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ABSTRACT
We study delay of jobs that consist of multiple parallel tasks,
which is a critical performance metric in a wide range of ap-
plications such as data file retrieval in coded storage systems
and parallel computing. In this problem, each job is com-
pleted only when all of its tasks are completed, so the delay
of a job is the maximum of the delays of its tasks. Despite
the wide attention this problem has received, tight analysis
is still largely unknown since analyzing job delay requires
characterizing the complicated correlation among task de-
lays, which is hard to do.
We first consider an asymptotic regime where the num-

ber of servers, n, goes to infinity, and the number of tasks
in a job, k(n), is allowed to increase with n. We estab-
lish the asymptotic independence of any k(n) queues under
the condition k(n) = o(n1/4). This greatly generalizes the
asymptotic-independence type of results in the literature
where asymptotic independence is shown only for a fixed
constant number of queues. As a consequence of our inde-
pendence result, the job delay converges to the maximum of
independent task delays.
We next consider the non-asymptotic regime. Here we

prove that independence yields a stochastic upper bound on
job delay for any n and any k(n) with k(n) ≤ n. The key
component of our proof is a new technique we develop, called
“Poisson oversampling”. Our approach converts the job de-
lay problem into a corresponding balls-and-bins problem.
However, in contrast with typical balls-and-bins problems
where there is a negative correlation among bins, we prove
that our variant exhibits positive correlation.
A full version of this paper will all proofs appears in [28].

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Queueing Theory
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1. INTRODUCTION

The problem

We consider a system with n servers, each with its own
queue. Jobs arrive over time according to a Poisson process,
and each job consists of some number of tasks, k, where
k ≤ n. Upon arrival, each job chooses k distinct servers uni-
formly at random and sends one task to each server. Each
server serves the tasks in its queue in a First-In, First-Out
(FIFO) manner. A job is considered to be completed only
when all of its tasks are completed. Our goal is to compute
the distribution of job delay, namely the time from when a
job arrives until the whole job completes. If a job’s tasks
experienced independent delays, then computing the distri-
bution of job delay would be easy: take the maximum of the
independent task delays. Unfortunately, the task delays are
not independent in general.

Our model is a generalization on the classic fork-join
model, which is identical to our model except that it as-
sumes that k = n: every job is forked to all n servers. In
contrast, in our model, the fork is limited to k servers with
k ≤ n. So we will refer to our model as the limited fork-join
model. Obtaining tight analytical job delay characteriza-
tions for fork-join systems is known to be notoriously dif-
ficult: exact analysis of fork-join remains an open problem
except for the two-server case [7, 1].

Motivation

Delay of jobs, rather than delay of individual tasks, is a more
critical performance metric in systems with parallelism, yet
a fundamental understanding of job delay is still lacking.
One example application is data file retrieval in coded stor-
age systems [12, 21, 15, 14, 22]. Here a job is the retrieval
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of a data file, which is stored as multiple data chunks. The
data chunks are in a coded form such that any k-sized subset
of them is enough to reconstruct the file. Coded file retrieval
can be modeled via the so-called (n, r, k) model [21] where
a job can request r data chunks with r ≥ k and the job
is completed as long as k of them are completed. Existing
analysis of the (n, r, k) model is usually not tight except for
the light load regime [12, 15]. The special case where r = d
and k = 1, called the Redundancy-d model, is also highly
non-trivial and was solved just last year [10]. Job delay
in general (n, r, k) models remains wide open. Within the
coded file retrieval setting, our limited fork-join model can
be viewed as the (n, k, k) problem.

Another application is parallel computing systems such as
the “map” phase of the popular MapReduce framework [5],
where a job is divided into tasks that can run in parallel.
A few papers have been written to analytically approximate
the delay of MapReduce jobs. Please see Section 2 for more
details of related work.

