric current sheet or current sheets associated with interplanetary coronal mass ejections 
behind traveling shocks and corotating interaction regions) are filled with contracting and merging 
small-scale flux ropes with cross sections belonging to the turbulence inertial range. These structures 
are generated when primary current sheets undergo turbulent magnetic reconnection [1,2]. (ii) 
Enhanced energetic particle fluxes up to MeV energies correlate well with these flux-rope regions 
[1,2,3]. (iii) Dynamic small-scale flux ropes are especially efficient accelerators during strong 
compression [1,2]. (iv) An unprecedented number of small-scale flux ropes were identified at 1 AU 
using the Grad-Shafranov reconstruction approach [4]. The latter result is consistent with the common 
occurrence of dynamic small-scale flux ropes in the low-latitude solar wind near 1 AU as a natural 
development of local MHD turbulence in a high conductivity plasma with a strong guide/background 
field and a plasma β of order 1 or less [5]. In this limit, the observed formation of energetic particle 
power-law spectra at 1 AU can be  interpreted as a consequence of flux-rope dynamics, such as 
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merging, primarily occurring in the 2D plane perpendicular to a strong guide/background field [6]. 
Following up on the promising idea of efficient acceleration when energetic particles interact with 
numerous contracting and merging small-scale flux ropes [7,8], Zank et al. and le Roux et al. 
developed comprehensive focused transport theories of energetic particle acceleration in a turbulent 
magnetized plasma containing dynamic small-scale flux ropes in the strong guide field limit [9,10].   
   Here, the basic small-scale flux rope acceleration mechanisms are further investigated using 
concepts such as magnetic curvature and the shear-flow tensor. The difference between the 
incompressible and compressible limits of flux-rope dynamics for acceleration, and the close link 
between guiding center kinetic and focused transport theory are addressed anew. An extended theory 
is presented for modeling self-consistent energetic particle acceleration by small-scale flux ropes. This 
involves coupling of the focused transport equation to a new MHD equation for total magnetic island 
energy density advective transport in the non-uniform solar wind medium, derived from a recent 
version of nearly incompressible MHD theory for solar wind turbulence [5]. The latter equation 
includes magnetic island damping rates derived from assuming conservation of total energy in the 
exchange of energy between energetic particles and magnetic islands during coherent and stochastic 
acceleration. Finally, for energetic protons at 1 AU, coherent and stochastic flux-rope acceleration 
rates for the different flux-rope acceleration mechanisms are discussed, and stochastic acceleration and 
pitch-angle scattering rates for flux ropes and Alfvén waves are compared.      

2. The small-scale flux rope acceleration mechanisms 
 

2.1 A Guiding center kinetic theory perspective 
Small-scale flux ropes detected near Earth have cross sections of LI~0.01-0.001 AU [1,2]. Near 1 AU, 
suprathermal protons, e.g., have gyro-radii rg << LI for a wide range of energies that easily include 
MeV energies. Thus, standard guiding center kinetic theory, which is restricted to gyro-radii much less 
than scale of the electromagnetic field in the plasma, is well suited for modeling energetic particle 
transport through and acceleration in solar wind regions near Earth with numerous contracting and 
merging small-scale flux rope structures. In guiding center kinetic theory, the gyro-phase-averaged 
rate of change in kinetic energy for energetic charged particles can be expressed in different ways:  
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where q is the net particle charge, v|| is the parallel guiding velocity component, b is the unit vector 
along the flux-rope magnetic field, κ = (b•∇)b is the curvature of the flux-rope magnetic field, M is 
the magnetic moment of a gyrating particle, E•b= EREC|| is the parallel reconnection electric field 
component associated with merging flux-rope pairs, m is the cosine of the particle pitch angle, VE is the 
electric field drift (plasma drift) velocity (velocity at which the curved flux-rope magnetic field is 
contracting or merging), and M’ is the magnetic moment for m = 0. Equation (1), 1st line, states the 
basic flux-rope acceleration mechanisms grouped in terms of parallel kinetic energy changes (terms in 
1st square bracket) and perpendicular kinetic energy changes (terms in 2nd square bracket). The 
mechanisms are: (1) Parallel guiding center motion acceleration by the parallel reconnection electric 
field component EREC|| generated in reconnection regions between merging neighbouring flux ropes (1st 
term in 1st square bracket), (2) curvature drift acceleration by the motional electric field induced by 
contracting or merging small-scale flux ropes (2nd term in the 1st square bracket), (3) betatron 
acceleration due time variations in the flux-rope magnetic field strength (1st term in the 2nd square 
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bracket), (4) grad-B drift acceleration by the motional electric field induced by contraction and 
merging of flux ropes (2nd term in the 2nd square bracket) and, (5)  parallel drift acceleration by EREC|| 
(the last term in 2nd square bracket). Direct comparison of the terms in the 1st line of (1) with the 
corresponding terms in the 2nd line reveals that one can express the curvature drift acceleration term in 
terms of VE•κ  (advection of curved flux-rope magnetic field at plasma drift velocity), and the grad-B 
drift acceleration term in terms of (VE•∇)B (advection of the perpendicular gradient in flux-rope field 
strength at the plasma drift velocity). This version of the grad-B drift acceleration term can be 
combined with the betatron acceleration term into a generalized betatron acceleration expression 
M’dB/dt = M’(∂B/∂t + (VE•∇)B) (1st 2 terms in 2nd square bracket in line 2) [11]. Comparison of the 
last terms in line 1 and line 2 indicates that approximate conservation of magnetic moment requires a 
small EREC||-value. Furthermore, comparing the terms in the 2nd square bracket in line 2 with the 
corresponding  terms in line 3 reveals that the generalized betatron acceleration expression in line 2 
can be related to a combination of the VE•κ  and the ∇•VE- terms, assuming approximate magnetic 
moment conservation (a small EREC||-value). Thus, generalized betatron acceleration is determined by a 
competition between incompressible flux-rope contraction or merging (VE•κ > 0) and compressible 
contraction or merging (∇•VE < 0). However, such a competition does not appear in the curvature drift 
acceleration term that depends only on VE•κ.  To investigate this issue further it is useful to introduce 
the relationships  

