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We investigate the geometry of sets in Euclidean and infinite-
dimensional Hilbert spaces. We establish sufficient conditions 
that ensure a set of points is contained in the image 
of a (1/s)-Hölder continuous map f : [0, 1] → l2, with 
s > 1. Our results are motivated by and generalize the 
“sufficient half” of the Analyst’s Traveling Salesman Theorem, 
which characterizes subsets of rectifiable curves in RN or 
l2 in terms of a quadratic sum of linear approximation 
numbers called Jones’ beta numbers. The original proof 
of the Analyst’s Traveling Salesman Theorem depends on 
a well-known metric characterization of rectifiable curves 
from the 1920s, which is not available for higher-dimensional 
curves such as Hölder curves. To overcome this obstacle, 
we reimagine Jones’ non-parametric proof and show how 
to construct parameterizations of the intermediate approxi-
mating curves fk([0, 1]). We then find conditions in terms 
of tube approximations that ensure the approximating curves 
converge to a Hölder curve. As an application to the geometry 
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of measures, we identify conditions that guarantee fractional 
rectifiability of pointwise doubling measures in RN .

© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

The ubiquitous Traveling Salesman problem [33,27,2] is to find a tour of edges on a 
finite graph that returns to the initial vertex and has the shortest possible length. The 
Analyst’s Traveling Salesman problem [32,47] is to find a rectifiable curve that contains 
a finite or infinite, bounded set of points in a metric space that has the shortest possible 
length. The former problem always has a solution yet is computationally hard, while the 
latter problem may or may not have any solution at all. A sophisticated example from 
Geometric Measure Theory of a bounded point set that is not contained in any rectifiable 
curve is a Besicovitch irregular set [11] (see §7 below); a trivial example is a solid square 
in the plane. Tests to decide which sets are contained in a rectifiable curve have been 
found in R2 [32], RN [43], l2 [48], the first Heisenberg group [35,36], Carnot groups 
[19,34], Laakso-type spaces [20], and in general metric spaces [28,29,21]. Applications of 
Jones’ and Okikiolu’s solution of the Analyst’s TSP in RN have been given in Complex 
Analysis [15,13,14], Dynamics and Probability [16,17], Geometric Measure Theory [8,9], 
Harmonic Analysis [50], and Metric Geometry [42,3].

Let E ⊂ RN be a nonempty set and let Q ⊂ RN be a bounded set of positive 
diameter (such as a ball or a cube). Following [32], the Jones beta number βE(Q) is 
defined by

βE(Q) := inf
�

sup dist(x, �)
diamQ

∈ [0, 1],

x∈E∩Q
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where � ranges over all straight lines in RN , if E∩Q �= ∅, and by βE(Q) = 0, if E∩Q = ∅. 
Let Δ(RN ) denote the family of dyadic cubes in RN ,

Δ(RN ) := {[2km1, 2k(m1 + 1)] × · · · × [2kmN , 2k(mN + 1)] : m1, . . . ,mN , k ∈ Z}.

Given a cube Q and a scaling factor λ > 0, we let λQ denote the concentric dilate of Q
by λ.

Analyst’s Traveling Salesman Theorem ([32,43]). A bounded set E ⊂ RN is contained 
in a rectifiable curve Γ = f([0, 1]) if and only if

SE :=
∑

Q∈Δ(RN )

βE(3Q)2 diamQ < ∞. (1.1)

More precisely,

(1) If Γ is any curve containing E, then diamE + SE �N length(Γ).
(2) If SE < ∞, then there exists a curve Γ ⊃ E such that length(Γ) �N diamE +

SE.

We may refer to statements (1) and (2) as the necessary half and sufficient half of the 
Analyst’s Traveling Salesman theorem, respectively. The theorem is valid if the length of 
a curve Γ = f([0, 1]) is interpreted either as the 1-dimensional Hausdorff measure of the 
set Γ or as the total variation of the parameterization f . A curious feature of the known 
proofs of the sufficient half of the Analyst’s TST (see [32] or [9]) is that a rectifiable curve 
Γ containing the set E is constructed as the limit of piecewise linear curves Γk containing 
a 2−k-net for E without constructing a parameterization of Γk or Γ. This aspect of the 
proof breaks the analogy with the classical TSP, in which one is asked to find a minimal 
tour of a graph.

In this paper, we provide a parametric proof of the sufficient half of the Analyst’s 
TST, which more closely parallels the classical TSP. Beyond its intrinsic interest, the 
method that we provide is important, because it allows us to establish multiscale tests 
to ensure that a bounded set of points in RN is contained in a (1/s)-Hölder contin-
uous curve with s ∈ (1, N). Rectifiable curves correspond precisely to the class of 
Lipschitz curves (s = 1). Remarkably, in the Hölder Traveling Salesman theorem (see 
§§1.1 and 5), we can replace approximation by lines in the definition of the Jones beta 
numbers with approximation by thin tubes. For a self-contained statement of the “para-
metric” Analyst’s TST, see §6. While our focus in this paper is primarily on sets, we are 
motivated by open questions about the structure of Radon measures [10,6]. For applica-
tions of our Hölder Traveling Salesman theorems to fractional rectifiability of measures, 
see §7.
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1.1. Hölder Traveling Salesman theorem(s)

A (1/s)-Hölder curve Γ in RN is the image of a continuous map f : [0, 1] → RN

satisfying the Hölder condition,

|f(x) − f(y)| ≤ H|x− y|1/s for all x, y ∈ [0, 1],

where s ∈ [1, ∞) and H is a finite constant independent of x and y. A 1-Hölder curve is 
also called a Lipschitz curve or a rectifiable curve. While non-trivial rectifiable curves al-
ways have topological dimension 1 and asymptotically resemble a unique tangent line H1

almost everywhere, (1/s)-Hölder curves with s > 1 exhibit a variety of more complicated 
behaviors. For example,

• an m-dimensional cube in RN (m ≤ N) is a (1/m)-Hölder curve;
• the von Koch snowflake is a log4(3)-Hölder curve; and,
• the standard Sierpiński carpet is a log8(3)-Hölder curve.

In fact, Remes [45] proved that any compact, connected self-similar set K ⊂ RN of 
Hausdorff dimension s that satisfies the open set condition is a (1/s)-Hölder curve. 
For related work on space-filling curves generated by graph-directed iterated function 
systems, see Rao and Zhang [44].

Towards a Hölder version of the Analyst’s Traveling Salesman theorem, the first and 
third authors proved in [10] as a test case that if s > 1, E ⊂ RN is bounded, and∑

Q∈Δ(RN )
Q∩E �=∅, side Q≤1

(diamQ)s < ∞,

then E is contained in a (1/s)-Hölder curve. By establishing a parametric version of 
Jones’ proof of the sufficient half of the Analyst’s TST, we are able to obtain the following 
substantial improvement.

Theorem 1.1 (Hölder Traveling Salesman I). For all N ≥ 2 and s > 1, there exists 
β0 ∈ (0, 1) such that if E ⊂ RN is bounded and

Ss,+
E :=

∑
Q∈Δ(RN )
βE(3Q)≥β0

(diamQ)s < ∞, (1.2)

then E is contained in a (1/s)-Hölder curve. More precisely, E ⊂ Γ = f([0, 1]) for 
some (1/s)-Hölder map f : [0, 1] → RN with Hölder constant H �N,s diamE +
(diamE)1−sSs,+

E .

Condition (1.2) implies that at Hs almost every point, the set E asymptotically lies in 
sufficiently thin tubes. Theorem 1.1 provides a sufficient test that identifies all subsets of 
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some well-known Hölder curves such as snowflakes of small dimension. However, because 
of the richness of Hölder geometry, a condition using Jones beta numbers alone such as 
(1.2) cannot be expected to hold for all subsets of every Hölder curve. Indeed (1.2) fails 
when E is a carpet or a square. For expanded discussion and related examples, see §9.1.

Theorem 1.1 is a simplification of our main result, which is adapted to a nested se-
quence of separated sets in a finite or infinite-dimensional Hilbert space. See Theorem 5.1.

To estimate the size of the constant β0 in Theorem 1.1, see Lemma 2.8 and Remark 5.6. 
The following variant of Theorem 1.1 is an immediate corollary, whose hypothesis does 
not require knowledge of β0.

Corollary 1.2 (Hölder Traveling Salesman II). Suppose that N ≥ 2, s > 1, and p > 0. If 
E ⊂ RN is bounded and

Ss,p
E :=

∑
Q∈Δ(RN )

βE(3Q)p(diamQ)s < ∞, (1.3)

then E is contained in a (1/s)-Hölder curve. More precisely, E ⊂ Γ = f([0, 1]) for some 
(1/s)-Hölder map f : [0, 1] → RN with Hölder constant

H �N,s diamE + β−p
0 (diamE)1−sSs,p

E ,

where β0 is the constant appearing in Theorem 1.1.

A good exercise is to prove that any bounded set E in RN satisfying condition (1.3)
with s > 1 has zero s-dimensional Hausdorff measure. In §9.3, we construct a countable, 
compact set E (hence Hs(E) = 0) such that E is not contained in any (1/s)-Hölder 
curve with 1 ≤ s < N . Thus, Corollary 1.2 is nonvacuous.

1.2. Overview of the proof of Theorem 1.1

In order to properly discuss the proof of Theorem 1.1, we quickly sketch the proof of 
the sufficient half of the Analyst’s TST. The proof splits into three steps. In the first 
step, one uses the Jones beta numbers βE(3Q) (in particular, whether they are large or 
small) to construct a sequence of finite, connected graphs Gk in RN with straight edges 
that converge in the Hausdorff distance to a compact, connected set G containing E. 
Each graph Gk is obtained by refining Gk−1 and resembles a flat arc near points of E
that look flat at scale 2−k. In step two, one uses the structure of the graphs Gk and the 
Pythagorean theorem to prove the existence of a constant C > 0 such that

H1(Gk+1) ≤ H1(Gk) + C
∑

Q∈Δ(RN )
−k

βE(3Q)2 diamQ. (1.4)
side Q�2
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Condition (1.1) and Goła̧b’s semicontinuity theorem (e.g. see [1]) ensure that H1(G) ≤
lim infk→∞ H1(Gk) < ∞. Thus, the first two parts of the proof yield a compact, con-
nected set G containing E with H1(G) < ∞. The final step is to invoke Ważewski’s 
theorem to conclude existence of a Lipschitz parameterization for G: if G ⊂ RN is con-
nected, compact, and H1(G) < ∞, then there exists a Lipschitz map f : [0, 1] → RN

such that G = f([0, 1]) (see [1, Theorem 4.4] or [48, Lemma 3.7]). Note that the condition 
H1(G) < ∞ promotes connectedness of G to local connectedness (because G is a curve).

In the Hölder setting, there are at least two obstacles to following the approach above. 
First and foremost, a naive analogue of Ważewski’s theorem cannot hold for Hölder 
maps, since the condition Hs(G) < ∞ does not imply a continuum is locally connected 
when s > 1 (e.g. the topologist’s comb). What is more, even if G is assumed to be 
an Ahlfors s-regular curve with finite Hs measure, we cannot conclude that G is a 
(1/s)-Hölder curve; we provide examples in §9.2 using a theorem of Martín and Mat-
tila [38]. Another obstacle is the well-known failure of Goła̧b’s semicontinuity theorem 
for Hausdorff measures Hs with s > 1. Thus, in a proof of a Hölder Traveling Sales-
man theorem, estimating the Hausdorff measure of approximating sets has no direct 
use.

To overcome these obstacles, we reimagine the proof of the Analyst’s TST, and in §3, 
give a procedure to construct a sequence of partitions {Ik}k≥0 of [0, 1] and a sequence of 
piecewise linear maps {fk : [0, 1] → RN}k≥0 that parameterize approximating graphs Gk. 
Each map fk is built by carefully refining fk−1 to ensure that ‖fk−fk−1‖∞ � 2−k. This 
guarantees that the maps fk have a uniform limit f whose image contains the Hausdorff 
limit of Gk (and hence E). To prove that f is Hölder continuous, one must estimate 
growth of the Lipschitz constants of the maps fk (see Appendix B for the basic method). 
In §4, we introduce a notion of mass of intervals I ∈ Ik, defined using the s-power 
of diameters of images fl(J) of intervals J ⊂ I, l ≥ k. This lets us record estimates 
in the domain of the map rather than its image, and in §4, we provide a mass-centric 
analogue of (1.4) that is adapted to the Hölder setting. In turn, this lets us estimate 
the Lipschitz constants of the maps fk and complete the proof of the Hölder Traveling 
Salesman theorem in §5. For completeness, we use our method to reprove and strengthen 
the sufficient half of the Analyst’s TST in §6.

1.3. Ważewski type theorem for flat continua

The Hahn-Mazurkiewicz Theorem (e.g. see [30, Theorem 3.30]) asserts that a set 
E ⊂ RN is a continuous image of [0, 1] if and only if E is compact, connected, and locally 
connected. The Ważewski Theorem (for an attribution, see [1]) asserts that E ⊂ RN is 
a Lipschitz image of [0, 1] if and only if E is compact, connected, and H1(E) < ∞. It is 
an easy exercise to check that every (1/s)-Hölder continuous image of [0, 1] is compact, 
connected, locally connected, and has Hs(E) < ∞, but the converse fails when s > 1 (see 
§9.2 below). This motivates the following, apparently open question: Is there a metric, 
geometric, and/or topological characterization of Hölder curves in RN?



570 M. Badger et al. / Advances in Mathematics 349 (2019) 564–647
The method of proof of the Hölder Traveling Salesman theorems leads to the following 
Ważewski type theorem for flat continua. For the proof of Proposition 1.3, see §8. A set 
E ⊂ Rn is called Ahlfors s-regular if there exist 0 < c ≤ C < ∞ such that

crs ≤ Hs(E ∩B(x, r)) ≤ Crs for all x ∈ E and 0 < r ≤ diamE. (1.5)

We say that E is lower (upper) Ahlfors s-regular if the first (second) inequality in (1.5)
holds for all x ∈ E and 0 < r ≤ diamE.

Proposition 1.3. There exists a constant β1 ∈ (0, 1) such that if s > 1 and E ⊂ RN is 
compact, connected, Hs(E) < ∞, E is lower Ahlfors s-regular with constant c, and

βE

(
B(x, r)

)
≤ β1 for all x ∈ E and 0 < r ≤ diamE, (1.6)

then E = f([0, 1]) for some injective (1/s)-Hölder continuous map f : [0, 1] → RN with 
Hölder constant H �s c

−1Hs(E)(diamE)1−s.

Inclusion of lower Ahlfors regularity in the hypothesis of Proposition 1.3 is justifiable, 
because it holds automatically when s = 1, i.e. every non-trivial connected set is lower 
Ahlfors 1-regular. When s > 1, a non-trivial (1/s)-Hölder curve is not necessarily lower 
Ahlfors s-regular, and, in fact, could have zero Hs measure. Nevertheless, Martín and 
Mattila [37] proved that if Γ is a (1/s)-Hölder curve in RN with Hs(Γ) > 0, then

lim inf
r↓0

Hs(Γ ∩B(x, r))
rs

> 0 at Hs-a.e. x ∈ Γ.

Even if it can be weakened, the lower regularity hypothesis in Proposition 1.3 cannot be 
completely dropped: In §9.4, for any s > 1 and β1 ∈ (0, 1), we find a curve E ⊂ RN with 
Hs(E) < ∞ satisfying (1.6) such that E is not contained in a (1/s)-Hölder curve.

Sharp estimates on the Minkowski dimension of sets satisfying (1.6) were provided by 
Mattila and Vuorinen [40]; for generalized Mattila-Vuorinen type sets, see [7].

1.4. Related work

As noted above, one motivation for this paper is to develop tools to analyze the struc-
ture of Radon measures. See §7 for background and for an application of Corollary 1.2
to the fractional rectifiability of measures.

There is considerable interest in finding higher-dimensional analogues of the Ana-
lyst’s Traveling Salesman theorem, for example finding a characterization of subsets of 
Lipschitz images of [0, 1]2. This problem is still open, but some positive steps were re-
cently taken by Azzam and Schul [4] for Hausdorff content lower regular sets. Also see 
[52].
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Part I. Proof of the Hölder Traveling Salesman theorem

In the first part of the paper, §§2–6, we establish several Hölder Traveling Salesman 
theorems, including Theorem 1.1 and Theorem 5.1. To start, in §2, we introduce notation 
and essential concepts used in the proof, including nets, flat pairs, and variation excess. 
In §3, we present a refined version of Jones’ Traveling Salesman construction, which takes 
a nested sequence (Vk)∞k=0 of ρkr0-separated sets, approximating lines {�k,v : v ∈ Vk}∞k=0, 
and associated errors {αk,v : v ∈ Vk}∞k=0 and outputs a sequence of partitions Ik of [0, 1]
and piecewise linear maps fk such that fk([0, 1]) ⊃ Vk. In §4, we define and estimate a 
discrete s-variation of the maps fk, which is adapted to the partitions Ik of the domain. 
When s > 1, the total s-mass Ms([0, 1]) associated to the sequence of maps fk fills the 
role that 1-dimensional Hausdorff measure H1 plays in Jones’ proof of the Analyst’s TST. 
In §5, we use the algorithm of §3 and the mass estimates of §4 to prove our main theorem 
(see Theorem 5.1). Finally, in §6, we use our method to obtain a stronger version of the 
sufficient half of the Analyst’s Traveling Salesman theorem. The construction presented 
below can be carried out in any finite or infinite-dimensional Hilbert space.

2. Preliminaries

Given numbers x, y ≥ 0 and parameters a1, . . . , an, we may write x �a1,...,an
y if 

there exists a positive and finite constant C depending on at most a1, . . . , an such that 
x ≤ Cy. We write x 
a1,...,an

y to denote x �a1,...,an
y and y �a1,...,an

x. Similarly, we 
write x � y or x 
 y to denote that the implicit constants are universal.

2.1. Ordering flat sets

The following lemma shows that if a discrete set is sufficiently flat at the scale of 
separation, then there exists a natural linear ordering of its points. Estimates (2.1) and 
(2.2) are consequences of the Pythagorean theorem.

Lemma 2.1 ([9, Lemma 8.3]). Suppose that V ⊂ RN is a 1-separated set with card(V ) ≥ 2
and there exist lines �1 and �2 and a number α ∈ (0, 1/16] such that

dist(v, �i) ≤ α for all v ∈ V and i = 1, 2.
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Let πi denote the orthogonal projection onto �i. There exist compatible identifications of 
�1 and �2 with R such that π1(v) ≤ π1(v′) if and only if π2(v) ≤ π2(v′) for all v, v′ ∈ V . 
If v1 and v2 are consecutive points in V relative to the ordering of π1(V ), then

H1([u1, u2]) ≤ (1 + 3α2) · H1([π1(u1), π1(u2)]) for all [u1, u2] ⊆ [v1, v2]. (2.1)

Moreover,

H1([y1, y2]) ≤ (1 + 12α2) · H1([π1(y1), π1(y2)]) for all [y1, y2] ⊆ �2. (2.2)

Suppose that V , �1, and π1 are given as in Lemma 2.1 and let v, v1, v2 ∈ V . Given 
an orientation of � (that is, an identification of �1 with R), we say v1 is to the left of 
v2 and v2 is to the right of v1 if π1(v1) < π1(v2). We say v is between v1 and v2 if 
π1(v1) ≤ π1(v) ≤ π1(v2) or π1(v2) ≤ π1(v) ≤ π1(v1).

Lemma 2.2. Suppose that V ⊂ RN is a δ-separated set with card(V ) ≥ 2 and there exists 
a line � and a number α ∈ (0, 1/16] such that

dist(v, �) ≤ αδ for all v ∈ V .

Enumerate V = {v1, . . . , vn} so that vi+1 is to the right of vi for all 1 ≤ i ≤ n − 1. Then

n−1∑
i=1

|vi+1 − vi|s ≤ (1 + 3α2)s|v1 − vn|s for all s ≥ 1. (2.3)

Moreover, if card(V ) ≥ 3, then

n−1∑
i=1

|vi+1 − vi|s ≤ ((1 + 3α2)|v1 − vn| − δ)s + δs for all s ≥ 1. (2.4)

Proof. Let π denote the orthogonal projection onto � and put xi := π(vi). Then

|xi+1 − xi| ≤ |vi+1 − vi| ≤ (1 + 3α2)|xi+1 − xi| for all 1 ≤ i ≤ n− 1,

where the first inequality holds since projections are 1-Lipschitz and the second inequality 
holds by Lemma 2.1. Assume s ≥ 1 and card(V ) ≥ 3. Then
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n−1∑
i=1

|vi+1 − vi|s
(1 + 3α2)s ≤

n−2∑
i=1

|xi+1 − xi|s + |xn − xn−1|s

≤
(

n−2∑
i=1

|xi+1 − xi|
)s

+ |xn − xn−1|s

= (|xn − x1| − |xn − xn−1|)s + |xn − xn−1|s

≤
(
|xn − x1| −

δ

1 + 3α2

)s

+
(

δ

1 + 3α2

)s

≤
(
|vn − v1| −

δ

1 + 3α2

)s

+
(

δ

1 + 3α2

)s

,

where the penultimate inequality holds because for any M > 0, ε ∈ (0, M), and s ≥ 1, 
the function f(t) = ts+(M− t)s defined on [ε, M−ε] attains its maximum at t = ε. This 
establishes (2.4). Inequality (2.3) follows from a similar (and easier) computation. �
2.2. Nets, flat pairs, and variation excess

Let (X, | · |) denote the Hilbert space l2(R) of square summable sequences or the 
Euclidean space RN for some N ≥ 2.

Let V = {(Vk, ρk)}k≥0 be a sequence of pairs of nonempty finite sets Vk in X and 
numbers ρk > 0. Assume that there exist x0 ∈ X, r0 > 0, C∗ ≥ 1, and 0 < ξ1 ≤ ξ2 < 1
such that V satisfies the following properties.

(V0) When k = 0, we have ρ0 = 1. For all k ≥ 0, we have ξ1ρk ≤ ρk+1 ≤ ξ2ρk.
(V1) When k = 0, we have V0 ⊂ B(x0, C∗r0).
(V2) For all k ≥ 0, we have Vk ⊂ Vk+1.
(V3) For all k ≥ 0 and all distinct v, v′ ∈ Vk, we have |v − v′| ≥ ρkr0.
(V4) For all k ≥ 0 and all v ∈ Vk+1, there exists v′ ∈ Vk such that |v − v′| < C∗ρk+1r0.

With C∗ and ξ2 given, define the associated parameter

A∗ := C∗

1 − ξ2
> C∗.

In addition to (V0)–(V4), assume that for each k ≥ 0 and v ∈ Vk we are given a number 
αk,v ≥ 0 and a straight line �k,v in X such that

sup
x∈Vk+1∩B(v,30A∗ρkr0)

dist(x, �k,v) ≤ αk,vρk+1r0. (V5)

We call the line �k,v an approximating line at (k, v).
The formulation of (V5) is motivated by [9, Proposition 3.6]. We remark that the 

number ρk+1r0 appearing on the right hand side of (V5) is the scale of separation of 
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points in Vk+1. While we allow X = l2(R), each Vk can be identified with a subset 
of RNk for some increasing sequence Nk if convenient, because each Vk is finite and 
Vk ⊂ Vk+1.

Lemma 2.3. Let v ∈ Vk be such that αk,v ≤ 1/16 and fix an orientation for �k,v.

(1) If v′ ∈ Vk ∩B(v, 14A∗ρkr0) is the first point to the right of v, then there exist fewer 
than 2 + 2.2C∗ points of Vk+1 between v and v′ (inclusive).

(2) There exist fewer than 1.1C∗ points of Vk+1 ∩B(v, C∗ρk+1r0) to the right of v.

Proof. The points in Vk+1∩B(v, 30A∗ρkr0) are ρk+1r0-separated and are linearly ordered 
by Lemma 2.1. Let v′ be the first point in Vk ∩B(v, 14A∗ρkr0) to the right of v and let 
w1, . . . , wm denote the points in Vk+1 that lie between v and v′ (inclusive). By (V4), each 
point wi belongs to B(v, C∗ρk+1r0) ∪ B(v′, C∗ρk+1r0). Let πk,v denote the orthogonal 
projection onto �k,v. By (V3) and (2.1), 1.1|π(wi) − π(wj)| > |wi − wj | ≥ ρk+1r0 for 
all distinct i, j, since (1 + 3(1/16)2) < 1.1. It follows that there are fewer than 1.1C∗

points wi in Vk+1 ∩ B(v, C∗ρk+1r0) to the right of v and fewer than 1.1C∗ points wi in 
Vk+1∩B(v′, C∗ρk+1r0) to the left of v′. The first claim follows. A similar argument gives 
the second claim. �
Definition 2.4 (Flat pairs). Fix a parameter α0 ∈ (0, 1/16]. For all k ≥ 0, define Flat(k)
to be the set of pairs (v, v′) ∈ Vk × Vk such that

(1) ρkr0 ≤ |v − v′| < 14A∗ρkr0,
(2) αk,v < α0 and v′ is the first point in Vk ∩B(v, 14A∗ρkr0) to the left or to the right 

of v with respect to ordering induced by �k,v.

Define the corresponding set of geometric line segments Lk = {[v, v′] : (v, v′) ∈ Flat(k)}.

Note that the collection Flat(k) of flat pairs is not symmetric in the sense that (v, v′) ∈
Flat(k) does imply (v′, v) ∈ Flat(k), because αk,v does not control αk,v′ .

Lemma 2.5. Let e1, e2, e3 be distinct elements of Lk for some k ≥ 0.

(1) Edges e1 and e2 intersect at most in a common endpoint.
(2) Edges e1, e2 and e3 do not have a common point.

Proof. Let e1 = [v1, v′1], e2 = [v2, v′2], and e3 = [v3, v′3] represent distinct elements of 
Lk, where (vi, v′i) ∈ Flat(k) for all i ∈ {1, 2, 3}. If two or more of the edges intersect in 
a common point, say {ei : i ∈ I0} for some I0 ⊂ {1, 2, 3} with card(I0) ≥ 2, then those 
edges are contained in B(vj , 30A∗ρkr0) for each j ∈ I0, since each edge has diameter 
at most 14A∗ρkr0. Note that Vk is a ρkr0 separated set, dist(vi, �k,vj

) ≤ αk,vj
ρk+1r0 <
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αk,vj
ρkr0 for all i, j ∈ I0, and αk,vj

≤ 1/16. Thus, by Lemma 2.1, the vertices {vi, v′i :
i ∈ I0} are consistently linearly ordered according to their projections onto �k,vj

for each 
j ∈ I0. Claims (1) and (2) follow immediately, since the segments in Lk emanating from 
a vertex v ∈ Vk with αk,v < α0 are only drawn to the first vertex in Vk ∩B(v, 14A∗ρkr0)
to the left or right of v with respect to the projection onto �k,v. �

Given a pair (v, v′) ∈ Flat(k), let Vk+1(v, v′) denote the set of all points x ∈ Vk+1 ∩
B(v, 14A∗ρkr0) such that x lies between v and v′ (including v and v′).

Definition 2.6 (Variation excess). For all s ≥ 1, for all k ≥ 0, and for all (v, v′) ∈ Flat(k), 
define the s-variation excess τs(k, v, v′) by

τs(k, v, v′)|v − v′|s = max
{(

n−1∑
i=1

|vi+1 − vi|s
)

− |v − v′|s, 0
}
,

where Vk+1(v, v′) = {v1, . . . , vn} with v1 = v, vn = v′, and vi+1 is the first point to the 
right (or left) of vi for all 1 ≤ i ≤ n − 1.

Lemma 2.7. For all k ≥ 0 and (v, v′) ∈ Flat(k), we have τ1(k, v, v′) ≤ 3α2
k,v.

Proof. Let Vk+1(v, v′) = {v1, . . . , vn}, where v1 = v, vn = v′, and vi+1 is to the right of 
vi for all 1 ≤ i ≤ n − 1. By Lemma 2.2, with s = 1,

n−1∑
i=1

|vi+1 − vi| ≤ (1 + 3α2
k,v)|vn − v1| = (1 + 3α2

k,v)|v − v′|.

