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that ensure a set of points is contained in the image
of a (1/s)-Hélder continuous map f : [0,1] — [2, with
s > 1. Our results are motivated by and generalize the
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to construct parameterizations of the intermediate approxi-
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of tube approximations that ensure the approximating curves
converge to a Holder curve. As an application to the geometry
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of measures, we identify conditions that guarantee fractional
rectifiability of pointwise doubling measures in R.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

The ubiquitous Traveling Salesman problem [33,27,2] is to find a tour of edges on a
finite graph that returns to the initial vertex and has the shortest possible length. The
Analyst’s Traveling Salesman problem [32,47] is to find a rectifiable curve that contains
a finite or infinite, bounded set of points in a metric space that has the shortest possible
length. The former problem always has a solution yet is computationally hard, while the
latter problem may or may not have any solution at all. A sophisticated example from
Geometric Measure Theory of a bounded point set that is not contained in any rectifiable
curve is a Besicovitch irreqular set [11] (see §7 below); a trivial example is a solid square
in the plane. Tests to decide which sets are contained in a rectifiable curve have been
found in R? [32], RY [43], I2 [48], the first Heisenberg group [35,36], Carnot groups
[19,34], Laakso-type spaces [20], and in general metric spaces [28,29,21]. Applications of
Jones’ and Okikiolu’s solution of the Analyst’s TSP in RY have been given in Complex
Analysis [15,13,14], Dynamics and Probability [16,17], Geometric Measure Theory [8,9],
Harmonic Analysis [50], and Metric Geometry [42,3].

Let E c RY™ be a nonempty set and let @ C RY be a bounded set of positive
diameter (such as a ball or a cube). Following [32], the Jones beta number [fr(Q) is
defined by

Br(Q) :=inf sup M

c0,1],
4 z€ENQ dlamQ [ ]
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where ¢ ranges over all straight lines in RY | if ENQ # 0, and by B5(Q) = 0, if ENQ = .
Let A(RY) denote the family of dyadic cubes in R,

ARN) = {[2%my, 25 (m1 + 1)] x -+ x [28mp, 28 (my + 1)) s ma, ..., my, k € Z}.

Given a cube @ and a scaling factor A > 0, we let AQ) denote the concentric dilate of @
by A.

Analyst’s Traveling Salesman Theorem (/32,/3]). A bounded set E C R is contained
in a rectifiable curve T' = f([0,1]) if and only if

Sg = Z BE(3Q)? diam Q < cc. (1.1)

QEA(RN)
More precisely,

(1) If T is any curve containing E, then diam E + Sg <y length(T).
(2) If Sg < oo, then there exists a curve I' D E such that length(I') Sy diam E +
Sg.

We may refer to statements (1) and (2) as the necessary half and sufficient half of the
Analyst’s Traveling Salesman theorem, respectively. The theorem is valid if the length of
a curve I' = f([0,1]) is interpreted either as the 1-dimensional Hausdorff measure of the
set I' or as the total variation of the parameterization f. A curious feature of the known
proofs of the sufficient half of the Analyst’s TST (see [32] or [9]) is that a rectifiable curve
I" containing the set E is constructed as the limit of piecewise linear curves I'y, containing
a 2 F-net for E without constructing a parameterization of I'y or I'. This aspect of the
proof breaks the analogy with the classical TSP, in which one is asked to find a minimal
tour of a graph.

In this paper, we provide a parametric proof of the sufficient half of the Analyst’s
TST, which more closely parallels the classical TSP. Beyond its intrinsic interest, the
method that we provide is important, because it allows us to establish multiscale tests
to ensure that a bounded set of points in RY is contained in a (1/s)-Hélder contin-
uwous curve with s € (1, N). Rectifiable curves correspond precisely to the class of
Lipschitz curves (s = 1). Remarkably, in the Holder Traveling Salesman theorem (see
§§1.1 and 5), we can replace approximation by lines in the definition of the Jones beta
numbers with approzimation by thin tubes. For a self-contained statement of the “para-
metric” Analyst’s TST, see §6. While our focus in this paper is primarily on sets, we are
motivated by open questions about the structure of Radon measures [10,6]. For applica-
tions of our Holder Traveling Salesman theorems to fractional rectifiability of measures,
see §7.
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1.1. Holder Traveling Salesman theorem(s)

A (1/s)-Hélder curve T' in RY is the image of a continuous map f : [0,1] — R¥Y
satisfying the Holder condition,

[f(@) = f(y)| < Hlz —y[V/* for all .y € [0,1],

where s € [1,00) and H is a finite constant independent of z and y. A 1-Ho6lder curve is
also called a Lipschitz curve or a rectifiable curve. While non-trivial rectifiable curves al-
ways have topological dimension 1 and asymptotically resemble a unique tangent line
almost everywhere, (1/s)-Holder curves with s > 1 exhibit a variety of more complicated
behaviors. For example,

o an m-dimensional cube in RY (m < N) is a (1/m)-Hélder curve;
o the von Koch snowflake is a log,(3)-Holder curve; and,
o the standard Sierpifiski carpet is a logg(3)-Holder curve.

In fact, Remes [45] proved that any compact, connected self-similar set K C R of
Hausdorfl dimension s that satisfies the open set condition is a (1/s)-Holder curve.
For related work on space-filling curves generated by graph-directed iterated function
systems, see Rao and Zhang [44].

Towards a Holder version of the Analyst’s Traveling Salesman theorem, the first and
third authors proved in [10] as a test case that if s > 1, E C R¥ is bounded, and

Z (diam Q)* < oo,
QEA(RY)
QNE#D, side Q<1
then E is contained in a (1/s)-Ho6lder curve. By establishing a parametric version of
Jones’ proof of the sufficient half of the Analyst’s TST, we are able to obtain the following
substantial improvement.

Theorem 1.1 (Hélder Traveling Salesman I). For all N > 2 and s > 1, there exists
Bo € (0,1) such that if E C RN is bounded and

Spti= ) (diamQ)® < oo, (1.2)
QEAR™Y)
Be(3Q)=Bo
then E is contained in a (1/s)-Hdélder curve. More precisely, E C T' = f([0,1]) for
some (1/s)-Hélder map f : [0,1] — RY with Hélder constant H <y diam E +
(diam E)*=sS5T.

Condition (1.2) implies that at H*® almost every point, the set F asymptotically lies in
sufficiently thin tubes. Theorem 1.1 provides a sufficient test that identifies all subsets of
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some well-known Hoélder curves such as snowflakes of small dimension. However, because
of the richness of Holder geometry, a condition using Jones beta numbers alone such as
(1.2) cannot be expected to hold for all subsets of every Holder curve. Indeed (1.2) fails
when F is a carpet or a square. For expanded discussion and related examples, see §9.1.

Theorem 1.1 is a simplification of our main result, which is adapted to a nested se-
quence of separated sets in a finite or infinite-dimensional Hilbert space. See Theorem 5.1.

To estimate the size of the constant 8y in Theorem 1.1, see Lemma 2.8 and Remark 5.6.
The following variant of Theorem 1.1 is an immediate corollary, whose hypothesis does
not require knowledge of ;.

Corollary 1.2 (Holder Traveling Salesman II). Suppose that N > 2, s > 1, and p > 0. If
E c RN is bounded and

Si’ = Y. Ae(3Q)(diamQ)* < oo, (1.3)

QeA(RN)

then E is contained in o (1/s)-Hélder curve. More precisely, E C T' = f([0,1]) for some
(1/s)-Hélder map f : [0,1] — RN with Hélder constant

H Sy diam E + 3;?(diam E)l—sszzp7
where By is the constant appearing in Theorem 1.1.

A good exercise is to prove that any bounded set £ in RY satisfying condition (1.3)
with s > 1 has zero s-dimensional Hausdorff measure. In §9.3, we construct a countable,
compact set E (hence H*(E) = 0) such that E is not contained in any (1/s)-Holder
curve with 1 < s < N. Thus, Corollary 1.2 is nonvacuous.

1.2. Qverview of the proof of Theorem 1.1

In order to properly discuss the proof of Theorem 1.1, we quickly sketch the proof of
the sufficient half of the Analyst’s TST. The proof splits into three steps. In the first
step, one uses the Jones beta numbers Sg(3Q) (in particular, whether they are large or
small) to construct a sequence of finite, connected graphs G}, in RV with straight edges
that converge in the Hausdorff distance to a compact, connected set GG containing E.
Each graph Gy, is obtained by refining G_; and resembles a flat arc near points of F
that look flat at scale 27%. In step two, one uses the structure of the graphs G}, and the
Pythagorean theorem to prove the existence of a constant C' > 0 such that

H' (Gre1) <H (G +C > Be(3Q)* diam Q. (1.4)

QeARNY)
side Q~2"%
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Condition (1.1) and Golab’s semicontinuity theorem (e.g. see [1]) ensure that H!(G) <
liminf;,_, oo H'(Gx) < oo. Thus, the first two parts of the proof yield a compact, con-
nected set G containing E with H!(G) < oo. The final step is to invoke Wazewski’s
theorem to conclude ezistence of a Lipschitz parameterization for G: if G ¢ R¥ is con-
nected, compact, and H!(G) < oo, then there exists a Lipschitz map f : [0,1] — R¥Y
such that G = f([0,1]) (see [1, Theorem 4.4] or [48, Lemma 3.7]). Note that the condition
H!(G) < oo promotes connectedness of G to local connectedness (because G is a curve).

In the Holder setting, there are at least two obstacles to following the approach above.
First and foremost, a naive analogue of Wazewski’s theorem cannot hold for Holder
maps, since the condition H*(G) < oo does not imply a continuum is locally connected
when s > 1 (e.g. the topologist’s comb). What is more, even if G is assumed to be
an Ahlfors s-regular curve with finite H® measure, we cannot conclude that G is a
(1/s)-Holder curve; we provide examples in §9.2 using a theorem of Martin and Mat-
tila [38]. Another obstacle is the well-known failure of Golab’s semicontinuity theorem
for Hausdorff measures H*® with s > 1. Thus, in a proof of a Hélder Traveling Sales-
man theorem, estimating the Hausdorff measure of approximating sets has no direct
use.

To overcome these obstacles, we reimagine the proof of the Analyst’s TST, and in §3,
give a procedure to construct a sequence of partitions {# } x>0 of [0, 1] and a sequence of
piecewise linear maps { fx : [0,1] — R };>¢ that parameterize approximating graphs Gy.
Each map fj, is built by carefully refining fx_; to ensure that || fx — fx—1|lco < 27%. This
guarantees that the maps fi have a uniform limit f whose image contains the Hausdorff
limit of G (and hence E). To prove that f is Holder continuous, one must estimate
growth of the Lipschitz constants of the maps f; (see Appendix B for the basic method).
In §4, we introduce a notion of mass of intervals I € %, defined using the s-power
of diameters of images f;(J) of intervals J C I, [ > k. This lets us record estimates
in the domain of the map rather than its image, and in §4, we provide a mass-centric
analogue of (1.4) that is adapted to the Holder setting. In turn, this lets us estimate
the Lipschitz constants of the maps fi and complete the proof of the Holder Traveling
Salesman theorem in §5. For completeness, we use our method to reprove and strengthen
the sufficient half of the Analyst’s TST in §6.

1.8. Wazewski type theorem for flat continua

The Hahn-Mazurkiewicz Theorem (e.g. see [30, Theorem 3.30]) asserts that a set
E C R¥ is a continuous image of [0, 1] if and only if F is compact, connected, and locally
connected. The Wazewski Theorem (for an attribution, see [1]) asserts that E C RY is
a Lipschitz image of [0, 1] if and only if E is compact, connected, and H'(E) < co. It is
an easy exercise to check that every (1/s)-Holder continuous image of [0, 1] is compact,
connected, locally connected, and has H*(E) < oo, but the converse fails when s > 1 (see
§9.2 below). This motivates the following, apparently open question: Is there a metric,
geometric, and /or topological characterization of Hélder curves in RV?



570 M. Badger et al. / Advances in Mathematics 349 (2019) 564—647

The method of proof of the Holder Traveling Salesman theorems leads to the following
Wazewski type theorem for flat continua. For the proof of Proposition 1.3, see §8. A set
FE C R™ is called Ahlfors s-regular if there exist 0 < ¢ < C' < oo such that

er® <H(ENB(z,r)) <Cr® forallz € F and 0 < r < diam E. (1.5)

We say that E is lower (upper) Ahlfors s-regular if the first (second) inequality in (1.5)
holds for all x € E and 0 < r < diam F.

Proposition 1.3. There exists a constant By € (0,1) such that if s > 1 and E C RY s
compact, connected, H*(E) < oo, E is lower Ahlfors s-reqular with constant ¢, and

Be (B(z,r)) < p1 forallz € E and 0 < r < diam E, (1.6)

then E = £([0,1]) for some injective (1/s)-Hélder continuous map f : [0,1] — RN with
Hélder constant H <g ¢ 1H*(E)(diam E)*~*.

Inclusion of lower Ahlfors regularity in the hypothesis of Proposition 1.3 is justifiable,
because it holds automatically when s = 1, i.e. every non-trivial connected set is lower
Ahlfors 1-regular. When s > 1, a non-trivial (1/s)-Hoélder curve is not necessarily lower
Ahlfors s-regular, and, in fact, could have zero H® measure. Nevertheless, Martin and
Mattila [37] proved that if I' is a (1/s)-Holder curve in RY with #*(T") > 0, then

lim inf —H (L0 B(z,r)
rl0 rs

>0 at H*-ae zel.

Even if it can be weakened, the lower regularity hypothesis in Proposition 1.3 cannot be
completely dropped: In §9.4, for any s > 1 and 31 € (0, 1), we find a curve E C RV with
H*(E) < oo satisfying (1.6) such that E is not contained in a (1/s)-Holder curve.

Sharp estimates on the Minkowski dimension of sets satisfying (1.6) were provided by
Mattila and Vuorinen [40]; for generalized Mattila- Vuorinen type sets, see [7].

1.4. Related work

As noted above, one motivation for this paper is to develop tools to analyze the struc-
ture of Radon measures. See §7 for background and for an application of Corollary 1.2
to the fractional rectifiability of measures.

There is considerable interest in finding higher-dimensional analogues of the Ana-
lyst’s Traveling Salesman theorem, for example finding a characterization of subsets of
Lipschitz images of [0,1]2. This problem is still open, but some positive steps were re-
cently taken by Azzam and Schul [4] for Hausdorff content lower reqular sets. Also see
[52].
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Part I. Proof of the Holder Traveling Salesman theorem

In the first part of the paper, §§2—6, we establish several Holder Traveling Salesman
theorems, including Theorem 1.1 and Theorem 5.1. To start, in §2, we introduce notation
and essential concepts used in the proof, including nets, flat pairs, and variation excess.
In §3, we present a refined version of Jones’ Traveling Salesman construction, which takes
a nested sequence (V3)32, of ppro-separated sets, approximating lines {¢y , : v € Vi }32,
and associated errors {ay, : v € V3 }72 ) and outputs a sequence of partitions .7, of [0, 1]
and piecewise linear maps f such that f;([0,1]) D Vi. In §4, we define and estimate a
discrete s-variation of the maps fj, which is adapted to the partitions .#; of the domain.
When s > 1, the total s-mass M([0,1]) associated to the sequence of maps fj, fills the
role that 1-dimensional Hausdorff measure H' plays in Jones’ proof of the Analyst’s TST.
In §5, we use the algorithm of §3 and the mass estimates of §4 to prove our main theorem
(see Theorem 5.1). Finally, in §6, we use our method to obtain a stronger version of the
sufficient half of the Analyst’s Traveling Salesman theorem. The construction presented
below can be carried out in any finite or infinite-dimensional Hilbert space.

2. Preliminaries

Given numbers z,y > 0 and parameters ai,...,a,, we may write  Sq, 4, v if
there exists a positive and finite constant C depending on at most aq, ..., a, such that
x < Cy. We write & ~g,, _q, ¥ to denote z Sq,. 4, ¥y and y Sq,.. ¢, . Similarly, we
write x < y or z ~ y to denote that the implicit constants are universal.

2.1. Ordering flat sets

The following lemma shows that if a discrete set is sufficiently flat at the scale of
separation, then there exists a natural linear ordering of its points. Estimates (2.1) and
(2.2) are consequences of the Pythagorean theorem.

Lemma 2.1 (9, Lemma 8.3]). Suppose that V. C RY is a 1-separated set with card(V') > 2
and there exist lines {1 and o and a number o € (0,1/16] such that

dist(v,4;) < « forallveV andi=1,2.
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Let m; denote the orthogonal projection onto £;. There exist compatible identifications of
01 and by with R such that w1 (v) < (V') if and only if ma(v) < ma(v") for allv,v’ € V.
If v1 and vo are consecutive points in V relative to the ordering of m1(V), then

H ([ur, ua]) < (14 3a?) - H ([m1(ur), m1(u2)])  for all [uy,us] C [v1,v2]. (2.1)

Moreover,

H([y1,p2)) < (1 +1207) - HY ([ma(y1), mi(y2)]) - for all [yr,ya] C Ca. (2.2)

Suppose that V', ¢1, and 7 are given as in Lemma 2.1 and let v,v1,v2 € V. Given
an orientation of ¢ (that is, an identification of ¢; with R), we say vy is to the left of
vy and vg is to the right of vy if m(v1) < m1(ve). We say v is between vy and v if
m(v1) < w1 (v) < mp(vg) or mp(vg) < w1 (v) < mp(vy).

Lemma 2.2. Suppose that V C RY is a §-separated set with card(V) > 2 and there exists
a line ¢ and a number o € (0,1/16] such that

dist(v,¢) < ad  for allv e V.
Enumerate V.= {v1,...,v,} so that vi11 is to the right of v; for all1 <i<n—1. Then

n—1
Z lvigr — vi]* < (14 3a*)* vy —v,|* for all s > 1. (2.3)

i=1

Moreover, if card(V') > 3, then

n—1
D Jvigr —vil* < (1 +30%)|vy — va| = 8)° +6°  forall s > 1. (2.4)
i=1

Proof. Let m denote the orthogonal projection onto ¢ and put z; := m(v;). Then

|zi1 — 2] < |vig1 —vi] < (14 3a?)|wiq —a] forall1<i<n—1,

where the first inequality holds since projections are 1-Lipschitz and the second inequality
holds by Lemma 2.1. Assume s > 1 and card(V') > 3. Then
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—2
|U1+1 Ul| K s s
St (S ar) e

=1
n—2 S
< <§:|$H1-—$H> + 2 = zpa ]
=1
= (|xn - .CE1| - |xn - xn—lDS + ‘In - xn—lls

1) 8 19 8
< (|a:n—x1| - 71+3a2) + <71+3a2>
- | - ‘_ 5 s+ 5 s
=\l T T e 1+3a2) "’

where the penultimate inequality holds because for any M > 0, € € (0, M), and s > 1,
the function f(t) = t*+4 (M —t)® defined on [e, M — €] attains its maximum at ¢ = e. This
establishes (2.4). Inequality (2.3) follows from a similar (and easier) computation. 0O

2.2. Nets, flat pairs, and variation excess

Let (X,|-|) denote the Hilbert space [?(R) of square summable sequences or the
Euclidean space RY for some N > 2.

Let ¥ = {(Vk, px) }x>0 be a sequence of pairs of nonempty finite sets Vj in X and
numbers pg > 0. Assume that there exist zg € X, 790 >0, C* > 1l,and 0 < § <& < 1
such that ¥ satisfies the following properties.

(V0) When k = 0, we have pg = 1. For all k > 0, we have &;p < prp1 < Eopk

(V1) When k = 0, we have Vi C B(zg, C*rg).

(V2) For all k > 0, we have Vi, C Viy1.

(V3) For all k£ > 0 and all distinct v,v" € Vi, we have |[v —v'| > pgro.

(V4) For all k > 0 and all v € Vi1, there exists v' € V}, such that |[v — v'| < C*pgy170.

With C* and & given, define the associated parameter

C'*
1-&

A= > C*.
In addition to (V0)—(V4), assume that for each k > 0 and v € Vj, we are given a number
o > 0 and a straight line ¢, in X such that

sup dist(x, € ) < 0 wPE+1T0- (V5)
z€Vi41NB(v,30A% prro)

We call the line ¢y , an approzimating line at (k,v).
The formulation of (V5) is motivated by [9, Proposition 3.6]. We remark that the
number p4179 appearing on the right hand side of (V5) is the scale of separation of
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points in Vjy;. While we allow X = lz(R), each V;, can be identified with a subset
of R+ for some increasing sequence Nj if convenient, because each Vj is finite and
Vi C Vk—i—l-

Lemma 2.3. Let v € Vi, be such that oy, < 1/16 and fix an orientation for Ly ,.

(1) If v' € Vi N B(v, 14A* prro) is the first point to the right of v, then there exist fewer
than 2 4+ 2.2C* points of Vi1 between v and v’ (inclusive).
(2) There exist fewer than 1.1C* points of Vi1 N B(v, C*pry170) to the right of v.

Proof. The points in Viy41NB(v, 30A*pxro) are pg+17ro-separated and are linearly ordered
by Lemma 2.1. Let v’ be the first point in V3 N B(v, 14A*pxro) to the right of v and let
wi, . .., Wy, denote the points in Vj41 that lie between v and v’ (inclusive). By (V4), each
point w; belongs to B(v, C*pyt170) U B(v', C*pry170). Let 7y, denote the orthogonal
projection onto ¢ ,. By (V3) and (2.1), L1|7(w;) — w(w;)| > |w; — w;| > prg1ro for
all distinct 4, j, since (1 + 3(1/16)?) < 1.1. It follows that there are fewer than 1.1C*
points w; in Vi1 N B(v, C*pry170) to the right of v and fewer than 1.1C* points w; in
Vi1 N B, C*pry170) to the left of v'. The first claim follows. A similar argument gives
the second claim. O

Definition 2.4 (Flat pairs). Fix a parameter ag € (0,1/16]. For all k£ > 0, define Flat(k)
to be the set of pairs (v,v") € Vi x Vi such that

(1) prro < |v—v'| < 14A4%pgro,
(2) ag, < ap and v’ is the first point in Vi, N B(v,14A*piro) to the left or to the right
of v with respect to ordering induced by ¢4 ,.

Define the corresponding set of geometric line segments %, = {[v,v'] : (v,v’) € Flat(k)}.

Note that the collection Flat(k) of flat pairs is not symmetric in the sense that (v,v’) €
Flat(k) does imply (v',v) € Flat(k), because ay_,, does not control ay .

Lemma 2.5. Let e, eq, eg be distinct elements of £ for some k > 0.

(1) Edges ey and ey intersect at most in a common endpoint.
(2) Edges e, ea and es do not have a common point.

Proof. Let e; = [v1,v]], e2 = [v2,v5], and e = [vs, v represent distinct elements of
2, where (v;,v}) € Flat(k) for all ¢ € {1,2,3}. If two or more of the edges intersect in
a common point, say {e; : i € Iy} for some Iy C {1,2,3} with card(ly) > 2, then those
edges are contained in B(v;,30A%pro) for each j € I, since each edge has diameter
at most 14A*pgrg. Note that Vj is a pgprg separated set, dist(vi,ékﬂ,j) < Qpp; Pr+1T0 <
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g, prro for all 4,5 € Iy, and oy, < 1/16. Thus, by Lemma 2.1, the vertices {v;,v] :
i € Ip} are consistently linearly ordered according to their projections onto /., for each
j € Ip. Claims (1) and (2) follow immediately, since the segments in %} emanating from
a vertex v € Vi, with ag , < o are only drawn to the first vertex in Vi, N B(v, 14A4* piro)
to the left or right of v with respect to the projection onto ¢ ,. O

Given a pair (v,v’) € Flat(k), let Vi41(v,v’) denote the set of all points 2 € Vi1 N
B(v,14A* piro) such that x lies between v and v’ (including v and v’).

