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Abstract: This study explores the relationships between chemical and sensory characteristics of wines1

in connection with their regions of production. The objective is to identify whether such characteristics2

are significant enough to serve as signatures of a terroir for wines, thereby supporting the concept3

of regionality. We argue that the relationships between characteristics and regions of production4

for the set of wines under study are rendered complicated by possible non linear relationships5

between the characteristics themselves. Consequently, we propose a new approach for performing6

the analysis of the wine data that relies on these relationships instead of trying to circumvent them.7

This new approach follows two steps. We first cluster the measurements for each characteristic8

(chemical, or sensory) independently. We then assign a distance between two features to be the9

mutual entropy of the clustering results they generate. The set of characteristics is then clustered10

using this distance measure. The result of this clustering is a set of sub-groups of characteristics,11

such that two characteristics in the same group carry similar, i.e. synergetic information with respect12

to the wines under study. Those wines are then analyzed separately on the different sub groups of13

features. We have used this method to analyze the similarities and differences between Malbec wines14

from Argentina and California, as well as the similarities and differences between sub-regions of15

those two main wine producing countries. We report detection of groups of features that characterize16

the origins of the different wines included in the study. We note stronger evidence of regionality17

for Argentinian Malbec wines than for Californian wines, at least for the sub regions of production18

included in this study.19

Keywords: Malbec wine; wine regionality; clustering20

1. Introduction21

Malbec (Vitis vinifera L. cv Malbec) is a red grape variety with origins in France, where its culture22

persists in the Cahors and Bordeaux regions. Its characteristic “inky" dark color and robust tannins23

make it one of the six red grape varieties allowed in the blending of red Bordeaux wines. After a severe24

frost event however that wiped out the majority of the Malbec vineyards in the area of Bordeaux in25

1956 [1], it became less popular in that region, considered to be too sensitive to the weather, causing26

the grapes not to produce a quality wine. It remains more popular and probably better suited in and27

around Cahors, where it is still a main component of the blends of that region. French single variety28

Malbec wines are a more recent phenomenon due in part to the International recognition of Malbec.29

Malbec is a frail variety of grapes, demanding specific ecological conditions and vineyard30

management techniques. It does not reach the development of its varietal characteristics in all regions.31
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It requires large night-day temperature variations, with cool nights. Maximum mean day temperatures32

should not be higher than 30◦C during the ripening months [2]. Such conditions are met in the33

high altitude regions of Mendoza, Argentina, such as in the Luján de Cuyo and the Uco Valley in34

the foothills of the Andes mountains. Malbec grapes were introduced in and around Mendoza by35

French agricultural engineers as early as in the mid-nineteenth century. Since then, they have greatly36

contributed to the success of the Mendoza province as a wine region [3]. A relatively more recent37

surge in the production and popularity of varietal Malbec wine was also seen in California, USA, at38

the beginning of the 21st century [4]. The total production of Malbec wines in the US, of which around39

85% come from California, remains however small, representing less than 3% of the production of40

Malbec wines in Argentina. This should be compared with the import of Argentinian Malbec wines41

in the US, which has enjoyed an almost exponential growth between 2000 and 2009: from 0.05 to 1.442

million cases [5].43

In contrast to the geographic situations of Malbec vineyards in Argentina, most Californian44

Malbec vineyards are located in low altitude regions, including the Napa and Sonoma Valleys and45

other neighboring regions. Such differences in altitude and concomitant climate conditions between46

Mendoza, Argentina and Northern California, USA are expected to bestow distinct regionality,47

or “terroir" upon the resulting wines. This concept of regionality is of significance both for the48

consumers and the wine makers. It is well known for example that the region of origin is an important49

decision-making factor used by (knowledgeable) wine consumers when purchasing wine [6], assuming50

differences between regions even for wines made from the same type of grapes. It is often unclear51

however how the decision is made. Wine makers are even more concerned, as regionality, or lack of52

regionality, influences how wines are made. In parallel, while large producers buy grapes coming53

from a large geographic area to increase production, thereby refuting the concept of regionality, more54

local producers emphasize the concept of, and importance of, a terroir as it provides a signature55

and specificity to their own production. This study takes an analytical approach to measuring the56

importance of such regional specificity using chemical and sensory data for two types of Malbec wines,57

from Argentina and California.58

There have been numerous studies characterizing regional differences in wines, including59

Cabernet Sauvignon from Australia [7] and from France [8], and Moravia Agria from Spain [9], to only60

list a few. A much smaller number of studies have compared the sensory profiles of wines from multiple61

countries, including red wines from Australia and China [10], and Sauvignon Blanc wines from France,62

New Zealand, Spain, South Africa, and the United States [11]. The regionality of Malbec wines has63

been studied based on their phenolic compositions [12–14] and elemental composition from soils to64

determine wine provenance in Argentina [15,16]. Two studies have investigated regional sensory65

differences of Malbec wines from Argentina. Goldner and Zamora [2] analyzed 56 “non-commercial"66

Malbec wines (i.e. those wines were tank sampled, did not have contacts with oak, with no malolactic67

fermentation) from seven viticultural regions in Argentina. They found clear sensory differences68

among the Malbec wines produced in the different regions. Aruani et al. [17] investigated the regional69

characteristics of 32 commercial Malbec wines from eight Argentinean wine regions. All those wines70

were tank-fermented with no oak aging. Similar to the Goldner and Zamora findings, this study71

showed significant sensory differences among the Malbec wines, with some of the wine regions72

grouped as they are geographically close or share similar climatic conditions. Three more recent73

studies have compared the characteristics of Malbec wines from California, USA, and Mendoza,74