  ( ) ( ) 
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where we relate the magnetic curvature advection term VE•κ  to the parallel shear-flow term  
b•(b•∇)VE which in turn is expressed in terms of the shear-flow tensorσij    
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using the Cauchy Stokes theorem [12]. Upon inserting (2) in the bottom line of equation (1), we get 
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where the term containing ∇•VE can be recognized as the standard Parker cosmic-ray transport 
equation term for the combination of curvature drift, grad-B drift, betatron and parallel drift 
acceleration that collectively becomes plasma drift compression acceleration acting on the isotropic 
part of the particle distribution f0(p) [13,14]. The last term in (4) can be interpreted likewise as 
combining parallel shear flow tensor acceleration associated with curvature drift acceleration 
( )ijjibbmv σm 22−  with parallel shear flow tensor acceleration associated with unified grad-B drift, 

betatron and parallel drift acceleration ( )( )ijjibbmv σm 22 12/1 −+ that collectively becomes parallel 
shear-flow tensor acceleration acting on the anisotropic part of the particle distribution related to the 
2nd moment of the particle distribution  f2(p). The interpretation in terms of particle anisotropy 
moments is made assuming a Legendre moment expansion for the energetic particle distribution that is 
nearly isotropic so that ( ) )(132/5)(3)()( 2

2
10 pfpfpfpf −++= µµ ,  where f1(p) is the 1st moment 

and f2(p) is the 2nd moment in the anisotropic part of the energetic particle distribution, and averaging 
over all m-values. Upon decomposing the shear flow tensor according to ( ) ijE

sh
ijij V δss •∇−= 3/1 , 

where ( ) EiEjijjEiji
sh
ijji VbbxVbbxVbbbb ∇••=∂∂+∂∂= )//(2/1s , in (4), the result is  
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In addition to the Parker transport compression term, there is a new compression term (3rd term in   
(5)). Just like the Parker compression term, this extra term also combines compression acceleration 
linked to curvature drift acceleration ( )( )EVmv •∇+ 223/1 m  with compression acceleration associated 

with unified betatron, grad-B drift, and parallel drift acceleration ( )( )( )EVmv •∇−− 22 12/13/1 m  to 
form collectively a plasma drift compression acceleration term. Different from the Parker transport 
compression term that acts on the isotropic part of the particle distribution f0(p), the new compression 
term acts on the anisotropic part of the particle distribution connected with f2(p). The last term in (5) 
combines parallel shear flow acceleration associated with curvature drift acceleration 

( )( )EVbbmv ∇••− 22m  with parallel shear flow acceleration linked to unified betatron, grad-B drift, 
and parallel drift acceleration ( ) ( )( )EVbbmv ∇••−+ 22 12/1 m  to form collectively a shear-flow 
acceleration term (reduced shear flow tensor without the compression term) that acts only on the 
anisotropic part of the energetic particle distribution related to f2(p).  Upon combining the two ∇•.VE-
terms in (5), and doing the substitution -b•(b•∇)VE = VE•κ, 
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whereby the last line of equation (1) is recovered. In the process we gained new insight in the ∇•VE-
term in equation (1), having determined that it can be interpreted as a combination of curvature drift 
acceleration with unified betatron, grad-B drift, and parallel drift acceleration acting collectively as 
plasma drift compression acceleration on both the isotropic and the anisotropic part of the energetic 
particle distribution.The VE•κ-term, on the other hand, can be viewed as a combination of curvature 
drift acceleration with unified betatron, grad-B drift, and parallel drift acceleration acting collectively 
as plasma drift shear flow acceleration only on the anisotropic part of the distribution.  
 
