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a b s t r a c t 

MinHash is a probabilistic method for estimating the similarity of two sets in terms of 

their Jaccard index, defined as the ratio of the size of their intersection to their union. 

We demonstrate that this method performs best when the sets under consideration are 

of similar size and the performance degrades considerably when the sets are of very dif- 

ferent size. We introduce a new and efficient approach, called the containment MinHash 

approach, that is more suitable for estimating the Jaccard index of sets of very different 

size. We accomplish this by leveraging another probabilistic method (in particular, Bloom 

filters) for fast membership queries. We derive bounds on the probability of estimate er- 

rors for the containment MinHash approach and show it significantly improves upon the 

classical MinHash approach. We also show significant improvements in terms of time and 

space complexity. As an application, we use this method to detect the presence/absence 

of organisms in a metagenomic data set, showing that it can detect the presence of very 

small, low abundance microorganisms. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

MinHash [3] is a fast, probabilistic method of estimating the Jaccard index, allowing for quick estimation of set similarity.

Since the introduction of this technique by Broder [3] , this method has been used in a broad range of applications: from

clustering in search engines [9] , to association rule learning in data mining [8] , to recent applications in computational

biology [5,18] . As a probabilistic method, MinHash uses random sampling to estimate the Jaccard index of two sets. Bounds

can be obtained on the probability of deviation from the true Jaccard index value in terms of the number of random samples

used along with the magnitude of the true Jaccard value. Using the Chernoff bounds ( Theorem 2.1 ), this probability of

deviating from the true value grows exponentially as the size of the true Jaccard value decreases to zero. Hence, MinHash

returns tight estimates only when the true Jaccard index is large. This requirement for a large Jaccard index limits this

technique to situations where the sets under consideration are of similar relative size and possess significant overlap with

each other. In this manuscript, we introduce a modification of the MinHash technique, which we call containment MinHash ,

that does not possess this limitation and hence is appropriate for use when the sets under consideration have very different

size. 
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Fig. 1. Conceptual comparison of classical MinHash to the proposed containment approach when estimating the Jaccard index of very different sized sets. 

A) Sampling 100 points from A ∪ B (as is done in the classical MinHash approach) leads to finding only 3 elements in A ∩ B . B) Sampling just 50 points of 

A and testing if a point x ∈ A ∩ B , finds 22 elements in A ∩ B . This latter approach will be seen to lead to a better estimate of the Jaccard index. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After introducing the containment MinHash technique, we derive rigorous probabilistic error bounds and compare these

to those of the traditional MinHash technique. This allows us to precisely state when the containment approach is superior

to the classical approach. To demonstrate the practical utility of the containment MinHash technique, we consider an appli-

cation in the area of metagenomics (the study of all sampled DNA from a community of microorganisms), where the goal

is to detect the presence or absence of a given genome in a metagenomic sample. This is an area of study where the sets

of interest differ in relative size by orders of magnitude. This application highlights the improvements of this approach: in

both theory and practice, in many situations of interest, containment MinHash is significantly more accurate, has smaller

computational complexity, and utilizes less memory than the traditional MinHash approach. 

We begin by giving a high-level summary of the main idea behind the containment MinHash technique which is sum-

marized in Fig. 1 . Consider the case of estimating the Jaccard index between two sets A and B of very different size. Briefly,

the traditional MinHash randomly samples from the union A ∪ B and uses the number of sampled points that fall in A ∩ B

to estimate the Jaccard index. With more sampled elements falling in A ∩ B , the more accurate the Jaccard estimate will be.

Part A) of Fig. 1 demonstrates the case of sampling 100 random points from A ∪ B leading to 3 points lying in A ∩ B . In the

containment MinHash approach, we randomly sample elements only from the smaller set (in this case, A ) and use another

probabilistic technique (in this manuscript, a Bloom filter) to quickly test if this element is in B (and hence in A ∩ B ). This

is used to estimate the containment index, which is then used to estimate the Jaccard index itself. Part B) of Fig. 1 demon-

strates this approach while sampling only 50 points from A and finds 22 points lying in A ∩ B . This containment approach

also experiences decreasing error as more points in A ∩ B are sampled, and so sampling from a smaller space (the set A

instead of A ∪ B ) leads to significant performance improvements. 

