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Abstract

Momentum methods such as Polyak’s heavy ball (HB) method, Nesterov’s acceler-
ated gradient (AG) as well as accelerated projected gradient (APG) method have been
commonly used in machine learning practice, but their performance is quite sensitive
to noise in the gradients. We study these methods under a first-order stochastic or-
acle model where noisy estimates of the gradients are available. For strongly convex
problems, we show that the distribution of the iterates of AG converges with the ac-
celerated O(y/klog(1/¢)) linear rate to a ball of radius € centered at a unique invariant
distribution in the 1-Wasserstein metric where & is the condition number as long as the
noise variance is smaller than an explicit upper bound we can provide. Our analysis
also certifies linear convergence rates as a function of the stepsize, momentum param-
eter and the noise variance; recovering the accelerated rates in the noiseless case and
quantifying the level of noise that can be tolerated to achieve a given performance. To
the best of our knowledge, these are the first linear convergence results for stochastic
momentum methods under the stochastic oracle model. We also develop finer results
for the special case of quadratic objectives, extend our results to the APG method
and weakly convex functions showing accelerated rates when the noise magnitude is
sufficiently small.

1 Introduction

Many key problems in machine learning can be formulated as convex optimization prob-
lems. Prominent examples in supervised learning include linear and non-linear regression
problems, support vector machines, logistic regression or more generally risk minimiza-
tion problems [ |. Accelerated first-order optimization methods based on momentum
averaging and their stochastic and proximal variants have been of significant interest in
the machine learning community due to their scalability to large-scale problems and good
performance in practice both in convex and non-convex settings, including deep learning

(see e.g. | , ) ) D)-
Accelerated optimization methods for unconstrained problems based on momentum av-
eraging techniques go back to Polyak who proposed the heavy ball (HB) method | ] and
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are closely related to Tschebyshev acceleration, conjugate gradient and under-relaxation
methods from numerical linear algebra [ , ].  Another popular momentum-
based method is the Nesterov’s accelerated gradient (AG) method | ]. For deter-
ministic strongly convex problems, with access to the gradients of the objective, there is
a well-established convergence theory for momentum methods. In particular, for mini-
mizing strongly convex smooth objectives with Lipschitz gradients AG method requires
O(y/klog(1/e)) iterations to find an e-optimal solution where x is the condition number,
this improves significantly over the O(rlog(1/e)) complexity of the gradient descent (GD)
method. HB method also achieves a similar accelerated rate asymptotically in a local
neighborhood around the global minimum. Also, for the special case of quadratic objec-
tives, HB method can achieve the accelerated linear rate globally. In the absence of strong
convexity, for convex functions, AG has an iteration complexity of O(1/4/¢) in function
values which accelerates the standard O(1/¢) convergence rate of GD. In particular, it can
be argued that AG method achieves an optimal convergence rate among all the methods
that has access to only first-order information | |. For constrained problems, a variant
of AG, the accelerated projected gradient (APG) method [ ] can also achieve similar
accelerated rates | , ].

On the other hand, in many applications, the true gradient of the objective function
Vf(z) is not available but we have access to a noisy but unbiased estimated gradient
v f(z) of the true gradient instead. The common choice of the noise that arises frequently
in (stochastic oracle) models is the centered, statistically independent noise with a finite
variance where for every x € X,

(H1)  E|Vf(@)e| = Vi),
(H2)  E[|Vf(@) - Vi@)|?|z] < o?

(see e.g. | , ]). A standard example of this in machine learning is the familiar
prediction scenario when f(x) = Egl(z,0) where £(z,0) is the (instantaneous) loss of the
predictor x on the example 6 with an unknown underlying distribution where the goal
is to find a predictor with the best expected loss. In this case, given x, the stochastic
oracle draws a random sample 0 from the unknown underlying distribution, and outputs
Vf(z) = V.(z,) which is an unbiased estimator of the gradient. In fact, linear regression,
support vector machine and logistic regression problems correspond to particular choices of
this loss function ¢ (see e.g. [ ]). A second example is where an independent identically
distributed (i.i.d.) Gaussian noise with a controlled magnitude is added to the gradients of
the objective intentionally, for instance in private risk minimization to guarantee privacy
of the users’ data [ ], to escape a local minimum | ] or to steer the iterates
towards a global minimum for non-convex problems [ , , ]. Such
additive gradient noise arises also naturally when gradients are estimated from noisy data
[ , | or the true gradient is estimated from a subset of its components as in
(mini-batch) stochastic gradient descent (SGD) methods and their variants.



It is well recognized that momentum-based accelerated methods are quite sensitive to
gradient noise [ , , , ], and need higher accuracy of the gradients
to perform well | , ] compared to standard methods like GD. In fact, with
the standard choice of their stepsize and momentum parameter, numerical experiments
show that they lose their superiority over a simple method like GD in the noisy setting
[ |, yet alone they can diverge | ]. On the other hand, numerical studies have
also shown that carefully tuned constant stepsize and momentum parameters can lead to
good practical performance for both HB and AG under noisy gradients in deep learning
[ ]. Overall, there has been a growing interest for obtaining convergence guaran-
tees for stochastic momentum methods, i.e. momentum methods subject to noise in the
gradients.

Several works provided sublinear convergence rates for stochastic momentum methods.
[ , ] developed the AC-SA method which is an adaptation of the AG method to
the stochastic composite convex and strongly convex optimization problems and obtained
an optimal O(1/vk) for the convex case. In a follow-up paper, | | obtained an optimal
O(1/k) convergence bound for the constrained strongly convex optimization employing a
domain shrinking procedure. However, these results do not apply to stochastic HB (SHB).

] provided a uniform analysis of SHB and accelerated stochastic gradient (ASG)
showing O(1/+v/k) convergence rate for weakly convex stochastic optimization. [ | ob-
tained a number of sublinear convergence guarantees for SHB, showing that with decaying
stepsize ay = O(1/k?) for some 6 € (0,1], SHB method converges with rate O(1/k?). Sev-
eral other works focused on proper averaging for reducing the variance of the gradient error
in the iterates for strongly convex linear regression problems | , , | and
obtained a O(1/k) convergence rate that achieves the minimax estimation rate. Recently,
[ | studied the SHB algorithm for optimizing the least squares problems arising in the
solution of consistent linear systems where the gradient noise comes from sampling the
rows of the associated linear system and therefore the gradient errors have a multiplicative
form vanishing at the optimum (see | , Sec 2.5]), in which case SGD enjoys linear rates
to the optimum with constant stepsize. The authors show that using a constant stepsize
the expected SHB iterates converge linearly to a global minimizer with the accelerated rate
and provide a first linear (but not an accelerated linear) rate for the expected suboptimal-
ity in function values, however the rate provided is not better than the linear rate of SGD
and does not reflect the acceleration behavior compared to SGD. We note however that
the results of this paper do not apply to our setting as our noise assumptions (H1)—(H2)
are more general. In our setting, due to the persistence of the noise, it is not possible for
the iterates of stochastic momentum methods converge to a global minimum, but rather
converge to a stationary distribution around the global minimum. To our knowledge, a
linear convergence result for momentum-based methods has never been established under
this setting. For SGD, | | showed that when f is strongly convex, the distribution
of the SGD iterates with constant stepsize converges linearly to a unique stationary dis-
tribution 7, in the 2-Wasserstein distance requiring O(rlog(1/¢)) iterations to be e close



to the stationary distribution when o = 1/L which is similar to the iteration complexity
of (deterministic) gradient descent. A natural question is whether stochastic momentum
methods admit a stationary distribution, if so whether the convergence to this distribu-
tion can happen faster compared to SGD. As the momentum methods are quite sensitive
to gradient noise | , | in terms of performance; a precise characterization of
how much noise can be tolerated to achieve accelerated convergence rates under stochastic
momentum methods remains understudied.

Contributions: We obtain a number of accelerated convergence guarantees for the
SHB, ASG and accelerated stochastic projected gradient (ASPG) methods on both (weakly)
convex and strongly convex smooth problems. We note that existing convergence bounds
obtained for finite-sum problems that approximate stochastic optimization problems | ]
do not apply to our setting as our noise is more general, allowing us to deal directly with
the stochastic optimization problem itself.

First, for illustrative reasons, we focus on the special case when f is a strongly con-
vex quadratic on X = R? and the gradient noise is additive, statistically independent
and i.i.d. with a finite variance o?. We obtain accelerated linear convergence results for
the ASG method in the weighted 2-Wasserstein distances. Building on the framework of
[ | which simplifies the analysis of momentum-based deterministic methods, our anal-
ysis shows that all the existing convergence rates and constants can be translated from
the deterministic setting to the stochastic setting. Building on novel non-asymptotic con-
vergence guarantees in function values we develop for both the deterministic HB and AG
methods, we show that the Markov chain corresponding to the stochastic HB and AG
iterates is geometrically ergodic and the distribution of the iterates converges to a unique
equilibrium distribution (whose first two moments we can estimate) with the accelerated
linear rate O(y/klog(1/¢)) in the p-Wasserstein distance for any p > 1 with explicit con-
stants. The convergence results hold regardless of the noise magnitude o, although o
scales the standard deviation of the equilibrium distribution linearly. We also provide im-
proved non-asymptotic estimates for the suboptimality of the HB and AG methods both
for deterministic and stochastic settings.

Second, we consider (non-quadratic) stochastic strongly convex optimization problems
on R? under the stochastic oracle model (H1)—(H2). We derive explicit bounds on the
noise variance o so that ASG method converges linearly to a unique stationary distribution
with the accelerated linear rate O(y/klog(1/¢)) in the 1-Wasserstein distance. Our results
provide convergence rates as a function of a, 8 and o2 that recovers the convergence rate
of the AG algorithm as the noise level o2 goes to zero. Therefore, for different parameter
choices, we can provide bounds on how much noise can be tolerated to maintain linear
convergence.

Third, we focus on the accelerated stochastic projected gradient (ASPG) algorithm for
constrained stochastic strongly convex optimization on a bounded domain. We obtain fast
accelerated convergence rate to a stationary distribution in the p-Wasserstein distance for
any p > 1. Finally, we extend our results to the weakly convex setting where we show



an accelerated O(\% log(1/¢)) convergence rate as long as the noise level is smaller than

explicit bounds we provide. To our knowledge, accelerated rates in the presence of non-zero
noise was not reported in the literature before.

2 Preliminaries

2.1 Notation

We use the notation I; and 04 to denote the d x d identity and zero matrices. The entry at
row ¢ and column j of a matrix A is denoted by A(i, j). Kronecker product of two matrices
A and B are denoted by A ® B. A continuously differentiable function f : R — R is
called L-smooth if its gradient is Lipschitz with constant L. A function f : R? — R is
p-strongly convez if the function z — f(z) — &||lz[/* is convex for some p > 0, where
| - || denotes the Euclidean norm. Following the literature, let Sy denote the class of
functions that are convex and L-smooth for some L > 0. We use S, 1, to denote functions
that are both L-smooth and p-strongly convex for 0 < p < L (we exclude the trivial
case 4 = L in which case the Hessian of f is proportional to the identity matrix where
both deterministic gradient descent, HB and AG can converge in one iteration with proper
choice of parameters). The ratio x := L/u is known as the condition number. We denote
the global minimum of f on R? by f, and the minimizer of f on R¢ by x,, which is unique
by strong convexity. For any p > 1, define P,(R??) as the space consisting of all the
Borel probability measures v on R?? with the finite p-th moment (based on the Euclidean
norm). For any two Borel probability measures v1,v2 € P,(R??), we define the standard
p-Wasserstein metric (see e.g. | 1):

1/p

Wy(vr,12) = ( inf E[|Z1 — Z2||p]> .
Zy~vy,Za~vs

Let S € R2#%24 he a symmetric positive definite matrix. For any two vectors zj, zo € R?9,

consider the following weighted Lo norm:

1/2

21 = 2alls = ((21 — 22)7S (21 — 22)) /2.

Define P27S(R2d) as the space consisting of all the Borel probability measures v on R
with the finite second moment (based on the || - ||s norm). For any two Borel probability
measures v, and vy in the space Pa g(R??), the weighted 2-Wasserstein distance is defined
as

Zy~vy, o~

1/2
WQ’S(Vl,VQ) = < inf E [”Zl - Z2|%'}) N (1)

where the infimum is taken over all random couples (Z1, Zo) taking values in R?? x R2?
with marginals 11 and vo. Equipped with the 2-Wasserstein distance (1), Py s(R??) forms
a complete metric space (see e.g. | D).



Let Pa,5(2, ) be a Markov transition kernel (with parameters a, 3) associated to a time-
homogeneous Markov chain {{}r>0 on R2d. A Markov transition kernel is the analogue of
the transition matrix for finite state spaces. In particular, if £y has probability law 1 then
we use the notation that & has probability law Péf’ 510 Given a Borel measurable function

@ : R?® — [0, 4+-00], we also define

(Paso)(2) = / ()P (2, dy).

R2d

Therefore, it holds that E[p(§p11)[&k = 2] = (Pa,gp)(2). We refer the readers to [ ]
for more on the basic theory of Markov chains.

2.2 AG method

For f € S, 1, the deterministic AG method consists of the iterations
Tpp1 =Yk — AV f(yk), yu = (1 + B)ag, — Bag—1, (2)

starting from the initial points zg,z_; € R? where a > 0 is the stepsize and 8 > 0 is the
momentum parameter [ ]. Since the AG iterate x;11 depends on both zj and xj_1,
it is standard to define the state vector

&= (af ol ) er, (3)

and rewrite the AG iterations in terms of &. To simplify the presentation and the analysis,
we build on the representation of optimization algorithms as a dynamical system from
[ | and rewrite the AG iterations as

Ekr1 = A& + By,

where A = A® I; and B = B ® I; with

21;:((14{5) _06>’ B::<_0a>’ ()

and wy := V[ ((1+ B)xx — Brk_1). The standard analysis of deterministic AG is based
on the following Lyapunov function that combines the state vector and function values:

Ve (&) == (& — &) P(& — &) + f(zx) — fo (5)

where &, = (2 27)T and P € R?#*2¢ ig positive semi-definite matrix to be appropriately

chosen. In particular, a linear convergence f(&x11) — f(&x) < Vp(&ky1) < pVp(&x) with
rate p can be guaranteed if P satisfies a certain matrix inequality precised as follows.