Argentina. Buscema and Boulton [18] compared Malbec wines using chemometrics on 33 phenolic75

components comprising individual anthocyanins, low molecular weight phenolics, and total phenolics.76

They showed that Malbec wines produced in Mendoza have clearly different phenolic profiles than77

those produced in California. Using Plasma atomic emission spectroscopy, Nelson et al. [19] showed78

that the Malbec wines from Argentina and from the United States were clearly separated based on79

their elemental profiles, using only 6 elements, Sr, Rb, Ca, K, Na, and Mg. Using both chemical and80

sensory profiles, King, et al. [20] also highlighted differences between Argentinian and Californian81
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Malbec wines. They found that Malbec wines from Mendoza had more ripe fruit, sweetness, and82

higher alcohol levels, while the Californian Malbec wines had more artificial fruit and citrus aromas,83

and bitter taste. The compositional differences between the two countries were found to be related84

more to altitude differences than to precipitation and growing degree days.85

Two types of data analyses were primarily performed in the studies of regionality mentioned86

above, namely Analysis of Variance (ANOVA) and Principal Component Analysis (PCA), see for87

example Buscema and Boulton [18]. In this paper, we argue that it can be difficult to derive insight88

from such analyses. ANOVA for example is a single feature-based approach. Wine characteristics89

(both chemical and sensory), however, are expected to be dependent, making it difficult to analyze90

them independently. In addition, this dependency is likely to be non linear, especially as we combine91

chemical with sensory data, making it difficult to interpret based on the linear combination of features92

imposed by the PCA. We propose instead a more exploratory data-driven approach to relate wine93

features with regionality that is based on the following ideas. First, as briefly mentioned above, we note94

that the features that characterize wines, should they be chemical data or sensory profiles, are expected95

to be at least weakly dependent to each other. The existence of such dependencies can be captured96

as a network among the features. A network is likely to contain communities. Each community97

is then expected to capture a physical mechanism. We then apply a method for identifying such98

network between the features, for detecting communities within that network (termed “synergistic99

feature-groups"). Finally, we analyze the relationships between the wine features and the regions those100

wines are coming from (the “response variables") using those communities as a framework. We note101

that this method is related to the concept of feature selection [21], although it expands upon selection102

as it attempts to identify communities within features, rather than selecting one group of those features.103

The whole procedure is derived from previous work from the authors [22–26].104

The paper is organized as follows. First, we provide a brief description of the data used to analyze105

different wines from California, USA, and Mendoza, Argentina. The following section includes a106

comprehensive description of our method for studying wine regionality. In the Result section, we107

analyze the similarities and differences between wines from Mendoza and California, as well as the108

similarities and differences between sub-regions of those two main regions. We conclude the paper109

with a discussion on possible improvements and extensions of our method.110

2. Materials111

We note first that all the data considered in this study have been published before. Readers are112

referred to King et al [20] and Buscema and Bolton [18] for detailed information. Here we provide only113

a brief description of those data for the sake of clarity.114

Forty-one different Malbec wines were evaluated in this study, made from fruit originating from115

41 different viticultural sites, 26 in Argentina, and 15 in California. All wines were made in the 2011116

vintage in fermentation triplicates. The chemical components and the tasting properties of each of the117

replicates are then studied in triplicate (i.e. three independent measures are taken).118

In the Mendoza province in Argentina, 26 viticultural sites were chosen from four wine regions:119

Luján de Cuyo (referred to as Luján), Maipú, Tupungato and San Carlos. The latter two regions are120

within the Uco Valley. An additional 15 viticultural sites were chosen within California, USA from121

five wine regions: Lodi, Monterey, Napa, Sonoma and Yolo County. A full description of those sites is122

provided in table 1 of King et al [20].123

All wines were analyzed for four standard chemical parameters (titratable acidity (TA), pH,124

volatile acidity (VA) and ethanol (EtOH)), as well as 48 volatile compounds expected in red wines125

by standard published methods. We note that Benzyl-Alcohol) was only sufficiently detected within126

California wines, but not Argentinian samples. Accordingly, 51 chemical measurements (47 volatile127

compounds and 4 standard parameters) are shared between the California and Argentina Malbec wines.128

When Californian wines are analyzed separately, 52 measurements are considered due to the inclusion129

of Benzyl-Alcohol measurements. Sensory descriptive analysis was undertaken in two separate panels,130
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each of which was run within half a year of the respective harvest. Several panelists participated in131

both studies. While both panels decided on 23 sensory attributes to describe the respective wines,132

only 18 of these sensory features are shared between both the Argentinian and Californian wines.133

Accordingly, 69 features will be considered when comparing wines from both countries, while the134

original sets of features will be considered when analyzing each country separately. For more details,135

interested readers are referred to King et al. [20] for detailed tables of volatile compounds or sensory136

attributes.137

As often found in experimental settings, some of the data are missing. As each measure (chemical138

data or sensory data) are provided in triplicate (i.e. as the results of three independent measurements),139

we implemented the following procedure to handle those missing values. If at least one of the three140

values for a feature is known, the missing value (s) is (are) taken to be the average of the known value141

(s). If all three values are not known, we build for that specific feature a multilinear regression model142

based on all the wines for which this feature is known. The same regression model is used for all three143

missing values, which are then set to be identical.144

All those data are available at http://web.cs.ucdavis.edu/~koehl/Projects/index.html.145