In the above applications, load-balancing policies (see,
e.g., [32, 29, 15, 14, 22] are usually used for assigning tasks
to servers. For scenarios where either low-overhead is de-
sired or information accessibility is constrained (such as in a
distributed setting), workload agnostic assignment policies
[29, 14, 22] can be preferred. Our limited fork-join model
assumes a random task assignment policy, which is suitable
for such application scenarios.

Our approach and what makes this problem hard

The root of the hardness of analyzing job delay in our model
is the complicated correlation among queues, which leads to
the correlation among the delays of a job’s tasks. If the task
delays were independent, then the probability distribution
of job delay would have a simple form. In this paper, we are
interested in developing conditions and quantifying in what
sense the job delay can be approximated by the job delay
under the independence assumption.

Asymptotic Regime. We first study a regime where
we prove that a job’s tasks can be viewed as being indepen-
dent: We focus on the asymptotic regime where the number
of servers, n, goes to infinity. Here we are specifically in-
terested in developing conditions under which the delays of
a job’s tasks are asymptotically independent, i.e., their joint
distribution converges to the product distribution of their
marginals.

Asymptotic independence of a number of queues in large
systems is often called “chaoticity” and studied under the
name “propagation of chaos.” In many papers [26, 31, 8,
9], asymptotic independence is simply assumed to simplify
analysis. In some load-balancing settings, asymptotic inde-
pendence has been proven (e.g., [3, 32]). One strong restric-
tion of the existing proofs is that only a constant number
of queues are proven to be asymptotically independent. In
contrast, our goal is to establish asymptotic independence
for any k queues where k may grow with n; we write k as k(n)

to explicitly indicate its dependence on n. The asymptotic
independence of any k(n) queues implies the asymptotic in-
dependence of the delays of a job’s tasks since they are sent
to k(n) queues. Allowing k(n) to grow with n captures the
trends that data files get larger and that jobs are processing
larger and larger data sets [4].

When proving asymptotic independence of a constant num-
ber of queues in steady state, it is typical to start by show-

ing asymptotic independence over a constant time interval
[0, t], where t is long enough for these queues to be close

to steady state. Unfortunately, since k(n) grows with n in
our model, to reach steady state, the system needs a time
interval [0, τ (n)], growing with n. This further complicates
the analysis since asymptotic independence then needs to be
established over this longer, non-constant, time interval.
Non-asymptotic regime. Next, we study the non-

asymptotic regime. We show that for any n and any
k(n) = k with k(n) ≤ n, the distribution of job delay is
stochastically upper bounded by the distribution given by
independent task delays, which we call the independence up-
per bound. Therefore, independence not only characterizes
the limiting behavior of job delay in the asymptotic regime
where n → ∞, but also yields an upper bound for any n.
I.e., the independence upper bound is asymptotically tight.
The independence upper bound is also tighter than all the
existing upper bounds in prior work [20, 14].

We prove the independence upper bound using the theory
of associated random variables [6]. Association (also called
positive association) is a form of positive correlation, and it
has the property that if a set of random variables are asso-
ciated, then the maximum of them is stochastically upper
bounded by the maximum of independent versions of them.
To show the independence upper bound, it thus suffices to
show that the delays of a job’s tasks are associated. Such an
association result is known for the classical fork-join model
with k(n) = n, but not for the limited fork-join model when
k(n) < n. When proving association, a commonly used idea
is to observe the system at each job arrival time, and show
that the numbers of tasks sent to different queues are as-
sociated [18, 13, 22]. This corresponds to a balls-and-bins

problem where k(n) balls are thrown into n bins in the same
way that the tasks are sent to the queues. What is needed
is that the numbers of balls thrown in different bins are as-
sociated, which is obviously true for k(n) = n since they are
all equal to one, but not true when k(n) < n. In fact, they
are actually negatively associated by a classical result [11].
However, this does not mean that the steady-state queues
are negatively associated, leaving the association problem
for k(n) < n unsolved in the literature. As pointed out in
[14], it was not known if independence yielded a bound, ei-
ther lower or upper.