2.2 Compressible versus incompressible flux-rope drift and betatron acceleration 
Consider first the limit of incompressible flux-rope contraction or merging (in the strong guide field 
limit we interpret this to mean magnetic island area conservation during contraction or merging in the 
2D plane perpendicular to the guide/background magnetic field) when 0< -∇•VE << VE•κ = -
b•(b•∇)VE > 0.  Then, from equations (1), (5), and (6) we have 
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For magnetic island contraction or merging (VE•κ > 0) it is clear that curvature drift acceleration must 
result in parallel kinetic energy gain (2nd term in 1st square bracket in (7)). However, for generalized 
betatron acceleration (compare 1st 2 terms in 2nd square bracket in line 1 with the term in 2nd square 
bracket in lines 2 and 3) the result is perpendicular kinetic energy loss, assuming approximate 
conservation of M (neglecting the last term in the 2nd square bracket in line 1). it means that M’dB/dt 
=M’(∂B/∂t + (VE•∇ )B) < 0. In this way we can relate the perpendicular energy loss to a decreasing 
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magnetic field strength inside flux-rope structures following the plasma drift VE during incompressible 
flux-rope contraction or merging. If in the generalized betratron expression grad-B drift acceleration is 
negligible compared to betatron acceleration [15], perpendicular kinetic energy loss is caused by the 
time variation in the field strength rather than the spatial variation so that energy loss is predominantly 
associated with the standard betatron acceleration term M’(∂B/∂t). Note that incompressible 
contraction or merging is associated with a negative parallel shear flow component in flux ropes (VE•κ 
= -b•(b•∇)VE > 0).  
    In conclusion, energetic particle acceleration in incompressible contracting and merging small-scale 
flux ropes is related to parallel plasma drift shear flow acceleration involving a competition between 
parallel kinetic energy gain from curvature drift acceleration, and perpendicular kinetic energy loss 
predominantly from betatron acceleration. On average, the net acceleration from the combination of 
the two acceleration processes only involves the anisotropic part f2(p) of the particle distribution, 
assuming an expansion of the distribution to the 2nd moment. 
     When flux-rope contraction and merging occurs in the compressible limit (area reduction during 
contraction or merging in 2D magnetic island plane perpendicular to the guide magnetic field) so that 
0< -∇•VE >> VE•κ = -b•(b•∇)VE > 0, we find from equations (1), (5), and (6)  that  
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where for simplicity compression terms acting on f2(p) has been neglected in favour of those acting on 
f0(p) (nearly isotropic particle distribution). During contraction and merging in the compressible limit 
∇•VE < 0 and, although relatively small, VE•κ > 0. Thus, the 2nd term in the 1st square bracket in both 
lines 1 and 2 of (8) suggests that curvature drift acceleration will contribute to parallel kinetic energy 
gain. By comparing the generalized betatron expression (1st two terms in the 2nd square bracket in line 
1) with the term in the 2nd square bracket in line 2, it follows that the generalized betatron acceleration 
term will result in perpendicular kinetic energy gain (∇•VE < 0), assuming dM'/dt≈0. Therefore, 
M’dB/dt =M’(∂B/∂t + (VE•∇)B) > 0, relating the perpendicular energy gain to an increasing  magnetic 
field strength with time following the plasma drift flow in flux ropes contracting and merging in the 
compressible limit . If grad-B drift acceleration is negligible compared to betatron acceleration in the 
generalized betatron expression, as mentioned above, the perpendicular kinetic energy gain is 
associated with the standard betatron acceleration term M’(∂B/∂t) indicating an increasing flux-rope 
field strength in time rather than spatially.  
    To summarize, in contrast to finding curvature drift energy gain and betatron energy loss associated 
with a negative parallel component of flux-rope shear flow during incompressible contraction or 
merging, we find both curvature drift and betatron energy gain associated with flux-rope flow during 
compressible flux-rope contraction or merging [9,10]. Furthermore, on average, net energy gain for 
the two acceleration processes in the incompressible limit is linked only to the anisotropic part of the 
energetic particle distribution, whereas net energy gain for the same two processes in the compressible 
limit involves both the isotropic and anisotropic part of the distribution. For a further discussion of the 
role of shear flow and compression in small-scale flux rope acceleration, see [16].  
    Consider finally the 1st term in equation (1) which is associated with parallel guiding center motion 
acceleration by the parallel reconnection electric field formed at the interface of merging small-scale 
flux ropes. In this case, the result is parallel kinetic energy gain or loss depending on whether the 
guiding center motion is in the direction of or in the opposite direction of the reconnection electric 
field force. Therefore it makes sense that, averaged over all m-values, net acceleration only occur for 
the anisotropic part of the distribution (zero net acceleration for an isotropic distribution). In this sense 
the acceleration has the same characteristics as parallel shear flow acceleration, but the difference is 
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that net acceleration in the latter case only depends on f2(p) whereas acceleration by the parallel 
reconnection electric field involves f1(p).    

2.3 The focused transport theory connection 
We model the induced electric field in contracting and merging flux ropes as EI = -UI × B, where UI is 
the flux-rope plasma flow velocity. Then the contraction/merging velocity in flux ropes VE = UI =U⊥. 
Making this substitution in equations (5) and (6) reveals the close connection between standard 
guiding center kinetic theory and focused transport kinetic theory that we use to model particle 
acceleration by dynamic small-scale flux ropes because, according to focused transport theory,  
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The only difference between equations (5) and (6), and (9) is the presence of an additional acceleration 
term referring to parallel guiding center motion acceleration by the non-inertial force associated with 
the parallel component of the acceleration of the flux-rope flow dUI/dt•b (d/dt = ∂/∂t + U•∇).  
    In (9), the reconnection electric field in merging (reconnecting) flux ropes is modeled assuming that 
flux rope dynamics occur mainly in a 2D plane containing the magnetic island (twist) component BI 
and flow UI of the flux rope perpendicular to the guide field (axial) component B0 when the guide field 
is strong [6]. Near Earth it appears that assuming BI/B0 << 1 is reasonable [17], and furthermore there 
is evidence that the flux-rope guide field is aligned with the solar wind spiral magnetic field [18]. 
Since our focus is on large-scale transport of energetic particles through multiple flux ropes with cross 
sections on turbulence inertial range scales, we model the reconnection electric field on macroscopic 
(MHD) scales as EREC = -UI × BI || B0 ≈  BTOT = B0 + BI. Therefore, EREC ≈ EREC||. In the strong guide 
field limit, the electric field induced by flux-rope contraction and merging is mainly in the 2D plane 
perpendicular to B0, because EI ≈ -UI ×B0 ⊥ B0. Therefore, curvature and grad-B drift acceleration 
occur largely in the 2D plane, while parallel guiding center motion acceleration by the parallel 
reconnection electric field is mainly restricted to the guide field direction. In the strong guide field 
limit, the magnetic field unit vector b can be decomposed as b ≈ b0 + BI/B0, where b0 is the unit vector 
along the guide/background field. Accordingly, the flux-rope acceleration mechanisms in quasi-2D 
flux ropes in focused transport theory are classified as follows: 
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In (11) we list the approximate relative momentum rates of change (without the m-dependence) for the 
different flux-rope acceleration cases: (i)  νREC refers to parallel guiding center motion acceleration by 
the parallel reconnection electric field force generated in merging flux ropes structures, (ii) νACC 
denotes parallel guiding center motion acceleration by the parallel non-inertial force associated with 
the acceleration of the flux-rope flow, (iii)  νINC indicates combined curvature and generalized betatron 
acceleration (parallel shear-flow acceleration) when flux ropes contract and merge in the 
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incompressible limit (UI•κ >>|∇•UI|), (iv) and νCOM represents curvature drift and generalized betatron 
acceleration (compression acceleration) for flux ropes contracting and merging in the compressible 
limit (|∇•UI| >> UI•κ). The expressions in (11) also serve as approximate expressions for the rate of 
change of particle pitch angle (related to 〈dm/dt〉φ when including the m-dependence) induced by the 
different flux-rope acceleration cases. To this, focused transport theory adds the pitch-angle rate of 
change generated by the magnetic mirroring force acting on energetic particles in flux ropes which we 
express as νREF = v(∇•b) ≈ v(∇•BI /B0).     