Theorem 1. | | Let p € [0,1) be given. If there exists a symmetric positive semi-

definite 2 x 2 matrix P (that may depend on p) such that
ATPA—pP ATPB N
U i I
< BTPA  BT'PB =0, (6)

where X := pX| + (1 — p) X5 € R3*3 with

Bu =B =B
Y 752% B%u L%
X1i= 2 2 2 ’
;B g a(2—La)
2 2 2
(+8)2%e  —BOA+Bpr  —(1+8)
2 2 2
X, :— B(+8 2
Xy = ( ! I 'BT“ 8 ,
—(148) B a(2-La)
2 2

and A, B are given by (4), then the deterministic AG iterates defined by (2) for minimizing
f € Sy satisfies f(xx) — f(z) < Vp(§k) < p*Vp (&) where Vp is defined by (5) and
P=PI,

In particular, Theorem 1 can recover existing convergence rate results for deterministic
AG. For example, for the particular choice of

Ppg = PAG ® 1y, pAG = ﬁaT, (7)
= (VL2 Vu2-If2)' .

and (04,,3) = (aAg,ﬂAg) with

1 VE—1
QAG = fa 5AG = m’ (8)

in Theorem 1, we obtain the accelerated convergence rate of

pag =1-+/p/L=1-1/Vk. (9)

However, as outlined in the introduction, in a variety of applications in machine learning
and stochastic optimization, we do not have access to the true gradient V f(yx) as in the
deterministic AG iterations but we have access to a (noisy) stochastic version Vf(y) =
Vf(yk) + €x+1, where €xy1 is the random gradient noise. AG algorithm with stochastic
gradients has the form

Trr1 = Y — [V (yr) + eppls (10)
yr = (1+ B)wy — Brp—1,



which is called the accelerated stochastic gradient (ASG) method (see e.g. | ). We
note that due to the existence of noise, the standard Lyapunov analysis from the literature
(see e.g. | ) ]) does not apply directly. We make the assumption that the
random gradient errors are centered, statistically independent from the past iterates and
have a finite second moment following the literature |

|. The following assumption is a more formal statement of (Hl) (H2) adaptlng to
the iterations .

Assumption 2 (Formal statement of (H1)—(H2)). On some probability space (2, F,P)
with a filtration Fj, the noise € ’s are Fi-measurable, stationary and

]E[Ek‘}—kfl] =0 and E[Hék|’2’fk,1] S g

Under Assumption 2, the iterations & forms a time-homogeneous Markov chain which
we will study further in Sections 3 and 4.

2.3 HB method

For f € 8,1, the HB method was proposed by | ]. Tt consists of the iterations

Tp1 = 2 — aV f(zg) + B(zp — TR-1), (11)

where a > 0 is the step size and  is the momentum parameter. The following asymptotic
convergence rate result for HB is well known.

Theorem 3 (] |, see also [ 1)- Let the objective function f € Sy be a strongly
convex quadratic function. Consider the deterministic HB iterations {xy }r>o defined by the
recursion (11) from an initial point xo € R? with parameters (o, ) = (anp, fup) where

e gy (VELEZLY (12)
HB - (\/ﬁ—i—\@)z’ HB - m+1 .

Then, ||z — 24| < (pup + 0%)* - [|€0 — &|, where 0y is a non-negative sequence that goes
to zero and
N 2
PHB = =1- .
VE+1 VE+1

Furthermore, f(xr) — f(x.) < %(PHB +0) % - |60 — &1

(13)

This result has an asymptotic nature as the sequence §; is not explicit. There exist
non-asymptotic linear convergence results for HB, but to our knowledge, known linear rate
guarantees are slower than the accelerated rate pyp; with a rate similar to the rate of
gradient descent [ ]. In Section 3.2, we will derive a new non-asymptotic version



of this theorem that can guarantee suboptimality for finite k& with explicit constants and
the accelerated rate pgp. Note that the asymptotic rate pgp of HB in (13) on quadratic
problems is strictly (smaller) faster than the rate pag of AG from (9) in general (except in
the particular special case of Kk = 1, we have pag = pgp = 0). However, for strongly convex
functions, HB iterates given by (11) is not globally convergent with parameters ayp and
Bup [ |, but if the iterates are started in a small enough neighborhood around the
global minimum of a strongly convex function, this rate can be achieved asymptotically
[ ]. Since known guarantees for deterministic AG is stronger than deterministic HB on
non-quadratic strongly convex functions, we will focus on the AG method for non-quadratic
objectives in our paper.
We will analyze the HB method under noisy gradients:

Tpy1 = ok — o (V (k) + k1) + Blzk — Tp-1), (14)

where the noise satisfies Assumption 2. This method is called the stochastic HB method
[GPS18, LR1S, Fla04].

In the next section, we show that stochastic momentum methods admit an invariant
distribution towards which they converge linearly in a sense we make precise. For illustra-
tive purposes, we first analyze the special case when the objective is a quadratic function,
and then move on to the more general case when f is smooth and strongly convex. Also, for
quadratic functions we can obtain stronger guarantees exploiting the linearity properties
of the gradients.

3 Special case: strongly convex quadratics

First, we assume that the objective f € S, 1 and is a quadratic function of the form
1

f(z) = ixTQx +alz +0, (15)
where z € R?, Q € R¥*? is symmetric positive definite, a € R? is a column vector and b € R
is a scalar. We also assume ply < Q =X Ll so that f € §,, 1. In this section, we assume
the noise € are i.i.d. which is a special case of Assumption 2. We next show that both
accelerated stochastic gradient and stochastic HB admit a unique invariant distribution
towards which the iterates converge linearly in the 2-Wasserstein metric.

3.1 Accelerated linear convergence of AG and ASG

Given vectors, 21, 22 € R??, we consider

21— 22015, 5 = (21 = 22) a1 — 22)) 7. (16)
.8



where S, 5 € R2¥2d ig defined as the symmetric matrix

1
__ 7@ 0q

where P, g := 15%5» ® I and ]506”3 is a non-zero symmetric positive definite 2 x 2 matrix
(that may depend on the parameters v and ) with the entry P, 5(2,2) # 0. It can be
shown that S, g is positive definite on R?4 (see Lemma 18 in the supplementary file), even
though ]5,1,5 can be rank deficient. In this case, due to the positive definiteness of S, g,
(16) defines a weighted Lo norm on R??. Therefore, if we set S, 5 in (1), we can consider
the 2-Wasserstein distance between two Borel probability measures vy and vy defined on
R2?? with finite second moments (based on the || - |s, s norm.

The ASG iterates {{}r>0 defined by (3) and (10) forms a time-homogeneous Markov
chain on R??. Consider the Markov kernel P, 3 associated to this chain. Recall that
if v is the distribution of &y, the distribution of & is denoted by Pk pv- The following
theorem shows that this Markov Chain admits a unique equilibrium dlstrlbutlon Ta,3 and
the distribution of the ASG iterates converges to this distribution exponentially fast with
(linear) rate p,, 5. This rate achieved by ASG is the same as the rate of the deterministic
AG method, except that it is achieved in a different notion (with respect to convergence
in Wa s, ;). The proof is given in the supplementary file and it is based on studying the

contractivity properties of the map v — Pk pY n the Wasserstein space.*

Theorem 4. Let f € S, 1 be a quadratic function (15). Consider the Markov chain
{&k} k>0 defined by the ASG recursion (10) with parameters a and 8 and let vy o 3 denote
the distribution of & with v9a3 € Pag, (RQd). Let any convergence rate po 5 € [0,1)

be given. If there exists a matriz Pag wzth Pa3(2 2) # 0 satisfying inequality (6) with
P =P, 3 and p = pa,g, then there exists a unique stationary distribution mq g.

Wa 5,5 (Vi Ta,) < PasWes. s (00,8, Ta,8),
where Wa s, , is the 2-Wasserstein distance (1) equipped with the || - |s, ;, norm. In par-
ticular, with (o, ) = (aag, Bag) and P = Pag with Pag defined in (7), we obtain the
optimal accelerated linear rate of convergence:

Wi s s(Vhas Tap) < pPliaWi s, ,(V0.0,8: Ta ), (18)
with pag =1 — ﬁ as in (9).

For the AG method, the choice of («, 8) = (aag, Bac) is popular in practice, however
a faster rate can be achieved asymptotically if

0 = 4 B = V3k+1-2
G 3L+ G Brri42

4We also provide numerical experiments in the supplementary file to illustrate the results of Theorem 4.

(19)

10



so that the asymptotic linear convergence rate in distance to the optimality becomes p%  :=

1-— \/%T’ which translates into the rate (p%)? in function values that is (smaller) faster

than pag [ ]; improving the iteration complexity by a factor of 4/v/3 ~ 2.3 when &
is large. However, these results are asymptotic. Below we provide a first non-asymptotic
bound with the faster rate p..

Theorem 5. Let f € S, 1 be a quadratic function (15). Consider the deterministic AG
iterations {zy k>0 defined by the recursion (3) with initialization zg,z_1 € R? and param-
eters (a, B) = (&yq. Bh) as in (19). Then,

. = 2]l <Ci(phe)" - 60 — &I, (20)
L * >k
flae) = f(=2) SE(Ck)Z(pAG)Qk [I€0 — &%,
where pho =1 — \/%ﬁ and
i = max { €, I3 + 1P + 20 )?} 1)

with C* := 7%H2((p*AG)2 +1)C* and

) 3L
o i p(3L + )

im<n<LaA2 /(N — w)[BL + p — 4N]

where {\;}¢_, are the eigenvalues of the Hessian Q.

Remark 6. The constants C}, grows linearly with k in Theorem 5 and this dependency is
tight in the sense that there are examples achieving it (see the proof in the supplementary
file). Our bounds improves the existing results that provide a slower rate pac with bounded
constants in front of the linear rate [ , ], if k is large enough (larger than a
constant that can be made explicit).

Building on this non-asymptotic convergence result for the deterministic AG method,
we obtain similar non-asymptotic convergence guarantees for the ASG method in p-Wasserstein
distances towards convergence to a stationary distribution.

Theorem 7. Let f € S, 1 be a quadratic function (15). Consider the ASG iterations
{zr}i>0 defined by the recursion (10). Let vy o g be the distribution of the k-th iterate &
for k >0, where & = (z], 21 ) and parameters (o, B) = (g, i) as in (19). Also
assume that V0,0 B € Pp(RQd) and the noise € has finite p-th moment. Then, there
exists a unique stationary distribution w, g and for any p > 1,

Wp (Va8 Ta8) < Cr(pha)™  Wo (V0,0,8: Tar) » (22)

where pho =1 — \/ﬁ, © is defined in (21) and W, is the standard the p- Wasserstein

distance.

11



We can also control the expected suboptimality E[f(zx)] — f(x«) after k iterations.

Theorem 8. With the same assumptions as in Theorem 7,

L * * * k
Elf(zx)] = f(z:) < 5 Tr(XA6) + Via(&)(Co) (phe)™, (23)
where pho =1 — \/%T’ ¢ is defined in (21), X is the covariance matriz of £oc — &x

and V(o) is a constant dependmg on any nitial state § and both X and V(&) will
be spelled out in explicit form in the supplementary file.
3.2 Accelerated linear convergence of HB and SHB

We first give a non-asymptotic convergence result for the deterministic HB method with
explicit constants, which also implies a bound on the suboptimality f(zx) — f(x«). This
refines the asymptotic results in the literature (Theorem 3).

Theorem 9. Let f € S, be a quadratic function (15). Consider the deterministic HB
iterations {xy,}x>o defined by the recursion (11) with initialization xo,x—1 € R? and pa-
rameters (o, B) = (agp, Bup) as in (12). Then,

lzr — 24| SCkP]irB 1€ = &l (24)

fla) = f(@ )< Cirtis - 160 — &%,

where ppp is defined by (13) and

2
C} = max {C_', \/4/<:2 <§i—5> + 2}7 (25)

ptL
2¢/(Ni—p)(L=X)’

with C = maX;.,<\;<L where {)\i}ﬁlzl are the eigenvalues of the Hessian

matriz of f.

Remark 10. It is clear from the definition of Cy in Theorem 9 that the leading coefficient
Cy grows at most linearly in the number of iterates k and this dependency cannot be re-
moved in the sense that there are some examples achieving our upper bounds in terms of k
dependency (see the supplementary file).

Building on this non-asymptotic convergence result for the deterministic HB method, we
obtain similar non-asymptotic convergence guarantees for the SHB method in Wasserstein
distances towards convergence to a stationary distribution.

12



Theorem 11. Let f € S, be a quadratic function (15). Consider the HB iterations
{zr}i>0 defined by the recursion (14). Let vy o g be the distribution of the k-th iterate &
for k>0, where 5,{ = (x;f,mg_l) and parameters (o, B) = (agp, Bup) where (app, Bup)
is defined as in (12). Also assume that Vo oy y s € Pp(R??) and the noise ), has finite
p-th moment. Then, there exists a unique stationary distribution w, g and for any p > 1,

Wy (V.8 Ta,3) < Crplip - Wy (V0,0,8: Ta8) » (26)

where pgp = 1 — \/E2+1 as defined in (13), Cy, is defined in (25) and W, is the standard

the p- Wasserstein distance.

Similarly, for SHB we can show that the suboptimality E[f(zx)] — f(x«) decays linearly
in k with the fast rate pgp to a constant determined by the variance of the equilibrium
distribution.

Theorem 12. With the same assumptions as in Theorem 11,

Bl (on)] — f(2) < 5 TH(Xup) + Virn (&) - CF - i (27)

2
Vet
€0 — &y V(&) is a constant depending on any initial state & and both X and Vip(&o)

will be spelled out in explicit form in the supplementary file.

where pgp =1 — as in (13), Cy is defined in (25), Xpgp is the covariance matrixz of

4 Strongly convex smooth optimization

In this section, we study the more general case when the objective function f is strongly
convex, but not necessarily a quadratic. The proof technique we use for Wasserstein dis-
tances can be adapted to obtain a linear rate for a strongly convex objective but this
approach does not yield the accelerated rates pac with a v/k dependency to the condition
number even if the noise magnitude is small. However, we can show accelerated rates in
the following alternative metric which implies convergence in the 1-Wasserstein metric. For
any two probability measures i, 2 on R?¢, and any positive constant 1, we define the
weighted total variation distance (introduced by | ]) as

Aol i= [ | (4 0V = ol
where Vp is the Lyapunov function defined in (5). Moreover, since b and Vp are non-
negative, dy (1, p2) > 2|1 — p2l|rv, where || - ||y is the standard total variation norm.
Moreover, when P(2,2) # 0, we will show in the supplementary file (Lemma 27 and
Proposition 26) that

Wi (p1, p2) < ey tdy (1, p2),

13



for some explicit constant ¢y (to be given in the supplementary file), where W is the
standard 1-Wasserstein distance.

