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Abstract

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has shown clinical potential for
relieving the motor symptoms of advanced Parkinson’s disease. While accurate localization of
the STN is critical for consistent across-patients effective DBS, clear visualization of the STN
under standard clinical MR protocols is still challenging. Therefore, intraoperative microelec-
trode recordings (MER) are incorporated to accurately localize the STN. However, MER require
significant neurosurgical expertise and lengthen the surgery time. Recent advances in 7 T MR
technology facilitate the ability to clearly visualize the STN. The vast majority of centers, how-
ever, still do not have 7 T MRI systems, and fewer have the ability to collect and analyze the
data. This work introduces an automatic STN localization framework based on standard clinical
MRIs without additional cost in the current DBS planning protocol. Our approach benefits from
a large database of 7 T MRI and its clinical MRI pairs. We first model in the 7 T database, using
efficient machine learning algorithms, the spatial and geometric dependency between the STN
and its adjacent structures (predictors). Given a standard clinical MRI, our method automatically
computes the predictors and uses the learned information to predict the patient-specific STN.
We validate our proposed method on clinical T,W MRI of 80 subjects, comparing with experts-
segmented STNs from the corresponding 7 T MRI pairs. The experimental results show that our
framework provides more accurate and robust patient-specific STN localization than using
state-of-the-art atlases. We also demonstrate the clinical feasibility of the proposed technique

assessing the post-operative electrode active contact locations.
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1 | INTRODUCTION

Deep brain stimulation (DBS) is a neuromodulation intervention for

Abbreviations: 7T3T, 7T MRI subthalamic nucleus atlas for use with 3T MRI;
ANOVA, analysis of variance; DBS, deep brain stimulation; DC, Dice coefficient;
DISTAL, DBS intrinsic template atlas; FDA, U.S. Food and Drug Administration;
FGATIR, fast gray matter acquisition T, inversion recovery; FLAIR, fluid attenu-
ated inversion recovery; MER, microelectrode recordings; MNIPD25, popula-
tion-averaged atlas that was made with 3T MRI of 25 Parkinson’s disease
patients; PD, Parkinson’s disease; QSM, quantitative susceptibility mapping; SN,
substantia nigra; STN, subthalamic nucleus; SWI, susceptibility-weighted image;
T, Tesla; T4 W, T,-weighted; T,W, To-weighted; UHFA, ultrahigh-field atlas

relieving the motor symptoms of Parkinson’s disease (PD), dystonia,
and Essential tremor, among others (Dormont et al., 2010; Kim et al.,
2010; Krack, Hariz, Baunez, Guridi, & Obeso, 2010; Limousin et al.,
1998; Mallet et al., 2007; Patel, Khan, & Gills, 2008; The Deep-Brain
Stimulation for Parkinson’s Disease Study Group, 2001; Volkmann,
2007). In particular, DBS of the subthalamic nucleus (STN) has been

shown to be an effective symptom’s treatment for advanced PD
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(Dormont et al., 2010; Limousin et al., 1998; The Deep-Brain Stimula-
tion for Parkinson’s Disease Study Group, 2001; Volkmann, 2007).

Accurate 3D positioning of the chronic electrode within the STN
is critical for the success of the DBS surgery, as its efficacy and
adverse effects are highly correlated with the electrode’s location
(Hamid et al., 2005; Kerl et al., 2012; Mallet et al., 2007; Patel et al.,
2008; Starr et al., 2002). Thus, precise identification of the STN (lens-
shaped) of individual patients facilitates the DBS planning (and post-
op programming). However, such identification in clinical settings still
remains challenging due to its small size (approximately 6 x 4 x 5mm)
and the ambiguous border with neighboring regions (Abosch, Yacoub,
Ugurbil, & Harel, 2010).

Both direct- and indirect-targeting is often incorporated to estimate
the 3D STN location and shape. Direct identification of the STN and its
surrounded regions (e.g., substantia nigra [SN] and zona incerta) is possi-
ble using various MRI modalities where these structures’ appearance is
hypo-intense such as T,W, fluid attenuated inversion recovery (FLAIR),
fast gray matter acquisition T4 inversion recovery (FGATIR), and suscep-
tibility weighted imaging (SWI). However, the distinction among the
neighborhood structures is often unclear on the clinical MRI, and the
STN appears in only one or two slices, thereby resulting in sub-optimal
targeting within the 3D STN (positive effects), and relative to adjacent
structures of the STN (potential negative/side effects). There are efforts
underway to directly visualize the STN via MRI reconstruction methods
such as susceptibility weighted phase imaging or quantitative suscepti-
bility mapping (QSM) (Chandran, Bynevelt, & Lind, 2015; Liu et al.,
2013; Rasouli et al.,, 2017). Moreover, recent studies have proposed
automatic methods to segment the STN on these contrast enhanced
MR sequences (Garzon, Sitnikov, Backman, & Kalpouzos, 2017; Milletari
et al., 2017; Visser, Keuken, Forstmann, & Jenkinson, 2016). While early
work on QSM shows promising results, uncertainty in susceptibility esti-
mates under different acquisition protocols needs to be further investi-
gated (Lauzon, McCreary, McLean, Salluzzi, & Frayne, 2016) and the
overall performance needs to be validated on large-scale clinical data.

The indirect STN localization approach refers to the selection of
targets based on nearby anatomical landmarks and then estimates
consensus coordinates in relation to these landmarks. The most com-
mon method is to select the anterior- and posterior-commissure ana-
tomical landmarks on the clinical MRI, define the midline and the mid
commissural point, and use the consensus coordinates +12 mm lat-
eral, 4 mm posterior, and 5 mm inferior to the mid commissural point
(Starr et al., 2002). This is used as an initial estimation for the location
of the STN that is later refined based on the neurosurgeon’s expertise
and preferences. However, this consensus method does not account
for the obvious variability in the patients’ anatomy (Daniluk, Davies,
Ellias, Novak, & Nazzaro, 2010; Kerl et al., 2012). Moreover, it was
reported that there is significant inter-surgeon variability in the selec-
tion of anterior- and posterior-commissure points, which has a sub-
stantial effect on the localization of targets (Pallavaram et al., 2008).
For these reasons, indirect targeting is almost always complemented
by other refinement methods.

Atlas-based approaches have been proposed to improve targeting
accuracy. Some studies show promising results for the visualization of
the STN on 3 Tesla (T) MR datasets. Patch based label fusion methods

were used for segmenting the STN and its adjacent structures using

multimodal 3 T MRIs (Haegelen et al., 2013; Xiao, Fonov, et al., 2014).
Xiao, Jannin, et al. (2014) analyzed the morphometric variability of the
STN obtained by majority voting of labels that were augmented on
3 T MRIs of advanced PD patients. D'Albis et al. (2015) provided a
pipeline for DBS planning and post-operative validation and adopted
an atlas-based segmentation in the surgical planning flow. Post-
operative active contacts’ clusters projected onto the CranialVault
atlas were used for DBS target prediction in Pallavaram et al. (2015).
A probabilistic approach to map DBS electrode coordinates onto the
MNI space was presented in Horn, Kiihn, et al. (2017). More recently,
to achieve anatomical precision in the MNI space, a histological atlas
(Chakravarty, Bertrand, Hodge, Sadikot, & Collins, 2006) was merged
with subcortical atlases based on multiple contrast 3 T MR sequences
from PD patients (Xiao et al., 2017) and high resolution multimodal
MRIs and structural connectivity data (Ewert et al., 2017).

While encouraging initial results were obtained with these tech-
niques, the targeting accuracy is oftentimes insufficient, due in part to
the large per-patient STN variability, to fully ensure DBS treatment
efficacy and safety. Based on patient-specific clinical data, further
revisions of the approximated lead location are often required when
using these atlas-based approaches.