3. The coupled focused-transport-MHD equations for self-consistent energetic particle 
acceleration by dynamic small-scale flux ropes 
Using perturbation analysis involving the decomposition of the different momentum/pitch-angle 
variation rates as I

i
I
i

I
i δννν += , where I

iν  is the mean rate and I
iδν a random fluctuating rate, a 

focused transport equation for energetic particle interaction with numerous small-scale flux ropes was 
derived that models both coherent energetic particle acceleration in response to mean, and stochastic 
(2nd order Fermi) acceleration in response to statistical fluctuations in flux-rope dynamic properties 
[10]. The current version of the equation includes additional transport terms related to νACC with 
additional and more detailed transport coefficient expressions than before. Furthermore, based on 
nearly incompressible MHD theory for low-frequency solar wind turbulence [5], a new equation was 
derived for the transport of the energy of the quasi-2D magnetic island component of small-scale flux 
ropes in a non-uniform solar wind medium. Coupling between the two equations was established by 
deriving damping coefficients for magnetic island energy on the basis of total energy conservation in 
the exchange of energy between energetic particles and magnetic islands and including them in the 
magnetic island transport equation. The basic structure of the coupled equations is as follows: 
 

     

I
stoch
II

coh
I

SW

I

I
I
ppI

I
pI

I
pI

I

I

I

I

I

I

I

SW

ff
dt

d

p
fDfDp

ppp
fDfD

f
dt
df

dt
dpp

pp
f

dt
xd

dt
df

εγεγ
ε

ε
µ

εε
µ

ε
µ

εµ
µ

εε

µµµµ

ffϕ

)()(

)()(1)()(

)()(1)(

2
2

2
2

+=


























∂
∂

+
∂
∂

∂
∂

+







∂
∂

+
∂
∂

∂
∂

+












∂
∂

−










∂
∂

−









•∇−=








   (12) 

 
where the energetic particle distribution is f(x, p, m, t). The top equation in (12) is an extended focused 
transport equation for the propagation of energetic particles through and acceleration by numerous 
dynamic small-scale flux ropes in the non-uniform solar wind medium. On the left hand side of this 
equation ( )SWdtdf /  represents the standard focused transport equation for energetic particle transport 
in the non-uniform solar wind flow and magnetic field [19]. On the right hand side are additional 
terms for modeling the interaction of energetic particles with dynamic small-scale flux ropes. This 
includes   
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which is the average, coherent energetic particle momentum rate of change in response to mean flux-
rope properties for all the flux-rope acceleration cases, and 
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is the momentum diffusion coefficient associated with the variance in the momentum rate of change 
for all the flux-rope acceleration mechanisms (stochastic acceleration) in response to fluctuations in 
flux-rope dynamic properties [20], and τdec is the energetic particle decorrelation time, the time scale 
on which propagating particles see decorrelated magnetic island properties. The expression for this 
time scale depends on the assumed model for particle propagation for which two limits, the quasi-
linear and the non-linear transport limits, can be specified in our theory depending on the strength of 
the island magnetic field [10,21]. In the quasi-linear limit, decorrelation for energetic particles occurs 
through undisturbed guiding center motion, whereas in the non-linear transport limit decorrelation is 
realized in terms of assumed diffusive guiding center motion predominantly in the guide/background 
field direction (scattering on smaller magnetic islands produced in a forward cascade). Viewed on 
large scales, both transport limits manifest as parallel diffusion of energetic particles across numerous 
flux-rope structures mainly along the guide field, found to be an important element for more efficient 
acceleration in 3D simulations of particle acceleration by dynamic flux ropes [22]. In the presence of 
strong energetic particle scattering, as might occur in strong turbulence conditions behind heliospheric 
shocks, coherent particle acceleration by flux ropes becomes stochastic, resulting in additional 
momentum diffusion coefficient expressions for 2nd order Fermi acceleration that can be derived by 
taking the diffusion approximation limit  (not shown) [8,9,10].      
   In equation (12), the bottom equation models the transport of the total energy density εI (kinetic plus 
magnetic) of the magnetic island component of small-scale flux ropes. On the left hand side of this 
transport equation (dεI/dt)SW is given by  

         

( ) ( )[ ]( )