We will consider the accelerated stochastic gradient (ASG) method for unconstrained
optimization problems. We will also assume in this section that the random gradient error
€, admits a continuous density so that conditional on &, = (:1:%, x%_l)T, Trp41 also admits
a continuous density, i.e. P(zr11 € dz|& = &) = p(&, z)dx, where p(&, z) > 0 is continuous
in both £ and x.

4.1 Accelerated linear convergence of ASG

For the ASG method with any given «, 3 so that p, g, P, s satisfy the LMI inequality (6).
Let vy o5 be the distribution of the k-th iterate { for k > 0, where fg = (l’g, :L‘fkrfl) and
the iterates x, are given in (10) so that E[Vp, ,(&o)] is finite. The next result gives a bound
of k-th iterate to stationary distribution in the weighted total variation distance dy. We
also control the expected suboptimality E[f(zx)] — f(x.) after k iterations.

Theorem 13. Given any n € (0,1) and M > 0 so that j]‘x_z*”<Mp(§*,a:)d:U > /1, and
any R > 0 so that -
in

EER2 GERY:V,  (§)<R,[lz—a.| <M P(§x, T)

> /.

Then there is a unique stationary distribution m, g so that

W1 (Vka,8, Ta,8) < € dy (Va8 Ta )
< (1= ) ey dy(Y,0,8: Ta,8)s

where Wy is the standard 1- Wasserstein distance and i := ﬁ and
L 5 2 2
Kop:= 5 + Pop(1,1) | a“o”,

7= min 4 ! 1 pap  Kap Rn
' 2°\2 2 R ) 4K,3+Rn/"

Next, we obtain the optimal convergence rate and provide a bound on the expected
suboptimality by choosing («, 8) = (aag, Bac)-

Proposition 14. Given (o, ) = (aag,Bac). Define M and R as in Theorem 13 with
n = 1/k'Y2. Also assume that the noise has small variance, i.e. 0> < RL/(4\/k). Then,
with ¢ = ﬁ, we have

Wi (Vk0,8:Ta8) < € ' dy (V0,8 T 5) (28)

k
1 _
< <1 B 8\/E) Co i (V0,0,65 Ta,8);

14



where Wy is the standard 1-Wasserstein distance and for any initial state &g,

BLS )] o) < Violeo) (1= =) + 57 (20)

The bound (29) is similar in spirit to Corollary 4.7. in | ] but with a different
assumption on noise. We can see that the expected value of the objective with respect to
the k-th iterate is close to the true minimum of the objective if k is large, and the variance
of the noise o2 is small. In the special case when the noise are i.i.d. Gaussian, one can
compute the constants in closed-form.

Corollary 15. If the noise ¢ are i.i.d. Gaussian N(0,%), where ¥ < L?I;. Then,
Proposition 14 holds with

M = <—210g (( 1/4> V/det(I; — L—22))>1/2,

2
log(L/p) (L—p)?
M+ | M2+ .
< \/ 202|274 ) 8(3VEL — m)?
If we take p = O(1), then L = ) and it follows that we have M = O(k~/8) and
R=0 (r ~13/410g? (K ).

We note that Proposition 14 and Corollary 15 provide explicit bounds on the admissable
noise level o2 to ensure accelerated convergence with respect to Wasserstein distances and
expected suboptimality after k iterations.

5 ASPG and the weakly convex setting

Constrained optimization and ASPG. Our analysis for AG can be adapted to study
the accelerated stochastic projected gradient (ASPG) method for constrained optimization
problems mingec f(z), where C C R? is a compact set with diameter D¢ := sup, yec [z —
yll2. Theorem 13, Proposition 14 and Corollary 15 extends to ASPG in a natural fashion
with modified constants that reflect the diameter of the constraint set (see the supplemen-
tary file). Furthermore, due to the finiteness of the diameter, it can be shown that the
metric dy implies the standard p-Wasserstein metric for any p > 1. We also provide bounds
in expected suboptimality for ASPG.

Weakly convex functions. If the objective is (weakly) convex but not strongly
convex and the constraint set is bounded, our analysis for the strongly convex case can
be adapted with minor modifications. Following standard regularization techniques (see
e.g. | , ]), that allow to approximate a weakly convex function with a strongly
convex function, we provide explicit bounds on the noise level to obtain the accelerated
O(e~1/2) rate up to a log factor on ¢ in expected suboptimality in function values (see the
supplementary file).
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6 Conclusion

We have studied accelerated convergence guarantees for a number of stochastic momentum
methods (SHB, ASG, ASPG) for strongly and (weakly) convex smooth problems. First, we
studied the special case when the objective is quadratic and the gradient noise is additive
and i.i.d. with a finite second moment. Non-asymptotic guarantees for accelerated linear
convergence are obtained for the deterministic and stochastic AG and HB methods for any
p-Wasserstein distance (p > 1), and also for the ASG method in the weighted 2-Wasserstein
distance, which builds on the dissipativity theory from the deterministic setting. Our
analysis for HB and AG also leads to improved non-asymptotic convergence bounds in
suboptimality after k iterations for both deterministic and stochastic settings which is of
independent interest. Second, we studied the (non-quadratic) strongly convex optimization
under the stochastic oracle model (H1)—(H2). Accelerated linear convergence rate is
obtained for the ASG method in the 1-Wasserstein distance. Third, we studied the ASPG
method for constrained stochastic strongly convex optimization on a bounded domain.
Accelerated linear convergence rate is obtained in any p-Wasserstein distance (p > 1),
and extension to the (weakly) convex setting will be discussed in the supplementary file.
Our results provide performance bounds for stochastic momentum methods in expected
suboptimality and in Wasserstein distances. Finally, the proofs of all the results in our
paper will be given in the supplementary file.
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A Constrained Optimization and ASPG

Consider the constrained optimization problem mingcc f(x), where C C R? is a compact

set with a finite diameter D¢ := sup, yec |z — yll2 and Gy := maxgec [[Vf(2)|. The
accelerated stochastic projected gradient method (ASPG) consists of the iterations
Tpt1 = Pe (Gr — oV f(Uk) + €r41)) (30)
Uk = (1 + B)Tk — BTk-1, (31)

where ¢, is the random gradient error satisfying Assumption 2, a, 5 > 0 are the stepsize and
momentum parameter and Pe(z) denotes the projection of a point x to the compact set C.
For constrained problems, algorithms based on projection steps that restricts the iterates
to the constraint set are more natural compared to the standard AG algorithm primar-
ily designed for the unconstrained optimization | ]. Accelerated projected gradient
methods can also be viewed as a special case of the accelerated proximal gradient methods
as the proximal operator reduces to a projection in a special case (see e.g. [ D).

We will show in Proposition 28 that the metric d, implies the standard p-Wasserstein
metric in the sense that for any two probability measures pq, 2 on the product space
C?:=CxC,

W(pur, 12) < 27Dz ln = pallzhf < Deady* (ur, a2),

where Dp2 = V2D is the ~diameter of C2.
Under Assumption 2, & = (ff, ic%_l)T forms a time-homogeneous Markov chain and

we assume §~0 € C?. In addition to Assumption 2, we also assume that the random gradient
error ¢ admits a continuous density so that conditional on &, = (:i'g, ifil)T, Tr1 also
admits a continuous density, i.e.

P(Z141 € dZ|& = &) = (&, )dz,
where ]5(5, Z) > 0 is continuous in both ¢ and 7.
For the ASPG method with any given «, 3 so that p, g, P, g satisfy the LMI inequality
(6), the next result gives a bound of k-th iterate to stationary distribution in the weighted

total variation distance and standard p-Wasserstein distance, and also a bound on the
expected suboptimality E[f(Z)] — f(Z«) after k iterations.
Theorem 16. Given any n € (0,1) and R > 0 so that
~inf M >n.
zeC:éec? Ve, 4 (E)<R P(&x, T)

Consider the Markov chain generated by the iterates 5,{ = (5:%,57{_1) of the ASPG algo-

rithm. Then the distribution Uy o g of §~k converges linearly to a unique invariant distribu-
tion 7o g satisfying

Wp(Vk,0,8, Fa,8) < Dc2d71/;/ P (Oka,8 Tayp) < (1= ﬁ)chzdg (90,08, Ta,8) (32)
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where W, is the standard p- Wasserstein metric (p > 1) and

) ) i e
E[f(a;k)] - f(aj*) < VPaﬁ (fO)Pg,g + ﬁ, (33)

where

o aocl

Kaﬁ = Q0o <(a0 + 2DC) ||Pa’5|| + GM + 2> ,

L n (1l pap f(a,g Rn

7:=ming —, | = — — _ ,

27\ 2 2 R 4Ky 5+ Ry

and 1 = —

2Ka.5"
We can see from (33) that the expected value of the objective with respect to the k-th
iterate is close to the true minimum of the objective if k is large, and the stepsize « or the

variance of the noise o2 is small. By choosing (, ) = (aaq, Bag), we obtain the optimal
convergence in the next theorem.

Proposition 17. Given (o, ) = (aaq, Bac). Define R as in Theorem 16 withn = 1/x/2.
Also assume that the noise has small variance, i.e.

2 1 2 ?
o” < @ —b1 + \/bl + (alR/\/E) R
1

where ay = 73 (5((1 = VE)? + K) + L) and by := L (Dep((1 — VE)? + k) + Gur). Then,
we have

k
o o 1 o
Wo(Pha,8: 7ap) < Derdf” (B9, o) < (1 - 8ﬁ> De2d)/” (P09 Fap)s  (34)

where W), is the standard p- Wasserstein metric (p > 1) and

k
E[f(50)] — £(52) < Voro (&) (1 - \}) VAR, (35)
where K = 720172%2“’2”((1 —VE)2+K) + U%M + % and ) = 2\/1@?.

B Weakly Convex Constrained Optimization

In this section, we extend the constrained optimization for the accelerated stochastic pro-
jected gradient method (ASPG) from the strongly convex objectives studied in Section A
to the (weakly) convex objectives.
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Consider the constrained optimization problem mingec f(x) for f € Sp 1 on the convex
compact domain C C R? with diameter D¢. Consider the following (regularized) function

3

+ 7”'7"”27
2D2

fe(x) = f(x)

which is strongly convex with parameter p. = 5/1)% and smooth with parameter L. =
L+ a/Dg, ie. f. € Sy r. with a condition number k. := L./p. = 1 + LD%/&. Let 5,
denote iterates of ASPG defined by f; (i.e f = f-(z)) in (30) and (31)) with optimal value
7% and define Z, to be one of the minimizers of f(z) (the optimizer may not be unique).
By applying Proposition 17, we can control the expected suboptimality after k iterations
as follows:

~ k ~
I - £ < Vig (@) (1- = ) + Ve

N

where ) o )
~ 2UDCL5 + g 2 g M g

K= ——e—p((1 -y :

e 212 He(( Re) H ) T 4 o

Therefore,
E[f(@%)] - f(z.) = E[f(a)] — fo(@) + 2;;% (11> = Ell12% 1))

< E[f()] - f() + QDC (1% — El#5)1%)

.
< Vs, (&) (1—\/§> Jm/@f(ﬁrg,

where we ysed the fact that z7,Z, € C. Therefore, if the noise level o is small enough such
that \/k.K. < § and if

. |log(€1)0;(110%(‘\//1;ic)‘(§~0))| 0 < 1 g @) |

we obtain

E[f(z})] — f(2.) < 2e. (36)

This shows that if the noise is small is enough, it suffices to have

1 1
Ol —=log| -
(7= ()
many iterations to sample an e-optimal point in expectation.
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C Proofs of Results in Section 3

In this section, we prove the results for Section 3, in which the objective is quadratic:
fz) = %:cTQa: +a’z+band f € Sy, which satisfies the inequalities:

F@) = ) = Vi) @ =) + Sl =yl
F) ~ £=) 2 V)~ 2) — 2l — ol
(see e.g. [ D).

C.1 Proofs of Results in Section 3.1

Before we proceed to the proofs of the results in Section 3.1, we first show that the matrix
Sa,p defined in (17) is positive definite so that the weighted 2-Wasserstein metric Wh s, ,
given in (1) is well-defined.

Lemma 18. The matriz S, 5 € R?¥*%4 defined by (17) is positive definite if Py 5(2,2) # 0.

Proof. For brevity of the notation, we will not explicitly write the dependency of the matri-
ces to o, f and set P = P, g and P= P, g in our discussion. It is known that if A € R"*"
is a symmetric matrix with eigenvalues {\;}™, and eigenvectors {a;}? |, and B € R?*? is
a symmetric matrix with eigenvalues {y; };l:l and eigenvectors {b;}7_;, the eigenvalues of
the Kronecker product A ® B are exactly A;u; with corresponding eigenvectors a; ® b; for
i=1,2,...,nand j =1,2,...,d. Since P = P® I; and P is positive-semi definite by as-
sumption, this implies that P is positive semi-definite and in case P has a zero eigenvalue,
any eigenvector z of P (corresponding to a zero eigenvalue of P) can be written as

5 — (61> ® s = <618) c ]R2d’
()] C2S

T

for some s € R?, s # 0 where ¢ = [¢; ¢p]” is an eigenvector of P corresponding to a zero

eigenvalue. The symmetric matrix

P 5. (IQ 0d>
S:=P+Q, where Q= (2 , (37)
04 Oq

is the sum of two positive semi-definite matrices, therefore it is positive semi-definite by
the eigenvalue interlacing property of the sum of symmetric matrices (see e.g. | D).
Thus, it suffices to show that S is non-singular, i.e. it does not have a zero eigenvalue. If
P is of full rank, then such a vector z cannot exist and P cannot have a zero eigenvalue.
Therefore, P is positive definite and hence S is positive definite which completes the proof.
The remaining case is when P is of rank one (P =0 is excluded as Py # 0) in which

case we can write P = uu? for some u = (u1 UQ)T € R2 and usy % 0. We will prove the
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claim by contradiction. Assume that there exists a non-zero v € R?? such that Sv = 0.
Then,
0=2v"Sv =v"Pv+vTQu.

Since both of the matrices P and Q are positive semi-definite, this is true if and only if
vI'Py =0 and vTQv = 0. Since v7Qu = 0 and Q is positive definite, from the structure of
Q, it follows that the first d entries of v has to be zero, i.e. v =[0 vI]” for some vy € R%.

