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Abstract

Despite significant recent advances in molecular genetics and
neuroscience, behavioral ratings based on clinical observa-
tions are still the gold standard for screening, diagnosing, and
assessing outcomes in neurodevelopmental disorders,
including autism spectrum disorder. Such behavioral ratings
are subjective, require significant clinician expertise and
training, typically do not capture data from the children in their
natural environments such as homes or schools, and are not
scalable for large population screening, low-income commu-
nities, or longitudinal monitoring, all of which are critical for
outcome evaluation in multisite studies and for understanding
and evaluating symptoms in the general population. The
development of computational approaches to standardized
objective behavioral assessment is, thus, a significant unmet
need in autism spectrum disorder in particular and develop-
mental and neurodegenerative disorders in general. Here, we
discuss how computer vision, and machine learning, can
develop scalable low-cost mobile health methods for auto-
matically and consistently assessing existing biomarkers, from
eye tracking to movement patterns and affect, while also
providing tools and big data for novel discovery.
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The need for computer vision for
computational behavioral coding
Despite significant recent advances in molecular ge-
netics and neuroscience, behavioral ratings based on
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clinical observations are still the gold standard for
screening, diagnosing, and assessing outcomes in
neurodevelopmental and neurodegenerative disorders,

including autism spectrum disorder (ASD). Autism
screening tools rely on parent reports [50], which can
lead to biased assessments depending on level of
parental knowledge about child development and cul-
tural factors [30] (see also [10] for additional discus-
sion on the virtues and challenges of the current
standard of care). Diagnostic assessments are on the
basis of clinical behavioral observations and ratings.
Such behavioral ratings are subjective, require signifi-
cant clinician expertise and training, typically do not
capture data from the children in their natural envi-

ronments such as homes or schools, and are not scalable
for large population screening, low-income commu-
nities [13], or longitudinal monitoring, all of which are
critical for outcome evaluation in multisite studies and
for understanding and evaluating symptoms in the
general population.

The development of computational approaches to
standardized objective behavioral assessment is, thus, a
significant unmet need in ASD in particular and devel-
opmental and neurodegenerative disorders in general.

Here, we discuss and present some recent results on
how computer vision, combined with machine learning
and data analysis, can lead to the development of scal-
able mobile health methods for assessing existing
behavioral biomarkers, while also providing tools and big
data for novel discovery. The computer vision tools range
from gaze and attention monitoring to movement pat-
terns and affect coding.

Developing such scalable digital behavioral measure-
ment tools will be important for addressing the major

public health challenge of identifying and treating
children with neurodevelopmental disorders. Neuro-
developmental disorders affect w15% of the population
in the United States (US). In the case of ASD, one out
of 59 children is affected, with an estimated annual cost
to society of $265 billion. Early intervention is critical,
resulting in improved cognitive, language, and social
functioning, which affects long-term outcomes and re-
sults in an estimated per-person yearly cost savings of
$19,000 ($1.2 million lifetime) [8]. Early intervention
starts with behavioral screening, a major challenge when
considering that many US clinics have wait lists of 4e12

months to see experts, which are even less available in
low-income countries.
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To truly scale in behavioral coding,methods that allow for
automated data collection in natural environments, such
as the home, are needed.We have recently demonstrated
that it is feasible to collect high quality video data in
response to stimuli delivered in an iPhone app down-
loaded from the web and independently administered by
parents at home [15]. In this particular study, we
collected data from 1756 participants (4441 videos) who

behavior was recorded with the camera in the phone. We
showed that 87.6% frames provided high quality data and
automated coding via computer vision determined that
children with typical development versus autism risk
could be differentiated based on patterns of facial af-
fective expression and attention [4,15,26], more on this
is discussed in the following sections. A scalable inte-
grated approach to active stimulus design, consumer-
grade sensing exploitation, and automatic analysis via
computer vision and machine learning is an example of
the key driving force to improve the assessment of ASD

and related disorders. In addition to scalability and
access, computational behavioral phenotyping via com-
puter vision andmachine learningwill result in big data at
unprecedented multiscale resolution, opening the door
to new understandings in developmental disorders.