3. Methods146

3.1. Motivation and algorithm147

As in any scientific setting, a computational experiment is designed to provide insight into the148

relationships between the parameters that define the objects in a system and the observations that149

are made in order to understand this system. In the language of data analysis, the objects correspond150

to labeled subjects contained in a subject space. The parameters are labels that form the response151

feature space; they are linked to their corresponding observations that form the covariate feature152

space. The main objective of data analysis is then to gain insight into the relationships between the153

covariate features and the response features. These relationships can then be used to making predictive154

inferences about unlabeled covariate data.155

In the setting considered here, the subject space is a set of N different Malbec wines that come156

from different areas of either the Mendoza region in Argentina, or the Northern California region in157

the United States. The covariate features correspond to a set of chemical measurements and a set of158

sensory evaluations of the wines. This information is stored in a data matrix D such that D(i, j) is159

the value for measurement j (that can be chemical or sensory) on wine i. In addition, we know the160

provenance of each of the N wines. This labeling of regional and subregional information is stored161

and arranged into a N × 1 response vector R, such that R(i) is a label defining the region (Mendoza162

or California) and subregion (the specific valley in the corresponding region) in which wine i was163

produced. Our goal is to identify associative patterns between features and responses that allow us164

to define signature for each wine region, namely characterize the regionality of each wine. The main165

difficulties relate to complex correlations between features, as those may reveal different physical166

processes bound to wine making. To circumvent these problems, we align our approach with the167

concept of feature selection, or more specifically feature organization, whose goal is to identify groups168

of associated features, which we refer to a group of synergistic features, analyze the patterns between169

wines and features for each of those groups separately, and finally analyze the patterns within the170

resulting heat maps contingent on the response vector. The complete procedure includes four main171

steps, namely:172

step 1: Normalize and generate a digital coding for each of the feature j characterizing the N wines.173

step 2: Compute a mutual entropy E(j, k) between any pair of features j and k. Set this entropy measure174

to be a distance on the feature space, and use this distance to construct a DCG tree on the features.175

The clusters identified on the DCG tree form the different groups of synergistic features.176
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step 3: Restrict the data matrix D by only keeping the features corresponding to one of the groups177

identified in step 2. Perform Data Mechanics on this restricted matrix, and build the178

corresponding heat map. Repeat this procedure for all groups of features from step 2.179

step 4: For each heat map generated in step 3, analyze the clusters of wine identified by the Data180

Mechanics procedure, contingent to their response values (i.e region information). For those181

clusters with high content of wines that have the same response value, analyze the corresponding182

patterns among the features. Repeat the procedure for all heat maps from step 3.183

The different steps of this procedure are described in more details in the following subsections.184

3.2. Step 1: Normalization and digital-coding of the individual features185

Full descriptions of the procedure used in this step are available in the Supplemental material186

of Fushing et al [25] and in [27]. Here we provide the general ideas behind this procedure, to ensure187

completeness of the description of our method, and for sake of clarity.188

Digital coding is the process of associating a number, or digital code, to objects characterized by189

numerical values such that “similar" objects share the same code. A simple way to perform encoding190

would be to sort the numerical values that define the objects, break them into groups, and assign191

to each object the index of the group it belongs to. This naive way to perform encoding is however192

difficult to implement: finding the right number of groups as well as finding where, and how to193

separate the values into groups are tasks that are ill-defined, as there are no underlying universal rules194

that define them. We use a different approach in which we learn the definitions of the groups from the195

data.196

Let us consider a feature j charactering the wines considered here. The values for that feature197

for all N wines form a set of N data points xi, i ∈ [1, N]. We first normalize these data points, i.e.198

we define x̃i =
xi−x

σ where x and σ are the mean value and standard deviation of all N values xi,199

respectively. The cumulative distribution function (CDF) for the normalized values x̃ usually follows a200

sigmoid-like curve, with changes in the slope of the curve that matches with changes in the similarities201

of the data. That is, by fitting a possibly gapped piecewise linear function onto the CDF, it is possible to202

reveal the positions of those changes. Each line segment on the CDF covers a subset of the data points.203

The corresponding region in the distribution is more or less uniformly distributed, and therefore204

corresponds to a horizontal density. The collection of those horizontal pieces of density distribution205

represents a histogram. Gaps in the piecewise linear function approximation appear as gaps (i.e. blank206

bars) in the histogram representation of the data.207

However, one major computing difficulty in the method described above remains: the set L of208

all gapped piecewise linear functions that can approximate the CDF of the normalized data points is209

much too large to be explored systematically. We let the data solve this problem in an unsupervised210

manner. We use the hierarchical clustering (HC) algorithm to cluster the normalized data points, using211

the Euclidean distance as an empirical distance measure on these points. HC algorithm generates a212

tree on the data. Each level on this tree corresponds to a partition of the N ordered data points through213

a collection of tree branches, say P, and each of these branches is then taken to correspond to a line214

segment. A gap is identified when two consecutive line segments do not share an internal node in215

the tree. The corresponding histogram contains P bins, that may, or may not be separated by gaps.216

This parameter P is chosen to provide balance between decoding errors and coding lengths of all217

bins’ boundaries. Points that belong to the same bin in the histogram are given the same code. Two218

consecutive bins are given consecutive codes, unless they are separated by a gap, in which case a gap219

is set in the coding.220

There are two sets of parameters in the procedure described above: the number of clusters P in221

the hierarchical tree, and the gaps in coding associated with gaps between bins. Those parameters222

were set heuristically. We first generated all HC trees for all features describing the wines considered223

in this study. Based on those trees, we decided on P to be 4. We note that for some of the trees,224

there are no cuts that correspond to 4 clusters; for those trees, we picked P that is closest to 4. All225
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histograms were then coded to cover the whole range [1, M], with M set to 10, and the gaps in the226

coding were adjusted to yield the largest linear correlation between the distances between the bins,227

and the distances between the codes assigned to the bins.228

3.3. Step 2: Identification of the groups of synergistic features229

For a comprehensive description of this step, including a presentation of mutual entropy, we230

refer the reader to Fushing, et al. [26]. We note that entropy is a quantitative measure of “disorder",231

or randomness of a theromdynamic system. From an information theory point of view, entropy is232

the amount of information in a message. When comparing two variables, entropy can be seen as a233

measure of the similarity or association of those variables, with a low value meaning that the variables234

are similar..235

Briefly, let us consider two features j and k whose values over the N wines have been digitally236

coded in the range [1, M] according to Step 1 defined above. We evaluate how different those two237

categorizations of the wines are, using the idea of (conditional) mutual entropy. The codings based238

on features j and k lead to partitionings of the N wines into two distinct groups of M sets, C =239