Definition 2.6 (Variation excess). For all s > 1, for all kK > 0, and for all (v,v’) € Flat(k),
define the s-variation excess 7s(k,v,v") by

n—1
Ts(k,v,v")|v — v'|* = max { (Z |vitr — vis> — v =%, O} ,
i=1

where Viy1(v,0") = {v1,...,v,} with v; = v, v, = ¢/, and v;11 is the first point to the
right (or left) of v; for all 1 <i <n —1.

Lemma 2.7. For all k > 0 and (v,v') € Flat(k), we have 71(k,v,v') < 303 ,,.

Proof. Let Viy1(v,v") = {vy,...,v,}, where v = v, v, = ¢/, and v;4; is to the right of
v; for all 1 <i<mn—1. By Lemma 2.2, with s =1,

n—1
Z lvig1 — vil < (1+3aj,)|vn —v1| = (14303 ,) v —v'|.
=1

Rearranging the inequality gives 7 (k,v,v") < Saz’v. O

We now demonstrate that when s > 1, the variation excess 75 (k, v, v') is zero whenever
the set V41 (v,v’) lies in a sufficiently thin tube.

Lemma 2.8 (Tube control). For all s > 1, there exists €5 c+ ¢, ¢, € (0,1/16] such that if
Qi < €506, 65, then T4(k,v,v") =0 for all (v,v") € Flat(k).

Proof. Let (v,v') € Flat(k) and enumerate Viy1(v,v") = {v1,...,v,} so that v; = v,
vy, = v', and v; 1 is to the right of v; for all 1 < ¢ <n — 1. If n = 2, then Z:.le |vit1 —

v|* = |v—v']®

n—1 s s
’ 2 Pk+1T0 Pk+17T0
;|Ui+1_vi|5§|v_v‘s |:((1+3ak,v)_|v_v/|) +(|U—’Ul|) :|

< s 2 _ 51 * gl * —.
— |'U v ‘ |:((1 + 3ak,v) 14A*> + (14A* Aak,v

. Thus, suppose that n > 3. By Lemma 2.2, with § = pr1170 and a = oy,
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because f;lpk+1'r0 <|lw=2|< 14A*§f1pk+1ro and the function

F#) = ((1+30a;,) —t)° +t° on [6/144% &)

takes its maximum at ¢t = £ /14A*. Since s > 1, the coefficient

&\’ &\
AE—>(1 LA™ + TaA <1 ase—0.

Thus, by continuity, there exists ¢ > 0 such that A = 1. Let €5 o+ ¢, ¢, = min{e’,1/16}.
Then Z?z_ll [vig1 — vi]|® < Jv —'|* whenever ag,, < €500¢,. O

3. Traveling Salesman algorithm

For the rest of §§3 and 4, let X denote the Hilbert space [2(R) or RY let (Vi)g>0 be
a sequence of sets in X and let pr, > 0 be a sequence of numbers satisfying (V0)—(V5)
defined in §2.2. In addition, fix the parameter ag € (0,1/16] in Definition 2.4. For each
integer k > 0, we will construct

(1) two collections of pairwise disjoint, open intervals in [0, 1] denoted by % (called
“bridge intervals”) and &% (“edge intervals”),

(2) two collections of pairwise disjoint, nondegenerate closed intervals in [0, 1] denoted
by Z, (“frozen point intervals”) and .4 (“non-frozen point intervals”), and

(3) a continuous map fi : [0,1] = X

that satisfy the following properties.

(P1) The four collections HBy, &, Fi, Ni are mutually disjoint and for any z € [0, 1]
there exists unique interval I contained in their union such that z € I.

(P2) The map fi|I is affine on each I € &, U %), and the map fi|J is constant on each
J € U M.

(P3) For all I € &, we have diam fi(I) < 14A*pyro.

(P4) The map fi|J &k is 2-to-1; that is, for every = € |J & there exists a unique
x' € |J & \ {z} such that fr(z) = fr(z).

(P5) If (v,v') € Flat(k), then there exists I € & such that fi(I) joins v with v'.
Conversely, if a and b are endpoints of an interval I € & and a5, (a) < o, then
(fi(a), fu(b)) € Flat(k).

(P6) For each I € F, U A}, the image fir(I) € Vi and for each v € V}, there exists a
unique I € 4 such that fi(I) =v.

(P7) If J € A% is such that fi(J) is an endpoint of f(I) for some I € &, then there
exists I’ € &, (possibly I’ = I) such that fx(I') = fx(I) and J NI # 0.
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Lemma 3.1. Assume (P5) holds at stage k > 0. Let a < b < a’ <V be such that (a,b)
and (a’, V') belong to &, fr(b) = fr(a'), and y, 5, ) < ag. Then either

(1) fi((a,0)) = fi((a, V) or
(2) fr(b) lies between fi(a) and fip(b") with respect to order induced by Cy, g, (v)-

Proof. This is an immediate consequence of (P5) and Lemma 2.5. O

In §3.1, we construct &, %o, N, Fo, and fy. In §3.2, we formulate the inductive
hypothesis. We construct the collections of intervals x4+1, Br+1, Ne+1, Fr+1, and fri1
in §§3.3-3.8. We verify properties (P1)—(P7) in §3.9. Finally, in §3.10, we review all
choices in the algorithm.

3.1. Step 0

Fix a point vy € Vp. Let G be the (not necessarily connected) graph with vertices Vj
and edges %. Suppose that Gg has components Gél), ey Gél) with vy € G(()l).

Case 1. Suppose that Vy = {vo}. Then set &y =0, By = 0, A4 = {[0,1]} and F = 0.
Define also fo : [0,1] — X with fo(z) = v for all z € [0,1]. Note that properties
(P1)—(P7) are trivial in this case.

Case 2. Suppose that card(Vp) > 2 and that [ = 1, that is, Gy is connected. We apply
Proposition A.1 for vy with A = [0, 1], G = Gy and we obtain a collection of intervals T
and a continuous map ¢g. By Lemma 2.5, each point v € Vj has valence at most 2 in Gy
and there exists a component J, of g~ (v) such that if e is an edge of Gy that contains
v as an endpoint, then e has a preimage I € T such that I N .J, # (. Let N be the
collection of all such intervals J,.

Set & =TI, Bo =0, N = N, define F; to be the components of [0, 1] \ |J(&o U By U
A0), and let fo = g. Properties (P1)—(P7) follow from Proposition A.1.

Case 3. Suppose that card(Vp) > 2 and that [ > 2, that is, G is disconnected. For
each j = 2,...,1 fix a vertex u; of G(()j). Let {I1,...,I5—2} be a collection of open
intervals, enumerated according to the orientation of [0, 1], such that their closures are
mutually disjoint and are contained in the interior of [0, 1]. Let also {J1,..., JJo—1} be

20—2

the components of I'\|J:_," I; enumerated according to the orientation of [0, 1]. Applying

=
Proposition A.1 for G = G(()l), vg and A = Jp, we obtain a family of open intervals 77, a
map g1 : J1 — G(()l) and a family A7 of closed intervals. Similarly, for each j = 2,...,1,
applying Proposition A.1 for G = Géj), uj and A = Jy;, we obtain a family of open
intervals Z;, a map g; : Jo; — Géj ) and a family N; of closed intervals. There exists a
continuous map g : [0,1] — X that extends the maps g; such that

(1) g(J2j41) = v for each j € {1,...,1 -1}
(2) g|I; is affine for each j € {1,...,2] — 2} and g(Iz;—1) = g(I2;) = [uj,vo] for each
jed{1,...,1 -1}
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Set & = Uéllej7 Bo ={I1,...,Iy_2}, M= Uézl./\/'j, define .%; to be the compo-
nents of [0, 1]\ (&b U By U ), and let fo][0,1] = g. Properties (P1)—(P7) follow from
Proposition A.1.

3.2. Inductive hypothesis

Suppose that for some k > 0 we have defined collections %y, & of open intervals
in [0, 1], collections .Z, 4} of nondegenerate closed intervals in [0, 1], and a continuous
map fx : [0,1] — X, which satisfy properties (P1)-(P7).

We will define a new map fy+1 : [0,1] — X and new collections HBji1, ki1,
Fr1s Mot 1,

Bry1 = U Br1(1), k1 = U Ep1(I),
1€ #LUEUF L UN I1€B,UEUF L UN,

Fh1 = U T (1), N1 = U N1 (1),
I1€BLUEUF L UN I1€BLUEUF L UN

where Bi1(I), Exy1(I), Fry1(I), Nt1(I) are collections of intervals in I that we define
below. In particular:

o In §3.3, we define the four collections and fj41|] for I € By.

In §3.4 and §3.5, we define the four collections and fgy1|I for I € &.
e In §3.6, we define the four collections and fj41|] for I € F.

e In §3.7 and §3.8, we the four collections and fiy1|I for I € A%.

3.8. Step k + 1: intervals in By

For any I € % we set Bri1(I) = {1}, Expr1(I) = 0, Fri1(I) = 0, A1 (1) = 0,
and we define fy11|I = fi|I. In other words, bridge intervals are frozen and we make no
changes on them.

3.4. Step k + 1: intervals in &, with a at least one endpoint with flat image

Here we consider those intervals I = (ar,b;) € & such that one of the ay s, (4,)
Qo (by) 18 less than ag. If no such interval exists, we move to §3.5. Assume now that
such intervals exist. By (P4) and the induction step, such intervals come in pairs {I, 1’}
where fi(I) = fr(I’) and fi(I) N fr(J) =0 for all J € &, \ {I,I'}. Fix now such a pair
{I,I'}. We choose one of the two intervals I, I’ to start with, say I.

Without loss of generality, assume that oy, g, ;) < ao. Let £ be the approximating
line for (k, fx(ar)), oriented so that fi(ar) lies to the left of f(br). Let Vi41,r denote
the points in Vi1 N B(fr(ar), 14A* pgro) that lie between fi(ar) and fi(by) with respect
to ¢, including fx(ar) and fi(br). Enumerate V11 ; from left to right,
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Fig. 1. The image of fi11(I): black arrows denote images of intervals in & U %), green arrows denote images
of intervals in &1, and red arrows denote images of intervals in %1. (For interpretation of the colors in
the figure(s), the reader is referred to the web version of this article.)

Vk+1,I = {’Ul, ey ’Ul}.
That is, v; lies to the left of v;4q for all i € {1,...,1 =1}, v1 = fr(as), and v; = fr(br).
Remark 3.2. By Lemma 2.3, we have that [ < 2 + 2.2C™*.

Let {I1,...,I;—1} be a collection of open intervals in I with mutually disjoint closures,
enumerated according to the orientation of [0, 1] so that the left endpoint of I coincides
with a; and the right endpoint of I;_; coincides with b;. Let 4441 () be the components
of [0,1] \ U2} I; and Zp.41 (1) = 0. Define

Epr1(I) = {1 : [vi — vig1| < 14A%pryaro},
Brr1(I) = {1i : [v; — viga1| = 14A" ppyaro}

Then define fi41|I continuously so that

(1) fry41 is affine on each J € &1 (1) U Bry1(I) and constant on each J € A4 1(I) U
Fr+1(1); B

(2) foreach j =1,...,1 =1, fry1(L;) = [vj,v;41] mapping the left endpoint of I; onto
v; and the right endpoint of I; onto vjy;.

See Fig. 1 for the image of fi4+1(I).

Once we have defined the four families and fi1 for I, we work as follows for I’. First
note that V415 = Viy1,1v. Define ¢y 1 : I’ — I to be the unique orientation-reversing
linear map between I’ and I. Define

Gor1(I') = {1 (1) 1 J € Gn(D)} and B (') = {r1(J) : J € Bra (D)}

This time, however, we set Zy41(I’) to be the components of I'\|J:_} I/ and A1 (I') =

1=1"1

(). Define also fyy1|I’ continuously so that fr1|I’ = (fer1|I) o ¥r 1.

Lemma 3.3. Fori= 1,2, let I; € & be an interval with at least one endpoint having flat
image and let I] € &1 (L). If fr(I) # fu(l2), then frp1 (1) N feg1(I5) = 0.
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Proof. Suppose that I] € &y11(11), I5 € Ey1(12), and fr1(I7) N fret1(15) # 0. Because
fre+1(I1) and fr41(I5) do not include their endpoints (since intervals in &,41 are open),
we conclude that fri1(I1) = fr+1(l%) by Lemma 2.5. Now, the endpoints of the four
intervals fx(I1), f(L2), fe+1(11), and fr11(I5) lie in the 304* prro neighborhood of any
flat endpoint of fi(I1) or fr(I2). In particular, the endpoints of the four intervals are
linearly ordered by Lemma 2.1, and the endpoints of fiy1(I}) lie between the endpoints of
fx(I;) by the construction of &1(1;). Because fir1(I]) = fry1(15), this forces fr(I1) =
fe(l2). O

3.5. Step k + 1: intervals in &), with no endpoints with flat image

Suppose that I = (ar,br) € & is such that oy 5, (a;) > @0 and oy g, b,) > @o. Then
set Ep1(I) = 0, Br1(I) = {1}, Mey1(I) = 0, Fpp1(I) = 0, and frqa|l = fi|l. In
other words, edge intervals with no endpoints with flat image become bridge intervals
and remain bridge intervals for the rest of the construction.

3.6. Step k + 1: intervals in F},

For any Ie 34\16 we set gk_;,_l(f) = @, @k-&-l(I) = @, ﬁk-H(I) = {I}, (/Vk_,_l(f) = @ and
we set fry1|] = fi|I. In other words, frozen point intervals in .% remain frozen for the
rest of the construction.

3.7. Step k + 1: intervals in A}, with flat image

We now consider the intervals I € 4}, for which ay, 7, (1) < ap. If no such interval exists
we proceed to §3.8. Assume now that such intervals exist. Let I be such an interval and
let £ be the approximating line for (k, fi(I)). We consider three cases.

3.7.1. Non-terminal vertices

Suppose that there exist distinct v, v" € Vi \{fr(I)} such that (fr(I),v) and (fr(I), ")
are in Flat(k). By (P5), Lemma 3.1 and the induction step, there exist .J, J' € & such that
fx(I) and v are the endpoints of fi(.J), while fx(I) and v’ are the endpoints of fi(J').
Hence, all points of Vj11 between v and v are contained in the image of fr1(J U J')
defined in §3.4. Set &1(I) = 0, Bry1(I) = 0, 1 (L) = {1}, Frs1(I) = 0 and
Jerall = fill.

3.7.2. 1-sided terminal vertices

Suppose that there exists unique v € Vi \ {fx(Z)} such that (fi(I),v) € Flat(k). Fix
an orientation for £ so that v lies to the left of fi(I). Asin §3.7.1, the points of Vi1 that
lie between fj(I) and v are all contained in fy11(J) for some J € &;. Let V11 1 denote
the set that includes fx(I) and all points in Vi1 N B(fx(I), C*pry170) that lie to the
right of fi(I). Enumerate Viy1 5 = {v1,...,v} from left to right. That is, v1 = fi(I)
and vy is the rightmost point of Vi1 s
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Fig. 2. The image of fir4+1(I): on the left, we have fry1(I), where I is as in §3.7.2; on the right, we have
fr+1(I), where I is as in §3.7.3.

Remark 3.4. card V41,1 <1+ 1.1C* by Lemma 2.3.

If Vk_},.l)[ = {fk(I)}, then set (g)k+1(l) = @, %kﬂ—l(l) = @, «/%9+1(I) = {I}, ylﬁ_l(I) = @
and fri1 |l = fill.

If Virar # {fx(I)}, then let Giy1.1 be the graph with vertices the points in Vi1 s
and edges the segments {[v1,v2],. .., [vi—1,v]}. That is, Gy4+1,1 forms a simple polygonal
arc to the right of fi(I) joining fx(I) with v;. Let Z and g be the collection and map
given by Proposition A.1 for A = I, G = Gp41,1 and v = fi(I). For each v/ € Vi1 1
fix a component of I\ |J #+1(I) that is mapped onto v’ and let N be the collection of
these components. Set &1(I) =Z, Bry1(I) =0, N41(I) = N, and define .Fp 1 (I) to
be the set of components of I\ J(&k+1(I) U Bry1(I) U Ai11(1)). Set fry1|l = g. See
the left half of Fig. 2 for the image of fr11().

3.7.8. 2-sided terminal vertices
Suppose that there exists no point in Vi \ {fx ()} such that (fx(I),v) € Flat(k). That
is, Vie N B(fr(I),14A% pro) = {fu(1)}. Set

Vir1,1 = Vierr N B(fx(I), C™ pry170)-
Fix an orientation for £ and enumerate Viy1,5 = {v1,..., v} from left to right.
Remark 3.5. card(Vi41,7) <14 2.2C* by Lemma 2.3.

If Vk+1’[ = {fk(f)}, then set g;ﬁq([) = @, ‘%k+1(I) = @, %+1(I) = {I}, fk+1(1) = @
and fr1|I = fell. I Virr 1 # {f(I)}, then let Gyy1, 1 be the graph with vertices the
points in Vi1 1 and edges the segments {[v1,va], ..., [vi—1,v]}. The remainder of the
construction proceeds in the same way as in §3.7.2. See the right half of Fig. 2 for the

image of fr+1(I).



582 M. Badger et al. / Advances in Mathematics 349 (2019) 564—647

Lemma 3.6. Let I1, Is € A, be distinct intervals as in §3.7 and let Is € & be an interval
as in §3.4. If I € &xp1(L;) for i = 1,2,3, then the segments fry1(11), fr+1(15), and
fre+1(I5) are mutually disjoint.

Proof. This follows from similar arguments employed in the proof of Lemma 3.3. O
3.8. Step k + 1: intervals in N, with non-flat image

In this final part of the algorithm, we define &;41(1), Br+1(I), N11(I), Fr+1(I) and
Jry1lI for those I € A such that oy, g, (1) > ao. Let {I1,...,I,} be an enumeration of
such intervals. The construction in this case resembles that in Step 0.

We start with Iy. Let Vi41 1, be the set of points in Vi1 N B(fx(I1), C*pr+170) that
are not images of some I € A1 defined in §3.4 and §3.7. Let Z441,1, be the set of
edges in %11 that have an endpoint in Vj4q,7,. Then define Vk-&—l,ll to be the union of
Vi+1,1 and the set of all endpoints of edges in %} 41,1, . By the triangle inequality, the set
‘7[94'_1’[1 is subset of B(v, 15A*pr1170). Finally, let G111, denote the graph with vertices
‘7[94'_1’[1 and with edges .Zj;1,1,. We note that the graph Gj1,;, may be connected or
disconnected.

If Vk;Jrl,Il = {fi(11)}, then we simply set &y1(l1) = 0, Brr1(lh) = 0, Apr1(11) =
I}, Frp1(l) =0 and fra|li = fil 1. i

For the remainder of §3.8, let us assume that Vi1, contains at least two points.

Let GV

k+1,11""’Gl(cli)1,11 denote the connected components of Gyy1,1,, labeled so that

GSJZL 7, 18 the component containing fi(/1). There are two cases.

3.8.1. Connected graph

Suppose that G111, is connected. Apply Proposition A.1 for A = I1, G = Gp41,1,
and v = fx(I1) to obtain a collection of intervals Z and a continuous map g. If v’ €
Viet1,1,, then v’ has valence at most 2 by Lemma 2.5. Hence, by Proposition A.1, there
exists a component .J,» of g~1(v') with the following property:

If v is the endpoint of some e € %41, 1,, then there exists I € 7 such that g(I) =e
and 1N J, # 0.

Let NV be the collection of the fixed intervals .J,» where v’ € Vk+1, 1,- Now define a set
£ C 7 with two rules:

(1) If e € %11, has both its endpoints in V11,7, then both components of g~!(e) are
in &.

(2) If e € Lt1,1, has one endpoint v/ € Viyq j, and another in Vk-&-l,h \ Vit1,1,, then
only one component of g~!(e) (one that intersects J,) is in €.
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Fig. 3. The image of fry1(I): Blue segments represent edges in Zj41, black arrows represent images of
intervals in & U %y, green arrows represent images of intervals in &;41(I) and red arrows represent images
of intervals in P41 (I).

Set é&k+1(11) = (c,‘, %k—i-l(ll) = I\c‘:, e/%@_;_l(ll) = N, and define f]ﬂ_l(ll) to be the
set of components of I1 \ J(Ex+1(11) U Br41(I1) U A11(11)) and fr41]l1 = g.

3.8.2. Several components

Suppose that I, > 2; that is, G417, is disconnected. See Fig. 3 for the image of
Sfe+1(I). We will add some edges which will make the graph connected and the preimage
of these edges will be bridge intervals. To this end, for each j € {2,...,[;} fix some point
v; € Vipr,r, N GEC];B‘LII. Let {I11,...,11,92;,—2} be a collection of open intervals, enumer-
ated according to the orientation of [0, 1], such that their closures are mutually disjoint
and are contained in the interior of I1. Let also {J11,...,J1,2;,—1} be the components
of I \ Ufl__lfz I ; enumerated according to the orientation of [0, 1].

Working as in §3.8.1, we obtain a family Z; of open intervals in J; 1, a subset & C T,
a family 7 containing some components of J11\UZ: and a continuous map ¢1 : Ji1 —
G,(cl_gl,h. Similarly, for each j € {2,...,l1} we obtain a family Z; of open intervals in
J12(j—1), a subset & C Zj, a family N containing some components of Ji206-1) \UZ;
and a continuous map g; : Jy 2(j—1) — Gl(fll’h. There exists a continuous map g : Iy — X
that extends the maps g; such that

(1) g(J1,2j+1) = fk(Il) for eachj € {1, . -7l1 — 1},
(2) g|I1; is affine for all j € {1,...,2l; — 1} and g(I1,2j—1) = g(I1,25) = [v;, fx(I1)] for
all j e {1,...,l1 — 1}.
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Define edge intervals &1 (1) = U§1:1 &; and bridge intervals %11 (11) = U?ZIIQ L ;U

U§'1:1(Ij \ &). Set Ar1(I1) = Ujeqr,24,... 21,y N and define Fy11(11) to be the set of
components of Iy \ |J(€x41(11) U Brt1(I1) U Ay1(11)). Also, set frr1|l1 = g.

3.8.3. Inductive hypothesis

Inductively, suppose that for ¢ € {1,...,7 — 1} we have defined &,11(1;), Brt1(L:),
Frr1(Li), Ne+1(L;) and fry1]l;. We work now for I,.. Let Viiq 5. be the set of points
in Vg1 N B(fx(I1),C*prs1mo) that are not images of some I € A1, defined in §3.4
or in §3.7 or for the previous intervals I1,..., 1. Let Zj41 5, be the set of edges in
Z%+1 that have an endpoint in Vi1 ;. and let ‘7]{;+1’[T be the set of endpoints of edges
in %11, Let now Giiq,1, be the (not necessarily connected) graph with vertices the
set Vk+1, 1. and with edges the set £ 41,5.. To continue, repeat the procedure carried
out for I; mutatis mutandis.