It is easy to see that the eigenvalues of the two by two symmetric rank-one matrix
s T

P = wu” are \; = [[ul|? > 0 and Ay = 0 with corresponding eigenvectors (uy ug)T and

(U2 —ul)T respectively. Since v is an eigenvector of P corresponding to an eigenvalue
zero (i.e. Pv =0), then using (C.1) we can write

o= (2 )os=(12) em,
—uy —us
for some s € R% s # 0. Since v =1[0 vI]T for some vy € R, this implies uz = 0 as s # 0.

This is a contradiction. O

Next, before we proceed to the proofs of the results in Section 3.1, let us first recall
that throughout Section 3, the noise ¢ are assumed to be i.i.d. Let us define the coupling

il = v —a [VF () +ern) (38)
v = (1t ) — pai),. (39)

with 7 = 1,2. Then, we have
Sk+1 = A& + By,

where A= A® I;, B=B® I, for
- (148 =P ~ [ —«
() (),

o e o o\
§ = ((xk - T ) ) (xkrfl - xkq) > ) (40)
wp =V (148 - 2)) = V1 (14 B)al? - a2, ). (41)

Let us define:

and

X =pXi+ (1-p)Xa, (42)
where
N -
Xi=3 —un B B , (43)
- B a(2 — La)
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and

) (148w —(1+Bp —(1+p5)
Xp =5 | =B+ pB)u B%u B : (44)
—(1+ B) 3 a(2 — La)

and X = X @Iy, X1 = X1 @1y, Xo = Xo @ I,
Before we proceed, let us recall the following lemma from | .

Lemma 19 (Theorem 2 | 1). Let X be a symmetric matriz with X € R(retnw)x(netnw)
If there exists a matrix P € R"<*™ with P > 0 so that

ATPA—pP ATPB
( BTPA BTPD ) —X =0,

then, we have

V(&ka1) — PV (&) < S(&k> wr),

s () x(5)

§ky1 = A&y + Bwy.

where V(€)= ¢TPE, and

and

The proof of Theorem 4 relies on the following lemma.

Lemma 20. Assume the coupling:

) =y —a [Vf (y,(f )> + 5k+1} , (45)
v =1+ B - g, (46)

with j = 1,2. Assume that f is quadratic and f(x) = %ZETQJJ—FCLTI'-{-Z), where Q) is positive
definite.

Let p = pap € (0,1) that can depend on o and 8 so that there exists some P = P, g
symmetric and positive semi-definite that can depend on o and B such that

< ATPA—pP ATPB

BTPA  BTPB > - X =0, (47)
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where X := X ® Iy, where X is defined in (42). Then, we have

$l(<1) - zl(f) ' 513( ) - 5”1(3) (1) (2) 1) (2)
E (*1% z($1 P, ﬂ e e 5 <~"3k+1 xk-‘rl) Q ($k+1 - l‘kﬂ)
T~ — Ty

L' — Xy

T
1 2 a,B 1 2
xl(c—)l - xl(c—)l xgc—)l - xgc—)l
1 1 N T 1 2
+§<$§C)—x,(€)) Q(x,g) x,g)>]>

Proof of Lemma 20. First of all, since f is L-smooth and p-strongly convex, we have for
every x,y € R

< pa,g (E

f(@) = f() = VI (@ =) + Sl =yl (48)
F) = @) 2 V1)t - )~ Sy~ ol (19)

Note that since f is L-smooth, we also have for every z,y € R%:

IVf(z) = VIl < Lz —yll.

Let us first consider the simpler case f(z) = %Z'TQ.CI}. Since f is quadratic, V f is linear.
Applying (48) and the linearity of Vf, we get

E .
- (91 (1) o1 o >> <,a - (0 -4)
e - 2 )

Applying (49) and the linearity of Vf, we get
f (y(l) - y;(f)) —f (y,(f) —y) —avf (y;il) - y,(f)))

> G- Lo [0s (47) - v ()]

Using the identity:
1) 2 _ O 2) 1) (2
Tht1 ~ Thp1 = Y — yl(c —aVf (yk — Yy )) )

we get
) 1 (k) 2 St o ()~ ()
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Hence, we get
1 2 1 2

(o)) (18-
4 = ) s [ () - ()

By the definition of X from (43), with X; = X; ® I, we get

T
x}(ﬁl) I(€2) x}(ﬂl) . J,‘](f)
2 1 2
a2 . X x%lil—xé) o
<,i> Vi?) Vi) - viw?)

(2) 2
( n) =5 (= elh)
Similarly, by applying (48) with (z,y) — (0, y,(:) - y,(f)), by the definition of Xy from (44),
with Xy = 5(2 ® Iy, we get

(1) _ @ T n _ @
Ly

& e & o @
T Bl W, PN R Rl )
(yk ) Vf(yk ) Vf(yk ) - Vf(yk )

By using X = pX; + (1 — p)Xs and X = X ® I, we get

T
xS) _ x}(j) xg) B :n;f)
1 2 1 2
x%lil S o ) m'(flil S @)
Vi) - Vi) Vi) - Vi)

<= (1 (2 —22L) = 10) + 0 (1 (5 = 4?) - 10)).

By Lemma 19 and the definition of p, 3, P, g the inequality (47) holds. Thus

), — ) ' 3321) - 5”;@) (1) (2)
k(ﬁ% IEJS Pao,s ?rl% (2 R (xk+1 - xk+1> — f(0)
Ly, Ly, Ly — X

Q@ \7 L0 2
i — X — X 1) (2)
< Py k k Pa Ly, k 4 ( — f(0 .
< Pa,p (( xg) —33;(3)1 ) B < 351(@1_)1 (_) ) f(xk Ty ) f(0)
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Since f is quadratic, and we assumed that f(z) = %xTQ:c, where Q) is positive definite, we
get

(1) @ \7 (1) (2)

Tyl —x T, — X 1 1 N \T 1 2

( ;(ﬁ% _ $1(¢$1 ) FPop < kﬁrl% I(Cz ! ) + 3 (l‘/(ﬁ-i)-l - $1(<:421) Q (xl(c—&)—l - xl&-&)-l)
k k k

o _ @ \7T (1) (2)
i v Lo N\ o0 @
< Pa k k P, k + = x( 0 JCONS .
= Pos (( x,(cl_)l—xl(f_)1> ’B<x§€1_)1 (2) ) 2<k k> Q(k- k)

Previously, we assumed f(z) = %ZETQI', so that Vf(x—y) = Vf(z)—V f(y). In general,
the quadratic function takes the form

1
f(x) = §xTQx +aTx+b.
In this case,

Vi —y)— (Vi) - Vi) =a" (z—y).
By the definition of X from (43), with X; = X1 ® I, we get

T
ac,(j) B x;z) xg) xf)
1 2 2
R
Vf( ) Vf(yk ) ( Yy, ) ( )

</ (xkl) - $1(<32)> —f (xl(cl—zl - xl?—?—l)

# (91 (o ) =1 (") +97 ()" (52 =i - (ol =)
=f (x,(g _ x§€2)) f (;pgﬁl - xg)l) +a (351(:421 _ xgl (xl(cl) _ x;z))) '

By the definition of X, from (44), with Xy = Xy ® I, we get

x,ﬁl) B 1(3) T :c,(;) B x,(f)
xl(cl—)l - 5‘31(3—)1 X fU;(ﬁl_)l w,(f_l
v (y V) — vy (y,(f)) \vai (y,(j) v (y,(f)
< 50 = 1 (ot = o2) + (97 (07 =) =97 (57) + 95 ()" (sl — i)
=f0)—f (xgll - xéi)l) +a (x&h xﬁL) :
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Using X = pX; + (1 — p)Xy and X = X ® I, we get

2 — @ T 2V @
](C)l xl(f)l X xl(%)l l(i)l )
Vi) - VD) Vi) - VD)
<= (f (akh —2ih) — @) 40 (7 (o1~ ) - 100))

ta (xgl - xgjgl —p (wl(cl) 9522)))
-3 (3321421 5”;2421) Q (xgl - xﬁl) + Py \* ( v x?) Q (wl(cl) - 9322)> :

Hence, by Lemma 19 and the definition of p, g, Pa g so that (47) holds, we get the same
result as before:

(1) @ \7T (1) (2)
x —x T, —x 1 1 N \T 1 2
( NORINCE ) Paﬁ( o )+<x,§,ﬁ1—x,§ll) Q( 1~ i) )
Ly, L, k Ty,

Tet1 ~ Trqr

(1) (2) T (1) (2)
x, —x x, —x L e T (1)
< P k k P, k k P Q
Peup ( wl(i)l w,(i)l ) N ( ) ) 2 ( Tk > (

(2)
L' — Xy
- k-1 Tk_1

O
By taking a = aag, 8 = Bag, p = pag and Py in definition (7), we recall the following
result from | ].

Lemma 21 (] ). , With the choice

1 VE—1 1
g = — = = = = = 1 - —,
a=ou6 =7, B = Bac Jitl P = PAG NG
where k = L/ is the condition number, there exists a matriz JSAG € R?*2 with Pyg > 0
where

rosmaan, = (JF (D)

such that Py = PAG ® I; and

ATPyqA — pPag ATPagB

T T - X =<0
BTP, A BTP,.B

where X := X ® I, where X is defined in (42)

We immediately obtain the following result
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Lemma 22. Assume the coupling (45)-(46). Assume that f is quadratic and f(x) =
%xTQaJ +aTz + b, where Q is positive definite. Then, we have

o) 2 ! o) — a2, L/ @ @ \7 (1) 2)
£ x}iﬁ) _ xz(f Pac x](:i) _ xg) T3 <xk+1 - karl) Q (karl - xk+1)
® @ \7T L 2
<o (2] (522 ) m (508 )
L1~ T g L1~ T

) o))

where P is defined in (7).

Now, we are ready to state the proof of Theorem 4.

Proof of Theorem 4. Recall the iterates & = (a:f, :U{_l)T, the Markov kernel P, s and the
definition of the weighted 2-Wasserstein distance (1) with the weighted norm (16)-(17) and
P = P, g. Then showing Theorem 4 is equivalent to show

Wis, ,(Ra s((20,2-1), ), Ta,p) (50)

N T N
N pa’ﬁ /RdXRd < T_1—T-1 ap r_1 —T-1 ( )

+ %(l’o - i‘o)TQ(l‘o - i’o)] dﬂ'a,g(io, i‘,l).

Let (((a:,(j))T, (m,(fll)T)T),;“;o, i = 1,2 be a coupling of ((z],z1 |)T)2°, defined as before.

We have shown before that for every k,

(1) @ \7T (1) (2)
Tyl — Tyl — T 1/ a 2) \7 1 2
( NG "(}31 ) Fop ( k?kﬁ _ xzﬁl ) t3 (”ff(w)l - l‘z(c+)1> @ (x/(f+)1 - ”«’1(«+)1>

.ka — X x
m_ @ \7T 1 @
T, —x T, —x 1 1) oN\T 1) D)
< o k k Pa k k 4+ = x( . . .
= s (xgyl_x,g%) vﬂ(@nl_x,gml) 5 (o) =) @ (o) =)

Using induction on k, we get

T
1 2 o, 1 2
xl(c—)l - ‘Tl(c—)l '/”U](i’—)l - JU/E;—)l

1 ) \T 1 2
< :r(())—:v(()) p x(())—x(())
Stag |\ Lo _,@ | Tesl 00

-1 -1~ T

(- 22) @ (o - 22)

N—— N | —
+
N =
VS
8
o
=
|
8
e
N—

S
O
N
8
=
|
8
e
N—
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By taking expectation and since %xTQx > 0 for any z, we get

W _ @ \7T SNC)
X — X X — X
E < @k ) Pop ( @ Tk )
Lpl1 — Tl L1 — Ty

(1) @ \7 (1) (2)
zy — Ty — 1 1 N T 1 2
= pg’ﬁE[ ( :v%} - x(()2) ) Fous < m?l) — :U?Z% > 2 <xé o )) ¢ (x(() o )> ]

-1 -1

Let A1, A2 € Pz,saﬁ(RQd). There exist a couple of random vectors (x(()l),x(_lg), and

(x((f),x(ﬂ), independent of (e5)72, such that

o _ @\ OEe)
2 _ Ty — Iy Lo — Ty
Waisa s do) = E[ ( 2 — 2% ) o ( 0 2@ >
1 NT 1 2
(x(())—a;é)> Q(ajg)—mé)>}

Then, we get
Wis, , (7’5@1:7’35/\2) < phpl* (A, 22),

, x(()n _ $(()2) T x(()l) _ x(()z)
P 2) =Eeo o0 el | &y | Fas | 2

where

T — T T —xl
A=) o)

Therefore,

ZW%,Sa,ﬂ (Pf.f,gh,??li,m) < 00.
k=1

By taking Ay = P, gA1, we get

o
S Wis,, (Phn PESA) < oc.
k=1

Hence 732 5>\1 is a Cauchy sequence and converges to a limit Wilﬁt

: k A _
lm W, , (PhsAi ) =0.
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Next, let us show that 7'('215 does not depend on A;. Assume that there exists 77226 so that

limy o0 Wa,s, 5 (PE

0,825 7T2’2’8) = 0. Since Wa s, , s a metric, by the triangle inequality,

W25, (”3,157”3%) S Wasas (”3,1577’5,5&)

+Was, (PfjﬂAl,PfjﬁAg) +Was, (W;\fﬁﬂ?gﬁ)\g) ,

which goes to zero as k — oco. Hence, Wilﬂ = Wizﬁ. The limit is therefore the same for any

initial distributions and we can denote it by 7, 5. Indeed,

Wa,50.5 (Pa,ma,8, Ta,5) < Wais, g (Pa,ﬁﬂa,ﬁapﬁ,ﬁﬂaﬂ) T W50 (Pﬁ,ma,ﬁma,ﬂ> )

which goes to zero as & — oco. Hence P, gmo 3 = 7o g gives the invariant distribution. We

can also show similarly as before that it is unique. O

Remark 23. If « € (0,1/L] and g = i_\/\/g, then we can take the matriz P,z ap-

pearing in Theorem 4 according to the P, matriz defined in [ , Theorem 2.3] to
2

obtain p(a,8) = 1 — \Jaup. For a = loik(zk), then this leads to Wa s, 5 (Vk,a,8 Ta,8) <

Was, 5 (V0,0,8, Ta,3) and it can be shown with an analysis similar to that of [ ]

that the second moment of m g is also O(1/k); ignoring some logarithmic factors in k.
Therefore, our results do not violate (and are in agreement with) the Q(1/k) lower bounds
studied in [ , , | for strongly convex stochastic optimization.