We develop a novel technique that we call “Poisson over-
sampling,” where we observe the system not only when jobs
arrive but also at the jump times of a Poisson process that is
independent of everything else. This oversampling does not
change the dynamics in the system since it is only a way of
observing. But now at each observation time, there could be
one or zero job arrivals. So in the corresponding balls-and-
bins problem, there is certain probability that there are no
balls at all. By properly choosing the observation rate, this
extra randomness surprisingly makes the numbers of balls
thrown in any k(n) bins (positively) associated, and further
implies that the steady-state queues are associated. With
this technique, we are able to prove the independence upper
bound for any k(n) ≤ n for the first time.

Our goal is to characterize the tail probability of the job
delay distribution in steady state, since it is commonly used
to quantify the quality of service. We study a system with
n servers in which each job consists of k(n) tasks.

Our first result is that under the condition k(n) = o(n1/4),

the queues at any k(n) servers are asymptotically indepen-
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dent in steady state as n → ∞, and thus the delays of a
job’s tasks are also asymptotically independent. It then fol-
lows that the job delay converges to the job delay given by
the independence assumption. This result is established in
Theorem 1 for generally distributed service times, and some
explicit forms are given in Corollary 4.1 for exponentially
distributed service times. This is the first asymptotically
tight characterization of job delay in the limited fork-join
model.

Our next result is that for any n and any k(n) with k(n) ≤
n, the job delay is stochastically upper bounded by the job
delay given by the independence assumption. We refer to
this upper bound as the independence upper bound. It is a
new upper bound on job delay that is tighter than exist-
ing upper bounds. The technique we develop for the proof,
named “Poisson oversampling”, may be of independent in-
terest for other related problems.

In this short version of our paper, we will state our results
with no proofs. We refer the readers to a full version of
this paper to [28] for proofs as well as more discussions and
simulations.

2. RELATED WORK
In this section we discuss prior work on the limited fork-

join model and some other related models. Prior work on
the limited fork-join model [20, 14] has focused on the non-
asymptotic regime and derived bounds on job delay. How-
ever, the bounds in [20, 14] do not have tightness guarantees.
In particular, the upper bounds there are generally looser
than the independence upper bound. Furthermore, none
of the prior work has studied the asymptotic regime of the
limited fork-join model. Below we give detailed discussions.

Limited fork-join model. Rizk et al. [20] give upper
bounds on the tail probabilities of job delay in various set-
tings. For Poisson arrivals and exponentially distributed
service times, their upper bound is looser than the indepen-
dence upper bound. For general service time distributions,
their upper bound needs to be computed by numerically
solving a non-linear equation. In contrast, we show that the
independence upper bound holds and we also further estab-
lish asymptotic tightness of the independence upper bound.

Lee et al. [14] give upper and lower bounds on the mean
job delay, not on the tail probabilities, assuming that service
times follow an exponential distribution. Their upper bound
is in general looser than the expectation of the independence
upper bound, although the difference disappears as n→∞
when k(n) = o(n). Compared to this, we prove that the in-
dependence upper bound is indeed an upper bound for any
n and k(n) with k(n) ≤ n. Besides, we prove it for very gen-
eral service time distributions and in a stochastic dominance
sense, which is stronger than the expectation sense. Also,
there is a gap between their upper and lower bounds and
there is no tightness analysis. Again, we establish asymp-
totic tightness of the independence upper bound.

There has also been work on variants of the limited fork-
join model where each job consists of a random number of
tasks. For example, Shah et al. [22] simply assume that the
number of tasks in each job has a distribution such that the
numbers of tasks sent to different queues are associated, thus
obtaining the independence upper bound for their model.
They further investigate different policies for assigning the
tasks of a newly arrived job to servers, and show that the job
delay under the two studied policies is shorter (in a proper

sense) than the job delay under the random assignment in
the limited fork-join model. Nelson et al. [19] consider a
model where tasks wait in a central queue until some server
becomes available. They show that the mean job delay is
given by a set of recurrence equations, but no analytical
form is derived. Kumar and Shorey [13] obtain upper and
lower bounds on the mean delay when tasks are assigned to
servers independently. But still, there are gaps between the
upper and lower bounds.