Remark 3.7. By the choice of set AV for I3, it follows that if I € A%41 (1) and if fr11(1) is
the endpoint of fx1(J) for some J € &%1(I1), then there exists J' € &41(11) (possibly
J' = J) such that fri1(J) = frt1(J') and TN J" # (. The same is true for all I;.

Lemma 3.8. Let J; € A be as in §3.8, let Jo € &) be as in §3.4, and let J3 € N, be as
in §3.7. If J| € Er11(J;) fori=1,2,3, then the segments fr+1(J1), fe+1(J%), fut1(J3)
are mutually disjoint.

Proof. By Lemma 3.6 we know that fr11(J3) and fr+1(J4) are disjoint. Fix an interval
J1 € M as in §3.8. Suppose that either Jy € & is as in §3.4 or J, € A} is as in §3.7.
Let J| € &41(J1) and J§ € &41(J5). By Lemma 2.5, either fi11(J]) N frr1(J5) # 0 or
fe+1(J1) = fr+1(J3). However, we have defined 2541, 5, as those elements in %11 that
are not contained in fiy1(J), where J € & is as in §3.4 or J € A% is as in §3.7. Thus,

freer(J) 0 frea(J3) = 0. O
3.9. Properties (P1)—(P7) for step k+ 1

We have now defined Py y1, ki1, Frt1, Set1 and fry1 @ [0,1] — X. It remains to
prove that fr11 is continuous and that properties (P1)—(P7) are satisfied by the new
collections of intervals and fry1. Properties (P1), (P2), and (P3) follow immediately
from the construction.

CONTINUITY OF fj41. By design, the map fx1 is continuous on every point interior to
an interval in &, U%, U A, U.Z%. If x is an endpoint of some interval in &, U %, U AUy,
then fi+1(z) = fi(x). Thus, continuity of fii+1 at « follows from continuity of fi at x.

PROPERTY (P6). The first claim of (P6), that fry1(I) € Viyy forall I € A 41UF1q,
is immediate from the construction. To check the second claim of (P6), fix v € Vj11. By
(V4), there exists v/ € Vj, such that |[v — v'| < C*pyy179. By the inductive step, there
exists I € A% such that fi(I) = v’. There are two cases.
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Case 1. Suppose that ay ,» < ag. Then, following the discussion in §3.7, either v =
fr+1(J) for some J € A (J') and J' € &, asin §3.4, or v = fr41(J) for some J € A5(I).

Case 2. Suppose that ay ., > «g. Following the construction of the graph Gpi1 s
and the design of the map fx11|/, if v is not the image of some J € A;11(J'), where
J' € & UB UM\ {J'}, then there exists J € A;11(]) such that v = fr11(J).

PROPERTY (P4). Fix I € &%41. There are three cases.

Case 1. Suppose that I € &;41(lp) for some Iy € &;. By the inductive hypothesis,
there exists unique I} € &;\{lo} such that fi(I}) = fx(Lo) while fx(Io)Nfr(J) = 0 for all
J € &\{Io, I} }. By construction, there exists I’ € &;41(I]) such that fr11(I) = fret1(I').
Again by construction, fry1(I) N fre1(J) =0 for all J € Epr1(Lo) U Epr1 (1Y) \ {L,1'}.
By Lemma 3.3, Lemma 3.6 and Lemma 3.8, fr+1(J) does not intersect any fi41(J) for
any J € &,1(J') and J' € &, U A\ {1o, Ij}.

Case 2. Suppose that I € &,11(ly) for some Iy € A} as in §3.7. By construction,
there exists I’ € &41(Ip) \{I} such that fy11(I) = fry1(L’) while frp1(I)N fep1(J) =0
for all J € &y+1(Lo) \{I,I'}. Moreover, by Lemma 3.6 and Lemma 3.8, fy1+1(I) does not
intersect any fi41(J) for any J € &41(J") and J' € &, U A\ {Io}.

Case 3. Suppose that I € &+1(Ip) for some Iy € A% as in §3.8. By Lemma 3.8,
Tee1(D) N free1(I') = 0 for all I' € &41(J) and all J € & as in §3.4 or J € A} as in
§3.7. By the construction of fiy1|Ip, there are two possibilities.

Case 8a. Suppose that both endpoints of fi11(lo) are in Vi, 1,. Then there exists an
interval I’ € &%11(Ip) \ {I} such that fry1(I) = fr+1(I'). On the other hand, fr11(I) ¢
Lo,y for any J € A\ {Ip}. Thus, by Lemma 2.5, if J' € &,41(J) and J € A\ {Io},
then fii1(J) N frgr(J) = 0.

Case 3b. Suppose that only one endpoint of fr11(lo) is in Vg, 1,. In this case, by
construction, fr11(I) N fry1(J) = 0 for all J € &xyr1(Ly) \ {I}. Moreover, there ex-
ists unique I € A% \ {Io} as in §3.8 such that Vj,, j; contains the other endpoint of
fre+1(I). As with Io, there exists unique I’ € &1 (1)) such that fry1(I') = fry1(I) while
Jree1(J)N frr1 (L) = 0 for all J € &,11(1)). Finally, by the construction and Lemma 2.5,
Jree1(D) N fre1(J) =0 for all J € &41(J') and all J' € A3\ {Lo, )} as in §3.8.

PROPERTY (P5). To prove the first claim in (P5), fix (v,v') € Flat(k + 1). Let vy be
the point of V} closest to v and let Iy € A} be such that fx(Ily) = vg. There are four
cases.

Case 1. Suppose that ay ., < ap and vy is non-terminal (see §3.7.1). Then either both
v and v’ lie to the left of vy (with respect to ¢y .,) or both lie to the right of vg. In any
case, [v,v'] is the preimage of some I € &;41(J) under fry1 where J € & and fi(J) is
an edge with endpoint fx(Ip).

Case 2. Suppose that ag ., < g and vg is 2-sided terminal (see §3.7.3). Then [v,v']
is the preimage of some I € &;41(lp) under fii1.

Case 3. Suppose that ay ., < ag and v is 1-sided terminal (see §3.7.2). Then either
both v and v’ lie to the left of vy (with respect to ¢y ,,) or both lie to the right of vy.
Depending on their position, we work as in Case 1 or Case 2.
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Case 4. Suppose that oy ., > ag. By definition of graph Gj41,r in §3.8, the segment
[v,v'] is the image of some J € &1 under fri1.

To prove the second claim of (P5), fix (a,b) € &j+1 such that one of its endpoints has
flat image. Without loss of generality, assume ag 41,4, (a) < Q0-

Case 1. Suppose that (a,b) € &+1(I) for some I € A4 as in §3.8. By construction of
fr+1 on such intervals, (fr+1(a), fr+1(b)) € Flat(k + 1).

Case 2. Suppose that (a,b) € &x11(I) for some I € A}, as in §3.7. By construction of
fr+1 on such intervals, no point of Vi1 N B(fr+1(a), 14A* ppy170),

Vir1 N B(frr1(a), 14A% pryaro) C Verr N B(fr (1), 30A% prro),

lies strictly between fi11(a) and fry1(b) with respect to £y g, (1. The same is true with
respect to {11 5, (a) Dy Lemma 2.1. Thus, (fry1(a), fr+1(b)) € Flat(k + 1).

Case 3. Suppose that (a,b) € &;41(I) for some I € & as in §3.4. The argument is
similar to Case 2

PROPERTY (P7). To check the final property, fix J € A%; and choose I € &7 such
that fr4+1(J) is an endpoint of fi1(I). There are several cases.

Case 1. Suppose J € Ap11(Jy) for some Jy € A as in §3.8. Then there exists
I' € &x11(Jp) such that fri1(I') = fre1(I). By the construction of Aj11(Jy) in §3.8,
'nJ#0.

Case 2. Suppose J € H;11(Jp) for some Jy € & as in §3.4. By (P4), there exists
I' € &11(Jo) such that fy1(I') = fre1(I). The interval I’ satisfies I’ N J # ().

Case 3. Suppose J € Aj11(Jy) for some J' € A% as in §3.7. There are three subcases.

Case 3a. Suppose that fr1(J) # fi(Jo). Then by the choice of A%y1(Jy), there exists
I' € &11(Jo) such that fri1(I') = fre1(I) and ' N J # 0.

Case 3b. Suppose that fry1(J) = fu(Jo) and there exists I € &, 1(Jy) such that
f}chl(f) = fr+1(I). As in Case 3a, the claim follows from the choice of A%41(Jp).

Case 3c. Suppose that fr11(J) = fr(Jo) and there exists no Ie &r+1(Jp) such that
ferr(I) = fegr(I). In this case, fi(Jo) is the endpoint of fi(Io) for some Iy € &. By
the inductive hypothesis and (P4), there exists at least one and at most two intervals
I} € & such that fi(Iy) = fx(I)) and I N Jy # 0. On one hand, if there is only one
interval I, then Jy is as in §3.7.1 and J = Jy. Hence there exists I’ € I such that
fra1(I') = fra1(I) and I’ N J # (. On the other hand, if there are two intervals I}, IY/,
then one of them has a closure which intersects J, say Ij). Then there exists I’ € I} such
that fk—i—l(ll) = fk+1 (I) and Tﬁ J 75 @

3.10. Choices in the Traveling Salesman algorithm
In §§2.2 and 3, we made a series of implicit and explicit choices.

(CO) The choice of ag € (0,1/16] determines the set Flat(k) of flat pairs. The constant
14 in the definition of Flat(k) is chosen to facilitate the estimates in §4 (see (E2)),
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but has not been optimized. The constant 30 in the definition of «y , is chosen to
be larger than (1 + 3(1/16)2) - 2 - 14. For example, see the proof of Lemma 2.5.

If I,I' € & satisfy fr(I) = fr(I') and are as in §3.4 (that is, I has at least one
endpoint z with oy, 7, (2) < @), then either A4 1(I) = Fry1(I') = 0 or vice-versa.
If I € M isasin §3.7.3 (i.e. oy g, (1) < ao and Vi NB(fr (1), 14A%prro) = {fr(1)}),
then there may exist up to two different ways to parameterize the graph G411
therein.

If I € M is as in §3.8 (i.e. oy g, (1) > o) and G,(Cllu, - 7G1(cli1,1 are the graph
components of the graph G4, therein, then

(C3a) we choose the order in which we parameterize the graph components and
(C3b) in each graph component, there exists up to two choices of parameterization.
Similar choices are made in the step O.

We get to choose the enumeration of intervals I in 4} such that oy y, (1) > .

The algorithm can be made more flexible by permitting four additional choices. Let
ap € (0,a0) and A > 14A*.

(C5)

(Co)

(C8)

Suppose that I € 4.

o If a5, (1) < Go, then we treat I as in §3.7; i.e., we treat fr(I) as a flat vertex.

o If ap 4.1 > @0, then we treat I as in §3.8; i.e., we treat fiy(I) as a non-flat
vertex.

o If ag f, (1) € [0, a0), then we can either treat I as in §3.7 or as in §3.8.

Suppose that v € Vj is chosen to be considered “flat” by (C5). Let ¢ be the

approximating line for (k,v) and let v/ € Vj be such that there exists no v’ €

Vi N B(v, Apyro) such that m(v”) is between v and v’

o If v — 0| < 14A%pyro, then (v,v’) € Flat(k).

o If v — 0| > Apyro, then (v,v') ¢ Flat(k).

o If Ju — v'| € [14A%pro, Appro), then we are free to choose whether (v,v’) is
contained in Flat(k) or not.

Similarly to (C6), suppose that I € & is as in §3.4; i.e., fi(I) has at least one

endpoint  whose image is “flat” by (C5). Let {vy,..., v} and {I1,...,I;_1} be as

in §3.4.

o If |v; —viq1] < 14A* pgy1ro, then we set I; € Epy1.

o If |v; — vigq| > Apiq1ro, then we set I; € Bjy1.

o If |v; — vip1| € [14A% priaro, Apry17o), then we can choose in each instance
whether I; € &,41(1) or I; € Br+1(1).

Suppose that {I1,...,I,} are the intervals in .#; that have a non-flat image. Sup-

pose also that we have defined fx41 on I,...,I._1 and on intervals in .4} that

have an image chosen to be flat. Let v € Vj41 be a point which is not the image

of some I € A y1(J), where J € {I1,...,I,_1} or J € 4} is as in §3.7.

o If v e B(fx(I,), 14A%piro), then v € Vigq 1,
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o If v € B(fr(l,), Aprro) \ B(fr(I,), 14A*pyro), then we may choose whether
v € Vi41,1, Or not.

Note that (C5) has subsequent implications on the treatment of intervals I € &.
For instance, if both endpoints if I have images chosen to be non-flat, then I € Hy,1;
otherwise, we treat I as in §3.4. Similarly, (C6) gives us the set % and together with
(C8) affects the parametrization near non-flat vertices.

Remark 3.9 (Coherence). In the original, non-parametric Analyst’s Traveling Salesman
construction, Jones [32] required the coherence property (V2), i.e. Vi C Vig1. The
first author and Schul [9] established a non-parametric Traveling Salesman construc-
tion, which replaced (V2) with the weaker property that for all v € Vj, the set

v' € Vip1 N B(v, C* prro)

is nonempty. This relaxation was crucial for the proof of the main result in [9], which
characterized Radon measures in RY that are carried by rectifiable curves. We would like
to emphasize that in the parametric Traveling Salesman construction described above,
we heavily rely on (V2). At this time, we do not know how to build a parameterization
under the relaxed condition of [9].

4. Mass of intervals

In this section, we use the construction of §3, to assign mass to intervals defined in §3.
The total mass Mg on the domain of the maps fills the role that the Hausdorff measure
H! of the image plays in the proof of the sufficient half of the Analyst’s TST given in
[32] or [9]. The main result of this section is Proposition 4.11, which bounds the total
mass of [0,1] by a sum involving the flatness approximation errors ay , and variation
excess T, (k,v,v") defined in §2.2. For each k > 0, set

S = E U B, U N U Fy, and fiZUfk..

k>0

For each I € 9, set I11(I) 1= Epp1(1) U Brp1(I) U Ap1(I) U Frga (I).
Remark 4.1. If I € %, N .#,, for some m # k, then fi|I = f,|I.
4.1. Trees over intervals

Given k > 0 and I € %, we define a finite tree T over (k,I) to be a finite subset of
Unso({m} x ) satistying the following three conditions.

(1) The pair (k,I) € T.If (m,J) € T, then m > k and J C I.
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(2) If (m,J) € T and there exists J' € S, 41(J) such that (m +1,J)NT, then {m +
1} X I (J) CT.
(3) If (m,J) € T for some m > k and J € #,,(J'), then (m—1,J") € T.

The first condition says that the root of the tree is (k, I') and its elements are descendants
of (k,I). The second condition says that if one child (m + 1, J’) of (m,J) is in T, then
every child of (m, J) is in T. The third condition says that if (m,J) is in T', then all its
ancestors up to (k,I) are in T.

We extend this notion to the entire domain by defining a finite tree T over [0, 1] to be
a set of the form

T={0,1}u | 1,

Ie 9,
where 77 is a finite tree over (0, 7). A finite tree over [0, 1] may be thought to belong to
step kK = —1 of the construction.
Let T be a finite tree over (k,I). The boundary 0T of T is defined by
T :={(m,J)eT:({m+1} x F1(I))NT = 0}.
The depth m(T') of T is the integer defined by
m(T) :=max{m >0: (m,J) € T} =max{k >0: (m,J) € OT}.
If m(T) > 1, the parent tree p(T) is defined by
PT) =T\ ({m(T)} X I
Note that m(p(T)) = m(T) — 1.
Remark 4.2. If T is a finite tree over (k,I) and 0T = {(k1,J1),..., (kn,Jn)}, then the
intervals Jy, ..., J, partition I. That is, for all x € I, there exists a unique i € {1,...,n}
such that z € J;.
4.2. Mass of intervals

For all s > 1, k > 0, and intervals I € .#, define the s-mass Ms(k,I) of (k,I) by

Mk, I):=sup > (diam f(I))* € [0, 0],

T G 1yeor

where the supremum is taken over all finite trees over (k, I). This notion extends to [0, 1]
by assigning
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M([0,1]) == > M,(0,1) € [0,00].

Ie 9

Lemma 4.3. Let k> 0 and I € 7.
(1) If I € By, then My(k,I) = (diam fi(I))*.

(2) If I € Fy, then My(k,I)=0.

(3) Ms(k, 1) = X pe gy Ms(k+1,17).

(4) If I € #. NS, for some m >0, then My(k,I) = Ms(m,I).

Before proving Lemma 4.3, we make two clarifying remarks. First, it is possible for
an interval I € 4} to have Mg(k,I) > 0 even though diam fi(I)* = 0. This happens
whenever I € A, and &,11(I) U Bry1(I) is non-empty. Second, Lemma 4.3(4) implies
that given I € .%;, the mass M(k,I) is defined independently of the step of the con-
struction in which I appears. Nevertheless, we include the step k in definition of the
mass to improve exposition of the estimates in §4.5 and §4.6.

Proof of Lemma 4.3. For the first claim, note that if I € %, and m > k + 1, then
Im(I) = {I}. Therefore, if T is a finite tree over I of depth m, then 8T = {(m, I)}.
Thus, M(k, I) = sup,,,>;(diam f,,,(I))® = (diam f(I))°.

For the second claim, note that if I € % and m > k + 1, then .%,(I) = {I} and
fm(I) is a point. Therefore, if T is a finite tree over I of depth m, then 0T = {(m, I)}.
Thus, M, (k,I) = sup,,,>;(diam f,,(I))* = 0.

For the third claim, let us first assume that M(k+1,J) = oo for some J € 4 1(1).
Fix M > 0 and find a finite tree Ty over (k + 1, J) such that

> (diam fi(J')* > M.

(k',J")ET

The collection T' = T; U {(k, 1)} U ({k + 1} x F11(I)) is a finite tree over (k,I) and
OT; C OT. Hence

Mok, 1) > > (diam fir(I)* > Y (diam fr(J')* > M.

(k' . 1')€dT (k',J")EDT,

We conclude that M (k,I) = oo.
Alternatively, assume that Mg(k + 1,.J) is finite for all J € #;1(I). Fix € > 0. For
each interval J € #,11(I), let T; be a finite tree over (k 4+ 1,J) such that

€

Y (diam fr(J))* > M(k+1,.7) — card(Fp41 (1))’

(k',J")€DT;

Then the collection T" = {(k, 1)} UU ¢ s, ,, (1) T is a finite tree over (k,I) with 9T =
Usesy(r) 9Ts- Therefore,
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Mk, 1) > S (diam f () > > M (k+1,J) —e

JETi1(I) (k',J)EOTy JEIp1 (D)

The third claim follows by taking € | 0.

For the fourth claim, suppose that I € . N .#,, for some m and k, say without loss
of generality that m > k. Because I € %, N ., we have 7, (I) = {I} forall k <n <m.
Thus, iterating the third claim, Mg(k,I) > M (m,I). For the opposite inequality, let
T be a finite tree over (k,I). If (m,I) ¢ T, then T = {(k,I),...,(I,I)} for some k <
I <m—1and we define 77 = {(m, I)}. If (m,I) € T, then T D {(k,I),...,(m —1,1)}
and we set TV = T\ {(k,I),...,(m —1,I)} so that T’ is a finite tree over (m,I) and
OT = 9T’. In either case,

S @amfu (1) = S (diam f(I)°
(k' 1")€DT (k',1")€dT"
and it follows that M, (k,I) < Ms(m,I). O

When s = 1, the 1-mass is comparable to the Hausdorff measure H' of the image.

Lemma 4.4. For each k > 0 and each I € ¥},

My(k,I)= lim Z diam f,,,(J) > limsup H'(fn (I)).

m— 00
JEI meree
Jcl

If there exists n € N such that fn||J Pk is at most n-to-1 for all m > k, then
My (k, I) ~, liminf H*(fn (1))
m— 00
Proof. Fix k > 0 and I € .#;. By definition of the mass and (P2),

My (k,T) > limsup > diam f,,(J) > limsup H' (fn(1)).

m—o0 Jjes,, m—o0
JCI

To establish the other direction, let T be a finite tree over I of depth m > k and
enumerate with 0T = {(k1,11),. .., (kn,In)}, where each k; < m. Foreach i =1,...,n,
let Z; be the set of all intervals J € .#, such that J C I;,. Then

Z diam f,,(J) = Z Z diam f, (J Z diam fy, (I Z diam f;(J

JEIm i=1 JeI; (L,J)edT
JCI

Therefore,

sup Z diam f,,, (J) < My (k,I) = sup Z diam f;(J) < lim inf Z diam f,,(J).

m—r0o0
mzk IE S T q.5eor IS
JC
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This shows that

My(k, 1) = lim Y diam fi(J).

m—00
JEIm
JcI

By (P4), the maps f,||J & are 2-to-1. In §3, we did not examine overlaps of images
of bridge intervals. By modifying the algorithm, the overlap of images of bridge intervals
can be made 2-to-1 (see the proof of Proposition 5.7). Nevertheless, suppose that we
know the overlaps of images of bridge intervals is at most n-to-1 for some n > 2. Then

. . 1.
Mu(k,I) = lim_ Zﬁ: diam f,,,(J) < ﬁlglrggoml(fm(f)). O
JE m
JCI

While Lemma 4.4 does not hold when s > 1, we always have the following comparison
between the s-mass and the Hausdorff measure H* of the closure of the points in [ J;— , V.

Lemma 4.5. For all s > 1, H* (UZO:O Vk) Ss,00.e0 Ms([0,1]).

Proof. Fix § > 0 and choose m € N sufficiently large such that 20*&5" ry /(1 — &) < 6.
By (VO0), (V2), and (V4), the collection {B(v, C*ppi170/(1 — &2)) : v € Vi, } is a cover

of Up—, Vi with elements of diameter at most 2C*p,,4170/(1 — &) < 2C* ;’H'lro < 4.
Let T be the maximal finite tree over [0,1] of depth m, i.e., T = |~y #. Then

S 2C* prsrro\° (207 \° , .
w(US7) < ¥ (2em) < (328) PIRCER

vEV,, m,I)edT
Ss.cres Ms([0,1]).

Taking § | 0 completes the proof. O

We include Lemma 4.4 and Lemma 4.5 for completeness. We will not use either lemma,
in any of the estimates below.

4.3. Terminal vertices and phantom mass

Let I € 4% be an interval such that oy, g, (1) < ao. We classify fi(I) according to the
arrangement of nearby points in Vjyq.

o If I is asin §3.7.1, then fj([) is called a non-terminal vertex in V.
o If I'is asin §3.7.2, then fi(I) is called a 1-sided terminal vertex in V.
o If I is as in §3.7.3, then fi(I) is called a 2-sided terminal vertex in V.
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Motivated by [32] and [9], for each k > 0 we will define a set #), C {k} x 4} and for
each (k,I) € & define a number py ; > 0, which we call the phantom mass at (k,I).
The phantom mass py ; will let us pay for the length of edges between vertices in Vi1
nearby fi(I) that do not lie between vertices in Vi, nearby fi(I) (i.e., the blue edges in
Fig. 2). To start, define an auxiliary parameter P depending only on s, C*, and £, by
requiring that [P + 2(1.1C*)®] 5 = P. That is,

_2(1.1C%)*

P=Srg (4.1)

For each k£ > 0, define

P ={(k,I): 1€ N, ag ) < aoand fi(I)is 1- or 2-sided terminal in Vi }.