Proof of Theorem 5. First let us recall the AG method:
Trt1 = Yk — [V f(yr)],
Yk = (1+ B)xx — Brg1,

where a > 0 is the step size and § is the momentum parameter. In the case when f is
quadratic and f(x) = %xTQ:E +a”x + b, we can compute that

Try1 = Yp — a[Qyr + al,
ye = (1 + B)zr — Bag—1,

and with the optimizer x,. we get

Tht1 — T = Yp — T — QY — 7)),
Yk — Yx = (1 + B)(xk - CU*) - B(xkfl - .Z'*),

which implies that

(ﬂ?k+1—$*>:<(1+5)(fd—0é@) —B(Id—aQ))( Tk — >

T — T Iy 0a Tp_1 — Tx
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which yields that

( . >_<<1+6><Id—a@> —5<Id—acz>)k< 20 — s )

Tp—1 — T« Iy 0q T_1— Ty

and we aim to provide an upper bound to the 2-norm of the matrix, that is:

H< (14 8) I — Q) —B(l4— aQ) )’“
1 0g

Let us assume that ) has the decomposition
Q=VDVT,
where D is diagonal consisting of eigenvalues A;, 1 < i < d in increasing order:
=A< << N\g=1L,

then we have 3
I;—aQ =VDVT,

where D = I; — aD is diagonal matrix with entries
1-— Oé)\i, 1 S 7 S d.
Therefore, the matrix

( (1+8)Iqa—aQ) —BIg— Q) >
1, 04

has the same eigenvalues as the matrix

< (1+8)Ig—aD) —B(Ig—aD) >
Iq 04 ’

which has the same eigenvalues as the matrix:

T, - 0 0
0 T, - 0
0 0 - Ty

where

Ti:<(1+5)(11—04)\z‘) —5(10—00\1‘))’ 1<i<d,
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are 2 X 2 matrices with eigenvalues:

(1+8)(1—aX) £ /(1 +B)2(1 —aX)? —4B8(1 — a\)
5 :

Mi+ =

where 1 < ¢ < d, and therefore

< max HTZkH (52)

~ 1<i<d

H < (1+B8)(Is— Q) —B(l4—aQ) )’“
1 04

Next, we upper bound || 7¥||. We recall the choice:

4 CVBR+1-2 2

= ) =, =1-—. 53
A A S v P A V3k+1 (53)
We can compute that
1—a\) s
AZ: 1+ 21—04)\22—4 1—05)\1 =16 ( d (1_") 54
(14 BP0 - an)? — 431 - ax) = 16,20 (1-50) (o

Therefore A; = 0 if and only if \; = p or A\; = SLI“, and moreover A; < 0 for pu < \; <
?’R#andAi>0for)\i>3%#.

(1) Consider the case u < \; < 3%#. Then A; < 0. It is known that the k-th power of
a 2 X 2 matrix A with distinct eigenvalues pu4 is given by

ik pt
Y O TN R Y )
Mt — H— H— = f
where I is the 2 x 2 identity matrix [ |. In our context, A =T; and p4 = p;+, we get
k k
It py
Tf = ——— (T, — s, T) + ————(T; — pi 1 1). (55)
M+ — Hi,— Hi,— — Hi+

We can compute that

1/2
i = i | = (B(1 = aXi)"* = (m—mw—%)
| ’ V3it1+2 3L+p
- (m—23/€—3>1/2
T \WV3k+1+23k+1 ’

(56)

and notice that

3k—3=(V3k+1+2) (V3r+1-2), (57)
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and thus we get

V31 -2)2\"? 2
il = b < (D2 T

3k + 1 NCTES
Moreover,
1 1 Brri+2 N
= < max .
Wi = pi—| /1A 4 ip<hi< SLts \/()\z‘ — (1 g2
Furthermore,
i+ —B(1—aN) i+
T — pi-I = ( 11 i V) = Zl (1 —pi ),
and ( )
e i B —ak) - o
T; NzHrI_( 1 — it >—< 1 >(1 Mz,Jr)-
Therefore,
1T — i, 1| < H( MT >H (1 —pi )| =0"+1,
. . 'u’i’_ . — 2
7=t < | (45 )10 =l =21
Hence, it follows from (55), (58), (59), (60) and (61) that
142
) T < Y3EELEZ Vi (% +1).

20 et SO - (1 - )

(2) Consider the case SLI" < X\ < L. Then, A; > 0. As before, we have

k k
M, i —
(T — D) + -

Tik I T =
M4 — Hi,— Hi,— — Hi+

(Ti — pit 1)
We can compute that

=L+ B)an -1+ VA,

1 1 (aL—1) L—up
2(1+ﬁ)(aL1)+2\/16(m+2)2 P

V3kF1 k-1 1\/16 k—1 K—1 2
(

i 4| < [, —

IN

= +
V3k+1+23k+1 2
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Moreover,

1 1 V3 1+2
PP b max Vi . (64)

i — i VAT 4 i 3 <\ <L \/()\z - H)(ﬁﬁfﬁ -1

Furthermore,

R e A B C ) IR}

i
and
T — piI = < Ml’_ _ﬁ(_llu_if/\i) > = < Ma’_ > (1 —piy ).
Therefore, |
IT; — ps I < H< .l >H (1 —pi )| <7 +1, (65)

IT; — i 4 1| < H( e )‘ 101 —pir ) <p*+1. (66)

Hence, it follows from (62), (63), (64), (65) and (66) that
‘ < V3K —; 142 A VI

i:%#<)\i<[/ \/()\Z - M)(?f[{)j{f/}« o 1)

(3) Consider the case A; = p. Then A; = 0. It is known that the k-th power of a 2 x 2
matrix A with two equal eigenvalues ;. = p_ = p is given by

T} P (> +1).

AF = pF N (kA = (k= D)p),

where I is the 2 x 2 identity matrix | ]. In our context, A = T; and
(14 8)(1-ax) =1 = (67)
n= pt+ = i+ B i 3t 1 P

Therefore, with A\; = u, we have

T} = pF (KT} — (k — 1)pI)
— ot ( AL+ A1 = ak) = (k=1)p —kB(1 = ak) )

k —(k—=1)p
_ ( (k+1)p  —kp? )
ko —(k—1)p )’
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and therefore
ITF|| < \/ Tr (TF(TF)T) (68)
= 0" ((k+ 1202 + (k — 1)%p% + K2p* + k2)/°
= p"VE2(p? + 1)2 + 2p2. (70)

Furthermore, we see that the sequence Tf /k converges to a non-zero matrix. Therefore,
|T*|| > ck for some constant c for every k. This means that the linear dependency to k
of our upper bound in (70) is tight. This behavior is expected due to the fact that Tf has
double roots.

(4) Consider the case \; = 3LZ“ . Then A; = 0. We can compute that

1 2
Hi,+ 2( B)( a Z) m ( )
In this case, T; = 0.
Finally, combining the three cases (1) u < \; < 3%%; (2) A > 3%%; (3) \i = 15 (4)

Ai = SLZ'“ , and recall (52), we get

< oy 1

( (14 B)Is— Q) —B(Ii—aQ) >’“
1, 04

~ 1<i<d
V3 142
< p ma KJ; T2+ max Vi A2 (p2 +1)2 + 292
s O — ) - 2
The proof is complete. O

Proof of Theorem 7. First let us recall the ASG method:

Trr1 = Yk — o[V f(yr) + ert]s
yr = (1+ B)wy — Brp—1,

where a > 0 is the step size and § is the momentum parameter. In the case when f is
quadratic and f(x) = %xTQ:E +a”x + b, we can compute that

Ty = Y — [Qyr + a + epp],
yr = (14 B)zg — Prp—1,
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(1) .(2).

so that with two couplings z; ’, ;"

xl(cjll = yk [Qy +a+ 5k+1] ,

y,i’=<1+/3> — gz,

with 7 = 1,2, we get

1 2 1 2 1 2
fﬂéll—xill=y£)—y£)—a62(y£)—yi))a

w = = QA - o) - Bl - o),
which implies that
Thiy — w,?gl _ < (14 B8)(Ii—aQ) —B(Is—aQ) ) z) —
2V - 2 I 04 20 @ ]

k=1~ Tp—
which yields that

1 2 1 2 :
mé )1 Ec—)l 5'3(7% - x&%
Following from the proof of Theorem 4, we can show by constructing a Cauchy sequence

that there exists a unique stationary distribution m, g. Finally, we assume that (x(()l), :c(lg)

(2) ())

starts from the given (zo, x_1) distributed as v o g and (z "/, starts from the stationary
distribution 7, g so that their L, distance is exactly the W, distance. Then we get

( x](:) ] %(3) )
1 2
xl(c—)l - 551221

and the proof is complete by taking the power 1/p in the above equation. ]

<

( (1+8)Is—aQ) —B(Is—aQ) )’“
1, 04

p

WY (Vi,a,6, Ta,3) < E < (CRP(Pac) W8 (0,08, Tap)

Before we state the proof of Theorem 8, let us spell out X and V(&) in the statement
of Theorem 8 explicitly here. We will show that Theorem 8 holds with V(&) given by

M
(PZG)Q ’

where ¥ := Elegel] and X3, = E[(oo — &) (€oo — &) satisfies the discrete Lyapunov
equation:

Via(&) =E[||(&o— &) (& —&)"||]] +

* * yok * o’ 22 0
Xag = AQXAG(AQ>T + ( ( AOGd) OZ ) )
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and

5 = ( (1+Bag)a — aio@) —Bie(a — Q) ) .

1, 04
In the special case ¥ = ¢21; for some constant ¢ > 0, it follows from [ | that
Tr(X%e) = 2 i: Rte (72)
Ad (1= Bag(1— aheh)’

where {)\;}¢_, are the eigenvalues of Q.
Now, we are ready to prove Theorem 8.

Proof of Theorem 8. For the ASG method,

Trr1 = (1 + B)ak — Bar—1 — a(VF((1 + B)zg — Brr—1) + €pt1),
where we consider the quadratic objective f(x) = %xTQw +a’z + b so that

Tpp1 = (L + B)xg, — Bap—1 — a(Q((1 + B)zy, — Bri—1) + @ + x41),
and the minimizer z, satisfies:
e = (1+ B — frv — a(Q((1 + Bax — Bz4) + a),
so that
Tpp1 — T = (14 B) (@ — @) = B(@p-1 — ) — Q1+ B) (zk — ) — B(h—1 — T4)) +Ek41),
and
( Tp — T > _ ( (1+58)Ig—aQ) —B(Ig—aQ) ) < Th_1 — Tx >+ ( —QEy >
Th—1 — T Iy 04 Th_o — T 04 ’

and with ¥ := E[egel], we get

2
E[(6 = &)(& — &)"] = AGE [(§e1 — 2.) (1 — z) "] (A9)" + ( O‘Odz 83 ) . (73)

where

: ( 4+ 8)Us—aQ) —~B(Is— o) )

@~ 14 Oq

Therefore,

X=E [(goo - 5*)(§OO - 5*)T]
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satisfies the discrete Lyapunov equation:
2
% * \T oy Od
X = AL X(AG) + ( 0, 0, >
Next by iterating equation (73) over k, we immediately obtain
K N
E (¢ — &)(& —&)"] = (49) E [(§0 — &)(6 — £)"] ((45)")

= *\J QQE Od * J
DY S G i

B

so that

= E [(oo — &) (o — £)T] + (A5) " E (60 — &) (60 — £)7] ((45)7)"

N B A M «\TNI
B Z (AQ)j ( 04 OZ > ((AQ)T)] )
j=k
which implies that

Tr (E [(& — &)(& — €)7])
=Tr (E [(é-oo - f*)(foo - 5*)T]) + (A*Q)kE [(60 - f*)(fO - f*)T] ((AZJ)T)k

— i (@220 \TVJ
-Y (7 o) (e

< () + [ (4R B [lle — €60 — )7 ) + 2 A8V I 0?12
j=k

2 w2 (Phe)*
< Tr(X) + (C)* ()™ E [[| (G0 — &) (0 — &) |] + 042”&\(%?%:
(Pac)
where we used the estimate H(AZ))'“H < Gt (phe)F from the proof of Theorem 5.
Finally, since V f is L-Lipschtiz,

B[/ (x)] — 1) < TBlleg — 2.]? < TElle — &7 = STr (B[(6 — £)(& — £)7])
The proof of (23) is complete. O

Remark 24. Note that our results in p-Wasserstein distances would hold if there exists
some p > 1 so that p-th moment of the noise is finite. For instance, the p < 2 case can
arise in applications where the noise has heavy tail (see e.g. |[. ).
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C.2 Proofs of Results in Section 3.2
Proof of Theorem 9. First let us recall the HB method:

Tp1 = o — aV f(xg) + BT — T—1),

where a > 0 is the step size and S is the momentum parameter. In the case when f is
quadratic and f(x) = %xTQx +aTz + b, we can compute that

Tp+1 = 2k — a(Quy, + a) + B(xg — k1),
and the minimizer z, satisfies
Ty = Ty — Qs + a) + B(zs — zy),
which implies that
< Thi1 — Ts > _ ( 1+ 8)1;—aQ —PBly > ( Tk — Ty )
Tp — Ty 14 04 Tho1 — Tx )
which yields that
< T >:<<1+mm-ng —ﬁ@>k<:m—x*>
Tp_1 — T« I 04 T_1—xs )
and we aim to provide an upper bound to the 2-norm of the matrix, that is:

<u+ma—aQ—¢a>k
1 0g4

Let us assume that ) has the decomposition
Q=VDVT,
where D is diagonal consisting of eigenvalues A;, 1 < i < d in increasing order:
p=A <A << Ng=1L,

then we have ~
(14 8)I4—aQ =VDVT,

where D = (1+ 8)I; — aD is diagonal matrix with entries

14+ 8 —a\, 1< <d.
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Therefore, the matrix
(1+8)ls—aQ —BI,
Iy 0q

has the same eigenvalues as the matrix

(1+B)a—aD —Bly
I 04 )’

which has the same eigenvalues as the matrix:

T, -~ 0 0
0 T, -~ 0
0O O Ty

where

are 2 X 2 matrices with eigenvalues:

L+ B8—aX++/(1+B—a)N)?—43
2 b

Hi+ =
where 1 < ¢ < d, and therefore

“ +Bh—aQ ﬁh)
0F

< ’“H .
< max |7 (74)

Next, we upper bound ||TF||. We consider three cases (1) u < A < L; (2) \i = p; (3)
Ai = L.