Classic fork-join model. The classic fork-join model,
where the number of tasks in a job is equal to the number of
servers, n, has been widely studied in the literature. Similar
to the limited fork-join model, tight characterizations of job
delay are generally unknown except when n = 2. See [25] for
a detailed survey. Here we just sample several most relevant
papers. For general n, it has been proven that the mean
delay of a job scales as Θ(ln(n)) as n → ∞ under proper
assumptions [18, 2]. Besides studying the limited fork-join
model, Rizk et al. [20] also derive an upper bound on the tail
distribution of the job delay for the classic fork-join model.
Again, the tightness of the bound is not addressed.

MapReduce. Modeling MapReduce systems is challeng-
ing since the systems have many complex characteristics
such as parallel servers, data locality, communication net-
works, etc. Most theoretical work on MapReduce does not
provide analytical form bounds on the job delay. Papers
such as [17, 33] and [23] design scheduling algorithms such
that the job delay is guaranteed to be within a constant fac-
tor of the optimal, but do not provide analytical bounds.
Tan et al. [24] quantifies the distribution tail of job delay
when the map phase is abstracted as a single-server queue,
resulting in a system with much higher efficiency, especially
when the number of tasks in a job is large.

Asymptotic task delay. One component of the job de-
lay in MapReduce is the task delay. Wang et al. [27] and Xie
and Lu [30] bound the mean task delay, taking into consid-
eration data locality; however they do not deal with the job
delay. Bounding job delay would require characterizations
of the correlation among queues. Ying et al. [32] study the
task delay in a model where a load-balancing policy called
batch-filling is used. They establish asymptotic indepen-
dence for a constant number of queues, which is insufficient
for models with jobs with a growing number of tasks.

3. MODEL AND NOTATION
Basic Notation. The symbols R+ and Z+ denote the

set of nonnegative real numbers and nonnegative integers,
respectively. We denote random variables by capital let-
ters and vectors by bold letters. When a Markov chain
(X(t), t ≥ 0) has a unique stationary distribution, we de-
note by X(∞) a random element whose distribution is the
stationary distribution.

We denote by ⇒ convergence in distribution (weak con-
vergence) for random elements. We denote by dTV (π1, π2)
the total variation distance between two probability mea-
sures π1 and π2 on a sigma-algebra σ of some sample space,
i.e.,

dTV (π1, π2) = sup
S∈σ
|π1(S)− π2(S)|. (1)

Limited fork-join model. Our notation is summarized
in Table 1. Recall that we consider a system with n servers,
each with its own FIFO queue. We append the superscript
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n number of servers

superscript (n) quantities in the n-server system

k(n) number of tasks in a job

Λ(n) job arrival rate

λ task arrival rate to each queue

1/µ mean of service time

ρ load at each queue

W
(n)
i (t) workload of server i’s queue at time t

T (n) job delay

T̂ (n) job delay given by independent task delays

Hm m-th harmonic number: Hm =
∑m
j=1

1
j

Table 1: Notation Table

(n) to related quantities to indicate that they are for the
n-server system. We say that a quantity is a constant if it
does not scale with n.

Jobs and tasks. Jobs arrive over time according to a Pois-
son process with rate Λ(n), and each job consists of k(n) tasks
with k(n) ≤ n. Upon arrival, each job picks k(n) distinct
servers uniformly at random from the n servers and sends
one task to each server. We assume that Λ(n) = nλ/k(n) for
a constant λ, where the constant λ is the task arrival rate
to each individual queue. Since different jobs choose servers
independently, the task arrival process to each queue is also
a Poisson process, and the rate is λ. The service times of
tasks are i.i.d. following a cdf G with expectation 1/µ and a
finite second moment. We think of the service time of each
task as being generated upon arrival: each task brings a re-
quired service time with it, but the length of the required
service time is revealed to the system only when the task
is completed. The load of each queue, ρ = λ/µ, is then a
constant and we assume that ρ < 1.