For each k > 0 and (k,I) € %, assign

2Ppiry, if fi(I) is 2-sided terminal
Pk, 1 =
Ppiry, if fi(I) is 1-sided terminal.

Lemma 4.6. Let I € A} be an interval such that oy 5,1y < . If fu(I) is 1-sided
terminal, then

D> (diam fry1(J)* < 2(1.1C*)° ph 7.
JeIp 1 (1)

If fx(I) is 2-sided terminal, then

S (diam s ()° < A(L1C")pi .
JeFp 1 (1)

Proof. Suppose v = f;(I) is 1-sided terminal and let {vy,...,v,} be an enumeration
of the points in Vi1 N B(v, C*pg+170) starting from v; = v and moving consecutively
towards the terminal direction. Then

Z (diam fr+1(J))° = 22 i1 — vil® < 2(1 + 303 ) |vr — vn®
JEIki1(D) i=1

< 2(1.1)5(C*pk+1r0)s

by Lemma 2.2, since 1+ 304%,1} <1+ 3(1/16)% < 1.1. The case that v is 2-sided terminal
follows from a similar computation. O
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4.4. Special bridge intervals
Given k > 1, we define
B ={(k,I): 1€ P(J),J € &E_1isasin §3.4}.
Recall from §3.4 that if (k,I) € %5, then 14A*pyro < diam fi(I) < 14A% pp_170.

Lemma 4.7. If I € %, then
1 : S S ,..S
g (diam fi.(1))* > Ppirg.

Proof. Because diam fi(I) > 14A*pyro, it suffices to check that (14A*)® > 6P. Recalling
the definition of A*, we find that

(144%)" = (140 ) _ 12(11C%)°

=6P.
1-& 1-6&5
Here 1/(1 —&2)* > 1/(1 —&5) because 0 < & <land s > 1. O

Let T be a finite tree over [0,1], let m be the depth of T and let 0 < k < m be an
integer. Define

BT = {(k,I) € B; : there exists (k,J) € TN ({k} x %) such that J N T # 0}.

Although the sets %} (T') are not necessarily subsets of 0T, we show in the next lemma
that each element in T generates at most two elements in |J;* ; Z;(T).

Lemma 4.8. Let T' be a finite tree over [0, 1] with depth m > 1 and let k < m.

(1) For each (k,I) € By (T), there exists a unique (I,J) € OT such that I C J. In fact,
J e & UL

(2) For each (1, J) € OT such that J € & U Ay, there exist at most two distinct (k,I) €
U, #;(T) such that I C J.

Proof. The first claim of (1) follows immediately from Remark 4.2. For the second claim,
let (k,I) € #;(T). There are two cases.

Case 1. If (k,I) € T, then .7, (I) = {I} and I € A, for all n > k, since I is a bridge
interval. Therefore, (I,I) € OT for some | < m and I € %;.

Case 2. Suppose now that (k,I) ¢ T. If J was in 4] U.%;, then the closure of I would
be contained in the interior of J and I would intersect only intervals I’ € .4, for which
(I',I') ¢ T, which is a contradiction.
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For (2), fix (I,J) € 0T with J € & U %, and assume that {(k;,J;) : i = 1,2,3}
are distinct elements in U;":O %5 (T) such that J; C J for i = 1,2,3. Without loss of
generality, assume that Jy is between J; and Js, in the orientation of J. Then there
exists I’ > I+ 1 and J' C J such that J' € A and (I’,J") € T. But then (I,J) ¢ 0T
which is a contradiction. O

We now impose an additional restriction on «ay.

Lemma 4.9. For all C*, &1, and &, there exists oy € (0,1/16] such that if ag < ay, then
for all k >0, (v,v') € Flat(k), and y,y" € Viy1(v,v"), we have |y — y'| < v —2|.

Proof. Enumerate Vjii1(v,v’) = {v1,...,v,} from left to right, so that v; = v and
v, = 0. Let y = v and ¥y = vy, for some 1 <1l <m < n. If y=v and 3y = v/, the
conclusion is trivial. Thus, let us suppose that there exists at least one point to the left
of y or the right of ¢/, say without loss of generality that I > 2. Let z; = m, , (v;) for all
1 < i < n. Then, arguing as in the proof of Lemma 2.2,

[v1 — va| + v — vy |

1+ 3ad < oy — @2| + o — | < oy — | < o =)

Because Vi1 is pr+1-separated,

o0 = vm| < (14 3ag)[v — '] = o1 — va| < (1+3af) v = v'| = prsaro

= |v— | 1+3a8_0k+17‘0 ‘
o — /|

Now |v — v'| < 14A*pyrg < 14A*§f1pk+1r0. Hence |v; — vy, | < [v — v'| provided that

& <1.
14A* —

14303 —

Thus, we can take

1/2
a1 = n’lln{ 1 (425;1*> } . O (42)

Together Lemma 4.8 and Lemma 4.9 yield the following result.

Corollary 4.10. Assume ag < . If T is a finite tree over [0,1] of depth m, then,

Z > (diam fi(1))* <2 ) (diam fi(J))".

k=1 (k,J)€B:(T) (1,J)edT
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4.5. An upper bound for the total mass

Here we prove the following proposition which gives an upper bound for the mass of
[0,1] in terms of the variation excess 74(k,v,v’) of flat pairs (v,v’) € Flat(k) defined in
§2.2.

Proposition 4.11. Assume that ag < a1 (see Lemma 4.9). For all s > 1,

Ms(0.1) Secrea o+, D, mlkuo)pirg ) Y i

k=0 (v,v’")€Flat(k) k=0 vegk
Qv 2 Q0

The proof of Proposition 4.11 reduces to proving the following lemma (cf. [9, (9.4)]).
Recall the definition of the parent tree from §4.1.

Lemma 4.12. Let k > 1 be an integer, let T be a finite tree over [0, 1] of depth k+ 1 and
let p(T) be the parent tree. There exists a constant C > 0 depending only on s, C*, and
&o such that

Z (diam f;(1))* + Z Dk+1,1

(1,I)eoT (k+1,1)€ P 1NOT

< Z (diam f;(1))* + Z Dk,1 + % Z (diam fy41(1))*

(1,1)edp(T) (k,1)€ 22,.Ndp(T) (k+1,1)e; ., (T)

/
w0 Y agneC Y pam+C Y ko).
veEVy WE V41 (v,v")€EFlat(k)
Q0 200 Q41,0 >0

(E)

We prove Lemma 4.12 in §4.6. Assuming that Lemma 4.12 holds, here is the proof of
Proposition 4.11.

Proof of Proposition 4.11. Assume that a3 < «ag. Let T be a finite tree over [0, 1] of

depth m. Set T,,, = T and for each 1 < k < m (if any) set Ty_1 = p(T}). Note that
To = {0} x H. By Lemma 4.12, for all 1 < k < m (if any),

S (diam i)+ Y. pra

(1,1)edTy, (k,I)€Z,NOTy,
. 1 1
< S (diam fy(1)* + > peotitz >, (diam fi(D)°
(1L,1)EOTK—1 (k=1,1)€ Py _1NOT)—1 (k. 1) €25 (Tk)
+C Y g+ C D pim+C Y nlk—Lu,v)pi .

vEVE_1 weVy (v,v")€EFlat(k—1)
Qp—1,0 200 Qe 2> 000
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Tterating the latter inequality,

7 (diam fi(1))* < D (diam fo(1 —|—Zp01—|- Z Z (diam fi (1))

(1,1)edT 1€6,U%0 IeP, 3 1 1€2;(T
/
—|—QC’Z Z pkr0—|—C’Z Z 7s(k, v, v") pirg.
k=0 wveVj k=1 (v,v")€Flat(k)
Qv >0

Since ag < vy, we obtain £ >, Zle%;;(T) (diam fx(1))® < %Z(Z,I)GGT(diam fi(I))* by
Corollary 4.10. This is the only place in the proof of the Proposition that we use the
restriction ag < ay. Therefore,

Z (diam f;(I))® <3 Z (diam fo (I +3ZP01

(l,I)EaT Ie&UABy Ie»y
D L RS DS S R el
k=0 ve Vj k=0 (v,v’)€Flat(k)
Qv >0

There are now two alternatives. On one hand, suppose that ag, < ag for some v € Vj.
Then V, projects onto an (1 + 3(1/16)%) 1ry separated set in £y, of diameter at most
2C*rg by Lemma 2.1. Hence card Vy <« 1 and

Z (dlamfo(.[))s + Z Po,1 gs,C*,& T(SJ'

Ie&UABy Ie P,

Z (diam fo(1))® + Z P01 Ss,0% 6 Z ro-

VESISEZ) Ie»y UE‘>/0
Qp,v 20

On the other hand, suppose that g, > g for all v € V. Then

In either case, we arrive at

Z (diam fi(I))* Ss,o.60 70 + Z Z 7s(k, v, v") g + Z Z PETG

(1,1)edr k=0 (v,v")€Flat(k) k=0 vE Vi
A,y > 00
o0
/ S ,..S S, .S
Ss,Cr 60 T0 T E E 7s(k, v, ") pprg + E E PETO-
k=0 (v,v’")€Flat(k) k=0 ve Vj
Ak, >0

Since T was an arbitrary tree over [0, 1], we obtain the desired bound on M,([0,1]). O
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4.6. Proof of Lemma 4.12

The proof is divided into five estimates (E1), (E2), (E3), (E4) and (E5), whose sum
gives (E). Towards this end, we split the left hand side of (E) into smaller sums by
making the following four decompositions.

Firstly, 0T can be partitioned as & UE UE U By UB U B3 UB,UF U (T Nop(T)),
where

{(k+1,1) € 0T : I € &,11(J) and J € 4, is as in §3.8},
{(k+1,1)€dT: 1€ &,11(J) and J € A, is as in §3.7},
{(k+1,I) € 0T : I € &,11(J) and J € & is as in §3.4},
{(k+1,I) € 0T : I € Br41(J) and J € A is as in §3.8},

( )

( )

( )

(/)
{(k+1,1) € 0T : I € By41(J) and J € & is as in §3.5},
{(k+1,1)€edT : I € Br1(J) and J € & is as in §3.4},
{(k+1,1) €T : I € By+1(J) and J € Hy, is as in §3.3},
F CH{k+ 1} x (g1 U Fpgr).

Secondly, P41 N OT can be partitioned as P; U Py U Ps3, where

Pr={k+1,1) €T N Py1:1€ My1(J) and J € A} is as in §3.8},
Po={(k+1,1) € 0T N Ppy1:1€ Ny1(J) and J € A} is as in §3.7},
Ps={(k+1,1)€ 0T N Pyy1:1€ Ny1(J) and J € &, is as in §3.4}.

Thirdly, dp(T") can be partitioned as & U &L U F' U (T NIp(T)), where

E ={(k,I) € Op(T)\ T : I € & is as in §3.5},
& ={(k,1) € Op(T)\ T : I € & is as in §3.4},
{(k,I) € Op(T)\ OT : I € P, is as in §3.3},
F' Ak} x (M U F).

3
I

Fourthly, set 2,5, (T) = %;(T) U % (T). Then define collections Bf and B; as
follows. If I € A, oy (1) < @0, Fry1(I) C OT, and fi(I) is an endpoint of the image
Jrv1(J) of (k+1,J) € %5, then we include a copy of (k+ 1,.J) from %}, (T) in Bj.
If K € A and fi(K) is the endpoint of f11(I) for some (k+1,1) € Bs that lies strictly
between the endpoints of the image fi(J) of the associated edge interval J € &, then
we include a copy of (k + 1,I) from %7, (T) in B. Because each bridge has only two
endpoints, we can choose the included copies so that By U B3 C Z;7;.
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Before proceeding to the estimates, we remark that
> (diam fi(I)* = Y (diam fry1(I))° =0,
(k,1)eF’ (k+1,1)eF

because fj is constant on each interval in A% U % by (P2).

Estimate 1. Here we deal with phantom masses and new intervals coming from some
I € A, whose image is not flat. In particular, we will show that there exists C7 depending
only on s, C*, and &, such that

> (diam frpa (D) + D pra

(k‘+1,[)€51UBl (k+1,.])€731
< S .S S S (El)
<Ci E Prro + C1 E Pr+170-
veVy wEVi 11
Qv >0 Ak 41,0 >0

Since
{IeM:apgay > aoand Fp (1) COTY C{I € M NOP(T) : g (1) > 0}y

inequality (E1) follows from the inequality

> > (diam frg1(D)*+ > pri

Ie N, JEEk4+1(I)UB 41 (1) JeN+1(I)
{k+1}x I 1 (I)COT (k4+1,J)E Py
A, fy (1) 20 (4.3)

S .S S S
<O E prry + Ch g E Pr+170-

Ie Ie, JeNe4+1(1)

{k+1}x Fpq1 (I)COT {EH1} X It 1 (N COT ageyn gy, (5) 200
A, f1 (1) 200 Q, 11, (1) 20

To prove (4.3), fix any I € 4% such that {k + 1} x S41(I) C 0T and oy, 5, (1) > Q0.
Recall that Ny41(I) is in one-to-one correspondence with Vj11 ; defined in §3.8. There
are now two possibilities. On one hand, suppose that o414 < o for some w € Vi1 5.
Then Vi 1.1 projects onto an (1+43(1/16)2) ! pyy17o separated set in £x 1, of diameter
at most 2C* pi+170 by Lemma 2.1. Hence card Zi11(I) S+ 1 and

> (diam fra1 (1) + D Pril Secrer PhiaTh Secvea PRS-
JEE 41 (1) UB41(1) JEN11(1)
(k+1,J)€ P41

On the other hand, suppose that 41, > ag for all w € Vi11,7. Then

> (diam fr1 () + D Per1g Secre D, PRyt
JE€EK+1 (1) UBk4+1(I) JeM1(T) JeNM1(I)
(k+1,J)E P
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Because the sets Vi1 5 for different I € 4} are pairwise disjoint (see §3.8), summing
over all such [ yields (4.3).

Estimate 2. We estimate the new phantom masses and new intervals coming from
some I € A} such that ay, 5, (1) < ag and Fy1(I) C T In particular, we show that

o (am fra (D) + D e

(k+1,1)€E (k+1,1)€P;
) (E2)
< Z Prit g Z (diam fr41(1))".
(k,I)e 2,NOp(T) (k+1,I)eB;

This estimate is responsible for the choice of the constant 14A* appearing in the definition
of Flat(k), and thus, for the constant 30A* appearing in the definition of oy ,. Inequality
(E2) is equivalent to

> > (diam fep (D) + > periy

Te M Je&k1+1(1) JeNM1(1)
{k+1}x ANp1 (1)COT (k+1,J)€ Pr41
A, 1. (1) <0 (44)

1 , .
< > Prit g > (diam fri (D))",
et (k+1,1")€B;
{k?+1}><JVk+1(I)C8T
akﬁfk(j)<a(]

To prove (4.4) fix I € A% such that {k+ 1} x A41(I) C 0T and ay, ¢, (1) < . There
are nine cases (la, 1b, 2a, 2b, 2¢, 2d, 3a, 3b, 3c). We sincerely apologize to the reader.
For the first four cases (1a, 1b, 2a, 2b), we show that

Z (diam fr41(J))° + Z Dk+1,0 < Pk,I- (4.5)

Je&ri1 (1) JeNr1 (D)
(k+1,J)€ Pi11

Case 1. Suppose f(I) is 2-sided terminal in V.

Case la. If N1 (I) = {I}, then fri1(I) is 2-sided terminal in Viyq, &xi1(1) = 0
and the new phantom mass pgi1,1 = 2Ppj 75 is dominated by the old phantom mass
Pr,1 = 2Ppjr§. Hence (4.5) holds.

Case 1b. Assume that 11 (I) contains at least two elements (see Fig. 2 above). In
this case, at most two elements of Ny 1(I) map to 1-sided terminal vertices in Vj11. By
Lemma 4.6,

Pritg +phiis, + Y, (diam frya(1))° < 2Ppir +4(11C7) pf 1
JEﬂ]H,l(I)

< 2Ppiry = DPr,1,
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because P was chosen to be sufficiently large such that
[P+ 2(1.1C*)%&5 < P.

Thus, (4.5) holds in this case, as well.

Case 2. Suppose that fj(I) is 1-sided terminal in V}. Let (v1,v’) be the unique element
in Flat(k) with v; = fx(I) and let vo be the first vertex in Vi1 between v; and v’ in
the direction going from v; to v'. By property (P7), we can find an interval L in &
such that fi(L) = (v1,v') and IN L # (. Let K be an interval in .#,1(L) such that
fx(K) = (v1,v2). There will be four cases, depending on whether 4% 1(I) contains one
or more elements and whether K belongs to &4+1(L) or By11(L).

Case 2a. Suppose that A;11(I) = {I} and K € &41(L). Then fi41(I) is 1-sided ter-
minal in Vi1, &41(1) = 0, and the new phantom mass py41,1 = PPZ+17"5 is dominated
by the old phantom mass py,; = Ppjr§. Hence (4.5) holds.

Case 2b. Suppose that Aj41(I) contains at least two elements (see Fig. 2 above) and
K € &;41(L). Then at most one element of Ny41(K) maps to a 1-sided terminal vertex
in Vi41. By Lemma 4.6,

Pht1,0: + Z (diam fr11(J))* < Ppfy1rg + 2(L1C7)° ppya7g
JEIni1 (D)
< Ppyry = Pk,1,

because P was chosen to be sufficiently large such that
[P +2(1.1C*)*)¢s < P.

Thus, (4.5) holds, once again.

Case 2c. Suppose that A 1(I) = {I} and K € HBy11(L). Then fry1(I) is 2-sided
terminal in Vi4q and &y1(I) = (0. The new phantom mass that must be paid for is
Pr+1,0 = 2Ppj  r5. In this case, we pay for one half of pry1 with prr = Ppirg
and use Lemma 4.7 to pay for the other half of pjyi1,; with §(diam fi41(K))*, where
K € %#; (T). That is,

1 s
Plt1,1 < D, + E(dlam Jrr1(K))*.

Case 2d. Suppose that A%11(I) contains at least two points and K € %Bj41(L). Then
fe+1(I) is 1-sided terminal in Vjiq1, &k+1(I) is nonempty, and up to one of the new
vertices drawn could be 1-sided terminal in Vi1, as well. In this case,

(diam fy41(K))* + pr.1,

| =

Pra + i+ Y (diam fya (1) <
JE€Ek+1(I)

by Lemma 4.7, Lemma 4.6, and the choice of P.
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Case 3. Suppose fx(I) is not terminal in Vj. Then &y1(I) = (. It remains to pay for
Pi+1,1 as needed. Let L1, Lo, K;, and K3 be defined by analogy with L and K from
Case 2, but corresponding to the two distinct flat pairs (fi(I),v’) and (fx(I),v”). There
are three cases, depending on whether K7 and K5 are both edge intervals, one of K or
K> is an edge interval and the other is a bridge interval, or both K; and K> are bridge
intervals.

Case 3a. Suppose that K belongs to &;11(L1) and Ky belongs to &;41(L2). Then
fr+1(I) is non-terminal in Vji1. Hence (k + 1,I) ¢ P41 and both sides of (4.5) are
zero. In other words, there is nothing to pay for in Case 3a.

Case 3b. Suppose that one of K or Ks is an edge interval and the other is a bridge
interval, say without loss of generality that K7 € &y1(L1) and Ko € PByy1(L2). Then
fra1(I) is 1-sided terminal in Viyq and pri1r = Ppp 1§ < %(diam fe+1(K2))® by
Lemma 4.7.

Case 3c. Suppose that K; belongs to Bj+1(L1) and K5 belongs to By41(Lz2). Then
fe+1(I) is 2-sided terminal in Vj4q and

L s, Lo s
Pk+1,1 = 2sz+17“8 S E(dlam flc-l—l(Kl))( + E(dlam fk+1<K2)>( .

Adding up the estimates in the nine cases, we obtain (E2).

Estimate 3. On one hand, (k,I) € B} if and only if (k+ 1,1) € By (see §3.3). When
(k,I) € By, we have diam f(I) = diam fy1(I). Thus,

> (diam fra (1) = > (diam fi (D))"

(k+1,1)€B, (k,I)EB,

On the other hand, when both endpoints of the image of an edge interval are non-flat,
the edge interval becomes a bridge interval and pays for itself (see §3.5):

S (diam (1) = Y (diam fi(1))"

(k+1,1)€Bs (k,1)e&]

All together, we have

Y. (diam fra (1) = Y (diam f(1))*. (E3)

(k+1,I)EB2UB4 (k,I)e&iuB]

Estimate 4. Next, we control the new phantom masses at endpoints of images fr1+1(J)
of bridge intervals J € PBy11(I) coming from some edge interval I € & as in §3.4 such
that the endpoint lies between the endpoints of fi(I). Specifically, we show that

Z Pr1,1 < Z (diam fr41(1))°. (E4)

(k+1,I)EP3 (k+1,1)eB3

S| =
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Inequality (E4) is equivalent to

Z Z Pr1,0 <

(k,1)EE, JENrr(I) (k+
(k+1,J)€ P11

=

D (i fa (1) (4.6)
1,I)eB;

To prove (4.6), fix (k,I) € & and J € A 41(I) be such that (k+1,J) € Py41. Then
Sfe+1(J) lies strictly between the endpoints of fi(I) and fr11(J) is either 1- or 2-sided
terminal in Vj41. On one hand, if f;41(J) is 1-sided terminal, then there exists precisely
one element (k + 1, K') € B; such that fi+1(J) is an endpoint of fr11(K). In this case,

1
Prr1,0 = Ppiyr < = (diam fiqq(K))*

[=p}

by Lemma 4.7. On the other hand, if fr11(J) is 2-sided terminal, then there exist two
elements (k+ 1, K1) and (k+ 1, K2) in B} such that fi11(J) is the common endpoint of
fre+1 (K1) and fry1(K2). In this case,

1

< (diam i1 (K1) + ¢ (diam fia ()"

Prt1,0 = 2Ppi 7§ <
by Lemma 4.7.

Remark 4.13. In Estimates 2 and Estimate 4, each endpoint of the image fr11(I) of
(k+1,1I) € Bf UB is used once and each fr11(I) has only two endpoints. Hence
1

=Y (diam fa (1) < > -5 ¥

6
(k-+1,I)EBFUB (k+1,1)€8,;:1,(T) (k+1,1)€%;,,(T)

=

Estimate 5. In this final estimate, we deal with new intervals in 9T coming from an
edge interval in Op(T') which has an endpoint with flat image. We will show that

S (diam fu (D)
(k+1,1)€53U63

< Y (diam frga (1)° + (1447 >~ 7(k0,0)pprg.

(k,I)EEY (v,v’)EFlat(k)

(E5)

For each I € &, pick an endpoint 7 of I such that oy f, (2,) < ao and let y; be the
other endpoint of I. Estimate (E5) follows immediately from

> > (diam frq1(J))*
(k,I)EEY JEE i1 (I)UBk 11 (I)

< > (diam fi (1) + (L4A*) ok, fr(z1), fe(yr)))pirs-

(k,I)€&s
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To show (4.7), fix (k,I) € &) and enumerate &11(I) U Bry1(I) = {I1,...,I,}. Let
v = fr(zr) and let v = fi(yr). By definition of 7,(k,v,v") and (P3), we have

n—1

Z(diam Fre1(I))® < v =" + 7s(kyv,0") v —2'|°

=1

< (diam fi,(1))® + (14A4%) 274 (k, v, 0" ) piirs.