Microelectrode recordings (MER) are often incorporated to define
the precise location of the STN and correctly place the electrode lead
within the targeted structure. These electrophysiological measurements
require significant team expertise and extend the surgery time. MER
are often complemented with patient’s behavioral feedback while the
subject is awake (Abosch et al., 2010). Note that brain shift has been
shown to increase with the length of the procedure (e.g., resulting from
extended MER), causing further challenges. Others have suggested that
while the incidence of brain shift is infrequent, it is also unpredictable
(Halpern, Danish, Baltuch, & Jaggi, 2008; Ivan et al., 2014; Petersen
et al., 2010). Lack of standardization and variability in how individual
centers use MER emphasizes the importance of developing additional
standard and objective approaches for targeting the STN.

With recent advances in ultrahigh magnetic fields hardware and
acquisition protocols, 7 T MR imaging techniques now allow the direct
identification of small and complex anatomical structures, including
the 3D STN, thanks to its superior contrast and high resolution
(Abosch et al., 2010; Cho et al., 2011; Kerl et al., 2012). Furthermore,
7 T MRI has already facilitated the study of connectivity within the
basal ganglia and thalamus and enabled the subdivision of the STN
into motor, associative, and limbic sub-regions (Abosch et al., 2010;
Lenglet et al., 2012; Plantinga et al., 2016). Keuken et al. (2013) inves-
tigated structural changes of the STN using atlases based on 7 T MRI
in different age groups (healthy subjects). Probabilistic atlas maps
obtained from multiple 7 T MR contrasts were used for analyzing ana-
tomical variability on subcortical structures (Keuken et al., 2014).
Wang et al. (2016) generated the ultrahigh-field atlas of the STN using
the 7 T T4-weighted (T;W) and T,-weighted (T,W) MRI. For use with
clinical data, Plassard et al. (2017) created atlases based on the 7 T
MRI of healthy subjects and used them to segment subcortical struc-
tures on 3 T contrast enhanced MR sequences. Moreover, a high qual-
ity 7 T atlas obtained from elderly subjects was registered onto the
3 T MRI template averaged on PD patient’s data (Milchenko et al.,

2018). Automated methods to segment brain subcortical structures
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TABLE1 Demographic and clinical details of the used 80 subjects

Gender Diagnosis

Age
Essential Parkinson’s Normal
Male Female Tremor Disease Control (mean = standard deviation)
61 19 12 56 12 60 + 13.8

using 7 T MRI have been proposed, leveraging sufficient intensity
information from multiple MR contrasts (Kim, Lenglet, Duchin,
Sapiro, & Harel, 2014; Visser, Keuken, Douaud, et al., 2016; Visser,
Keuken, Forstmann, et al., 2016). The clinical feasibility of 7 T MRI for
localization of the STN has been previously demonstrated (Duchin,
Abosch, Yacoub, Sapiro, & Harel, 2012). More recently, the U.S. Food
and Drug Administration (FDA) cleared the first 7 T MRI system (The
Magnetom Terra, Siemens Medical Solutions) for clinical use. How-
ever, 7 T MR machines are still rare in current clinical practice and are
associated with significant infrastructure costs (Plantinga et al., 2014).
Therefore, the STN still needs to be localized on the ubiquitous clinical
platforms of 1.5 T or 3 T MRI.

In this work, we propose to incorporate a high-quality 7 T MR
dataset for training machine learning methods to statistically model
geometrical dependencies of the subcortical structures (the frame-
work proposed here is named “7 T-ML"). We demonstrate that this
approach facilitates the accurate prediction of the patient-specific
STN location and shape on standard clinical MRI,? thereby enjoying
the advantages of high-quality data without the need for a 7 T
machine, or any additional hardware. The proposed 7 T-ML frame-
work is extensively compared with ground truth obtained from 7 T
MRI of the same subjects and with state-of-the-art atlas-based results
(comprising histology, healthy population, Parkinson’s population, and
elderly, thereby introducing high variability in the testing and valida-
tion), showing the significantly improved performance, which is critical
for accurate targeting, DBS lead localization, and clinical outcomes.
The algorithm’s relevance for DBS in particular and neuromodulation
in general is demonstrated with the accurate visualization of active

contacts from real DBS surgeries.

2 | METHODS

2.1 | Overview

We create an annotated dataset of multiple pairs (same subject) of
clinical (1.5 Tor 3T) and 7 T MRIs along with the segmented (labeled)
subcortical structures of interest. The 3D STN was segmented on the
7 T MRI, but not on the clinical image (where as discussed above, is
not clearly visible). Subcortical structures in the vicinity of the STN

were also segmented on the 7 T MRI (hereafter named “predictors”),

1The framework and algorithm here described are components of the patented
and FDA cleared patient-specific STN visualization tool developed by Surgical
Information Sciences, Inc. (Harel & Sapiro, 2016; Sapiro, Harel, Duchin, & Kim,
2017). A preliminary work was presented at conferences (Kim, Duchin, Kim,
et al,, 2015; Kim, Duchin, Sapiro, Vitek, & Harel, 2015a, b]. The scope of this
study is the validation and analysis of the method on a large scale clinical data,
and comparison of the proposed method with available state-of-the-art
methods.

these are visible on the clinical image as well. This dataset was used
for learning the geometric relationships between the STN and its pre-
dictors. The dataset containing the clinical and 7 T MRIs along with
the segmented structures is referred hereafter as the “training set.”
Given a new patient’s clinical MRI (no 7 T images for this patient), the
algorithm automatically detects the predictors and then computes the
patient-specific, that is, patient’s own, 3D STN location and shape.
This is based on the learned information from the training set. To eval-
uate and validate the quality of the automatic STN localization, the
results are compared with the STN segmented by experts on the 7 T
MRI (the standard data split between training and testing set is used
here), and further clinically validated with active contact positions
obtained from the post-operative CT of the same patient. Compari-
sons with existing literature are provided as well, showing a significant
improvement on accuracy and robustness, both critical for patient-
specific STN DBS and neuromodulation targeting.

2.2 | Database and preprocessing

The 7 T MRI and its corresponding (same subject) clinical MRI (1.5 T
or 3 T) of 80 subjects were used in this study under approval of the
Institutional Review Board at the University of Minnesota. Demo-
graphic and clinical details for the subjects are presented in Table 1.
Table 2 presents the MRI modality and resolution of the 7 T and clini-
cal data that were used in this work.

Anatomical experts in the team (including neurologists, neurosur-
geons, and radiologists) manually segmented the STN and its predictors
on the 80 pairs of 7 T T, W and SWI MRIs, and carefully cross-validated
segmentation results. This is the same protocol and ground truth used
for FDA approval of the technology that resulted from this algorithm.?
The 7 T data acquisition protocol, pre-processing, and manual segmen-
tation are detailed in Lenglet et al. (2012) and Duchin et al. (2018), and
omitted here for brevity. For illustration purposes, manual delineation
of the STN and SN on a pair of 7 T T, W and SWI MRIs is visualized in
Figure 1. Duchin et al. (2018) also demonstrated that the 7 T MRI based
STN segmentation highly agrees with MER data (see also Shamir et al.,
2018). Hypo-intense regions that are spatially adjacent with the STN
are considered as predictors. Such subcortical structures are well visual-
ized both on the 7 T and clinical MRIs (Cho et al., 2011).

The 7 T T, W MRIs were co-registered to their clinical T,W MRI
counterparts using the FSL FMRIB'’s Linear Image Registration Tool
(Jenkinson & Smith, 2001), and the structures segmented on the 7 T
images were transformed accordingly (hereafter “7 T priors”). Data
acquisition, pre-processing and co-registration for 7 T and clinical MRI
(1.5 T or 3 T) used in this study were performed following protocols
described in Duchin et al. (2012). The MRI pairs and the 7 T priors
were all stored in a database for retrieval upon the introduction of a

2https://www.accessdata.fda.gov/cdrh_docs/pdf16/K162830.pdf
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TABLE2 MRI modality and resolution of 7 T and clinical data used in our 7 T-ML

7T

Magnetic field strength 15T 3T
MRI modality T.W SWI T.W T.W
Resolution 0.39 x 0.39 x 1.0 mm 0.39 x 0.39 x 0.8 mm 0.5 x 0.5 x 2.0 mm 0.55 x 0.55 x 2.0 mm

0.39 x 0.39 x 2.0 mm

new patient’s clinical MRI on which the STN needs to be localized.
About 46 datasets of 7 T and 1.5 T MRIs pairs of patient groups were
used for training and 34 datasets of 7 T and corresponding 1.5 T or
3 T MRIs of patients and normal control subjects were added in our
database later for further validation. A subset of 15 PD patients in the
training set was selected to further study in detail various factors that
affect the performance of our algorithm. Table 3 presents clinical
details and magnetic field strength of the clinical images in the training
and validation sets. Note that 3 T MRIs were not used at all to train
the algorithm, only for validation.