Queueing dynamics. It is not hard to see that each queue
is an M/G/1 queue. But the queues are not independent

in general since k(n) tasks arrive to the system at the same

time. Let W
(n)
i (t) denote the workload of server i’s queue

at time t, i.e., the total remaining service time of all the
tasks in the queue, including the partially served task in
service. So the workload of a queue is the waiting time
of an incoming task to the queue before the server starts

serving it. Let W (n)(t) =
(
W

(n)
1 (t),W

(n)
2 (t), . . . ,W

(n)
n (t)

)
.

Then the workload process, (W (n)(t), t ≥ 0), is Markovian
and ergodic. The ergodicity can be proven using the rather
standard Foster-Lyapunov criteria [16], so we omit it here.
Therefore, the workload process has a unique stationary dis-
tribution and W (n)(t)⇒W (n)(∞) as t→∞.

Job delay. We are interested in the distribution of job
delay in steady state, i.e., the delay a job would experience if
it arrives to the system and finds the system in steady state.
Let a random variable T (n) represent this steady-state job
delay. Specifically, the distribution of T (n) is determined by
the workload W (n)(∞) in the following way. When a job

comes into the system, its tasks are sent to k(n) queues and
experience the delays in these queues. Since the queueing
processes are symmetric over the indices of queues, without

loss of generality, we can assume that the tasks are sent
to the first k(n) queues for the purpose of computing the
distribution of T (n). The delay of a task is the sum of its
waiting time and service time. So the task delay in queue i,

denoted by T
(n)
i , can be written as T

(n)
i = W

(n)
i (∞) + Xi

with Xi being the service time. Recall that the Xi’s are
i.i.d.∼ G and independent of everything else. Since the job
is completed only when all its tasks are completed,

T (n) = max
{
T

(n)
1 , T

(n)
2 , . . . , T

(n)

k(n)

}
. (2)

We will study the relation between T (n) and T̂ (n) with
T̂ (n) defined as the job delay given by independent task de-
lays. Specifically, T̂ (n) can be expressed as:

T̂ (n) = max
{
T̂

(n)
1 , T̂

(n)
2 , . . . , T̂

(n)

k(n)

}
, (3)

where T̂
(n)
1 , T̂

(n)
2 , . . . , T̂

(n)

k(n) are i.i.d. and each T̂
(n)
i has the

same distribution as T
(n)
i . Again, due to symmetry, all the

T
(n)
i ’s have the same distribution. Let F denote the cdf of

T
(n)
i , whose form is known from the queueing theory litera-

ture. Then, we have the following explicit form for T̂ (n):

P
(
T̂ (n) ≤ τ

)
= (F (τ))k

(n)

, τ ≥ 0. (4)

4. MAIN RESULTS
In Theorem 1, we establish asymptotic independence of

any k(n) queues under the condition k(n) = o(n1/4) as the
number of servers n → ∞. The asymptotic independence
is in the sense that the total variation distance between the
distribution of the workloads of these queues and the dis-
tribution of k(n) independent queues goes to 0 as n → ∞.
Consequently, the distance between the distribution of job
delay, T (n), and the distribution of the job delay given by
independent task delays, T̂ (n), goes to 0. This result in-
dicates that assuming independence among the delays of a
job’s tasks gives a good approximation of job delay when
the system is large. Again, due to symmetry, we can focus
on the first k(n) queues without loss of generality.