Rearranging the inequality gives τ1(k, v, v′) ≤ 3α2
k,v. �

We now demonstrate that when s > 1, the variation excess τs(k, v, v′) is zero whenever 
the set Vk+1(v, v′) lies in a sufficiently thin tube.

Lemma 2.8 (Tube control). For all s > 1, there exists εs,C∗,ξ1,ξ2 ∈ (0, 1/16] such that if 
αk,v ≤ εs,C∗,ξ1,ξ2 , then τs(k, v, v′) = 0 for all (v, v′) ∈ Flat(k).

Proof. Let (v, v′) ∈ Flat(k) and enumerate Vk+1(v, v′) = {v1, . . . , vn} so that v1 = v, 
vn = v′, and vi+1 is to the right of vi for all 1 ≤ i ≤ n − 1. If n = 2, then 

∑n−1
i=1 |vi+1 −

vi|s = |v−v′|s. Thus, suppose that n ≥ 3. By Lemma 2.2, with δ = ρk+1r0 and α = αk,v,

n−1∑
i=1

|vi+1 − vi|s ≤ |v − v′|s
[(

(1 + 3α2
k,v) −

ρk+1r0
|v − v′|

)s

+
(
ρk+1r0
|v − v′|

)s]

≤ |v − v′|s
[(

(1 + 3α2
k,v) −

ξ1
14A∗

)s

+
(

ξ1
14A∗

)s]
=: Aαk,v

|v − v′|s,
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because ξ−1
2 ρk+1r0 ≤ |v − v′| ≤ 14A∗ξ−1

1 ρk+1r0 and the function

f(t) = ((1 + 3α2
k,v) − t)s + ts on [ξ1/14A∗, ξ2]

takes its maximum at t = ξ1/14A∗. Since s > 1, the coefficient

Aε →
(

1 − ξ1
14A∗

)s

+
(

ξ1
14A∗

)s

< 1 as ε → 0.

Thus, by continuity, there exists ε′ > 0 such that Aε′ = 1. Let εs,C∗,ξ1,ξ2 = min{ε′, 1/16}. 
Then 

∑n−1
i=1 |vi+1 − vi|s ≤ |v − v′|s whenever αk,v ≤ εs,C∗,ξ1 . �

3. Traveling Salesman algorithm

For the rest of §§3 and 4, let X denote the Hilbert space l2(R) or RN , let (Vk)k≥0 be 
a sequence of sets in X and let ρk > 0 be a sequence of numbers satisfying (V0)–(V5) 
defined in §2.2. In addition, fix the parameter α0 ∈ (0, 1/16] in Definition 2.4. For each 
integer k ≥ 0, we will construct

(1) two collections of pairwise disjoint, open intervals in [0, 1] denoted by Bk (called 
“bridge intervals”) and Ek (“edge intervals”),

(2) two collections of pairwise disjoint, nondegenerate closed intervals in [0, 1] denoted 
by Fk (“frozen point intervals”) and Nk (“non-frozen point intervals”), and

(3) a continuous map fk : [0, 1] → X

that satisfy the following properties.

(P1) The four collections Bk, Ek, Fk, Nk are mutually disjoint and for any x ∈ [0, 1]
there exists unique interval I contained in their union such that x ∈ I.

(P2) The map fk|I is affine on each I ∈ Ek ∪ Bk and the map fk|J is constant on each 
J ∈ Fk ∪ Nk.

(P3) For all I ∈ Ek, we have diam fk(I) < 14A∗ρkr0.
(P4) The map fk| 

⋃
Ek is 2-to-1; that is, for every x ∈

⋃
Ek there exists a unique 

x′ ∈
⋃

Ek \ {x} such that fk(x) = fk(x′).
(P5) If (v, v′) ∈ Flat(k), then there exists I ∈ Ek such that fk(I) joins v with v′. 

Conversely, if a and b are endpoints of an interval I ∈ Ek and αk,fk(a) < α0, then 
(fk(a), fk(b)) ∈ Flat(k).

(P6) For each I ∈ Fk ∪ Nk, the image fk(I) ∈ Vk and for each v ∈ Vk there exists a 
unique I ∈ Nk such that fk(I) = v.

(P7) If J ∈ Nk is such that fk(J) is an endpoint of fk(I) for some I ∈ Ek, then there 
exists I ′ ∈ Ek (possibly I ′ = I) such that fk(I ′) = fk(I) and J ∩ I ′ �= ∅.
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Lemma 3.1. Assume (P5) holds at stage k ≥ 0. Let a < b < a′ < b′ be such that (a, b)
and (a′, b′) belong to Ek, fk(b) = fk(a′), and αk,fk(b) ≤ α0. Then either

(1) fk((a, b)) = fk((a′, b′)) or
(2) fk(b) lies between fk(a) and fk(b′) with respect to order induced by �k,fk(b).

Proof. This is an immediate consequence of (P5) and Lemma 2.5. �
In §3.1, we construct E0, B0, N0, F0, and f0. In §3.2, we formulate the inductive 

hypothesis. We construct the collections of intervals Ek+1, Bk+1, Nk+1, Fk+1, and fk+1
in §§3.3–3.8. We verify properties (P1)–(P7) in §3.9. Finally, in §3.10, we review all 
choices in the algorithm.

3.1. Step 0

Fix a point v0 ∈ V0. Let G0 be the (not necessarily connected) graph with vertices V0
and edges L0. Suppose that G0 has components G(1)

0 , . . . , G(l)
0 with v0 ∈ G

(1)
0 .

Case 1. Suppose that V0 = {v0}. Then set E0 = ∅, B0 = ∅, N0 = {[0, 1]} and F0 = ∅. 
Define also f0 : [0, 1] → X with f0(x) = v0 for all x ∈ [0, 1]. Note that properties 
(P1)–(P7) are trivial in this case.

Case 2. Suppose that card(V0) ≥ 2 and that l = 1, that is, G0 is connected. We apply 
Proposition A.1 for v0 with Δ = [0, 1], G = G0 and we obtain a collection of intervals I
and a continuous map g. By Lemma 2.5, each point v ∈ V0 has valence at most 2 in G0
and there exists a component Jv of g−1(v) such that if e is an edge of G0 that contains 
v as an endpoint, then e has a preimage I ∈ I such that I ∩ Jv �= ∅. Let N be the 
collection of all such intervals Jv.

Set E0 = I, B0 = ∅, N0 = N , define F0 to be the components of [0, 1] \
⋃

(E0 ∪B0 ∪
N0), and let f0 = g. Properties (P1)–(P7) follow from Proposition A.1.

Case 3. Suppose that card(V0) ≥ 2 and that l ≥ 2, that is, G0 is disconnected. For 
each j = 2, . . . , l fix a vertex uj of G(j)

0 . Let {I1, . . . , I2l−2} be a collection of open 
intervals, enumerated according to the orientation of [0, 1], such that their closures are 
mutually disjoint and are contained in the interior of [0, 1]. Let also {J1, . . . , J2l−1} be 
the components of I\

⋃2l−2
j=1 Ij enumerated according to the orientation of [0, 1]. Applying 

Proposition A.1 for G = G
(1)
0 , v0 and Δ = J1, we obtain a family of open intervals I1, a 

map g1 : J1 → G
(1)
0 and a family N1 of closed intervals. Similarly, for each j = 2, . . . , l, 

applying Proposition A.1 for G = G
(j)
0 , uj and Δ = J2j , we obtain a family of open 

intervals Ij , a map gj : J2j → G
(j)
0 and a family Nj of closed intervals. There exists a 

continuous map g : [0, 1] → X that extends the maps gj such that

(1) g(J2j+1) = v0 for each j ∈ {1, . . . , l − 1};
(2) g|Ij is affine for each j ∈ {1, . . . , 2l − 2} and g(I2j−1) = g(I2j) = [uj , v0] for each 

j ∈ {1, . . . , l − 1}.



578 M. Badger et al. / Advances in Mathematics 349 (2019) 564–647
Set E0 =
⋃l

j=1 Ij , B0 = {I1, . . . , I2l−2}, N0 =
⋃l

j=1 Nj , define F0 to be the compo-
nents of [0, 1] \

⋃
(E0 ∪B0 ∪N0), and let f0|[0, 1] = g. Properties (P1)–(P7) follow from 

Proposition A.1.

3.2. Inductive hypothesis

Suppose that for some k ≥ 0 we have defined collections Bk, Ek of open intervals 
in [0, 1], collections Fk, Nk of nondegenerate closed intervals in [0, 1], and a continuous 
map fk : [0, 1] → X, which satisfy properties (P1)–(P7).

We will define a new map fk+1 : [0, 1] → X and new collections Bk+1, Ek+1,

Fk+1, Nk+1,

Bk+1 =
⋃

I∈Bk∪Ek∪Fk∪Nk

Bk+1(I), Ek+1 =
⋃

I∈Bk∪Ek∪Fk∪Nk

Ek+1(I),

Fk+1 =
⋃

I∈Bk∪Ek∪Fk∪Nk

Fk+1(I), Nk+1 =
⋃

I∈Bk∪Ek∪Fk∪Nk

Nk+1(I),

where Bk+1(I), Ek+1(I), Fk+1(I), Nk+1(I) are collections of intervals in I that we define 
below. In particular:

• In §3.3, we define the four collections and fk+1|I for I ∈ Bk.
• In §3.4 and §3.5, we define the four collections and fk+1|I for I ∈ Ek.
• In §3.6, we define the four collections and fk+1|I for I ∈ Fk.
• In §3.7 and §3.8, we the four collections and fk+1|I for I ∈ Nk.

3.3. Step k + 1: intervals in Bk

For any I ∈ Bk we set Bk+1(I) = {I}, Ek+1(I) = ∅, Fk+1(I) = ∅, Nk+1(I) = ∅, 
and we define fk+1|I = fk|I. In other words, bridge intervals are frozen and we make no 
changes on them.

3.4. Step k + 1: intervals in Ek with a at least one endpoint with flat image

Here we consider those intervals I = (aI , bI) ∈ Ek such that one of the αk,fk(aI), 
αk,fk(bI) is less than α0. If no such interval exists, we move to §3.5. Assume now that 
such intervals exist. By (P4) and the induction step, such intervals come in pairs {I, I ′}
where fk(I) = fk(I ′) and fk(I) ∩ fk(J) = ∅ for all J ∈ Ek \ {I, I ′}. Fix now such a pair 
{I, I ′}. We choose one of the two intervals I, I ′ to start with, say I.

Without loss of generality, assume that αk,fk(aI) < α0. Let � be the approximating 
line for (k, fk(aI)), oriented so that fk(aI) lies to the left of fk(bI). Let Vk+1,I denote 
the points in Vk+1∩B(fk(aI), 14A∗ρkr0) that lie between fk(aI) and fk(bI) with respect 
to �, including fk(aI) and fk(bI). Enumerate Vk+1,I from left to right,
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Fig. 1. The image of fk+1(I): black arrows denote images of intervals in Ek∪Bk, green arrows denote images 
of intervals in Ek+1, and red arrows denote images of intervals in Bk+1. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

Vk+1,I = {v1, . . . , vl}.

That is, vi lies to the left of vi+1 for all i ∈ {1, . . . , l − 1}, v1 = fk(aI), and vl = fk(bI).

Remark 3.2. By Lemma 2.3, we have that l < 2 + 2.2C∗.

Let {I1, . . . , Il−1} be a collection of open intervals in I with mutually disjoint closures, 
enumerated according to the orientation of [0, 1] so that the left endpoint of I1 coincides 
with aI and the right endpoint of Il−1 coincides with bI . Let Nk+1(I) be the components 
of [0, 1] \

⋃l−1
i=1 Ii and Fk+1(I) = ∅. Define

Ek+1(I) = {Ii : |vi − vi+1| < 14A∗ρk+1r0},

Bk+1(I) = {Ii : |vi − vi+1| ≥ 14A∗ρk+1r0}.

Then define fk+1|I continuously so that

(1) fk+1 is affine on each J ∈ Ek+1(I) ∪ Bk+1(I) and constant on each J ∈ Nk+1(I) ∪
Fk+1(I);

(2) for each j = 1, . . . , l − 1, fk+1(Ij) = [vj , vj+1] mapping the left endpoint of Ij onto 
vj and the right endpoint of Ij onto vj+1.

See Fig. 1 for the image of fk+1(I).
Once we have defined the four families and fk+1 for I, we work as follows for I ′. First 

note that Vk+1,I = Vk+1,I′ . Define ψI′,I : I ′ → I to be the unique orientation-reversing 
linear map between I ′ and I. Define

Ek+1(I ′) = {ψI′,I(J) : J ∈ Ek+1(I)} and Bk+1(I ′) = {ψI′,I(J) : J ∈ Bk+1(I)}

This time, however, we set Fk+1(I ′) to be the components of I ′\
⋃l−1

i=1 I
′
i and Nk+1(I ′) =

∅. Define also fk+1|I ′ continuously so that fk+1|I ′ = (fk+1|I) ◦ ψI′,I .

Lemma 3.3. For i = 1, 2, let Ii ∈ Ek be an interval with at least one endpoint having flat 
image and let I ′i ∈ Ek+1(Ii). If fk(I1) �= fk(I2), then fk+1(I ′1) ∩ fk+1(I ′2) = ∅.
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Proof. Suppose that I ′1 ∈ Ek+1(I1), I ′2 ∈ Ek+1(I2), and fk+1(I ′1) ∩ fk+1(I ′2) �= ∅. Because 
fk+1(I ′1) and fk+1(I ′2) do not include their endpoints (since intervals in Ek+1 are open), 
we conclude that fk+1(I ′1) = fk+1(I ′2) by Lemma 2.5. Now, the endpoints of the four 
intervals fk(I1), fk(I2), fk+1(I ′1), and fk+1(I ′2) lie in the 30A∗ρkr0 neighborhood of any 
flat endpoint of fk(I1) or fk(I2). In particular, the endpoints of the four intervals are 
linearly ordered by Lemma 2.1, and the endpoints of fk+1(I ′i) lie between the endpoints of 
fk(Ii) by the construction of Ek+1(Ii). Because fk+1(I ′1) = fk+1(I ′2), this forces fk(I1) =
fk(I2). �
3.5. Step k + 1: intervals in Ek with no endpoints with flat image

Suppose that I = (aI , bI) ∈ Ek is such that αk,fk(aI) ≥ α0 and αk,fk(bI) ≥ α0. Then 
set Ek+1(I) = ∅, Bk+1(I) = {I}, Nk+1(I) = ∅, Fk+1(I) = ∅, and fk+1|I = fk|I. In 
other words, edge intervals with no endpoints with flat image become bridge intervals 
and remain bridge intervals for the rest of the construction.

3.6. Step k + 1: intervals in Fk

For any I ∈ Fk we set Ek+1(I) = ∅, Bk+1(I) = ∅, Fk+1(I) = {I}, Nk+1(I) = ∅ and 
we set fk+1|I = fk|I. In other words, frozen point intervals in Fk remain frozen for the 
rest of the construction.

3.7. Step k + 1: intervals in Nk with flat image

We now consider the intervals I ∈ Nk for which αk,fk(I) < α0. If no such interval exists 
we proceed to §3.8. Assume now that such intervals exist. Let I be such an interval and 
let � be the approximating line for (k, fk(I)). We consider three cases.

3.7.1. Non-terminal vertices
Suppose that there exist distinct v, v′ ∈ Vk\{fk(I)} such that (fk(I), v) and (fk(I), v′)

are in Flat(k). By (P5), Lemma 3.1 and the induction step, there exist J, J ′ ∈ Ek such that 
fk(I) and v are the endpoints of fk(J), while fk(I) and v′ are the endpoints of fk(J ′). 
Hence, all points of Vk+1 between v and v′ are contained in the image of fk+1(J ∪ J ′)
defined in §3.4. Set Ek+1(I) = ∅, Bk+1(I) = ∅, Nk+1(I) = {I}, Fk+1(I) = ∅ and 
fk+1|I = fk|I.

3.7.2. 1-sided terminal vertices
Suppose that there exists unique v ∈ Vk \ {fk(I)} such that (fk(I), v) ∈ Flat(k). Fix 

an orientation for � so that v lies to the left of fk(I). As in §3.7.1, the points of Vk+1 that 
lie between fk(I) and v are all contained in fk+1(J) for some J ∈ Ek. Let Vk+1,I denote 
the set that includes fk(I) and all points in Vk+1 ∩ B(fk(I), C∗ρk+1r0) that lie to the 
right of fk(I). Enumerate Vk+1,I = {v1, . . . , vl} from left to right. That is, v1 = fk(I)
and vl is the rightmost point of Vk+1,I



M. Badger et al. / Advances in Mathematics 349 (2019) 564–647 581
Fig. 2. The image of fk+1(I): on the left, we have fk+1(I), where I is as in §3.7.2; on the right, we have 
fk+1(I), where I is as in §3.7.3.

Remark 3.4. cardVk+1,I ≤ 1 + 1.1C∗ by Lemma 2.3.

If Vk+1,I = {fk(I)}, then set Ek+1(I) = ∅, Bk+1(I) = ∅, Nk+1(I) = {I}, Fk+1(I) = ∅
and fk+1|I = fk|I.

If Vk+1,I �= {fk(I)}, then let Gk+1,I be the graph with vertices the points in Vk+1,I
and edges the segments {[v1, v2], . . . , [vl−1, vl]}. That is, Gk+1,I forms a simple polygonal 
arc to the right of fk(I) joining fk(I) with vl. Let I and g be the collection and map 
given by Proposition A.1 for Δ = I, G = Gk+1,I and v = fk(I). For each v′ ∈ Vk+1,I
fix a component of I \

⋃
Ik+1(I) that is mapped onto v′ and let N be the collection of 

these components. Set Ek+1(I) = I, Bk+1(I) = ∅, Nk+1(I) = N , and define Fk+1(I) to 
be the set of components of I \

⋃
(Ek+1(I) ∪ Bk+1(I) ∪ Nk+1(I)). Set fk+1|I = g. See 

the left half of Fig. 2 for the image of fk+1(I).

3.7.3. 2-sided terminal vertices
Suppose that there exists no point in Vk \{fk(I)} such that (fk(I), v) ∈ Flat(k). That 

is, Vk ∩B(fk(I), 14A∗ρkr0) = {fk(I)}. Set

Vk+1,I = Vk+1 ∩B(fk(I), C∗ρk+1r0).

Fix an orientation for � and enumerate Vk+1,I = {v1, . . . , vl} from left to right.

Remark 3.5. card(Vk+1,I) ≤ 1 + 2.2C∗ by Lemma 2.3.

If Vk+1,I = {fk(I)}, then set Ek+1(I) = ∅, Bk+1(I) = ∅, Nk+1(I) = {I}, Fk+1(I) = ∅
and fk+1|I = fk|I. If Vk+1,I �= {fk(I)}, then let Gk+1,I be the graph with vertices the 
points in Vk+1,I and edges the segments {[v1, v2], . . . , [vl−1, vl]}. The remainder of the 
construction proceeds in the same way as in §3.7.2. See the right half of Fig. 2 for the 
image of fk+1(I).
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Lemma 3.6. Let I1, I2 ∈ Nk be distinct intervals as in §3.7 and let I3 ∈ Ek be an interval 
as in §3.4. If I ′i ∈ Ek+1(Ii) for i = 1, 2, 3, then the segments fk+1(I ′1), fk+1(I ′2), and 
fk+1(I ′3) are mutually disjoint.

Proof. This follows from similar arguments employed in the proof of Lemma 3.3. �
3.8. Step k + 1: intervals in Nk with non-flat image

In this final part of the algorithm, we define Ek+1(I), Bk+1(I), Nk+1(I), Fk+1(I) and 
fk+1|I for those I ∈ Nk such that αk,fk(I) ≥ α0. Let {I1, . . . , In} be an enumeration of 
such intervals. The construction in this case resembles that in Step 0.

We start with I1. Let Vk+1,I1 be the set of points in Vk+1 ∩B(fk(I1), C∗ρk+1r0) that 
are not images of some I ∈ Nk+1 defined in §3.4 and §3.7. Let Lk+1,I1 be the set of 
edges in Lk+1 that have an endpoint in Vk+1,I1 . Then define Ṽk+1,I1 to be the union of 
Vk+1,I and the set of all endpoints of edges in Lk+1,I1 . By the triangle inequality, the set 
Ṽk+1,I1 is subset of B(v, 15A∗ρk+1r0). Finally, let Gk+1,I1 denote the graph with vertices 
Ṽk+1,I1 and with edges Lk+1,I1 . We note that the graph Gk+1,I1 may be connected or 
disconnected.

If Ṽk+1,I1 = {fk(I1)}, then we simply set Ek+1(I1) = ∅, Bk+1(I1) = ∅, Nk+1(I1) =
{I1}, Fk+1(I1) = ∅ and fk+1|I1 = fk|I1.

For the remainder of §3.8, let us assume that Ṽk+1,I1 contains at least two points. 
Let G(1)

k+1,I1 , . . . , G
(l1)
k+1,I1 denote the connected components of Gk+1,I1 , labeled so that 

G
(1)
k+1,I1 is the component containing fk(I1). There are two cases.

3.8.1. Connected graph
Suppose that Gk+1,I1 is connected. Apply Proposition A.1 for Δ = I1, G = Gk+1,I1

and v = fk(I1) to obtain a collection of intervals I and a continuous map g. If v′ ∈
Vk+1,I1 , then v′ has valence at most 2 by Lemma 2.5. Hence, by Proposition A.1, there 
exists a component Jv′ of g−1(v′) with the following property:

If v′ is the endpoint of some e ∈ Lk+1,I1 , then there exists I ∈ I such that g(I) = e

and I ∩ Jv′ �= ∅.

Let N be the collection of the fixed intervals Jv′ where v′ ∈ Ṽk+1,I1 . Now define a set 
E ⊆ I with two rules:

(1) If e ∈ Lk+1,I1 has both its endpoints in Vk+1,I1 then both components of g−1(e) are 
in E .

(2) If e ∈ Lk+1,I1 has one endpoint v′ ∈ Vk+1,I1 and another in Ṽk+1,I1 \ Vk+1,I1 , then 
only one component of g−1(e) (one that intersects Jv′) is in E .
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Fig. 3. The image of fk+1(I): Blue segments represent edges in Lk+1, black arrows represent images of 
intervals in Ek ∪Bk, green arrows represent images of intervals in Ek+1(I) and red arrows represent images 
of intervals in Bk+1(I).

Set Ek+1(I1) = E , Bk+1(I1) = I \ E , Nk+1(I1) = N , and define Fk+1(I1) to be the 
set of components of I1 \

⋃
(Ek+1(I1) ∪ Bk+1(I1) ∪ Nk+1(I1)) and fk+1|I1 = g.

3.8.2. Several components
Suppose that l1 ≥ 2; that is, Gk+1,I1 is disconnected. See Fig. 3 for the image of 

fk+1(I). We will add some edges which will make the graph connected and the preimage 
of these edges will be bridge intervals. To this end, for each j ∈ {2, . . . , l1} fix some point 
vj ∈ Vk+1,I1 ∩G

(j)
k+1,I1 . Let {I1,1, . . . , I1,2l1−2} be a collection of open intervals, enumer-

ated according to the orientation of [0, 1], such that their closures are mutually disjoint 
and are contained in the interior of I1. Let also {J1,1, . . . , J1,2l1−1} be the components 
of I1 \

⋃2l1−2
j=1 I1,j enumerated according to the orientation of [0, 1].

Working as in §3.8.1, we obtain a family I1 of open intervals in J1,1, a subset E1 ⊂ I1, 
a family N1 containing some components of J1,1 \

⋃
I1 and a continuous map g1 : J1,1 →

G
(1)
k+1,I1 . Similarly, for each j ∈ {2, . . . , l1} we obtain a family Ij of open intervals in 

J1,2(j−1), a subset Ej ⊂ Ij , a family Nj containing some components of J1,2(j−1) \
⋃
Ij

and a continuous map gj : J1,2(j−1) → G
(j)
k+1,I1 . There exists a continuous map g : I1 → X

that extends the maps gj such that

(1) g(J1,2j+1) = fk(I1) for each j ∈ {1, . . . , l1 − 1};
(2) g|I1,j is affine for all j ∈ {1, . . . , 2l1 − 1} and g(I1,2j−1) = g(I1,2j) = [vj , fk(I1)] for 

all j ∈ {1, . . . , l1 − 1}.
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Define edge intervals Ek+1(I1) =
⋃l1

j=1 Ej and bridge intervals Bk+1(I1) =
⋃2l1−2

j=1 I1,j∪⋃l1
j=1(Ij \ Ej). Set Nk+1(I1) =

⋃
j∈{1,2,4,...,2l1} Nj and define Fk+1(I1) to be the set of 

components of I1 \
⋃

(Ek+1(I1) ∪ Bk+1(I1) ∪ Nk+1(I1)). Also, set fk+1|I1 = g.

3.8.3. Inductive hypothesis
Inductively, suppose that for i ∈ {1, . . . , r − 1} we have defined Ek+1(Ii), Bk+1(Ii), 

Fk+1(Ii), Nk+1(Ii) and fk+1|Ii. We work now for Ir. Let Vk+1,Ir be the set of points 
in Vk+1 ∩ B(fk(I1), C∗ρk+1r0) that are not images of some I ∈ Nk+1 defined in §3.4
or in §3.7 or for the previous intervals I1, . . . , Ir−1. Let Lk+1,Ir be the set of edges in 
Lk+1 that have an endpoint in Vk+1,Ir and let Ṽk+1,Ir be the set of endpoints of edges 
in Lk+1,Ir . Let now Gk+1,Ir be the (not necessarily connected) graph with vertices the 
set Ṽk+1,Ir and with edges the set Lk+1,Ir . To continue, repeat the procedure carried 
out for I1 mutatis mutandis.

Remark 3.7. By the choice of set N for I1, it follows that if I ∈ Nk+1(I1) and if fk+1(I) is 
the endpoint of fk+1(J) for some J ∈ Ek+1(I1), then there exists J ′ ∈ Ek+1(I1) (possibly 
J ′ = J) such that fk+1(J) = fk+1(J ′) and I ∩ J ′ �= ∅. The same is true for all Ij .

Lemma 3.8. Let J1 ∈ Nk be as in §3.8, let J2 ∈ Ek be as in §3.4, and let J3 ∈ Nk be as 
in §3.7. If J ′

i ∈ Ek+1(Ji) for i = 1, 2, 3, then the segments fk+1(J ′
1), fk+1(J ′

2), fk+1(J ′
3)

are mutually disjoint.

Proof. By Lemma 3.6 we know that fk+1(J ′
2) and fk+1(J ′

3) are disjoint. Fix an interval 
J1 ∈ Nk as in §3.8. Suppose that either J2 ∈ Ek is as in §3.4 or J2 ∈ Nk is as in §3.7. 
Let J ′

1 ∈ Ek+1(J1) and J ′
2 ∈ Ek+1(J ′

2). By Lemma 2.5, either fk+1(J ′
1) ∩ fk+1(J ′

2) �= ∅ or 
fk+1(J ′

1) = fk+1(J ′
2). However, we have defined Lk+1,J1 as those elements in Lk+1 that 

are not contained in fk+1(J), where J ∈ Ek is as in §3.4 or J ∈ Nk is as in §3.7. Thus, 
fk+1(J ′

1) ∩ fk+1(J ′
2) = ∅. �

3.9. Properties (P1)–(P7) for step k + 1

We have now defined Bk+1, Ek+1, Fk+1, Nk+1 and fk+1 : [0, 1] → X. It remains to 
prove that fk+1 is continuous and that properties (P1)–(P7) are satisfied by the new 
collections of intervals and fk+1. Properties (P1), (P2), and (P3) follow immediately 
from the construction.

Continuity of fk+1. By design, the map fk+1 is continuous on every point interior to 
an interval in Ek∪Bk∪Nk∪Fk. If x is an endpoint of some interval in Ek∪Bk∪Nk∪Fk, 
then fk+1(x) = fk(x). Thus, continuity of fk+1 at x follows from continuity of fk at x.