Given a new clinical T,W MRI, we first compute its affine regis-
tration with all 46 clinical T, W MRIs in the training set within our
database. Intensity similarity scores are measured by calculating the
mutual information between mid-brain regions of the clinical query
image and the registered images in the training set (Wells, Viola,
Atsumi, Nakajima, & Kikinis, 1996). About 30% of training images
sorted by the similarity scores are empirically selected as the most
similar sets to reduce biases (Aljabar, Heckemann, Hammers, Hajnal, &
Rueckert, 2009), and then they are non-linearly registered onto the
clinical query image. The Advanced Normalization Tools (Avants, Tus-
tison, Song, Cook, et al., 2011; Avants, Tustison, & Song, 2011;
Avants & Gee, 2004) was used for global affine registration (with the
mutual information cost metric) and local nonlinear registration of the
basal ganglia region (with cross-correlation cost metric, SyN option,
and bspline interpolation). Then, we resample the clinical query image
to a 0.5 mm isotropic resolution and transform the selected datasets

FIGURE 1

Direct visualization of SN and STN on a coronal 7 T SWI
(top) and a coronal 7 T T, W image registered onto the SWI (bottom).
The blue and yellow represent contours of manually segmented SN
and STN, respectively [Color figure can be viewed at
wileyonlinelibrary.com]

0.72 x0.72 x 2.0 mm

into the query image coordinates system. As a result, the clinical query
data and the 7 T priors in the training set are now in a common coor-

dinate system.

2.3 | 7 T-machine learning based STN prediction

The geometric relationship between the 3D STN and its predictors on
the training set was analyzed using a regression-based shape predic-
tion approach (Baka et al., 2011; Blanc, Seiler, Székely, Nolte, & Reyes,
2012; Rao, Aljabar, & Rueckert, 2008).

We first automatically segment the predictors on a query clinical
ToW MRI, which are observable subcortical structures near the STN,
later used to predict it. To this end, the training dataset is incorpo-
rated in a unified framework of active shape model and active appear-
ance model algorithms (Cerrolaza, Villanueva, & Cabeza, 2012;
Cerrolaza, Reyes, Summers, Gonzalez-Ballester, & Linguraru, 2015;
Cootes, Taylor, Cooper, & Graham, 1995; Frangi, Rueckert,
Schnabel, & Niessen, 2002; Heimann & Meinzer, 2009; Matthews &
Baker, 2004; Sung, Kanade, & Kim, 2007; Tzimiropoulos & Pantic,
2013). Then, we apply the regression-based shape prediction, incorpo-
rating the computed predictors on the query clinical image and the
geometric relationship learned from the STN and the segmented
predictors on the training dataset.

More specifically, 3D shapes of the predictors and the STN are
represented as the coordinates of surface points (vertices in a mesh),
in correspondence, across random subsets of the most similar training
sets previously selected (registered onto the clinical query image). The
poses of the structures are extracted using the generalized Procrustes
analysis (Cootes, Taylor, Cooper, & Graham, 1992; Gower, 1975), and
their shape variations are then modeled using kernel principal compo-
nent analysis (Guo, 2010; Rathi, 2006). A bagging procedure (Breiman,
1996) is applied in the partial least squares regression technique
(Abdi, 2010; Krishnan, Williams, MclIntosh, & Abdi, 2011; Wold, 1982;
Wold, Sjostrém, & Eriksson, 2001) to learn the dependency between
the STN and its corresponding predictors (in the pose and shape fea-
ture space) from these randomly selected subsets of the most similar
training sets (Kim, Duchin, Sapiro, et al., 2015a). We also investigated
a regression forest model (Breiman, 2001; Criminisi et al., 2013) for

TABLE 3 Clinical details and magnetic field strength of clinical images
in the training and validation sets (80 subjects)

Dataset Training set Validation set
Magnetic field strength 15T 15T 3T
The number of patients 46 (15) 10 24
Essential tremor 10 - 2
Parkinson’s disease 36 (15) 10 10
Normal control - - 12

Note. Numbers in parenthesis indicates the number of PD patients for
in-depth study.
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TABLE4 Data acquisition and template T,W images for tested state-of-the-art atlases

7T3T UHFA
Atlases (Milchenko et al., 2018) (Wang et al., 2016)
Data on whichthe STN 7T T, W MRI 7T T, W MRI
atlas was obtained (elderly normal) (normal)
Provided STN atlas 3T T, WMRIinICBMMNI152 7T T, W MRI
template T,W MRI space (PD patients) (normal)

finding the non-linear mapping between the STN and its predictors
(Kim, Duchin, Sapiro, et al., 2015b). Given the computed (visible) pre-
dictors in a new patient clinical data, the 3D STN binary volume is pre-
dicted by exploiting this learnt spatial relationships. See Kim, Duchin,
Sapiro, et al. (2015a) and (2015b) for additional technical details.

Such an ensemble approach with equal weights does not consider
the influence of each training subset on the final confidence map of
the predicted STN. If some training subsets are more influential than
others with respect to the specific patient’s STN prediction, the pre-
diction accuracy can be further improved by increasing their weights/
relevance. To estimate the contribution of each training subset to the
prediction, we investigate non-linear relationships between pose-
related features (Kim, Duchin, Kim, et al., 2015) and the prediction
accuracy from various subjects and corresponding training subsets.
This is done using a random forest model (Breiman, 2001). The global
error score, namely a weighted sum of all the geometric measures,
was used to determine the influence-weight of each training subset
on the final prediction (Kim, Duchin, Kim, et al., 2015). Given new fea-
tures from a query patient and each training subset, the error scores
are estimated using the learned information. An ensemble of predic-
tions from the random subsets with larger weighting (i.e., more influ-
ential sub-atlases for the prediction) yields lower error scores. The
weighted ensemble also provides a final confidence map on the query
patient. We refer to this procedure as “robust prediction” to differen-
tiate it from “ensemble,” that simply incorporates equal weights for all
the subsets. See additional details and explicit parameters’ values in
Kim, Duchin, Kim, et al. (2015).

2.4 | Validation

To evaluate the performance of the proposed 7 T-ML method, we
used clinical data (1.5 T or 3 T MRI) from 80 subjects (46 cases using a
leave-one-out approach on the training set and additional 34 naive
cases for validation, not present at all in the training). One clinical MRI
was selected as a query image at each iteration. When the query
image was from the training set, all its associated data (segmented
structures and other MRIs) was excluded from the 46 training sets.
The STN was then automatically computed on the query image using
the proposed framework. This was done with automatically seg-
mented (on the clinical data) predictor structures, bagged partial least
squares regression, and uniform weights of 100 training subsets. The
current implementation utilizes Amazon Web Services to facilitate the
large scale parallel processing.

Our 7 T-ML method is compared with the following publicly avail-
able STN atlases in the literature to validate its reliability for patient-
specific clinical MRI based STN-DBS targeting: (1) 7 T MRI STN atlas
for use with 3 T MRI (7 T3 T) (Milchenko et al., 2018); (2) ultrahigh-

DISTAL
(Ewert et al., 2017)

3T T1 W/T, W/proton density
MRI (normal), histology, and
DWI (normal/PD patients)

3T T, W MRI in ICBM 2009b
Asym MNI152 space (normal)

MNIPD25
(Xiao et al., 2017)

3T T,*W MRI (PD patients)

3T T2*W MRI in ICBM MNI152
space (PD patients)

field atlas (UHFA) (Wang et al., 2016); (3) DBS intrinsic template atlas
(DISTAL) (Ewert et al., 2017; Horn, Neumann, Degen, Schneider, &
Kuhn, 2017); and (4) population-averaged atlas that was made with
3 T MRI of 25 PD patients (MNIPD25) (Xiao et al., 2017). Data acqui-
sition and template images for these atlases are summarized in
Table 4. This is a very comprehensive comparison since these atlases
include 7 T data, histology, healthy subjects, PD patients, and elderly.
To this end, we computed the transformation between the atlas T,W
MRI templates and the clinical T, W MRIs across 80 subjects, and
standard STN atlases were accordingly transformed to the clinical
data. For a fair comparison, we applied the same approach as the
inter-patient registration between database clinical T,W images and a
clinical query T,W image in our proposed framework. It is a multi-step
registration (global affine registration and local nonlinear registration
on the basal ganglia region) that was adjusted based on a long trial
and error process.