Theorem 1 Consider an n-server system in the limited

fork-join model with k(n) = o(n1/4). Let π(n,k(n)) denote

the joint distribution of the steady-state workloads W
(n)
1 (∞),

W
(n)
2 (∞), . . . ,W

(n)

k(n)(∞), and π̂(k(n)) denote the product dis-

tribution of k(n) i.i.d. random variables, each of which fol-
lows a distribution that is the same as the distribution of

W
(n)
1 (∞). Then

lim
n→∞

dTV
(
π(n,k(n)), π̂(k(n))

)
= 0. (5)

Consequently, the steady-state job delay, T (n), and the job
delay given by independent task delays as defined in (3),

T̂ (n), satisfy

lim
n→∞

sup
τ≥0

∣∣∣P(T (n) ≤ τ
)
− P

(
T̂ (n) ≤ τ

)∣∣∣ = 0. (6)

For the special case where the service times are exponen-
tially distributed, the job delay asymptotics have explicit
forms presented in Corollary 4.1 below.
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Corollary 4.1 Consider an n-server system in the limited
fork-join model with k(n) = o(n1/4), job arrival rate Λ(n) =

nλ/k(n), and exponentially distributed service times with mean

1/µ. Then the steady-state job delay, T (n), converges as:

lim
n→∞

sup
τ≥0

∣∣∣∣P(T (n) ≤ τ
)
−
(

1− e−(µ−λ)τ
)k(n)

∣∣∣∣ = 0, (7)

Specifically, if k(n) →∞ as n→∞, then

T (n)

Hk(n)/(µ− λ)
⇒ 1, as n→∞, (8)

where Hk(n) is the k(n)-th harmonic number, and further,

lim
n→∞

E
[
T (n)

]
Hk(n)/(µ− λ)

= 1. (9)

The results above characterize job delay in the asymptotic
regime where n goes to infinity. In Theorem 2 below, we
study the non-asymptotic regime for any n and any k(n)

with k(n) = k ≤ n, and we establish the independence upper
bound on job delay.

Theorem 2 Consider an n-server system in the limited fork-
join model with k(n) = k ≤ n. Then the steady-state job
delay, T (n), is stochastically upper bounded by the job delay
given by independent task delays as defined in (3), T̂ (n), i.e.,

T (n) ≤st T̂ (n), (10)

where “≤st” denotes stochastic dominance. Specifically, for
any τ ≥ 0,

P
(
T (n) > τ

)
≤ P

(
T̂ (n) > τ

)
= 1− (F (τ))k

(n)

. (11)

Proofs of these theorems appear in [28].

5. CONCLUSIONS
We study the limited fork-join model where there are n

servers in the system and each job consists of k(n) ≤ n tasks
that are sent to k(n) distinct servers chosen uniformly at
random. A job is considered complete only when all its
tasks complete processing. We characterize the delay of jobs
both in an asymptotic regime where n→∞ and in the non-
asymptotic regime for any n and any k(n) = k.

For the asymptotic regime, we show that under the con-
dition k(n) = o(n1/4), the workloads of any k(n) queues in
the n-server system are asymptotically independent, and the
delay of a job therefore converges to the maximum of inde-
pendent task delays. For the non-asymptotic regime, we
show that the steady-state workloads of any k(n) queues are
associated, and therefore assuming independent task delays
yields an upper bound on the job delay. Our results provide
the first tight characterization of job delay in the limited
fork-join model, and the upper bound is tighter than other
existing upper bounds.

From a technical perspective, we make the following two
contributions: (1) Our asymptotic results open up new regimes

for asymptotic independence: k(n) queues are shown to be
asymptotically independent, where k(n) is allowed to grow
with n instead of being a constant, as was previously stud-
ied. (2) We develop new proof techniques to establish as-
sociation in steady state. We believe that the results and
techniques in this paper will shed light on related problems

such as order statistics in coded data storage systems, job
redundancy, load-balancing algorithms.