Property (P6). The first claim of (P6), that fk+1(I) ∈ Vk+1 for all I ∈ Nk+1∪Fk+1, 
is immediate from the construction. To check the second claim of (P6), fix v ∈ Vk+1. By 
(V4), there exists v′ ∈ Vk such that |v − v′| < C∗ρk+1r0. By the inductive step, there 
exists I ∈ Nk such that fk(I) = v′. There are two cases.
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Case 1. Suppose that αk,v′ < α0. Then, following the discussion in §3.7, either v =
fk+1(J) for some J ∈ Nk(J ′) and J ′ ∈ Ek as in §3.4, or v = fk+1(J) for some J ∈ Nk(I).

Case 2. Suppose that αk,v′ ≥ α0. Following the construction of the graph Gk+1,I
and the design of the map fk+1|I, if v is not the image of some J ∈ Nk+1(J ′), where 
J ′ ∈ Ek ∪ Bk ∪ Nk \ {J ′}, then there exists J ∈ Nk+1(I) such that v = fk+1(J).

Property (P4). Fix I ∈ Ek+1. There are three cases.
Case 1. Suppose that I ∈ Ek+1(I0) for some I0 ∈ Ek. By the inductive hypothesis, 

there exists unique I ′0 ∈ Ek\{I0} such that fk(I ′0) = fk(I0) while fk(I0) ∩fk(J) = ∅ for all 
J ∈ Ek\{I0, I ′0}. By construction, there exists I ′ ∈ Ek+1(I ′0) such that fk+1(I) = fk+1(I ′). 
Again by construction, fk+1(I) ∩ fk+1(J) = ∅ for all J ∈ Ek+1(I0) ∪ Ek+1(I ′0) \ {I, I ′}. 
By Lemma 3.3, Lemma 3.6 and Lemma 3.8, fk+1(I) does not intersect any fk+1(J) for 
any J ∈ Ek+1(J ′) and J ′ ∈ Ek ∪ Nk \ {I0, I ′0}.

Case 2. Suppose that I ∈ Ek+1(I0) for some I0 ∈ Nk as in §3.7. By construction, 
there exists I ′ ∈ Ek+1(I0) \{I} such that fk+1(I) = fk+1(I ′) while fk+1(I) ∩fk+1(J) = ∅
for all J ∈ Ek+1(I0) \ {I, I ′}. Moreover, by Lemma 3.6 and Lemma 3.8, fk+1(I) does not 
intersect any fk+1(J) for any J ∈ Ek+1(J ′) and J ′ ∈ Ek ∪ Nk \ {I0}.

Case 3. Suppose that I ∈ Ek+1(I0) for some I0 ∈ Nk as in §3.8. By Lemma 3.8, 
fk+1(I) ∩ fk+1(I ′) = ∅ for all I ′ ∈ Ek+1(J) and all J ∈ Ek as in §3.4 or J ∈ Nk as in 
§3.7. By the construction of fk+1|I0, there are two possibilities.

Case 3a. Suppose that both endpoints of fk+1(I0) are in Vk1,I0 . Then there exists an 
interval I ′ ∈ Ek+1(I0) \ {I} such that fk+1(I) = fk+1(I ′). On the other hand, fk+1(I) /∈
Lk+1,J for any J ∈ Nk \ {I0}. Thus, by Lemma 2.5, if J ′ ∈ Ek+1(J) and J ∈ Nk \ {I0}, 
then fk+1(J) ∩ fk+1(J ′) = ∅.

Case 3b. Suppose that only one endpoint of fk+1(I0) is in Vk1,I0 . In this case, by 
construction, fk+1(I) ∩ fk+1(J) = ∅ for all J ∈ Ek+1(I0) \ {I}. Moreover, there ex-
ists unique I ′0 ∈ Nk \ {I0} as in §3.8 such that Vk+1,I′

0
contains the other endpoint of 

fk+1(I). As with I0, there exists unique I ′ ∈ Ek+1(I ′0) such that fk+1(I ′) = fk+1(I) while 
fk+1(J) ∩ fk+1(I) = ∅ for all J ∈ Ek+1(I ′0). Finally, by the construction and Lemma 2.5, 
fk+1(I) ∩ fk+1(J) = ∅ for all J ∈ Ek+1(J ′) and all J ′ ∈ Nk \ {I0, I ′0} as in §3.8.

Property (P5). To prove the first claim in (P5), fix (v, v′) ∈ Flat(k + 1). Let v0 be 
the point of Vk closest to v and let I0 ∈ Nk be such that fk(I0) = v0. There are four 
cases.

Case 1. Suppose that αk,v0 < α0 and v0 is non-terminal (see §3.7.1). Then either both 
v and v′ lie to the left of v0 (with respect to �k,v0) or both lie to the right of v0. In any 
case, [v, v′] is the preimage of some I ∈ Ek+1(J) under fk+1 where J ∈ Ek and fk(J) is 
an edge with endpoint fk(I0).

Case 2. Suppose that αk,v0 < α0 and v0 is 2-sided terminal (see §3.7.3). Then [v, v′]
is the preimage of some I ∈ Ek+1(I0) under fk+1.

Case 3. Suppose that αk,v0 < α0 and v0 is 1-sided terminal (see §3.7.2). Then either 
both v and v′ lie to the left of v0 (with respect to �k,v0) or both lie to the right of v0. 
Depending on their position, we work as in Case 1 or Case 2.
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Case 4. Suppose that αk,v0 ≥ α0. By definition of graph Gk+1,I in §3.8, the segment 
[v, v′] is the image of some J ∈ Ek+1 under fk+1.

To prove the second claim of (P5), fix (a, b) ∈ Ek+1 such that one of its endpoints has 
flat image. Without loss of generality, assume αk+1,fk+1(a) < α0.

Case 1. Suppose that (a, b) ∈ Ek+1(I) for some I ∈ Nk as in §3.8. By construction of 
fk+1 on such intervals, (fk+1(a), fk+1(b)) ∈ Flat(k + 1).

Case 2. Suppose that (a, b) ∈ Ek+1(I) for some I ∈ Nk as in §3.7. By construction of 
fk+1 on such intervals, no point of Vk+1 ∩B(fk+1(a), 14A∗ρk+1r0),

Vk+1 ∩B(fk+1(a), 14A∗ρk+1r0) ⊂ Vk+1 ∩B(fk(I), 30A∗ρkr0),

lies strictly between fk+1(a) and fk+1(b) with respect to �k,fk(I). The same is true with 
respect to �k+1,fk+1(a) by Lemma 2.1. Thus, (fk+1(a), fk+1(b)) ∈ Flat(k + 1).

Case 3. Suppose that (a, b) ∈ Ek+1(I) for some I ∈ Ek as in §3.4. The argument is 
similar to Case 2

Property (P7). To check the final property, fix J ∈ Nk+1 and choose I ∈ Ek+1 such 
that fk+1(J) is an endpoint of fk+1(I). There are several cases.

Case 1. Suppose J ∈ Nk+1(J0) for some J0 ∈ Nk as in §3.8. Then there exists 
I ′ ∈ Ek+1(J0) such that fk+1(I ′) = fk+1(I). By the construction of Nk+1(J0) in §3.8, 
I ′ ∩ J �= ∅.

Case 2. Suppose J ∈ Nk+1(J0) for some J0 ∈ Ek as in §3.4. By (P4), there exists 
I ′ ∈ Ek+1(J0) such that fk+1(I ′) = fk+1(I). The interval I ′ satisfies I ′ ∩ J �= ∅.

Case 3. Suppose J ∈ Nk+1(J0) for some J ′ ∈ Nk as in §3.7. There are three subcases.
Case 3a. Suppose that fk+1(J) �= fk(J0). Then by the choice of Nk+1(J0), there exists 

I ′ ∈ Ek+1(J0) such that fk+1(I ′) = fk+1(I) and I ′ ∩ J �= ∅.
Case 3b. Suppose that fk+1(J) = fk(J0) and there exists Ĩ ∈ Ek+1(J0) such that 

fk+1(Ĩ) = fk+1(I). As in Case 3a, the claim follows from the choice of Nk+1(J0).
Case 3c. Suppose that fk+1(J) = fk(J0) and there exists no Ĩ ∈ Ek+1(J0) such that 

fk+1(Ĩ) = fk+1(I). In this case, fk(J0) is the endpoint of fk(I0) for some I0 ∈ Ek. By 
the inductive hypothesis and (P4), there exists at least one and at most two intervals 
I ′0 ∈ Ek such that fk(I0) = fk(I ′0) and I ′0 ∩ J0 �= ∅. On one hand, if there is only one 
interval I ′0, then J0 is as in §3.7.1 and J = J0. Hence there exists I ′ ∈ I ′0 such that 
fk+1(I ′) = fk+1(I) and I ′ ∩ J �= ∅. On the other hand, if there are two intervals I ′0, I ′′0 , 
then one of them has a closure which intersects J , say I ′0. Then there exists I ′ ∈ I ′0 such 
that fk+1(I ′) = fk+1(I) and I ′ ∩ J �= ∅.

3.10. Choices in the Traveling Salesman algorithm

In §§2.2 and 3, we made a series of implicit and explicit choices.

(C0) The choice of α0 ∈ (0, 1/16] determines the set Flat(k) of flat pairs. The constant 
14 in the definition of Flat(k) is chosen to facilitate the estimates in §4 (see (E2)), 
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but has not been optimized. The constant 30 in the definition of αk,v is chosen to 
be larger than (1 + 3(1/16)2) · 2 · 14. For example, see the proof of Lemma 2.5.

(C1) If I, I ′ ∈ Ek satisfy fk(I) = fk(I ′) and are as in §3.4 (that is, I has at least one 
endpoint x with αk,fk(x) < α0), then either Nk+1(I) = Fk+1(I ′) = ∅ or vice-versa.

(C2) If I ∈ Nk is as in §3.7.3 (i.e. αk,fk(I) < α0 and Vk∩B(fk(I), 14A∗ρkr0) = {fk(I)}), 
then there may exist up to two different ways to parameterize the graph Gk+1,I

therein.
(C3) If I ∈ Nk is as in §3.8 (i.e. αk,fk(I) ≥ α0) and G(1)

k+1,I , . . . , G
(l)
k+1,I are the graph 

components of the graph Gk+1,I therein, then
(C3a) we choose the order in which we parameterize the graph components and
(C3b) in each graph component, there exists up to two choices of parameterization.
Similar choices are made in the step 0.

(C4) We get to choose the enumeration of intervals I in Nk such that αk,fk(I) ≥ α0.

The algorithm can be made more flexible by permitting four additional choices. Let 
α̃0 ∈ (0, α0) and Ã > 14A∗.

(C5) Suppose that I ∈ Nk.
• If αk,fk(I) < α̃0, then we treat I as in §3.7; i.e., we treat fk(I) as a flat vertex.
• If αk,fk(I) ≥ α0, then we treat I as in §3.8; i.e., we treat fk(I) as a non-flat 

vertex.
• If αk,fk(I) ∈ [α̃0, α0), then we can either treat I as in §3.7 or as in §3.8.

(C6) Suppose that v ∈ Vk is chosen to be considered “flat” by (C5). Let � be the 
approximating line for (k, v) and let v′ ∈ Vk be such that there exists no v′′ ∈
Vk ∩B(v, Ãρkr0) such that π�(v′′) is between v and v′.
• If |v − v′| < 14A∗ρkr0, then (v, v′) ∈ Flat(k).
• If |v − v′| ≥ Ãρkr0, then (v, v′) /∈ Flat(k).
• If |v − v′| ∈ [14A∗ρkr0, Ãρkr0), then we are free to choose whether (v, v′) is 

contained in Flat(k) or not.
(C7) Similarly to (C6), suppose that I ∈ Ek is as in §3.4; i.e., fk(I) has at least one 

endpoint x whose image is “flat” by (C5). Let {v1, . . . , vl} and {I1, . . . , Il−1} be as 
in §3.4.
• If |vi − vi+1| < 14A∗ρk+1r0, then we set Ii ∈ Ek+1.
• If |vi − vi+1| ≥ Ãρk+1r0, then we set Ii ∈ Bk+1.
• If |vi − vi+1| ∈ [14A∗ρk+1r0, Ãρk+1r0), then we can choose in each instance 

whether Ii ∈ Ek+1(I) or Ii ∈ Bk+1(I).
(C8) Suppose that {I1, . . . , In} are the intervals in Nk that have a non-flat image. Sup-

pose also that we have defined fk+1 on I1, . . . , Ir−1 and on intervals in Nk that 
have an image chosen to be flat. Let v ∈ Vk+1 be a point which is not the image 
of some I ∈ Nk+1(J), where J ∈ {I1, . . . , Ir−1} or J ∈ Nk is as in §3.7.
• If v ∈ B(fk(Ir), 14A∗ρkr0), then v ∈ Vk+1,Ir .
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• If v ∈ B(fk(Ir), Ãρkr0) \ B(fk(Ir), 14A∗ρkr0), then we may choose whether 
v ∈ Vk+1,Ir or not.

Note that (C5) has subsequent implications on the treatment of intervals I ∈ Ek. 
For instance, if both endpoints if I have images chosen to be non-flat, then I ∈ Bk+1; 
otherwise, we treat I as in §3.4. Similarly, (C6) gives us the set Lk and together with 
(C8) affects the parametrization near non-flat vertices.

Remark 3.9 (Coherence). In the original, non-parametric Analyst’s Traveling Salesman 
construction, Jones [32] required the coherence property (V2), i.e. Vk ⊂ Vk+1. The 
first author and Schul [9] established a non-parametric Traveling Salesman construc-
tion, which replaced (V2) with the weaker property that for all v ∈ Vk, the set

v′ ∈ Vk+1 ∩B(v, C∗ρkr0)

is nonempty. This relaxation was crucial for the proof of the main result in [9], which 
characterized Radon measures in RN that are carried by rectifiable curves. We would like 
to emphasize that in the parametric Traveling Salesman construction described above, 
we heavily rely on (V2). At this time, we do not know how to build a parameterization 
under the relaxed condition of [9].

4. Mass of intervals

In this section, we use the construction of §3, to assign mass to intervals defined in §3. 
The total mass Ms on the domain of the maps fills the role that the Hausdorff measure 
H1 of the image plays in the proof of the sufficient half of the Analyst’s TST given in 
[32] or [9]. The main result of this section is Proposition 4.11, which bounds the total 
mass of [0, 1] by a sum involving the flatness approximation errors αk,v and variation 
excess τs(k, v, v′) defined in §2.2. For each k ≥ 0, set

Ik := Ek ∪ Bk ∪ Nk ∪ Fk and I :=
⋃
k≥0

Ik.

For each I ∈ Ik, set Ik+1(I) := Ek+1(I) ∪ Bk+1(I) ∪ Nk+1(I) ∪ Fk+1(I).

Remark 4.1. If I ∈ Ik ∩ Im for some m �= k, then fk|I = fm|I.

4.1. Trees over intervals

Given k ≥ 0 and I ∈ Ik, we define a finite tree T over (k, I) to be a finite subset of ⋃
m≥0({m} × Im) satisfying the following three conditions.

(1) The pair (k, I) ∈ T . If (m, J) ∈ T , then m ≥ k and J ⊂ I.
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(2) If (m, J) ∈ T and there exists J ′ ∈ Im+1(J) such that (m + 1, J ′) ∩ T , then {m +
1} × Im+1(J) ⊆ T .

(3) If (m, J) ∈ T for some m > k and J ∈ Im(J ′), then (m − 1, J ′) ∈ T .

The first condition says that the root of the tree is (k, I) and its elements are descendants 
of (k, I). The second condition says that if one child (m + 1, J ′) of (m, J) is in T , then 
every child of (m, J) is in T . The third condition says that if (m, J) is in T , then all its 
ancestors up to (k, I) are in T .

We extend this notion to the entire domain by defining a finite tree T over [0, 1] to be 
a set of the form

T = {[0, 1]} ∪
⋃

I∈I0

TI ,

where TI is a finite tree over (0, I). A finite tree over [0, 1] may be thought to belong to 
step k = −1 of the construction.

Let T be a finite tree over (k, I). The boundary ∂T of T is defined by

∂T := {(m,J) ∈ T : ({m + 1} × Im+1(I)) ∩ T = ∅}.

The depth m(T ) of T is the integer defined by

m(T ) := max{m ≥ 0 : (m,J) ∈ T} = max{k ≥ 0 : (m,J) ∈ ∂T}.

If m(T ) ≥ 1, the parent tree p(T ) is defined by

p(T ) := T \ ({m(T )} × Im(T ))

Note that m(p(T )) = m(T ) − 1.

Remark 4.2. If T is a finite tree over (k, I) and ∂T = {(k1, J1), . . . , (kn, Jn)}, then the 
intervals J1, . . . , Jn partition I. That is, for all x ∈ I, there exists a unique i ∈ {1, . . . , n}
such that x ∈ Ji.

4.2. Mass of intervals

For all s ≥ 1, k ≥ 0, and intervals I ∈ Ik, define the s-mass Ms(k, I) of (k, I) by

Ms(k, I) := sup
T

∑
(k′,I′)∈∂T

(diam fk′(I ′))s ∈ [0,∞],

where the supremum is taken over all finite trees over (k, I). This notion extends to [0, 1]
by assigning
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Ms([0, 1]) :=
∑
I∈I0

Ms(0, I) ∈ [0,∞].

Lemma 4.3. Let k ≥ 0 and I ∈ Ik.

(1) If I ∈ Bk, then Ms(k, I) = (diam fk(I))s.
(2) If I ∈ Fk, then Ms(k, I) = 0.
(3) Ms(k, I) ≥

∑
I′∈Ik+1(I) Ms(k + 1, I ′).

(4) If I ∈ Ik ∩ Im for some m ≥ 0, then Ms(k, I) = Ms(m, I).

Before proving Lemma 4.3, we make two clarifying remarks. First, it is possible for 
an interval I ∈ Nk to have Ms(k, I) > 0 even though diam fk(I)s = 0. This happens 
whenever I ∈ Nk and Ek+1(I) ∪ Bk+1(I) is non-empty. Second, Lemma 4.3(4) implies 
that given I ∈ Ik, the mass Ms(k, I) is defined independently of the step of the con-
struction in which I appears. Nevertheless, we include the step k in definition of the 
mass to improve exposition of the estimates in §4.5 and §4.6.

Proof of Lemma 4.3. For the first claim, note that if I ∈ Bk and m ≥ k + 1, then 
Im(I) = {I}. Therefore, if T is a finite tree over I of depth m, then ∂T = {(m, I)}. 
Thus, Ms(k, I) = supm≥k(diam fm(I))s = (diam fk(I))s.

For the second claim, note that if I ∈ Fk and m ≥ k + 1, then Im(I) = {I} and 
fm(I) is a point. Therefore, if T is a finite tree over I of depth m, then ∂T = {(m, I)}. 
Thus, Ms(k, I) = supm≥k(diam fm(I))s = 0.

For the third claim, let us first assume that Ms(k+1, J) = ∞ for some J ∈ Ik+1(I). 
Fix M > 0 and find a finite tree TJ over (k + 1, J) such that∑

(k′,J ′)∈TJ

(diam fk′(J ′))s > M.

The collection T = TJ ∪ {(k, I)} ∪ ({k + 1} × Ik+1(I)) is a finite tree over (k, I) and 
∂TJ ⊂ ∂T . Hence

Ms(k, I) ≥
∑

(k′,I′)∈∂T

(diam fk′(I ′))s ≥
∑

(k′,J ′)∈∂TJ

(diam fk′(J ′))s > M.

We conclude that Ms(k, I) = ∞.
Alternatively, assume that Ms(k + 1, J) is finite for all J ∈ Ik+1(I). Fix ε > 0. For 

each interval J ∈ Ik+1(I), let TJ be a finite tree over (k + 1, J) such that∑
(k′,J ′)∈∂TJ

(diam fk′(J ′))s > Ms(k + 1, J) − ε

card(Ik+1(I))
.

Then the collection T = {(k, I)} ∪
⋃

J∈Ik+1(I) TJ is a finite tree over (k, I) with ∂T =⋃
J∈I (I) ∂TJ . Therefore,
k+1
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Ms(k, I) ≥
∑

J∈Ik+1(I)

∑
(k′,J ′)∈∂TJ

(diam fk′(J ′))s >
∑

J∈Ik+1(I)

Ms(k + 1, J) − ε.

The third claim follows by taking ε ↓ 0.
For the fourth claim, suppose that I ∈ Ik ∩ Im for some m and k, say without loss 

of generality that m > k. Because I ∈ Ik∩Im, we have In(I) = {I} for all k ≤ n ≤ m. 
Thus, iterating the third claim, Ms(k, I) ≥ Ms(m, I). For the opposite inequality, let 
T be a finite tree over (k, I). If (m, I) /∈ T , then T = {(k, I), . . . , (l, I)} for some k ≤
l ≤ m − 1 and we define T ′ = {(m, I)}. If (m, I) ∈ T , then T ⊃ {(k, I), . . . , (m − 1, I)}
and we set T ′ = T \ {(k, I), . . . , (m − 1, I)} so that T ′ is a finite tree over (m, I) and 
∂T = ∂T ′. In either case,∑

(k′,I′)∈∂T

(diam fk′(I ′))s =
∑

(k′,I′)∈∂T ′

(diam fk′(I ′))s

and it follows that Ms(k, I) ≤ Ms(m, I). �
When s = 1, the 1-mass is comparable to the Hausdorff measure H1 of the image.

Lemma 4.4. For each k ≥ 0 and each I ∈ Ik,

M1(k, I) = lim
m→∞

∑
J∈Im
J⊂I

diam fm(J) ≥ lim sup
m→∞

H1(fm(I)).

If there exists n ∈ N such that fm| 
⋃

Bk is at most n-to-1 for all m ≥ k, then

M1(k, I) 
n lim inf
m→∞

H1(fm(I)).

Proof. Fix k ≥ 0 and I ∈ Ik. By definition of the mass and (P2),

M1(k, I) ≥ lim sup
m→∞

∑
J∈Im
J⊂I

diam fm(J) ≥ lim sup
m→∞

H1(fm(I)).

To establish the other direction, let T be a finite tree over I of depth m ≥ k and 
enumerate with ∂T = {(k1, I1), . . . , (kn, In)}, where each ki ≤ m. For each i = 1, . . . , n, 
let Ii be the set of all intervals J ∈ Im such that J ⊂ Ii. Then

∑
J∈Im
J⊂I

diam fm(J) =
n∑

i=1

∑
J∈Ii

diam fm(J) ≥
n∑

i=1
diam fki

(Ii) =
∑

(l,J)∈∂T

diam fl(J).

Therefore,

sup
m≥k

∑
J∈Im

diam fm(J) ≤ M1(k, I) = sup
T

∑
(l,J)∈∂T

diam fl(J) ≤ lim inf
m→∞

∑
J∈Im

diam fm(J).
J⊂I J⊂I
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This shows that

M1(k, I) = lim
m→∞

∑
J∈Im
J⊂I

diam fm(J).

By (P4), the maps fm| 
⋃

Em are 2-to-1. In §3, we did not examine overlaps of images 
of bridge intervals. By modifying the algorithm, the overlap of images of bridge intervals 
can be made 2-to-1 (see the proof of Proposition 5.7). Nevertheless, suppose that we 
know the overlaps of images of bridge intervals is at most n-to-1 for some n ≥ 2. Then

M1(k, I) = lim
m→∞

∑
J∈Im
J⊂I

diam fm(J) ≤ 1
n

lim inf
m→∞

H1(fm(I)). �

While Lemma 4.4 does not hold when s > 1, we always have the following comparison 
between the s-mass and the Hausdorff measure Hs of the closure of the points in 

⋃∞
k=0 Vk.

Lemma 4.5. For all s ≥ 1, Hs
(⋃∞

k=0 Vk

)
�s,C∗,ξ2 Ms([0, 1]).

Proof. Fix δ > 0 and choose m ∈ N sufficiently large such that 2C∗ξm+1
2 r0/(1 − ξ2) ≤ δ. 

By (V0), (V2), and (V4), the collection {B(v, C∗ρm+1r0/(1 − ξ2)) : v ∈ Vm} is a cover 
of 
⋃∞

k=0 Vk with elements of diameter at most 2C∗ρm+1r0/(1 − ξ2) ≤ 2C∗ξm+1
2 r0 ≤ δ. 

Let T be the maximal finite tree over [0, 1] of depth m, i.e., T =
⋃m

k=0 Ik. Then

Hs
δ

(⋃∞
k=0 Vk

)
≤
∑
v∈Vm

(
2C∗ρm+1r0

1 − ξ2

)s

≤
(

2C∗ξ2
1 − ξ2

)s ∑
(m,I)∈∂T

(diam fm(I))s

�s,C∗,ξ2 Ms([0, 1]).

Taking δ ↓ 0 completes the proof. �
We include Lemma 4.4 and Lemma 4.5 for completeness. We will not use either lemma 

in any of the estimates below.

4.3. Terminal vertices and phantom mass

Let I ∈ Nk be an interval such that αk,fk(I) < α0. We classify fk(I) according to the 
arrangement of nearby points in Vk+1.

• If I is as in §3.7.1, then fk(I) is called a non-terminal vertex in Vk.
• If I is as in §3.7.2, then fk(I) is called a 1-sided terminal vertex in Vk.
• If I is as in §3.7.3, then fk(I) is called a 2-sided terminal vertex in Vk.
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Motivated by [32] and [9], for each k ≥ 0 we will define a set Pk ⊂ {k} ×Nk and for 
each (k, I) ∈ Pk define a number pk,I > 0, which we call the phantom mass at (k, I). 
The phantom mass pk,I will let us pay for the length of edges between vertices in Vk+1

nearby fk(I) that do not lie between vertices in Vk nearby fk(I) (i.e., the blue edges in 
Fig. 2). To start, define an auxiliary parameter P depending only on s, C∗, and ξ2 by 
requiring that [P + 2(1.1C∗)s] ξs2 = P . That is,

P = 2(1.1C∗)s

1 − ξs2
. (4.1)

For each k ≥ 0, define

Pk = {(k, I) : I ∈ Nk, αk,fk(I) < α0 and fk(I) is 1- or 2-sided terminal in Vk}.

For each k ≥ 0 and (k, I) ∈ Pk, assign

pk,I :=
{

2Pρskr
s
0, if fk(I) is 2-sided terminal

Pρskr
s
0, if fk(I) is 1-sided terminal.

Lemma 4.6. Let I ∈ Nk be an interval such that αk,fk(I) < α0. If fk(I) is 1-sided 
terminal, then

∑
J∈Ik+1(I)

(diam fk+1(J))s < 2(1.1C∗)sρsk+1r
s
0.

If fk(I) is 2-sided terminal, then

∑
J∈Ik+1(I)

(diam fk+1(J))s < 4(1.1C∗)sρsk+1r
s
0.

Proof. Suppose v = fk(I) is 1-sided terminal and let {v1, . . . , vn} be an enumeration 
of the points in Vk+1 ∩ B(v, C∗ρk+1r0) starting from v1 = v and moving consecutively 
towards the terminal direction. Then

∑
J∈Ik+1(I)

(diam fk+1(J))s = 2
n∑

i=1
|vi+1 − vi|s ≤ 2(1 + 3α2

k,v)s|v1 − vn|s

< 2(1.1)s(C∗ρk+1r0)s

by Lemma 2.2, since 1 + 3α2
k,v ≤ 1 + 3(1/16)2 < 1.1. The case that v is 2-sided terminal 

follows from a similar computation. �
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4.4. Special bridge intervals

Given k ≥ 1, we define

B∗
k := {(k, I) : I ∈ Bk(J), J ∈ Ek−1 is as in §3.4}.

Recall from §3.4 that if (k, I) ∈ B∗
k, then 14A∗ρkr0 ≤ diam fk(I) < 14A∗ρk−1r0.

Lemma 4.7. If I ∈ B∗
k, then

1
6(diam fk(I))s ≥ Pρskr

s
0.