Additionally, we provide the STN segmentation results obtained
with a conventional approach based on intensity information on the
image - the active shape model and active appearance model frame-
work (also used for predictor segmentation in our 7 T-ML) (Sung et al.,
2007; Tzimiropoulos & Pantic, 2013). This also motivates a novel
approach in challenging situations, for example, when the STN bor-
ders are not visible.

The STN manually segmented on the 7 T MRI and transformed
onto the clinical MRI pair of the same subject was used as “ground
truth.” The following measures were first calculated to compare our
7 T-ML and standard atlases with the 7 T manual ground truth STN:
(1) distance between the centers of mass; (2) mean Euclidean distance
of surface points in correspondence; (3) dice coefficient (DC), which is
a normalized overlap measure between two co-aligned binary data-
sets; and (4) volume of the STN (added here for completeness). As
suggested in Shamir, Joskowicz, Spektor, and Shoshan (2009), 2 mm
accuracy is considered an acceptable threshold for neurosurgical and
neuromodulation applications. Therefore, we counted the number of
cases that are less than 2 mm centers of mass distance as a clinically
relevant prediction accuracy measure. Our 7 T-ML STN confidence
map and standard atlases-based STN were normalized to [0, 1] and
binarized with threshold values between 0.3 and 0.4 to eliminate
resampling artifacts, thereby avoiding a bias in the measures induced
by unexpectedly large volumes. A one-way analysis of variance
(ANOVA) was calculated for each measure and a multiple comparison
correction was performed to estimate the methods. Then, post hoc
tests with Tukey’s honest significant difference were executed.

To demonstrate the relevance of the high accuracy of the pro-
posed 7 T-ML approach for DBS and neuromodulation, we also com-
puted the distance between the DBS chronic electrode’s active

contacts and the predicted STN's centers of mass. The center of mass
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TABLE5 Summary of patient data used for the post-operative analysis in the training and validation sets

Dataset

The number of patients

The number of patients for post-operative analysis
Unilateral STN-DBS

Bilateral STN-DBS

Training set Validation set
46 34

15 15

12(11/12) 10(9/10)
3(5/6) 5 (6/10)

Note. Numbers in parenthesis represents the number of available active contacts out of total electrode reconstruction image.

is used here for reference, providing intrinsic distances for proper and
consistent comparison (also across subjects); it should be noted that
the STN’s center of mass was not considered as the optimal target
point. Pallavaram et al. (2015) measured the distance between active
contacts and the estimated target position (using different targeting
protocols, for example, stereotactic coordinates corresponding to the
center of the STN’s motor territory). For this, pre-operative clinical
MRI and the STNs computed from each method are co-registered
onto the post-operative CT of the same patient (where the implanted
electrode is detected). We extensively examined the registration
results to ensure the correct transformation of the STN.

Furthermore, to compare across different approaches the active
contacts location of individual patients, we used a best-fit ellipsoid
representation of the individual's STN. Then, we divided the space
into eight regions (in posterior/anterior, medial/lateral, and superior/
inferior axes) and counted the number of active contacts in each
region (for all patients for which we have available data). We defined
an active contact as “in” a specific region of the STN if its center of
mass was in that region. Note that in contrast to common averaging
techniques where very different shapes are (often significantly)
deformed into a common coordinate system, this is a patient-specific
intrinsic measurement, each individual STN is split into its own eight
regions, and then votes are accumulated. This study demonstrates the
sub-region accuracy of the proposed visualization/targeting approach
that is critical both to localize the active DBS contacts and for future
studies on the clinical targeting value of different STN sub-regions.
The clinical data used for the post-operative analysis in the training
and validation sets is summarized in Table 5. We used 38 electrode’s
lead images (with information available on 31 active contacts, the
others had missing clinical data) reconstructed from the post-
operative CT of 30 PD patients out of the total 80 subjects. These
represent all the subjects from which we could retrieve from the avail-
able clinical records both post-operative data and outcome informa-
tion. This study was repeated also for the location of non-active
contacts for completeness.

Lastly, we selected from the training set 15 PD patients whose
clinical 1.5 T T, W MRIs contain a whole head image in order to
investigate the different factors that affect the STN prediction in our
proposed 7 T-ML framework. For this in-depth analysis, we computed
the STN under various setups: (1) Predictors: manual or automatic seg-
mentation; (2) Regression methods: bagged partial least squares regres-
sion or random forest; (3) Ensemble sizes: 10, 100, and 200; and
(4) Weighting methods: uniform or non-uniform weights on training

subsets based on their contribution to the prediction accuracy.

3 | RESULTS

Our proposed 7 T-ML and standard atlases-based STNs are compared
with the 7 T manual ground truth STN on 80 (160 STNs) subjects’ clini-
cal data, Table 6 and Figure 2. The 7 T-ML STNs were significantly
closer to the 7 T manual ground truth STNs in comparison to the atlas-
based results (p < .0001; ANOVA). Our results demonstrate the high
accuracy and consistency of the proposed 7 T-ML. Compare the
1.25 + 0.60 mm, 2.37 + 1.74 mm, 2.94 + 1.49 mm, 3.50 + 3.57 mm,
and 4.25 4 3.33 average centers of mass distance between the STN
that was computed from the 7 T-ML, 7 T3 T, UHFA, DISTAL, and
MNIPD25 atlases, respectively, and the ground truth STN (p < .0001;
ANOVA). Note that the average error in the 7 T-ML STN is close to half
of the clinical data slice thickness (2 mm), which is roughly a lower
bound to the possible segmentation accuracy. Furthermore, 89.4%
(143/160), 53.8% (86/160), 28.1% (45/160), 51.9% (83/160), and
24.4% (39/160) of the STNs computed from the 7 T-ML, 7 T3 T, UHFA,
DISTAL, and MNIPD25 atlases, respectively, were less than 2 mm from
the ground truth center of mass (acceptable maximal error).

The 7 T-ML also yields significantly better average mean distance
of surface points and DC values (0.57 + 0.18 mm and 64 £+ 12%) than
7 T3 T (1.33 &+ 1.03 mm and 44 + 21%), UHFA (1.76 + 1.01 mm and
24 4 23%), DISTAL (2.16 + 2.97 mm and 39 + 27%), and MNIPD25
(2.60 £ 2.73 mm and 26 + 24%) atlases, respectively, in comparison
with the ground truth (p < .0001; ANOVA).

Volumes of the 7 T-ML based predicted STN (135.3 & 25 mm?®)
and 7 T3 T atlas (129.4 &+ 19 mm?®) are comparable to those of the
7 T manual ground truth STN (134.1 + 29 mm®) on average (p > .05;
ANOVA and post hoc test), while the STNs based on other atlases are
significantly different (p < .05; ANOVA and post hoc test). DISTAL
atlas-based STN is the largest (142.5 + 27 mm®), but UHFA and
MNIPD25 based STNs are smaller on average (106.4 + 23 mm? and
116.0 & 21 mm?, respectively).