2. Methods 

Before describing MinHash and containment MinHash, we recall a few definitions and results of interest. 

2.1. Preliminaries 

2.1.1. Jaccard and Containment index 

The Jaccard index, also known as the Jaccard similarity coefficient, measures the similarity of two sets by comparing the

relative size of the intersection to the union [14] . That is, for two non-empty finite sets A and B , 

J(A, B ) = 

| A ∩ B | 
| A ∪ B | 

Hence, 0 ≤ J ( A , B ) ≤ 1 with larger values indicating more overlap. 

To compare the relative size of the intersection to the size of A , we similarly define the containment index of A in B

(both non-empty) as: 

C(A, B ) = 

| A ∩ B | 
| A | . 

So 0 ≤ C ( A , B ) ≤ 1 and larger values indicate more of A lying in B . 



208 D. Koslicki and H. Zabeti / Applied Mathematics and Computation 354 (2019) 206–215 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2. Chernoff bounds 

We will use the classic Chernoff bounds in its multiplicative form to estimate the probability of relative error in the

probabilistic methods we consider. 

Theorem 2.1 ( [17, Thm 4.4-4.5] ) . Suppose X 1 , X 2 , . . . , X n are independent, identically distributed Bernoulli random variables and

let X = 

∑ n 
i =1 X i and μ = E (X ) , then the following statements hold for 0 < δ < 1 : 

P (X ≤ (1 − δ) μ) ≤ e −
δ2 μ

2 (2.1) 

P (X ≥ (1 + δ) μ) ≤ e −
δ2 μ

3 (2.2) 

And hence, 

P 

(∣∣∣X − μ

μ

∣∣∣ ≥ δ
)

≤ 2 e −
δ2 μ

3 . (2.3) 

2.1.3. Bloom filters 

As mentioned in the Introduction, we will need a fast test of set membership to implement the containment MinHash

approach. While there exist many different such data structures (such as Bloom Filters [2] , skip lists [20] , cuckoo filters

[10] , quotient filters [1] , etc.), we utilize the Bloom filter due to its ubiquity [6,7,12,16,18,19,21,22] in the application area

considered here (computational biology) and the ease of its mathematical analysis. 

We give a brief description of the construction of a Bloom filter following the exposition of [17] . Given a set B with

cardinality n = | B | , a Bloom filter ˜ B = ( ̃  B i ) 
m 

i =1 
is a bit array of length m where m is a chosen natural number. Fix a set of

hash functions h 1 , . . . , h k each with domain containing B and with range { 1 , . . . , m } . Initially, each entry in the Bloom filter is

set to zero: ˜ B i = 0 for each i = 1 , . . . , m . For each x ∈ B and j = 1 , . . . , k, we set ˜ B h j (x ) = 1 . Given an element y in the domain

of our hash functions, if 

k ∏ 

j=1 

˜ B h j (y ) = 0 , 

then by construction, we know that y �∈ B . Because of this, we write y ∈ 

˜ B if 
∏ k 

j=1 
˜ B h j (y ) = 1 , and y �∈ 

˜ B otherwise. A straight-

forward calculation (with idealized hash functions) shows that the probability of y ∈ 

˜ B and yet y �∈ B is given by: 

p = 

(
1 −

(
1 − 1 

m 

)kn 
)k 

≈
(

1 − e 
−kn 

m 

)k 

. (2.4) 

The optimal false positive rate p is given by p = 2 −
m 
n ln 2 when the number of hash functions is given by k = 

m 

n ln 2 . Con-

versely, given a target false positive rate p , the optimal length m of the Bloom filter is given by m = − n ln p 

ln 2 2 
. 

2.2. Containment MinHash 

Before detailing the containment MinHash approach, we recall the classic MinHash for comparison purposes. 