(1) Consider the case pn < A; < L. With the choice of a and 5 in (12), we can compute
that for those u < A\; < L, we have

1+68—a)N <14 8—au=2/0,

and

14+ 8—a\>1+p8—al=-2/8,

and thus the eigenvalues are complex and

1+ 8 —a) +i/48 — (148 — a))?
2 )

Hi+ =
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where 1 < i < d. It is known that the k-th power of a 2 x 2 matrix A with distinct
eigenvalues p+ is given by

ik pt
A= 4y A,
Mt — H— B =

where I is the 2 x 2 identity matrix [ |. In our context, A =T; and pu+ = i+, we get

k k

Fi+ g
T = T D)+ — T (T — T 75
i Mz‘,—s—_/ii,—( 1 (2 ) i _Mz—i-( 1, ) ( )

We can compute that

1 1/2
i | = i —| = <4 (148 —aX)’+ (4B —(1+ 8- 04)\@')2)]) = /B, (76)

and
1 1
iy — pi-| /48— (1 + B — aX)? (77)
1
LV @VB—1-B+aM)2VB+1+8—a\)
1
VEWB- D2+ ad) (VB + D)2 - ay)
(\F +VL)?
4/ = (L =)
Moreover,
e e i I ISR
and
T; — pid = ( 'uil’f —:Lir ) = ( Mil’f ) (1 —pi+ ).
Therefore,
17— -t < (5 )| IO = =5, 78)
and

17— st < (M5 )| =l =5 (79)

Hence, it follows from (75), (76), (77), (78) and (79) that

LBHNEHVD? (V- yE) it L
) S(\/B)él\//\— (L — A)_<\E+\/ﬁ> 2/ — w)(L—N)
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(2) Consider the case A\; = p. With the choice of @ and /5 in (12), we can compute that
for those \; = u, we have

(1+B—aN)?=(1+8—apn)? =48,

so we have double eigenvalues and indeed 1+ 3 — a\; = 24/3, and
=P P) ici<q
1 0
and by a direct computation (e.g. induction on k), we get:

14172
et (G0 ) rsisa

Thus,
|7E| < e (i) (80)
= (VB)FV2E2 + 2+ K2(8+ ) (81)
k 2
() e -

Finally, we note that the matrix le/(\/Bkk:) as k goes to infinity converges to the 2 x 2
matrix

1 _51/2
Ms2(B) :== <ﬂ1/2 1 ) o 1 M22(B)]| > 0.

Therefore, the linear dependency of our bound in (82) with respect to k is tight. This
behavior is expected due to the fact that Tzk has double roots.

(3) Consider the case \; = L. With the choice of o and /5 in (12), we can compute that
for those A\; = L, we have

(1+8—aX)?=(1+5—aL)? =48,

so we have double eigenvalues and indeed 1 + 3 — a\; = —2/3, and

([ =28 -8 .
T¢—< 1 0 >, 1<i<d,

and by a direct computation (e.g. induction on k), we get:
ko w( (k+1) kB2 e
,I'z _(\/B) < *kﬁ_l/Q 7(k71) 3 1_Z_d'
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Thus,

< T (THTHT)

= (VB)"V2k2+2+ k2B + B71)

() e () e

Finally, combining the three cases (1) u < A\; < L; (2) A = p; (3) A\ = L, we get

VL * L L+p)?
max HTfH < vi-ve max pt 4k? (W> +2
1<i<d VL + ki w<A<L2\/>\— YL —N) L—pu

(83)
Then it follows from (74) that
k
(1+B)y—aQ —BI,
(84)
I; 04
k
7 _ 2
< M max max ptl 41{:2(L+M> +2 5.
VL + /i iu<Mi<L 2,/(N; — p) (L — i) L—p
Recall that
oo \ [ U+ B8)Li—aQ —BI; \ [ -
Tpo1—Tx ) 14 Oq T_1—Tx )
and the proof is complete by applying (84). O

Before we state the proof of Theorem 11, let us state the following result, which is built
on Theorem 9.

Lemma 25. Let us consider two couplings ($]E;1))k20 and (x,(f))kzo with the common noise

(Ek+1)k>0 that starts from xél) and x(2) :

e =2V —aviE@?) + 8@l —a)) +epa, (85)
22, =2l — aVf@®) + B —2?) + epan, (86)

where f is quadratic and f(z) = §.Z‘TQJC +a”x +b. Then, we have

1 2 1 2
Ly, Lo — g

where pgp and Cy, are defined by (13) and (25) respectively.

< Cpplig

9
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Proof of Lemma 25. We can compute that

k
Thi ~ T ) - ( (14 B8)s—aQ —BI ) ) =2
o wooo ) e
It follows from the estimate (84) in the proof of Theorem 9 and the definitions of pyp and
Cj in (13) and (25) that we have

< Cpplip.

H (1+8) d—aQ de)
0qg

The proof is complete. O]

Proof of Theorem 11. We recall from Lemma 25 that for any coupling (! and 22

VI - Vi ORI
(B = GE8) ()]

Following from the proof of Theorem 4, we can show by constructing a Cauchy sequence
(1) (1))

that there exists a unique stationary distribution 7, g. Finally, we assume that (x;”, 2>

2) .(2)

starts from the given (zo, z_1) distributed as v o g and (z ", 2.7 ) starts from the stationary
distribution 7, g so that their L, distance is exactly the W, distance. Then we get

1 2
x;(g,)l - (,)

<cP (\\£+§> Wy (10,0,8, Ta,8) »

p
WE (Vk,a,8: Ta,p) < E

and the proof is complete by taking the power 1/p in the above equation. O

Before we state the proof of Theorem 12, let us spell out X and Vi p(&p) in the statement
of Theorem 12 explicitly here. We will show that Theorem 12 holds with V(&) given
by

a? %
Vi (€0) = B [l60 — €)(60 — €7 + 2222,
~ PHuB
where ¥ := E[egef] and Xpp = E[(§oo — &) (6o — &)7] satisfies the discrete Lyapunov
equation:

2
. T aHBE Od
XHB—AQXHBAQ+ < 04 04 )
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and
. (1+ Bup)la — agpQ —PBuply
Q — Id Od .

In the special case ¥ = ¢*I; for some constant ¢ > 0, we obtain

2ayp(l+ Bup)
1= Bup)Ni(2+28up — agphi)’

d
Tr(Xyp) = Z (
1=1

where {\;}¢_, are the eigenvalues of Q.
Now, we are ready to prove Theorem 12.

Proof of Theorem 12. For the stochastic heavy ball method
Th1 = o — AV f(2) + 1) + B2k — 2p-1),
where we consider the quadratic objective f(x) = %xTQ:c +a”x + b so that
Tp1 = T — a(Quy + a+ epp1) + Bk — Tp—1),
and the minimizer x, satisfies:
Te = o — a(Q@x + a) + Blzs — x4,

so that

(87)

(Trp1 — Tx) = (xp — 24) — (Q(xp — 24) + Epy1) + B((Tr — 24) — (Tp—1 — 7)),

( Tp — Ty )_((1+ﬁ)fd—04Q —5Id><$k—1—$*> (—a€k>
= + )
Tp_1 — Ty Iy 0q Tp_2 — Ty

and

and with ¥ := E[egel], we get

2
E [(€ — &) (& - 5*)T] = AQE [(&r—1 — =) (&1 — x*)T] Ag + ( aOdE
where
. ( (1+B8)1s—aQ Bl )
Q 1, 04 .
Therefore,

X =E [(§oo — &)(60 — )]
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satisfies the discrete Lyapunov equation:

2
. T atd Od
X—AQXAQ+( 0, 0d>.

Next by iterating equation (88) over k, we immediately obtain

k

E (& — &)(& — &)7] = (AQ)"E [(&0 — &) (&% — &)7] (45)" +

so that

E [(&r = &)(& — &)"]

0 . 22 0 .
- AV (¢ d ) ALY
which implies that

Tr (E [(& — &)(& — &)7])
= Tr (E [(§oo — &) (€0 — &)7]) + (4Q)*E [(§0 — &)(60 — £)7] (A7)

00 ) 042 ;
-§<AQ>J( 0 o) ()

< 1) + 48 B Tl — €60 — €071 + 3 [ b | o2l
j=k

k

2k
p
< Te(X) + CRpHBE [[[(60 — &)(€o — &)TII] + BICE =5,
~ PHB
where we used the estimate ||A’22H < Cgph; 5 from the proof of Theorem 9.
Finally, since V f is L-Lipschtiz,

E[f(x)] — 1) < SBlleg — 2.]? < TEl — &7 = STr (B[(6 — (& — £)7])

The proof of (27) is complete. To show (87), we can adapt the proof technique of | ,
Proposition 3.2] for gradient descent to HB. Without loss of generality, due to the scaling
of the Lyapunov equation, we can assume ¢ = 1. Consider the eigenvalue decomposition
Ag = VAVT where Q is orthogonal and A is diagonal with A(i,i) = ;. We can write

Ag =VAVT,
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where ( )
= V04 . 1+ 06)lg—aN —Bl,
V‘(od V)’ AA_( I 04 )
Futhermore, following | ], let P € R2d*2d he the permutation matrix with entries
1 iféiisodd,j =1,
P(i,j) =<1 ifiiseven,j=2d+1,

0 otherwise.

Then, we have

My, 04 ... 04
0g My ... 04 _ .

Ay = PANPT = | . . . where M; = <(1+5i s 05) e R2*2,
0g 04 ... My

If we define Y := UXU ! for the orthogonal matrix U = PVT, it solves

2
AyYAT —y +5=0 §.=p(%ta 0a)pr
M
0; 0Oy

where the latter matrix S is a 2d x 2d diagonal matrix with entries S(i,i) = o? if i is odd,
and zero if 7 is even. Due to the special structure of S and Ajs, the solution Y has the

structure
Y1 04 ... Og
Od Y2 e Od
Oq 04 ... Yy

where Y; solves the 2 x 2 Lyapunov equation

2
0
MY;MF —Y; + <% 0> = 0.

Y — (wz yz)
! Yi wj

with scalars x;, y; and w;, this equation is equivalent to the linear system

If we write

a?—1 2ab b? T; —a?
a b—1 0 Yi = 0 )
1 0 -1 W; 0
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with
a=14+p—-aN, b=-p.
After a simple computation, we obtain
a’(b—1) a(l+B)

b+ 1)(a—b+1)latb—1 (1—-Bn(2+28—an)

Therefore we obtain
d

) B L 20(1 + )
Tr(X) = Tr(Y) = ZTT(Yi) = 2;%‘ = 1=B)N(2+28—aN)

=1

which completes the proof.

D Proofs of Results in Section 4

Before we proceed to prove the main results in Section 4, let us first show that the weighted
total variation distance dy, upper bounds the standard 1-Wasserstein distance.

Proposition 26. Assume P(2,2) # 0. Then,

Wi (1, p12) < g tdy(pa, p2),

where Wy is the standard 1- Wasserstein distance and
o := min{épp, 1}, (89)

where ¢y is the smallest positive eigenvalue of

~ EI 0
54d d
P@Id—}—( 0y 0d>.

Proof. By applying the Kantorovich-Rubinstein duality for the Wasserstein metric (see e.g.
[Vil09]), we get

Wil i) = sup { 6(6) (11 — 12)(dE) : & i 1-Lipschitz}
peLt(dur) LJRH

— { (B(E) — B(E) (1 — o)(dE) : & s 1-Lipschitz}
R2d

€L (dp1)

< /R e = &l — pal(ae)

<t [ (€ — plde) = 5" du(n ).

where we used 1+ ¥Vp(&) > ¢pl|§ — &« from Lemma 27. O
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Lemma 27. Assume P(2,2) # 0. Then,

L+ ¢Vp(£) = coll€ — &,

for any € € R??, where cg = min{éyy, 1}, where & is the smallest positive eigenvalue of

~ ET. 0
54d d
P®Id+< 0y 0d>.

Proof. Let €T = (27,yT). If ||¢ — &, < 1, then cg = 1 works. Otherwise,
Vp(€) = f(x) = f(a:) + (€~ &)TP(E - &)

> (€ - &)TPE— &) + Sllo — .|

£1; 04

—(c-ePate-g)+-e (5 01 ) -

The proof is complete. O
For constrained optimization on a compact set C, we have the following result.

Proposition 28. For any juy, iz on the product space C? :=C x C,

1 1
Wolpar, p2) < 2Y7Deal |y — ol 48 < Deadl)? (pir, i),
where Dp2 is the diameter of C2.

Proof. The second inequality in Proposition 28 follows from dy (1, p2) > 2|1 — pol|7v -
So it suffices to prove the first inequality. We can compute that

WP(ui, o) = inf B[ X1 — Xol|?
plun, o) = inf  E[[|X1— X5

< pht inf E[|X; — X
- e Xi~opr,Xor~p2 [H ! 2”]

= D% Wi, o)

— Dg;l sup { RQd(Gﬁ(f) — (&) (1 — po)(dE) = ¢ is 1—Lipschitz}

peL! (dur)

-1
<D [ 1€l = al(dS) < 2Dl el
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D.1 Proofs of Results in Section 4.1

Throughout Section 4, the noise ¢ are assumed to satisfy Assumption 2. Our proof of
Theorem 13 relies on the geometric ergodicity and convergence theory of Markov chains.
Geometric ergodicity and convergence of Markov chains has been well studied in the liter-
ature. Harris’ ergodic theorem of Markov chains essentially states that a Markov chain is
ergodic if it admits a small set that is visited infinitely often [ ]. Such a result often
relies on finding an appropriate Lyapunov function [ ]. The transition probabilities
converge exponentially fast towards the unique invariant measure, and the prefactor is con-
trolled by the Lyapunov function [ |. Computable bounds for geometric convergence
rates of Markov chains has been obtained in e.g. | , . In the following, we
state the results from | |. Before we proceed, let us introduce some definitions and
notations.

Let X be a measurable space and P(z, ) be a Markov transition kernel on X. For any
measurable function ¢ : X — [0, +00], we define:

(Py)(z) = /X ()P, dy).

Assumption 29 (Drift Condition). There exists a function V : X — [0,00) and some
constants K > 0 and v € (0,1) so that

(PV)(z) <V (2) + K,
for all x € X.

Assumption 30 (Minorization Condition). There exists some constant n € (0,1) and a
probability measure v so that

inf N > .
xeX}Vn(I)SRP(w, ) = v (),

for some R > 2K /(1 — 7).

Let us recall the definition of the weighted total variation distance:

dylprop) = [ (1+0V @) = el ().