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) 2/3

2/1

0

2/12/1

2/12

2/3
02/3

0

2/12/12/32/12/3

00

211
1

21111
4
1

141
2
1

I
I
C

I
C

I

I
C

I
I
D

I
C

I
C

I
D

I
C

I
C

I
I
DI

I

L

n

UaU
t

ε
ρ

σσ
σ

ερ
ρ

σσσσσσ

εσε
ε













 −++






 −

+











∇•



 −−−++−+−

•∇−++•∇+
∂
∂

     (15) 

 
where U0 is the background solar wind flow velocity, a = 1/2 indicates that, statistically, quasi-2D 
magnetic island energy is distributed axisymmetrically around B0, I

Cσ   is the normalized cross helicity 
and I

Dσ is the normalized residual energy associated with magnetic island turbulence [5], ρ0 is the 
background solar wind density, and n is a unit vector pointing in an arbitrary direction along magnetic 
island turbulence in the 2D plane perpendicular to B0. Equation (15), which models the transport of εI 
in the non-uniform background solar wind medium, was derived from the quasi-2D magnetic island 
turbulence equations in Elsässer variables in nearly incompressible MHD theory for turbulence in a 
solar wind with plasma β ~1, thus making it suitable for application in the supersonic solar wind flow 
near Earth [5].  An interesting aspect of this equation is that in the advection term (2nd term in (15)), U0 
is present, but not the Alfvén speed, indicating that magnetic island structures are advected with the 
solar wind. The 3rd and 4th terms in equation (15) describe how large-scale solar wind flow 
compression and a large-scale density gradient in the solar wind, respectively, can enhance the energy 
density of magnetic islands structures. The last term models how magnetic island energy density is 
reduced by a forward cascade of energy during non-linear interactions of magnetic islands. On the 
right hand side in the bottom equation of (12), )( fcoh

Iγ  represents the damping rate of magnetic island 
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energy density when energetic particles experience coherent acceleration by small-scale flux ropes, 
and )( fstoch

Iγ models the damping rate of magnetic island energy density when energetic particle are 
stochastically accelerated by small-scale flux ropes. The expressions of these damping coefficients are 
given by 
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These expressions, derived assuming total energy conservation in the energy exchange between 
energetic particles and small-scale flux ropes, enable us to model energetic particle acceleration by 
numerous small-scale flux ropes in a self-consistent fashion. This extension of the theory was 
motivated by test particle solutions for energetic particle acceleration by small-scale flux ropes that 
generated power-law spectra with high particle pressure [9,10]. It is interesting to note that whereas 

)( fstoch
Iγ depends on the pitch-angle and momentum gradients of the energetic particle distribution as 

we are accustomed to in quasi-linear kinetic theories, )( fcoh
Iγ  depends only on the particle 

distribution function itself. The pitch-angle gradient ∂f/∂m can potentially also result in growth in 
magnetic island energy density.  

4. Comparing coherent flux-rope acceleration mechanisms at Earth 
Based on our focused transport theory for energetic particle acceleration discussed above, we derived 
expressions for the average coherent momentum gain rate ratios for the different flux-rope 
acceleration cases listed in equation (11). The expressions for energetic ions are 
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    (17) 

The derivation of these expressions includes (i) the weighting factor of a nearly isotropic particle 
distribution, modeled by expanding it up to the 2nd moment in terms of a Legendre polynomial 
expansion with respect tom, as discussed above, and, (ii) averaging the expressions over all m-values. 
In (17), (〈δBI

2〉/B0
2  is the ratio of the average magnetic field energy density of the magnetic island 

component over the magnetic field energy density of the guide/background field component of small-
scale flux ropes, VA0 is the Alfvén speed of the background solar wind, LI is the flux-rope cross 
section, di is the ion inertial scale length, Z/A is the ratio of the ion atomic number over the mass 
number, and ,,,,, ACCRECCOMINCiI

i =σ  represents control parameters for the efficiency of 
coherent acceleration for the different flux-rope acceleration cases.  
    Consider the ratio of the coherent acceleration rate of combined curvature and generalized betatron 
acceleration (unified betatron and grad-B drift acceleration) in contracting and merging small-scale 
flux ropes operating in the incompressible limit INCdtdp

µφ ,/  (shear-flow acceleration) to the coherent 
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acceleration rate for the same acceleration mechanisms in the compressible limit COMdtdp
µφ ,/

(adiabatic compression acceleration) in the 1st line of (14). Assuming 1/ ≈I
INC

I
INC σσ , and that at 1 

AU, small-scale flux ropes with cross sections in the inertial range are in the strong guide field limit 
(〈δBI

2〉/B0
2 ≈ 0.1 [17]), we find that 11.0/// ,, <<≈COMINC dtdpdtdp

µφµφ
if we assume that the expression 

holds for a significant energetic particle anisotropy 3f2(p)/f0(p) ≈ 1. However, one would expect near-
isotropic energetic particle distributions to exist in the enhanced turbulence conditions behind 
heliospheric shocks, for example. For a small anisotropy, 1.0/// ,, <<COMINC dtdpdtdp