2.2.1. Classic MinHash 

By the classic MinHash , we mean the construction of Broder [3] . We detail this construction now. Given two non-

empty sets A and B , we wish to estimate J ( A , B ). Fix k ∈ N and select a family of (min-wise independent [4] ) hash func-

tions { h 1 , . . . , h k } each with domain containing A ∪ B . For a set S in the domain of the hash functions, define h min 
i 

(S) =
arg min s ∈ S h i (s ) as an element of S that causes h i to achieve its minimum value on S . Given appropriate hash functions (or

an order on S ), this minimum is unique. Define the random variables 

X i = 

{
1 h 

min 
i 

(A ) = h 

min 
i 

(B ) 
0 otherwise . 

The probability of a collision (that is h min 
i 

(A ) = h min 
i 

(B ) and hence X i = 1 ) is equal to the Jaccard index of A and B [4] and

hence the expectation is given by 

E(X i ) = 

| A ∩ B | 
| A ∪ B | = J(A, B ) . 

Thus, for X k = 

∑ k 
i =1 X i , the expectation is given by E(X k ) = kJ(A, B ) and so J est 

X 
= 

X k 

k 
is used as the estimate of J ( A , B ). Note

that in practice, a single hash function h is commonly used and the elements hashing to the smallest k values are used in

place of the h . 
i 
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Applying the two-sided Chernoff bounds from Eq. (2.3) to the classic MinHash approach, we have 

P 

( 

∣∣∣∣∣
X k 

k 
− J(A, B ) 

J(A, B ) 

∣∣∣∣∣ ≥ δ

) 

≤ 2 e −δ2 kJ(A,B ) / 3 . (2.5)

Thus, two quantities control the accuracy of this method for δ fixed: k and J ( A , B ). Setting t as the threshold of probability

of deviation from the Chernoff bounds (i.e. t = 2 e −δ2 kJ(A,B ) / 3 ), we calculate the number of hash functions k = k X required to

achieve this threshold: 

k X = 

−3 ln (t/ 2) | A ∪ B | 
δ2 | A ∩ B | . (2.6)

2.2.2. Containment MinHash 

The containment MinHash approach we propose differs from the classic MinHash in that the family of k hash functions

{ h 1 , . . . , h k } have domain containing A and we randomly sample from A instead of A ∪ B . This results in estimating the

containment index C = C(A, B ) instead of the Jaccard index J = J(A, B ) , but we will later show how to recover an estimate

of J ( A , B ). The containment approach proceeds as follows: Let ˜ B be a Bloom filter with given false positive rate p and define

the random variables 

Y i = 

{
1 h 

min 
i 

(A ) ∈ 

˜ B 

0 otherwise . 

These random variables essentially sample (uniformly) randomly from A and tests for membership in B via the Bloom

filter ˜ B . Following the same proof of Broder [3] , it is straightforward to show that E(Y i ) = 

| A ∩ B | 
| A | + p. Thus for Y k = 

∑ k 
i =1 Y i ,

E(Y k ) = k | A ∩ B | | A | + kp = kC + kp. Hence, we use C est = 

Y k 

k 
− p as the estimate of C ( A , B ). 

Applying the two-sided Chernoff bounds from Eq. (2.3) now gives 

P 

⎛ 

⎝ 

∣∣∣∣∣∣
(

Y k 

k 
− p 

)
− C 

C 

∣∣∣∣∣∣ ≥ δ

⎞ 

⎠ ≤ 2 e −( C 
C+ p ) 

2 
δ2 k (C+ p) / 3 (2.7)

It is important to note that Y k 

k 
− p estimates C ( A , B ) and not J ( A , B ), as desired. To directly compare these quantities, we

must derive the Jaccard index from the containment estimate and calculate the probability of deviation from the true value

of the Jaccard index. To that end, for C est the estimation of the containment, let J est 
Y 

:= 

| A | C est | A | + | B |−| A | C est 
. Note that in practice, a

fast cardinality estimation technique (such as HyperLogLog [11] ) can be used to approximate | A | and | B |. The bound in the

following proposition can be directly compared to that of Eq. (2.5) . 

Proposition 2.2. For 0 < δ < 1, let δ′ = 

δ| A ∪ B | 
| A ∪ B | +(1+ δ) | A ∩ B | , then 

P 

(∣∣∣∣ J est 
Y − J 

J 

∣∣∣∣ ≥ δ

)
≤ 2 e −( C 

C+ p ) 
2 δ′ 2 k (C+ p) / 3 

. 