6. ACKNOWLEDGMENT
This work was supported in part by NSF Grants CPS

ECCS-1739189, ECCS 1609370, XPS-1629444, and CMMI-
1538204, the U.S. Army Research Office (ARO Grant No.
W911NF-16-1-0259), the U.S. Office of Naval Research
(ONR Grant No. N00014-15-1-2169), DTRA under the grant
number HDTRA1-16-0017, and a 2018 Faculty Award from
Microsoft. Additionally, Haotian Jiang was supported in
part by the Department of Physics at Tsinghua University.

References
F. Baccelli. Two parallel queues created by arrivals with
two demands:the M/G/2 symmetrical case. Technical Re-
port RR-0426, INRIA, July 1985.

F. Baccelli, A. M. Makowski, and A. Shwartz. The fork-
join queue and related systems with synchronization con-
straints: stochastic ordering and computable bounds. Adv.
Appl. Probab., 21:629–660, 1989.

M. Bramson, Y. Lu, and B. Prabhakar. Asymptotic in-
dependence of queues under randomized load balancing.
Queueing Syst., 71(3):247–292, July 2012.

Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical
processing in big data systems: A cross-industry study of
MapReduce workloads. Proc. VLDB Endow., 5(12):1802–
1813, Aug. 2012. ISSN 2150-8097.

J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In Proc. USENIX Conf. Oper-
ating Systems Design and Implementation (OSDI), pages
10–10, San Francisco, CA, 2004.

J. D. Esary, F. Proschan, and D. W. Walkup. Association
of random variables, with applications. Ann. Math. Statist.,
38(5):1466–1474, 10 1967.

L. Flatto and S. Hahn. Two parallel queues created by
arrivals with two demands I. SIAM J. Appl. Math., 44(5):
1041–1053, 1984.

K. Gardner, M. Harchol-Balter, and A. Scheller-Wolf. A
better model for job redundancy: Decoupling server slow-
down and job size. In IEEE Int. Symp. Modeling, Analysis
and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS), pages 1–10, London, United Kingdom,
Sept. 2016.

K. Gardner, M. Harchol-Balter, A. Scheller-Wolf, and
B. Van Houdt. A better model for job redundancy: De-
coupling server slowdown and job size. IEEE/ACM Trans.
Netw., 25(6):3353–3367, Dec. 2017.

K. Gardner, M. Harchol-Balter, A. Scheller-Wolf, M. Veled-
nitsky, and S. Zbarsky. Redundancy-d: The power of d
choices for redundancy. Oper. Res., 65(4):1078–1094, 2017.

K. Joag-Dev and F. Proschan. Negative association of ran-
dom variables with applications. Ann. Statist., 11(1):286–
295, Mar. 1983.

Performance Evaluation Review, Vol. 46, No. 3, December 2018 196 Performance Evaluation Review, Vol. 46, No. 3, December 2018



G. Joshi, Y. Liu, and E. Soljanin. Coding for fast con-
tent download. In Proc. Ann. Allerton Conf. Communica-
tion, Control and Computing, pages 326–333, Monticello,
IL, Oct. 2012.

A. Kumar and R. Shorey. Performance analysis and
scheduling of stochastic fork-join jobs in a multicomputer
system. IEEE Trans. Parallel Distrib. Syst., 4(10):1147–
1164, Oct. 1993.

K. Lee, N. B. Shah, L. Huang, and K. Ramchandran. The
MDS queue: Analysing the latency performance of erasure
codes. IEEE Trans. Inf. Theory, 63(5):2822–2842, May
2017.

B. Li, A. Ramamoorthy, and R. Srikant. Mean-field-
analysis of coding versus replication in cloud storage sys-
tems. In Proc. IEEE Int. Conf. Computer Communications
(INFOCOM), pages 1–9, San Francisco, CA, Apr. 2016.

S. P. Meyn and R. L. Tweedie. Stability of Markovian
processes III: Foster-Lyapunov criteria for continuous-time
processes. Adv. Appl. Probab., 25(3):518–548, 1993.

B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlós. On
scheduling in Map-Reduce and flow-shops. In Proc. Ann.
ACM Symp. Parallelism in Algorithms and Architectures
(SPAA), pages 289–298, San Jose, CA, 2011.