It is noted in | ] that dy, has the following alternative expression. Define the weighted
supremum norm for any i > 0:

()]
= su ,
el = T v @)

o4



and its associated dual metric dy on probability measures:

dylppe) = sup_ [ @) — 2)(da),
eiflelly <t /X

It is also noted in [ ] that dy, can also be expressed as:

dy(p1, p2) = sup /Xw(x)(ﬂl—w)(dﬂf),

eilllelllp<1
e (@)~ o(v)
px) — ey
llellly = sup |
el =2t o v @) + oV )
Lemma 31 (Theorem 1.3. | D). If the drift condition (Assumption 29) and minoriza-

tion condition (Assumption 30) hold, then there exists € (0,1) and v > 0 so that

dy(Pp1, Puz) < ndy(pa, p2)

for any probability measures pi,puz on X. In particular, for any no € (0,n) and vy €
(v 4+ 2K/R,1) one can choose ¥ =ng/K and 7= (1 —(n—mn0)) V (2+ Ry)/(2 + Ry).

Lemma 32 (Theorem 1.2. | D). If the drift condition (Assumption 29) and minoriza-
tion condition (Assumption 30) hold, then P admits a unique invariant measure fiy, i.€.

Plis = .

The drift condition has indeed been obtained in [ ]. The AG method follows
the dynamics

§er1 = A + B(Vf(yr) + err1), (90)
yr = Cé, (91)
where
_( +B)I; —BIL _ [ o o
A._< I, d odd>’ B._< odd>’ Ci=((1+8)I; —Bly).

Define §j, := yr — 2 and & = & — &, where & = A&, and z, = C&,. Let us recall the
Lyapunov function from (5)

Vp(&k) = (& — &) P& — &) + f(ar) — f,
where &, = (T4, 4).

Next, let us prove that the drift condition holds. The proof is mainly built on Corollary
4.2. and Lemma 4.5. in [ ].
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Lemma 33.
(Pavﬁvpa,ﬁ)(g) S ’YOC,BVP(X’[-} (5) + Ka,ﬂ7

where I
Ya.8 = Pa.Bs Kop = <2 + Ij’a,ﬂ(l, 1)) a’o?.

Proof. By Corollary 4.2. and its proof in | ] (In | ], the noise are assumed
to be independent. But a closer look at the proof of Corollary 4.2. reveals that our
Assumption 2 suffices), we have

E[V (§k+1)] — pE[V (&) (92)

~ T ~
_ 3 ATPA—pP ATPB &k T pT
“=\( ot ) (" 5ed” ren ) (witp )| #lebnB Pl
where
V(é) = (5 - 5*)TP(§ - f*)
A closer look at the proof of Corollary 4.2. in | ] reveals that the following
equality also holds:
E[V (&k+1)I€k] — pV (&k) (93)
~ T ~
_ 3 ATPA—pP ATPB €k T pT
(ot ) (" 5med™ 5o ) (wftn ) +BELaB PBaN]
When f € S, is strongly convex, Lemma 4.5. in | | states that for any
€(0,1),
& )
94
(ot ) * (vt (84
La?
< p(f(ar) = fi) = (f (@pa) — fo) + 7||€/<:+1H —a(l = L)V f(yr) e,

where X := pX1 + (1 — p)Xs, where
L Pela —BPuly —B1q
Xy = 3 —Buly  Buly Bl4 ; (95)
—B14 Blg  a(2— La)ly

1 (1+8)2uly  —BA+Bpuly —(1+8)Iy
Xo:i=- | =B+ pB)uly Buly Blg
—(1+B)1a Bl a(2 — La)lg
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Taking expectation w.r.t. the noise £;41 only in (94), we get

2
Lao*

3 ' &k iV (f( - La?
< V f(yk) > X( VI (k) ) < p(fzx) = fo) = (f(@n41) = fi) + -0

With the definition of p, g, P, by Lemma 21, we get

ATPogA ~papPas A'PB
’ T ’ ’ T - X j O
BTP, 3A BTP, 4B
Then, combining (93) and (97), applying (98) and the definition of Vp, ,, we get

2
La*

E[Vp, 5 (€es1)I€] < PasVias(6) + E [ef41B" PapBers] + —5—0

2
Lo*

= Pa,8VP, 4 (&) +E [5Z+10‘2]5a,ﬂ(17 1)Id5k+1} + TG

~ La2
< Pa Ve 5 (&) + 0" Pap(1,1)0” + = —0”

It follows that

L ~
(POéﬂVPa,ﬂ)(f) S Pa,BVPa,B(g) + (2 + Pa,ﬁ(l, 1)) (120'2.

In the special case (a, 8) = (ag, Bag), we obtain the following result.

Lemma 34. Given (o, 8) = (@aq, Bac)-

(POtﬂVPAG)(g) < YVpug () + K,

where

where pag =1 — 1//k.

Proof. By letting (o, 8) = (cag, fag) in Lemma 33, we get

(Pa75VPAG)(§) <YVpue )+ K,
where

L -
Y = PAGH K = (2 + Pac(1, 1)) a%qo,

o7

(98)



where pag =1 — 1/y/k and Pag(1,1) is the (1,1)-entry of Pag. Notice that

and hence . .
L vap L
Pag = Pag @14 = \/EQ IdL s (\jﬁ,\/f)i e ;
(T - 5) d g
which implies that Pag(1,1) = L. O

Next, let us verify the minorization condition. Assume that the noise admits a con-
tinuous probability density function, then the Markov transition kernel P, g also admits
a continuous probability density function for xx,q conditional on x} and xj_1, which we
denote by p(¢,x), that is, P(zx41 € da|(2xf, 2l ) = ¢T) = p(€, x)dz. Also note that when
we transit from (z7, 2] )7 to (wg41, k), the value of zy follows a Dirac delta distribution.
We aim to show that for any Borel measurable sets A, B

inf P y Th—1), , € Ax B)> A x B),
(:Ek717’@—1)€R2d}3p((zk,$k_1))§R ((-Tk Tk 1) (xk—i-l ﬂfk) ) T]VQ( )

for some probability measure v5. Let us define:
Bg = {x eR?:Jy e Rd,Vp(x,y) < R}.

We define v, such that v2(A x B) = 0 for any B that does not contain Bg, and v5(A x B) =
v1(A) for some probability measure v; and for any B that contains Br.Then, it suffices for

us to show that
inf ,r) > nv(x),
geR?d,vp(g)ng(§ ) > nv(x)

where v(z) is the probability density function for some probability measure vy (-).

Lemma 35. For any n € (0,1), there exists some R > 0 such that

inf > :
geRZd,IXr/lp(g)ng(é ) = ny(x)

Proof. Let us take:

_ Ljg—z. <M
l/(x) - p(€*7 1/') . sz_w*”SMp(g*, x)d$7

where M > 0 is sufficiently large so that the denominator in the above equation is posi-
tive.When ||z — z.|| > M, infecpea v, ) <r P(§; 2) > 0 automatically holds. Thus, we only
need to focus on ||z — x| < M.
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Note that for sufficiently large M, foL‘*I*IKM p(&x, x)dz can get arbitrarily close to 1.
Fix M, by the continuity of p(¢,x) in both £ and z, we can find ' € (0,1) such that
uniformly in ||z — z.|| < M,

i f > ! * = i
cerzith o p (&%) 2 P& @) = v (2)

where we can take

n = n’/ p(&, x)dx,
lz—zs|| <M

which can be arbitrarily close to 1 if we take R > 0 to be sufficiently small. In particular,
if we fix n € (0,1), then we can take M > 0 such that

[ weadn= v
l[e—z. || <M
and similarly with fixed n and M, we take R > 0 such that uniformly in ||z — z.|| < M,

inf p(§,$) Z \/ﬁp(&,x)

€€R24,Vp(£)<R

Finally, we are ready to state the proof of Theorem 13 and Proposition 14.

Proof of Theorem 13. According to the proof of Lemma 35, for any fixed n > 0, we can
define:

MZinf{m>0:/ p(f*,m)dl‘:\/ﬁ},
[z—z.]|[<m

and

R <sup<r>0: inf ,X) > «, x) for every ||z — x| < M ;.
< p{ . (§)§Rp(€ ) = V/np(&s; ) y |l I }

Then, we have
inf ,x) > nu(x).
£€R2WPW(E)SRP(S ) = v (x)

Let us recall that
(Pa7BVPa,B)(€) S rYOé,ﬁVPa75 (é) + KQ:B'

By Lemma 31 and Lemma 32,

Ay (Vk,ap> Ta,8) < 77 dy(V0,0,6, Ta,3)
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where 77 = (1 = (n—m0)) V (2 + Ry0)/(2 + RY) and ¢ = 1o/ Ka g, where 79 € (0,7) and
70 € (Va3 + 2K /R, 1). In particular, we can choose

) 70=§7a,,3+§+ R

7 = max 1—ﬂ1— 1_1 _M Ry
n= 27 9 2’704,ﬁ R 2—1—qu R

o = n 1 1 Kaop
2

Therefore,

_ n 11 Ko p Rn
= L Y (PR ,
7= max { 2 (2 21f " "R ) 4K, 4+ Ry

The proof is complete. O
Proof of Proposition 14. Let us recall that y = p=1— ﬁ and K = %2 Recall that g
satisfies 79 € (y+2K/R, 1) and let us assume that K is sufficiently small so that K < %,
then we can take 1
=1-—.
70 N

We also recall that 1) = n9/K and

1 = max 1—77+770M = max 1—n+now
24 Ry " K+Rn |

We have discussed before that we can take n to be arbitrarily close to 1 by taking M
sufficiently large, and for fixed M take R sufficiently small. Let us take

1 1 1
Uzl_P_\/Ea Mo in_ﬁ’
and then )
1— =1- —.
n-+no NG

HmmmK<Rm:§?mm

K+ Ry _, 1
K+ Rny — 8VK

Hence, we can take K < %, that is,



so that )
n<l———.
=178k

Finally, we want to take R > 0 and M > 0 such that

it ple) 2 i) = 2

€eR2Vp, - (§)<R

holds for the choice of

_ Ljja—z. <M

It is easy to see that we can take M so that

1
b 6*,$ d$ Z BEW7R)
/w—ﬂﬁ*IISM (€ 2) K1/

and take R such that for any ||z — z.|| < M,

inf p(€,x) >

% ).
€ER2A,Vp, (<R i7aP (& 7)

=

Hence, by applying Lemma 31, we conclude that for any two probability measures
p1, o on R24:

1 k
dw(Pg,,@/’Lth,ﬂM?) < <]— - M) dw(,ul,uz)

Recall that vy, o g denotes the law of the iterates £. By Lemma 32, the Markov chain
§r admits a unique invariant distribution 7, g. By letting p11 = v g and ps = m, g, we
conclude that

k
1
dy(Vk,0,8: Ta,8) < <1 - 8\/E> dy (10,08, Ta,8)s

where
b= n _ 1 _ L
K 2ykK  2y/ro?’
1

Finally, let us prove (29). Given (o, 8) = (aaq, Sag), we have pog =1 — ﬁ, a= 7.

It follows from Lemma 34 and its proof that

IE[‘/PAG (§k+1)] < PAGE[VPAG (fk)] + %\/EO’Q.

By induction on k, we can show that for every k,
1
]E[VPAG (fk—i—l)] < VPAG (fO)p]XEl + Z\/EUZ-
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By the definition of Vp, it follows that

Elf(zre1)] = f(z4) < VPac (go)pk+1 + - \/>0' = Vpuq (go)pk+1 + %\/E0'2~

Thus, we get

k
E[f(z)] = f(zs) < VPAG(&O) <1 - ;E) + %\/EOJ.

The proof is complete. O

Remark 36. In Proposition 14, the amount of moise that can be tolerated is limited.
Nevertheless, in applications where the gradient is estimated from noisy measurements,
such results would be applicable if the noise level is mild [ /.

Proof of Corollary 15. If the noise ej are i.i.d. Gaussian N/ (0,3), then conditional on xy =
Tp_1 = T4 in the AG method, with stepsize a = 1/L, xj1 is distributed as N (x., L72%)
with ¥ < L21;. Therefore, for v > 0 sufficiently small,

1
Vdet (I; — 29L2%)

_ 2
E [e””xk“ ol ’xk =Tp-1 = x*} =

By Chebychev’s inequality, letting v = 1/2, for any m > 0, we get

o im?

Vdet(I;— L72%)

P(lzg41 — ol > mlzg = 21 = 24) <

Hence, we can take

M = (—QIOg <(1 — /{11/4) V/det(Iy — L—2Z)>>1/2.

Conditional on (z], 2] )T =¢= (§(Tl),€(T2))T, where Vp(§) < r for some r > 0, then, zj41
is Gaussian distributed:

Tl (@, wim1) = () E2)) ~ N (pe, L7°8)

where

2k Jr—1
M= Uit Vi1

Thus, uniformly in ||z — z.|| < M,

§a) —

€y~ L Vf( 2Vr —*/E_lgm). (99)

VE+ LW T et

p(§,$) :e—%(x—ug)TLQE’l(x—ug)—‘r%(x—x*)TLQEfl(x—x*).

p(f*?'x)
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Note that Vp,,(§) < r implies that

T
<€(1):x* ) PAG< 5(1):96* > <.
5(2) Lx 5(2) o

By the definition of P4g, we get

( £y — T« > \/7]d \/gjd ' ( §1) — T > <,
{@) — o (ﬁ \/§> I, <\/E— \/§> I, E—a )=

so that VI
L — VL
Ly~ + I e o<
which implies that
V2r V2r
”5(1) — x| < T, H€(2) -z < m
Moreover,
CoVR . VE-1, o (2R, /Rl
ug—x*—\/gﬂfc) fﬂf - L f<\/g+1§(1)_\/g+1§(2)>
WE VE-L o ((3E R
_<\/E+1 VISR vf(\/ﬁ+1x*_\/E+1$*>>
2/ Vr
Z\/Efl(ﬁu)—x*)—\/ngl(f(z)—l‘*)
. 2/F VE—1 20E i1
<vf <\/E+ 15“)_¢E+1§(2)> _Vf<ﬁ+ 1T VR 1$>>
Since V f is L-Lipschitz,
1y 2VE 1\ VE—
g =l < (14 L)V gy -l + (L4 L7 L)\ﬂlug — .l

<22f \F+ VE—1 2r
VEFIVE VR IVI - i
22f V2r \/E—l V2r
V- i VR VI i

3\/E—1 V2r
\F+1f 75 (100)
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Thus, uniformly in ||z — z.|| < M,

p(&,x) { 1 Tr2v—1 1 Tr2v—1 }
—  —expl ——(x — LY (x — + —(x —z4) LY (x — x4
ey = e —gle —p) TS (@ — ) + 5o 2 ) LS @ )
1
exp{—zHﬂs—x*HLQHZ 1||(H95—M£”+H37—$*H)}
1| — z, || L2t — 2|z —
exp e — 2| L2 E7 | (ll1e — 2| + 2[lz — 24])
*1L2H2 HICl e = zoll* + 2M ]| pe — ) !
2 /‘Lf * /‘Lf * it 1/45
if we have
log(x)
- < -M M2+ — 101

Combining (100) and (101), we can take

2
logle) ) (VE+ 12V — /i)
= <M+\/M2 TR 1|) ENCERE

2
log(L L —p)?
VN e 0g2/ul) (L-nw"
202|271 ) 8(3VEL — /)3
For the remaining of the proof, without loss of generality assume that p = ©(1) and

L = O(k).” Tt is straightforward to see from the Taylor expansion of M that M = O(x~/3)
and

log(L/p)
(2L2HE 1||> (L —p)?