{C1, C2, . . . , CM}, and D = {D1, D2, . . . , DM}, respectively. Let us consider one of the sets of C, say Cα,240

where α ∈ [1, M]. This set may contain elements of each of the partitions Dβ, with β ∈ [1, M]. The241

Shannon entropy of the set Cα is defined as:242

E(Cα/D) = −
M

∑
β=1

|Cα
⋂

Dβ|

|Cα|
log

(

|Cα
⋂

Dβ|

|Cα|

)

, (1)

where |A| means the cardinality of set A. This entropy measures how much the composition of the243

set Cα differs from a composition that would be obtained from a random sampling based on the244

partitioning defined by D.245

The conditional entropy of the partitioning C with respect to the partitioning D is then given by:246

E(C/D) =
M

∑
α=1

|Cα|

N
E(Cα/D) (2)

We can define in a similar manner the conditional entropy of the partitioning D given the partitioning247

C. Based on those two conditional entropies, we defined the mutual entropy of the features j and k:248

E(i, j) = (E(C/D) + E(D/C))/2 (3)

Two features j and k whose mutual entropy E(i, j) is low are called synergistic. It should be noted249

that such synergistic features may not necessarily be linearly correlated. Using this mutual entropy as250

a distance measure, it is then possible to cluster the features. We use the Data Cloud Geometry (DCG)251

method for that purpose. A full description of DCG method and algorithm is provided in the original252

papers [22,23]. We provide a brief outline below for sake of completeness.253

Starting from a set of data points (here, the set of features characterizing the wines) and an254

empirical measure d that defines the distances between these data points (the mutual entropy defined255

above), the goal is to derive a multi-scale partitioning of these data that illustrates their geometry.256

The main idea of the DCG method is to identify this geometry with a potential landscape; this is257

done based on two key observations. Firstly, it is observed that the empirical distance measure d258

imposes a weighted graph onto the collection of data points. By equating the weight on an edge to the259

a difference of potential between the two nodes it connects, with a “temperature" as a parameter, this260

weighted graph is seen as equivalent to a potential landscape, typically characterized by many wells261

with various depths. Secondly, it is possible to explore this landscape using a Monte Carlo approach; by262

studying this landscape at different temperatures, the DCG procedure extract the geometric structure263

of the data. This geometric structure can then be summarized as a hierarchical tree, the DCG-tree [23].264
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The DCG method is designed to replace the empirical distance measure with an effective265

ultrametric distance that reflects the underlying structure of the data. An ultrametric space satisfies266

a strong triangular inequality, namely d(x, y) ≤ max(d(x, z), d(y, z)), for any three points {x, y, z} in267

that space. An important consequence of this inequality is that any such triplet of points forms an268

isosceles triangle, that is, any three points determine at most 2 distances. While such a property is269

counterintuitive with respect to our usual understanding of distances between points, it is readily270

amenable to a tree representation of the underlying space. Such a ultrametric tree representation is in271

fact valid for any ultrametric space. It has the important property that the ultrametric distance between272

two data points is exactly equal to the sum of the lengths of the branches in the tree that connect the273

two points (additivity property). This property does not always carry over for a distance measure that274

only satisfies the triangular inequality. We note also that in such a tree representation, any node can275

contain more than two child branches due to “equal" distances, where equal can be interpreted as not276

having enough information about those children nodes to sustain further separation among them. The277

tree representation therefore provides a hierarchical organization of the features that can be used to278

assess the interdependences between those features.279

3.4. Step 3: Analyzing patterns between wines and features using Data Mechanics280

Let us consider one set of P synergistic features found in Step 2 described above. We restrict the281

full data matrix D onto this set of features. This gives us a new data matrix, Dc, whose rows are the N282

wines and columns the P selected features. As we are going to compare the values of those features, we283

first transform each of them separately using a linear transform, such that their values are in the range284

[0,1]. In general, neither the wines along the row axis of Dc nor the features along the column axis285

of Dc are ordered with respect to temporal, spatial or ordinal axes of any kind. Consequently, direct286

visualization of the normalized data matrix Dc will provide little information about its “geometry",287

i.e. about the patterns it contains. We have recently proposed a data-driven approach to unravel the288

geometry of such a matrix, referred to as Data Mechanics [24,25], which we propose to use in the289

context of analyzing the regionality of wines. Data Mechanics works by re-organizing the rows and290

columns of the data matrix through permutations, regrouping them based on similarity. It proceeds291

by iteratively computing two tightly coupled ultrametric trees onto the row and columns, where292

“coupling" refers to the concept of coupling geometries between metric spaces [28]. Let TX and TF293

be these two ultrametric trees on the row space X and column space F , respectively. These trees are294

computed first separately onto the two spaces X and F . The coupling is then captured by minimizing295

a metric equivalent to a Gromov-Wasserstein distance [28–30] between the two metric spaces (X , TX )296

and (F , TF ). This minimization is implemented with an iterative procedure, which is referred to as297