Summing over all pairs (k,I) € &), we obtain (4.7).

Adding (E1), (E2), (E3), (E4), and (E5), we arrive at (E). This completes the proof
of Lemma 4.12.

5. Holder parametrization

In §5.1, we prove the following theorem, which is the paper’s main result. Afterwards,
in §5.2, we derive several corollaries, including Theorem 1.1. In §5.3, we state and prove
a refinement of Theorem 5.1 that gives an essentially 2-to-1 curve. In §5.4, we show that
replacing (5.1) with a Carleson type condition produces an upper Ahlfors regular curve.

Given parameters C*, &1, and &, let ay be defined by (4.2). That is,

a1 = min { - (51(1—52)>”2
L 16\ 42C* '

Theorem 5.1 (Hélder Traveling Salesman with Nets). Assume that X = [*(R) or X = RY
for some N > 2. Let s > 1, let ¥ = (Vi, pr)k>0 be a sequence of finite sets Vi, in X and
numbers py > 0 that satisfy properties (V0)-(V5) defined in §2.2. If ag € (0, a1] and

y = Z Z TS(kvuvv/)pz + Z Z Pr < 00, (5.1)

k=0 (v,v’)EFlat(k) k=0 veVi
Qv 20
then there exists a (1/s)-Hélder map f : [0,1] — X such that f([0,1]) D Ugso Vi and
the Holder constant of f satisfies H S o+ ¢1e, To(1 +55).

5.1. Proof of Theorem 5.1

In this subsection, w will always denote a finite word in the alphabet N = {1,2,...},
including the empty word (). We denote the length of a word w by |w|.

The conclusion holds trivially if [ J,.~, Vi is a singleton. Thus, in addition to S < oo,
we may assume that (J,~, Vi contains at least two points. Because ay < a1, Proposi-
tion 4.11 gives -

0< Mé([o, 1]) <s7c*752 7“8(1 + Si/) < Q. (52)

~
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To proceed, we start by renaming the intervals in {[0, 1]} U.#. Denote Ay = [0, 1] and
write £ = {A1,..., Ay, }, enumerated according to the orientation of [0, 1]. Inductively,
suppose that for some word w with |w| = k, we have defined A,, € ;. Suppose also
that

jk-‘rl(Aw) - {J17~-~7an}7

enumerated according to the orientation of [0,1]. Then for each ¢ € {1,...,n,}, denote
Ayi = Ji. Denote by W the set of all finite words with letters from N for which an
interval A,, has been defined.

Next, we use the masses of intervals defined in §4 to modify the length of intervals
Ay Define Ay = [0,1]. Let {Af,..., A} } be a partition of Aj, enumerated according
to the orientation of [0, 1], satisfying

(1) Al is open (resp. closed) if and only if A; is open (resp. closed), and
(2) diam A} = M,(0,4A;)/M,([0,1]).

These intervals exist, because M, ([0,1]) = Y"1, M4(0, A;). Inductively, suppose that
an interval A/ C [0, 1] has been defined for some w € W such that

M (Jw| = 1,Ay)
M([0,1])

diam A/, >

and A! isopen (resp. closed) if and only if A,, is open (resp. closed). Let {A! ,,..., A/}

wls Wy
be a partition of A/, enumerated according to the orientation of [0, 1], satisfying

(1) Al is open (resp. closed) if and only if A,; is open (resp. closed), and
(2) diam AL, > My (Jw], Aus) /M, (0, 1]).

This partition exists by Lemma 4.3(3).
Define the family

é(’,éZ{A;U:Aw Eé"k}

and similarly define the families 4, .4}/, #], and .#]. For each k > 0, define a continuous
map Fj, : [0,1] - X by

Fl A = (felAw) 0 du for all w e W,

where ¢,, is the unique increasing affine homeomorphism mapping A/ onto A,, when
A, is nondegenerate and ¢,, maps to any point in A,, when A/ is a singleton. (The
latter possibility occurs only when A belongs to .%] or 4;/.)

We now prove two auxiliary results for the sequence (F)g>o.
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Lemma 5.2. For all k > 0 and x € [0, 1], we have |Fi11(z) — Fi(z)| < 30A*Earopi.

Proof. Fix x € [0,1] and w € W such that x € A,, and |w| = k. Let also i € {1,...,n,}
be such that z € A,

If Al, € %), then A’ =Al,
| Frya () — ,( )| =0.

IfAl, € #/,then Al = Al . = {z}, and Fy(z) = F41(x). Hence |Fy41(z) — Fi(z)| =

Ay = Ay, and Fi|Al = Fi11]A!,;. We conclude that

0.
If Al € &, then |Fj11(z) — Fi(x)| < 2diam Fi(A]) = 2 1amfk( w) < 28A%pry17o.
If Al € Ay, then |Fiii(2) — Fi(z)| < 2diam fi(A,) < diam Viy1 1 < 30A%pg 1170,
where Vk+1,1 is a set defined in §3.8. O

Lemma 5.3. For all k > 0 and z,y € [0,1],

() = Fi(y)] < M(10,1])rg "0, |2 = 9l S0 0 mo(1 + 55)0y, " |2 =yl

Proof. Fix k > 0 and z,y € [0, 1]. Without loss of generality, we may assume that = < y.
We consider three cases. In the first two cases, the points z and y belong to the same
interval Al , |w| = k, while in the third case they belong to different intervals.

Case 1. If z,y € Al, € A/ U.ZF/, then |Fy(z) — Fi(y)| = 0|z — y|, because the map
Fy|A!, is constant.

Case 2. Suppose that z,y € Al € &/ U ZA,.. Since Fy|A!, is affine,

diamfk(Aw) |.’L’— ‘
M =1, A, 0 Y
< M,([0,1]) diam fi(Ay)' "%z — y|
< M([0,1])rg % pp |z — 9],

by (V3) and the assumption s > 1. Thus, by (5.2),

|Fi(@) = Fi ()] Ss.cveo 7o(1+ 85)p |z =yl

Case 3. Suppose that z € A/ and y € Al for some A}, A, € .7/ with A/, N A}, = 0.
By the preceding cases and the Fundamental Theorem of Calculus,

Filo) ~ Fuly |</|VFk ) dt < M.(0. )8~} — o]

Ssore ro(1+85)pp |z —yl. O

We are now ready to prove Theorem 5.1.
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Proof of Theorem 5.1. Define F : [0,1] — X pointwise by

Flw) = Fo(x) + 3 (Fesa(2) = Fila).
k=0

By Lemma 5.2, F' is well defined and continuous in all [0, 1]. By Lemma 5.2, Lemma 5.3,
and Lemma B.1 from the appendix, F is (1/s)-Holder continuous with Hélder constant

Hggi(M ([0, 1])7g ™% 4+ 60A*rg
1

&2
1-¢

) S, 61,6 To(1+5%).

Finally, for any integer k > 0 and any integer m > k, we have Vi, C F},,([0, 1]). Therefore,
Vi € F([0,1]) for all integers k > 0. O

5.2. Corollaries to Theorem 5.1 and proof of Theorem 1.1

Corollary 5.4 (Tube approximation). For all s > 1, C* > 1, and 0 < & < & < 1, there
exists o > 0 with the following property. Assume that X = [*>(R) or X = RN for some
N > 2. Let ¥ = (Vi,pr)re>0 be a sequence of finite sets in X and numbers pi, > 0
satisfying properties (V0)—(V5) of §2.2 with constants C*, &, and & . If

Syt = Z Z ph < 00,

k=0 veVy
op,e >t

then there exists a (1/s)-Holder map f : [0,1] — X such that Uy Vi C f([0,1]) and
the Hélder constant of f satisfies H Ss.c+ ¢,.¢, To(1 + Sf,/’+),

Proof. By Lemma 2.8, there exists e;c-¢,¢, € (0,1/16] such that if k¥ > 0, v €
Vi, and g, < €50+¢¢,, then 74(k,v,v") = 0 for all (v,v') € Flat(k). Set o* =

min{es o+ ¢,.¢,, 01} (a careful inspection shows €5 ¢« ¢, ¢, is strictly smaller than aq).
Thus, with ag = o,

Z Z 75 (k,v,v") pz+i Z i Z Py < 00.

k=0 (v,0")eFlat(k) k=0 veVi k=0 veVy
g, p>a* o p >0t

The conclusion follows immediately by Theorem 5.1. O

Corollary 5.5. Alternatively, if

o0

Sy = Z Z oy, Pp < oo for somep >0,

k=0veVy
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then there exists a (1/s)-Holder map f : [0,1] — X such that U0 Vi C f([0,1]) and
the Holder constant of [ satisfies H Ss o+ ¢y, To(1+ () 7PSYP).

Proof. Inspecting the definitions of the two sums, S3" < (a*)7PS37. O
We now turn to the proof of Theorem 1.1.

Remark 5.6. For all z € RY and r > 0, a minimal dyadic cube @ in RY such that z € Q
and 3Q contains B(x,r) satisfies diam 3Q < Cr for some C' = C(N) > 0.

Proof of Theorem 1.1. Let N > 2 and s > 1 be given. Fix 8y > 0 to be specified below.
Assume that E C RY is a bounded set such that

St = Z (diam Q)® < oo.
QeA(RN)

BE(3Q)>Po
Pick any 29 € E and set g = diam E. Define Vo = {z¢}. Assume that Vj has been
defined for some k. Choose a maximal 2~ (**1_geparated set in E such that Vi+1 D Vi

Then the sequence ¥ = (Vi, 27%);>0 satisfies conditions (V0)—(V4) in §2.2 with C* =2
and & = & = 1/2. Note that

¢ =4

A*: =
1-&

., 30A* = 120.

For all £ > 0 and v € Vi, let Q,, be a minimal dyadic cube such that v € @y, and
3Q,» contains B(v, 120 - 2_kr0) and choose /i , be a line such that

sup dist(z, lk ) = Se(3Q) diam 3Q).
€ EN3Q

Then, by Remark 5.6, there exists C' = C'(IN) > 0 such that

1 diam 3Q
=— sup dist(z, by ) < ———
2 k+1r0 TEV+1NB(v,120-2=krg) ’ ! 2 k+17‘0

BE(3Q) < 240CBE(3Q).

Ay -

We now specify that Sy = a*/240C, where a* is the constant from Corollary 5.4 and C'
the constant from Remark 5.6. Because each dyadic cube @ in RY is associated to some
(k,v) at most C(n) times, it follows that

S’;ﬁ <N T()_SSE+ < 00.

Therefore, by Corollary 5.4, there exists a (1/s)-Holder map f : [0,1] — R¥ such that
Ukso Vi C f([0,1]) and the Hélder constant of f satisfies
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s, +
SE

H ,SN,S 7’0(1 =+ Sft/’-‘r) SN,S dlamE+ W

Because ;> Vi is dense in E, the curve f([0,1]) also contains the set E. O
5.8. A refinement of Theorem 5.1

The parameterization in Theorem 5.1 can be made in such a way so that the sequence
of maps F} obtained are essentially 2-to-1 in the sense of the following proposition.

Proposition 5.7. Let ¥ = (Vi, pr)k>0 and ag satisfy the hypothesis of Theorem 5.1 and
let xg € Vy. There exists a sequence of piecewise linear maps Fy, : [0,1] — X with the
following properties.

(1) For allk >0, Fy(0) = zo = Fi(1).

(2) For all k > 0, there exists G, C [0,1] such that Fy;|Gy, is 2-1 and Fy([0,1] \ Gy) is
a finite set.

(3) Forall k >0, Fi([0,1]) D Vi; for all x € Viy1, dist(x, Fr([0,1])) < C*prt170-

(4) For allk >0, ||[Fr — Fit1lloo Sc+.60 Pr+170-

(5) For all k >0, the map Fy, is Lipschitz with Lip(Fy,) Ss.cv.61,60 To(1 + S5)pp*.

The maps Fy converge uniformly to a (1/s)-Hélder map F : [0,1] — X whose image
contains Ukzo Vi, the parameterization F starts and ends at xq in the sense of (1), and
the Holder constant of F satisfies H Sg o+ ¢, ¢, To(1 +55).

Proof. Following the algorithm of §3, we construct for each k& > 0, four families &%,
By, Fr, N of intervals in [0, 1] and a continuous piecewise linear map fi : [0,1] = X
that satisfy (P1)—(P7). In Step 0, we may assume that fo(0) = fo(1) = xg. Thus,
fx(0) = fr(1) = o for all k£ > 0. Moreover, for all x € Vi1,

diSt(.’E, Fk([O, 1])) < diSt(.’E, Vk) < C*TOPkJrl
by (V4). From the construction, || fi — fr+1lloc Sa* prt170- Hence || fi — frt1lloo Sc= 60
Pr+170- We have shown that the maps fi satisfy properties (1), (3) and (4).

As for property (2), we already know from (P4) that fi||J & is 2-to-1. We proceed
to modify fr on each I € . From the algorithm in §3, recall that for each I € %,
there exists unique I’ € %y, I' # I such that fi(I) = fr(I'). Enumerate

%k} = {Ilvlia"wlhlll})
where fk(Ij) = fk(I]/) Starting with Iy = (a1,b1), define fk|]1 so that

(a) fk|11 is piecewise linear and continuous, fk(al) = fr(a1) and fk(bl) = fr(b1);
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(b) /}fl(fk(ll)) < | fr(ar) = fi(b)] + prro;
(¢) ful1) NUreg, fx(I) is a finite set.

Let ¢ : I{ — I; be the unique orientation-reversing linear map from Ij onto I;. Then
define fi|I{ = (fx|11) o 11. For induction, assume that we have defined f; on

! !
)0 NN A (A

Define fk|I,» as with Iy, only this time we require that the set

Fuld) 0 (U Ryu U fmu U fk<f>>

I€&),

be finite. Let v, : I. — I, be the unique orientation-reversing linear map from I onto
I, and define fi|I. = (f|I.) o ¢,. Extending fi|I = fx|I for all I € &, U A} U Fy, we
obtain a sequence fk of maps that satisfy properties (1)—(4).

The rest of the proof is similar to that of Theorem 5.1 and we only sketch the steps.
Define the M, for each I € .#, and define the collections of intervals {A,,} and {A! }.
For each w, let ¢, : Al, = A, be the unique affine homeomorphism from A/ onto A,
and let Fi|A! = (fk\Aw) 0 (. Although the maps f;, are different from f;, we have by
(b) that diam fi(I) ~¢, diam fi(I) for all k > 0 and all I € .#,. Thus, Lemma 5.2 and
Lemma 5.3 still hold with constants depending at most on s, C*, & and &;. Therefore,
the maps Fj, satisfy properties (1)—(5). O

5.4. A Carleson condition for an upper Ahlfors s-reqular curve

Replacing (5.1) in the main theorem with a Carleson-type condition ensures that
the Holder curve is upper Ahlfors regular. This answers a question posed to us by T.
Orponen.

Theorem 5.8. Assume that X = 12(R) or X = RY for some N > 2. Let s > 1, let
YV = ((Vie, pi) ) k>0 be a sequence of finite sets Vi, in X and numbers py > 0 that satisfy
properties (V0)—(V4) defined in §2.2. Let A > C* and A* := A/(1 —&). Suppose for all
k>0 and v € Vi41, we are given a line ly, and oy, > 0 such that

sup dist(z, €) < agppPr+1- (%)
2EVi41NB(v,30A* p o)

If A >¢ ¢, CF, g € (0, 1], and there exists M < oo such that for all j > 0 and w € Vj,

SyGw)=> > mlko)i+>, > pp<Mp,  (53)
ot

k=j (v,v")€Flat(k) vEV)

v,v' €B(w,Apjr Q0 20
(Aps7o) vEB(w,Ap;To)
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then there exists a (1/s)-Hélder map f : [0,1] — X such that f([0,1]) D Ugso Vi and
the curve f([0,1]) is upper Ahlfors s-regular with constant depending on at most s, C*,
§1, 52, and M.

where

Proof. By (VO0) and (V4), excess (Ure; Vi, Vo) < piro+pero+-+- = 15‘2

excess(A, B) = sup mf |z — y|
zEAYE

whenever A and B are nonempty sets in X. Hence |Ji—, Vi C B(zo,2A4%rg) by (Vl).

Thus, there exists a (1/s)-Holder map f : [0,1] — X such that I := ([0, 1]) D U,—, Vi

and the Holder constant of f satisfies Hy Ss o ¢, .6, To(1 + M) by Theorem 5.1, since
= 5%5(0,w) < M. In particular,

H(T) < HFH'([0,1]) Soom 06000 T

Let € I and let 0 < r < diamT'. Because |J;—, Vi C B(zo,2A%rg), we have diamT" <
4A%rg. If r > rg, then

H (TN B(z,r)) SH (D) Ss.0%60,60.M 70 Ss,0 61,60, T°

Otherwise, 0 < r < rg, say pj+1ro < 1 < p;ro for some integer j > 0.

Choose w € V; such that |w — x| = dist(z, V;). By Lemma 5.2, (VO0), and (V4),
3082
—&

Because ag < a1, the longest line segment drawn between vertices in V; has length at
most 14A4*py_179. By (V0), it follows that

dist(z, f;([0,1])) < A*pjro.

excess(fj([(), 1])"/3) 1A pjiTo-

£
Thus, dist(x, V}) Se,.e0 A¥pjT0 gy e, Apjro. For all k > 0, define

Pk = Pith,
Pj

Define % = V; N B(w, Ap;ro). Then, for each k > 1, recursively define Vk to be set of
all ¢ € Viy, N B(w, Apjrg) such that dist(z, Vi 1) < Ap]+kr0 Then ¥ = (Vk,pk)k>0
satisfy (V0)—(V4) with respect to Zp = w and 7y = pjrg, C* = A, & =¢&, and & = &.
For all Kk > 0 and v € I7k, assign Em = Llijtko and Oy = Qjtk,e. Then ¥ satisfies
(V5) with respect to Z;w and &y, by (\7:5) Moreover, by (5.3),

peY X ey Yo=Y

k=0 (v, v’)eFIat(k) k=0 UEVk J
AL, > 00

A
<
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Thus, by Theorem 5.1, there is a (1/s)-Hélder map g with Holder constant Hy Sqoae, ¢,
7o(1+ M) such that g([0,1]) contains |, ~, Vi- Because the algorithm in §3 works locally
in the image, dist(z,V}) <S¢, e, A*pi70 %51752 Apjrg, and r < p;rg, we can guarantee
that ¢([0,1]) contains f([0,1]) N B(z,r) provided that A is sufficiently large. There-
fore,

H(TNB(x, 7)) <H; HY[0,1]) Soneren, 0(1+M) Soom 6o (0570)° Ssiom 6,60, 755

where the final inequality holds because pj1179 <r. O
6. Lipschitz parameterization

Using the method above, we obtain the following refinement of the sufficient half of
the Analyst’s TST in Hilbert space, which is originally due to Jones [32] in the Euclidean
case and due to Schul [48] in the infinite-dimensional case.

Proposition 6.1 (Sufficient half of the Analyst’s Traveling Salesman with Nets). Assume
that X = I*(R) or X =RY for some N > 2. Let ¥ = (Vi px)k>0 be a sequence of finite
sets Vi, in X and numbers pr, > 0 that satisfy properties (V0)—-(V5) defined in §2.2.
If

oo

Sy = Z Z ai)vpk < 00, (6.1)

k=0veVy

then for every xo € Vo, we can find a sequence of piecewise linear maps Fy, : [0,1] = X
with the following properties.

(1) Forallk >0, F(0) = z¢ = Fi(1).

(2) For all k > 0, there exists G C [0,1] such that Fy|Gy is 2-1 and Fi([0,1] \ Gi) is
a finite set.

(3) Forall k>0, F([0,1]) D Vi, for all x € Viyq, dist(x, Fi([0,1])) < C*pry170.-

(4) For allk >0, ||[Fi — Frtilloo Sc*e5 Prt1T0-

(5) For all k >0, the map F}, is Lipschitz with Lip(Fy) Scox ¢,.,6, To(1 4+ Sy).

The maps F), converge uniformly to a Lipschitz map F : [0,1] — X whose image con-
tains Uy~q Vi, the parameterization F starts and ends at xq in the sense of (1), and the
Lipschitz constant of F' satisfies L Sco= ¢, ¢, To(1 + Sy).

Proof. Let ag = oy (see (4.2)), which depends only on C*, &1, and &. If (v,v") € Flat(k),
then 7 (k,v,v") < 304%,1) by Lemma 2.7. Thus, by definition of S}, (see Theorem 5.1),
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Z Z 7'1(]@’”,”/),01@‘*'2 Z Pk

k=0 (v,v’)E€Flat(k) k=0 wveVy
Qv 20
<6 E E Oék wPE+ 2 E E Ozk wPE < —S“//.
k=0 veVj A =0 ven
Qg <o Qg v >0

The conclusion now follows from Proposition 5.7. O
Part II. Applications and further results

In §7, we give an application of the Holder Traveling Salesman theorem to the geom-
etry of measures. In particular, we obtain sufficient conditions for a pointwise doubling
measure in RY to be carried by (1/s)-Holder curves, s > 1. This extends the work [8,9]
by the first author and Schul, which characterizes 1-rectifiable Radon measures in RY
in terms of geometric square functions. In §8, we use the method of Part I to obtain
a Wazewski type theorem for flat continua, which we described above in §1.3. Finally,
in §9, we present examples of Holder curves and of sets that are not contained in any
Holder curve to highlight the rich geometry of sets in RY and illustrate the strengths
and limitations of our principal results.

7. Fractional rectifiability of measures

One goal of geometric measure theory is to understand the structure of a measure
in R through its interaction with families of lower dimensional sets. For an extended
introduction, see the survey [6] by the first author. In this section, we use the Holder
Traveling Salesman theorem to establish criteria for fractional rectifiability of pointwise
doubling measures in terms of L? Jones beta numbers. In particular, we extend part of
the recent work of the first author and Schul [9] on measures carried by rectifiable curves
to measures carried by Holder curves (see Theorem 7.5). The study of fractional (that
is, non-integer dimensional) rectifiability of measures was first proposed by Martin and
Mattila [37,38] and examined further by the first and third author [10].

7.1. Generalized rectifiability

Let A be a nonempty family of Borel sets in RV and let i be a Borel measure on R,
We say that u is carried by A if there exists a sequence (4;)$°; of sets in A such that
w(RN\ U; A;) = 0. At the other extreme, we say that p is singular to A if p(A) = 0 for
all A € A. If u is o-finite, then p can be uniquely written as the sum of a Borel measure
pa carried by A and a Borel measure p’; singular to A (e.g. see the appendix of [10]).
These definitions encode several commonly used notions of rectifiability of measures (see

[6])-
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Let 1 <m < N — 1. Let A denote the family of Lipschitz images of [0,1]™ in RY.
We say that a Borel measure p is m-rectifiable if p is carried by A; we say that p is
purely m-unrectifiable if p is singular to A. A Borel set E C R™ with 0 < H™(E) < oo is
called m-rectifiable or purely m-unrectifiable if H™ L E, the m-dimensional Hausdorff
measure restricted to E, has that property. The classes of 1-rectifiable sets and purely
1-unrectifiable sets are also called Besicovitch reqular sets and Besicovitch irreqular sets,
respectively, in reference to the pioneering investigations by Besicovitch [11,12] into the
geometry of 1-sets in the plane.