(v o ) SOV - R
of 1 <log(L/u)> (L — p)?
w2 2L257) 8BV - vip

=0 </€713/4 log2(/<a)) .

O]

SGiven two scalar-valued functions f and g, we say f = ©(g), if the ratio f(z)/g(x) lies in an interval
[c1, c2] for every x and someci, ca > 0.
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D.2 Proofs of Results in Section A

Consider the constrained optimization problem

min f(z),

where C € R? is compact. The projected AG method consists of the iterations

Tr+1 = Pe (Gr — AV f (k) + ert1)) s (102)
gk = (1 + BTk — Bax—1, (103)

where ¢, is the random gradient error satisfying Assumption 2, «, 8 > 0 are the stepsize
and momentum parameter and the projection onto the convex compact set C' with diameter
Dec can be written as

e )
Pe(e) i= arg i (5-llo — 7 + )

where the function h : R? — RU{+oco} is the indicator function, defined to be zero if y € C
and infinity otherwise. Let us recall that we assumed that the random gradient error ey
admits a continuous density so that conditional on & = (:f:;‘g,:i;fﬁl)T, Zr+1 also admits a
continuous density, i.e. 3 3 3
P(fk-‘rl € d:ﬂgk = 6) = ﬁ(ga ‘%)djv

where p(€, %) > 0 is continuous in both & and Z.

For the function f(z), the gradient mapping g : R? — R which replaces the gradient
for constrained optimization problems is defined as

! (y — Pely — aVf(y)), ao>0.

9(y) = o

Due to the noise in the gradients, we also define the perturbed gradient mapping, g-(y) :
R? 5 R as

1(y—7’c(y—a(Vf(y)+s))), a>0, eeR%

9:(y) = o

Due to the non-expansiveness property of the projection operator, we have (see e.g. | ,
Lemma 2.4])

A(y) = g:(y) —9(y), [1AW)|* < |le]|?, for every y € R (104)

Following a similar approach to [ , |, we reformulate the projected AG itera-
tions as a linear dynamical system as

Tpp1 = (1+B8)T — BTr—1 — age,, (Tr)
g = (1+8)Tk — BTr-_1,
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which is equivalent to

o1 = Al + Biiy, (105)
g = C&, i1, = B, (106)
= g(Jr) + Dey 1 (Tr), (107)
with &, = [#7 2] ,]7, and
(A +B) g —Blg _ (—aly
( e T B = (T, (108)

A
C=(1+p8)1y —Bly), E=(Ig 0q).

We see that ék forms a time-homogeneous Markov chain. To this chain, we can associate
a Markov kernel P, g, following a similar approach to the Markov kernel P, g3 we defined
for AG. We have the following result.

Lemma 37.
(Pa,sVe 1)(E) < pasVe, 5 (€) + Kayg,
where
Ko = ao(2Dc||Pa sl + Gur) + oo’ (HPQ”BH + S) :

if there exists a matriz P, g € R24%2d gych that

—Pa,8X1 = (1 = pa,g) X2 + X3 20, (109)
where
1 Buly  —p%uly —B1y
X1 = 3 —B%uly  BPuly B14 ,
—B1y Blg a2 La)ly
L A+B?ula =B+ Buly —(1+ By
Xy = 3 —B(+ B)ulg B2uly Blq ,
—(1+B)14 Bl (2 — La)ly
and

X — ATPO‘vﬁA - ﬁ()é7ﬁp()!75 ATPO‘vﬁB
3 BTP, 5A B'P,3B)’
where Gy := maxgec ||V f(2)]].
In particular, with p =1 — ﬁ, 8= ﬁﬁ, a= % where k = % Then (109) holds with
the matriz

pP=

=

(1= V@I VEL) (1= Ry V).
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Proof. We follow the proof technique of | | for deterministic proximal AG which
is based on | , Lemma 2.4] and adapt this proof technique to accelerated stochastic
projected gradient. Defining the error at step k

& =& — &) (9(m) — 9@,
where &, := [#7 27T and g(.) = 0 due to the first order optimality conditions where 7, :=
T4 is the unique minimum of f over C. Let Fj be the natural filtration for the iterations of

the algorithm until and including step k so that xy, y;r and € are Fp-measurable. Similar
to the analysis of AG, we estimate

E [f (Frs1) — f ()

]-"k} (110)

=K [f (gk = Ofeppq (ﬂk)) = f (@)

}'k} (111)

— B |1 (51— 09 30) — ey (30) ~ 1 (00) | (112
<[ (= a0 (1) + 1 G = a9 ()" 0o, ) (13)

+ 2@l — 1 @ |5 ] (114)
< £ ag (1)~ £ (20 + B [aGurl8 s @0l + S P]A] )
< £ (e — 09 (30)) — £ (50) + oGy + S (116)

2
where in the first inequality we used the fact that the gradient of f is L-smooth which
implies that

F) = F() S VFE) (= 2) + 2y — 2, for every y,z € B!

(see e.g. | ]) and second inequality follows from Jensen’s inequality.Finally, the last
step is a consequence of (104) and Assumption 2 on the noise. It follows from a similar
computation that

042
B | f(i) = £@)|7] < - agli)) - 7(@) + aGuo + %5Fe% )

We note that the matrices X7 and X5 can be written as

-1 (—u(C-EY(C-E) (C-BT

Xi=5 < elE (La? — 2a)Id> : (118)
-1 (—uCTC cT

=3 (0 Do) (1)
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where A, B,C, E are defined by (108). Using [ , eqn. (36)—(37)] and Lemma 38,
we have

F (@ — ag(@v)) — f(@r) < —& X1é, (120)
£ — ag(@i)) — f(@) < —€f Xoéy,. (121)

Plugging these into (116) and (117), we obtain

2

L
]:k] < —p Xié, +aGyo + 252, (122)

B | f(dn) - ) .

2

L
fk] <~ Xoep, + aGrro + 2202 (123)

B | f(n) - @) k

It also follows from (105)- (107) and the facts that A, = &, and Bii, = 0 that

G — &= A (& — &) + B(in — @) + BAo, () = G+ BAc (), (124)

where 3 }
Goim A (& = &) + B (i — ).

For any symmetric positive semi-definite matrix P, g € [R2dx2d

function

, we define the quadratic

QPaﬁ (é) = gTPa,ﬁé-

We can estimate that
E [QPM <ék+1> |fk}
=E [<§k+1 - 5*)T Pop (5k+1 — §~*> \fk]

= CEPQ,BCE +E [Q(gk—l-l - é*)TPa,BBAEIH-l (?jk) + BTA8k+1(gk)TPa,BBA5k+1 (gk)‘fk]
o ATP,3A ATP,3B
= *\BTP,3A BTP,zB

. (ATP,3A ATP,4B
~ % \BTP,3A BTP,;B

) €k + E{QQDC NPasll - ekl + o[ Pagll - \|€k+1H2\fk}
> € + 2Dcac || Py gl + a0?|| Pa gl

Therefore,

E[Qr., (&) = Qros (&) [F] = & Xséx + 2Dcacl| Pupll + 020?| Pagll.  (125)
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Considering the Lyapunov function Vp, , (ék) = f(zr) — f(Zs) + é,?Pa’ggk, we have

Ve, s (ngrl) — Pa,sVP, 4 (ék) (126)
= Pa,B <f <£k+1) - f (5*)) + (1 = pa,p) <f <gk+1) - f <§*)) (127)
+Qr,, (G —&) —Qn, (4-4). (128)
Taking conditional expectations and inserting (122)—(123),
E [VPa,ﬁ (EkJrl) ‘}—k} (129)
< iV (&) + éf( — PapX1 = (1= fap) Xa + X3> 2 (130)
L
+ 2Deac|Pogll + a%0* (I Pasl + 5 ) (131)
~ ng 2 2 L
< Vi (&) + a0(@DeIPasl + Gar) 4 o0? (IPasll 5 ) (132
which completes the proof. O
Lemma 38 (] ). Using the notations as in the proof of Lemma 37, we have the

following two inequalities:

F — ag(@in)) — f(@r) < —& X1é, (133)
F(ik = ag(in)) — f(@) < —éf Xoés. (134)

Proof. Recall that f satisfies following inequalities,
L
FE) = Fw) < VIO G-y + Sy -7 (135)
F4) = (@) < V@) (=) = Slly — ] (136)

Choosing z = g — ag(Jx), y = Jr and x = T}, yields,
L %
Flye = agye)) = flar) < VI (v — 2 — ag(ur)) + 5 lagul* = 5l — 2]*. (137)
Additionally let Oh(x) := {v € R : h(x) — h(y) < vT(x — y)Vy € R?} then by optimality
condition, 0 € (Pc(w)) — 2 (Pe(w) — w) (e.g. | ] theorem 6.39). In particular there

exists a Tp(w) € Oh(z) such that g(w) = V f(w) + Th(w). Choose w = y;, and note that
yr = (1+B)xp — Prk—1 and C is a convex set thus y € C. So if Ty (yx) € Oh(yx) then either
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0 < Tn(yr)T (yr — ) or —0o < Ty (yx)T (yr — ) therefore 0 < Ty, (yx)T (yr — ) implying that
Vi (y—2) < g(y)’(y — ) for all z € RY. Combining this result with (137) we obtain,

Ty — ag(ye)) — o)

< V)" (ye — 2 — agyr)) + gazHg(yk)H2 - %Wllwk — e f(ye — ag(ye)) — f(zk)

< B9 (o~ 2n) + (502 = )

= 28 (Il — @l = 2(an — 2" (@ro1 = @) + lanes — ).
This proves (120). Finally, (121) can also be obtained if we take = z, and follow similar

steps. ]

Lemma 39. Given a = %, 8= ﬁ:, where k = L/, we have

(Pa,sVPo 5)(§) < VP, 5(§) + K,

~ o o?
&::1\/1? K::L(Dc,u((l\/E)2+m)+GM)+L2<g((1\/E)2+/<;)+§>.

Proof. Note that ~ - L
(PaﬁVpaﬁ)(f) < pa,8VP, 4 (&) + Kap,

where I
Ry = a0 (2el Pagll + Gon) + 202 (I1Pasll 45 ).

. -1
and with a = %, 8= ﬁﬂ’ we have

=

Pap =5 (L= VRIs V&l) (1= VRl V&l),

so that
I1Pasl < 5[ (0= vt VR |10 = VA VEL) | = 50 = v+ ).

Hence,

(o} 0.2
Kap < 7 (Pep((t = V)" + 5) + Gur) + 73 (5((1 — VR)? 4 ) + 5) .
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Proof of Theorem 16. The proof is similar to the proof of Theorem 13 and the proof of
(29). We obtain

~ Ka
E[f(zr)] — f(2s) < VPa,ﬁ (50):}’2/3 + ﬁ'

The conclusion then follows from the defintiion of 7, g and f(’a’g. O

Proof of Proposition 17. The proof is similar as the proof of Proposition 14. We can take
K < £ that is,

NG
2
o 9 o° [ 9 L R
e _ Y _ )<
7 (Depl(1— VR + )+ Gur) + 7 (B0 - i+ ) <
which implies
—by 1 R
< — 4 — /b2 —
where
L (p 2 L 1 2
alzﬁ 5((1—\/@ +f€)+§ ) blzz(DCM((l_\/E) +’i)+GM)'

As in the proof of Proposition 14, we can take
1
NI
Finally, the proof of (35) is similar as the proof of (33). We obtain

=

K
1-75

E[f (@) — F(3) < Veso (G0)7 +

The conclusion then follows from the definition of K and 7. O

E Numerical Illustrations

In this section, we illustrate some of our theoretical results over some simple functions
with numerical experiments. On the left panel of Figure 1, we compare ASG for the
quadratic objective f(z) = 22/2 in dimension one with additive i.i.d. Gaussian noise on
the gradients for different noise levels o € {0.01,0.1,1,2}. The plots show performance with
respect to expected suboptimality using 10* sample paths. As expected, the performance
deteriorates when o increases. The fact that the performance stabilizes after a certain
number of iterations supports the claim that a stationary distribution exists, a claim that
was proved in Theorem 4. In the middle panel, we repeat the experiment in dimension
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Suboptimality Suboptimality

— ASG, sigma =0.01 <
102 -
g o,
o0
2
1074
10 20 30

S
>

[f0q) = fe)])

log (ETf(x) — f(x)])
(

ASG, sigma = 0.1
40 50 o

=== ASG, sigma =1
20 30
# of iterations # of iterations

ASG, sigma =2
o 10
Histogram of f(x;)
150

0 0 0
0 0.15 03 0 015 03 0 0.15 03 0 015 03
k=5 k=25 k=125 k=625

Figure 1: Performance comparison of ASG for different noise levels o on quadratic func-
tions. Left panel: f(z) = %xz in dimension one. Middle panel: f(x) = %Z‘TQI‘ in dimension
d = 10. Right panel: Histogram of f(zy) for different values of k where f(z) = 327 Qz in
dimension d = 10.

d = 10 over the quadratic objective f(z) = %ITQCL‘, where () is a diagonal matrix with
diagonal entries QQ;; = 1/i. We observe similar patterns.

Finally, on the right panel of Figure 1, we estimate the distribution of f(xy) for k €
{5,25,125,625}. For this purpose, we plot the histograms of f(z;) over 10* sample paths for
every fixed k. We observe that the histograms for k = 125 and 625 are similar, illustrating
the fact that ASG admits a stationary distribution.
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