Data Mechanics. The iterative modifications and adaptations of the distance measures on the rows298

and columns of the data matrix allow for the detection of the multiscale dependence structures within299

the matrix Dc. On output, the matrix DDM is a version of Dc whose rows and columns have been300

re-organized corresponding to their respective optimized ultrametric trees. The block structure of this301

matrix can be visualized using a heat map.302

The procedure describe above is repeated over all clusters of synergetic features detected in Step303

2.304

3.5. Step 4: extracting the relationships between features characterizing wines and the regions of origin of those305

wines306

At this stage, we have a series of M heat maps, each illustrating geometric patterns between307

wines and some subgroups of features. Each heat map is built from one of the set of synergistic308

features identified from the matrix of entropy-based distances between the features. This next step is309

about analyzing those heat maps in order to reveal possible couplings between some of the features310

describing the wines, and the regions in which they have been produced. So far, all the analyses311
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Figure 1. Clustering the 69 characteristics of the Malbec wines from California and Argentina. The

chemical and sensory characteristics of the different Malbec wines were first compared in pairs, using a

mutual entropy measure (see text for details). The all-against-all entropy distance matrix is then used

to cluster those characteristics using DCG. The resulting heat map is shown. Chemical and sensory

characteristics are highlighted in blue and black, respectively. Three subgroups of those characteristics

are identified, and labeled as A, B and C on the heat map.The color scale white-black used to represent

the heat map corresponds to the interval [0,1] for the mutual entropy, with black mapping to 0 and

white mapping to 1.

have been performed without knowledge of the latter. Here we propose a mechanism to include that312

information, so that the couplings can be revealed.313

As the response vector R is known (see above), it can easily be re-organized as a single level314

tree with multiple branches, with each tree corresponding to one label, namely one region of wine315

production. let us denote this tree as T R. This tree is defined on the N wines. In parallel, we have M316

ultrametric trees T C
m , with m ∈ [1, M] on the same N wines, one per heat map that was computed in317

Step 3.318

The information content of the tree T R and of each of the trees T C
m can be compared using the319

concept of mutual entropy, with a procedure equivalent to the one described in Step 1. Let us assume320

that there are K clusters in the response tree T R, R = {R1, R2, . . . , RK}, namely K wine producing321

regions. Let us consider now a cluster D(j,m) from tree T C
m derived from the m − th heat map. The322

conditional entropy E(D(j,m)/R) gives us a measure of how much the composition of the set D(j,m)323

differs from a composition that would be obtained from a random sampling based on the partitioning324

defined by R. A low value for that entropy means that most wines from the cluster D(j,m) were325

produced in the same region Rk. The blocks of features found to be coupled with the set D(j,m) on the326

m − th heat maps are then good signatures for that region Rk.327

In practice, we proceed as follows. First, the mutual entropies between the tree T R and each of328

the trees T C
m are computed, and sorted in increasing order. The M heat maps are then organized in that329

order. For each heat map, we then identify the clusters of wines with the lowest conditional entropies330

with respect to the partitioning of wines given by the response R, and detect the blocks of features331

coupled with those clusters. This allows us to find the important couplings between features and wine332

regions.333

We note that this procedure is fully supervised, as the wine regions are known beforehand.334

4. Results335

We analyze the chemical features and sensory profiles of different Malbec wines coming from336

either the Mendoza region in Argentina or Northern California, in an attempt to define their region of337
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provenance, namely characteristics that can serve as signatures of the origins of the wine. 26 wines338

from Argentina (in triplicate) and 15 wines from California (in triplicate) are analyzed. California339

wines are characterized with a set of 52 chemical constituents, meant to capture the aromas and general340

chemistry of the wine products, and 23 sensory characteristics, that define their aroma and taste,341

as estimated by two panels of tasters. In parallel, Argentinean wines are characterized with a set342

of 51 chemical features and 23 sensory features, with 51 chemical, and 18 sensory features that are343

common to the features for California wines. We analyze first the common features over all wines and344

couplings between these features using the entropy-based distance measure introduced above. The345

wines are then analyzed on subsets of the features defined in those couplings, using Data Mechanics.346

We report detection of groups of features that characterize the origins of the wines. The procedure is347

then repeated at the country level, in hope to identify specificities for the sub-regions within the two348

countries considered.349

4.1. California vs Argentinan Malbec wines350

We first compared the 69 characteristics common to all the wines using all 41 wines and the351

mutual entropy measure described in the Methods section. Briefly, for a feature j, the values that it352

takes on the set of all wines are first translated and scaled, so that its mean and standard deviation are353

0 and 1, respectively. We then use hierarchical clustering to regroup those data into categories. The354

corresponding clustering tree is cut at four clusters. The data are accordingly partitioned into four bins355

that may, or may not be separated by gaps. Data falling inside the same bins are given the same digital356

code; a gap between two bins lead to a gap in the digital codes. The procedure is then repeated over all357

features and the values given for the gaps are then chosen so that the overall scale of the digital codes358

over the 69 characteristics of the wines is from 1 to 10. Once the digital code is established, a distance359

between two features j and k is computed by comparing the clustering of the wines that they produce,360

using mutual entropy as a distance measure (see Method Section and [26] for how the mutual entropy361

is computed). Using this distance, the 69 characteristics are then clustered using the DCG method362