Figure 3a presents histograms of the centers of mass distance mea-
sured on 160 STNs computed by the various discussed methods. Each
zone represents bins that include median or average centers of mass dis-
tance (bin size: 0.5 mm). Median and average centers of mass distance of
our proposed 7 T-ML STN are in zone (i), while median and average cen-
ters of mass distance for the STNs computed based on standard atlases
are distributed in zones (i) and (jii). Our proposed 7 T-ML demonstrates
both higher accuracy and consistency in the centers of mass distance
than standard atlases (i.e., smaller average and narrower distribution).
Figure 3b and c visualize, for the compared methods and example sub-
jects, the STNs in different average and median centers of mass distance

zones, exemplifying the superior performance of the proposed 7 T-ML.
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TABLE 6 Quantitative comparison of the STNs obtained using the proposed 7 T-ML and the 7 T3 T, UHFA, DISTAL, and MNIPD25 atlases

MNIPD25

DISTAL

UHFA

7T3T

(Xiao et al., 2017)

CMD
(mm)
4.25
3.33

(Ewert et al., 2017)

CMD
(mm)

(Wang et al., 2016)

CMD
(mm)
294
1.49

(Milchenko et al., 2018)

CMD
(mm)
2.37
1.74

7 T-ML
CMD
(mm)

Volume
(mm®)

MSD
(mm)
2.60
2.73

Volume
(mm®)

142.5

MSD
(mm)
2.16
297

Volume
(mm?)
106.4
16.62

MSD
(mm)
1.76
1.01

Volume
(mm?)
129.4
18.56

MSD
(mm)

Volume
(mm®)

1353

MSD
(mm)
0.57
0.18

DC

DC

DC

DC

DC

116.3
20.76

0.26
0.24

0.39
0.27

3.50
3.57

0.24
0.23

0.44
0.21

1.33
1.03

0.64
0.12

1.25

0.60

Average

26.87

24.85

Standard
Deviation

53.8 (86/160) 28.1(45/160) 51.9 (83/160) 24.4 (39/160)

89.4 (143/160)

CMD < 2 mm (%)

The various methods were compared with the 7 T manual ground truth STNs of 80 patients (160 STNs). A one-way ANOVA and post hoc test (with Tukey’s method) showed that the proposed 7 T-ML is significantly

better than atlas-based methods in each measure (p < .0001). CMD = centers of mass distance; MSD

mean distance of surface points.

The STN segmentation results based on the active shape model
and active appearance model framework (with 7 T priors) showed
1.51 £+ 0.78 mm (centers of mass distance), 0.61 + 0.20 mm (mean
distance of surface points), and 52.3 & 12% (DC) on average, compar-
ing to the 7 T manual ground truth. 79.4% (127/160) of the seg-
mented STNs were less than 2 mm in centers of mass distance. Our
7 T-ML was still significantly better in average centers of mass dis-
tance and DC (p < .001; ANOVA). The volume of the segmented STN
was also significantly different from our 7 T-ML and the 7 T manual
ground truth (p < .001; ANOVA).

We also observed that the distance between active contacts and
the 7 T-ML STN'’s centers of mass (again, here used to provide per-
patient intrinsic coordinates) is much closer to that of the 7 T manual
ground truth STN in comparison to standard atlas-based results
(Table 7; compare 24 mm for our 7 T-ML and ground truth and
3.2-5.6 mm for standard atlases; see also Supporting Information
Table S1 in the Supporting Information material for data on all the con-
tacts). Once again, the STN's center of mass is not clinically considered
the optimal target position, and is here used simply as a reference for
intrinsic coordinates. The target region (preferred by implanting team)
can be defined/visualized within our 7 T-ML STN. Nevertheless, the
results here reported for our tested clinical data are comparable to
those in the literature (Pallavaram et al., 2015).

Furthermore, as shown in Table 8 and Figure 4, the active con-
tacts were frequently populated at the posterior lateral parts
(i.e., regions 2 and 4) of the STN as obtained from the 7 T manual
ground truth STN. The proposed 7 T-ML was consistent with this
observation, while the spatial distribution of active contacts was
markedly different in the atlas-based results. This is repeated for all
the contacts in Supporting Information Table S2 and Supporting Infor-
mation Figures S1-54.

Figure 5 presents an STN visualization based on the 7 T manual
ground truth, our proposed 7 T-ML, 7 T3 T, UHFA, DISTAL, and
MNIPD25 atlases from zone (i) and (iii) in Figure 3a, representing aver-
age centers of mass distance, along with the post-operative electrode
contacts of a specific PD patient. According to the post-operative
monopolar reviews, the activation of the contact 1 was associated with
the best motor improvement (62%), while activation of other contacts
had resulted in lower motor improvements (15-46%). Contact 1 was
entirely inside the dorsal STN according to our proposed 7 T-ML, con-
firmed with the 7 T manual ground truth STN. Active contacts associ-
ated with motor improvements were also placed in the dorsal area of
the STN based on 7 T3 T, DISTAL, and MNIPD25. However, the atlas-
based STNs were associated with large errors in shape and location with
respect to the ground truth (unreliable STN trajectory). Note that a sys-
tem operating/deciding based on our proposed 7 T-ML would have
achieved optimal results (with the predicted STN close to the ground
truth and the current lead location), while the same system operating
based on those atlases would have misled the electrode placement,
thereby resulting in adverse effects. Therefore, atlas-based STN seg-
mentation would require further revision before being utilized into a
clinical setup. While a full investigation of these aspects and conse-
guences is beyond the scope of this study, these results confirm that

our proposed sub-region accuracy 7 T-ML provides a reliable guide for
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FIGURE2 Comparison of (a) centers of mass distance, (b) mean distance of surface points (c) DC, and (d) volume for our proposed 7 T-ML based
STN prediction (using the bagged partial least squares regression, uniform weights, 100 ensemble size, and automatically segmented predictors),
7 T3 T, UHFA, DISTAL, and MNIPD25 atlases, in comparison with 7 T manual ground truth across 80 patients. A one-way ANOVA and post hoc
test (with Tukey’s method) is performed for multiple comparisons. The significance level is denoted by asterisks (* for p < .05 and ** for p < .001;
ANOVA and post hoc test). Note that the volume difference between the 7 T manual ground truth and our 7 T-ML based STN and 7 T3 T,
respectively, are not significant (p > .05; ANOVA and post hoc test) [Color figure can be viewed at wileyonlinelibrary.com]

the STN (sub-region) targeting for DBS surgery and treatment based on
patient-specific standard clinical MR data.
Next, the effect of the main components in our proposed 7 T-ML

framework is analyzed as follows:

(1) Predictors: the average centers of mass distance between the
predictors (non-STN subcortical structures) automatically segmented
on the selected clinical MRI and their manual 7 T MRI counterparts
was 0.92 4+ 0.45 mm. The 7 T-ML STN using manually segmented
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FIGURE 3 Continued [Color figure can be viewed at wileyonlinelibrary.com]

predictors showed comparable results to these observed using auto-
matically segmented predictors (Figure 6; p > .05; ANOVA).

(2) Regression methods: The 7 T-ML using the bagged partial least
squares regression produced significantly better results than using the
regression forest method (Figures 6 and 7; p < .05; ANOVA).

(3) Ensemble sizes: The number of training subsets (10, 100, and
200) had insignificant effect on the STN prediction accuracy (p > .05;
ANOVA).

(4) Weighting methods: Incorporating non-uniform weights based
on estimated error scores produced comparable results to these
observed using uniform weights (Figure 7; p > .05; ANOVA) for the
bagged partial least squares regression and regression forest methods.
However, incorporating the actual error scores for determining the
weights of the training sets resulted in significantly better prediction
with the regression forest method (p < .01; ANOVA), but insignificant
with the bagged partial least squares regression. The mean squared
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FIGURE 3 Centers of mass distances’ histogram and visual examples of the proposed 7 T-ML and standard atlases (blue) overlaid with 7 T
manual ground truth (red) from specific subjects. (a) Comparison of histograms of centers of mass distance measured on 160 STNs obtained from
the different methods. (b) Visualization of the STNs from zone (i) and (iii) in (a), representing average centers of mass distance of the 7 T-ML and
standard atlases, respectively on the 1.5 T MRI of an example PD patient (age: 51). (c) Visualization of the STNs from zone (i) and (ii) in (a),
representing median centers of mass distance on the 3 T MRI of an example PD patient (age: 79). From left to right: 3D surface and contours in
(A) axial, (C) coronal, and (S) sagittal planes along with arrows indicating the anterior direction. CMD: Centers of mass distance. MSD: Mean
distance of surface points [Color figure can be viewed at wileyonlinelibrary.com]

error computed between the estimated error scores and the actual
ones was lower for the regression forest method in comparison to the
bagged partial least squares regression (Figure 8; p < .05 ANOVA).
The smaller the number of training subsets, the higher the obtained
mean squared error. This observation suggests that the robust frame-
work was more effective when using the regression forest method

with over 100 subsets.