Proof. We first derive a useful characterization of the probability under consideration: 

P 

(∣∣∣∣ J est 
Y − J 

J 

∣∣∣∣ ≥ δ

)
= P 

( | A | C est 

| A | + | B | − | A | C est 
≥ (1 + δ) J 

)
+ P 

( | A | C est 

| A | + | B | − | A | C est 
≤ (1 − δ) J 

)

= P 

( 

C est ≥
(1 + δ) | A | C | A ∪ B | (| A | + | B | ) 

| A | | A ∪ B | +(1+ δ) | A ∩ B | 
| A ∪ B | 

) 

+ P 

( 

C est ≤
(1 − δ) | A | C | A ∪ B | (| A | + | B | ) 

| A | | A ∪ B | +(1 −δ) | A ∩ B | 
| A ∪ B | 

) 

= P 

(
C est ≥ (1 + δ)(| A ∪ B | + | A ∩ B | ) 

| A ∪ B | + (1 + δ) | A ∩ B | C 

)
+ P 

(
C est ≤ (1 − δ)(| A ∪ B | + | A ∩ B | ) 

| A ∪ B | + (1 − δ) | A ∩ B | C 

)

= P 

(
C est ≥

(
1 + 

δ| A ∪ B | 
| A ∪ B | + (1 + δ) | A ∩ B | 

)
C 

)
+ P 

(
C est ≤

(
1 − δ| A ∪ B | 

| A ∪ B | + (1 − δ) | A ∩ B | 
)

C 

)
. 

(2.8)

Then for δ′ as defined in the statement of the proposition and for δ′ ′ = 

δ| A ∪ B | 
| A ∪ B | +(1 −δ) | A ∩ B | , note that 0 < δ′ , δ′ ′ < 1. Then using

the two-sided Chernoff bounds from Eqs. (2.1) and (2.2) applied to Eq. (2.8) , we have that 

P 

(∣∣∣∣ J est 
Y − J 

J 

∣∣∣∣ ≥ δ

)
≤ e −( C 

C+ p ) 
2 δ′ 2 k (C+ p) / 3 + e −( C 

C+ p ) 
2 δ′ ′ 2 k (C+ p) / 2 

≤ 2 e −( C 
C+ p ) 

2 
δ′ 2 k (C+ p) / 3 

. �
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Fig. 2. Comparison of the probability of deviation (red line: Eq. (2.5) , blue line: Proposition (2.2) ) versus the relative error δ with a fixed number of hash 

functions (10 0 0). Relative sizes and Jaccard indexes of the sets in A)-D) are overlain as colored discs. Throughout, the containment MinHash estimate of 

the Jaccard index has a much lower probability of error than the classical MinHash approach. Note that in part D), there is approximately an 80% chance 

to have a deviation greater than 0.4 in the classic approach, whereas in the containment approach, the chance of having a deviation of greater than just 

0.2 is almost zero. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

Fig. 2 gives a comparison of the bounds of deviation (as a function of δ for a fixed number of hash functions) for the

classical MinHash Jaccard estimate ( Eq. (2.5) ) and the containment MinHash estimate of the Jaccard index ( Proposition 2.2 ).

This figure shows that the containment MinHash approach has a significantly smaller probability of the estimate deviating

from the true value. 

Now, let k = k Y be the number of hash functions which is required to achieve a desire threshold upper bound of

t = 2 e 
−
(

C 
C+ p 

)2 
δ′ 2 k (C+ p) / 3 

. We then have that 

k Y = 

−3(C + p) ln (t/ 2) ( | A ∪ B | + (1 + δ) | A ∩ B | ) 2 
C 2 δ2 | A ∪ B | 2 . (2.9) 

3. Results 

We begin by detailing the theoretical results obtained before turning to the application of interest. 