[22,23]. The resulting heat map is shown in Figure 1.363

The clustering of the characteristics reveal two major clusters, with the largest one containing364

all 18 sensory features and 32 chemical features, and the smaller one containing 19 chemical features365

than can be further divided into three clusters, C1, C2, and C3. C1 contains mostly alcohols and366

their esthers (Ethylbutyrate, Ethanol, Ethylhexanoate, Octanal, Ethyloctanoate, Ethyldecanoate,367

ionone, and Syringol), while C2 contains compounds of potentially external source (Terpinene,368

limonene, p-cymene), as well as minor esters (Phenylacetaldehyde, Ethyldihydrocinnamate,369

Ethyl2methylbutyrate) and surprisingly, TA. C3 contains minor compounds that can be associated370

with yeast metabolism or aging alike Ethylisovalerate, vitispirane I and vitispirane II. Each cluster371

includes wine characteristics that share similarities, as measured by mutual entropy, in the sense372

that they would separate the different wines into similar groups: those features are synergetic. In373

opposition, characteristics that are in different clusters share little similarity and should therefore374

be considered separately. We have consequently identified three different groups of characteristics,375

A = C1, B = C1
⋃

C2, and C, that contains all sensory features. The wines are then analyzed separately376

on each of those groups, using Data Mechanics (see Method Section for how DM works). The resulting377

heat maps that relate wines with different subsets of wine characteristics are shown in Figure 2.378

We note first that none of the three sets of wine characteristics allows for a perfect partitioning379

of the wines into two groups, one for California, one for Argentina. Set B that includes 11 chemical380

features leads to 5 clusters, with only one of them “pure", i.e. only containing Argentinean wines.381

Overall, there are 19 misclassifications, i.e. wines from one country mixed with a majority of wines382

from the other country. Set A that contains 8 chemical features leads to 8 clusters of wine, with one383

“pure" with only California wines, and 28 misclassifications, while set C, which contains all sensory384

data, leads to 5 clusters, none of which are pure, and 33 misclassifications. From the information flow,385

as shown in Fig.1(C), we see that Mendoza and California Malbec wines respectively embrace evident386
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Figure 2. Clustering Californian and Argentinean Malbec wines The 45 Californian wines and 78

Argentinean wines are clustered using Data Mechanics on three different sets of wine characteristics,

A, B, and C, that are described in figure 1. The corresponding heat maps have wines as rows, and

wine characteristics as columns. For clarity, wines from California are shown in red, and wines from

Argentina in green. The links between the hierarchical trees on the wines and on the characteristics

reveal biclusters, i.e. groups of wines that are associated with groups of features, as illustrated with the

boxed regions labeled with numerals on the three heat maps. The color scale blue to yellow used to

represent the heat maps corresponds to the interval [1,10] for the digital scores (see text for details on

those digital score, with blue mapping to 1 and yellow to 10).
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patterns of heterogeneity within the first heat map pertaining to the purple color-coded synergistic387

chemical feature-group as well as within the second heat map pertaining to blue color-coded chemical388

feature-group. These two distinct versions of heterogeneity attributed to different feature-groups389

confirm the necessity of having a platform such as Information flow. When we look however at each390

of the heat map separately, we identify some revealing patterns that relate to differences between391

California and Argentina Malbec wines.392

From the heat map derived from the set B of chemical features, we note that393

Ethyldihydrocinnamate is a reasonable signature of the two types of Malbec wines: it has high394

values for Argentinean wines, and lower values for Californian wines. In addition, the Argentinean395

wines found in the larger cluster of wines have low values for three groups of chemical features, as396

illustrated in the blocks labeled 1, 2, and 3. Those three groups of chemical features are G1={Vitispirane397

I and II}, G2={Phenylacetaldehyde, p-cymene, α-terpinene and Limonene}, the latter three of which398

may be considered “inert" aroma compounds of grapes not altered by fermentation, and the minutes399

esters of yeast metabolic products, G3={Ethylisovalerate, Ethylisobutyrate, and Ethyl2methylbutyrate},400

respectively. In parallel, the chemical features in groups G2 and G3 are found to have large values401

within clusters that contain predominantly wines from California, as illustrated in blocks 5, 6, 8, and 9.402

Those patterns, while indicative, are not fully discriminative: the same chemical features have also403

high values within the cluster formed of pure Argentinean wines, as seen in blocks 11 and 12. G2404

may be a reflection of altitude and local vegetation, whereas G3 may represent differences in yeast405

metabolism brought about by different amino acid composition in the grapes. However, it would406

require additional metabolomics profiling data to substantiate these indications - data that was not407

collected for this specific scenario.408

The heat map derived from the set A of 8 chemical features (see above) highlights the difficulties409

in extracting significant information that can separate wines from different sources. The DCG trees on410

the different wines identify three clusters that predominantly include Malbec wines from Argentina411

(the three clusters at the lower part of the rows of the head map, that correspond to the rows covered412

by blocks 1 and 3. However, these clusters are not consistent over the 8 chemical features included in413

set A. For example, the Argentinean wines included in the cluster corresponding to block 1 have low414

values over all 8 chemical features, as shown in blocks 1 and 2, while the Argentinean wines in the415

two other clusters have high values for the chemical features, as illustrated in blocks 3, 4, and 5. In416

contrast, the Californian wines show heterogeneous values over those features. This behavior hints to417

those 8 chemical features providing information within the Argentinean wines, but not between the418

Californian and Argentinean wines.419

The set C only includes sensory features; it is a subset of the largest cluster of features (see Figure420

1). Those features have high entropy values between them; we do not expect to see significant patterns421

that differentiate different types of wine. This is confirmed in Figure 2: the tree on the wines (rows of422

the heat map) shows five clusters, none of which is pure with respect to California, or Argentinean423

wines. There are some indications however that this heat map still contains some signal: the three424

groups of features, B1={Salty, Earthy, cabbage/cooked vegetable A, Soy/meaty/yeasty A}, B2 = {Floral,425