R. Nelson and A. N. Tantawi. Approximate analysis of
fork/join synchronization in parallel queues. IEEE Trans.
Comput., 37(6):739–743, June 1988.

R. Nelson, D. Towsley, and A. N. Tantawi. Performance
analysis of parallel processing systems. IEEE Trans. Softw.
Eng., 14(4):532–540, Apr. 1988.

A. Rizk, F. Poloczek, and F. Ciucu. Stochastic bounds in
fork–join queueing systems under full and partial mapping.
Queueing Syst., 83(3):261–291, Aug. 2016.

N. B. Shah, K. Lee, and K. Ramchandran. When do re-
dundant requests reduce latency ? In Proc. Ann. Allerton
Conf. Communication, Control and Computing, pages 731–
738, Monticello, IL, Oct. 2013.

V. Shah, A. Bouillard, and F. Baccelli. Delay comparison of
delivery and coding policies in data clusters. In Proc. Ann.
Allerton Conf. Communication, Control and Computing,
pages 397–404, Monticello, IL, Oct. 2017.

Y. Sun, C. E. Koksal, and N. B. Shroff. Near delay-optimal
scheduling of batch jobs in multi-server systems. Technical
report, The Ohio State University, 2017.

J. Tan, X. Meng, and L. Zhang. Delay tails in
MapReduce scheduling. In Proc. ACM SIGMET-
RICS/PERFORMANCE Jt. Int. Conf. Measurement and
Modeling of Computer Systems, pages 5–16, London,
United Kingdom, 2012.

A. Thomasian. Analysis of fork/join and related queue-
ing systems. ACM Comput. Surv., 47(2):17:1–17:71, Aug.
2014.

A. Vulimiri, O. Michel, P. B. Godfrey, and S. Shenker. More
is less: Reducing latency via redundancy. In Proc. ACM
Workshop Hot Topics in Networks (HotNets), pages 13–18,
Redmond, WA, Oct. 2012.

W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang. MapTask
scheduling in MapReduce with data locality: Throughput
and heavy-traffic optimality. IEEE/ACM Trans. Netw., 24:
190–203, Feb. 2016.

W. Wang, M. Harchol-Balter, H. Jiang, A. Scheller-Wolf,
and R. Srikant. Delay asymptotics and bounds for multi-
task parallel jobs. arXiv:1710.00296 [cs.PF], 2018.

Y. Xiang, T. Lan, V. Aggarwal, and Y.-F. R. Chen. Joint
latency and cost optimization for erasure-coded data center
storage. IEEE/ACM Trans. Netw., 24(4):2443–2457, Aug.
2016.

Q. Xie and Y. Lu. Priority algorithm for near-data schedul-
ing: Throughput and heavy-traffic optimality. In Proc.
IEEE Int. Conf. Computer Communications (INFOCOM),
pages 963–972, Hong Kong, China, Apr. 2015.

Q. Xie, X. Dong, Y. Lu, and R. Srikant. Power of d choices
for large-scale bin packing: A loss model. In Proc. ACM
SIGMETRICS Int. Conf. Measurement and Modeling of
Computer Systems, pages 321–334, Portland, OR, 2015.

L. Ying, R. Srikant, and X. Kang. The power of slightly
more than one sample in randomized load balancing. In
Proc. IEEE Int. Conf. Computer Communications (INFO-
COM), pages 1131–1139, Kowloon, Hong Kong, Apr. 2015.

Y. Zheng, N. B. Shroff, and P. Sinha. A new analyti-
cal technique for designing provably efficient MapReduce
schedulers. In Proc. IEEE Int. Conf. Computer Communi-
cations (INFOCOM), pages 1600–1608, Turin, Italy, Apr.
2013.

20 Performance Evaluation Review, Vol. 46, No. 3, December 2018Performance Evaluation Review, Vol. 46, No. 3, December 2018 7