4 | DISCUSSION

In this work, we proposed a computational framework to automati-
cally localize and visualize the STN based on the standard clinical MRI,
where it is not clearly identifiable, by taking advantage of our 7 T MRI
database and machine learning. For validation, we used the STN
ground truth that was defined on the 7 T MRI, with careful manual

annotation and cross-validation. Particularly, the 7 T manual

segmentation was shown to be accurate and consistent with neuro-
physiological data (Duchin et al., 2018; Shamir et al., 2018). Moreover,
the most-effective contacts were located in the dorso-lateral area of
the 7 T manual STN segmentation, which matches other clinical
reports (Garcia-Garcia et al., 2016; Herzog et al., 2004). These studies
show that the 7 T manual segmentation data is highly consistent with
biological and clinical measures. Once segmented accurately, the 7 T
manually segmented STN can be transformed to a lower-resolution
clinical image as done here to train the proposed 7 T-ML method, and
still accurately represent the STN, although it may be hard to observe
it on the standard clinical image. The proposed 7 T-ML based STN is
highly consistent with the 7 T manual ground truth in center of mass,
mean surface points, DC, and volume. Moreover, the population and
location of the active contacts at the different sub-regions within the
proposed 7 T-ML based predicted STN highly agrees with that of the
7 T manual ground truth. We believe that the consistency of our pro-

posed method with neurological measures and clinical outcomes
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TABLE7 Distance between active contacts and STN's centers of mass computed from the 7 T manual ground truth, proposed 7 T-ML, 7 T3 T,

UHFA, DISTAL, and MNIPD25 atlases

7T3T UHFA DISTAL MNIPD25
Ground truth 7 T-ML (Milchenko et al., 2018) (Wang et al.,, 2016) (Ewert et al., 2017) (Xiao et al., 2017)
Average (mm) 2.39 243 3.56 3.24 5.14 5.61
Standard deviation 1.06 1.02 1.98 1.13 4.86 4.10

supports its use to facilitate the guidance of the DBS electrode based
on direct targeting using standard clinical MRI of individual patients.

As summarized in Table 9, a variety of automatic STN segmenta-
tion methods based on MRI have been proposed. While most
methods are not publicly available, state-of-the-art atlases and corre-
sponding templates were freely downloadable, and thus we have
tested them on our own clinical datasets. While some automatic
approaches exploit the sufficient intensity information from contrast
enhanced MR sequence or even higher field MRI (e.g., QSM, FGATIR,
or 7 T), it remains to be investigated if these methods provide accu-
rate segmentation of the STN on standard clinical T,W MRI.

For this reason, we compared the performance of the proposed
approach with that of state-of-the-art atlas-based methods: (1) 7 T3 T
(Milchenko et al., 2018), (2) UHFA (Wang et al, 2016), (3) DISTAL
(Ewert et al., 2017; Horn, Neumann, et al., 2017), and (4) MNIPD25
(Xiao et al., 2017). While these atlases reasonably localize and visualize
the STN on subject-specific data they represent well, their accuracy and
consistency on our tested clinical data were much lower than the pro-
posed 7 T-ML method. A one-way ANOVA and post hoc test with
Tukey’s method showed that our 7 T-ML is significantly better than any
other popular method we tested against. Moreover, the atlas-based
STNs missed a large portion of post-operative active contacts, poten-
tially resulting in sub-optimal planning, programming, or outcomes.

Standard atlases that are well defined in a normalized space could
be of great value for retrospective population studies and are highly
appreciated in the field (Horn, Kiihn, et al., 2017; Horn, Neumann,
et al., 2017; Horn, Reich, et al., 2017; Keuken et al., 2014). However,
uncertainty in registration needs to be addressed when using such
atlases for patient-specific STN-DBS targeting. Single atlas-based
methods heavily rely on the registration quality between the atlas
template and the clinical MRI from individual patients. Since the regis-
tration error may be larger on standard clinical images where the STN
is not clearly visible or when the atlas template does not represent

subject-specific data, atlas-based methods usually require further

revision of the segmentation. All the significant errors from standard
atlases are not simple biases, which would be easy to correct, the
errors are unpredictable and have large variance as well. Large vari-
ability of atlas-based results on our tested clinical data might explain
this issue. Furthermore, an inaccurate definition of the STN in the
atlas template may produce an additional error in patient-specific tar-
geting (Ewert et al., 2017).

We provided comprehensive results from a variety of state-of-
the-art atlases to discuss uncertainty in registration that might be
induced by (1) morphological variability (normal vs. patient), (2) differ-
ent contrast (magnetic field or modality) between atlas template and
clinical data, and (3) its sub-optimization. This also confirms the bene-
fits of our proposed 7 T-ML that combines accurate STN models and
machine learning for prediction from clinical data.

More specifically, the DISTAL atlas (Ewert et al., 2017) and UHFA
(Wang et al., 2016) were defined on the atlas template from normal
subjects, and segmentation results on data from normal subjects were
provided. The results on the PD-specific data might be deteriorated by
morphological variability between the atlas template and the clinical
data. Moreover, UHFA (Wang et al., 2016) utilized the 7 T T, W MRI
atlas template, and thus the contrast discrepancy between the 7 T MRI
and standard clinical data also might have affected the registration (this
might also explain the often smaller STN volume found when computed
with this atlas compared with other atlases-based results).

Although the MNIPD25 atlas (Xiao et al., 2017) is PD-specific, the
MR modality of the STN atlas templates (T,*W) is different from that
of our standard clinical T,W data. This might have caused an error in
registration between the atlas template and the clinical data; this atlas
was associated with worse performance and smaller volume than
using other atlases.

Milchenko et al. (2018) created a 7 T atlas from elderly subjects
and registered it onto the average template representing 3 T T, W
MRIs from PD patients. While promising results on PD patient-

specific data was reported, segmentation results on our own clinical

TABLE8 Numbers of active contacts placed in each region within the per-patient ellipsoid representation of the STN computed based on the
7 T manual ground truth, proposed 7 T-ML, 7 T3 T, UHFA, DISTAL, and MNIPD25 atlases (see Figure 4 for the localization of each region)

Region Ground truth 7 T-ML (7IV-Irif::hTenko etal.,, 2018)
4 5 2

2 9 9 5

3 5 6 3

4 10 7 5

5 0 0 2

6 0 0 8

7 0 0 2

8 0 1 1

9 3 3 8

UHFA DISTAL MNIPD25
(Wang et al., 2016) (Ewert et al., 2017) (Xiao et al., 2017)
2 3 1

3 7 1

2 2 5

9 2 3

0 0 0

0 2 0

0 0 0

0 0 0

15 15 21
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FIGURE4 Density maps of the active contact population in different regions within the per-patient ellipsoid representation of the STN based on
7 T manual ground truth, proposed 7 T-ML, 7 T3 T, UHFA, DISTAL, and MNIPD25. Top left represents the region numbers in 3D and the right
represents the corresponding numbers in the 2D slices along with posterior(P)/anterior(A) and medial(M)/lateral(L) axes (the example shows the
right STN. Left STN is mirrored into M-L direction for the population analysis.) [Color figure can be viewed at wileyonlinelibrary.com]

data (mostly PD patients) were insufficient for clinical utilization
(although it showed better performance than using other atlases).
Sub-optimization in a single warp might have affected the results.
Table 10 presents quantitative comparison for centers of mass dis-
tance and DC of the STNs obtained using each method, clustered
according to magnetic field strength. Specifically, 7 T3 T and DISTAL
usinga 3 T T, W MRI template, and UHFA usinga 7 T T, W MRI tem-
plate, showed much better performance on 3 T MRIs, that have closer
appearance to those templates, than on 1.5 T MRIs. This illustrates that
atlas-based methods require a template image closer to a given clinical
MRI to improve their accuracy. Note that our 7 T-ML shows compara-
ble accuracy regardless of the quality (and strength) of the clinical MRIs,
although the algorithm was not trained on 3 T MRIs. In a complemen-
tary study, we have computed with the exact same method here intro-
duced the STN on 3 T MRIs obtained in another center and observed
that it is very similar (~1 mm) to the STN that was defined based on
MER and blindly compared with our method (Shamir et al., 2018). These
complementary studies show the high accuracy and consistency of the
proposed computational method, regardless of the proxy used for

representing the ground truth (7 T or MER).