Although, in this article, we concentrate on computer
vision tools for ASDscreening, it is important to stress that
this is just one example of the use of computer vision for
computational behavioral phenotyping. Similar tools can
be used for diagnosis and symptoms and therapy moni-

toring, as well as other developmental disorders such as
attention deficit hyperactive disorder (ADHD); see
Refs. [27,29] for further related discussions on the subject
of digital phenotyping, of which behavior is a particularly
important component and one is ready to be addressed by
computer vision. Moreover, the tools go beyond develop-
mental disorders, for example, Parkinson’s disease [1] and
pain [45], and, thereby, the description below should be
interpreted as one example of how computer vision can
complement and augment current standards of care (see
also for example https://md2k.org/for a major initiative on
mobile sensing, including behavior, and numerous publi-

cations and tools in multiple areas and diseases). The
worksdescribednext clearly illustrate thatwe are ready for
this important step of utilizing and extending computer
vision as an integral step in behavioral analysis for mental
and developmental health care.
Examples of computer vision in autism
spectrum disorder
Now, we present a number of examples on the use of
computer vision tools for computing behavioral bio-
markers relevant to ASD and other neurodevelopmental
and neurodegenerative disorders. As mentioned before,
these are illustrative only, showing that the tools are not
only ready to replicate known biomarkers but also to
discover new ones. Moreover, works as the one reported
www.sciencedirect.com
in Ref. [15] demonstrate that these computer vision
tools can be applied to data collected in natural
environments.

Gaze and attention
Gaze and attention are well-established behavioral
measurements in developmental disorders; this is re-
flected in the very extensive literature on the subject,
e.g., Refs. [7,31,35e37,42,43]. Their connection with
genetic factors has also been recently reported [9].
Given that differences in patterns of attention are

considered a key behavioral indicator of certain devel-
opmental disorders, an important goal is to take advan-
tage of new technologies that will allow us to collect data
on attention patterns outside laboratory settings and
provide scalable and low-cost use on mobile devices
[4,15].

Some of our initial studies [2] provide a proof of concept
of how data on gaze and attention can be collected in a
manner that is scalable (see also [6,32] for more generic
computer vision algorithms for low-cost gaze analysis on

consumer devices). A dynamic movie that displayed
salient social and nonsocial stimuli (Figure 1, top) was
used to investigate attention patterns in toddlers with
(N = 22) and without (N = 86) ASD. The capabilities
of the sensing and analysis tools, namely an off-the-shelf
video camera and computer vision, were taken into
consideration for designing the stimuli. In particular, the
stimuli are designed to require only a region-based ac-
curacy, right or left attention discrimination in this
particular case, to evaluate dynamic attentional prefer-
ence for social or nonsocial stimuli. The movie showed a

social stimulus on the left (singing women) and a
nonsocial on the right (toys). Both halves changed
during the 60 s of presentation, defining a total of nine
temporal blocks of distinct social (left half) and nonso-
cial (right half) combinations. Computer vision first
automatically detects key facial landmarks of the par-
ticipants (Figure 1, bottom left), and then we use these
landmarks to compute the extreme yaw angle values to
determine the midrange yaw angle value. We define two
thresholds by adding/subtracting 10% of the difference
between the midrange value and the extreme values to

the midrange value. With this, we determine whether
the participant is looking at the left (social) or right
(nonsocial) parts of the dynamic stimuli, or if the yaw
angle value was not large enough to conclude. In this last
case, we further use the landmarks to make a decision.
In particular, we use the landmarks at the edges of the
eye to estimate the position of the middle of the eye and
the distance between this middle and both edges. Then,
we check whether or not the pupil is close enough to
one of the edges to conclude the attention direction. If
not, we assume that the participant is looking some-

where in the middle of the stimuli. We use this method
with both eyes. Details of this fully stimuli-algorithm
Current Opinion in Biomedical Engineering 2019, 9:14–20
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Figure 1

Top: Example of a stimulus with a social and nonsocial component simultaneously presented (see also graphical abstract for another typical stimulus
example). Bottom Left: Example of automatic detection of landmarks, head position, and affect while responding to a visual stimulus (see example on
the graphical abstract). The participant is the child on the right. Bottom Right: Example showing we can automatically track body features (colored
sticks), critical for ASD and developmental disorders. (Faces of participant and caregiver occluded here in the figure for privacy protection. Analysis is
performed on the original video without occlusions.) ASD, autism spectrum disorder.
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integration for scalable attention tracking are provided
in our publications.

To validate this preliminary approach, we consider three
predictions derived from previously published studies
that used state-of-the-art high-end (e.g., Tobii) eye
tracking technology [2]. First, we showed that the ASD

participants were more likely to have reduced attention
to the movie overall. We next examined differences
between social and nonsocial attention. We found that it
was very rare for a child without ASD to focus the ma-
jority of their attention on the nonsocial stimuli,
whereas this occurred much more often among the
children with ASD. Thus, this biomarker has potential
sensitivity as a risk marker for ASD. Finally, we took into
account the temporal changes in the stimulus to inves-
tigate patterns of fixation and shifting of attention. We
showed that participants with ASD are more likely to

fixate on only one type of stimulus in the movies (e.g.,
social/nonsocial regions) than the non-ASD children, an
additional potential dynamic biomarker.
Current Opinion in Biomedical Engineering 2019, 9:14–20
This example illustrates how when combining computer
vision with stimulus design, we can use consumer de-
vices to infer behavioral information that was previously
available only with the use of high-end laboratory-style
tools.