Spice, Wood, Black Pepper}, and B3 = {Chocolate, Red Fruit, Fresh Green} have relatively high values426

on cluster mainly containing California wines (top rows, blocks 1, 2, and 3), and relatively low values427

on a cluster containing Argentinean wines (bottom rows, blocks 4, 5, and 6).428

4.2. California Malbec wines429

There are 15 California wines, coming from five wine regions: Lodi, Monterey, Napa, Sonoma and430

Yolo County. Each of these 15 wines is considered in triplicate, leading to 45 different wines. Each of431

those wines was characterized with 52 chemical features, and 23 sensory features (see Materials above).432

We first compared these 75 features using the mutual entropy measure described in the Methods433

section. The resulting heat map is shown in Figure 3.434
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California Wine

A

C

B

Figure 3. Heat map for the 75 characteristics of the Malbec wines from California The heat map

is computed using DCG and the mutual entropy distance measure (see text for details). Chemical

and sensory characteristics are highlighted in blue and black, respectively. Three subgroups of those

characteristics are identified, and labeled as A, B and C on the heat map.The color scale yellow-red used

to represent the heat map corresponds to the interval [0,1] for the mutual entropy, with red mapping to

0 and yellow mapping to 1.

The clustering of the characteristics reveal three major clusters, A, B, and C, with the last one435

containing all 23 sensory features and 4 chemical features, and the smaller one containing 15 chemical436

features. Sets A and B include features with low pairwise mutual entropies, while set C include437

features that are relatively more diverse, as their mutual entropies are larger. Each of these groups of438

wine features was then used to cluster the 45 wines, using Data Mechanics (DM). Results are shown in439

Figure 4.440

All the wine clusters identified with DM on sets A and B are all pure, namely each cluster only441

includes wines from a specific region. Most of the smaller clusters include the three replicates of a442

wine; the reverse is usually not true: wines produced in a given region are usually divided between443

multiple clusters, with two exceptions, the wines from Lodi for set A (identified with block 1), and the444

wines from Yolo for set B (see blocks 1 and 2). In contrast, most of the wine clusters identified using445

the features from set C are less discriminative and include wines from different regions.446

While all wines from Lodi are found to belong to two clusters that form one cluster along the DCG447

tree (top rows of the heat map for set A in Figure 3B), the patterns observed within the corresponding448

block 1 on the heat map do not appear to be informative. Interestingly, on the same heat map, we449

observe that the three replicates of one wine from Yolo county have a clear signature with high values450

for most of the features included in set A, as illustrated with block 2 on the heat map. It is unclear451

however as to why the other wines from Yolo county do not show the same patterns.452

On the heat map constructed from the set B of features, we see two distinct groups among453

those features: G1={Hexanol, pH, Diacetyl, Ethylacetate, Ethylbutyrate}, and G2 = { Methionol,454

Phenylalcohol, vitispirane I, vitispirane II, Isobutanol, Phenylacetate, Ethylisobutyrate, Linalool,455

Ethyl2methylbutyrate, and Ethylisovalerate}. Those two groups define clear patterns for at least456

all wines from Yolo county, with high values within G1, and low values within G2 (blocks 1 and457

2 on the heat map, respectively). A link to metabolic action of both yeast and malolactic bacteria458

can be stipulated, but may also be an artifact of the time-course of those processes as relating to459
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Figure 4. Clustering the Californian wines. The 45 wines are clustered using Data Mechanics on the

three different sets of wine characteristics, A, B, and C, that are defined in A). The corresponding heat

maps have wines as rows, and wine characteristics as columns. The color scale blue to yellow used to

represent the heat maps corresponds to the interval [1,10] for the digital scores (see text for details on

those digital score, with blue mapping to 1 and yellow to 10).

bottling preparation. Additional information such as metabolic tracking of the progress of malolactic460

conversion would be necessary to substantiate this impression.461
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In contract to set A and set B, the heat map constructed from the features included in set C does462

not show any significant patterns; this behavior reinforces the idea that studying objects on groups of463

features containing convergent information is more likely to provide information on those objects.464

Argentina Wine

A

B

C

Figure 5. Heat map for the 74 characteristics of the Malbec wines from Argentina The heat map

is computed using DCG and the mutual entropy distance measure (see text for details). Chemical

and sensory characteristics are highlighted in blue and black, respectively. Three subgroups of those

characteristics are selected, and labeled as A, B and C on the heat map.The color scale yellow-red used

to represent the heat map corresponds to the interval [0,1] for the mutual entropy, with red mapping to

0 and yellow mapping to 1.

Argentinean Malbec wines465

There are 26 Argentinean wines, coming from four wine sub-regions: Maipu, San Carlos,466

Tupangato, and Lujan. Each of these 26 wines is considered in triplicate, leading to 78 different467

wines. Each of those wines was characterized with 51 chemical features, and 23 sensory features (see468

Materials above). We compared these 74 features using the mutual entropy measure described in the469

Methods section. The resulting heat map is shown in Figure 5. This heat map illustrates the presence470

of 5 sub groups of features. Among those 5 subgroups, we selected the 3 smallest, referred to as A,471

B, and C. Each of these groups of wine features was then used to cluster the 74 wines, using Data472

Mechanics (DM). Results are shown in Figure 6.473

While the clustering of the California wines highlighted groups that were region specific, the474

clustering of the Argentinean wines on all three sets A, B, and C were less informative: none of the475

clusters found were pure. The heat map over set A identifies two sets of features, A1={α−terpinene,476

p-cymene}, and A2={Ethylhexanoate, α−ionone, Limonene, pH, Ethylacetate, Octanal}. Wines from477