Proof. Because diam fk(I) ≥ 14A∗ρkr0, it suffices to check that (14A∗)s ≥ 6P . Recalling 
the definition of A∗, we find that

(14A∗)s =
(

14C∗

1 − ξ2

)s

≥ 12(1.1C∗)s

1 − ξs2
= 6P.

Here 1/(1 − ξ2)s ≥ 1/(1 − ξs2) because 0 < ξ2 < 1 and s ≥ 1. �
Let T be a finite tree over [0, 1], let m be the depth of T and let 0 ≤ k ≤ m be an 

integer. Define

B∗
k(T ) := {(k, I) ∈ B∗

k : there exists (k, J) ∈ T ∩ ({k} × Nk) such that J ∩ I �= ∅}.

Although the sets B∗
k(T ) are not necessarily subsets of ∂T , we show in the next lemma 

that each element in ∂T generates at most two elements in 
⋃m

k=1 B∗
k(T ).

Lemma 4.8. Let T be a finite tree over [0, 1] with depth m ≥ 1 and let k ≤ m.

(1) For each (k, I) ∈ B∗
k(T ), there exists a unique (l, J) ∈ ∂T such that I ⊂ J . In fact, 

J ∈ El ∪ Bl.
(2) For each (l, J) ∈ ∂T such that J ∈ El ∪ Bl, there exist at most two distinct (k, I) ∈⋃m

i=0 B∗
i (T ) such that I ⊂ J .

Proof. The first claim of (1) follows immediately from Remark 4.2. For the second claim, 
let (k, I) ∈ B∗

k(T ). There are two cases.
Case 1. If (k, I) ∈ T , then In(I) = {I} and I ∈ Bn for all n > k, since I is a bridge 

interval. Therefore, (l, I) ∈ ∂T for some l ≤ m and I ∈ Bl.
Case 2. Suppose now that (k, I) /∈ T . If J was in Nl ∪Fl, then the closure of I would 

be contained in the interior of J and I would intersect only intervals I ′ ∈ Il′ for which 
(l′, I ′) /∈ T , which is a contradiction.
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For (2), fix (l, J) ∈ ∂T with J ∈ El ∪ Bl and assume that {(ki, Ji) : i = 1, 2, 3}
are distinct elements in 

⋃m
j=0 B∗

j (T ) such that Ji ⊂ J for i = 1, 2, 3. Without loss of 
generality, assume that J2 is between J1 and J3, in the orientation of J . Then there 
exists l′ ≥ l + 1 and J ′ ⊆ J such that J ′ ∈ Nl′ and (l′, J ′) ∈ T . But then (l, J) /∈ ∂T

which is a contradiction. �
We now impose an additional restriction on α0.

Lemma 4.9. For all C∗, ξ1, and ξ2, there exists α1 ∈ (0, 1/16] such that if α0 ≤ α1, then 
for all k ≥ 0, (v, v′) ∈ Flat(k), and y, y′ ∈ Vk+1(v, v′), we have |y − y′| ≤ |v − v′|.

Proof. Enumerate Vk+1(v, v′) = {v1, . . . , vn} from left to right, so that v1 = v and 
vn = v′. Let y = vl and y′ = vm for some 1 ≤ l < m ≤ n. If y = v and y′ = v′, the 
conclusion is trivial. Thus, let us suppose that there exists at least one point to the left 
of y or the right of y′, say without loss of generality that l ≥ 2. Let xi = π�k,v

(vi) for all 
1 ≤ i ≤ n. Then, arguing as in the proof of Lemma 2.2,

|v1 − v2| + |vl − vm|
1 + 3α2

0
≤ |x1 − x2| + |xl − xm| ≤ |x1 − xn| ≤ |v − v′|.

Because Vk+1 is ρk+1-separated,

|vl − vm| ≤ (1 + 3α2
0)|v − v′| − |v1 − v2| ≤ (1 + 3α2

0)|v − v′| − ρk+1r0

= |v − v′|
(

1 + 3α2
0 −

ρk+1r0
|v − v′|

)
.

Now |v − v′| ≤ 14A∗ρkr0 ≤ 14A∗ξ−1
1 ρk+1r0. Hence |vl − vm| ≤ |v − v′| provided that

1 + 3α2
0 −

ξ1
14A∗ ≤ 1.

Thus, we can take

α1 := min
{

1
16 ,
(

ξ1
42A∗

)1/2
}
. � (4.2)

Together Lemma 4.8 and Lemma 4.9 yield the following result.

Corollary 4.10. Assume α0 ≤ α1. If T is a finite tree over [0, 1] of depth m, then,

m∑
k=1

∑
(k,J)∈B∗

k(T )

(diam fk(J))s ≤ 2
∑

(l,J)∈∂T

(diam fl(J))s.
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4.5. An upper bound for the total mass

Here we prove the following proposition which gives an upper bound for the mass of 
[0, 1] in terms of the variation excess τs(k, v, v′) of flat pairs (v, v′) ∈ Flat(k) defined in 
§2.2.

Proposition 4.11. Assume that α0 ≤ α1 (see Lemma 4.9). For all s ≥ 1,

Ms([0, 1]) �s,C∗,ξ2 rs0 +
∞∑
k=0

∑
(v,v′)∈Flat(k)

τs(k, v, v′)ρskrs0 +
∞∑
k=0

∑
v∈Vk

αk,v≥α0

ρskr
s
0.

The proof of Proposition 4.11 reduces to proving the following lemma (cf. [9, (9.4)]). 
Recall the definition of the parent tree from §4.1.

Lemma 4.12. Let k ≥ 1 be an integer, let T be a finite tree over [0, 1] of depth k + 1 and 
let p(T ) be the parent tree. There exists a constant C > 0 depending only on s, C∗, and 
ξ2 such that∑

(l,I)∈∂T

(diam fl(I))s +
∑

(k+1,I)∈Pk+1∩∂T

pk+1,I

≤
∑

(l,I)∈∂p(T )

(diam fl(I))s +
∑

(k,I)∈Pk∩∂p(T )

pk,I + 1
3

∑
(k+1,I)∈B∗

k+1(T )

(diam fk+1(I))s

+ C
∑
v∈Vk

αk,v≥α0

ρskr
s
0 + C

∑
w∈Vk+1

αk+1,w≥α0

ρsk+1r
s
0 + C

∑
(v,v′)∈Flat(k)

τs(k, v, v′)ρskrs0.

(E)

We prove Lemma 4.12 in §4.6. Assuming that Lemma 4.12 holds, here is the proof of 
Proposition 4.11.

Proof of Proposition 4.11. Assume that α1 ≤ α0. Let T be a finite tree over [0, 1] of 
depth m. Set Tm = T and for each 1 ≤ k ≤ m (if any) set Tk−1 = p(Tk). Note that 
T0 = {0} × I0. By Lemma 4.12, for all 1 ≤ k ≤ m (if any),∑

(l,I)∈∂Tk

(diam fl(I))s +
∑

(k,I)∈Pk∩∂Tk

pk,I

≤
∑

(l,I)∈∂Tk−1

(diam fl(I))s +
∑

(k−1,I)∈Pk−1∩∂Tk−1

pk−1,I + 1
3

∑
(k,I)∈B∗

k(Tk)

(diam fk(I))s

+ C
∑

v∈Vk−1
αk−1,v≥α0

ρsk−1r
s
0 + C

∑
w∈Vk

αk,w≥α0

ρskr
s
0 + C

∑
(v,v′)∈Flat(k−1)

τs(k − 1, v, v′)ρsk−1r
s
0.
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Iterating the latter inequality,

∑
(l,I)∈∂T

(diam fl(I))s ≤
∑

I∈E0∪B0

(diam f0(I))s +
∑
I∈P0

p0,I + 1
3

m∑
k=1

∑
I∈B∗

k(T )

(diam fk(I))s

+ 2C
m∑

k=0

∑
v∈Vk

αk,v≥α0

ρskr
s
0 + C

m∑
k=1

∑
(v,v′)∈Flat(k)

τs(k, v, v′)ρskrs0.

Since α0 ≤ α1, we obtain 1
3
∑m

k=1
∑

I∈B∗
k(T )(diam fk(I))s ≤ 2

3
∑

(l,I)∈∂T (diam fl(I))s by 
Corollary 4.10. This is the only place in the proof of the Proposition that we use the 
restriction α0 ≤ α1. Therefore,

∑
(l,I)∈∂T

(diam fl(I))s ≤ 3
∑

I∈E0∪B0

(diam f0(I))s + 3
∑
I∈P0

p0,I

+ 6C
m∑

k=0

∑
v∈ Vk

αk,v≥α0

ρskr
s
0 + 3C

m−1∑
k=0

∑
(v,v′)∈Flat(k)

τs(k, v, v′)ρskrs0.

There are now two alternatives. On one hand, suppose that α0,v < α0 for some v ∈ V0. 
Then V0 projects onto an (1 + 3(1/16)2)−1r0 separated set in �0,v of diameter at most 
2C∗r0 by Lemma 2.1. Hence cardV0 �C∗ 1 and

∑
I∈E0∪B0

(diam f0(I))s +
∑
I∈P0

p0,I �s,C∗,ξ2 rs0.

On the other hand, suppose that α0,v ≥ α0 for all v ∈ V0. Then

∑
I∈E0∪B0

(diam f0(I))s +
∑
I∈P0

p0,I �s,C∗,ξ2

∑
v∈V0

α0,v≥α0

rs0.

In either case, we arrive at

∑
(l,I)∈∂T

(diam fl(I))s �s,C∗,ξ2 rs0 +
m−1∑
k=0

∑
(v,v′)∈Flat(k)

τs(k, v, v′)ρskrs0 +
m∑

k=0

∑
v∈ Vk

αk,v≥α0

ρskr
s
0

�s,C∗,ξ2 rs0 +
∞∑
k=0

∑
(v,v′)∈Flat(k)

τs(k, v, v′)ρskrs0 +
∞∑
k=0

∑
v∈ Vk

αk,v≥α0

ρskr
s
0.

Since T was an arbitrary tree over [0, 1], we obtain the desired bound on Ms([0, 1]). �
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4.6. Proof of Lemma 4.12

The proof is divided into five estimates (E1), (E2), (E3), (E4) and (E5), whose sum 
gives (E). Towards this end, we split the left hand side of (E) into smaller sums by 
making the following four decompositions.

Firstly, ∂T can be partitioned as E1 ∪ E2 ∪ E3 ∪B1 ∪B2 ∪B3 ∪B4 ∪F ∪ (∂T ∩ ∂p(T )), 
where

E1 = {(k + 1, I) ∈ ∂T : I ∈ Ek+1(J) and J ∈ Nk is as in §3.8},

E2 = {(k + 1, I) ∈ ∂T : I ∈ Ek+1(J) and J ∈ Nk is as in §3.7},

E3 = {(k + 1, I) ∈ ∂T : I ∈ Ek+1(J) and J ∈ Ek is as in §3.4},

B1 = {(k + 1, I) ∈ ∂T : I ∈ Bk+1(J) and J ∈ Nk is as in §3.8},

B2 = {(k + 1, I) ∈ ∂T : I ∈ Bk+1(J) and J ∈ Ek is as in §3.5},

B3 = {(k + 1, I) ∈ ∂T : I ∈ Bk+1(J) and J ∈ Ek is as in §3.4},

B4 = {(k + 1, I) ∈ ∂T : I ∈ Bk+1(J) and J ∈ Bk is as in §3.3},

F ⊆ {k + 1} × (Nk+1 ∪ Fk+1).

Secondly, Pk+1 ∩ ∂T can be partitioned as P1 ∪ P2 ∪ P3, where

P1 = {(k + 1, I) ∈ ∂T ∩ Pk+1 : I ∈ Nk+1(J) and J ∈ Nk is as in §3.8},

P2 = {(k + 1, I) ∈ ∂T ∩ Pk+1 : I ∈ Nk+1(J) and J ∈ Nk is as in §3.7},

P3 = {(k + 1, I) ∈ ∂T ∩ Pk+1 : I ∈ Nk+1(J) and J ∈ Ek is as in §3.4}.

Thirdly, ∂p(T ) can be partitioned as E ′
1 ∪ E ′

2 ∪ F ′ ∪ (∂T ∩ ∂p(T )), where

E ′
1 = {(k, I) ∈ ∂p(T ) \ ∂T : I ∈ Ek is as in §3.5},

E ′
2 = {(k, I) ∈ ∂p(T ) \ ∂T : I ∈ Ek is as in §3.4},

B′
1 = {(k, I) ∈ ∂p(T ) \ ∂T : I ∈ Bk is as in §3.3},

F ′ ⊆ {k} × (Nk ∪ Fk).

Fourthly, set B ∗∗
k+1(T ) = B∗

k+1(T ) � B∗
k+1(T ). Then define collections B∗

1 and B∗
2 as 

follows. If I ∈ Nk, αk,fk(I) < α0, Ik+1(I) ⊂ ∂T , and fk(I) is an endpoint of the image 
fk+1(J) of (k + 1, J) ∈ B∗

k+1, then we include a copy of (k + 1, J) from B ∗∗
k+1(T ) in B∗

1 . 
If K ∈ Nk and fk(K) is the endpoint of fk+1(I) for some (k+1, I) ∈ B3 that lies strictly 
between the endpoints of the image fk(J) of the associated edge interval J ∈ Ek, then 
we include a copy of (k + 1, I) from B ∗∗

k+1(T ) in B∗
2 . Because each bridge has only two 

endpoints, we can choose the included copies so that B∗
1 ∪ B∗

2 ⊂ B ∗∗
k+1.
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Before proceeding to the estimates, we remark that∑
(k,I)∈F ′

(diam fk(I))s =
∑

(k+1,I)∈F
(diam fk+1(I))s = 0,

because fk is constant on each interval in Nk ∪ Fk by (P2).

Estimate 1. Here we deal with phantom masses and new intervals coming from some 
I ∈ Nk whose image is not flat. In particular, we will show that there exists C1 depending 
only on s, C∗, and ξ2 such that∑

(k+1,I)∈E1∪B1

(diam fk+1(I))s +
∑

(k+1,J)∈P1

pk+1,J

≤ C1
∑
v∈Vk

αk,v≥α0

ρskr
s
0 + C1

∑
w∈Vk+1

αk+1,w≥α0

ρsk+1r
s
0.

(E1)

Since

{I ∈ Nk : αk,fk(I) ≥ α0 and Ik+1(I) ⊂ ∂T} ⊆ {I ∈ Nk ∩ ∂p(T ) : αk,fk(I) ≥ α0},

inequality (E1) follows from the inequality

∑
I∈Nk

{k+1}×Ik+1(I)⊂∂T
αk,fk(I)≥α0

⎛⎜⎜⎝ ∑
J∈Ek+1(I)∪Bk+1(I)

(diam fk+1(I))s +
∑

J∈Nk+1(I)
(k+1,J)∈Pk+1

pk+1,J

⎞⎟⎟⎠
≤ C1

∑
I∈Nk

{k+1}×Ik+1(I)⊂∂T
αk,fk(I)≥α0

ρskr
s
0 + C1

∑
I∈Nk

{k+1}×Ik+1(I)⊂∂T
αk,fk(I)≥α0

∑
J∈Nk+1(I)

αk+1,fk+1(J)≥α0

ρsk+1r
s
0.

(4.3)

To prove (4.3), fix any I ∈ Nk such that {k + 1} × Ik+1(I) ⊂ ∂T and αk,fk(I) ≥ α0. 
Recall that Nk+1(I) is in one-to-one correspondence with Vk+1,I defined in §3.8. There 
are now two possibilities. On one hand, suppose that αk+1,w < α0 for some w ∈ Vk+1,I . 
Then Vk+1,I projects onto an (1 +3(1/16)2)−1ρk+1r0 separated set in �k+1,w of diameter 
at most 2C∗ρk+1r0 by Lemma 2.1. Hence cardIk+1(I) �C∗ 1 and∑
J∈Ek+1(I)∪Bk+1(I)

(diam fk+1(J))s +
∑

J∈Nk+1(I)
(k+1,J)∈Pk+1

pk+1,J �s,C∗,ξ2 ρsk+1r
s
0 �s,C∗,ξ2 ρskr

s
0.

On the other hand, suppose that αk+1,w ≥ α0 for all w ∈ Vk+1,I . Then∑
J∈Ek+1(I)∪Bk+1(I)

(diam fk+1(J))s +
∑

J∈Nk+1(I)

pk+1,J �s,C∗,ξ2

∑
J∈Nk+1(I)

ρsk+1r
s
0.
(k+1,J)∈Pk+1
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Because the sets Vk+1,I for different I ∈ Nk are pairwise disjoint (see §3.8), summing 
over all such I yields (4.3).

Estimate 2. We estimate the new phantom masses and new intervals coming from 
some I ∈ Nk such that αk,fk(I) < α0 and Ik+1(I) ⊂ ∂T . In particular, we show that

∑
(k+1,I)∈E2

(diam fk+1(I))s +
∑

(k+1,I)∈P2

pk+1,I

≤
∑

(k,I)∈Pk∩∂p(T )

pk,I + 1
6

∑
(k+1,I)∈B∗

1

(diam fk+1(I))s.
(E2)

This estimate is responsible for the choice of the constant 14A∗ appearing in the definition 
of Flat(k), and thus, for the constant 30A∗ appearing in the definition of αk,v. Inequality 
(E2) is equivalent to

∑
I∈Nk

{k+1}×Nk+1(I)⊂∂T
αk,fk(I)<α0

⎛⎜⎜⎝ ∑
J∈Ek+1(I)

(diam fk+1(I))s +
∑

J∈Nk+1(I)
(k+1,J)∈Pk+1

pk+1,J

⎞⎟⎟⎠
≤

∑
I∈Nk

{k+1}×Nk+1(I)⊂∂T
αk,fk(I)<α0

pk,I + 1
6

∑
(k+1,I′)∈B∗

1

(diam fk+1(I))s.

(4.4)

To prove (4.4) fix I ∈ Nk such that {k + 1} × Nk+1(I) ⊂ ∂T and αk,fk(I) < α0. There 
are nine cases (1a, 1b, 2a, 2b, 2c, 2d, 3a, 3b, 3c). We sincerely apologize to the reader.

For the first four cases (1a, 1b, 2a, 2b), we show that∑
J∈Ek+1(I)

(diam fk+1(J))s +
∑

J∈Nk+1(I)
(k+1,J)∈Pk+1

pk+1,J ≤ pk,I . (4.5)

Case 1. Suppose fk(I) is 2-sided terminal in Vk.
Case 1a. If Nk+1(I) = {I}, then fk+1(I) is 2-sided terminal in Vk+1, Ek+1(I) = ∅

and the new phantom mass pk+1,I = 2Pρsk+1r
s
0 is dominated by the old phantom mass 

pk,I = 2Pρskr
s
0. Hence (4.5) holds.

Case 1b. Assume that Nk+1(I) contains at least two elements (see Fig. 2 above). In 
this case, at most two elements of Nk+1(I) map to 1-sided terminal vertices in Vk+1. By 
Lemma 4.6,

pk+1,J1 + pk+1,J2 +
∑

J∈Ik+1(I)

(diam fk+1(J))s ≤ 2Pρsk+1r
s
0 + 4(1.1C∗)sρsk+1r

s
0

≤ 2Pρskr
s
0 = pk,I ,
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because P was chosen to be sufficiently large such that

[P + 2(1.1C∗)s]ξs2 ≤ P.

Thus, (4.5) holds in this case, as well.

Case 2. Suppose that fk(I) is 1-sided terminal in Vk. Let (v1, v′) be the unique element 
in Flat(k) with v1 = fk(I) and let v2 be the first vertex in Vk+1 between v1 and v′ in 
the direction going from v1 to v′. By property (P7), we can find an interval L in Ek

such that fk(L) = (v1, v′) and I ∩ L �= ∅. Let K be an interval in Ik+1(L) such that 
fk(K) = (v1, v2). There will be four cases, depending on whether Nk+1(I) contains one 
or more elements and whether K belongs to Ek+1(L) or Bk+1(L).

Case 2a. Suppose that Nk+1(I) = {I} and K ∈ Ek+1(L). Then fk+1(I) is 1-sided ter-
minal in Vk+1, Ek+1(I) = ∅, and the new phantom mass pk+1,I = Pρsk+1r

s
0 is dominated 

by the old phantom mass pk,I = Pρskr
s
0. Hence (4.5) holds.

Case 2b. Suppose that Nk+1(I) contains at least two elements (see Fig. 2 above) and 
K ∈ Ek+1(L). Then at most one element of Nk+1(K) maps to a 1-sided terminal vertex 
in Vk+1. By Lemma 4.6,

pk+1,J1 +
∑

J∈Ik+1(I)

(diam fk+1(J))s ≤ Pρsk+1r
s
0 + 2(1.1C∗)sρsk+1r

s
0

≤ Pρskr
s
0 = pk,I ,

because P was chosen to be sufficiently large such that

[P + 2(1.1C∗)s]ξs2 ≤ P.

Thus, (4.5) holds, once again.
Case 2c. Suppose that Nk+1(I) = {I} and K ∈ Bk+1(L). Then fk+1(I) is 2-sided 

terminal in Vk+1 and Ek+1(I) = ∅. The new phantom mass that must be paid for is 
pk+1,I = 2Pρsk+1r

s
0. In this case, we pay for one half of pk+1,I with pk,I = Pρskr

s
0

and use Lemma 4.7 to pay for the other half of pk+1,I with 1
6 (diam fk+1(K))s, where 

K ∈ B∗
k+1(T ). That is,

pk+1,I ≤ pk,I + 1
6(diam fk+1(K))s.

Case 2d. Suppose that Nk+1(I) contains at least two points and K ∈ Bk+1(L). Then 
fk+1(I) is 1-sided terminal in Vk+1, Ek+1(I) is nonempty, and up to one of the new 
vertices drawn could be 1-sided terminal in Vk+1, as well. In this case,

pk+1,I + pk+1,J1 +
∑

J∈Ek+1(I)

(diam fk+1(J))s

︸ ︷︷ ︸
≤ 1

6(diam fk+1(K))s + pk,I ,

by Lemma 4.7, Lemma 4.6, and the choice of P .
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Case 3. Suppose fk(I) is not terminal in Vk. Then Ek+1(I) = ∅. It remains to pay for 
pk+1,I as needed. Let L1, L2, K1, and K2 be defined by analogy with L and K from 
Case 2, but corresponding to the two distinct flat pairs (fk(I), v′) and (fk(I), v′′). There 
are three cases, depending on whether K1 and K2 are both edge intervals, one of K1 or 
K2 is an edge interval and the other is a bridge interval, or both K1 and K2 are bridge 
intervals.

Case 3a. Suppose that K1 belongs to Ek+1(L1) and K2 belongs to Ek+1(L2). Then 
fk+1(I) is non-terminal in Vk+1. Hence (k + 1, I) /∈ Pk+1 and both sides of (4.5) are 
zero. In other words, there is nothing to pay for in Case 3a.

Case 3b. Suppose that one of K1 or K2 is an edge interval and the other is a bridge 
interval, say without loss of generality that K1 ∈ Ek+1(L1) and K2 ∈ Bk+1(L2). Then 
fk+1(I) is 1-sided terminal in Vk+1 and pk+1,I = Pρsk+1r

s
0 ≤ 1

6 (diam fk+1(K2))s by 
Lemma 4.7.

Case 3c. Suppose that K1 belongs to Bk+1(L1) and K2 belongs to Bk+1(L2). Then 
fk+1(I) is 2-sided terminal in Vk+1 and

pk+1,I = 2Pρsk+1r
s
0 ≤ 1

6(diam fk+1(K1))s + 1
6(diam fk+1(K2))s.

Adding up the estimates in the nine cases, we obtain (E2).

Estimate 3. On one hand, (k, I) ∈ B′
1 if and only if (k + 1, I) ∈ B4 (see §3.3). When 

(k, I) ∈ B′
1, we have diam fk(I) = diam fk+1(I). Thus,∑

(k+1,I)∈B4

(diam fk+1(I))s =
∑

(k,I)∈B′
1

(diam fk(I))s.

On the other hand, when both endpoints of the image of an edge interval are non-flat, 
the edge interval becomes a bridge interval and pays for itself (see §3.5):∑

(k+1,I)∈B2

(diam fk+1(I))s =
∑

(k,I)∈E′
1

(diam fk(I))s.

All together, we have∑
(k+1,I)∈B2∪B4

(diam fk+1(I))s =
∑

(k,I)∈E′
1∪B′

1

(diam fk(I))s. (E3)

Estimate 4. Next, we control the new phantom masses at endpoints of images fk+1(J)
of bridge intervals J ∈ Bk+1(I) coming from some edge interval I ∈ Ek as in §3.4 such 
that the endpoint lies between the endpoints of fk(I). Specifically, we show that

∑
(k+1,I)∈P3

pk+1,I ≤ 1
6

∑
(k+1,I)∈B∗

2

(diam fk+1(I))s. (E4)
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Inequality (E4) is equivalent to

∑
(k,I)∈E′

2

∑
J∈Nk+1(I)

(k+1,J)∈Pk+1

pk+1,J ≤ 1
6

∑
(k+1,I)∈B∗

2

(diam fk+1(I))s. (4.6)

To prove (4.6), fix (k, I) ∈ E ′
2 and J ∈ Nk+1(I) be such that (k + 1, J) ∈ Pk+1. Then 

fk+1(J) lies strictly between the endpoints of fk(I) and fk+1(J) is either 1- or 2-sided 
terminal in Vk+1. On one hand, if fk+1(J) is 1-sided terminal, then there exists precisely 
one element (k + 1, K) ∈ B∗

2 such that fk+1(J) is an endpoint of fk+1(K). In this case,

pk+1,J = Pρsk+1r
s
0 ≤ 1

6(diam fk+1(K))s

by Lemma 4.7. On the other hand, if fk+1(J) is 2-sided terminal, then there exist two 
elements (k+ 1, K1) and (k+ 1, K2) in B∗

2 such that fk+1(J) is the common endpoint of 
fk+1(K1) and fk+1(K2). In this case,

pk+1,J = 2Pρsk+1r
s
0 ≤ 1

6(diam fk+1(K1))s + 1
6(diam fk+1(K2))s

by Lemma 4.7.

Remark 4.13. In Estimates 2 and Estimate 4, each endpoint of the image fk+1(I) of 
(k + 1, I) ∈ B∗

1 ∪ B∗
2 is used once and each fk+1(I) has only two endpoints. Hence

1
6

∑
(k+1,I)∈B∗

1∪B∗
2

(diam fk+1(I))s ≤
1
6

∑
(k+1,I)∈B ∗∗

k+1(T )

= 1
3

∑
(k+1,I)∈B∗

k+1(T )

.

Estimate 5. In this final estimate, we deal with new intervals in ∂T coming from an 
edge interval in ∂p(T ) which has an endpoint with flat image. We will show that∑

(k+1,I)∈E3∪B3

(diam fk+1(I))s

≤
∑

(k,I)∈E′
2

(diam fk+1(I))s + (14A∗)s
∑

(v,v′)∈Flat(k)

τs(k, v, v′)ρskrs0.
(E5)

For each I ∈ E ′
2, pick an endpoint xI of I such that αk,fk(xI) < α0 and let yI be the 

other endpoint of I. Estimate (E5) follows immediately from∑
(k,I)∈E′

2

∑
J∈Ek+1(I)∪Bk+1(I)

(diam fk+1(J))s

≤
∑

′

((diam fk(I))s + (14A∗)sτs(k, fk(xI), fk(yI)))ρskrs0.
(4.7)
(k,I)∈E2
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To show (4.7), fix (k, I) ∈ E ′
2 and enumerate Ek+1(I) ∪ Bk+1(I) = {I1, . . . , In}. Let 

v = fk(xI) and let v′ = fk(yI). By definition of τs(k, v, v′) and (P3), we have

n−1∑
i=1

(diam fk+1(Ii))s ≤ |v − v′|s + τs(k, v, v′)|v − v′|s

≤ (diam fk(I))s + (14A∗)2τs(k, v, v′)ρskrs0.

Summing over all pairs (k, I) ∈ E ′
2, we obtain (4.7).