Motor analysis
Early manifesting impairments in motor abilities have
been documented throughout the lifespan in individuals
with ASD, from infancy through adults. Examples of

early motor differences include head lag when pulled to
sit, delays in walking, postural stiffness, slumped poster,
and difficulty maintaining midline position of the head,
e.g., Refs. [3,16e19,46]. Quantitative, objective
methods for assessing atypical motor/movement in ASD
are needed. Experts in computer vision will immediately
notice that the abovementioned behavioral biomarkers
are great candidates for automatic coding, while at the
same time challenging state-of-the-art computer vision
to work on young children and on very unconstrained
scenarios. We illustrate next a few very promising
www.sciencedirect.com
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examples demonstrating the value and readiness of
computer vision to address these challenges.

Body motion
Toddlers with ASD often presented asymmetric arm
positions in early life [16]. Using computer vision, we
are able to estimate the 2D body pose of the toddlers
and estimate arm angles [24]. This is one of the motor

measurements that can be automatically performed
with computer vision but is not the only one. One of the
main diagnostic criteria for ASD in the Diagnostic and
Statistical Manual of Mental Disorders (DSM-5) is
restricted, repetitive-patterns of behavior, interests,
and/or activities. A primary way in which these behaviors
manifest in ASD is stereotypical motor movements
(SMMs). Traditional measures of SMMs include rating
scales, direct behavioral observation, and video-based
methods, all of which can be as mentioned before sub-
jective, inaccurate, time-intensive, and difficult to

compare across different individuals with ASD. More
reliably, accurately, and efficiently detecting and moni-
toring SMMs over time could provide important insights
for understanding and intervening upon a core ASD
symptom [20,21]. Using computer vision to track body
parts, e.g. Refs. [5,23], see Figure 1, and modern data
analysis tools can be exploited to study this as well, e.g.,
Ref. [47].

Head movement
While body motion is recognized as an important

behavioral measurement for ASD, more subtle motions
from the head are critical as well. In Ref. [4], we
examined atypical orienting and attention behaviors in
toddlers with ASD (see also [34]). One hundred four
toddlers, 16e31 months old (mean = 22) participated in
this study. Twenty-two of the toddlers had ASD, and 82
had typical development or developmental delay. Tod-
dlers watched video stimuli on a tablet while the built-in
camera recorded their head movement. By automatically
following facial landmarks (see Figure 1), computer
vision analysis measured participants’ attention and
orienting in response to calling the child’s name. Dif-

ferences in orienting behavior were analyzed between
the ASD group and the comparison group. Reliability
between computer vision analysis and human coding for
orienting to name was excellent (intraclass coefficient
0.84, 95% confidence interval 0.67e0.91). Only 8% of
toddlers with ASD oriented to name calling on >1 trial,
compared with 63% of toddlers in the comparison group
(p = 0.002). Mean latency to orient was significantly
longer for toddlers with ASD (2.02 vs 1.06 s, p = 0.04).
These results already provide very strong automatically
computed behavioral biomarkers (see Ref. [4] for addi-

tional details).

Attention and head turning is not the only important
characteristic we can measure, once we exploit com-
puter vision tools to track the head motion at high frame
www.sciencedirect.com
rate and spatial accuracy. For example, the development
of postural control is an index of neuromuscular re-
actions to the motion of body mass to retain stability
[28]. Research on children with ASD has shown that
ASD is associated with deficits postural control, which is
manifest in postural sway. Such differences become
more evident when the child views complex multisen-
sory and social stimuli, e.g., Refs. [18,22]. We have

preliminary results on using computational tools to
automatically measure postural sway when watching
multisensory stimuli, using computer vision and land-
mark tracking as input to new metrics for postural sway
and other subtle motions [10]. The high frame rate,
compared with human naked eye observations, is crit-
ical, as it was in our work on the latency of orienting
behavior mentioned earlier. This opens the door to
discovering new high-resolution biomarkers. The pre-
liminary results show not only great statistical power to
distinguish ASD from non-ASD but once again help to

discover previously unknown characteristics of ASD.