3.1. Theoretical results 

3.1.1. Number of hash functions required 

For both the classical MinHash approach and the containment MinHash approach, we use Eqs. (2.6) and (2.9) to compare

the number of hash functions k and k required for a specified threshold of probability of deviation t . Calculating, we
X Y 
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Fig. 3. Comparison of the number of required hashes and relative error δ with probability of deviation ≤ 1% := t . The relative sizes and Jaccard indexes of 

the sets in A)-D) are overlain pictorially as colored discs. In all cases, the containment MinHash estimate of the Jaccard index uses significantly fewer hash 

functions. For example, in part D), the classic MinHash method (red line) needs ≈ 35, 339 hash functions to have less than 1% chance to have greater than 

1% relative deviation in its estimate, whereas with the same thresholds, the containment MinHash estimate of the Jaccard index (blue line) needs only 

≈ 152 hash functions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

obtain: 

k Y 
k X 

= 

(C + p) 

C 2 

( | A ∩ B | 
| A ∪ B | + 2(1 + δ) 

| A ∩ B | 2 
| A ∪ B | 2 + (1 + δ) 2 

| A ∩ B | 3 
| A ∪ B | 3 

)
. (3.1)

Note that | A ∩ B | 
| A ∪ B | < 1 , so we have that: 

k Y 
k X 

≤ (C + p) 

C 2 

( | A ∩ B | 
| A ∪ B | + 2(1 + δ) 

| A ∩ B | 
| A ∪ B | + (1 + δ) 2 

| A ∩ B | 
| A ∪ B | 

)
(3.2)

≤ (C + p) 

C 

| A | 
| B | 

(
1 + 2(1 + δ) + (1 + δ) 2 

)
. (3.3)

∝ 

| A | 
| B | (3.4)

where the last proportionality holds when C is bounded away from zero. Hence, the containment approach uses a fraction

(proportional to | A | 
| B | ) of the hashes that the classical approach uses to achieve the same bound of error. When | B | is signifi-

cantly larger than | A |, this reduction in the number of hash functions required can be significant. In Fig. 3 , we compare the

relative error δ in estimating the Jaccard index to the number of hash functions required for the classical and proposed ap-

proach to have a probability of ≤ 1% of more than δ relative deviation in their estimate. Interestingly, the number of hashes

required by the containment approach is nearly constant as a function of | B | 
| A | whereas for the classical approach, the number

of hashes required is increasing. Fig. 4 depicts this observation. 
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Fig. 4. Comparison of the number of hash functions required by each method as a function of the relative sizes of the sets under consideration. The relative 

error δ = 0 . 1 and the probability of deviation t = 0 . 01 are fixed. Increasing | B | 
| A | , the number of required hash functions required for the classic MinHash 

approach is increasing (red line). However, for the containment approach, the number of hash functions is nearly constant for 1 ≤ | B | 
| A | ≤ 200 (blue line) 

which is in agreement with Eq. 3.4 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2. Time/Space complexity 

Given sets A and B of size m and n respectively, both the classic MinHash and containment MinHash require O(m + n )

time to form their respective data structures. When calculating their estimates of the Jaccard index J ( A , B ), both approaches

use computational time linear in the number of hash functions required (in the case of the containment MinHash approach,

this is due to Bloom filter queries being constant time [2] ). Because of Eq. (3.1) and the discussion that followed, this implies

that the ratio of time complexity of the classical MinHash to the containment MinHash is O( 
k X 
k Y 

) . Given Eqs. (3.1) and (3.4) ,

when B is very large in comparison to A , this implies that the containment MinHash approach is significantly faster than

the classical MinHash approach. 

In terms of space complexity, if all one desires is an estimate of the Jaccard index from a single pair of sets, the con-

tainment approach will use more space as a Bloom filter must be formed from one of the sets. However, in the application

of interest, we have one large ( n � m ) “reference” set B and many smaller sets { A i } M 

i =1 
each with | A i | ≤ m . Here, we wish

to estimate J ( B , A i ) for each i . In this case, the additional space required to store a Bloom filter is dwarfed by the space

savings that come from using significantly fewer hash functions. Indeed, for S X and S Y the space required for the classic and

containment MinHash respectively, we have that S X ∝ k X (M + 1) and S Y ∝ k Y + 1 . 44 log 2 (1 /p) n where the proportionality is

in terms of the number of bits required to store a single hash value. Holding this constant fixed (as well as p and t ), we

then have: 

S Y 
S X 

∝ 

k Y 
k X 

+ 

n 

k X (M + 1) 
(3.5) 

≤ k Y 
k X 

+ 

nk Y 
k X (M + 1) 

(3.6) 

∝ 

m 

n 

+ 

m 

M + 1 

(3.7) 

demonstrating that for large enough M , the containment approach will use less space than the classical MinHash approach.