µφµφ
. In the 

extreme limit of a purely isotropic particle distribution (f2(p) = 0), INCdtdp
µφ ,/  = 0. This points to a key 

difference alluded to above that coherent shear-flow acceleration by incompressible flux ropes only 
yields net acceleration when the particle distribution is anisotropic whereas coherent flux-rope 
compression acceleration produces net acceleration for both isotropic and anisotropic particle 
distributions. In the limit of a strictly isotropic distribution, no net shear-flow acceleration associated 
with incompressible flux-rope contraction and merging indicates that the probability for parallel 
kinetic energy gain from curvature drift acceleration equals the probability for perpendicular kinetic 
energy loss from generalized betatron acceleration [8,9,10].  
    In conclusion, in the test particle limit, coherent energetic ion acceleration at Earth involving 
combined curvature and generalized betatron acceleration in quasi-2D contracting and merging small-
scale flux ropes operating in the compressible limit is estimated to be much more efficient compared 
to when the same acceleration mechanisms occur in small-scale flux ropes acting in the 
incompressible limit. Equivalently, compression acceleration is predicted to be much more efficient 
than shear-flow acceleration. This conclusion holds as long as the anisotropic part of the particle 
distribution does not strongly dominate the isotropic part of the distribution.  According to (17), what 
is required for shear-flow acceleration in incompressible flux ropes to rival compression acceleration 
in compressible flux ropes would be to maintain a particle anisotropy on the level 3f2(p)/f0(p) ≈ 1, 
combined with a weaker guide field so that 〈δBI

2〉/B0
2 ≈ 1. There is evidence from kinetic particle 

simulations that, for a guide field of approximately this strength, the energetic particle anisotropy can 
be sufficiently large so that shear-flow and compression acceleration reach a comparable level of 
efficiency [16].       
    Based on the above analysis, one could ask whether there is any reason to expect flux-rope 
dynamics in the solar wind to be in the compressible limit when the strong guide field limit applies.  
Although it appears that small-scale flux ropes tend to contract predominantly incompressibly in 
discussions of particle simulations with a significant guide field [16], and also is thought of as 
intrinsically incompressible in its manifestation as the quasi-2D turbulence component of coherent 
structures in nearly incompressible MHD theory of solar wind turbulence [5], there is observational 
evidence to the contrary. For example, when primary current sheets associated with interplanetary 
coronal mass ejections (ICMEs) interact with the heliospheric current sheet, the current sheets are 
disturbed and several small-scale flux rope structures may be formed when turbulent magnetic 
reconnection occur in these structures. The flux ropes, being trapped between the converging 
heliospheric current sheet and the primary current sheets of ICMEs, experience compression which 
may lead to efficient particle acceleration by compressing flux ropes [1,2]. Furthermore, in nearly 
incompressible MHD theory of quasi-2D magnetic island turbulence, incompressible flux ropes can 
become compressible under the influence of large-scale density and flow velocity gradients gradients 
in the non-uniform solar wind [5]. For example, the flow compression across heliospheric shocks 
might result in the emission of compressible small-scale flux ropes [23]. Closer to the Sun, Guidoni et 
al. [24] discusses the possibility of strong plasma compression during magnetic island contraction for 
islands propagating sunward during a solar flare event. 
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    Next, we analyze the ratio of the coherent parallel guiding center motion acceleration rate due to the 
mean parallel reconnection electric field in merging small-scale flux ropes RECdtdp

µφ ,/ to the coherent 
acceleration rate of combined curvature and generalized betatron acceleration in small-scale flux ropes 
contracting and merging in the compressible limit COMdtdp

µφ ,/  (2nd line of (17)). Overall, 

1/// ,, >>COMREC dtdpdtdp
µφµφ

 at Earth for energetic protons, even though we assume the strong guide 

field limit 〈δBI
2〉/B0

2 ≈ 0.1at Earth, because of the large ratio of LI/di (maximum values for LI ≈ 0.01 
AU and di ≈ 6×10-7 AU).  The domination of RECdtdp

µφ ,/ is reduced significantly at higher particle 

speeds because vVdtdpdtdp A
COMREC //// 0,, ∝
µφµφ

, but not sufficiently to affect the domination of 
RECdtdp
µφ ,/ . However, if we extend the scope of the analysis by considering all flux-rope cross 

sections belonging to the turbulence inertial range (~0.01 AU  <  LI < ~6 ×10-7 AU at Earth), we find 
that 1/// ,, >RECCOM dtdpdtdp

µφµφ
 for energetic protons above ~1 keV when LI < ~10-4 AU even if 

3f1(p)/f0(p) ≈ 1. Domination by COMdtdp
µφ ,/ can be achieved for suprathermal protons for all cross 

sections in the inertial range if we specify a sufficiently smaller particle anisotropy 3f1(p)/f0(p) ≈ 0.01. 
Assuming a purely isotropic particle distribution (f1(p) = 0), there is no net particle acceleration by the 
mean parallel reconnection electric field ( )0/ , =RECdtdp

µφ  because there is an equal probability for 
particle motion along and opposite to the mean parallel reconnection electric field force as discussed 
above. In summary, in the strong guide field limit applicable at 1 AU, coherent parallel guiding center 
motion acceleration by the mean parallel reconnection electric field due to flux-rope merging tend to 
be more efficient than combined curvature drift and generalized betatron acceleration in compressible 
flux ropes for the largest flux-rope cross sections in the inertial range, but compression acceleration by 
flux ropes can dominate for all cross sections in the inertial range if the energetic particle anisotropy is 
sufficiently small.     
    Consider the ratio INCREC dtdpdtdp

µφµφ ,, /// (3rd line of (17)). We find that 

1/// ,, >INCREC dtdpdtdp
µφµφ

 for suprathermal protons at Earth for all flux-rope cross sections 
belonging to the inertial range when applying the strong guide field limit and limiting the particle 
anisotropy to f1(p)/f2(p) ≈ 1. Domination by the parallel reconnection electric field is further 
strengthened for a small energetic particle anisotropy f2p)/f1(p) << 1. A way for INCdtdp

µφ ,/ to rival the 

efficiency of )0/( , =RECdtdp
µφ

 for at least the smallest flux-rope cross sections in the inertial range 

would be to maintain a sufficiently strong particle anisotropy f1(p)/f2(p) ≈ 1 combined with a weaker 
guide field so that(〈δBI

