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Abstract—One-way delay (OWD) between end hosts has im-
portant implications for Internet applications, protocols, and
measurement-based analyses. We describe a new approach for
identifying OWDs via passive measurement of Network Time Pro-
tocol (NTP) traffic. NTP traffic offers the opportunity to measure
OWDs accurately and continuously from hosts throughout the
Internet. Based on detailed examination of NTP implementations
and in-situ behavior, we develop an analysis tool that we call
TimeWeaver, which enables assessment of precision and accuracy
of OWD measurements from NTP. We apply TimeWeaver to a
~1TB corpus of NTP traffic collected from 19 servers located
in the US and report on the characteristics of hosts and their
associated OWDs, which we classify in a precision/accuracy
hierarchy. To demonstrate the utility of these measurements, we
apply iterative hard-threshold singular value decomposition to
estimate the missing OWDs between arbitrary hosts from the
highest tier in the hierarchy. We show that this approach results
in highly accurate estimates of missing OWDs, with average error
rates on the order of less than 2%.

I. INTRODUCTION

End-to-end network latency plays a fundamental role in
behavior and performance at different layers of the proto-
col stack. As such, measurements of network latency are
included in many protocols and systems in order to adjust
their behavior to network conditions. A canonical example
is TCP’s measurement of round-trip time (RTT) to adjust
its sending behavior. Additionally, numerous network-focused
applications have been developed over the years that are
based specifically on latency measurements including network
positioning and distance estimation (e.g., [1]-[4]), available
bandwidth estimation (e.g., [5], [6])) and IP geolocation
(e.g., [7], [8])) to name a few.

Latency depends intrinsically on the routes that packets
traverse between end points. If routes between hosts are
symmetric, then RTT measurements would be appropriate for
many protocols and applications. RTT measurements would
also be a reasonable proxy for understanding network proxim-
ity, e.g., in the context of selecting a “closest server". Indeed,
this notion of latency-based proximity estimation is the basis
for standard client redirection in content delivery networks
(CDNSs) [9] and certain DHTs (e.g., [10]). However, routes are
frequently asymmetric [11], [12], which reduces the utility of
RTT measurement for proximity estimation and for real-time
applications (e.g., streaming and gaming), and makes one way
delay (OWD) an important measurement objective.

Measuring end-to-end latency (RTT or OWD) has several
basic challenges. First, there are a number of factors that
contribute to latency in addition to the physical path including
queuing and processing delays by nodes in the network. While

one can consider the physical path to be relatively stable
over moderate timescales, the latter two factors can introduce
variability into measurements on shorter timescales [13]. This
implies the need to specify a target measurement metric,
e.g., average RTT or minimum OWD (minOWD), and to
devise an appropriate methodology for collecting and analyz-
ing measurement data. Central to measurement methodology
design are the precision and accuracy requirements. These may
imply a relatively simple measurement system or a complex
infrastructure based on dedicated hardware. Finally, measuring
OWD has the additional requirement that host clocks must be
synchronized.

In this paper, we consider the problem of measuring OWDs
in the Internet. Our specific interest is in measuring OWDs
at scale (i.e., from many hosts in the Internet), with high
precision and accuracy and without the need for complex,
dedicated systems. We posit that such measurements could
be applied to a wide variety of timely and important problems
including those mentioned above.

The basis for our work is the vast quantity of OWD mea-
surements that can be extracted from Network Time Protocol
(NTP) packet exchanges—both from client to server, and
server to client. NTP is pervasively used by hosts in the
Internet to synchronize their clocks with high fidelity time
sources [14, §2]. An intrinsic component of the protocol
is estimation of OWD, which is used in the client clock
adjustment algorithm.

We begin by developing a method for extracting accurate
OWDs from NTP data. As pointed out in [15], OWD measure-
ments extracted from NTP packets are not always accurate.
Our filtering method is based on a detailed analysis of the
NTP codebase [16]. Our analysis reveals regimes in the NTP
packet exchange process that are observable in the traces, and
which can be used to infer strong synchronization between
clocks and thus accurate OWD measurement. We realize our
filtering method in a framework that we call TimeWeaver,
which organizes OWDs into measurement precision tiers that
are based on observed client behavior. The tiers provide
context for understanding the accuracy and utility of the
measurements.