Example 7.1. Let 'y, I's, . .. be a sequence of rectifiable curves in RY and let ay, as, ... be
a sequence of positive weights. Then the measure pp = Y. a;,H" L T; is 1-rectifiable. Note
that if the closure of [ J;I'; is R and the weights are chosen so that >, a;H'(I';) = 1,
we get a l-rectifiable Borel probability measure p whose support is RV,

Example 7.2. Let C' C R be the middle halves Cantor set (formed by replacing [0, 1]
with [0, 1] U [3,1] and iterating). Then E = C x C C R? is a Cantor set of Hausdorff
dimension one, 0 < H!(E) < oo, E is Ahlfors 1-regular in the sense that

HYENB(z,7))~r forallz € Eand 0 < r < diam E,

and E is Besicovitch irregular (e.g. see [37]). In particular, the set F is compact and
measure-theoretically one-dimensional, but E is not contained in any rectifiable curve.

7.2. LP Jones beta numbers and rectifiability
Let 4 be a Radon measure on R, that is, a locally finite Borel regular measure, let

1<m<N-—1,let p>0,let z € RN let r >0, and let L be an m-dimensional affine
subspace of RY. We define

1/p
(m) o dist(z, L) >p du(z)
B (v, L) = B(/)( =) s (71)
ﬂ](f”)(u,x, r) = Hll,f 6;(>m) (s, L), (7.2)

where the infimum is taken over all m-planes L in RY. The quantity ﬁl(,m) (1, x, 1) is called
the m-dimensional LP Jones beta number of u in B(x,r). The LP Jones beta numbers
were introduced by David and Semmes [22,23] to study quantitative rectifiability of
Ahlfors regular sets and boundedness of singular integral operators. The normalization
of the measure in (7.1) that we have chosen (i.e. dividing by p(B(z,7))) ensures that

™) (4, 2,7) €[0,1] and BS™ is invariant under dilations Tx(z) = Az in the sense that

B (py ,r) = ™ (Talpl, Az, Ar), Ta[ul(E) = p(A™'E) (7.3)



M. Badger et al. / Advances in Mathematics 349 (2019) 564—647 615

for all p, € RN, r > 0, and A > 0. By monotonicity of the integral,

si(B(y, ) /B0 (n,y, s) < ru(B(x, )P B5™ (p,z,r)  when B(y,s) C B(z,r).
(7.4)

In a pair of papers, Tolsa [51] and Azzam and Tolsa [5] characterize m-rectifiable
Radon measures g on RY with 4 < H™ in terms of L? Jones beta numbers. The
restriction p << H™ is equivalent to the upper density bound limsup,. o 7~ " u(B(z,7)) <
oo pra.e. (e.g. see [39, Chapter 6]) and implies that the Hausdorff dimension of the
measure is at least m (see [41]). The proof that (7.6) implies the measure p is m-rectifiable
uses an intricate stopping time argument in conjunction with David and Toro’s Reifenberg
algorithm for sets with holes [24] to construct bi-Lipschitz images of R™ inside R™ that
carry p. For related developments, see [25,26].

Theorem 7.3 (see [51], [5]). Let u be a Radon measure on RY. Assume that

B
0 < limsup M

< oo for p-a.e. z € RN, (7.5)
10 rm

Then p is m-rectifiable if and only if

1
/52"1) (,u,x,r)Q M % < oo for p-a.e. x € RV, (7.6)
0

T-m

In [9], the first author and Schul characterize 1-rectifiable Radon measures p on RY
in terms of LP Jones beta numbers and the lower density liminf, or~'u(B(z,r)). In
contrast with Theorem 7.3, the main theorem in [9] does not require an a priori rela-
tionship between the null sets of ;1 and H', nor a bound on the Hausdorff dimension of
. To lighten the notation, we present Badger and Schul’s theorem for pointwise dou-
bling measures and refer the reader to [9, Theorem A] for the full result. Although the
classes of measures satisfying (7.5) and (7.7) have no direct relationship with each other,
a posteriori an m-rectifiable measure satisfying (7.5) also satisfies (7.7). The proof that
(7.8) implies the measure p is 1-rectifiable uses a technical extension of the sufficient half
of the Analyst’s Traveling Salesman theorem. See [9, Proposition 3.6].

Theorem 7.4 (see [9, Theorem EJ). Let  be a Radon measure on R™ and let p > 1.
Assume that p is pointwise doubling in the sense that

lim sup 7;1(3(:3, 2r))

<oo for p-a.e. z € RV, 7.7
o w(B.r) g 77

Then u is 1-rectifiable if and only if
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1
r dr
/5;(;1)(%9577)2 m o < oo for p-a.e. x € RY. (7.8)
0

7.8. Sufficient conditions for fractional rectifiability

The following theorem is an application of the Holder Traveling Salesman theorem
and generalizes the “sufficient half” of Theorem 7.4 (also see [10, Theorem A]). The
exponents p and ¢ in the Holder case (s > 1) are less restrictive than in the Lipschitz
case (s =1).

Theorem 7.5. Let i be a Radon measure on RN, let s > 1, and let p,q > 0. Then

1

o freres [ipnnny
0

s d B(z,2
! T < % and limsupw<oo

,LL(B(J?,’I")) r rl0 ,U(B(l‘,’/‘))
is carried by (1/s)-Holder curves.
At the core of the proof of Theorem 7.5 is the following lemma.

Lemma 7.6. Let pu be a Radon measure in RY, and let s > 1 and p,q > 0 be fized. Given
o € RN and parameters M > 0, 8 > 0, and P > 0, let A denote the set of points
x € B(xo,1/2) such that

1
s dr
(1) q <M
O/ B ) s < (79)
w(B(z,2r)) < Pu(B(z,r)) for all v € (0,1], (7.10)
and let A’ denote the set of points in A such that
wW(ANB(z,r)) > 0u(B(z,r)) for all r € (0,1]. (7.11)

Then A’ is contained in a (1/s)-Holder curve T' = f([0,1]) with Holder constant depend-
ing on at most N, s, p, q, M, P, 0, and u(A).

Proof. Let {4} }x>0 be a nested sequence of 2 %-nets in A’, so that the sets Vj, = A}
and scales pj, = 27F satisfy conditions (V0)—(V4) of §2 with parameters rq = 1, C* = 2,
&1 = & = 1/2. Note that

=4 and 30A4* =120.

By (7.9),
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//5(1 ) ey

B = [ 5(1) u,x 512r)? dr
_Z / (512r) / Blo, 512 0T

(7.12)

2 (k+1)

where in the second line we used the change of variables r — 512r (note 512 = 2%) and
Tonelli’s theorem. Now, the open balls {B(y,2=*+1) . y € A}} are pairwise disjoint,
because the points in Aj are separated by distance at least 2~ k. Thus,

(1) ,x,512r dr
Z / re Z / W(iﬂ(m)T (7.13)

k=99 _(kt1) yeAkAﬁB(yQ (k+1))

I(k,y,r)

Next, we bound I(k,y,r) from below. Fix k > 9, y € A}, and r € [27 (1) 27F],
Suppose that z € AN B(y,2~ D). Then

p(B(x,512r)) < P?u(B(2,128r)) < P2u(B(y,129r)) < P*u(B(y,255-27%))  (7.14)

by (7.10). Since B(y, 255 -27%) C B(x,256 - 27%) C B(x,512r), it follows that

T X T 1/p
B0 (y,255-27%) < ( 512 )(u(u(B( ,512)1))) B (1., 512r)

255 - 2—k B(y, 255 - 2 (7.15)
< 3P*?B1 (u, z,512r)
by (7.4). Hence
255 - 27k)a
I(k,y,r) >3~ 9P~2" A / du(z). 7.16
(k,y,7) (B, 255 2-5) () (7.16)

ANB(y,2- (k+1))
Invoking doubling again, u(B(y,255 - 27%)) < PPu(B(y,2~**t1)). Thus, by (7.11),
1 o (AN B(y,2” 1))

d > P~
u(B(y, 255 -2°F)) pla) 2 u(B(y, 2~ )
ANB(y,2-(k+1)

P~%. (7.17)

Therefore,

I(k,y,r) > 379P~11=2a/vg g{1 (1) y 255 27F)2. (7.18)
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Combining (7.13) and (7.18), we obtain

27}6
> dr
1142 1 s 1 _k
31PN () > ) / r— | > By, 2552701 (7.19)
k=9 \o_(kt1) YEA]

In particular, we conclude that

o0
S Ay 265272 < L gap g (A) < 0. (7.20)
k=9 yecAj, -

For each k > 9 and y € A}, let ¢;, be any line such that
B (1,255 - 27" by 0) < 26 (1, 255 - 27F). (7.21)

We will now bound the distance of points in A}, N B(y, 120-27%) to ¢4 ,. Fix any point
z € Aj N B(y,120-27%) and let ¢2751 = dist(z, £x,,). Then

LoD\ (B2, L)) \ 7
955 -2 F 1(B(y, 255 - 2-%))

Bp(:u’vya 255 . 2_ka€k,v)q 2 <

+ \? ¢\ 7t(a/p)logs(P)
>< ) P (a/p) 0ga(1920/1) >< >

1020 — \ 1920 ’
(7.22)
where in the second line we used doubling of u at z. It follows that
Q. = 28 sup dist(2, £x.») < C(p,q, P)By(p, 9,255 - 27% 41, ,)", (7.23)
z€A} ,1NB(y,120-27F)
where n[q + (¢/p) log,(P)] = q. Therefore, all together,
o0
SN gt ienlyks < (s, p, g, M, P,0, u(A)) < oc. (7.24)

k=9 yGA;C

Finally, by Corollary 5.5, the set A’ is contained in the Hausdorff limit of A} and this
is contained in a (1/s)-Ho6lder curve I' = f(]0, 1]) with Hoélder constant depending on at
most s, p, ¢, M, P, 0, and u(A). O

Theorem 7.5 follows from countably many applications of Lemma 7.6 and a standard
density theorem for Radon measures in RY. See the proof of [10, Theorem 6.7], where a
similar argument is employed. We leave the details to the reader.
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8. Holder parameterization of flat continua

The goal of this section is to prove Proposition 1.3, which we now restate.

Proposition 8.1. There exists a constant $; € (0,1) such that if s > 1 and E C RN is
compact, connected, H*(E) < oo, E is lower Ahlfors s-reqular with constant ¢, and

BE (E(m,r)) <py forallx € E and 0 < r < diam F, (8.1)

then E = £([0,1]) for some injective (1/s)-Hélder continuous map f : [0,1] — RN with
Hélder constant H <q ¢ 1H*(E)(diam E)1~.

The proposition is trivial if F is a singleton (in which case (8.1) is vacuous). Thus, we
may assume that £ C RY is a continuum; that is, E is compact, connected, and contains
at least two points. Furthermore, as the hypothesis and the conclusion are scale-invariant,
we may assume without loss of generality that diam E' = 1. To complete the proof of the
proposition, we mimic the proof of Theorem 5.1, but with a few modifications. In §8.1, we
perform a simplified version of the algorithm in §3. Then, in §8.2, we establish an upper
bound on M,([0,1]) in terms of ¢~'H*(E), which fills the role that Proposition 4.11
played for Theorem 5.1. Equipped with this mass bound, the proof of Proposition 8.1
essentially follows by repeating the proof of Theorem 5.1 mutatis mutandis.

At the core of the proof of Proposition 8.1 is the following property, which is satisfied
by continua that are sufficiently flat at all locations and scales. We defer a proof of
Lemma 8.2 to §8.4. An adventurous reader may wish to supply their own proof.

Lemma 8.2. Suppose that E C RY is a continuum satisfying
BE (E(x,r)) <ol forallz € E and 0 < r < diam E.

Then for all distinct xz,y € E and for oll z € [x,y], there exists 2/ € E such that

me, (2') =z and |z — 2'| < 27%x — y|, where {,,, denotes the line containing x and y.

,y

8.1. Traveling Salesman algorithm for flat continua

Fix a constant ; > 0 (small) to be specified later. Let E C RY be a continuum
satisfying the hypothesis of Proposition 8.1. Without loss of generality, we assume that
diam E = 1. Pick g and yg such that |xzg—yo| = 1,set ro =1, C* =2, and & = &3 = 1/2.
Then

o 4, 14A4* =56, 30A* =120.

A*: =
1=¢&

Furthermore, the scales py = 27% satisfy (VO0).
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Set Vo = {z0,¥0}, @0,z = 46}3( (aco,l)) and agy, = 46}3( (vo, )),ind let £o 4,
and £y, be best fitting lines corresponding to Sg on the closed balls B(zg,1) and
B(yo, 1), respectively.

Suppose that for some k£ > 0 and for all 0 < j < k, we have defined sets Vj;, numbers
o, > 0 for all v € Vj, and lines ¢;,, for all v € V; satisfying (V5). Choose Vi1 to be
any maximal 2_(k+1)—separated subset of F such that V41 D Vj. For each v € Vi1, set

27
Qht 10 7= 5= (,:;12 Be (B(v,r111)) < 48085 (B(v, k1)) ,

where 741 := min{120- 2~ (k+1) ,1}, and let €41, be a best fitting line corresponding to
677 ( (v, rk)) The reader may check that the sequence of sets (V)72 , satisfy properties
(V1)=(V5) in 2.2.

We now specify ag = 5126; < 1/16. This ensures that oy, < ap for all & > 0 and
v € Vi. Moreover, 3 is sufficiently small that we may invoke Lemma 8.2 for E. With «g
fixed, carry out a modified version of the algorithm in §3, in which (P4), (P6), and (P7)
are replaced by:

(P4") frlU &k is one-to-one.

(P6’) For each I € A}, U Py, the image fr(I) € Vj. For every v € Vi, there exists a
unique interval I € A4 U.%, such that v = fi(I).

(P7) If S, = &, U By, U N, U.Fy, is enumerated according to the natural order in [0, 1],
say 9, = {I1, ..., Is;+1}, then the intervals alternate between elements of A} U.%
and &. (Thus, the family %) = 0.) Moreover, card A% = 2 and I, o1 € .
The vertices fi(I1) and fi(I341) are 1-sided terminal in Vi, while each other
vertex fi(I2j41) is non-terminal in Vi, for all 1 < j <7 —1.

We now sketch some steps in the modified algorithm.

8.1.1. Step 0
Partition [0,1] = [0,1/3] U (1/3,2/3) U [2/3,1] and assign

&=101/3.2/3)), Zo=0, H={0,1/3[2/31]}, Fo=0.

Also set fo([0,1/3]) = xo and fo([2/3,1]) = yo, and define fp](1/3,2/3) to be the restric-
tion of the affine map which interpolates between xo and yg. Verifying properties (P1),
(P2), (P3), (P4"), (P5), (P6’), and (P7’) is straightforward. We omit the details.

8.1.2. Induction step

Suppose that &, B, N, Fk, and fi have been defined and satisfy properties (P1),
(P2), (P3), (P4), (P5), (P6"), and (P7).

By (P7’) and the induction assumption, the procedure in §3.3 is moot, because there
are no bridge intervals.
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Follow the procedure in §3.4 for I € &% as written, except assign all closed subintervals
N1 (D) U F11(I) generated in I to Fp11(I) instead of Ag41(I). Also set Ag11(1) = 0.
Below, we check that By11(I) = J; see Lemma 8.3.

Because oy, < ag for all v € Vi, the procedure in §3.5 is moot.

Follow the procedure in §3.6 as written.

Replace the procedure in §3.7 as follows.

By property (P7’), only the intervals in .#; containing 0 and 1 belong to 4% and
fr maps each of them onto a 1-sided terminal vertex in Vj. Let I be the interval
in 4} containing 0 and let v = fi(I). Let (v,v') € Flat(k) be the unique flat pair
with first coordinate v. Choose an orientation for ¢, so that [v,v'] lies on the right
side of v. Enumerate the points in Vi1 N B(fx(I), C*pr+170) on the left side of v
(including v) as v, v—1,...,v1 = v, starting at the leftmost vertex and working right.
The construction splits into three cases.

Case 1a. If | = 1, then no new points appeared to the left of v and we set A11(I) =
Iand fry1|I = fill. Set &1 (1) = Br1(I) = Frya () = 0.

Case 1b. If | = 2, then one new point appeared to the left of v, the new point is
1-sided terminal in Vj41 and v is non-terminal in V1. Subdivide I = [0, a] = [0, 3a]U
(3a,2a) U[2a,d], set A1 (1) = [0, 1a], Epi1() = (30, 2a), Frp1(I) = [3a,a], and
PBr+1 = 0. Define fr41|I by assigning fr11([0, 3a]) = v2, frt1]|(3a, 2a) to be the
restriction of the affine map that interpolates between vy and vy, and fk+1([%a, al) =
V1.

Case 1c. If I > 3, then subdivide I into 2 — 1 intervals, alternating between closed
and open intervals. Assign the first interval to A%41(I) and the subsequent closed
intervals to %y 1(I). Assign the open intervals in &1 (I) and set By1(I) = 0. The
map frr1|] is the piecewise linear map starting at v;, connecting v; to v;_1, ...,
connecting vy to vy, which is constant on the intervals in A%41(I) U Fpy1(I) and
constant speed on the intervals in &1 ([).

Carry out a similar construction for the interval J in .4} containing 1, but modified
so that .4%41(J) contains only one interval and that interval contains 1.

Because oy, < g for all v € Vi, the procedure in §3.8 is not used.
Lemma 8.3. For all k > 0, %y = (). Moreover, for all I € &, diam f(I) < 3-27F.

Proof. We need to check that, for flat continua, the procedure in §3.4 does not generate
bridge intervals. Given I € &%, let v and v’ denote the endpoints of fi(I). Choose an
orientation of ¢y, so that v’ lies to the right of v. Enumerate Vi1 (v,v') = {v1,..., 00},
where v; = v, v, = v’, and v; 1 is the first point to the right of v; for all 1 <i <n — 1.
Suppose for contradiction that %By1(I) # 0. Then

lvje1 — v;] > 14A4% iy = 56 - 27D for some 1 < j <n —1.
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Let 2 = (v; + vj41)/2 denote the midpoint between v; and vj41. By Lemma 8.2, there
exists y € E such that |y — x| < (1/16)|vj41 — v;|. Thus,

dist(y, Vig1) > dist(x, Viy1) — ly — 2| > %Wj —vj_q| > 2427+,
This contradicts our assumption that Vi, is a maximal 2-(*+D_separated set for E.
Therefore, Bry1(I) =0 for all I € &. The only other instances in the algorithm where
bridge intervals could be generated are in the procedures in §§3.5 and 3.8. However, since
gy < ag for all k > 0 and v € Vj, these procedures were never used.

Similarly, suppose to get a contradiction that there exists I € & such that
diam f;,(I) > 3-27%. Let v and v’ denote the endpoints of f(I), and let x = (v+v')/2 de-
note their midpoint. By Lemma 8.2, there exists y € E such that |y —z| < (1/16)|v —/|.
Then

21

29—k
16 ’

7
dist(y, Vi) > dist(z, Vi) — |z —y| > 1_6|U - >

This contradicts our assumption that Vi1 is a maximal 2~ (k+1)_geparated set for E. O

Verifying properties (P1), (P2), (P3), (P4'), (P5), (P¢’), and (P7') for &1, Br+1,
Nex1, Frr1, and fri1 is again routine. We leave the details to the reader.

8.2. Mass estimate
Let M,([0,1]) be defined as in §4.
Lemma 8.4. M([0,1]) < 48°¢ ' H*(E).
Proof. Fix a finite tree T over [0, 1] of depth m (see §4) and suppose that
OT = {(ky, 1), (kv, 1), - .., (kg o), (ko 1), (K i)

enumerated according to the orientation of [0, 1] so that

{h,....nyc & and  {J,....Ja} C | JMmUF).

k>0 k>0

The first interval J; € 4%, and the last interval Ji 41 € ‘/%fiﬂ’ since they contain 0 and
1, respectively. The remaining intervals J; € %}/, because they do not contain 0 or 1.
For each 1 <4 <, let z; denote the midpoint of f,(I;).

Claim 8.5. One one hand, the set E N B(x;,(3/16)27%) is nonempty for all 1 <i < 1.
On the other hand, the family {E N B(x;, (1/4)27F) 11 <4 < l} is pairwise disjoint.
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Proof. Given 1 < </, let v; and v} denote the endpoints of f,(I;). By Lemma 8.3,
lv; — vl < 3-27F,

Hence there exists z; € ENB(z4, (1/16)|v; —v!|) C ENB(x;,(3/16)-27%) by Lemma 8.2.
Suppose in order to reach a contradiction that there exists

z € EN Bz, (1/4)27%) N B(xy, (1/4)27%)

for some 7 # j with 0 < k; < k; <m.
Case 1. Suppose that k; > k; 4+ 3. Then

3 o 1o 1 . 1 4
lv; — x| < vy — x|+ |x; — 2| + |z — 24| < 5-2 J—I—ZQ J+Z-2 i< §~2 :
and similarly for vj. Because {vj,v}} C B(z;,327%), we conclude that v; and v lie
between v; and v} Wlth respect to the linear ordering of V; N B(v;, 120 - 27%¢). Tt follows
that I; is contained in I;, but I; # I;. This contradicts the assertion that I; € 97"
Case 2. Suppose that k; < k; 4+ 2. Then

3 1 1 3
[vi—v;| < vi—zi|+|2;—2|+|z =z |+ |z —v;] < —2—’“+1-2—’“i+12—’€f+§2—’%‘ < 8:27%

vl — ;| < [0 — v + v; —vj| < 3-27F 4 8.27F <20.27

In particular, v;, v}, vj, v} belong to V; N B(v;, 120 - 27ki), which is linearly ordered by
Lemma 2.2, where v; and v;j41 are consecutive points. Assume that v; and v} both lie on
the left or the right side of [v;, v;»], say without loss of generality that the appear from

left to right as vj, v/

%, i, vj. Then

1
21— 0| 2 Sl — il 2

It follows that B(v;, i -27%)NB(v;, §-27%) is empty, which contradicts our assumption.
Thus, one of v; or v] lies on the left side of [v;,v}] and the other lies on the right side.
Then I; C I;. If k; > k; 4+ 1, then we reach the same contradiction as in Case 1. If

k;j = k;, then it follows that I; = I;, which contradicts our assumption that i # j. O

We now continue with the proof of Lemma 8.4. By Claim 8.5, we can find balls
B(z;,(1/16)27 %) centered in E for all 1 < i <[, which are pairwise disjoint. Moreover,
because E is lower Ahlfors regular, we have c[(1/16)27%:]% < H*(E N B(z;, (1/16)27%))
for all 1 <14 < [. Therefore, by Lemma 8.3 and additivity of measures on disjoint sets,

l

l
> (diam fi(1)* = > (diam fi, (; Zs 27Fi)® < 485U (E).

(k,I)edT i=1
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Because T was an arbitrary finite tree over [0, 1], we obtain the corresponding inequality
for the total mass M,([0,1]). O

Corollary 8.6. If k > 0, I € %, and a is an endpoint of I, then
M (k,T) <48°c ' H*(E N B(fr(a),6-27)).