2〉/B0
2 ≈ 1 which, qualitatively, is in agreement with kinetic simulation results 

[16].  
  Coherent energetic particle  parallel guiding center motion momentum gain by the mean non-inertial 
force associated with the parallel acceleration of the flux-rope flow  ACCdtdp

µφ ,/  (expression not 
shown) appears to be less efficient than momentum gain from both parallel guiding center motion 
momentum gain by the mean parallel reconnection electric field and combined curvature drift and 
generalized betatron acceleration in compressible flux ropes, and this is even more so in the case of a 
nearly isotropic particle distribution. Also in this case, there is no net coherent acceleration when the 
energetic particle distribution is strictly isotropic.  
    Based on our estimates for coherent energetic proton acceleration in response to mean flux-rope 
dynamic properties, which were made in the strong guide field limit and for flux-rope cross sections in 
the inertial range at 1 AU, we conclude that the two most efficient acceleration scenarios involve 
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combined curvature drift and generalized betatron acceleration in contracting and merging flux ropes 
in the compressible limit, and parallel guiding center motion acceleration by the parallel reconnection 
electric field of merging flux ropes. The latter tends to dominate for the largest magnetic island cross 
sections in the inertial range when the anisotropy in the particle distribution not too small.  

5. Stochastic acceleration by small-scale flux ropes  
A main factor that contributes to differences between the efficiency of coherent acceleration in 
response to mean flux-rope properties, and the efficiency of stochastic acceleration due to fluctuations 
in flux-rope properties, is the anisotropy in the energetic particle distribution. In the case of stochastic 
acceleration, both the isotropic and anisotropic part of the distribution function plays a role in all four 
acceleration scenarios. As discussed above, net coherent acceleration only occurs for the anisotropic 
part of the particle distribution for most acceleration cases. The exception is acceleration by flux-rope 
flow compression which also yields net acceleration when acting on the isotropic part of the 
distribution. We find for stochastic acceleration that all four acceleration cases contribute to particle 
acceleration when the particle anisotropy is strictly zero, as long as we take the quasi-linear transport 
limit of our theory. In the non-linear transport limit the acceleration expressions becomes 
undetermined in this limit. When comparing ratios of coherent acceleration rates with ratios of 
stochastic acceleration rates, the results are similar qualitatively for the most part. Quantitative 
differences in the acceleration ratios are most noticeable when near-isotropic energetic particle 
distributions are assumed, which is a disadvantage for most coherent acceleration scenarios.  

6. Comparing stochastic acceleration by small-scale flux-ropes and Alfvén waves 
We find that stochastic acceleration involving parallel guiding center motion acceleration of 
suprathermal protons at 1 AU in response to fluctuations in the parallel reconnection electric field of 
merging small-scale flux ropes to be the only flux-rope acceleration scenario in the quasi-linear spatial 
transport limit of our theory that is more effective than stochastic acceleration by parallel propagating 
Alfvén waves in standard quasi-linear theory [25]. However, stochastic acceleration by active small-
scale flux ropes in the non-linear transport regime of our kinetic transport theory is significantly more 
efficient when compared to the quasi-linear limit of our theory. Consequently, in the non-linear limit 
also combined stochastic curvature drift and generalized betatron acceleration in response to 
fluctuations in the properties of small-scale flux ropes contracting and merging in the compressible 
limit, is more effective than stochastic acceleration by Alfvén waves for a wide range of suprathermal 
proton kinetic energies above ~ 10 keV. The enhanced acceleration efficiency can be attributed to the 
fact that, in the non-linear transport regime of our theory, energetic particles are modeled to have 
diffusively distorted guiding center trajectories inside flux ropes (scattering on smaller-scale flux 
ropes) when traversing these structures in the background/guide field direction. Thus, energetic 
particles spend more time being accelerated in each active flux rope (quasi-trapped) compared to the 
quasi-linear regime. In the quasi-linear regime, particles traverse flux ropes in the guide field direction 
more rapidly because of the assumption of undisturbed guiding center motion, leaving less time for 
acceleration in each flux rope.  

7. Pitch-angle scattering by small-scale flux-ropes and Alfvén waves 
In our current focused transport approach, the variance in the magnetic mirroring force present in 
small-scale flux ropes is predicted to play an important role in energetic particle pitch-angle scattering 
in solar wind conditions at 1 AU. This is related to our finding that energetic particle pitch-angle 
scattering by small-scale flux ropes in the quasi-linear spatial transport limit of our focused transport 
theory approach is more efficient compared to previous quasi-linear kinetic theories for particle 
interaction with 2D turbulence, where particle scattering is determined by the variance in the magnetic 
Lorentz force associated with 2D turbulence. Another difference is that in earlier approaches the 
particle decorrelation time is determined by a competition between the time scales for gyromotion 
around B0 and the turbulence dynamic time scale [e.g., 26]. Because the turbulence was treated as 
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strictly 2D, the option exercised in our current theory of particles experiencing decorrelated flux-rope 
turbulence while propagating along the guide field was not considered. In addition, we find that 
energetic proton pitch-angle scattering by small-scale flux ropes at 1 AU should be more efficient than 
pitch-angle scattering by Alfvén waves, provided that the non-linear spatial transport limit of our 
theory is applicable, but less efficient than pitch-angle scattering by Alfvén waves when we take the 
quasi-linear limit of our theory. This raises the question which limit of our theory applies best to solar 
wind conditions near 1 AU. Fits to observed intensity time profiles of solar energetic events at 1 AU 
using focused transport theory suggest that the energetic ion parallel mean free path λ|| can vary widely 
between ~2×10-2 - 1 AU during quiet solar wind conditions in the absence of interplanetary shocks 
[27]. Nonetheless, it appears that λ|| > LI because the maximum small-scale flux-rope cross section  at 1 
AU is LI ≈ 0.01 AU, indicating scatter-free transport of energetic particles through these structures so 
that the quasi-linear limit of our theory is more appropriate in quiet solar wind conditions. However, 
one would expect that the values of λ|| in the enhanced turbulence levels behind traveling shocks 
should be significantly smaller, providing potential conditions for the application of the non-linear 
transport limit of our theory.    