We assembled a ~1TB corpus of NTP packet data, which
was collected from 19 US-based NTP servers over a period
of 30 days.There are 162,798,893 IPv4 and 6,056,609 1Pv6
unique client addresses evident in the data. Examination of
the client IP addresses indicates hosts from around the world
are configured to synchronize to these servers.

We apply TimeWeaver to our NTP data and assess the re-



sulting OWDs vs. a prior filtering method and vs. active probe-
based RTT measurements. We find that the sum of forward
and reverse paths OWDs from the high precision/accuracy
tier correlate well with probe-based measurements, and that
TimeWeaver filters with much higher accuracy than [15]. Our
analysis of OWD measurements reveals diverse characteristics
including a range of OWDs in all tiers but the range is more
narrow (typically < 100ms) in the high precision/accuracy tier.

Next, we further demonstrate the utility of OWD estimates
based on opportunistic NTP measurements by applying them
to the problem of inter-host distance estimation. While prior
studies have considered this problem (e.g., [17], [18]), our
formulation differs in that we consider minOWDs (as opposed
to round-trip times) in the context of a Euclidean space. Our
matrix completion method for estimating inter-host distance
is based on iterative hard-threshold singular value decomposi-
tion [19]. This algorithm iterates between truncating the SVD
of the current estimate to a user-specified rank r, and then
replaces the values in the observed entries with their original
(observed) values. For Euclidean space, we consider r = 4
and apply the algorithm to minOWD measurements from NTP
clients that contact more than one server. We find that the
resulting distance estimates are highly accurate, with errors
on the order of about 2%.

II. BACKGROUND

The NTP ecosystem is composed of a hierarchy of servers.
Starting at the top-level are servers with high-precision time
sources such as GPS-based and atomic clocks. These servers,
referred to as stratum 0, offer high-quality timing information
to servers in the next level, stratum 1, which are also known
to as primary servers. Stratum 2 or secondary servers connect
to stratum 1 servers, etc., all the way down to stratum 15.
In addition to connecting to a source up the hierarchy, NTP
servers may also peer with others at the same level for
redundancy.

Hosts in the Internet typically synchronize time with more
than one server in order to compute a precise time estimate.
Even though a host running a commodity operating system
is configured with default NTP server(s) to synchronize time
(e.g., time.windows.com, time.apple.com, O.pool.ntp.org), it
can be manually configured to use a specific NTP server or
a set of servers. Recent efforts like ntp.org also maintain
lists of stratum 1 and stratum 2 servers that can be used
after acquiring permission from the server administrators. NTP
hosts or clients typically connect to reference clocks that are
stratum 2 or higher.

Every NTP client host runs the nt pd daemon, which in turn
runs several filtering algorithms and heuristics to synchronize
its clock with reference clocks in the Internet. At a high level,
ntpd operates by exchanging timestamps with its reference
servers (in a process called polling). When and how often
reference servers are polled is governed by the clock discipline
algorithm [20]. In most operating systems, the polling interval
starts with minpoll (64s) intervals and may eventually
increase in steps to maxpoll (1024s) intervals. As part of

its operation, the algorithm measures round-trip delay, jitter
and oscillator frequency wander to determine the best polling
interval [21].

Four timestamps are included in NTP packets as a result of
each polling round: the time at which a polling request is sent
(to), the time at which the request is received at the server (1),
the time at which the response is sent by the server (¢2), and
the time at which the response is received by the client (¢3).
These timestamps are not set until after the completion of a
handshake between client and server, which is indicated by the
inclusion of an IPv4 address or hash of an IPv6 address in the
ref id field of a request packet. Unfortunately, the logs do
not contain explicit information regarding whether a client’s
clock is in “good” synchronization with the server, which is
when differences between timestamps would offer the most
accurate indication of OWD. In addition, a sizable number
of hosts in the Internet use Simple NTP (SNTP) [22], which
sets all packet fields to zero except the first octet which mainly
contains metadata (e.g., version number, stratum, poll interval,
etc.). Due to the lack of explicit synchronization information
in the NTP packets and the prevalence of SNTP clients (e.g.,
mobile and wireless hosts) [23], we develop a framework to
classify the precision of timestamps in an NTP packet as we
discuss in §IV.