Proof. Let T be a finite tree over (k,I). By Lemma 8.3, the image of any edge interval
in 9T is contained in a ball centered at fi(a) of radius at most

3.-27F 4 3.9 . — 6. 07k,
The conclusion follows by repeating the proof of Lemma 8.4. O

8.8. Proof of Proposition 8.1

With Lemma 8.4 in hand, follow the proof of Theorem 5.1 in §5.1, mutatis mutandis.
Construct families of intervals &), .4}/, and %, as in §5.1. We are free to specify the
following additional constraints.

o If I € &, say I € &,(1p) for some Iy € &1 U A1, then the corresponding interval
I' € & satisfies

L Mk D) 1 oo M (k, J)
diam I =27 01]) T card(@(lo)) | el JegmMS([O,ﬂ) - 62

o If I € ., then the corresponding interval I’ € % satisfies diam I’ = 0. That is, I’
is a singleton.

o If I € A4, then the corresponding interval I’ € 4}/ satisfies diam I’ =

Lemma 8.7. For any € > 0, there exists kg > 0 such that diam I < e for all k > ko and
Ie.7;.

Proof. Fix ¢ > 0. Note that if J € &), then card(&;4+1(I)) > 2 by Lemma 8.2, because
diam f;(J) > 27! and Vj4 is a maximal 2~ (+1)_separated set in E.

Suppose that I € #. Set J, = I. Inductively, given J; € £, let J;_1 denote the
unique interval in #;_1 with J; C J;_1. That is,

IZJkCkalc-'-CJ1CJ()Z[O,l].

For each ¢ € {0,...,k}, let J/ € #/ be the interval associated to J;. We claim that for
each i € {0,...,k}
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M, 1)

M(0.1))° ®3)

diam J; <y 2!
=0

We prove (8.3) by induction. For ¢ = 0 the claim is clear. Assume that (8.3) is true for
0<i<k If Jiy1 € Ziy1(J;), then diam Jj ; = 0 and (8.3) is clear. If J; 11 € Fi1(J;),
then diam J | = M (i+1, Jiy1)/M([0,1]) and (8.3) is again clear. If J; 11 € &41(J;),
then by (8.2) and the induction hypothesis,

, M,(i+ 1, Jis1) K ML)
diam Ji’ < — " "7+ — dlam J’ < ol=(it1) 272530 70
i M;([0,1]) Z; M, ([0,1])°

This establishes (8.3).
Choose an integer [y sufficiently large so that 27%ly < ¢/2. If k > Iy, then by (8.3)
and the fact that M,([0,1]) > (diam E)® =

lg*l
diam I’ < Zzl kM l Jl Zzl e Ms(L Jl])) < % + 2 M (lo, Jiy)-
=0

Thus, by Corollary 8.6,

48°
+2 sup H*(E N B(x,6 - 27'0))

C zcE

diam I’ <

DO | ™

whenever k > ly. Now, because E is compact, H*(E) < oo, and H® has no atoms,

lim sup H*(ENB(z,6-27")) =0.

n—oo z€EE
Hence, by choosing [y even larger if necessary, we can ensure that

€

(ENB(x,6-27%)) < —.

[\

zEE c

Therefore, diam I’ < ¢ for all k > Iy provided that g is sufficiently large depending on €
and E. O

Following the proof of Theorem 5.1 in §5.1, we obtain a sequence of maps Fj, : [0,1] —
RY and a (1/s)-Hélder continuous map F : [0,1] — RY satisfying the following proper-
ties.

(1) For each k > 0, there exist (possibly degenerate) closed intervals [0, ax] and [bg, 1]
such that Fy|[0,ax] and F|[0, b] are constant maps and F(0), F(1) € V.

(2) For each k > 0, the map Fy|(ak,bx) is an injective piecewise linear map connecting
F}(0) to Fj(1) along line segments between points in Vj, of length at most 3 - 27*.
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(3) If 2 € Vi \ {Fi(0), Fi(1)} for some k > 0, then F} '(z) = Ffl(m) for all kK > j
(because intervals in %; are frozen).
(4) The maps Fj, converge uniformly to F and F([0,1]) contains [ Jp o Vi.

(5) The Holder constant of F' satisfies

3
1=&

H< — (MS([O, 1)rg™* + 60A*r, ) <s ¢ "HA(B)(diam E)' 0.
1

It remains to show that F([0,1]) = FE and F is injective.
On one hand, since each Vj, is a maximal 2~ *-separated set in I,

F(0,1) o U Vi = E
by (3). On the other hand, if € F([0,1]), say = = F(t), then
dist(z, E) < likminf dist(Fx (), E) =0
e el

by (2). Thus, F([0,1]) = E.
To check injectivity, we first establish a lemma. We say that an interval I separates
two numbers x <y if r <z <y forall z €I.

Lemma 8.8. Let 0 < x <y < 1. If ko is the least integer k > 0 such that there exists an
interval in &, separating x and y, then |Fi.(z) — Fy.(y)| 2 27% for all k > k.

Proof. Fix 0 <z <y <1, let ky be as in the statement of the lemma and let k > k.
Let Iy € &, be such that I separates 2 and y. The proof is divided into two cases.

Case 1. Assume that k < kg + 3. By Remark 3.5 and minimality of kg, there exist
at most 13 intervals I € éa,éo separating x from y. Therefore, there exist consecutive
intervals Ji,...,J; € % such that z,y € Uézl Ji, Ip C Uézl J; and | < 15. Let a be
an endpoint of Iy. Since diam Fy(J;) < 3-27%0 for all i € {1,...,1}, the points Fy(z)
and Fy,(y) are in B := B(Fy(a),45-27%0). Let £ be a best fitting line for B and let 7 be
the orthogonal projection on ¢. Since fg(B) < 27!, the points of Fk(Uizl Ji) N B are
linearly ordered according to their projection on £. In particular, |z —w| < 2|7(2) — 7w (w)|
for all z,w € Fy(J\_, Ji) N B. Thus,

. 1 . 1__
[Fr(@) = Fe()] = |me(Fi(2)) = me(Fi(y))] > diamm(Fy(lp)) > 5 diam Fi,(Ip) > 527
Case 2. Assume that k& > ko + 4. For each integer ¢ > 0, let P;(x,y) be the end-
points of intervals in & , ., lying between z and y. Let x; (resp. y;) be the leftmost

(resp. rightmost) element of P;(z,y). For all ¢ > 0,

TS w1 S <Y SYir1 S Y,
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and Iy separates xo from yo. As in Case 1, if £ is a best fitting line for Fj,(a), then

. 9 _
| Fro5(20) = Fieg3(30)| > 1me(Fio43(20)) = me( Fro3(30)) | > diam me(Fy, (Io)) > 7527

Now, each ;41 (resp. y;41) is contained in the closure of an interval in &7, ; which
has x; (resp. y;) as an endpoint. This fact along with Lemma 8.3 yields

| Fioo+4+i(%i) = Frggsi (i) < 3-27F0747,
|Frovati(Wi) = Frorsri(yirr)] < 3-27 07470
Therefore, by the triangle inequality,
(o)

|Fi(2) = Fr()] > |Frosa(20) = Frora(o)l = Y [Frorati(@i) = Frprsyi(wir))|
=0

=Y | Frorari(®i) = Frorsri(yirn)]
1=0
> D gko _g.gho—t _g.g-ko—d,
=10

Hence |Fy(x) — Fi(y)| > (3/20)27%° and the proof is complete. O

Suppose that z,y € [0,1] with 2 < y. By Lemma 8.7, there exist intervals I € &} that
separate x and y provided that k is sufficiently large. If kg is the least such integer, then
|F(x) — F(y)| 2 27% > 0 by Lemma 8.8. This shows that F is injective and completes
the proof of Proposition 8.1.

8.4. Proof of Lemma 8.2

We first give an auxiliary estimate.

Lemma8.9. Let EC RN,z € E, andr > 0. Ify € ENB(z,7), |y—x| > 648 (B(x,7))r,
and L, is the line passing through x and y, then

dist(z, £y,,) < 4B8p(B(z,7)) (1 + Lﬁ) r forall z€ EN B(x,r).
y—x

Proof. Let z € EN B(z,7), 2 # x. Let £ be a best fitting line for £ in B(z,r). Then
dist(z,£), dist(y, £), and dist(z, £) are bounded above by Bg(B(x,r))2r. Let £, = { — .
Then x € {, and dist(y, £;) and dist(z,¢,) are bounded above by 28p(B(x,r))2r. If
y € £y, then we have dist(z, £, ) = dist(2, £;) < 28r(B(x,r))2r and we are done.
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To continue, suppose that y ¢ ¢, and let y' = mp_(y) and let 2/ = 7, (z). Define

|2 — =

ly' — x|

W=+ (y_x)egw,y'

Since 2’ € ¢, between z and y', we have that 2/ = 2+ |2’ —z||y’ — 2|71 (v’ — ). Therefore,

2 — T
dist 'é <l — = |y — | < |y — .
ist(z',ley) < [ —wl =y yl| — <ly yl‘y/_x‘

Thus, by the triangle inequality,

dist(z, £yy) < |2 — 2|+ |y — y] < 2B8p(B(z,7)) (1 + L) 9.

,
ly' — | ly' — x|

Since dist(y, ;) < 28 (B(z,r))2r < (1/16)|z — y|, we have
L1y — | > (1+3(1/16)*)|y’ — 2| = |y — 2
by Lemma 2.1, applied with V' = {z, y}. Therefore,

dist(z, £y ) < 28p(B(z,7)) (1 + %) 2r. O
y—x

We now give a proof of the key lemma.

Proof of Lemma 8.2. Without loss of generality, we may assume that diam £ = 1. Fix
z,y € F and let n > 0 be the unique integer such that

2=+ < |p —y| <27

Case 1. Suppose that n € {0,1}. Let ¢ be the line containing x and y. Since
Br(B(x,1)) <2711 and since |z — y| > 272, by Lemma 8.9 we have that

1.1 —
sup dist(w,¢) =  sup  dist(w, ) < (1 + —) 48 (B(z, 1))
wekE wEENB(x,1) |$ - y|
216 1 |z —y|
=g S5 24

Therefore, E is contained inside the tube T := B(z,1) N B(¢,27 %z — y|). Let D be a
closed (N — 1)-ball centered at z, perpendicular to ¢ and of radius 2~#|z — y|. In other
words, D is the set of all points in B(z,27%) whose projection on £ is z. Then D cuts T
into two pieces, one containing x and another containing y. By connectedness of F, we
must have DN E # ().
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Case 2. Suppose that n > 2. The procedure here is roughly the same as that in
Case 1, with the difference that the tube T is replaced by a more complicated set. By
connectedness of E, for each k € {1,...,n — 1}, there exists a point y, € B(x,27%)NE.
For each k € {1,...,n— 1} let £; be the line containing x and y;. Let also £,, be the line
containing z and y.

Working as in Case 1, we can show that for each k € {1,...,n},

ENB(z,2"* V) ¢ T} := B(z,2-* V) 0 B, 272~ =),

Since diam E = 1, we also have £ C T3. For each k € {1,...,n—1}, let T 1, T} 2 be the
two components of T}, \ B(z,27%). Set

T'=T11U---UT, 11 UL, UT,_12U---UT 5.
The sets T11,...,Tn—-1,1,Tn,Tn-1,2,...,11,2 intersect at most in pairs. In particular,

(1) if i € {1,2}, then T1; N Ty, ; = 0 unless m € {1,2} and j = i;

(2) if k € {2,...,n — 2} (if any) and i € {1,2}, then Ty; N T, ; = 0 unless m €
{k—1,k,k+1} and j =i;

(3) if i € {1,2}, then T,,_1 ;N Ty, ; = 0 unless m € {n —2,n — 1} and j = i

(4) ToNTy; =0 unless m =n — 1.

As with Case 1, if D is an (N — 1)-ball centered at z, perpendicular to £,, and of radius
2=42=" then D cuts T),, into two pieces, one containing x and another containing y.
Consequently, D cuts T into two pieces, one containing x and another containing y. By
connectedness of E and the fact that £ C T, we must have DNE # (. O

9. Examples

In this section, we give examples of Holder curves and of sets that are not contained
in Holder curves to illuminate Theorem 1.1, Proposition 1.3, and Theorem 5.1.

9.1. Hélder curves that are non-flat in all scales

First up, we show that condition (1.2) in Theorem 1.1 is not necessary for a bounded
set to be contained in a (1/s)-Holder curve when s > 1. In contrast, when s = 1,
condition (1.1) in the Analyst’s Traveling Salesman theorem is necessary and sufficient
for a bounded set to be contained in a rectifiable curve.

Let N >2and 1 < m < N — 1 be integers. Given a nonempty set £ C RY and an
N-cube Q@ C RN with ENQ # 0, define the m-dimensional beta number

(M) ()} .= inf dist(z, P)
KO s A Y
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where the infimum is taken over all m-planes P in RN. If ENQ = 0, set ﬁgn)(Q) =0.
Note that ﬁg)(Q) = Br(Q) as defined in §1 and that ﬂl(sm)(Q) < ﬂgl)(Q) whenever
m > n.

Proposition 9.1. For any N > 2 and any s € (1, N], there exists a (1/s)-Holder curve
E C RY such that

> (diam Q)® = oc. (9.1)
QEeARM)
BY T (BQ)>(6vVN) !

The construction splits into three cases. Before proceeding, we introduce some nota-
tion. Given a cube @ C R¥, denote by A(Q) the set of dyadic cubes in A(RY) that
are contained in Q. Moreover, given positive integers m < N, there exists a polynomial
P 1, of degree m with the following property: If n € N and {Q1, ..., Qn~} is a partition
of [0,1]" into N-cubes of side-length 1/n, then

card{Q; : Q; intersects the m-skeleton of 9[0, 1]V} = Py (n).

Recall that if I, ..., Iy are nondegenerate compact intervals, and Q@ = I; X --- x Iy is
an N-cube, then the m-skeleton of () is the union of sets I] x - - x I}y where I} = I; for
m indices j and I} = 0I; for the remaining N —m indices j. Finally, we note that if K
is the set of vertices of a cube Q in RY and P is an (N — 1)-plane, then

dist(z, P) > (2V'N) ™! diam K forall z € K. (9.2)

Case 1: s = N. We simply take E = [0,1]". It is well known that there exists a
(1/N)-Holder parametrization f : [0,1] — E. On the other hand, by (9.2),

Z (diam Q)N i Z (diam Q)N = i?Nk(\/NQ_k)N =

QEARY) k=0 Qea(o,1]") k=0
By M (3Q)>(2vN) ! diam Q=v/N27*

Case 2: s € (1, N)\ N. Let m be the integer part of s. Since the degree of Py, is
strictly less than s and strictly larger than s — 1, we can fix n € N such that

n® —(n—2)° < Pvm(n) <n®—1. (9.3)
By (9.3) and the Intermediate Value Theorem, there exists A € (3,1 — 2) such that
Pnom(n)n™ 4+ X° = 1. (9.4)

Partition [0,1]" into N-cubes of side-lengths 1/n and let {Q;}._; (I = Py m(n)) be
those cubes that intersect the m-skeleton of [0,1]V. Let also Qo = [1/n,1/n + A]". For
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each i = 0,...,l, let ¢; be a similarity of R" such that ¢;([0,1]") = Q;. Finally, define
E C RV,

= U ue-oonlou).

k=14qy-i€{0,...,l1}F

Since the maps {¢o, ..., ¢} satisfy the open set condition, E is Ahlfors regular [31]. By
(9.4) the Hausdorff dimension of E is equal to s, so E is s-regular.

Lemma 9.2. The set E is connected.

Proof. Set W = J;0{0, ..., {}* with the convention that {0,...,/}" is the empty word
() and ¢y is the ideritity map of RY. For each w € W, let K,, denote the 1-skeleton of
6w ([0,1]). The proof is based now on two observations. First, by the choice of cubes
Q1,...,Q, it follows that K, C E for all w € W. Second, K, N Kp; # 0 for all w € W
and ¢ € {0,...,{}.

Now fix x € E. There exists a sequence of words (wy)n>0 in W such that wg is the
empty word, wy41 = wyin with i, € {0,...,l},and x € (), dw, (). The set | J,,~o Luw,
is a path that joins x with the origin. Hence F is connected. O -

By Lemma 9.2, the fact that the Hausdorff dimension of F is s, and Theorem 4.12 in
[45], there exists a (1/s)-Holder map f : [0,1] — RY such that £([0,1]) = E. It remains
to show (9.1). We first prove a lemma.

Lemma 9.3. If Q € A([0,1]) is a dyadic cube that intersects E, then there exists a
dyadic cube Q' C 3Q such that diam Q" > (3n)~! diam Q and BgENfl)(BQ’) > (6v/N)~L.

Proof. Fix x € QN E and let iy,4s,... be a sequence of numbers in {0, ...,1} such that
w€ () ¢ o0 ([0,1V).
k=1

Let ko be the smallest positive integer such that ¢;, o---o ¢;, ([0,1]V) C 3Q and define
K to be the set of vertices of ¢;, o0 ¢; ([0, 1]V). Since each ¢; has a scaling factor
at least 1/n, by minimality of kg we have that diam K > (1/n) diam Q.

Let Q' be a dyadic cube in A(3Q) (possibly Q' = @) of minimal diameter such that
K C 3Q'. We claim that

1
3 diam K < diam Q" < diam K. (9.5)
The lower inequality is clear. If diam K < diam @), then, since K has edges parallel to the

axes, K is contained in 3Qq for some dyadic cube @y C 3Q with diam Qg = %diam Q’,
which is a contradiction. That establishes the upper inequality of (9.5).
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By (9.2), (9.5), and the fact that K C E,

(2v/N)~* diam K B (6+v/N)~* diam K S (6\/]V)_1

(N-1) ’ (N-1) /
o BQ) =0k TBQ) = — 3 diam Q

This proves the lemma. 0O
By Ahlfors s-regularity of F, there exists a constant C' > 1 such that
card{Q € A([0,1]Y) : diam Q = VN27* and QN E # 0} > C~12%F,
Fix a positive integer ko such that 2¥0 > 3n. For k € N, set
9, ={Q € A([0,1]V) : diam Q € [VN27*, v N27¥ %] and NV (3Q) > (6vVN)~'}.
By Lemma 9.3,
card @, > 37N card{Q € A([0,1]") : diam Q = VN2 ¥ and QN E # 0} > C~137Nask,

Therefore,

Z dlamQ >Z Z dlamQ

QeARY) k=0 Q€ Qkk,
BV (3Q)=(6vVN) !

> Z07137N28kk0(\/N)527S(k+1)k0 ——
k=0

Case 3: s € {2,...,N —1}. Fix n € N large enough so that Py s_1(n) < n°. Partition
[0,1]" into N-cubes with disjoint interiors and side-lengths 1/n and let {Q1,...,Q;}
(I =n®) be a collection of such cubes so that the set U§€=1 Q; is connected and contains
the (s — 1)-skeleton of [0,1]". The rest of the construction is similar to Case 2 and is
left to the reader.

9.2. Abhlfors regular curves without Hélder parametrizations

Next, for all s > 1, we construct Ahlfors s-regular curves that are not contained in any
(1/s)-Hoélder curve. The basic strategy is take a disconnected set, which is not contained
in a Holder curve, and then extend the set to transform it into an s-regular curve. We
call the curves that we construct “Cantor ladders”.

Proposition 9.4. Let N € N with N > 2, let s € (1, N), and let m € N withm < s. There
exists an Ahlfors s-reqular curve E C RY, which is not contained in a (m/s)-Hélder
image of [0,1]™
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We treat the cases s € N and s ¢ N separately. Given m € N, let W,,, be the set of
finite words formed by the letters {1,...,m} including the empty word (. We denote by
|w| the number of letters a word has with the convention |(}] = 0.

Case 1. Suppose that s € {2,3,..., N —1}. Let Dy = [0,1]2. Given a square D,, C R?
for some w € Wiy, let D1, Dyo, Dyws, Dws be the four corner squares in D, with
diam D,,; = (1/4) diam D,,. Let C; be the Cantor set in R? defined by

o)
= U D
k=0 weW;y
lw|=k

For each i = 1,...,2/*! define D, ; = D, x {(2i — 1)27IwI=1}

olwl _
=@ x[0,1)u [ U Dy; and  E= Ky x [0,1*72 x {0}V 5L,
wew =0

Here and for the rest of §9.2, we use the convention 4 x {0}° =
Case 2. Suppose that s € (1, N) \ N. Let p = s — | s] be the fractlonal part of s. Let
Iy = [0,1]. Given an interval I, = [aq, by] for some w € Wh, let

Tyt = [aw, G + 27 (by — ay)] and Tyo = [byy — 27P(by — @), buy)-

Let Cp, denote the Cantor set in R defined by

DL

k

U L.
=

Owe
|w

Let S be the bi-Lipschitz embedded image of ([0,1],] - |ﬁ) into R?. For each w € W,
let Sy, be a rescaled copy of S whose endpoints are the right endpoint of I,,; and the
left endpoint of I,5. For each w € Wy and i = 1,...,2/®l — 1, define

Sw,i = Sw —+ (O, (21 _ 1)27|w\71)

and define

olwl
Kpir=(Cpx[0,)U |J JSwi and B =Ky x[0,1]° 777 x {0}V st
weW i=0

Verification of the desired properties of F is the same for the two cases, so we only
treat Case 1. By Theorem 2.1 in [38], there exists no (m/s)-Holder map f : [0,1]™ — RV
whose image contains C; x [0, 1]*~% x {0}V =571, We show that E is a curve in §9.2.1 and
we prove s-regularity of F in §9.2.2.
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9.2.1. E is a curve

By the Hahn-Mazurkiewicz theorem [30, Theorem 3.30], to show that FE is a curve it
is enough to show that F is compact, connected, and locally connected.

For compactness, it is easy to see that Ky C [0,1]?, hence E C [0, 1]". Moreover, as
|w| — o0, the squares D,, ; accumulate on C x [0, 1]. Therefore, K5 is closed. Consequently,
FE is compact.

To settle both connectedness and local connectedness, we prove that there exists C' > 1
such that for all pairs of points x,y € F there exists a path joining x with y of diameter at
most C|z —y|'/2. Clearly, it suffices to show the claim for Ky instead of E. Fix z,y € Ko
and let wg be the word in W, of maximum word-length such that the projections of x
and y on R? x {0} are contained in D,,,. This means that |z — y| > $4~I*l. Choose
io € N such that dist(z, Dy i) < 2- 2 lwol I 2y and yg are the projections of z and y
onto D, i,, respectively, then

max{|zo — x|, [yo — y|} < 9—lwol 4 g=lwol 4 |z — y| ~ o—lwol

There exist sequences (Wp)neN, (Un)nen of words in Wy and sequences (in)neN, (Jn)neN
of positive integers such that

(1) [wn| = fun| = |wol + n;
(2) the orthogonal projection of x (resp. y) on R? is contained in D,,, (resp. D, );
(3) there exists x,, € Dy, 4, such that

max{|a — @, [y = yol} < 47017 V2 4 270l

Properties (1) and (2) imply that Dy, 2 Dy, 2 Day, 2 -+ and Dy 2 Dy 2 Dy 2 -+,

= = = =

while property (3) implies that the Hausdorff distances

) —lwo|—n
un+17]n+1) SJ 2 .

distg(Du. i Dup v in) <27 1wol=2and  disty(Dy. i, D
nytn n+1ytn+1/ ~o nsJn

Let o C K> be the line segment joining xzg with yo. For each n > 0, let z, € D,,, ,,
wn+17in+1' A1S07 let pn € Dun,jn be a
Consider the curve

be a corner point and let z/, be its projection on D

corner point and let p), be its projection on Dy, j,. .-

7 = ’YO U U ([xn’ ZTL] U [Zna Z;L] U [Z%7xn+1]) U U ([ynapn] U [pmp;L] U [p;zayn+1])7
neN neN

which is a subset of Ky and joins x with y. Then
diam v < diam g + Z diam y, + Z diam o,
n>0 n>0

< |xo — ol + Z(|$n — zn| + |20 — 2| + |2, — Tota])
n>0
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+ Z(|yn _pn| + ‘pn _p:z| + |p'/n, - yn+1|)

n>0

< g lwol 4 Z(Q*\wolfn 4 4~ lwol=n 4 g=lwol=ny < g=fwol ~ | _ 4|1/2
n>0

9.2.2. E 1is s-reqular

We show s-regularity for E. Because the product of regular compact spaces of dimen-
sion s; and sy is (s1 + s2)-regular, to show that E is s-regular, it suffices to show that
K5 is 2-regular. Fix 2 € K3 and r € (0, diam K>).