Registration steps used in this work oftentimes caused large
errors in atlas-based results that could lead to misplacement of the
stimulating electrode and ineffective DBS treatment as shown in
Figure 5. This might be attributed to the protocol, specifically tuned to
clinical data, used in this study. An optimization of the registration
processes between atlas templates and the used clinical data may
improve the fitting of the atlas and the STN segmentation accuracy
since atlas-based studies showed promising results using different
registration protocols. Also, additional modalities can be incorporated
to further improve the registration quality (Ewert et al., 2017). Such
multi-spectral images, however, are not always available in clinical sce-
narios (e.g., only T,W MRIs are given in our case). Moreover, assuring
an optimization in the single registration mode still remains a challeng-
ing task even though the field has progressed (Viergever et al., 2016).
More importantly, generalizing/scaling an optimized registration into
cases in large-scale population is highly ill-posed. The full investigation
of the registration performance is beyond the scope of this work, but
is important for automatic targeting as here illustrated.

Our 7 T-ML minimizes the effort to find the optimal single warp

in a robust and fully automatic way. More specifically, we register
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FIGURE5 Comparison of the STN computed based on the 7 T manual ground truth, our proposed 7 T-ML, 7 T3 T, UHFA, DISTAL, and
MNIPD25 atlases, overlaid with the electrode contacts for a specific PD patient (age: 48). The visualization is an example from zone (i) and (iii) in
Figure 3a, representing average centers of mass distance of our 7 T-ML and standard atlases-based STNs, respectively. Electrode contacts were
placed into the dorsal zone according to the ground truth. Similarly to the ground truth, our 7 T-ML STN completely includes the active contact
(red, contact 1) associated with the best motor improvement (62%) and the active contacts (blue, contact 2 and 3) with lower motor improvement
(15-46%). Dorsal STNs based on 7 T3 T, DISTAL, and MNIPD25 also would have been activated by the contacts associated with motor
improvements, but they showed much larger errors in shape and location than 7 T-ML. This means that it might lead to misleading placement.
None of contacts are placed in the dorsal STN based on UHFA. CMD: Centers of mass distance. MSD: Mean distance of surface points [Color

figure can be viewed at wileyonlinelibrary.com]

clinical training images in our database directly to the clinical query
image and select the most similar sets to reduce random error and bias
in the single warp (Aljabar et al., 2009). Moreover, we refine the STN
location and shape by learning 7 T knowledge. It should be noted that
although our 7 T-ML framework uses the same registration steps that
affected inaccurate atlas-based segmentation, thanks to these impor-
tant additions the obtained results are significantly better than those
obtained using the standard atlases. Large population studies on the
shape and position of the STN and its sub-regions would obviously
benefit from single atlases that are accurately defined on the MNI
template (Horn, Neumann, et al., 2017). However, in this article, we
stress that such high quality atlases on the template could be readily
biased due to uncertainty in registration when using them for patient-
specific targeting, and it is not trivial to find the optimal registration
protocol, thereby resulting in tedious manual intervention. Our
7 T-ML overcomes the challenge in a fully automatic way.

Recent multiple atlases-based approaches showed promising
results for the localization of the STN (Haegelen et al., 2013; Xiao,
Fonov, et al., 2014; Xiao, Jannin, et al., 2014). In these studies, manual
labeling was performed, based on the appearance of 3 T MRI, and
automatic segmentation of the subcortical structures on the query
patient was done by registration between the 3 T MRIs atlas tem-
plates and patient. While the automatic segmentation closely matches
its manual STN on the patient images, taking advantage of multiple
atlas templates with similar appearances (reducing the registration
uncertainty), it is unclear if the STN that appeared as hypo-intense on
the 3 T MRI reflects an accurate geometrical representation of the
STN of individual subjects, especially in the dorso-lateral part that is
critical for DBS targeting (Cho et al., 2011; Plantinga et al., 2014) (see
also difference between volumes of 7 T manual ground truth and
MNIPD25 atlas-based STN in Figure 2d). Moreover, employing such
methods in standard clinical scenarios based on lower quality images
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(e.g., 1.5 T MRI) may result in larger errors since the registration accu-
racy is expected to be lessened (Avants, Tustison, & Song, 2011; Ou,
Akbari, Bilello, Da, & Davatzikos, 2014).

Using current standard clinical imaging protocols, it is not feasible
to differentiate the STN from the SN in clinical 1.5 T or 3 T MRI
(Abosch et al., 2010). As such, it remains unclear how approaches based
on intensity and texture information on the target image (Bernard,
Gemmar, Husch, & Hertel, 2012; Li, Jiang, Li, Zhang, & Meng, 2016)
handle leakage around the border between the STN and SN. To explore
this issue, we automatically segmented the STN using the active shape
model and active appearance model framework (the same method that
was used for segmentation of predictor structures in our 7 T-ML frame-
work). While it reasonably localized the STN with the initialization from
the 7 T priors, our 7 T-ML was still significantly better in average cen-
ters of mass distance and DC. Particularly, the size of the segmented
STN was much smaller than the 7 T manual ground truth. This might be
attributed to fuzzy boundary of the STN on the image.

Some approaches use pre-processed sequences or high quality data
to make the STN more discernible or segment visible various mid-brain
structures. For example, Garzén et al. (2017), Visser, Keuken, For-
stmann, et al. (2016), Milletari et al. (2017), and Plassard et al. (2017)
utilized contrast enhanced MR sequences (QSM or FGATIR) to visualize
subcortical structures, including the STN. Garzén et al. (2017) men-
tioned that the algorithm showed lower accuracy on Ry* and T,W
FLAIR images, indicating that it was specialized to high contrast data.

Visser, Keuken, Forstmann, et al. (2016) automatically segmented the

STN on the 7 T multimodal MRI. Also, Visser, Keuken, Douaud,
et al. (2016) segmented the striatum and globus pallidus—that are fairly
visible on 1.5 T Ty W MRI. Recently, several state-of-the-art methods
using deep neural networks to segment brain structures are of interest
(Bao & Chung, 2015; De Brébisson & Montana, 2015; Dolz, Desro-
siers, & Ben Ayed, 2018; Shakeri et al., 2016). Similarly, they focused on
segmentation of brain regions (e.g., Thalamus, Caudate, Putamen, Palli-
dum, etc.) that are discernable on the image. Low quality clinical images,
where even manual segmentation of the STN is not possible, might lead
to challenges when using deep learning for the task here considered
(Zhou, Liu, & Huang, 2018). We could potentially apply deep learning
architectures to instead segment the predictor structures (fairly visible
on the clinical image) that are used to predict the STN.