III. NTP DATA COLLECTION

To collect the NTP log data used in our study, we contacted
several NTP administrators and explained our research goals.
Eight administrators responded by providing datasets in the
form of full pcap (“tcpdump”) traces from a total of 19 NTP
servers. Table I summarizes the basic statistics from each of
the NTP server logs which includes 5 stratum-1 servers and
14 stratum-2 servers with a combination of both IPv4 and
IPv6 support. These logs include a total of 6,369,784,837
latency measurements to 162,798,893 IPv4 and 6,056,609
IPv6 worldwide clients, as indicated by unique IP addresses,
collected over a period of one month from Nov., 2015 to Dec.,
2015. To facilitate network latency analysis, we developed a
lightweight tool (about 800 lines of C code) to process/analyze
the NTP logs.! Our efforts to amass server logs from NTP
administrators can be replicated by anyone in the community
due to the ubiquity of NTP servers in the Internet (e.g., there
are over 3.6K servers in pool.ntp.org alone [25]).

IV. EXTRACTING ONE WAY DELAYS FROM NTP DATA

In this section, we describe a framework called TimeWeaver
for extracting and classifying OWDs from NTP packets.
Our examination of NTP traces along with observations of
others (e.g., [15], [26], [27]) imply that latency measurements
available through NTP packet exchanges may be skewed. A
key aspect of the TimeWeaver framework is that in addition
to adjusting NTP-derived latency measurements for skew, we

IThe tool extends netdissect.h and print-ntp.c modules of
tcpdump [24]. Each round of processing took ~3 hours on a 16 core Intel
workstation with 64GB RAM. The tool and the datasets collected are available
upon request.



TABLE I
Summary of NTP server logs used in this study.
Server | Server P Server Total Total Total
ID Stratum | Version | Organization | Measurements IPv4 IPv6
Clients Clients
AG1 2 v4 Independent 349,917,829 12,889,722 0
CIl 2 v4/v6 ISP 23,201,076 1,337 88
CI2 2 v4/v6 ISP 22,163,583 1,009 71
CI3 2 v4/v6 ISP 24,836,284 701 62
Cl4 2 v4/v6 ISP 23,846,973 573 44
ENI1 2 v4/v6 ISP 13,166,749 581 46
EN2 2 v4/v6 ISP 13,381,258 536 41
JW1 1 v4 Commercial 11,498,989 337,015 0
JW2 1 v4 Commercial 40,330,009 864,845 0
MW1 1 v4 University 5,451,294 20,589 0
MW?2 2 v4 University 1,850,765,317 | 60,682,989 0
MW3 2 v4 University 386,487,947 26,997,177 0
MWwW4 2 v4 University 355,913,460 16,758,046 0
MI1 1 v4 Commercial 1,899,642,404 | 27,133,385 0
PP1 2 v4/v6 Independent 10,090,072 690,486 0
SU1 1 va4/v6 ISP 590,431,652 16,206,848 | 6,052,784
UIl 2 va4/ve University 302,622,909 58,967 1,363
U2 2 va4/v6 University 270,990,678 98,159 1,147
UI3 2 va4/v6 University 175,046,354 55,928 963
assign measurements into different precision tiers* as we

discuss below.

A. OWD precision framework

Overview. The TimeWeaver framework adopts the notion of
precision discussed by Paxson [28], specifically that it is “the
maximum exactness that a tool’s design permits.” Thus, the
basic assumption we start with is that our precision assignment
framework must be NTP-specific. That is, given the informa-
tion available within the NTP packet traces (e.g, timestamps
relative to client and server clocks, polling values), we do not
expect to have success with a naive approach like excluding
extreme OWD values, or by only including values close to the
minimum observed OWD. The reason, again, is that there is
no meta-information available in protocol messages to indicate
whether a client has reached good/close synchronization with
the server. Instead, our approach is explicitly designed to
exploit the ways in which the protocol behaves in response to
good synchronization or events that degrade synchronization to
create tiers of precision, each of which is suitable for various
applications of interest. Extracted OWDs are assigned to a
specific tier based on the inferred level of synchronization
and the number and quality of measurements. Specifically, we
define the following four precision tiers:

o Tier 0: These samples are from SNTP/NTP clients issu-
ing a one-shot synchronization request. Unfortunately, no
OWD information is available in these samples.

o Tier I: This tier includes OWD measurements derived from
clients using NTP which often exchange multiple packets
with servers. The clients are either moving towards or away
from close synchronization with the servers and the OWDs
extracted are typically greater than one second with respect
to the reference.