We first show that

H*(B(z,7) N Ky) > . (9.6)
If z € C; x [0,1], then (9.6) follows from the 2-regularity of C; x [—1,1]. If z € D, ;
and r < 10diam D,,, then (9.6) follows from the 2-regularity of D,, ;. If = € D,,; and
r > 10diam D,,, then there exists z € (C1 x [0,1])NB(x,r) such that B(z,r/2) C B(z,r)
and (9.6) follows from the 2-regularity of B(z,r/2) N K.

For the upper regularity of Ks, instead of working with balls B(xz,r), it is more
convenient to use cubes

Q(z,7) =z +[-1r/2,7/2] xe€ Ky, 7>0.

Without loss of generality, we may assume that r = 47%0 for some ky € N. For each
k>0, let

Dy(w,r) = {Duw,i : Q,7) N Dy, # 0 and w| = k}.

Then by the 2-regularity of C; x [—1, 1], it suffices to show that

S Y HQ@or)nDuy) S

k>0 Dy, €Dy (x,r)

The following lemma will let us estimate the above sum. In the sequel, we denote by
mg > 0 the smallest integer for which there exists D,,; € D(z,r) with |w| = my.

Lemma 9.5. Let mg > 0 be the smallest integer for which Dy, (z,7) # 0.

(1) If k > mg and Dy(z,7) # 0, then k > 2kg.
(2) If Q' is the projection of Q(z,r) on R? x {0}, then for all k > 0,

card{Dy : Dy N Q' # 0 and |w| = k} <1+ 4F47 %,
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(3) For each w € Wy,

card{i: Dy ; N Q(x,7r) #0} <1+ lwlt1g—ko,

(4) For each k >0, card Dy (z,7) < (1 + 4*F4=F0)(1 4 2k+14=ko),
(5) We have

> H(DwinQla,r) S

D'w,ieD'rrlo (1a7)

Proof. For (1), recall that if |w| > myg, then the vertical distance between D,,; and
Dy iy is at least 271Vl Since r = 4750 the cube Q(z,r) can not intersect any D, ,
unless 4~ %0 > 2=1wl Thus, [w| > 2k.

For (2), we first note that if k& < ko, then @’ can intersect at most one square D,,
with |w| = k. We now use induction to show that for all k > ko,

card {Dy, : Dy N Q' # 0 and |w| = k} < 4F47H0,

For k = kg, it is true. Suppose that the claim is also true for some k > kg. Then Q'
intersects D,, with |w| = k + 1 if and only if there exists w’ with |w’| = k such that
QN Dy # 0 and D, C D, . Since each square of generation k contains 4 squares of
generation k + 1,

card{Dy, : D,y NQ" # 0 and |w| =k + 1} <4card{D, : D,y N Q" # 0 and |w| = k}

< 4k‘+147k0 .

For (3), fix w € Wy. Recall that the vertical height of Q(w,r) is 2r = 2-47%0 and that
the vertical distance between D, ; and D,, ; with 7 # j is at least 2~ 1wl Therefore,

card {i : Dy NQ(x,7) # 0} > 1+ (2r) /2710 =1 4 2lwi+1g=ko,

Claim (4) is immediate from (2) and (3).

It remains to show (5). On one hand, if mg > ko, then by (4), card(Dp,, (z,7)) = 1.
Hence (5) follows from the 2-regularity of squares D,, ;. On the other hand, if mgy < ko,
then by (4),

Z H2(Dyi N Q(,7)) < card (D, (x,7))(47™0)2 L 27mo4=2k0 < 2
Dy,i €Dy (z,1)
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By Lemma 9.5, we have

> HAB(z,r)N Dy,) < > HDu)+ Y > HADu)

Dw,iep(zvr) Dw‘i,e'Dmo (I,T) k:2k0 Dxir,iEDk(zvr)
oo
Sl Y 2Rahoghythog 2k,
k=2ko
Finally,
o0
Z 2k4—k04k4—k04—2k — 4—2]60 Z 2—k < 4—3k)0 < ,',,2'
k>2ko k>ko

Therefore, K5 is 2-regular.
9.83. A compact countable set that is not contained in any Holder cube

Proposition 9.6. For each N € N, N > 2, there exists a compact and countable set
E C RY with one accumulation point such that for any m € {1,...,N — 1} and any
s € [1,N/m), the set E is not contained in a (1/s)-Hdélder image of [0,1]™.

Corollary 9.7. For each N € N, N > 2, there exists a compact and countable set E C R
with one accumulation point such that E is not contained in a rectifiable curve.

For each integer k > 0, define GY to be the union of all vertices of all dyadic cubes in
RY that are contained in [0,1]" and have side length 27*. By a simple combinatorial
argument, card(GE) = (28 + 1)V for all k > 0.

Let ¢g be the identity map, and for each k > 1, define a map ¢ : RV — RY by

k
or(z) = (k+ 1)z + <o,...7o,22r2> :
i=1

Set A:=3":° i"2=n%/6, and define the set

E:={(0,...,0,24)} U | J ¢r(Gp).

k=0

The set E is clearly countable. If (z1,...,zy) € E, then |z;| < lforalli=1,... , N—1
while |xy| < 2A. Therefore, E is bounded. Moreover, the only accumulation point of E
is the point (0,...,0,2A) which is contained in E. Thus, F is closed.

Next, we claim that

lo —y| >27F(k41)72 for all z € ¢1(Gy) and all y € E\ {z}. (9.7)
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Indeed, if z,y € G, then inequality (9.7) is clear. Otherwise, dist(GY, E\GY) > (k+1)72,
and thus, (9.7) holds again.

Suppose in order to get a contradiction that there exists a (1/s)-Holder continuous
map f : [0,1]™ — R¥ such that E C f([0,1]™). Let H be the Holder constant of f. For
each k > 0 and z € G?, fix a point wy , such that f(wy )=z and set

By = B(wy,p, S H*277(k +1)72%).

Inequality (9.7) implies that the balls By, , are mutually disjoint. Moreover, it is easy to
see that each By, is contained in [—1,2]™. Therefore,

o
1Zm H™([-1,2)") > > Y H™(Bia)
k=0 z€G?
> 275km > Qk(mes)
ZHs kN~ —_—
ZH, kz:;]( +1) (k + 1)2om Nkz:;] e+ 1)

Since N > ms, the sum on the right hand side diverges and we reach a contradiction.
9.4. Flat curves with finite H® measure and no (1/s)-Hélder parametrizations

The following example shows that the assumption of lower s-regularity can not be
dropped from Proposition 1.3.

Proposition 9.8. For any 5y € (0, 1), there exists so € (1,2) with the following property.
For any s € (1,sq) there exists a curve E C R? such that

(1) H*(E) < o0 and
(2) Be(Q) < Bo for all Q € ARY),

but E is not contained in any (1/s)-Holder image of [0, 1].

Before proceeding, we recall a well-known construction method for snowflakes in R2.
Let p = (po, p1,- .. ) be sequence of numbers in [1/4,1/2). Let I’y be the segment [0, 1] x
{0}, oriented from (0, 0) to (1,0). Assume that we have constructed an oriented polygonal
arc ', with 4% edges. Define 'y, to be the polygonal arc constructed by replacing each
edge e of I'y, by a rescaled and rotated copy of the oriented polygonal arc in Fig. 4 with
P = Pk, so that the new oriented arc lies to the left of e. A snowflake arc S, is obtained
by taking the limit of I'y, just as in the construction of the usual von Koch snowflake.

Remark 9.9. For any € > 0, there exists p* > 1/4 (small) such that if a snowflake is
built with parameters 1/4 < p, < p* for all k > 0, then S, (B(z,r)) < er for all k£ > 0,
r €Iy, and r > 0.
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Fig. 4. Generator for a snowflake curve.

Fix By € (0,1). By the preceding remark, there exists p* € (1/4,1/2) such that
Bs,, (@) < Bo for all Q € A(RY). Set p = (p*,p*,...), set sp = —log4/logpg, and
fix s € [1,s0). It is well-known that there exists a (1/sg)-bi-Holder homeomorphism
®:[0,1] — Sp; e.g., see [18,46].

We now construct a self-similar Cantor set in [0, 1] in the following way. Let Iy = [0, 1].
Assuming we have constructed I,, = [aq, by for some w € {1,2}", let

Tp1 =[Gy, Gy + (by — aw)Z*SO/S] and  Lyo = [by — (b — aw)2750/5,bw].

Define E" = (1,2 U,y 1,2y Lw- For each component J of [0,1] \ E', let 7 be the line
segment joining the endpoints of ®(.J). Then define

E=2aE)ulJw,
J

where the union is taken over all components J of [0,1] \ E’. Since E’ is s/so-regular
and @ is (1/sg)-bi-Holder,

Ho(E) =H(R(E) + > H(vs) < CHY*(E') < .
J

Since ®(E’) C S, and «; are line segments, we have 85(Q) < fp for all Q € ARY).
Finally, by Theorem 2.1 in [38], there does not exist a (1/s)-Hélder map f : [0,1] — R?
whose image contains ®(E’) (and consequently E).

9.5. Sharpness of exponent 1 in Theorem 5.1

To wrap up, we show that Theorem 5.1 does not hold if numbers 74(k,v,v’) are
replaced by 7,(k,v,v")P with p > 1. When s = 1, this follows from the necessary half of
the Analyst’s Traveling Salesman theorem. Thus, we may focus on the case s > 1.

Proposition 9.10. Let p > 1, let s > 1 be sufficiently close to 1, and let oy > 0 be
sufficiently close to 0. There exists a sequence of finite sets {(Vi, px)}>o0 of numbers and
finite sets in R? satisfying (V0)—(V5) such that

Soomrs+ D kv v)Ppirg < oo (9.8)

veEVE (v,v")€Flat(k)
Qv >0
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but there does not exist a (1/s)-Hdélder map f : [0,1] — R? such that Ukso Ve C £([0,1]).
Let s > 1 and ng € N be constants to be specified below. Fix a number
0 < ¢ <min{l/s,(p—1)/s}.

For each n € N, let

DY I S PR 2
P s k + no 4

Construct a sequence of polygonal arcs 'y, as in §9.4 with parameters
pr=1/4+1t7.

We may assume that numbers py are in [1/4,1/2) by taking ng to be sufficiently large.
For each k > 0, we define a finite set Vj, C I'y, as follows. Define Vj := {vg 1,v0,2}, where
vo,1 = (0,0) and vg2 = (1,0). Suppose that for some k > 0 we have defined a set

Vk}:{vk’l,...,vk7Nk}7 Nk:2k+1,

where points v ; are enumerated according to the orientation of I'y. For each i =
1,...,28 + 1, set Vk41,2i—1 = Uk, and assign vi41.2; to the point of I'yy; that lies
between vg112,—1 and vgi1,2i41 and is equal distance to vg412,—1 and vgt1,2i41 (the
peak of the triangle in Fig. 4). Define the quantities

1427 (k + 1+ ng)?
=1, C*=2 =92 /s =-"°- =1 —gk/si2 T T 0
To ) ) 51 ’ 52 9 ;PO Pk (2 n no)q
(9.9)
For each k£ > 0 and v € Vi, define
dist(z, ¢
Qg = inf sup M

b
£ 3€Viy1NB(v,30A% ppro) Pk+1T0

where the infimum is taken over all lines ¢ in R? and A* is as in §2.2. Let Ly be a line
£, which realizes the number ay, ,,.

Lemma 9.11. There exist choices of s and ng so that the following properties hold.
(1) For allk >0 and i€ {1,... Ny}, we have |vg; — Vg it1| = pr.

(2) The sequence {(Vk, pr) }x>0 satisfies (V0)-(V5) with the parameters given in (9.9).
(3) For allk >0 and v € Vi, we have ag,., < ag, where oy is as in Definition 2.4.
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(4) For allk >0 andi€ {1,..., Ny},

FIat(k) = {(Uk:,i)vk:,i+1) e=1,... ,2k} and

Vit 1,i Uk, Vi yit1) = {Vk,ir Uk1,2i5 Vkyi }-

Proof. For (1), we work by induction. The claim is true for k = 0 by the choice of points
vp,1 and vg 2. Assume the claim is true for some k£ > 0. By the Pythagorean theorem,

|Uk+1,2i—1 - 'Uk-',-l,2i| = |Uk,z' - Uk+1,2z‘—1\ = (471 + t%)l/z\vk,i - Uk,z‘+1|

=@+ )2 = prar

In similar fashion, one can compute |vky1,2; — Vg+1,2i+1| and the proof of (1) is complete.
Claim (3) is immediate from Remark 9.9 by taking s sufficiently close to 1 and ng
sufficiently large.
For (VO0), we have

Phal _ 5-1/s (k+2+no>q
Pk kE—+1+ng

Clearly, pry1 > E1pr. On the other hand, since 27%° < & < 1, if ng is sufficiently
large, then pri1 < &a2pi. Properties (V1), (V2), and (V5) are immediately satisfied by
our construction. For (V4), fix a point vgt1,2;i € Vit1 \ V- By (1), we have |vgy1,2; —
Vk41,2i+1] = pr+1 and (V4) is satisfied.

For (V3), claim (3), and claim (4), we apply induction on k. For k = 0 (V3) is
immediate by the choice of parameters. For claim (3), we note that oy, = 0 for all
v € Vg, since V) contains only 2 points. For the same reason, claim (4) is satisfied when
k=0.

To show (V3), we note by (3) that the closest point of Vi1 to vr41,2; are the points
vk,; and vy ;41. Therefore,

vekarfT\l{ifjlkﬂm} [v — Vgt1,2i] = [Vkt1,20 — Vkil = Prta-
Similarly, by (3), the closest point of V41 t0 Ug41,2i+1 = Vg i+1 are the points vg41,2; and
Vg+1,2(i+1) (or only one point of these two if i = 0 or i = 2*}) and the above inequality
also applies.
Finally, to show (4), we apply (3) and the arguments in the proof of (V3). Namely, if
v € Vi, with k € {2,2% — 1}, then ., < g and g ; lies between points vy ;1 and
Vk,i+1. Lherefore,

Flat(k:) = {(vk,iavk,i-‘rl) 1= 1, . ,Qk}

Furthermore, the only point of Vi1 lying between vy ; and vk 41 iS Vg41,2:. Thus,
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Vit 1,i Uk, Vi it1) = {Vkyir Vk1,2i5 Vki ). O

We now show that there does not exist a (1/s)-Hélder map f : [0,1] — R? whose
image contains | k>0 Vi Contrary to the claim, assume that such a map f exists and let
H be its Holder constant. For each vy ; € Vi, fix wg,; € [0,1] such that f(wk,;) = vk,
Then

Whyi — Wi j| 2.8 Ok — Ukj|® Zng.qs 27 (k +1)%

Therefore,

1> 2" min ‘wk,i - wk,jl ZH,SJLO#J (k + 1)Sq7

i=1,...,2k+1

which diverges as k — oo and we reach a contradiction.
It remains to check (9.8). By Lemma 9.11, it suffices to show that

oo 2k

ZZTs(kavk,uvk,iJrl)plvk,i — Vg i+1]® < 00.

k=0 i=1
By the Mean Value Theorem,
[vk,i — Vkt1,2:|° + [Vkt1,2i — Vkit1]|® — |V — Vkiga]®

[Vk,i — Vk,it1|®
(k+24mn0)°? = (k+1+ng)*

(k Vk,iy Vk z+1)

=2
(k + 2+ no)™
1
SM@QEIT
Finally, since sq —p < —1,

co 2F
ZZTS k Vg Z?vk‘ 'L+1) |Uk i — Uk 1+1| ~MN0,S,q Z k? + k/b(k—’_ 1)q)s
k=0 i=1

= 1P < oo
k=0

Appendix A. Tours on connected, finite simple graphs

A finite simple graph G = (V, E) in a Banach space X is a finite set of points V' C X
(called vertices of ) along with a set E C {{v,v'} : distinct v,v" € V'} (called edges
of G). We may identify edges {v,v'} in the graph with the (unoriented) line segments
[v,v'] in X. A graph is connected if every pair of vertices in the graph can be joined by
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a sequence of edges in the graph. The valence of a vertex v in G is the number of edges
in G that contain v.

Proposition A.1. Let G be a connected, finite simple graph in X. Assume that every
verter in G has wvalence at most 2. For any vertex vy in G and any nondegenerate
compact interval A, there exists a collection I of open intervals, whose closures are
mutually disjoint and contained in the interior of A, and there exists a continuous map
g : A — G with the following properties.

(1) The endpoints of A are mapped onto vg.

(2) For every vertex v of G, there exists at least one component J of A\ UZ such that
g(J) = v. Conversely, for every component J of A\ |JZ, there exists a vertex v of
G such that g(J) = v.

(3) Each interval in T is mapped linearly onto some edge e of G. Conversely, for each
edge e of G, there exist exactly two intervals I € T such that g(I) = e.

(4) For any vertex v in G, there exists a component J of g~ (v) N A\ JZ such that for
any edge e containing v as an endpoint, there exists I € T such that IN.J # 0 and

g(I)=e.

Proof. If we only desired properties (1)—(3), then we could prove the proposition without
any restriction on the valence of the vertices by simple induction on the number of edges.
The restriction on the valence of the vertices ensures the graph has one of two simple
forms that make it easy to describe maps g satisfying properties (1)—(4). Thus, let G be
a connected, finite simple graph in X, and assume that every vertex in G has valence at
most 2. The conclusion being trivial otherwise, we may assume that G contains at least
two vertices. There are two possibilities. In each case, we will construct the family Z and
the map g, but leave verification of properties (1) through (4) to the reader.

Case 1: Suppose that every vertex of G has valence 2 (i.e. G is a “cycle”). Then we
can find an enumeration {u!,...,u*} of the vertices of G so that the edges of G are

k41 — 4!, Without loss of generality,

precisely {[u?,uit!]:i=1,...,k}, where we set u
assume that u' = vg. Let Z = {I3,..., I} be open intervals, enumerated according to
the orientation of A, whose closures are mutually disjoint and contained in the interior

of A. Then there exists a continuous, surjective map g : A — G such that

(1) g is linear on each I; and constant on each component of A\ U?il I;

(2) for each i € {1,...,k}, g maps I; linearly onto [u’,u’"!] and maps the left endpoint
of I, onto u’;

(3) foreachi € {k+1,...,2k}, g maps I; linearly onto [u’~*,u*~**1] and maps the left

endpoint of I; onto u*~*.

That is, ¢ winds twice around the graph, starting and ending at vy = u'.
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Case 2: Suppose that least one vertex of G has valence 1 (i.e. G is an “arc”). Then
we can find an enumeration {ul,...,u¥} of the vertices of G so that the edges of G
are precisely {[u’,u'*!] : i = 1,...,k — 1}. In this case, u! and u* have valence 1
and all other vertices have valence 2. Assume that vo = u! for some 1 < [ < k. Let
Z={L,..., Ig(k_l)} be open intervals, enumerated according to the orientation of A,
whose closures are mutually disjoint and contained in the interior of A. Then there exists

a continuous, surjective map g : A — G such that

(1) g is linear on each I; and constant on each component of A\ Uf(zkfl) I;

(2) for each 1 < i <[ —1 (if any), g maps I; linearly onto [u'~% u/~**!] and maps the
left endpoint of I; onto u!~*+1;

(3) for each i € {l,...,1+k — 2}, g maps I; linearly onto [u*~!*1 4*~!*2] and maps the
left endpoint of I; onto u*~‘*1;

(4) for each +k—1 <14 < 2(k—1) (if any), g maps I; linearly onto [u2F—2+1=1 ¢, 2k=1+1=7]

and maps the left endpoint of I; onto u2F=1+1—

That is, g walks along the graph from vy = u! towards ', walks from u' to u*, and
walks from u”* back to u!. O

Appendix B. From Lipschitz to Holder parameterizations

The following method of obtaining Hélder parameterizations from Lipschitz ones is
well known, see e.g. [49, Lemma VII.2.8]. We include Lemma B.1 and its proof here to
have a clear statement about the dependence of the Holder constant of the map f.

Lemma B.1. Let s > 1, M >0,0< & <& <1, a>0,8>0, and jo € Z. Let (X,|-])
be a Banach space. Suppose that p; (j > jo) is a sequence of scales and f; : [0, M] — X
(j > jo) is a sequence of Lipschitz maps satisfying

(1) pj, =1 and &1p; < pjy1 < Eapj for all § > jo,
(2) |fi(x) = fi()| < Ajla =yl for all j > jo, where A; < ap}~*, and
(3) Ifj(x) = fiy1(x)| < By for all j > jo, where B; < fBp;.

Then f; converges uniformly to a map f: [0, M] — X such that
|[f(2) = F(y)| < Hlz —y['/* for all w,y € [0, M],

where H is a finite constant depending only on max(M,1/M), &, &, «, and 3; see
(B.7).

Proof. Define f : [0, M] — X pointwise by f(z) = fj, () + 2202, (frr1(z) — fr(2)).
Then f exists and is the uniform limit of the maps f; by (3), because Z;c’:jo By < 0.
In fact, for all j > jo and = € [0, M],
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(B.1)

f(a) <M lfl@) - f@)] <3 B <
k=j k=j

Suppose that z,y € [0, M] with © # y. Then there is a unique integer j > jo such that
Mpj iy <z —y| < Mpj. (B.2)
By the triangle inequality, (2), and (B.1),

[f (@) = f)| < 1f5(x) = Fi @)l + 1 f () = fi(@)| + 1 f(y) = f5 ()]

28 (B.3)

SOéP; x—y|+qu.

—|
By the first inequality in (B.2) and (1), we have

1 1/5
< Smrele v (B.1)

Hence, by the second inequality in (B.2), we have

P~y < Mp; < & — |/, (B.5)

M
Ml/sf

Combining (B.3)~(B.5) yields |f(z) — f(y)| < hlz — y|*/* for all z,y € [0, M], where

h =

1 28
Mg <aM+ 1_52) . (B.6)

If M > 1, then 1/M'/* < 1, while if M < 1, then 1/M'/* < 1/M. Thus, it follows that
|f(1') - f(y)| < H|£L' - y|1/s for all T,y € [O,M], where

_ max(1,1/M) 26 ) 29 ax imax
B &1 ( My —52) & (M) + &i(1-¢&) LA B

depends only on max(M,1/M), &, &2, a, and 5. O

Remark B.2. Lemma B.1 is often used with geometric scales p; = p’ (i.e. & = & = p).
However, separating the parameters & and & provides additional flexibility that can
make constructing examples easier; see e.g. §9.5.
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