Adding (E1), (E2), (E3), (E4), and (E5), we arrive at (E). This completes the proof 
of Lemma 4.12.

5. Hölder parametrization

In §5.1, we prove the following theorem, which is the paper’s main result. Afterwards, 
in §5.2, we derive several corollaries, including Theorem 1.1. In §5.3, we state and prove 
a refinement of Theorem 5.1 that gives an essentially 2-to-1 curve. In §5.4, we show that 
replacing (5.1) with a Carleson type condition produces an upper Ahlfors regular curve.

Given parameters C∗, ξ1, and ξ2, let α1 be defined by (4.2). That is,

α1 = min
{

1
16 ,
(
ξ1(1 − ξ2)

42C∗

)1/2
}
.

Theorem 5.1 (Hölder Traveling Salesman with Nets). Assume that X = l2(R) or X = RN

for some N ≥ 2. Let s ≥ 1, let V = (Vk, ρk)k≥0 be a sequence of finite sets Vk in X and 
numbers ρk > 0 that satisfy properties (V0)–(V5) defined in §2.2. If α0 ∈ (0, α1] and

Ss
V :=

∞∑
k=0

∑
(v,v′)∈Flat(k)

τs(k, v, v′)ρsk +
∞∑
k=0

∑
v∈Vk

αk,v≥α0

ρsk < ∞, (5.1)

then there exists a (1/s)-Hölder map f : [0, 1] → X such that f([0, 1]) ⊃
⋃

k≥0 Vk and 
the Hölder constant of f satisfies H �s,C∗,ξ1,ξ2 r0(1 + Ss

V ).

5.1. Proof of Theorem 5.1

In this subsection, w will always denote a finite word in the alphabet N = {1, 2, . . . }, 
including the empty word ∅. We denote the length of a word w by |w|.

The conclusion holds trivially if 
⋃

k≥0 Vk is a singleton. Thus, in addition to Ss
V < ∞, 

we may assume that 
⋃

k≥0 Vk contains at least two points. Because α0 ≤ α1, Proposi-
tion 4.11 gives

0 < Ms([0, 1]) �s,C∗,ξ2 rs0(1 + Ss
V ) < ∞. (5.2)
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To proceed, we start by renaming the intervals in {[0, 1]} ∪I . Denote Δ∅ = [0, 1] and 
write I0 = {Δ1, . . . , Δn∅}, enumerated according to the orientation of [0, 1]. Inductively, 
suppose that for some word w with |w| = k, we have defined Δw ∈ Ik. Suppose also 
that

Ik+1(Δw) = {J1, . . . , Jnw
},

enumerated according to the orientation of [0, 1]. Then for each i ∈ {1, . . . , nw}, denote 
Δwi = Ji. Denote by W the set of all finite words with letters from N for which an 
interval Δw has been defined.

Next, we use the masses of intervals defined in §4 to modify the length of intervals 
Δw. Define Δ′

∅ = [0, 1]. Let {Δ′
1, . . . , Δ′

n∅
} be a partition of Δ′

∅, enumerated according 
to the orientation of [0, 1], satisfying

(1) Δ′
i is open (resp. closed) if and only if Δi is open (resp. closed), and

(2) diam Δ′
i = Ms(0, Δi)/Ms([0, 1]).

These intervals exist, because Ms([0, 1]) =
∑n∅

i=1 Ms(0, Δi). Inductively, suppose that 
an interval Δ′

w ⊂ [0, 1] has been defined for some w ∈ W such that

diam Δ′
w ≥ Ms(|w| − 1,Δw)

Ms([0, 1])

and Δ′
w is open (resp. closed) if and only if Δw is open (resp. closed). Let { Δ′

w1, . . . , Δ′
wnw

}
be a partition of Δ′

w, enumerated according to the orientation of [0, 1], satisfying

(1) Δ′
wi is open (resp. closed) if and only if Δwi is open (resp. closed), and

(2) diam Δ′
wi ≥ Ms(|w|, Δwi)/Ms([0, 1]).

This partition exists by Lemma 4.3(3).
Define the family

E ′
k = {Δ′

w : Δw ∈ Ek}

and similarly define the families B′
k, N ′

k , F ′
k, and I ′

k. For each k ≥ 0, define a continuous 
map Fk : [0, 1] → X by

Fk|Δ′
w = (fk|Δw) ◦ φw for all w ∈ W,

where φw is the unique increasing affine homeomorphism mapping Δ′
w onto Δw when 

Δ′
w is nondegenerate and φw maps to any point in Δw when Δ′

w is a singleton. (The 
latter possibility occurs only when Δ′

w belongs to F ′
k or N ′

k .)
We now prove two auxiliary results for the sequence (Fk)k≥0.
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Lemma 5.2. For all k ≥ 0 and x ∈ [0, 1], we have |Fk+1(x) − Fk(x)| ≤ 30A∗ξ2r0ρk.

Proof. Fix x ∈ [0, 1] and w ∈ W such that x ∈ Δw and |w| = k. Let also i ∈ {1, . . . , nw}
be such that x ∈ Δ′

wi.
If Δ′

w ∈ B′
k, then Δ′

w = Δ′
wi, Δw = Δwi, and Fk|Δ′

w = Fk+1|Δ′
wi. We conclude that 

|Fk+1(x) − Fk(x)| = 0.
If Δ′

w ∈ F ′
k, then Δ′

w = Δ′
wi = {x}, and Fk(x) = Fk+1(x). Hence |Fk+1(x) −Fk(x)| =

0.
If Δ′

w ∈ E ′
k, then |Fk+1(x) −Fk(x)| ≤ 2 diamFk(Δ′

w) = 2 diam fk(Δw) ≤ 28A∗ρk+1r0.
If Δ′

w ∈ N ′
k , then |Fk+1(x) − Fk(x)| ≤ 2 diam fk(Δw) ≤ diam Ṽk+1,I ≤ 30A∗ρk+1r0, 

where Ṽk+1,I is a set defined in §3.8. �
Lemma 5.3. For all k ≥ 0 and x, y ∈ [0, 1],

|Fk(x) − Fk(y)| ≤ Ms([0, 1])r1−s
0 ρ1−s

k |x− y| �s,C∗,ξ2 r0(1 + Ss
V )ρ1−s

k |x− y|.

Proof. Fix k ≥ 0 and x, y ∈ [0, 1]. Without loss of generality, we may assume that x < y. 
We consider three cases. In the first two cases, the points x and y belong to the same 
interval Δ′

w, |w| = k, while in the third case they belong to different intervals.
Case 1. If x, y ∈ Δ′

w ∈ N ′
k ∪ F ′

k, then |Fk(x) − Fk(y)| = 0|x − y|, because the map 
Fk|Δ′

w is constant.
Case 2. Suppose that x, y ∈ Δ′

w ∈ E ′
k ∪ B′

k. Since Fk|Δ′
w is affine,

|Fk(x) − Fk(y)| ≤ Ms([0, 1]) diam fk(Δw)
Ms(|w| − 1,Δw) |x− y|

≤ Ms([0, 1]) diam fk(Δw)1−s|x− y|

≤ Ms([0, 1])r1−s
0 ρ1−s

k |x− y|,

by (V3) and the assumption s ≥ 1. Thus, by (5.2),

|Fk(x) − Fk(y)| �s,C∗,ξ2 r0(1 + Ss
V )ρ1−s

k |x− y|.

Case 3. Suppose that x ∈ Δ′
w and y ∈ Δ′

u for some Δ′
w, Δ′

u ∈ I ′
k with Δ′

w ∩Δ′
u = ∅. 

By the preceding cases and the Fundamental Theorem of Calculus,

|Fk(x) − Fk(y)| ≤
y∫

x

|∇Fk(t)| dt ≤ Ms([0, 1])r1−s
0 ρ1−s

k |x− y|

�s,C∗,ξ2 r0(1 + Ss
V )ρ1−s

k |x− y|. �
We are now ready to prove Theorem 5.1.
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Proof of Theorem 5.1. Define F : [0, 1] → X pointwise by

F (x) := F0(x) +
∞∑
k=0

(Fk+1(x) − Fk(x)).

By Lemma 5.2, F is well defined and continuous in all [0, 1]. By Lemma 5.2, Lemma 5.3, 
and Lemma B.1 from the appendix, F is (1/s)-Hölder continuous with Hölder constant

H ≤ 1
ξ1

(
Ms([0, 1])r1−s

0 + 60A∗r0
ξ2

1 − ξ2

)
�s,C∗,ξ1,ξ2 r0(1 + Ss

V ).

Finally, for any integer k ≥ 0 and any integer m ≥ k, we have Vk ⊂ Fm([0, 1]). Therefore, 
Vk ⊂ F ([0, 1]) for all integers k ≥ 0. �
5.2. Corollaries to Theorem 5.1 and proof of Theorem 1.1

Corollary 5.4 (Tube approximation). For all s > 1, C∗ ≥ 1, and 0 < ξ1 < ξ2 < 1, there 
exists α∗ > 0 with the following property. Assume that X = l2(R) or X = RN for some 
N ≥ 2. Let V = (Vk, ρk)k≥0 be a sequence of finite sets in X and numbers ρk > 0
satisfying properties (V0)–(V5) of §2.2 with constants C∗, ξ1, and ξ2. If

Ss,+
V :=

∞∑
k=0

∑
v∈Vk

αk,v≥α∗

ρsk < ∞,

then there exists a (1/s)-Hölder map f : [0, 1] → X such that 
⋃

k≥0 Vk ⊂ f([0, 1]) and 
the Hölder constant of f satisfies H �s,C∗,ξ1,ξ2 r0(1 + Ss,+

V ).

Proof. By Lemma 2.8, there exists εs,C∗,ξ1,ξ2 ∈ (0, 1/16] such that if k ≥ 0, v ∈
Vk, and αk,v ≤ εs,C∗,ξ,ξ2 , then τs(k, v, v′) = 0 for all (v, v′) ∈ Flat(k). Set α∗ =
min{εs,C∗,ξ1,ξ2 , α1} (a careful inspection shows εs,C∗,ξ1,ξ2 is strictly smaller than α1). 
Thus, with α0 = α∗,

∞∑
k=0

∑
(v,v′)∈Flat(k)

τs(k, v, v′)ρsk +
∞∑
k=0

∑
v∈Vk

αk,v≥α∗

ρsk =
∞∑
k=0

∑
v∈Vk

αk,v≥α∗

ρsk < ∞.

The conclusion follows immediately by Theorem 5.1. �
Corollary 5.5. Alternatively, if

Ss,p
V :=

∞∑∑
αp
k,v ρ

s
k < ∞ for some p > 0,
k=0 v∈Vk
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then there exists a (1/s)-Hölder map f : [0, 1] → X such that 
⋃

k≥0 Vk ⊂ f([0, 1]) and 
the Hölder constant of f satisfies H �s,C∗,ξ1,ξ2 r0(1 + (α∗)−pSs,p

V ).

Proof. Inspecting the definitions of the two sums, Ss,+
V ≤ (α∗)−pSs,p

V . �
We now turn to the proof of Theorem 1.1.

Remark 5.6. For all x ∈ RN and r > 0, a minimal dyadic cube Q in RN such that x ∈ Q

and 3Q contains B(x, r) satisfies diam 3Q ≤ Cr for some C = C(N) > 0.

Proof of Theorem 1.1. Let N ≥ 2 and s > 1 be given. Fix β0 > 0 to be specified below. 
Assume that E ⊂ RN is a bounded set such that

Ss,+
E =

∑
Q∈Δ(RN )

βE(3Q)≥β0

(diamQ)s < ∞.

Pick any x0 ∈ E and set r0 = diamE. Define V0 = {x0}. Assume that Vk has been 
defined for some k. Choose a maximal 2−(k+1)-separated set in E such that Vk+1 ⊃ Vk. 
Then the sequence V = (Vk, 2−k)k≥0 satisfies conditions (V0)–(V4) in §2.2 with C∗ = 2
and ξ1 = ξ2 = 1/2. Note that

A∗ = C∗

1 − ξ2
= 4, 30A∗ = 120.

For all k ≥ 0 and v ∈ Vk, let Qk,v be a minimal dyadic cube such that v ∈ Qk,v and 
3Qk,v contains B(v, 120 · 2−kr0) and choose �k,v be a line such that

sup
x∈E∩3Q

dist(x, �k,v) = βE(3Q) diam 3Q.

Then, by Remark 5.6, there exists C = C(N) > 0 such that

αk,v := 1
2−k+1r0

sup
x∈Vk+1∩B(v,120·2−kr0)

dist(x, �k,v) ≤
diam 3Q
2−k+1r0

βE(3Q) ≤ 240CβE(3Q).

We now specify that β0 = α∗/240C, where α∗ is the constant from Corollary 5.4 and C
the constant from Remark 5.6. Because each dyadic cube Q in RN is associated to some 
(k, v) at most C(n) times, it follows that

Ss,+
V �N r−s

0 Ss,+
E < ∞.

Therefore, by Corollary 5.4, there exists a (1/s)-Hölder map f : [0, 1] → RN such that ⋃
k≥0 Vk ⊂ f([0, 1]) and the Hölder constant of f satisfies
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H �N,s r0(1 + Ss,+
V ) �N,s diamE + Ss,+

E

(diamE)s−1 .

Because 
⋃

k≥0 Vk is dense in E, the curve f([0, 1]) also contains the set E. �
5.3. A refinement of Theorem 5.1

The parameterization in Theorem 5.1 can be made in such a way so that the sequence 
of maps Fk obtained are essentially 2-to-1 in the sense of the following proposition.

Proposition 5.7. Let V = (Vk, ρk)k≥0 and α0 satisfy the hypothesis of Theorem 5.1 and 
let x0 ∈ V0. There exists a sequence of piecewise linear maps Fk : [0, 1] → X with the 
following properties.

(1) For all k ≥ 0, Fk(0) = x0 = Fk(1).
(2) For all k ≥ 0, there exists Gk ⊂ [0, 1] such that Fk|Gk is 2-1 and Fk([0, 1] \ Gk) is 

a finite set.
(3) For all k ≥ 0, Fk([0, 1]) ⊃ Vk; for all x ∈ Vk+1, dist(x, Fk([0, 1])) ≤ C∗ρk+1r0.
(4) For all k ≥ 0, ‖Fk − Fk+1‖∞ �C∗,ξ2 ρk+1r0.
(5) For all k ≥ 0, the map Fk is Lipschitz with Lip(Fk) �s,C∗,ξ1,ξ2 r0(1 + Ss

V )ρ1−s
k .

The maps Fk converge uniformly to a (1/s)-Hölder map F : [0, 1] → X whose image 
contains 

⋃
k≥0 Vk, the parameterization F starts and ends at x0 in the sense of (1), and 

the Hölder constant of F satisfies H �s,C∗,ξ1,ξ2 r0(1 + Ss
V ).

Proof. Following the algorithm of §3, we construct for each k ≥ 0, four families Ek, 
Bk, Fk, Nk of intervals in [0, 1] and a continuous piecewise linear map fk : [0, 1] → X

that satisfy (P1)–(P7). In Step 0, we may assume that f0(0) = f0(1) = x0. Thus, 
fk(0) = fk(1) = x0 for all k ≥ 0. Moreover, for all x ∈ Vk+1,

dist(x, Fk([0, 1])) ≤ dist(x, Vk) < C∗r0ρk+1

by (V4). From the construction, ‖fk − fk+1‖∞ �A∗ ρk+1r0. Hence ‖fk − fk+1‖∞ �C∗,ξ2

ρk+1r0. We have shown that the maps fk satisfy properties (1), (3) and (4).
As for property (2), we already know from (P4) that fk| 

⋃
Ek is 2-to-1. We proceed 

to modify fk on each I ∈ Bk. From the algorithm in §3, recall that for each I ∈ Bk, 
there exists unique I ′ ∈ Bk, I ′ �= I such that fk(I) = fk(I ′). Enumerate

Bk = {I1, I ′1, . . . , Il, I ′l},

where fk(Ij) = fk(I ′j). Starting with I1 = (a1, b1), define f̃k|I1 so that

(a) f̃k|I1 is piecewise linear and continuous, f̃k(a1) = fk(a1) and f̃k(b1) = fk(b1);
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(b) H1(f̃k(I1)) ≤ |fk(a1) − fk(b1)| + ρkr0;
(c) f̃k(I1) ∩

⋃
I∈Ek

fk(I) is a finite set.

Let ψ1 : I ′1 → I1 be the unique orientation-reversing linear map from I ′1 onto I1. Then 
define f̃k|I ′1 = (f̃k|I1) ◦ ψ1. For induction, assume that we have defined f̃k on

I1, I
′
1, . . . , Ir−1, I

′
r−1.

Define f̃k|Ir as with I1, only this time we require that the set

f̃k(Ir) ∩
(

r−1⋃
i=1

f̃k(Ii) ∪
r−1⋃
i=1

f̃k(I ′i) ∪
⋃

I∈Ek

fk(I)
)

be finite. Let ψr : I ′r → Ir be the unique orientation-reversing linear map from I ′r onto 
Ir and define f̃k|I ′r = (f̃k|Ir) ◦ ψr. Extending f̃k|I = fk|I for all I ∈ Ek ∪ Nk ∪ Fk, we 
obtain a sequence f̃k of maps that satisfy properties (1)–(4).

The rest of the proof is similar to that of Theorem 5.1 and we only sketch the steps. 
Define the Ms for each I ∈ Ik and define the collections of intervals {Δw} and {Δ′

w}. 
For each w, let φw : Δ′

w → Δw be the unique affine homeomorphism from Δ′
w onto Δw

and let Fk|Δ′
w = (f̃k|Δw) ◦ φw. Although the maps fk are different from f̃k, we have by 

(b) that diam fk(I) 
ξ2 diam f̃k(I) for all k ≥ 0 and all I ∈ Ik. Thus, Lemma 5.2 and 
Lemma 5.3 still hold with constants depending at most on s, C∗, ξ1 and ξ2. Therefore, 
the maps Fk satisfy properties (1)–(5). �
5.4. A Carleson condition for an upper Ahlfors s-regular curve

Replacing (5.1) in the main theorem with a Carleson-type condition ensures that 
the Hölder curve is upper Ahlfors regular. This answers a question posed to us by T. 
Orponen.

Theorem 5.8. Assume that X = l2(R) or X = RN for some N ≥ 2. Let s ≥ 1, let 
V = ((Vk, ρk))k≥0 be a sequence of finite sets Vk in X and numbers ρk > 0 that satisfy 
properties (V0)–(V4) defined in §2.2. Let Λ ≥ C∗ and Λ∗ := Λ/(1 − ξ2). Suppose for all 
k ≥ 0 and v ∈ Vk+1, we are given a line �k,v and αk,v ≥ 0 such that

sup
x∈Vk+1∩B(v,30Λ∗ρkr0)

dist(x, �) ≤ αk,vρk+1. (Ṽ5)

If Λ �ξ1,ξ2 C∗, α0 ∈ (0, α1], and there exists M < ∞ such that for all j ≥ 0 and w ∈ Vj,

Ss
V (j, w) :=

∞∑
k=j

∑
(v,v′)∈Flat(k)

v,v′∈B(w,Λρjr0)

τs(k, v, v′)ρsk +
∞∑
k=j

∑
v∈Vk

αk,v≥α0

ρsk ≤ Mρsj , (5.3)
v∈B(w,Λρjr0)
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then there exists a (1/s)-Hölder map f : [0, 1] → X such that f([0, 1]) ⊃
⋃

k≥0 Vk and 
the curve f([0, 1]) is upper Ahlfors s-regular with constant depending on at most s, C∗, 
ξ1, ξ2, and M .

Proof. By (V0) and (V4), excess (
⋃∞

k=1 Vk, V0) ≤ ρ1r0 +ρ2r0 + · · · = r0
1−ξ2

≤ A∗r0, where

excess(A,B) = sup
x∈A

inf
y∈B

|x− y|

whenever A and B are nonempty sets in X. Hence 
⋃∞

k=0 Vk ⊂ B(x0, 2A∗r0) by (V1). 
Thus, there exists a (1/s)-Hölder map f : [0, 1] → X such that Γ := f([0, 1]) ⊃

⋃∞
k=0 Vk

and the Hölder constant of f satisfies Hf �s,C∗,ξ1,ξ2 r0(1 + M) by Theorem 5.1, since 
Ss

V = Ss
V (0, w) ≤ M . In particular,

Hs(Γ) ≤ Hs
f H1([0, 1]) �s,C∗,ξ1,ξ2,M rs0.

Let x ∈ Γ and let 0 < r ≤ diam Γ. Because 
⋃∞

k=0 Vk ⊂ B(x0, 2A∗r0), we have diam Γ ≤
4A∗r0. If r ≥ r0, then

Hs(Γ ∩B(x, r)) ≤ Hs(Γ) �s,C∗,ξ1,ξ2,M rs0 �s,C∗,ξ1,ξ2,M rs.

Otherwise, 0 < r < r0, say ρj+1r0 ≤ r < ρjr0 for some integer j ≥ 0.
Choose w ∈ Vj such that |w − x| = dist(x, Vj). By Lemma 5.2, (V0), and (V4),

dist(x, fj([0, 1])) ≤ 30ξ2
1 − ξ2

A∗ρjr0.

Because α0 ≤ α1, the longest line segment drawn between vertices in Vj has length at 
most 14A∗ρk−1r0. By (V0), it follows that

excess(fj([0, 1]), Vj) ≤
7
ξ1

A∗ρjr0.

Thus, dist(x, Vj) �ξ1,ξ2 A∗ρjr0 �ξ1,ξ2 Λρjr0. For all k ≥ 0, define

ρ̃k := ρj+k

ρj
.

Define Ṽ0 := Vj ∩ B(w, Λρjr0). Then, for each k ≥ 1, recursively define Ṽk to be set of 
all x ∈ Vj+k ∩ B(w, Λρjr0) such that dist(x, Ṽk−1) ≤ Λρj+kr0. Then Ṽ = (Ṽk, ̃ρk)k≥0
satisfy (V0)–(V4) with respect to x̃0 = w and r̃0 = ρjr0, C̃∗ = Λ, ξ̃1 = ξ1, and ξ̃2 = ξ2. 
For all k ≥ 0 and v ∈ Ṽk, assign �̃k,v := �j+k,v and α̃k,v = αj+k,v. Then Ṽ satisfies 
(V5) with respect to �̃k,v and α̃k,v by (Ṽ5). Moreover, by (5.3),

Ss
Ṽ

=
∞∑
k=0

∑
(v,v′)∈ ˜Flat(k)

τ̃(k, v, v′)ρ̃ks +
∞∑
k=0

∑
v∈Ṽk

ρ̃k
s = SV (j, w)

ρsj
≤ M.
α̃k,v≥α0
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Thus, by Theorem 5.1, there is a (1/s)-Hölder map g with Hölder constant Hg �s,Λ,ξ1,ξ2

r̃0(1 +M) such that g([0, 1]) contains 
⋃

k≥0 Ṽk. Because the algorithm in §3 works locally 
in the image, dist(x, Vj) �ξ1,ξ2 A∗ρjr0 �ξ1,ξ2 Λρjr0, and r < ρjr0, we can guarantee 
that g([0, 1]) contains f([0, 1]) ∩ B(x, r) provided that Λ is sufficiently large. There-
fore,

Hs(Γ∩B(x, r))≤Hs
g H1([0, 1]) �s,Λ,ξ1,ξ2, r̃0(1+M) �s,C∗,ξ1,ξ2,M (ρjr0)s �s,C∗,ξ1,ξ2,M rs,

where the final inequality holds because ρj+1r0 ≤ r. �
6. Lipschitz parameterization

Using the method above, we obtain the following refinement of the sufficient half of 
the Analyst’s TST in Hilbert space, which is originally due to Jones [32] in the Euclidean 
case and due to Schul [48] in the infinite-dimensional case.

Proposition 6.1 (Sufficient half of the Analyst’s Traveling Salesman with Nets). Assume 
that X = l2(R) or X = RN for some N ≥ 2. Let V = (Vk, ρk)k≥0 be a sequence of finite 
sets Vk in X and numbers ρk > 0 that satisfy properties (V0)–(V5) defined in §2.2. 
If

SV :=
∞∑
k=0

∑
v∈Vk

α2
k,vρk < ∞, (6.1)

then for every x0 ∈ V0, we can find a sequence of piecewise linear maps Fk : [0, 1] → X

with the following properties.

(1) For all k ≥ 0, Fk(0) = x0 = Fk(1).
(2) For all k ≥ 0, there exists Gk ⊂ [0, 1] such that Fk|Gk is 2-1 and Fk([0, 1] \ Gk) is 

a finite set.
(3) For all k ≥ 0, Fk([0, 1]) ⊃ Vk; for all x ∈ Vk+1, dist(x, Fk([0, 1])) ≤ C∗ρk+1r0.
(4) For all k ≥ 0, ‖Fk − Fk+1‖∞ �C∗,ξ2 ρk+1r0.
(5) For all k ≥ 0, the map Fk is Lipschitz with Lip(Fk) �C∗,ξ1,ξ2 r0(1 + SV ).

The maps Fk converge uniformly to a Lipschitz map F : [0, 1] → X whose image con-
tains 

⋃
k≥0 Vk, the parameterization F starts and ends at x0 in the sense of (1), and the 

Lipschitz constant of F satisfies L �C∗,ξ1,ξ2 r0(1 + SV ).

Proof. Let α0 = α1 (see (4.2)), which depends only on C∗, ξ1, and ξ2. If (v, v′) ∈ Flat(k), 
then τ1(k, v, v′) ≤ 3α2

k,v by Lemma 2.7. Thus, by definition of S1
V (see Theorem 5.1),
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S1
V =

∞∑
k=0

∑
(v,v′)∈Flat(k)

τ1(k, v, v′)ρk +
∞∑
k=0

∑
v∈Vk

αk,v≥α0

ρk

≤ 6
∞∑
k=0

∑
v∈Vk

αk,v<α0

α2
k,vρk + 1

α2
0

∞∑
k=0

∑
v∈Vk

αk,v≥α0

α2
k,vρk ≤ 1

α2
0
SV .

The conclusion now follows from Proposition 5.7. �
Part II. Applications and further results

In §7, we give an application of the Hölder Traveling Salesman theorem to the geom-
etry of measures. In particular, we obtain sufficient conditions for a pointwise doubling 
measure in RN to be carried by (1/s)-Hölder curves, s > 1. This extends the work [8,9]
by the first author and Schul, which characterizes 1-rectifiable Radon measures in RN

in terms of geometric square functions. In §8, we use the method of Part I to obtain 
a Ważewski type theorem for flat continua, which we described above in §1.3. Finally, 
in §9, we present examples of Hölder curves and of sets that are not contained in any 
Hölder curve to highlight the rich geometry of sets in RN and illustrate the strengths 
and limitations of our principal results.

7. Fractional rectifiability of measures

One goal of geometric measure theory is to understand the structure of a measure 
in RN through its interaction with families of lower dimensional sets. For an extended 
introduction, see the survey [6] by the first author. In this section, we use the Hölder 
Traveling Salesman theorem to establish criteria for fractional rectifiability of pointwise 
doubling measures in terms of Lp Jones beta numbers. In particular, we extend part of 
the recent work of the first author and Schul [9] on measures carried by rectifiable curves 
to measures carried by Hölder curves (see Theorem 7.5). The study of fractional (that 
is, non-integer dimensional) rectifiability of measures was first proposed by Martín and 
Mattila [37,38] and examined further by the first and third author [10].