The proposed 7 T-ML leverages our 7 T MRI database and
machine learning to predict the STN that is not normally visible on the
clinical MRI. It learns anatomical knowledge encoded from our 7 T
training data, which are independent of image intensity values. The

7 T-ML, thereby, achieves comparable results to 7 T manual
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FIGURE7 Comparison of (a) centers of mass distance, (b) DC values,
and (c) error scores for ensemble STN prediction and robust
prediction (for estimated error scores and actual ones) by bagged
partial least squares regression and regression forest learning, with
automatically segmented predictors and an ensemble size of 100
[Color figure can be viewed at wileyonlinelibrary.com]
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segmentation on the clinical image. We observed an average of
1.1 + 0.6 mm in centers of mass distance (93% of the cases were bet-
ter than 2 mm accuracy) from even lower quality data (1.5 T MRI) of
selected 15 PD patient’s data used for the in-depth study. This is con-
sistent with the reported results for 160 STNs from 80 subjects and
also validates that the 7 T-ML is robust on clinical 1.5 T MRI as well as
3T MRL

Similarly to the 7 T manual ground truth, the 7 T-ML based STN
accurately localized and predicted the active contacts, especially in the
posterior lateral region that is considered a motor territory often tar-
geted for Parkinson’s DBS (Plantinga et al., 2016). We should stress that
we analyzed the spatial relationship between contact location and the
STN using the ellipsoid representation within the STN in an individual
patient data space. This is important since the transformation of the
patient data into the common space and vice versa entails biases in the
relationship. This also validates that our proposed 7 T-ML approach
facilitates precise localization of the electrode’s leads within patient-
specific STN's sub-regions. A few active contacts were found to be out-
side the posterior part of our 7 T-ML and the 7 T manual ground truth
STN. However, all of them were placed closely to the boundary, possi-
bly having an overlap between the volume of tissue activated and the
STN sub-region. Small resampling or registration errors may also explain
this slight mismatch. Micro-lesion effect may bias contact localization as
well (Granziera et al., 2008). Overall, our results show that while stan-
dard atlases do not achieve the accuracy and consistency needed for
sub-region STN targeting, the proposed 7 T-ML is successful in this
major DBS challenge: consistently providing accurate target localization.
Importantly, the clinical feasibility of our 7 T-ML approach is further
demonstrated, comparing to MER mapping in Shamir et al. (2018).

The 7 T-ML STN resulted in what could be considered at first
glance as relatively low DC values, although the geometric measure-
ments are within the tolerance level of the stereotactic frame used for
the surgery (Shamir et al., 2009). The partial volume effect for small
structures, such as the STN, under clinical imaging resolution affects
the DC values (Hoffman, Huang, & Phelps, 1979). It has been also

reported that the size of objects affects the DC, where small struc-
tures are associated with smaller DC values (Rohlfing, 2012; Zou
et al., 2004). Shamir, Duchin, Kim, Sapiro, and Harel (2016) provided
numerical analysis of DC by modeling the clinical MRI resolution and
center of mass error distribution in the STN manually segmented on
the 7 T MRI, and an average upper bound DC was estimated at 64%.
This indicates that the proposed 7 T-ML, with average 63.5% DC
value, achieves near optimal accuracy. Recent automatic segmentation
of the STN on the 7 T data also resulted in comparable DC values
(Visser, Keuken, Forstmann, et al., 2016). We should note that our
7 T-ML targeted the STN on only standard clinical T,W MRI data
where its borders are not visible, while the automatic segmentations
in the above studies were obtained from the 7 T multi-modal MRI
with clear texture and boundary information.

The geometric distortion on the 7 T MRI and inaccurate co-
registration between the 7 T MRI and clinical data may potentially affect
the quality of the 7 T priors and thus cause errors in our 7 T-ML frame-
work. Therefore, minimizing such biases was critical to increase the reli-
ability. Experts in the team manually segmented the STN and it
predictor subcortical structures by leveraging superior contrast and ana-
tomical details on both 7 T T, W and SWI and carefully cross-validated.
Furthermore, Duchin et al. (2012) demonstrated clinical feasibility of the
7 T MRI by evaluating the distortion based on the co-registration quality
between 7 T and 1.5 T MRI. Following the proposed protocols we per-
formed the co-registration between 7 T and clinical MRI. Recently, we
further validated that the 7 T manual STN segmentation is highly consis-
tent with the MER data (Duchin et al., 2018; Shamir et al., 2018).

We also examined the effect of multiple factors in our proposed
7 T-ML approach. Generally, and as expected, the accuracy of predic-
tors’ segmentation highly affects the accuracy of the resulting STN
prediction. We observed comparable STN prediction results using the
manual and automatic predictors’ (non-STN) segmentation. This indi-
cates that an error level in predictors’ segmentation on the clinical
data was not influential in the STN prediction, and the automatic seg-
mentation was near optimal. Comparable STN prediction accuracy
was also observed for 10, 100, and 200 randomly selected subsets
from the training set, but the estimation of STN prediction error was
more accurate as the subset size increased. Weighting the training set
based on the estimation of its contribution to the prediction accuracy
reduced the variance observed with regression forest, but not bagged
partial least squares regression. Therefore, the larger subset size
results in more accurate estimation of STN prediction error that, in
turn, helps to improve the STN prediction (an ensemble size of 100 is
considered sufficient and used for validation of our 7 T-ML approach).
Adding more subjects to our database may result in a significant corre-
lation between the subset size and the STN prediction accuracy,

which was not yet observed with training sets.

5 | FUTURE WORK AND CONCLUSIONS

We are currently investigating the shape refinement of the 7 T-ML
STN on a standard clinical MRI. If the ventral border of the STN that is
adjacent to the SN can be identified in an automatic way, the STN

prediction can be further refined to facilitate an even more reliable
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TABLE 10 Centers of mass distance and DC value between the STNs obtained using the proposed 7 T-ML, 7 T3 T, UHFA, DISTAL, MNIPD25
atlases, and the 7 T manual ground truth STNs, grouped according to magnetic field strength in the training and validation sets

Magnetic field strength

7 T-ML CMD(mm)
DC

7T3T CMD (mm)

(Milchenko et al., 2018) DC

UHFA CMD (mm)

(Wang et al., 2016) DC

DISTAL CMD (mm)

(Ewert et al., 2017) DC

MNIPD25 CMD (mm)

(Xiao et al., 2017) DC

Validation set

Training set

15T 15T 3T

1.28 + 0.65 1.16 + 048 1.22 + 0.55
0.62 + 0.13 0.66 + 0.11 0.66 + 0.08
2.63 £+ 2.09 226 + 1.16 1.92 + 0.93
0.40 + 0.24 041 +£ 021 0.52 +£ 0.11
3.28 + 1.60 3.16 +£ 142 221 +0.96
0.21 +£0.22 0.17 £ 0.21 0.33 +£0.23
4.35 + 4.15 3.59 + 341 1.83 + 0.84
0.31 + 0.27 0.39 + 0.32 0.54 + 0.17
441 + 3.68 3.85 £+ 2.65 4.11 + 2.89
0.28 + 0.26 0.18 +£ 0.21 0.24 + 0.18

Note. A one-way ANOVA and post hoc test (with Tukey’s method) showed that the proposed 7 T-ML is significantly better than atlas- based methods in

each measure (p < .0001).

targeting. However, it remains questionable if the intensities around
the STN boundary are consistent across clinical MR datasets from a
large population of patients and centers.

While we focused on localization of the STN in this manuscript,
which is the most popular DBS target for Parkinson’s disease, the
approach presented here can be exploited for segmenting other struc-
tures such as the internal globus pallidus and Vim. With a greater
number of centers beginning to target the internal globus pallidus for
PD and given that it is the predominant target for dystonia, precise
localization of the internal globus pallidus and its sub-regions may also
prove valuable for physicians targeting this structure.

The identification of the STN on a standard clinical MRI is chal-
lenging. Therefore, more than one targeting method is incorporated
today in DBS practice, often involving a more time-consuming and
potentially extended-risk approach using intraoperative validation of
electrode location with microelectrode recordings. Given that MER
requires a level of expertise not typically found in most surgical cen-
ters, its utility and the ability of surgical sites to localize the STN and
its sub-regions using this technique is highly variable across centers.
To address these problems we introduced a patient-specific automatic
software-only method for the visualization of the 3D STN location
and shape from standard clinical MRI. The method incorporates a
database of high-field 7 T MRI and a novel set of machine learning
algorithms. The experimental results validated that our proposed 7 T-
ML approach can automatically and accurately localize the STN and
its sub-regions on standard clinical MRI. This work provides neurosur-
geons and neurologists with accurate means for automatic patient-
specific targeting of the STN and its sub-regions, potentially reducing
the need for other approaches that may lengthen the procedure
and/or be associated with a higher risk of side effects. Surgical Infor-
mation Sciences, Inc. plans to make the 7 T-ML based STN segmenta-

tion tool available for its clinical use in the near future.
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porting Information section at the end of the article.
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