Tupangato usually have low values for the features in set A1, and high values for the features in478

set A2 (blocks 1 and 2 on the heat map). The heat map for set B also identifies two sets of features,479

namely B1={Syringol, Methylguaiacol, α−pinene, Phenylacetaldehyde} and B2={transLinalooloxide,480

Isobutanol, γ−Nonalactone}. The features from set B1 have usually lower values than the features481

from B2 on all 78 wines. In addition, the former have significantly lower values on wines from San482

Carlos and Lujan (block 1 on the heat map).483

Overall however, the sub-region specificity on the Argentinean wines are much less marked than484

the sub-region specificity of the Californian wines.485



Version June 2, 2019 submitted to Agronomy 15 of 18

Maipu San Carlos Lujan  Tupangato

1

2

3
a_terpinene

p_cymene

Ethylhexanoate

a_ionone

Limonene

pH

Ethylacetate

Octanal

Set A

1

Syringol

Methylguaiacol_4

a_pinene

Phenylacetaldehyde

tLinalooloxide

Isobutanol

g_Nonalactone

Set B

TA

EtOH

Ethyl2methylbutyrate

Ethylisovalerate

Ethyldecanoate

Ethylbutyrate

Ethyloctanoate

Set C

Figure 6. Clustering the Argentinean wines. The 78 wines are clustered using Data Mechanics on the

three different sets of wine characteristics, A, B, and C, that are defined in A). The corresponding heat

maps have wines as rows, and wine characteristics as columns. The color scale blue to yellow used to

represent the heat maps corresponds to the interval [1,10] for the digital scores (see text for details on

those digital score, with blue mapping to 1 and yellow to 10).

Discussion486

In the language of data analysis, the objects of an experiment define a subject space, its parameters487

form the covariate feature space, and the corresponding measurements form the response feature space.488
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The main goal of an analysis of such an experiment is usually to gain insight into the relationships489

between the covariate features and the response features. These relationships can then be used for490

making inferences about missing data. To make such inference, the analysis needs to make assumptions;491

those assumptions constitute a model. As many models may be compatible with the data, probabilistic492

techniques are then usually applied to resolve the ambiguity [31]. A model is well defined if it can493

make predictions about latent data; its power is defined as its ability to do so. The key to the success of494

these techniques is usually to choose the model with the smallest number of assumptions (formally,495

variance reduction [32]). This is an expression of the Occam’s razor principle. In data analysis, this496

principle is often interpreted as a sparsity-of-effects principle, namely that the behavior of a system is497

dominated by a few main effects and low order interactions. The assumption is then made that a few498

of the covariate features are enough to explain the response, and the problem is then to identify those499

features. A large number of variable selection approaches have been developed to solve this problem500

(see for example the excellent, not recent, but still relevant review, Guyon and Elisseeff [21].501

For clarity, feature selection should be distinguished from the process of feature extraction, which502

proceeds by building derived values from the original features that are intended to be informative503

and non-redundant. A common method for feature extraction is principal component analysis (PCA).504

The key difference between selection and extraction is that selection keeps the original features while505

extraction generates derived values; the former is preferred when insights on causality is sought. This506

was the premise for this paper.507

The ubiquitous goal of all the feature selection methods is to select the smallest set of most508

“relevant” features. The need to define the smallest set is often pragmatic and related to computing cost.509

This is especially the case in the context of “Big Data" [33–35]. Finding such a small set of features may510

not reveal however if one of those features is involved in more than one underlying physical process.511

For unsupervised learning, detecting such information would amount to identifying a structure within512

the features. In the supervised learning problem, there is the same need to identify a fine structure of513

associations between features and response variables. The method proposed in this paper fits exactly514

within this scheme. It starts by analyzing the individual features in their ability to cluster the object.515

Each pair of features is then assigned a distance, as the mutual entropy between the clustering they516

generate. The set of all distances between features is used to cluster them. The resulting clusters define517

subsets of features that share similarities in their ability to analyze the object. Each of those sets is518

then used with a bi-clustering algorithm to derive patterns between subsets of objects and subsets of519

features.520

We have applied this procedure to analyze the differences and similarities between Malbec wines521

from different regions of California and from different regions of Argentina. We have identified some522

sub-group of features that are relevant for distinguishing wines from the two countries, and other523

sub-groups that are more relevant for separating wines from different regions within one country. Most524

of those features were already identified in our previous study of the regionality of Malbec wines from525

Argentina and California [18,20]. The main difference between our current study and those previous526

analyses is that we analyzed those features as groups, rather than individually. All those analyses have527

shown that choosing those sub-groups is the key to success; the choices are made by learning from the528

data, making our approach a machine learning technique [31,36].529

Much remains to be done before our approach can become routine. We note that once the530

subgroups of features have been identified, the analyses of the objects on those different subgroups are531

performed independently of each other. The order in which those analyses are performed are based on532

knowledge on the clustering of the object (supervised learning). We have noticed however that better533

results are obtained on subgroups that include features with high levels of similarities, as measured by534

mutual entropy. This observation may support two possible extensions of our method. First, the order535

in which the analyses are performed can be decided based on the average entropy values within the536

different sub groups of features, instead of relying on supervised knowledge. Second, the clustering of537

the objects found for one sub-group could inform the clustering of the objects derived from another538
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subgroup, as a second order corrective effect. We are currently working on implementing and testing539

those ideas. We are also aware of the limitations of the algorithms used to implement the DCG and DM540

approaches and are currently working on new approaches that will enable the use of those methods541

on large datasets with thousands of objects and features.542
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