7.1. Generalized rectifiability

Let A be a nonempty family of Borel sets in RN and let μ be a Borel measure on RN . 
We say that μ is carried by A if there exists a sequence (Ai)∞i=1 of sets in A such that 
μ(RN \

⋃
i Ai) = 0. At the other extreme, we say that μ is singular to A if μ(A) = 0 for 

all A ∈ A. If μ is σ-finite, then μ can be uniquely written as the sum of a Borel measure 
μA carried by A and a Borel measure μ⊥

A singular to A (e.g. see the appendix of [10]). 
These definitions encode several commonly used notions of rectifiability of measures (see 
[6]).
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Let 1 ≤ m ≤ N − 1. Let A denote the family of Lipschitz images of [0, 1]m in RN . 
We say that a Borel measure μ is m-rectifiable if μ is carried by A; we say that μ is 
purely m-unrectifiable if μ is singular to A. A Borel set E ⊂ Rn with 0 < Hm(E) < ∞ is 
called m-rectifiable or purely m-unrectifiable if Hm E, the m-dimensional Hausdorff 
measure restricted to E, has that property. The classes of 1-rectifiable sets and purely 
1-unrectifiable sets are also called Besicovitch regular sets and Besicovitch irregular sets, 
respectively, in reference to the pioneering investigations by Besicovitch [11,12] into the 
geometry of 1-sets in the plane.

Example 7.1. Let Γ1, Γ2, . . . be a sequence of rectifiable curves in RN and let a1, a2, . . . be 
a sequence of positive weights. Then the measure μ =

∑
i aiH1 Γi is 1-rectifiable. Note 

that if the closure of 
⋃

i Γi is RN and the weights are chosen so that 
∑

i aiH1(Γi) = 1, 
we get a 1-rectifiable Borel probability measure μ whose support is RN .

Example 7.2. Let C ⊂ R be the middle halves Cantor set (formed by replacing [0, 1]
with [0, 14 ] ∪ [ 34 , 1] and iterating). Then E = C × C ⊂ R2 is a Cantor set of Hausdorff 
dimension one, 0 < H1(E) < ∞, E is Ahlfors 1-regular in the sense that

H1(E ∩B(x, r)) 
 r for all x ∈ E and 0 < r ≤ diamE,

and E is Besicovitch irregular (e.g. see [37]). In particular, the set E is compact and 
measure-theoretically one-dimensional, but E is not contained in any rectifiable curve.

7.2. Lp Jones beta numbers and rectifiability

Let μ be a Radon measure on RN , that is, a locally finite Borel regular measure, let 
1 ≤ m ≤ N − 1, let p > 0, let x ∈ RN , let r > 0, and let L be an m-dimensional affine 
subspace of RN . We define

β(m)
p (μ, x, r, L) :=

⎛⎜⎝ ∫
B(x,r)

(
dist(z, L)

r

)p
dμ(z)

μ(B(x, r))

⎞⎟⎠
1/p

, (7.1)

β(m)
p (μ, x, r) := inf

L
β(m)
p (μ, x, r, L), (7.2)

where the infimum is taken over all m-planes L in RN . The quantity β(m)
p (μ, x, r) is called 

the m-dimensional Lp Jones beta number of μ in B(x, r). The Lp Jones beta numbers 
were introduced by David and Semmes [22,23] to study quantitative rectifiability of 
Ahlfors regular sets and boundedness of singular integral operators. The normalization 
of the measure in (7.1) that we have chosen (i.e. dividing by μ(B(x, r))) ensures that 
β

(m)
p (μ, x, r) ∈ [0, 1] and β(m)

p is invariant under dilations Tλ(z) = λz in the sense that

β(m)
p (μ, x, r) = β(m)

p (Tλ[μ], λx, λr), Tλ[μ](E) = μ(λ−1E) (7.3)
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for all μ, x ∈ RN , r > 0, and λ > 0. By monotonicity of the integral,

sμ(B(y, s))1/pβ(m)
p (μ, y, s) ≤ rμ(B(x, r))1/pβ(m)

p (μ, x, r) when B(y, s) ⊂ B(x, r).
(7.4)

In a pair of papers, Tolsa [51] and Azzam and Tolsa [5] characterize m-rectifiable 
Radon measures μ on RN with μ � Hm in terms of L2 Jones beta numbers. The 
restriction μ � Hm is equivalent to the upper density bound lim supr↓0 r

−mμ(B(x, r)) <
∞ μ-a.e. (e.g. see [39, Chapter 6]) and implies that the Hausdorff dimension of the 
measure is at least m (see [41]). The proof that (7.6) implies the measure μ is m-rectifiable 
uses an intricate stopping time argument in conjunction with David and Toro’s Reifenberg 
algorithm for sets with holes [24] to construct bi-Lipschitz images of Rm inside RN that 
carry μ. For related developments, see [25,26].

Theorem 7.3 (see [51], [5]). Let μ be a Radon measure on RN . Assume that

0 < lim sup
r↓0

μ(B(x, r))
rm

< ∞ for μ-a.e. x ∈ RN . (7.5)

Then μ is m-rectifiable if and only if

1∫
0

β
(m)
2 (μ, x, r)2 μ(B(x, r))

rm
dr

r
< ∞ for μ-a.e. x ∈ RN . (7.6)

In [9], the first author and Schul characterize 1-rectifiable Radon measures μ on RN

in terms of Lp Jones beta numbers and the lower density lim infr↓0 r−1μ(B(x, r)). In 
contrast with Theorem 7.3, the main theorem in [9] does not require an a priori rela-
tionship between the null sets of μ and H1, nor a bound on the Hausdorff dimension of 
μ. To lighten the notation, we present Badger and Schul’s theorem for pointwise dou-
bling measures and refer the reader to [9, Theorem A] for the full result. Although the 
classes of measures satisfying (7.5) and (7.7) have no direct relationship with each other, 
a posteriori an m-rectifiable measure satisfying (7.5) also satisfies (7.7). The proof that 
(7.8) implies the measure μ is 1-rectifiable uses a technical extension of the sufficient half 
of the Analyst’s Traveling Salesman theorem. See [9, Proposition 3.6].

Theorem 7.4 (see [9, Theorem E]). Let μ be a Radon measure on Rn and let p ≥ 1. 
Assume that μ is pointwise doubling in the sense that

lim sup
r↓0

μ(B(x, 2r))
μ(B(x, r)) < ∞ for μ-a.e. x ∈ RN . (7.7)

Then μ is 1-rectifiable if and only if
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1∫
0

β(1)
p (μ, x, r)2 r

μ(B(x, r))
dr

r
< ∞ for μ-a.e. x ∈ RN . (7.8)

7.3. Sufficient conditions for fractional rectifiability

The following theorem is an application of the Hölder Traveling Salesman theorem 
and generalizes the “sufficient half” of Theorem 7.4 (also see [10, Theorem A]). The 
exponents p and q in the Hölder case (s > 1) are less restrictive than in the Lipschitz 
case (s = 1).

Theorem 7.5. Let μ be a Radon measure on RN , let s > 1, and let p, q > 0. Then

μ

⎧⎨⎩x ∈ Rn :
1∫

0

β(1)
p (μ, x, r)q rs

μ(B(x, r))
dr

r
< ∞ and lim sup

r↓0

μ(B(x, 2r))
μ(B(x, r)) < ∞

⎫⎬⎭
is carried by (1/s)-Hölder curves.

At the core of the proof of Theorem 7.5 is the following lemma.

Lemma 7.6. Let μ be a Radon measure in RN , and let s > 1 and p, q > 0 be fixed. Given 
x0 ∈ RN and parameters M > 0, θ > 0, and P > 0, let A denote the set of points 
x ∈ B(x0, 1/2) such that

1∫
0

β(1)
p (μ, x, r)q rs

μ(B(x, r))
dr

r
≤ M, (7.9)

μ(B(x, 2r)) ≤ Pμ(B(x, r)) for all r ∈ (0, 1], (7.10)

and let A′ denote the set of points in A such that

μ(A ∩B(x, r)) ≥ θμ(B(x, r)) for all r ∈ (0, 1]. (7.11)

Then A′ is contained in a (1/s)-Hölder curve Γ = f([0, 1]) with Hölder constant depend-
ing on at most N , s, p, q, M , P , θ, and μ(A).

Proof. Let {A′
k}k≥0 be a nested sequence of 2−k-nets in A′, so that the sets Vk ≡ A′

k

and scales ρk = 2−k satisfy conditions (V0)–(V4) of §2 with parameters r0 = 1, C∗ = 2, 
ξ1 = ξ2 = 1/2. Note that

A∗ = C∗

1 − ξ2
= 4 and 30A∗ = 120.

By (7.9),
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Mμ(A) ≥
∫
A

1∫
0

β(1)
p (μ, x, r)q rs

μ(B(x, r))
dr

r
dμ(x)

=
∞∑
k=9

2−k∫
2−(k+1)

(512r)s
∫
A

β
(1)
p (μ, x, 512r)q

μ(B(x, 512r)) dμ(x)dr
r

(7.12)

where in the second line we used the change of variables r �→ 512r (note 512 = 29) and 
Tonelli’s theorem. Now, the open balls {B(y, 2−(k+1)) : y ∈ A′

k} are pairwise disjoint, 
because the points in A′

k are separated by distance at least 2−k. Thus,

Mμ(A) ≥
∞∑
k=9

2−k∫
2−(k+1)

rs
∑
y∈A′

k

∫
A∩B(y,2−(k+1))

β
(1)
p (μ, x, 512r)q

μ(B(x, 512r)) dμ(x)

︸ ︷︷ ︸
I(k,y,r)

dr

r
. (7.13)

Next, we bound I(k, y, r) from below. Fix k ≥ 9, y ∈ A′
k, and r ∈ [2−(k+1), 2−k]. 

Suppose that x ∈ A ∩B(y, 2−(k+1)). Then

μ(B(x, 512r)) ≤ P 2μ(B(x, 128r)) ≤ P 2μ(B(y, 129r)) ≤ P 2μ(B(y, 255 · 2−k)) (7.14)

by (7.10). Since B(y, 255 · 2−k) ⊂ B(x, 256 · 2−k) ⊂ B(x, 512r), it follows that

β(1)
p (y, 255 · 2−k) ≤

(
512r

255 · 2−k

)(
μ(B(x, 512r))

μ(B(y, 255 · 2−k))

)1/p

β(1)
p (μ, x, 512r)

≤ 3P 2/pβ(1)
p (μ, x, 512r)

(7.15)

by (7.4). Hence

I(k, y, r) ≥ 3−qP−2−2q/p β
(1)
p (μ, y, 255 · 2−k)q

μ(B(y, 255 · 2−k))

∫
A∩B(y,2−(k+1))

dμ(x). (7.16)

Invoking doubling again, μ(B(y, 255 · 2−k)) ≤ P 9μ(B(y, 2−(k+1))). Thus, by (7.11),

1
μ(B(y, 255 · 2−k))

∫
A∩B(y,2−(k+1))

dμ(x) ≥ P−9μ(A ∩B(y, 2−(k+1)))
μ(B(y, 2−(k+1)))

≥ P−9θ. (7.17)

Therefore,

I(k, y, r) ≥ 3−qP−11−2q/pθ β(1)
p (μ, y, 255 · 2−k)q. (7.18)
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Combining (7.13) and (7.18), we obtain

3qP 11+2q/pθ−1Mμ(A) ≥
∞∑
k=9

⎛⎜⎝ 2−k∫
2−(k+1)

rs
dr

r

⎞⎟⎠ ∑
y∈A′

k

β(1)
p (μ, y, 255 · 2−k)q. (7.19)

In particular, we conclude that

∞∑
k=9

∑
y∈A′

k

β(1)
p (μ, y, 255 · 2−k)q 2−ks ≤ s

1 − 2−s
3qP 11+2q/pθ−1Mμ(A) < ∞. (7.20)

For each k ≥ 9 and y ∈ A′
k, let �k,v be any line such that

β(1)
p (μ, y, 255 · 2−k, �k,v) ≤ 2β(1)

p (μ, y, 255 · 2−k). (7.21)

We will now bound the distance of points in A′
k+1∩B(y, 120 ·2−k) to �k,v. Fix any point 

z ∈ A′
k+1 ∩B(y, 120 · 2−k) and let t2−k+1 = dist(z, �k,v). Then

βp(μ, y, 255 · 2−k, �k,v)q ≥
(

1
2 t2

−(k+1)

255 · 2−k

)q (
μ(B(z, 1

2 t2
−(k+1)))

μ(B(y, 255 · 2−k))

)q/p

≥
(

t

1020

)q

P−(q/p) log2(1920/t) ≥
(

t

1920

)q+(q/p) log2(P )

,

(7.22)

where in the second line we used doubling of μ at z. It follows that

αk,v := 2k+1 sup
z∈A′

k+1∩B(y,120·2−k)
dist(z, �k,v) ≤ C(p, q, P )βp(μ, y, 255 · 2−k, �k,v)η, (7.23)

where η[q + (q/p) log2(P )] = q. Therefore, all together,

∞∑
k=9

∑
y∈A′

k

α
q+(q/p) log2(P )
k,v 2−ks ≤ C(s, p, q,M, P, θ, μ(A)) < ∞. (7.24)

Finally, by Corollary 5.5, the set A′ is contained in the Hausdorff limit of A′
k and this 

is contained in a (1/s)-Hölder curve Γ = f([0, 1]) with Hölder constant depending on at 
most s, p, q, M , P , θ, and μ(A). �

Theorem 7.5 follows from countably many applications of Lemma 7.6 and a standard 
density theorem for Radon measures in RN . See the proof of [10, Theorem 6.7], where a 
similar argument is employed. We leave the details to the reader.
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8. Hölder parameterization of flat continua

The goal of this section is to prove Proposition 1.3, which we now restate.

Proposition 8.1. There exists a constant β1 ∈ (0, 1) such that if s > 1 and E ⊂ RN is 
compact, connected, Hs(E) < ∞, E is lower Ahlfors s-regular with constant c, and

βE

(
B(x, r)

)
≤ β1 for all x ∈ E and 0 < r ≤ diamE, (8.1)

then E = f([0, 1]) for some injective (1/s)-Hölder continuous map f : [0, 1] → RN with 
Hölder constant H �s c

−1Hs(E)(diamE)1−s.

The proposition is trivial if E is a singleton (in which case (8.1) is vacuous). Thus, we 
may assume that E ⊂ RN is a continuum; that is, E is compact, connected, and contains 
at least two points. Furthermore, as the hypothesis and the conclusion are scale-invariant, 
we may assume without loss of generality that diamE = 1. To complete the proof of the 
proposition, we mimic the proof of Theorem 5.1, but with a few modifications. In §8.1, we 
perform a simplified version of the algorithm in §3. Then, in §8.2, we establish an upper 
bound on Ms([0, 1]) in terms of c−1Hs(E), which fills the role that Proposition 4.11
played for Theorem 5.1. Equipped with this mass bound, the proof of Proposition 8.1
essentially follows by repeating the proof of Theorem 5.1 mutatis mutandis.

At the core of the proof of Proposition 8.1 is the following property, which is satisfied 
by continua that are sufficiently flat at all locations and scales. We defer a proof of 
Lemma 8.2 to §8.4. An adventurous reader may wish to supply their own proof.

Lemma 8.2. Suppose that E ⊂ RN is a continuum satisfying

βE

(
B(x, r)

)
≤ 2−11 for all x ∈ E and 0 < r ≤ diamE.

Then for all distinct x, y ∈ E and for all z ∈ [x, y], there exists z′ ∈ E such that 
π�x,y

(z′) = z and |z − z′| ≤ 2−4|x − y|, where �x,y denotes the line containing x and y.

8.1. Traveling Salesman algorithm for flat continua

Fix a constant β1 > 0 (small) to be specified later. Let E ⊂ RN be a continuum 
satisfying the hypothesis of Proposition 8.1. Without loss of generality, we assume that 
diamE = 1. Pick x0 and y0 such that |x0−y0| = 1, set r0 = 1, C∗ = 2, and ξ1 = ξ2 = 1/2. 
Then

A∗ = C∗

1 − ξ2
= 4, 14A∗ = 56, 30A∗ = 120.

Furthermore, the scales ρk = 2−k satisfy (V0).
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Set V0 = {x0, y0}, α0,x0 = 4βE

(
B(x0, 1)

)
and α0,y0 = 4βE

(
B(y0, 1)

)
, and let �0,x0

and �0,y0 be best fitting lines corresponding to βE on the closed balls B(x0, 1) and 
B(y0, 1), respectively.

Suppose that for some k ≥ 0 and for all 0 ≤ j ≤ k, we have defined sets Vj, numbers 
αj,v ≥ 0 for all v ∈ Vj , and lines �j,v for all v ∈ Vj satisfying (V5). Choose Vk+1 to be 
any maximal 2−(k+1)-separated subset of E such that Vk+1 ⊃ Vk. For each v ∈ Vk+1, set

αk+1,v := 2rk+1

2−(k+2) βE

(
B(v, rk+1)

)
≤ 480βE

(
B(v, rk+1)

)
,

where rk+1 := min{120 ·2−(k+1), 1}, and let �k+1,v be a best fitting line corresponding to 
βE

(
B(v, rk)

)
. The reader may check that the sequence of sets (Vk)∞k=0 satisfy properties 

(V1)–(V5) in 2.2.
We now specify α0 = 512β1 ≤ 1/16. This ensures that αk,v < α0 for all k ≥ 0 and 

v ∈ Vk. Moreover, β1 is sufficiently small that we may invoke Lemma 8.2 for E. With α0
fixed, carry out a modified version of the algorithm in §3, in which (P4), (P6), and (P7) 
are replaced by:

(P4′) fk| 
⋃

Ek is one-to-one.
(P6′) For each I ∈ Nk ∪ Fk, the image fk(I) ∈ Vk. For every v ∈ Vk, there exists a 

unique interval I ∈ Nk ∪ Fk such that v = fk(I).
(P7′) If Ik = Ek ∪Bk ∪Nk ∪Fk is enumerated according to the natural order in [0, 1], 

say Ik = {I1, . . . , I2l+1}, then the intervals alternate between elements of Nk∪Fk

and Ek. (Thus, the family Bk = ∅.) Moreover, cardNk = 2 and I1, I2l+1 ∈ Nk. 
The vertices fk(I1) and fk(I2l+1) are 1-sided terminal in Vk, while each other 
vertex fk(I2j+1) is non-terminal in Vk for all 1 ≤ j ≤ l − 1.

We now sketch some steps in the modified algorithm.

8.1.1. Step 0
Partition [0, 1] = [0, 1/3] ∪ (1/3, 2/3) ∪ [2/3, 1] and assign

E0 = {(1/3, 2/3)}, B0 = ∅, N0 = {[0, 1/3], [2/3, 1]}, F0 = ∅.

Also set f0([0, 1/3]) = x0 and f0([2/3, 1]) = y0, and define f0|(1/3, 2/3) to be the restric-
tion of the affine map which interpolates between x0 and y0. Verifying properties (P1), 
(P2), (P3), (P4′), (P5), (P6′), and (P7′) is straightforward. We omit the details.

8.1.2. Induction step
Suppose that Ek, Bk, Nk, Fk, and fk have been defined and satisfy properties (P1), 

(P2), (P3), (P4′), (P5), (P6′), and (P7′).
By (P7′) and the induction assumption, the procedure in §3.3 is moot, because there 

are no bridge intervals.
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Follow the procedure in §3.4 for I ∈ Ek as written, except assign all closed subintervals 
Nk+1(I) ∪Fk+1(I) generated in I to Fk+1(I) instead of Nk+1(I). Also set Nk+1(I) = ∅. 
Below, we check that Bk+1(I) = ∅; see Lemma 8.3.

Because αk,v < α0 for all v ∈ Vk, the procedure in §3.5 is moot.
Follow the procedure in §3.6 as written.
Replace the procedure in §3.7 as follows.

By property (P7′), only the intervals in Ik containing 0 and 1 belong to Nk and 
fk maps each of them onto a 1-sided terminal vertex in Vk. Let I be the interval 
in Nk containing 0 and let v = fk(I). Let (v, v′) ∈ Flat(k) be the unique flat pair 
with first coordinate v. Choose an orientation for �k,v so that [v, v′] lies on the right 
side of v. Enumerate the points in Vk+1 ∩ B(fk(I), C∗ρk+1r0) on the left side of v
(including v) as vl, vl−1, . . . , v1 = v, starting at the leftmost vertex and working right. 
The construction splits into three cases.

Case 1a. If l = 1, then no new points appeared to the left of v and we set Nk+1(I) =
I and fk+1|I = fk|I. Set Ek+1(I) = Bk+1(I) = Fk+1(I) = ∅.

Case 1b. If l = 2, then one new point appeared to the left of v, the new point is 
1-sided terminal in Vk+1 and v is non-terminal in Vk+1. Subdivide I = [0, a] = [0, 13a] ∪
(1
3a, 

2
3a) ∪ [ 23a, a], set Nk+1(I) = [0, 13a], Ek+1(I) = (1

3a, 
2
3a), Fk+1(I) = [ 23a, a], and 

Bk+1 = ∅. Define fk+1|I by assigning fk+1([0, 13a]) = v2, fk+1|(1
3a, 

2
3a) to be the 

restriction of the affine map that interpolates between v2 and v1, and fk+1([ 23a, a]) =
v1.

Case 1c. If l ≥ 3, then subdivide I into 2l− 1 intervals, alternating between closed 
and open intervals. Assign the first interval to Nk+1(I) and the subsequent closed 
intervals to Fk+1(I). Assign the open intervals in Ek+1(I) and set Bk+1(I) = ∅. The 
map fk+1|I is the piecewise linear map starting at vl, connecting vl to vl−1, . . . , 
connecting v2 to v1, which is constant on the intervals in Nk+1(I) ∪ Fk+1(I) and 
constant speed on the intervals in Ek+1(I).

Carry out a similar construction for the interval J in Nk containing 1, but modified 
so that Nk+1(J) contains only one interval and that interval contains 1.

Because αk,v < α0 for all v ∈ Vk, the procedure in §3.8 is not used.

Lemma 8.3. For all k ≥ 0, Bk = ∅. Moreover, for all I ∈ Ek, diam fk(I) < 3 · 2−k.

Proof. We need to check that, for flat continua, the procedure in §3.4 does not generate 
bridge intervals. Given I ∈ Ek, let v and v′ denote the endpoints of fk(I). Choose an 
orientation of �k,v so that v′ lies to the right of v. Enumerate Vk+1(v, v′) = {v1, . . . , vn}, 
where v1 = v, vn = v′, and vi+1 is the first point to the right of vi for all 1 ≤ i ≤ n − 1. 
Suppose for contradiction that Bk+1(I) �= ∅. Then

|vj+1 − vj | ≥ 14A∗ρk+1 = 56 · 2−(k+1) for some 1 ≤ j ≤ n− 1.
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Let x = (vj + vj+1)/2 denote the midpoint between vj and vj+1. By Lemma 8.2, there 
exists y ∈ E such that |y − x| ≤ (1/16)|vj+1 − vj |. Thus,

dist(y, Vk+1) ≥ dist(x, Vk+1) − |y − x| ≥ 7
16 |vj − vj−1| > 24 · 2−(k+1).

This contradicts our assumption that Vk+1 is a maximal 2−(k+1)-separated set for E. 
Therefore, Bk+1(I) = ∅ for all I ∈ Ek. The only other instances in the algorithm where 
bridge intervals could be generated are in the procedures in §§3.5 and 3.8. However, since 
αk,v < α0 for all k ≥ 0 and v ∈ Vk, these procedures were never used.

Similarly, suppose to get a contradiction that there exists I ∈ Ek such that 
diam fk(I) ≥ 3 ·2−k. Let v and v′ denote the endpoints of fk(I), and let x = (v+v′)/2 de-
note their midpoint. By Lemma 8.2, there exists y ∈ E such that |y−x| < (1/16)|v−v′|. 
Then

dist(y, Vk) ≥ dist(x, Vk) − |x− y| ≥ 7
16 |v − v′| ≥ 21

162−k.

This contradicts our assumption that Vk+1 is a maximal 2−(k+1)-separated set for E. �
Verifying properties (P1), (P2), (P3), (P4′), (P5), (P6′), and (P7′) for Ek+1, Bk+1, 

Nk+1, Fk+1, and fk+1 is again routine. We leave the details to the reader.

8.2. Mass estimate

Let Ms([0, 1]) be defined as in §4.

Lemma 8.4. Ms([0, 1]) ≤ 48sc−1Hs(E).

Proof. Fix a finite tree T over [0, 1] of depth m (see §4) and suppose that

∂T = {(k′1, J1), (k1, I1), . . . , (k′l, Jl), (kl, Il), (k′l+1, Jl+1)},

enumerated according to the orientation of [0, 1] so that

{I1, . . . , Il} ⊆
⋃
k≥0

Ek and {J1, . . . , Jl+1} ⊆
⋃
k≥0

(Nk ∪ Fk).

The first interval J1 ∈ Nk′
1

and the last interval Jl+1 ∈ Nk′
l+1

, since they contain 0 and 
1, respectively. The remaining intervals Ji ∈ Fk′

i
, because they do not contain 0 or 1.

For each 1 ≤ i ≤ l, let xi denote the midpoint of fki
(Ii).

Claim 8.5. One one hand, the set E ∩ B(xi, (3/16)2−ki) is nonempty for all 1 ≤ i ≤ l. 
On the other hand, the family 

{
E ∩B(xi, (1/4)2−ki) : 1 ≤ i ≤ l

}
is pairwise disjoint.
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Proof. Given 1 ≤ i ≤ l, let vi and v′i denote the endpoints of fki
(Ii). By Lemma 8.3,

|vi − v′i| < 3 · 2−ki .

Hence there exists zi ∈ E∩B(xi, (1/16)|vi−v′i|) ⊂ E∩B(xi, (3/16) ·2−ki) by Lemma 8.2.
Suppose in order to reach a contradiction that there exists

z ∈ E ∩B(xi, (1/4)2−ki) ∩B(xj , (1/4)2−kj )

for some i �= j with 0 ≤ ki ≤ kj ≤ m.
Case 1. Suppose that kj ≥ ki + 3. Then

|vj − xi| ≤ |vj − xj | + |xj − z| + |z − xi| <
3
2 · 2−kj + 1

42−kj + 1
4 · 2−ki <

1
2 · 2−ki

and similarly for v′j . Because {vj , v′j} ⊂ B(xi, 122−ki), we conclude that vj and v′j lie 
between vi and v′i with respect to the linear ordering of Vi ∩B(vi, 120 · 2−ki). It follows 
that Ij is contained in Ii, but Ij �= Ii. This contradicts the assertion that Ii ∈ ∂T .

Case 2. Suppose that kj ≤ ki + 2. Then

|vi−vj | ≤ |vi−xi|+|xi−z|+|z−xj |+|xj−vj | <
3
22−ki+1

4 ·2
−ki+1

4 ·2
−kj+3

22−kj < 8·2−kj ,

|v′i − vj | ≤ |v′i − vi| + |vi − vj | < 3 · 2−ki + 8 · 2−kj ≤ 20 · 2−kj .

In particular, vi, v′i, vj , v′j belong to Vj ∩B(vj , 120 · 2−kj ), which is linearly ordered by 
Lemma 2.2, where vj and vj+1 are consecutive points. Assume that vi and v′i both lie on 
the left or the right side of [vj , v′j ], say without loss of generality that the appear from 
left to right as vj , v′j , vi, v′i. Then

|xi − v′j | ≥
1
2 |v

′
i − vi| ≥

1
2 · 2−ki >

1
4 · 2−ki .

It follows that B(vj , 14 ·2−kj ) ∩B(vi, 14 ·2−ki) is empty, which contradicts our assumption. 
Thus, one of vi or v′i lies on the left side of [vj , v′j ] and the other lies on the right side. 
Then Ij ⊂ Ii. If kj ≥ ki + 1, then we reach the same contradiction as in Case 1. If 
kj = ki, then it follows that Ij = Ii, which contradicts our assumption that i �= j. �

We now continue with the proof of Lemma 8.4. By Claim 8.5, we can find balls 
B(zi, (1/16)2−ki) centered in E for all 1 ≤ i ≤ l, which are pairwise disjoint. Moreover, 
because E is lower Ahlfors regular, we have c[(1/16)2−ki ]s ≤ Hs(E ∩B(zi, (1/16)2−ki))
for all 1 ≤ i ≤ l. Therefore, by Lemma 8.3 and additivity of measures on disjoint sets,

∑
(diam fk(I))s =

l∑
(diam fki

(Ii))s ≤
l∑

(3 · 2−ki)s ≤ 48sc−1Hs(E).