Affect analysis
Differences in affect and emotion is an important
biomarker for numerous developmental and neurode-
generative disorders and have been studied extensively
in ASD as well. Following works on affective computing
and literature on automatic encoding of facial affect,
e.g. Refs. [12,14,41,44], we have recently deployed and

reported preliminary studies on automatic encoding of
facial affect for ASD. As shown in Figure 1, with auto-
matic detection of critical facial landmarks, we can
compute emotions in addition to tracking head motion
and overall body posture (see previous subsections).
These computational computer vision tools are devel-
oped taking into account the unique application, from
the use of only consumer-grade sensing technology such
as mobile phone cameras to the population (children)
and deployment environments (e.g., homes); all of them
brining unique challenges that need to be addressed to

develop truly scalable computer visionebased tools and
interventions. We have validated the automatic tools in
toddlers with ASD and typical development showing
excellent reliability [25,26]; for example, overall agree-
ment between the human raters for coding of engage-
ment, facial expression, and social referencing achieved
an intraclass correlation coefficient (ICC) score of 0.84
with 95% confidence intervals of 0.76e0.95. Reliability
between the automatic methods and the expert human
rater when coding total time of ‘happy’ was excellent,
achieving an ICC of 0.90. The reliability for the sub-

groups of participants with and without ASD was also
excellent, achieving ICC scores of 0.90 and 0.89,
respectively. Performance of the automatic methods was
also validated on a per-frame basis; 136,450 frames
(w75 min) were coded for emotion across all the par-
ticipants. Overall, the automatic method achieved high
precision, recall, and F1 scores: 0.89, 0.90, and 0.89,
respectively. The agreement between computer vision
Current Opinion in Biomedical Engineering 2019, 9:14–20

www.sciencedirect.com/science/journal/24684511


18 Future of BME: Digital heath and BME
and expert raters is as strong as among raters them-
selves, and most of the differences come at the ends of
the expression because it is hard to exactly define the
frame for the beginning or end of an emotion. See
Ref. [26] for details and also [15] for results on corre-
lations between automatically computed affect and ASD
risk.
Future challenges
Behavioral coding is still the gold standard for multiple
developmental disorders. Recent studies, as described
in this note (see also [11]), have already demonstrated
both the feasibility and the value of developing com-
puter visionebased scalable computational tools for
behavioral phenotyping. The tools here described were

deployed both in the clinic [4,24,26] and in the wild
[15]. The machine-learning tools that complement the
computer vision components are explainable, for
example based on decision trees and random forests,
meaning the discoveries are not black boxes but provide
fundamental insights into the discovery of biomarkers
and their potential neurological basis. While validating
the reliability of these novel scalable computational
tools, we confirmed known behaviors, this time
collected with low-cost scalable paradigm, contrary to
high-end and highly sophisticated and expensive

instrumentation, while at the same time, discovering
new ones.

A number of challenges and opportunities remain,
including:

� Extension of the computational tools to consider not
only the presence of a behavior but its actual strength,
thereby considering behaviors as continuous bio-
markers (see Ref. [26]);

� Addressing multiple ages, including infants (e.g.,

Ref. [36]);
� Extension of the tools to take into account cultural
differences, see for example [40];

� Extension of the computational tools to measure in-
teractions and not just individual behaviors (see also
[38,49] and data at http://www.cbi.gatech.edu/mmdb/);

� Extension of the computational tools to address fully
unconstrained scenarios;

� Large epidemiological validation, as currently
addressed by a number of researchers as part of the
National Institutes of Health Autism Center of

Excellence program at Duke University;
� Integration of computer vision with other senses, in
particular, audio (see also [40]);

� Integration of automatic behavioral coding with other
more standard measurements, including the Modified
Checklist for Autism in Toddlers, Revised [39], elec-
tronic health records, and diagnostic methods, such as
the Autism Diagnostic Observation Schedule [33].
Current Opinion in Biomedical Engineering 2019, 9:14–20
� Exploitation of tools from computer vision beyond
ASD, including but not limited to ADHD, eating
disorders, PTSD, movement disorders, pain, and
Alzheimer’s disease.
Broad and multimodal data will be particularly impor-

tant for distinguishing ASD from closely related condi-
tions, for example, ADHD; see, for example, [48]
for recent work in such integration of multiple mea-
surements and its application to comorbidity
understanding.

The challenges do not end at the engineering level. For
example, human factors and ethical considerations are
important.

To address these challenges, the need for interdisci-

plinary teams is very clear. The development of the
scalable computational tools here reported need domain
experts, engineers, statisticians, app developers, ethical
and regulatory experts, and clinicians, to name just a few
of the must have components of the team.

The need for a revolution in health care in general and
developmental disorders in particular is clear. Compu-
tational behavioral analysis is a necessary component of
this revolution, and the recent results have demon-
strated that tools from computer vision are ready to

contribute to this challenge.
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