A more detailed space analysis can be obtained by combining Eqs. (2.6) and (2.9) . For example when | B | = 10 8 and one

wishes to estimate the Jaccard index of M = 30 0 0 0 smaller sets A i with containment C ( A i , B ) ≥ 80% that are small enough

that J(A i , B ) ≤ 10 −4 and with t = 95% confidence that the estimate is not off by more than δ = 50% , using a false positive

rate of p = 0 . 01 for the Bloom filter results in a 33X space savings when using the containment approach instead of the

classical MinHash approach. 

3.2. Simulated and real data 

In this section, we compare the classic MinHash approach to the proposed containment method on real and simulated

data. All code and software required to reproduce the results contained here are available at: https://github.com/dkoslicki/

MinHashMetagenomics . Included in this repository is an automated script that can reproduce this paper in its entirety:

https://github.com/dkoslicki/MinHashMetagenomics/blob/master/src/MakePaper.sh . 

https://www.github.com/dkoslicki/MinHashMetagenomics
https://www.github.com/dkoslicki/MinHashMetagenomics/blob/master/src/MakePaper.sh
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Fig. 5. Comparison of the containment MinHash approach to the classical MinHash estimate of the Jaccard index on synthetic data. Each method utilized 

the 100 smallest hashes of the murmer3 hash function on the 11-mers of two randomly generated strings with sizes 10,0 0 0 and 15, respectively after 

appending a common substring of increasing size. A) Classical MinHash estimate of the Jaccard index. B) Containment MinHash estimate of the Jaccard 

index. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.1. Simulated data 

Here, we illustrate the improved accuracy of the containment MinHash approach over classical MinHash in estimating

the Jaccard index. To that end, we generated two random strings w A and w B on the alphabet { A , C , T , G }. We set | w A | = 15

and | w B | = 10 , 0 0 0 to simulate the situation of interest where one wishes to estimate the Jaccard index of two sets of very

different size. We picked a k -mer (substring of length k ) size of 11 and considered the sets A and B to be the set of all

k -mers in w A and w B respectively. We then generated strings w C i 
of increasing length, formed a set C i of all its k -mers, and

considered J ( A ∪ C i , B ∪ C i ). The number of hash functions for each method was fixed to be k X = k Y = 100 . Fig. 5 depicts the

comparison of the containment MinHash approach with the classical MinHash Jaccard estimate on this data and effectively

illustrates the results in Section 2.2 showing improved performance of the containment MinHash approach. The mean and

variance of the classic MinHash approach on this data was −0 . 001461 ± 0 . 001709 while using the containment approach

was 0.0 0 0818 ± 0.0 0 0 0 07, demonstrating a substantial decrease in variance. This improved variance was observed over a

range of k -mer sizes, number of hashes, and lengths of input strings. 

3.2.2. Simulated biological data 

To demonstrate the exponential improvement of the containment MinHash approach over the classical MinHash for in-

creasing sample sizes, we contrast here the mean relative performance of each approach on simulated biological data. We

utilized GemSIM [15] to simulate two sets of metagenomic data from randomly selected bacterial genomes. We them aim to

estimate the Jaccard index between the metagenomic data and each of the bacterial genomes (thereby simulating the case

when attempting to detect if a bacterial genome appears in a given metagenomic sample). 

For the first set of simulated data, we used GemSIM to simulate 10K reads (of length 100) from 20 randomly selected

bacterial genomes G i (considered here as the set of all k -mers in the genome) using the ill100v5_s error model which

models the error profile of single reads from an Illumina GA IIx with TrueSeq SBS Kit v5GA. We fixed the k -mer size to

k = 11 . We then formed a set M 1 of all 11-mers in all reads in the simulated metagenome. We then repeated this 16 times.

A false positive rate of 0.001 was used for the Bloom filter in the containment approach. 