(k,I)∈∂T i=1 i=1



624 M. Badger et al. / Advances in Mathematics 349 (2019) 564–647
Because T was an arbitrary finite tree over [0, 1], we obtain the corresponding inequality 
for the total mass Ms([0, 1]). �
Corollary 8.6. If k ≥ 0, I ∈ Ik, and a is an endpoint of I, then

Ms(k, I) ≤ 48sc−1 Hs(E ∩B(fk(a), 6 · 2−k)).

Proof. Let T be a finite tree over (k, I). By Lemma 8.3, the image of any edge interval 
in ∂T is contained in a ball centered at fk(a) of radius at most

3 · 2−k + 3 · 2−(k+1) + · · · = 6 · 2−k.

The conclusion follows by repeating the proof of Lemma 8.4. �
8.3. Proof of Proposition 8.1

With Lemma 8.4 in hand, follow the proof of Theorem 5.1 in §5.1, mutatis mutandis. 
Construct families of intervals E ′

k, N ′
k , and F ′

k as in §5.1. We are free to specify the 
following additional constraints.

• If I ∈ Ek, say I ∈ Ek(I0) for some I0 ∈ Ek−1 ∪Nk−1, then the corresponding interval 
I ′ ∈ E ′

k satisfies

diam I ′ = Ms(k, I)
Ms([0, 1]) + 1

card(Ek(I0))

⎛⎝diam I0 −
∑

J∈Ik(I0)

Ms(k, J)
Ms([0, 1])

⎞⎠ . (8.2)

• If I ∈ Fk, then the corresponding interval I ′ ∈ F ′
k satisfies diam I ′ = 0. That is, I ′

is a singleton.

• If I ∈ Nk, then the corresponding interval I ′ ∈ N ′
k satisfies diam I ′ = Ms(k, I)

Ms([0, 1]) .

Lemma 8.7. For any ε > 0, there exists k0 ≥ 0 such that diam I ≤ ε for all k ≥ k0 and 
I ∈ I ′

k.

Proof. Fix ε > 0. Note that if J ∈ El, then card(El+1(I)) ≥ 2 by Lemma 8.2, because 
diam fl(J) ≥ 2−l and Vl+1 is a maximal 2−(l+1)-separated set in E.

Suppose that I ∈ Ik. Set Jk = I. Inductively, given Jl ∈ Il, let Jl−1 denote the 
unique interval in Il−1 with Jl ⊂ Jl−1. That is,

I = Jk ⊂ Jk−1 ⊂ · · · ⊂ J1 ⊂ J0 = [0, 1].

For each i ∈ {0, . . . , k}, let J ′
i ∈ I ′

i be the interval associated to Ji. We claim that for 
each i ∈ {0, . . . , k}
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diam J ′
i ≤

i∑
l=0

2l−i Ms(l, Jl)
Ms([0, 1]) . (8.3)

We prove (8.3) by induction. For i = 0 the claim is clear. Assume that (8.3) is true for 
0 ≤ i < k. If Ji+1 ∈ Fi+1(Ji), then diam J ′

i+1 = 0 and (8.3) is clear. If Ji+1 ∈ Fi+1(Ji), 
then diam J ′

i+1 = Ms(i + 1, Ji+1)/Ms([0, 1]) and (8.3) is again clear. If Ji+1 ∈ Ei+1(Ji), 
then by (8.2) and the induction hypothesis,

diam J ′
i+1 ≤ Ms(i + 1, Ji+1)

Ms([0, 1]) + 1
2 diam J ′

i ≤
i+1∑
l=0

2l−(i+1) Ms(l, Jl)
Ms([0, 1]) .

This establishes (8.3).
Choose an integer l0 sufficiently large so that 2−l0 l0 ≤ ε/2. If k ≥ l0, then by (8.3)

and the fact that Ms([0, 1]) ≥ (diamE)s = 1,

diam I ′ ≤
l0−1∑
l=0

2l−k Ms(l, Jl)
Ms([0, 1]) +

k∑
l=l0

2l−k Ms(l, Jl)
Ms([0, 1]) ≤ ε

2 + 2Ms(l0, Jl0).

Thus, by Corollary 8.6,

diam I ′ ≤ ε

2 + 2 48s

c
sup
x∈E

Hs(E ∩B(x, 6 · 2−l0))

whenever k ≥ l0. Now, because E is compact, Hs(E) < ∞, and Hs has no atoms,

lim
n→∞

sup
x∈E

Hs(E ∩B(x, 6 · 2−n)) = 0.

Hence, by choosing l0 even larger if necessary, we can ensure that

sup
x∈E

2 48s

c
Hs(E ∩B(x, 6 · 2−l0)) < ε

2 .

Therefore, diam I ′ < ε for all k ≥ l0 provided that l0 is sufficiently large depending on ε
and E. �

Following the proof of Theorem 5.1 in §5.1, we obtain a sequence of maps Fk : [0, 1] →
RN and a (1/s)-Hölder continuous map F : [0, 1] → RN satisfying the following proper-
ties.

(1) For each k ≥ 0, there exist (possibly degenerate) closed intervals [0, ak] and [bk, 1]
such that Fk|[0, ak] and F |[0, bk] are constant maps and F (0), F (1) ∈ Vk.

(2) For each k ≥ 0, the map Fk|(ak, bk) is an injective piecewise linear map connecting 
Fk(0) to Fk(1) along line segments between points in Vk of length at most 3 · 2−k.
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(3) If x ∈ Vk \ {Fk(0), Fk(1)} for some k ≥ 0, then F−1
k (x) = F−1

j (x) for all k ≥ j

(because intervals in Fj are frozen).
(4) The maps Fk converge uniformly to F and F ([0, 1]) contains 

⋃∞
k=0 Vk.

(5) The Hölder constant of F satisfies

H ≤ 1
ξ1

(
Ms([0, 1])r1−s

0 + 60A∗r0
ξ2

1 − ξ2

)
�s c

−1Hs(E)(diamE)1−s.

It remains to show that F ([0, 1]) = E and F is injective.
On one hand, since each Vk is a maximal 2−k-separated set in E,

F ([0, 1]) ⊃
⋃∞

k=0 Vk = E

by (3). On the other hand, if x ∈ F ([0, 1]), say x = F (t), then

dist(x,E) ≤ lim inf
k→∞

dist(Fk(t), E) = 0

by (2). Thus, F ([0, 1]) = E.
To check injectivity, we first establish a lemma. We say that an interval I separates

two numbers x < y if x < z < y for all z ∈ I.

Lemma 8.8. Let 0 ≤ x < y ≤ 1. If k0 is the least integer k ≥ 0 such that there exists an 
interval in E ′

k separating x and y, then |Fk(x) − Fk(y)| � 2−k0 for all k ≥ k0.

Proof. Fix 0 ≤ x < y ≤ 1, let k0 be as in the statement of the lemma and let k ≥ k0. 
Let I0 ∈ Ek0 be such that I0 separates x and y. The proof is divided into two cases.

Case 1. Assume that k ≤ k0 + 3. By Remark 3.5 and minimality of k0, there exist 
at most 13 intervals I ∈ E ′

k0
separating x from y. Therefore, there exist consecutive 

intervals J1, . . . , Jl ∈ Ik such that x, y ∈
⋃l

i=1 Ji, I0 ⊂
⋃l

i=1 Ji and l ≤ 15. Let a be 
an endpoint of I0. Since diamFk(Ji) ≤ 3 · 2−k0 for all i ∈ {1, . . . , l}, the points Fk(x)
and Fk(y) are in B := B(Fk(a), 45 · 2−k0). Let � be a best fitting line for B and let π be 
the orthogonal projection on �. Since βE(B) ≤ 2−11, the points of Fk(

⋃l
i=1 Ji) ∩ B are 

linearly ordered according to their projection on �. In particular, |z−w| ≤ 2|π(z) −π(w)|
for all z, w ∈ Fk(

⋃l
i=1 Ji) ∩B. Thus,

|Fk(x) − Fk(y)| ≥ |π�(Fk(x)) − π�(Fk(y))| ≥ diam π�(Fk(I0)) ≥
1
2 diamFk(I0) ≥

1
22−k0 .

Case 2. Assume that k ≥ k0 + 4. For each integer i ≥ 0, let Pi(x, y) be the end-
points of intervals in E ′

k0+4+i lying between x and y. Let xi (resp. yi) be the leftmost 
(resp. rightmost) element of Pi(x, y). For all i ≥ 0,

x ≤ xi+1 ≤ xi < yi ≤ yi+1 ≤ y,
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and I0 separates x0 from y0. As in Case 1, if � is a best fitting line for Fk0(a), then

|Fk0+3(x0)−Fk0+3(y0)| ≥ |π�(Fk0+3(x0))−π�(Fk0+3(y0))| ≥ diam π�(Fk0(I0)) ≥
9
102−k0 .

Now, each xi+1 (resp. yi+1) is contained in the closure of an interval in E ′
k+4+i which 

has xi (resp. yi) as an endpoint. This fact along with Lemma 8.3 yields

|Fk0+4+i(xi) − Fk0+5+i(xi+1)| ≤ 3 · 2−k0−4−i,

|Fk0+4+i(yi) − Fk0+5+i(yi+1)| ≤ 3 · 2−k0−4−i.

Therefore, by the triangle inequality,

|Fk(x) − Fk(y)| ≥ |Fk0+4(x0) − Fk0+4(y0)| −
∞∑
i=0

|Fk0+4+i(xi) − Fk0+5+i(xi+1)|

−
∞∑
i=0

|Fk0+4+i(yi) − Fk0+5+i(yi+1)|

≥ 9
102−k0 − 6 · 2−k0−4 − 6 · 2−k0−4.

Hence |Fk(x) − Fk(y)| ≥ (3/20)2−k0 and the proof is complete. �
Suppose that x, y ∈ [0, 1] with x < y. By Lemma 8.7, there exist intervals I ∈ E ′

k that 
separate x and y provided that k is sufficiently large. If k0 is the least such integer, then 
|F (x) − F (y)| � 2−k0 > 0 by Lemma 8.8. This shows that F is injective and completes 
the proof of Proposition 8.1.

8.4. Proof of Lemma 8.2

We first give an auxiliary estimate.

Lemma 8.9. Let E ⊂ RN , x ∈ E, and r > 0. If y ∈ E∩B(x, r), |y−x| ≥ 64βE(B(x, r))r, 
and �x,y is the line passing through x and y, then

dist(z, �x,y) ≤ 4βE(B(x, r))
(

1 + 1.1r
|y − x|

)
r for all z ∈ E ∩B(x, r).

Proof. Let z ∈ E ∩ B(x, r), z �= x. Let � be a best fitting line for E in B(x, r). Then 
dist(x, �), dist(y, �), and dist(z, �) are bounded above by βE(B(x, r))2r. Let �x = � − x. 
Then x ∈ �x and dist(y, �x) and dist(z, �x) are bounded above by 2βE(B(x, r))2r. If 
y ∈ �x, then we have dist(z, �x,y) = dist(z, �x) ≤ 2βE(B(x, r))2r and we are done.
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To continue, suppose that y /∈ �x and let y′ = π�x(y) and let z′ = π�x(z). Define

w = x + |z′ − x|
|y′ − x| (y − x) ∈ �x,y.

Since z′ ∈ �x between x and y′, we have that z′ = x + |z′−x||y′−x|−1(y′−x). Therefore,

dist(z′, �x,y) ≤ |z′ − w| = |y′ − y| |z
′ − x|

|y′ − x| ≤ |y′ − y| r

|y′ − x| .

Thus, by the triangle inequality,

dist(z, �x,y) ≤ |z′ − z| + |y′ − y| r

|y′ − x| ≤ 2βE(B(x, r))
(

1 + r

|y′ − x|

)
2r.

Since dist(y, �x) ≤ 2βE(B(x, r))2r ≤ (1/16)|x − y|, we have

1.1|y′ − x| ≥ (1 + 3(1/16)2)|y′ − x| ≥ |y − x|

by Lemma 2.1, applied with V = {x, y}. Therefore,

dist(z, �x,y) ≤ 2βE(B(x, r))
(

1 + 1.1r
|y − x|

)
2r. �

We now give a proof of the key lemma.

Proof of Lemma 8.2. Without loss of generality, we may assume that diamE = 1. Fix 
x, y ∈ E and let n ≥ 0 be the unique integer such that

2−(n+1) < |x− y| ≤ 2−n.

Case 1. Suppose that n ∈ {0, 1}. Let � be the line containing x and y. Since 
βE(B(x, 1)) ≤ 2−11 and since |x − y| > 2−2, by Lemma 8.9 we have that

sup
w∈E

dist(w, �) = sup
w∈E∩B(x,1)

dist(w, �) ≤
(

1 + 1.1
|x− y|

)
4βE(B(x, 1))

≤ 21.6
211 ≤ 1

26 <
|x− y|

24 .

Therefore, E is contained inside the tube T := B(x, 1) ∩ B(�, 2−4|x − y|). Let D be a 
closed (N − 1)-ball centered at z, perpendicular to � and of radius 2−4|x − y|. In other 
words, D is the set of all points in B(z, 2−6) whose projection on � is z. Then D cuts T
into two pieces, one containing x and another containing y. By connectedness of E, we 
must have D ∩E �= ∅.
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Case 2. Suppose that n ≥ 2. The procedure here is roughly the same as that in 
Case 1, with the difference that the tube T is replaced by a more complicated set. By 
connectedness of E, for each k ∈ {1, . . . , n − 1}, there exists a point yk ∈ B(x, 2−k) ∩E. 
For each k ∈ {1, . . . , n − 1} let �k be the line containing x and yk. Let also �n be the line 
containing x and y.

Working as in Case 1, we can show that for each k ∈ {1, . . . , n},

E ∩B(x, 2−(k−1)) ⊂ Tk := B(x, 2−(k−1)) ∩B(�k, 2−52−(k−1)).

Since diamE = 1, we also have E ⊂ T1. For each k ∈ {1, . . . , n − 1}, let Tk,1, Tk,2 be the 
two components of Tk \B(x, 2−k). Set

T = T1,1 ∪ · · · ∪ Tn−1,1 ∪ Tn ∪ Tn−1,2 ∪ · · · ∪ T1,2.

The sets T1,1, . . . , Tn−1,1, Tn, Tn−1,2, . . . , T1,2 intersect at most in pairs. In particular,

(1) if i ∈ {1, 2}, then T1,i ∩ Tm,j = ∅ unless m ∈ {1, 2} and j = i;
(2) if k ∈ {2, . . . , n − 2} (if any) and i ∈ {1, 2}, then Tk,i ∩ Tm,j = ∅ unless m ∈

{k − 1, k, k + 1} and j = i;
(3) if i ∈ {1, 2}, then Tn−1,i ∩ Tm,j = ∅ unless m ∈ {n − 2, n − 1} and j = i;
(4) Tn ∩ Tm,j = ∅ unless m = n − 1.

As with Case 1, if D is an (N − 1)-ball centered at z, perpendicular to �n and of radius 
2−42−n, then D cuts Tn into two pieces, one containing x and another containing y. 
Consequently, D cuts T into two pieces, one containing x and another containing y. By 
connectedness of E and the fact that E ⊂ T , we must have D ∩ E �= ∅. �
9. Examples

In this section, we give examples of Hölder curves and of sets that are not contained 
in Hölder curves to illuminate Theorem 1.1, Proposition 1.3, and Theorem 5.1.

9.1. Hölder curves that are non-flat in all scales

First up, we show that condition (1.2) in Theorem 1.1 is not necessary for a bounded 
set to be contained in a (1/s)-Hölder curve when s > 1. In contrast, when s = 1, 
condition (1.1) in the Analyst’s Traveling Salesman theorem is necessary and sufficient 
for a bounded set to be contained in a rectifiable curve.

Let N ≥ 2 and 1 ≤ m ≤ N − 1 be integers. Given a nonempty set E ⊂ RN and an 
N -cube Q ⊂ RN with E ∩Q �= ∅, define the m-dimensional beta number

β
(m)
E (Q) := inf

P
sup dist(x, P )

diamQ
x∈E∩Q
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where the infimum is taken over all m-planes P in RN . If E ∩Q = ∅, set β(m)
E (Q) = 0. 

Note that β(1)
E (Q) = βE(Q) as defined in §1 and that β(m)

E (Q) ≤ β
(n)
E (Q) whenever 

m ≥ n.

Proposition 9.1. For any N ≥ 2 and any s ∈ (1, N ], there exists a (1/s)-Hölder curve 
E ⊂ RN such that ∑

Q∈Δ(RN )
β

(N−1)
E (3Q)≥(6

√
N)−1

(diamQ)s = ∞. (9.1)

The construction splits into three cases. Before proceeding, we introduce some nota-
tion. Given a cube Q ⊂ RN , denote by Δ(Q) the set of dyadic cubes in Δ(RN ) that 
are contained in Q. Moreover, given positive integers m ≤ N , there exists a polynomial 
PN,m of degree m with the following property: If n ∈ N and {Q1, . . . , QNn} is a partition 
of [0, 1]N into N -cubes of side-length 1/n, then

card{Qi : Qi intersects the m-skeleton of ∂[0, 1]N} = PN,m(n).

Recall that if I1, . . . , IN are nondegenerate compact intervals, and Q = I1 × · · · × IN is 
an N -cube, then the m-skeleton of Q is the union of sets I ′1 × · · · × I ′N where I ′j = Ij for 
m indices j and I ′j = ∂Ij for the remaining N −m indices j. Finally, we note that if K
is the set of vertices of a cube Q in RN and P is an (N − 1)-plane, then

dist(x, P ) ≥ (2
√
N)−1 diamK for all x ∈ K. (9.2)

Case 1: s = N . We simply take E = [0, 1]N . It is well known that there exists a 
(1/N)-Hölder parametrization f : [0, 1] → E. On the other hand, by (9.2),

∑
Q∈Δ(RN )

β
(N−1)
E (3Q)≥(2

√
N)−1

(diamQ)N ≥
∞∑
k=0

∑
Q∈Δ([0,1]N )

diam Q=
√
N2−k

(diamQ)N =
∞∑
k=0

2Nk(
√
N2−k)N = ∞.

Case 2: s ∈ (1, N) \ N. Let m be the integer part of s. Since the degree of PN,m is 
strictly less than s and strictly larger than s − 1, we can fix n ∈ N such that

ns − (n− 2)s < PN,m(n) < ns − 1. (9.3)

By (9.3) and the Intermediate Value Theorem, there exists λ ∈ ( 1
n , 1 − 2

n ) such that

PN,m(n)n−s + λs = 1. (9.4)

Partition [0, 1]N into N -cubes of side-lengths 1/n and let {Qi}li=1 (l = PN,m(n)) be 
those cubes that intersect the m-skeleton of [0, 1]N . Let also Q0 = [1/n, 1/n + λ]N . For 
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each i = 0, . . . , l, let φi be a similarity of RN such that φi([0, 1]N ) = Qi. Finally, define 
E ⊂ RN ,

E :=
∞⋂
k=1

⋃
i1···ik∈{0,...,l}k

φi1 ◦ · · · ◦ φik([0, 1]N ).

Since the maps {φ0, . . . , φl} satisfy the open set condition, E is Ahlfors regular [31]. By 
(9.4) the Hausdorff dimension of E is equal to s, so E is s-regular.

Lemma 9.2. The set E is connected.

Proof. Set W =
⋃

k≥0{0, . . . , l}k with the convention that {0, . . . , l}0 is the empty word 
∅ and φ∅ is the identity map of RN . For each w ∈ W, let Kw denote the 1-skeleton of 
φw([0, 1]N ). The proof is based now on two observations. First, by the choice of cubes 
Q1, . . . , Ql, it follows that Kw ⊂ E for all w ∈ W. Second, Kw ∩ Kwi �= ∅ for all w ∈ W
and i ∈ {0, . . . , l}.

Now fix x ∈ E. There exists a sequence of words (wn)n≥0 in W such that w0 is the 
empty word, wn+1 = wnin with in ∈ {0, . . . , l}, and x ∈

⋂
n≥0 φwn

(x). The set 
⋃

n≥0 Kwn

is a path that joins x with the origin. Hence E is connected. �
By Lemma 9.2, the fact that the Hausdorff dimension of E is s, and Theorem 4.12 in 

[45], there exists a (1/s)-Hölder map f : [0, 1] → RN such that f([0, 1]) = E. It remains 
to show (9.1). We first prove a lemma.

Lemma 9.3. If Q ∈ Δ([0, 1]N ) is a dyadic cube that intersects E, then there exists a 
dyadic cube Q′ ⊂ 3Q such that diamQ′ ≥ (3n)−1 diamQ and β(N−1)

E (3Q′) ≥ (6
√
N)−1.

Proof. Fix x ∈ Q ∩E and let i1, i2, . . . be a sequence of numbers in {0, . . . , l} such that

x ∈
∞⋂
k=1

φi1 ◦ · · · ◦ φik([0, 1]N ).

Let k0 be the smallest positive integer such that φi1 ◦ · · · ◦ φik0
([0, 1]N ) ⊂ 3Q and define 

K to be the set of vertices of φi1 ◦ · · · ◦ φik0
([0, 1]N ). Since each φi has a scaling factor 

at least 1/n, by minimality of k0 we have that diamK ≥ (1/n) diamQ.
Let Q′ be a dyadic cube in Δ(3Q) (possibly Q′ = Q) of minimal diameter such that 

K ⊂ 3Q′. We claim that

1
3 diamK ≤ diamQ′ ≤ diamK. (9.5)

The lower inequality is clear. If diamK < diamQ, then, since K has edges parallel to the 
axes, K is contained in 3Q0 for some dyadic cube Q0 ⊂ 3Q with diamQ0 = 1

2 diamQ′, 
which is a contradiction. That establishes the upper inequality of (9.5).
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By (9.2), (9.5), and the fact that K ⊂ E,

β
(N−1)
E (3Q′) ≥ β

(N−1)
K (3Q′) ≥ (2

√
N)−1 diamK

diam 3Q = (6
√
N)−1 diamK

diamQ
≥ (6

√
N)−1.

This proves the lemma. �
By Ahlfors s-regularity of E, there exists a constant C > 1 such that

card{Q ∈ Δ([0, 1]N ) : diamQ =
√
N2−k and Q ∩ E �= ∅} ≥ C−12sk.

Fix a positive integer k0 such that 2k0 > 3n. For k ∈ N, set

Qk = {Q ∈ Δ([0, 1]N ) : diamQ ∈ [
√
N2−k,

√
N2−k−k0 ] and β

(N−1)
E (3Q) ≥ (6

√
N)−1}.

By Lemma 9.3,

cardQk ≥ 3−N card{Q ∈ Δ([0, 1]N ) : diamQ =
√
N2−k and Q ∩ E �= ∅} ≥ C−13−N2sk.

Therefore,

∑
Q∈Δ(RN )

β
(N−1)
E (3Q)≥(6

√
N)−1

(diamQ)N ≥
∞∑
k=0

∑
Q∈Qkk0

(diamQ)N

≥
∞∑
k=0

C−13−N2skk0(
√
N)s2−s(k+1)k0 = ∞.

Case 3: s ∈ {2, . . . , N −1}. Fix n ∈ N large enough so that PN,s−1(n) < ns. Partition 
[0, 1]N into N -cubes with disjoint interiors and side-lengths 1/n and let {Q1, . . . , Ql}
(l = ns) be a collection of such cubes so that the set 

⋃l
k=1 Qi is connected and contains 

the (s − 1)-skeleton of [0, 1]N . The rest of the construction is similar to Case 2 and is 
left to the reader.

9.2. Ahlfors regular curves without Hölder parametrizations

Next, for all s > 1, we construct Ahlfors s-regular curves that are not contained in any 
(1/s)-Hölder curve. The basic strategy is take a disconnected set, which is not contained 
in a Hölder curve, and then extend the set to transform it into an s-regular curve. We 
call the curves that we construct “Cantor ladders”.

Proposition 9.4. Let N ∈ N with N ≥ 2, let s ∈ (1, N), and let m ∈ N with m ≤ s. There 
exists an Ahlfors s-regular curve E ⊂ RN , which is not contained in a (m/s)-Hölder 
image of [0, 1]m.
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We treat the cases s ∈ N and s /∈ N separately. Given m ∈ N, let Wm be the set of 
finite words formed by the letters {1, . . . , m} including the empty word ∅. We denote by 
|w| the number of letters a word has with the convention |∅| = 0.

Case 1. Suppose that s ∈ {2, 3, . . . , N −1}. Let D∅ = [0, 1]2. Given a square Dw ⊂ R2

for some w ∈ W4, let Dw1, Dw2, Dw3, Dw4 be the four corner squares in Dw with 
diamDwi = (1/4) diamDw. Let C1 be the Cantor set in R2 defined by

C1 =
∞⋂
k=0

⋃
w∈W4
|w|=k

Dw.

For each i = 1, . . . , 2|w|, define Dw,i = Dw × {(2i − 1)2−|w|−1},

K2 = (C1 × [0, 1]) ∪
⋃

w∈W

2|w|−1⋃
i=0

Dw,i and E = K2 × [0, 1]s−2 × {0}N−s−1.

Here and for the rest of §9.2, we use the convention A × {0}0 = A.
Case 2. Suppose that s ∈ (1, N) \N. Let p = s − �s� be the fractional part of s. Let 

I∅ = [0, 1]. Given an interval Iw = [aw, bw] for some w ∈ W2, let

Iw1 = [aw, aw + 2−p(bw − aw)] and Iw2 = [bw − 2−p(bw − aw), bw].

Let Cp denote the Cantor set in R defined by

Cp =
∞⋂
k=0

⋃
w∈W2
|w|=k

Iw.

Let S be the bi-Lipschitz embedded image of ([0, 1], | · | 1
p+1 ) into R2. For each w ∈ W2, 

let Sw be a rescaled copy of S whose endpoints are the right endpoint of Iw1 and the 
left endpoint of Iw2. For each w ∈ W2 and i = 1, . . . , 2|w| − 1, define

Sw,i = Sw + (0, (2i− 1)2−|w|−1)

and define

Kp+1 = (Cp × [0, 1]) ∪
⋃

w∈W

2|w|⋃
i=0

Sw,i and E = Kp+1 × [0, 1]s−p−1 × {0}N+p−s−1.

Verification of the desired properties of E is the same for the two cases, so we only 
treat Case 1. By Theorem 2.1 in [38], there exists no (m/s)-Hölder map f : [0, 1]m → RN

whose image contains C1× [0, 1]s−1×{0}N−s−1. We show that E is a curve in §9.2.1 and 
we prove s-regularity of E in §9.2.2.
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9.2.1. E is a curve
By the Hahn-Mazurkiewicz theorem [30, Theorem 3.30], to show that E is a curve it 

is enough to show that E is compact, connected, and locally connected.
For compactness, it is easy to see that K2 ⊂ [0, 1]3, hence E ⊂ [0, 1]N . Moreover, as 

|w| → ∞, the squares Dw,i accumulate on C×[0, 1]. Therefore, K2 is closed. Consequently, 
E is compact.

To settle both connectedness and local connectedness, we prove that there exists C > 1
such that for all pairs of points x, y ∈ E there exists a path joining x with y of diameter at 
most C|x −y|1/2. Clearly, it suffices to show the claim for K2 instead of E. Fix x, y ∈ K2
and let w0 be the word in W4 of maximum word-length such that the projections of x
and y on R2 × {0} are contained in Dw0 . This means that |x − y| ≥ 1

24−|w0|. Choose 
i0 ∈ N such that dist(x, Dw0,i0) ≤ 2 · 2−|w0|. If x0 and y0 are the projections of x and y
onto Dw0,i0 , respectively, then

max{|x0 − x|, |y0 − y|} � 2−|w0| + 4−|w0| + |x− y| 
 2−|w0|.

There exist sequences (wn)n∈N , (un)n∈N of words in W4 and sequences (in)n∈N , (jn)n∈N
of positive integers such that

(1) |wn| = |un| = |w0| + n;
(2) the orthogonal projection of x (resp. y) on R2 is contained in Dwn

(resp. Dun
);

(3) there exists xn ∈ Dwn,in such that

max{|x− xn|, |y − yn|} ≤ 4−|w0|−n
√

2 + 2−|w0|−n.