8. Summary 
It was discussed how the basic small-scale flux rope drift and betatron acceleration mechanisms 
present in guiding center kinetic theory relate to flux-rope plasma drift contraction or merging in both 
the incompressible and incompressible limits. It was shown that drift and betatron acceleration in flux-
ropes undergoing incompressible contraction and merging can be interpreted in terms of shear flow 
acceleration linked to a negative parallel component of shear flow inside flux ropes. Drift and betatron 
acceleration in flux-ropes contracting and merging in the compressible limit can be viewed as 
compression acceleration in flux ropes with a relatively negligible magnetic curvature or parallel 
component of shear flow. We found that when the drift and betatron acceleration mechanisms in 
guiding center kinetic theory are expressed in term of plasma drift compression and shear flow 
acceleration, a close link exists between the flux-rope acceleration mechanisms of guiding center 
kinetic theory and those in focused transport theory which we use to model energetic particle 
acceleration by small-scale flux ropes. Focused transport theory includes an additional acceleration 
mechanism associated with parallel guiding center motion acceleration by the parallel component of 
the acceleration of the flux-rope flow (non-inertial force). Furthermore, it was discussed that, only in 
the case of compression acceleration, net energetic particle acceleration occurs for both the isotropic 
and anisotropic parts of the energetic particle distribution. For all other flux-rope acceleration 
scenarios (shear-flow acceleration during incompressible contraction and merging, parallel guiding 
center motion acceleration by the parallel reconnection electric field in merging flux ropes and the 
parallel component of the acceleration of the flux-rope flow (non-inertial force)), net acceleration 
occurs only for the anisotropic part of the distribution.  
   In an extension of previous work, we presented the outline of a statistical transport theory for self-
consistent energetic particle acceleration by and large-scale transport through numerous contracting 
and merging quasi-2D small-scale flux ropes. The theory applies to flux rope cross-sections belonging 
to the inertial range of turbulence and is valid for small-scale flux ropes in the strong 
guide/background field limit. It was assumed that flux-rope dynamics are occurring essentially in the 
2D plane of the magnetic island (twist) component perpendicular to the guide field (axial) component 
of these structures. The extended theory, as presented, consisted of two coupled equations: (i) a 
focused transport equation which divide all flux-rope acceleration mechanisms into coherent 
acceleration in response to mean magnetic island dynamic quantities, and stochastic (2nd order Fermi) 
acceleration due to statistical fluctuations in these quantities and, (ii) a new equation for the transport 
of total energy density (kinetic and magnetic) of magnetic islands advected with the non-uniform solar 
wind flow based on a recent nearly incompressible MHD theory for solar wind turbulence. Coupling 
between the two equations were established with the inclusion of newly derived magnetic island 
damping coefficients in the magnetic island transport equation derived on the basis of conservation of 
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total energy in the energy exchange between energetic particles and magnetic islands for both coherent 
and stochastic acceleration.      
    Test particle, coherent energetic proton acceleration rates at Earth were compared for different flux-
rope acceleration cases in the strong guide field limit for flux-rope cross sections in the inertial range. 
We found the two most efficient acceleration scenarios to be combined curvature drift and generalized 
betatron acceleration in contracting and merging flux ropes in the compressible limit (compression 
acceleration), and parallel guiding center motion acceleration by the parallel reconnection electric field 
in merging flux ropes. The latter tended to dominate for the largest magnetic island cross sections in 
the inertial range provided that the anisotropy in the particle distribution not too small.  
   Stochastic flux-rope acceleration rates were also investigated. A key difference between the two 
types of acceleration is that both the isotropic and anisotropic parts of the distribution function 
contribute to net acceleration for all acceleration cases during stochastic acceleration. Coherent 
acceleration is solely determined by the anisotropic part of the particle distribution for all the 
acceleration cases except acceleration by flux-rope flow compression which also yields net 
acceleration from the isotropic part of the distribution. Comparison of stochastic acceleration for 
small-scale flux ropes and parallel-propagating Alfvén waves (standard quasi-linear theory) revealed 
that parallel guiding center motion acceleration by the parallel reconnection electric field in merging 
flux ropes was more efficient than Alfvén waves in the quasi-linear transport limit of our theory. In the 
non-linear transport regime of our theory, combined stochastic curvature drift and generalized betatron 
acceleration in flux ropes contracting and merging in the compressible limit (compression 
acceleration) can also be more efficient than stochastic acceleration by Alfvén waves for energetic 
protons at 1 AU.   
   Finally, our theory suggested that the variance in the magnetic mirroring force present in small-scale 
flux ropes plays a potential important role in energetic particle pitch-angle scattering in solar wind 
conditions at 1 AU. Analysis of pitch-angle scattering showed that energetic proton pitch-angle 
scattering by small-scale flux ropes should be more efficient than pitch-angle scattering by Alfvén 
waves, provided that the non-linear spatial transport limit of our theory is applicable, but less efficient 
than pitch-angle scattering by Alfvén waves when we take the quasi-linear limit of our theory.     
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