The second set of simulated data was produced using the same GemSIM settings, except for the fact that we used 1M

reads of the same length as before and formed a set M 2 of all 11-mers in all reads of the metagenome. Again, we then

repeated this 16 times using the same false positive rate for the Bloom filter. 

Fig. 6 depicts the relative error of the classic MinHash approach and the containment approach on these two sets of

simulated data when estimating J ( M 1 , G i ) in part A), and J ( M 2 , G i ) in part B), as a function of the number of hashes used.

Observe that the containment approach has significantly less error when, as is commonly seen in practice, the number

of 11-mers in the sample is appreciable in comparison to the number of 11-mers in a given reference genome G i . This

improvement of the containment approach over the classic approach continues to grow as the metagenome size grows in

relation to the reference genome sizes. 

3.3. Real biological data 

Real metagenomes contain many magnitudes more k -mers than those found in any reference organisms, indicat-

ing the advantage of the containment MinHash approach to determining the presence/absence of reference organisms

in a given metagenome. To evaluate this, we analyzed a subset of DNA generated by the study in [13] consisting of
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Fig. 6. Comparison of the relative error of the containment MinHash approach to the classical MinHash estimate of the Jaccard index on simulated biolog- 

ical data. A) On 16 replicates of samples consisting of 20 genomes G i with only 10K reads, showing the similarity of the methods in estimating J ( M 1 , G i ) 

when the sets to be compared are roughly the same size. B) On 16 replicates of samples consisting of 20 genomes G i with 1M reads, demonstrating the 

improvement of the containment approach in estimating J ( M 2 , G i ) when the sets are of significantly different size. 

Fig. 7. Plot of the real metagenomic sample alignment coverage to the virus Sauropus leaf curl disease associated DNA beta detected by the proposed 

containment MinHash approach. A total of 288 reads aligned with a MAPQ score above 20 (i.e. high-quality alignments) using the SNAP aligner [24] . 

A square root scale and a window size of 10 was used for the plot, resulting in an average per-window coverage of 24.217 X. 

 

 

 

 

 

 

 

 

 

those reads contained in the sample 4539585.3.fastq, accessible at: https://www.mg-rast.org/mgmain.html?mgpage= 

overview&metagenome=mgm4539585.3 This sample consisted of 25.4M reads with average length of 64bp. We formed a 

Bloom filter consisting of all 21-mers of this sample and formed 500 hashes from each of 4,798 viral genomes obtained from

NCBI [23] . Utilizing the proposed containment MinHash approach, we found the largest containment index between the

reference viral metagenomes and the sample to be 0.0257 for the virus Sauropus leaf curl disease associated DNA beta which

corresponds to a Jaccard index of 2.398e-08. Note that with this small of a Jaccard index, the results in Section 3.1.1 show

that the classic approach would need millions of hash functions to accurately estimate this quantity. 

To evaluate if this extremely low-abundance organism is actually present in the sample, we utilized the SNAP alignment

tool [24] to align the sample to the Sauropus leaf curl disease associated DNA beta genome. The script MakeCoveragePlot.sh

provides the exact commands and parameters used to perform the alignment. We found that 288 reads aligned with a

MAPQ score above 20 (i.e. high-quality alignments). The coverage of the viral genome is depicted in Fig. 7 using a square-

root scale and a window size of 10. These high-quality mapped reads to such a small genome lends evidence to support the

claim that this particular virus is actually present in the sample metagenome. 

https://www.mg-rast.org/mgmain.html?mgpage=overview%26metagenome=mgm4539585.3
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4. Conclusion 

In this manuscript, we introduced “containment MinHash”: an improvement to the MinHash approach of estimating the

Jaccard index. We derived exact formulas for the probability of error for this method and also showed that it is faster,

more accurate and uses less space in many situations of practical interest. This improved approach was used to analyze

simulated and real metagenomic data and was found to give results superior to those of the classic MinHash approach. As

the theoretical results we obtained are agnostic to the application of interest, we believe this method will be useful in any

application where estimates of similarity of very differently sized sets is desired. Hence, this advancement can be useful

outside of the field of metagenomics and computational biology, with possible applications in data mining, web clustering

or even near duplicate image detection. 
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