Properties (1) and (2) imply that Dw0 � Dw1 � Dw2 � · · · and Dw0 � Du1 � Du2 � · · · , 
while property (3) implies that the Hausdorff distances

distH(Dwn,in , Dwn+1,in+1) � 2−|w0|−n and distH(Dun,jn , Dun+1,jn+1) � 2−|w0|−n.

Let γ0 ⊂ K2 be the line segment joining x0 with y0. For each n ≥ 0, let zn ∈ Dwn,in

be a corner point and let z′n be its projection on Dwn+1,in+1 . Also, let pn ∈ Dun,jn be a 
corner point and let p′n be its projection on Dun+1,jn+1 . Consider the curve

γ = γ0 ∪
⋃
n∈N

([xn, zn] ∪ [zn, z′n] ∪ [z′n, xn+1]) ∪
⋃
n∈N

([yn, pn] ∪ [pn, p′n] ∪ [p′n, yn+1]),

which is a subset of K2 and joins x with y. Then

diam γ � diam γ0 +
∑
n≥0

diam γn +
∑
n≥0

diam σn

≤ |x0 − y0| +
∑

(|xn − zn| + |zn − z′n| + |z′n − xn+1|)

n≥0



M. Badger et al. / Advances in Mathematics 349 (2019) 564–647 635
+
∑
n≥0

(|yn − pn| + |pn − p′n| + |p′n − yn+1|)

� 4−|w0| +
∑
n≥0

(2−|w0|−n + 4−|w0|−n + 2−|w0|−n) � 2−|w0| 
 |x− y|1/2.

9.2.2. E is s-regular
We show s-regularity for E. Because the product of regular compact spaces of dimen-

sion s1 and s2 is (s1 + s2)-regular, to show that E is s-regular, it suffices to show that 
K2 is 2-regular. Fix x ∈ K2 and r ∈ (0, diamK2).

We first show that

H2(B(x, r) ∩K2) � r2. (9.6)

If x ∈ C1 × [0, 1], then (9.6) follows from the 2-regularity of C1 × [−1, 1]. If x ∈ Dw,i

and r ≤ 10 diamDw, then (9.6) follows from the 2-regularity of Dw,i. If x ∈ Dw,i and 
r ≥ 10 diamDw, then there exists z ∈ (C1× [0, 1]) ∩B(x, r) such that B(z, r/2) ⊂ B(x, r)
and (9.6) follows from the 2-regularity of B(z, r/2) ∩K2.

For the upper regularity of K2, instead of working with balls B(x, r), it is more 
convenient to use cubes

Q(x, r) = x + [−r/2, r/2]3 x ∈ K2, r > 0.

Without loss of generality, we may assume that r = 4−k0 for some k0 ∈ N. For each 
k ≥ 0, let

Dk(x, r) = {Dw,i : Q(x, r) ∩Dw,i �= ∅ and |w| = k}.

Then by the 2-regularity of C1 × [−1, 1], it suffices to show that

∑
k≥0

∑
Dw,i∈Dk(x,r)

H2(Q(x, r) ∩Dw,i) � r2.

The following lemma will let us estimate the above sum. In the sequel, we denote by 
m0 ≥ 0 the smallest integer for which there exists Dw,i ∈ D(x, r) with |w| = m0.

Lemma 9.5. Let m0 ≥ 0 be the smallest integer for which Dm0(x, r) �= ∅.

(1) If k > m0 and Dk(x, r) �= ∅, then k ≥ 2k0.
(2) If Q′ is the projection of Q(x, r) on R2 × {0}, then for all k ≥ 0,

card {Dw : Dw ∩Q′ �= ∅ and |w| = k} ≤ 1 + 4k4−k0 .
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(3) For each w ∈ W4,

card {i : Dw,i ∩Q(x, r) �= ∅} ≤ 1 + 2|w|+14−k0 .

(4) For each k ≥ 0, cardDk(x, r) ≤ (1 + 4k4−k0)(1 + 2k+14−k0).
(5) We have

∑
Dw,i∈Dm0 (x,r)

H2(Dw,i ∩Q(x, r)) � r2.

Proof. For (1), recall that if |w| > m0, then the vertical distance between Dw,i and 
Dw0,i0 is at least 2−|w|. Since r = 4−k0 , the cube Q(x, r) can not intersect any Dw,i, 
unless 4−k0 ≥ 2−|w|. Thus, |w| ≥ 2k0.

For (2), we first note that if k ≤ k0, then Q′ can intersect at most one square Dw

with |w| = k. We now use induction to show that for all k ≥ k0,

card {Dw : Dw ∩Q′ �= ∅ and |w| = k} ≤ 4k4−k0 .

For k = k0, it is true. Suppose that the claim is also true for some k ≥ k0. Then Q′

intersects Dw with |w| = k + 1 if and only if there exists w′ with |w′| = k such that 
Q ∩ Dw′ �= ∅ and Dw ⊂ Dw′ . Since each square of generation k contains 4 squares of 
generation k + 1,

card {Dw : Dw ∩Q′ �= ∅ and |w| = k + 1} ≤ 4 card {Dw : Dw ∩Q′ �= ∅ and |w| = k}

≤ 4k+14−k0 .

For (3), fix w ∈ W4. Recall that the vertical height of Q(x, r) is 2r = 2 ·4−k0 and that 
the vertical distance between Dw,i and Dw,j with i �= j is at least 2−|w|. Therefore,

card {i : Dw,i ∩Q(x, r) �= ∅} ≥ 1 + (2r)/2−|w| = 1 + 2|w|+14−k0 .

Claim (4) is immediate from (2) and (3).
It remains to show (5). On one hand, if m0 > k0, then by (4), card(Dm0(x, r)) = 1. 

Hence (5) follows from the 2-regularity of squares Dw,i. On the other hand, if m0 ≤ k0, 
then by (4),

∑
Dw,i∈Dm0 (x,r)

H2(Dw,i ∩Q(x, r)) ≤ card(Dm0(x, r))(4−m0)2 � 2−m04−2k0 ≤ r2. �
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By Lemma 9.5, we have

∑
Dw,i∈D(x,r)

H2(B(x, r) ∩Dw,i) ≤
∑

Dw,i∈Dm0 (x,r)

H2(Dw,i) +
∞∑

k=2k0

∑
Dw,i∈Dk(x,r)

H2(Dw,i)

� r2 +
∞∑

k=2k0

2k4−k04k4−k04−2k.

Finally,

∞∑
k≥2k0

2k4−k04k4−k04−2k = 4−2k0
∑
k≥k0

2−k � 4−3k0 � r2.

Therefore, K2 is 2-regular.

9.3. A compact countable set that is not contained in any Hölder cube

Proposition 9.6. For each N ∈ N, N ≥ 2, there exists a compact and countable set 
E ⊂ RN with one accumulation point such that for any m ∈ {1, . . . , N − 1} and any 
s ∈ [1, N/m), the set E is not contained in a (1/s)-Hölder image of [0, 1]m.

Corollary 9.7. For each N ∈ N, N ≥ 2, there exists a compact and countable set E ⊂ RN

with one accumulation point such that E is not contained in a rectifiable curve.

For each integer k ≥ 0, define G0
k to be the union of all vertices of all dyadic cubes in 

RN that are contained in [0, 1]N and have side length 2−k. By a simple combinatorial 
argument, card(Gk

0 ) = (2k + 1)N for all k ≥ 0.
Let φ0 be the identity map, and for each k ≥ 1, define a map φk : RN → RN by

φk(x) = (k + 1)−2x +
(

0, . . . , 0, 2
k∑

i=1
i−2

)
.

Set A :=
∑∞

i=1 i
−2 = π2/6, and define the set

E := {(0, . . . , 0, 2A)} ∪
∞⋃
k=0

φk(G0
k).

The set E is clearly countable. If (x1, . . . , xN ) ∈ E, then |xi| ≤ 1 for all i = 1, . . . , N−1
while |xN | ≤ 2A. Therefore, E is bounded. Moreover, the only accumulation point of E
is the point (0, . . . , 0, 2A) which is contained in E. Thus, E is closed.

Next, we claim that

|x− y| ≥ 2−k(k + 1)−2 for all x ∈ φk(G0
k) and all y ∈ E \ {x}. (9.7)
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Indeed, if x, y ∈ G0
k , then inequality (9.7) is clear. Otherwise, dist(G0

k, E\G0
k) ≥ (k+1)−2, 

and thus, (9.7) holds again.
Suppose in order to get a contradiction that there exists a (1/s)-Hölder continuous 

map f : [0, 1]m → RN such that E ⊂ f([0, 1]m). Let H be the Hölder constant of f . For 
each k ≥ 0 and x ∈ G0

k, fix a point wk,x such that f(wk,x) = x and set

Bk,x = B(wk,x,
1
2H

−s2−ks(k + 1)−2s).

Inequality (9.7) implies that the balls Bk,x are mutually disjoint. Moreover, it is easy to 
see that each Bk,x is contained in [−1, 2]m. Therefore,

1 �m Hm([−1, 2]m) ≥
∞∑
k=0

∑
x∈G0

k

Hm(Bk,x)

�H,s

∞∑
k=0

(2k + 1)N 2−skm

(k + 1)2sm 
N

∞∑
k=0

2k(N−ms)

(k + 1)2s .

Since N > ms, the sum on the right hand side diverges and we reach a contradiction.

9.4. Flat curves with finite Hs measure and no (1/s)-Hölder parametrizations

The following example shows that the assumption of lower s-regularity can not be 
dropped from Proposition 1.3.

Proposition 9.8. For any β0 ∈ (0, 1), there exists s0 ∈ (1, 2) with the following property. 
For any s ∈ (1, s0) there exists a curve E ⊂ R2 such that

(1) Hs(E) < ∞ and
(2) βE(Q) < β0 for all Q ∈ Δ(RN ),

but E is not contained in any (1/s)-Hölder image of [0, 1].

Before proceeding, we recall a well-known construction method for snowflakes in R2. 
Let p = (p0, p1, . . . ) be sequence of numbers in [1/4, 1/2). Let Γ0 be the segment [0, 1] ×
{0}, oriented from (0, 0) to (1, 0). Assume that we have constructed an oriented polygonal 
arc Γk with 4k edges. Define Γk+1 to be the polygonal arc constructed by replacing each 
edge e of Γk by a rescaled and rotated copy of the oriented polygonal arc in Fig. 4 with 
p = pk, so that the new oriented arc lies to the left of e. A snowflake arc Sp is obtained 
by taking the limit of Γk, just as in the construction of the usual von Koch snowflake.

Remark 9.9. For any ε > 0, there exists p∗ > 1/4 (small) such that if a snowflake is 
built with parameters 1/4 ≤ pk ≤ p∗ for all k ≥ 0, then βΓk

(B(x, r)) ≤ εr for all k ≥ 0, 
x ∈ Γk, and r > 0.
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Fig. 4. Generator for a snowflake curve.

Fix β0 ∈ (0, 1). By the preceding remark, there exists p∗ ∈ (1/4, 1/2) such that 
βSp0

(Q) < β0 for all Q ∈ Δ(RN ). Set p = (p∗, p∗, . . . ), set s0 = − log 4/ log p0, and 
fix s ∈ [1, s0). It is well-known that there exists a (1/s0)-bi-Hölder homeomorphism 
Φ : [0, 1] → Sp; e.g., see [18,46].

We now construct a self-similar Cantor set in [0, 1] in the following way. Let I∅ = [0, 1]. 
Assuming we have constructed Iw = [aw, bw] for some w ∈ {1, 2}n, let

Iw1 = [aw, aw + (bw − aw)2−s0/s] and Iw2 = [bw − (bw − aw)2−s0/s, bw].

Define E′ =
⋂∞

n=0
⋃

w∈{1,2}n Iw. For each component J of [0, 1] \ E′, let γJ be the line 
segment joining the endpoints of Φ(J). Then define

E = Φ(E′) ∪
⋃
J

γJ ,

where the union is taken over all components J of [0, 1] \ E′. Since E′ is s/s0-regular 
and Φ is (1/s0)-bi-Hölder,

Hs(E) = Hs(Φ(E′)) +
∑
J

Hs(γJ) ≤ CHs/s0(E′) < ∞.

Since Φ(E′) ⊂ Sp and γJ are line segments, we have βE(Q) < β0 for all Q ∈ Δ(RN ). 
Finally, by Theorem 2.1 in [38], there does not exist a (1/s)-Hölder map f : [0, 1] → R2

whose image contains Φ(E′) (and consequently E).

9.5. Sharpness of exponent 1 in Theorem 5.1

To wrap up, we show that Theorem 5.1 does not hold if numbers τs(k, v, v′) are 
replaced by τs(k, v, v′)p with p > 1. When s = 1, this follows from the necessary half of 
the Analyst’s Traveling Salesman theorem. Thus, we may focus on the case s > 1.

Proposition 9.10. Let p > 1, let s > 1 be sufficiently close to 1, and let α0 > 0 be 
sufficiently close to 0. There exists a sequence of finite sets {(Vk, ρk)}≥0 of numbers and 
finite sets in R2 satisfying (V0)–(V5) such that∑

v∈Vk

ρskr
s
0 +

∑
(v,v′)∈Flat(k)

τs(k, v, v′)pρskrs0 < ∞ (9.8)
αk,v≥α0
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but there does not exist a (1/s)-Hölder map f : [0, 1] → R2 such that 
⋃

k≥0 Vk ⊂ f([0, 1]).

Let s > 1 and n0 ∈ N be constants to be specified below. Fix a number

0 < q < min{1/s, (p− 1)/s}.

For each n ∈ N, let

tk =

√
1

41/s

(
1 + 1

k + n0

)2q

− 1
4 .

Construct a sequence of polygonal arcs Γk as in §9.4 with parameters

pk = 1/4 + t2k.

We may assume that numbers pk are in [1/4, 1/2) by taking n0 to be sufficiently large. 
For each k ≥ 0, we define a finite set Vk ⊂ Γk as follows. Define V0 := {v0,1, v0,2}, where 
v0,1 = (0, 0) and v0,2 = (1, 0). Suppose that for some k ≥ 0 we have defined a set

Vk = {vk,1, . . . , vk,Nk
}, Nk = 2k + 1,

where points vk,i are enumerated according to the orientation of Γk. For each i =
1, . . . , 2k + 1, set vk+1,2i−1 = vk,i, and assign vk+1,2i to the point of Γk+1 that lies 
between vk+1,2i−1 and vk+1,2i+1 and is equal distance to vk+1,2i−1 and vk+1,2i+1 (the 
peak of the triangle in Fig. 4). Define the quantities

r0 = 1, C∗ = 2, ξ1 = 2−1/s, ξ2 = 1 + 2−1/s

2 , ρ0 = 1, ρk = 2−k/s (k + 1 + n0)q

(2 + n0)q
.

(9.9)
For each k ≥ 0 and v ∈ Vk, define

αk,v := inf
�

sup
x∈Vk+1∩B(v,30A∗ρkr0)

dist(x, �)
ρk+1r0

,

where the infimum is taken over all lines � in R2 and A∗ is as in §2.2. Let �k,v be a line 
�, which realizes the number αk,v.

Lemma 9.11. There exist choices of s and n0 so that the following properties hold.

(1) For all k ≥ 0 and i ∈ {1, . . . Nk}, we have |vk,i − vk,i+1| = ρk.
(2) The sequence {(Vk, ρk)}k≥0 satisfies (V0)–(V5) with the parameters given in (9.9).
(3) For all k ≥ 0 and v ∈ Vk, we have αk,v ≤ α0, where α0 is as in Definition 2.4.
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(4) For all k ≥ 0 and i ∈ {1, . . . , Nk},

Flat(k) = {(vk,i, vk,i+1) : i = 1, . . . , 2k} and

Vk+1,i(vk,i, vk,i+1) = {vk,i, vk+1,2i, vk,i}.

Proof. For (1), we work by induction. The claim is true for k = 0 by the choice of points 
v0,1 and v0,2. Assume the claim is true for some k ≥ 0. By the Pythagorean theorem,

|vk+1,2i−1 − vk+1,2i| = |vk,i − vk+1,2i−1| = (4−1 + t21)1/2|vk,i − vk,i+1|
= (4−1 + t21)1/2ρk = ρk+1.

In similar fashion, one can compute |vk+1,2i−vk+1,2i+1| and the proof of (1) is complete.
Claim (3) is immediate from Remark 9.9 by taking s sufficiently close to 1 and n0

sufficiently large.
For (V0), we have

ρk+1

ρk
= 2−1/s

(
k + 2 + n0

k + 1 + n0

)q

.

Clearly, ρk+1 > ξ1ρk. On the other hand, since 2−1/s < ξ2 < 1, if n0 is sufficiently 
large, then ρk+1 ≤ ξ2ρk. Properties (V1), (V2), and (V5) are immediately satisfied by 
our construction. For (V4), fix a point vk+1,2i ∈ Vk+1 \ Vk. By (1), we have |vk+1,2i −
vk+1,2i+1| = ρk+1 and (V4) is satisfied.

For (V3), claim (3), and claim (4), we apply induction on k. For k = 0 (V3) is 
immediate by the choice of parameters. For claim (3), we note that α0,v = 0 for all 
v ∈ V0, since V0 contains only 2 points. For the same reason, claim (4) is satisfied when 
k = 0.

To show (V3), we note by (3) that the closest point of Vk+1 to vk+1,2i are the points 
vk,i and vk,i+1. Therefore,

min
v∈Vk+1\{vk+1,2i}

|v − vk+1,2i| = |vk+1,2i − vk,i| = ρk+1.

Similarly, by (3), the closest point of Vk+1 to vk+1,2i+1 = vk,i+1 are the points vk+1,2i and 
vk+1,2(i+1) (or only one point of these two if i = 0 or i = 2k}) and the above inequality 
also applies.

Finally, to show (4), we apply (3) and the arguments in the proof of (V3). Namely, if 
vk,i ∈ Vk with k ∈ {2, 2k − 1}, then αvk,i

< α0 and vk,i lies between points vk,i−1 and 
vk,i+1. Therefore,

Flat(k) = {(vk,i, vk,i+1) : i = 1, . . . , 2k}.

Furthermore, the only point of Vk+1 lying between vk,i and vk,i+1 is vk+1,2i. Thus,
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Vk+1,i(vk,i, vk,i+1) = {vk,i, vk+1,2i, vk,i}. �
We now show that there does not exist a (1/s)-Hölder map f : [0, 1] → R2 whose 

image contains 
⋃

k≥0 Vk. Contrary to the claim, assume that such a map f exists and let 
H be its Hölder constant. For each vk,i ∈ Vk, fix wk,i ∈ [0, 1] such that f(wk,i) = vk,i. 
Then

|wk,i − wk,j | �H,s |vk,i − vk,j |s �n0,q,s 2−k(k + 1)sq.

Therefore,

1 ≥ 2k min
i=1,...,2k+1

|wk,i − wk,j | �H,s,n0,q (k + 1)sq,

which diverges as k → ∞ and we reach a contradiction.
It remains to check (9.8). By Lemma 9.11, it suffices to show that

∞∑
k=0

2k∑
i=1

τs(k, vk,i, vk,i+1)p|vk,i − vk,i+1|s < ∞.

By the Mean Value Theorem,

τs(k, vk,i, vk,i+1) = |vk,i − vk+1,2i|s + |vk+1,2i − vk,i+1|s − |vk,i − vk,i+1|s
|vk,i − vk,i+1|s

= 2(k + 2 + n0)sq − (k + 1 + n0)sq

(k + 2 + n0)sq

�n0,s,q
1

k + 1 .

Finally, since sq − p < −1,

∞∑
k=0

2k∑
i=1

τs(k, vk,i, vk,i+1)p|vk,i − vk,i+1|s �n0,s,q

∞∑
k=0

2k

(k + 1)p (2−k/s(k + 1)q)s

=
∞∑
k=0

(k + 1)sq−p < ∞.

Appendix A. Tours on connected, finite simple graphs

A finite simple graph G = (V, E) in a Banach space X is a finite set of points V ⊂ X

(called vertices of G) along with a set E ⊆ {{v, v′} : distinct v, v′ ∈ V } (called edges
of G). We may identify edges {v, v′} in the graph with the (unoriented) line segments 
[v, v′] in X. A graph is connected if every pair of vertices in the graph can be joined by 
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a sequence of edges in the graph. The valence of a vertex v in G is the number of edges 
in G that contain v.

Proposition A.1. Let G be a connected, finite simple graph in X. Assume that every 
vertex in G has valence at most 2. For any vertex v0 in G and any nondegenerate 
compact interval Δ, there exists a collection I of open intervals, whose closures are 
mutually disjoint and contained in the interior of Δ, and there exists a continuous map 
g : Δ → G with the following properties.

(1) The endpoints of Δ are mapped onto v0.
(2) For every vertex v of G, there exists at least one component J of Δ \

⋃
I such that 

g(J) = v. Conversely, for every component J of Δ \
⋃
I, there exists a vertex v of 

G such that g(J) = v.
(3) Each interval in I is mapped linearly onto some edge e of G. Conversely, for each 

edge e of G, there exist exactly two intervals I ∈ I such that g(I) = e.
(4) For any vertex v in G, there exists a component J of g−1(v) ∩Δ \

⋃
I such that for 

any edge e containing v as an endpoint, there exists I ∈ I such that I ∩ J �= ∅ and 
g(I) = e.

Proof. If we only desired properties (1)–(3), then we could prove the proposition without 
any restriction on the valence of the vertices by simple induction on the number of edges. 
The restriction on the valence of the vertices ensures the graph has one of two simple 
forms that make it easy to describe maps g satisfying properties (1)–(4). Thus, let G be 
a connected, finite simple graph in X, and assume that every vertex in G has valence at 
most 2. The conclusion being trivial otherwise, we may assume that G contains at least 
two vertices. There are two possibilities. In each case, we will construct the family I and 
the map g, but leave verification of properties (1) through (4) to the reader.

Case 1: Suppose that every vertex of G has valence 2 (i.e. G is a “cycle”). Then we 
can find an enumeration {u1, . . . , uk} of the vertices of G so that the edges of G are 
precisely {[ui, ui+1] : i = 1, . . . , k}, where we set uk+1 = u1. Without loss of generality, 
assume that u1 = v0. Let I = {I1, . . . , I2k} be open intervals, enumerated according to 
the orientation of Δ, whose closures are mutually disjoint and contained in the interior 
of Δ. Then there exists a continuous, surjective map g : Δ → G such that

(1) g is linear on each Ii and constant on each component of Δ \
⋃2k

i=1 Ii;
(2) for each i ∈ {1, . . . , k}, g maps Ii linearly onto [ui, ui+1] and maps the left endpoint 

of Ii onto ui;
(3) for each i ∈ {k+ 1, . . . , 2k}, g maps Ii linearly onto [ui−k, ui−k+1] and maps the left 

endpoint of Ii onto ui−k.

That is, g winds twice around the graph, starting and ending at v0 = u1.
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Case 2: Suppose that least one vertex of G has valence 1 (i.e. G is an “arc”). Then 
we can find an enumeration {u1, . . . , uk} of the vertices of G so that the edges of G
are precisely {[ui, ui+1] : i = 1, . . . , k − 1}. In this case, u1 and uk have valence 1 
and all other vertices have valence 2. Assume that v0 = ul for some 1 ≤ l ≤ k. Let 
I = {I1, . . . , I2(k−1)} be open intervals, enumerated according to the orientation of Δ, 
whose closures are mutually disjoint and contained in the interior of Δ. Then there exists 
a continuous, surjective map g : Δ → G such that

(1) g is linear on each Ii and constant on each component of Δ \
⋃2(k−1)

i=1 Ii;
(2) for each 1 ≤ i ≤ l − 1 (if any), g maps Ii linearly onto [ul−i, ul−i+1] and maps the 

left endpoint of Ii onto ul−i+1;
(3) for each i ∈ {l, . . . , l + k − 2}, g maps Ii linearly onto [ui−l+1, ui−l+2] and maps the 

left endpoint of Ii onto ui−l+1;
(4) for each l+k−1 ≤ i ≤ 2(k−1) (if any), g maps Ii linearly onto [u2k−2+l−i, u2k−1+l−i]

and maps the left endpoint of Ii onto u2k−1+l−i.

That is, g walks along the graph from v0 = ul towards u1, walks from u1 to uk, and 
walks from uk back to ul. �
Appendix B. From Lipschitz to Hölder parameterizations

The following method of obtaining Hölder parameterizations from Lipschitz ones is 
well known, see e.g. [49, Lemma VII.2.8]. We include Lemma B.1 and its proof here to 
have a clear statement about the dependence of the Hölder constant of the map f .

Lemma B.1. Let s > 1, M > 0, 0 < ξ1 ≤ ξ2 < 1, α > 0, β > 0, and j0 ∈ Z. Let (X, | · |)
be a Banach space. Suppose that ρj (j ≥ j0) is a sequence of scales and fj : [0, M ] → X

(j ≥ j0) is a sequence of Lipschitz maps satisfying

(1) ρj0 = 1 and ξ1ρj ≤ ρj+1 ≤ ξ2ρj for all j ≥ j0,
(2) |fj(x) − fj(y)| ≤ Aj |x − y| for all j ≥ j0, where Aj ≤ αρ1−s

j , and
(3) |fj(x) − fj+1(x)| ≤ Bj for all j ≥ j0, where Bj ≤ βρj.

Then fj converges uniformly to a map f : [0, M ] → X such that

|f(x) − f(y)| ≤ H|x− y|1/s for all x, y ∈ [0,M ],

where H is a finite constant depending only on max(M, 1/M), ξ1, ξ2, α, and β; see 
(B.7).

Proof. Define f : [0, M ] → X pointwise by f(x) = fj0(x) +
∑∞

k=j0
(fk+1(x) − fk(x)). 

Then f exists and is the uniform limit of the maps fj by (3), because 
∑∞

k=j0
Bk < ∞. 

In fact, for all j ≥ j0 and x ∈ [0, M ],



M. Badger et al. / Advances in Mathematics 349 (2019) 564–647 645
|f(x) − fj(x)| ≤
∞∑
k=j

|fj+1(x) − fj(x)| ≤
∞∑
k=j

βρk ≤ β

1 − ξ2
ρj . (B.1)

Suppose that x, y ∈ [0, M ] with x �= y. Then there is a unique integer j ≥ j0 such that

Mρsj+1 < |x− y| ≤ Mρsj . (B.2)

By the triangle inequality, (2), and (B.1),

|f(x) − f(y)| ≤ |fj(x) − fj(y)| + |f(x) − fj(x)| + |f(y) − fj(y)|

≤ αρ1−s
j |x− y| + 2β

1 − ξ2
ρj .

(B.3)

By the first inequality in (B.2) and (1), we have

ρj <
1

M1/sξ1
|x− y|1/s. (B.4)

Hence, by the second inequality in (B.2), we have

ρ1−s
j |x− y| ≤ Mρj <

M

M1/sξ1
|x− y|1/s. (B.5)

Combining (B.3)–(B.5) yields |f(x) − f(y)| ≤ h|x − y|1/s for all x, y ∈ [0, M ], where

h = 1
M1/sξ1

(
αM + 2β

1 − ξ2

)
. (B.6)

If M ≥ 1, then 1/M1/s ≤ 1, while if M ≤ 1, then 1/M1/s ≤ 1/M . Thus, it follows that 
|f(x) − f(y)| ≤ H|x − y|1/s for all x, y ∈ [0, M ], where

H = max(1, 1/M)
ξ1

(
αM + 2β

1 − ξ2

)
= α

ξ1
max(1,M) + 2β

ξ1(1 − ξ2)
max(1, 1/M) (B.7)

depends only on max(M, 1/M), ξ1, ξ2, α, and β. �
Remark B.2. Lemma B.1 is often used with geometric scales ρj = ρj (i.e. ξ1 = ξ2 = ρ). 
However, separating the parameters ξ1 and ξ2 provides additional flexibility that can 
make constructing examples easier; see e.g. §9.5.
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