2Qur original goal was a quantitative precision framework based on standard
deviations of repeated measurements. However, the highly dynamic nature of
NTP renders this approach unreliable. We will show that our tiered framework
provides a reliable and useful context for interpreting the OWDs extracted by
TimeWeaver.

o Tier 2: Similar to Tier 1, OWD measurements in their
tier are from clients that exchange multiple packets with
servers and cannot be confirmed to be in close synchro-
nization. The main difference with Tier 1 is that the OWDs
are less than one second.

e Tier 3: This tier includes highly accurate OWD mea-
surements from clients which are observed to be tightly
synchronized with their NTP references.

We first exploit NTP behavior by considering the polling
operation of clients, dividing them into two basic classes:
constant or non-constant polling. Our motivation is similar to
that of prior work [15] in that we attempt to take advantage
of polling behavior in order to detect whether the client is in
good or poor synchronization with the server. For example,
an intended protocol behavior is for a client to increase its
polling rate (reduce the polling interval) in response to poor
synchronization. Likewise, in response to detection of good
synchronization, a client may reduce its polling rate (increase
the polling interval). Unfortunately, this is not sufficient, as
there are clients that do not vary their polling rate at all. For
these clients, we use similar heuristics to those within the NTP
protocol [21] and code [16] to identify high-quality latency
samples as we discuss below.

Algorithm. As part of developing this algorithm, we con-
ducted a detailed study of the NTP codebase [16], request
and response transactions, protocol behaviors, packet fields
and packet selection heuristics. We also experimented with
different NTP client/server configurations (e.g., Mac OS,
Linux, and Windows) and path properties (e.g., latency, loss,
asymmetry, etc.) in a controlled laboratory setting. Our goal
was to understand the operational aspects of NTP in detail.
Specifically, we conducted measurements in different settings:
(i) distant client synchronizing with a local NTP server, (ii)
local client synchronizing with a distant NTP server and (iii)
local client synchronizing with a local server. From our source
code analysis and controlled experiments we identified two
specific features of the protocol to leverage in our filtering
algorithm: the client-estimated ground truth RTT (gtRTT)
value, which is used when a client polls at a constant rate, and
the jiggle counter heuristic [21] used in NTP’s client selection
algorithm, which is used when a client exhibits non-constant
polling behavior. In addition to these NTP-specific filtering
methods, we found that we needed to eliminate spikes in OWD
samples, as we discuss below.

Non-constant polling behavior. For clients with non-
constant polling values, we use insights from the client selec-
tion heuristic [21] to select what are likely to be high-quality
latency samples. For a given polling value (27¢, where P¢
is the polling exponent), the algorithm requires at least NV
samples (where N = 30/P¢)? before deciding to increase or
decrease the polling interval. This algorithmic detail implies
that when we observe the same polling value for fewer than
N samples, we infer that the clock is going to a bad state

3This expression was derived by NTP’s designers through years of experi-
mentation and experience [21].



(i.e., losing synchronization) and assign the corresponding
measurements to tier 2. When we observe exactly N samples
in our logs with the same polling value followed by samples
with an increased polling interval (i.e., polling rate decreases),
we infer that the N samples must have been accepted by NTP’s
algorithm as good clock values and we therefore accept the
N samples too. Similarly, N samples followed by a decreased
polling interval corresponds to clock values that we infer to
be of poorer quality, thus we assign these N samples to tier
2. If the number of samples is greater than N, we infer the
client’s clock to be in an unstable state, either shifting from
a bad state to a good state (if polling interval increases), or
from a good state to a bad state (if polling interval decreases).
In either case, we cannot determine which samples are good
and hence we assign all these samples to tier 2.

Constant polling behavior. When a client sends a request
to an NTP server, it sets the origin timestamp to be equal to
the transmit timestamp from the previous server response. We
refer to this behavior as timestamp rotation. Since our logs
are captured at the server, we can obtain the server-to-client
(s2c) latencies because of timestamp rotation as t3 - t5. Similar
to clients, servers also rotate timestamps when they send out
an NTP response. Hence we can also estimate client-to-server
(c2s) latencies as t1 - to. Timestamp rotation is an expected
NTP protocol behavior and is used to prevent replay attacks
(see [29], p.28).

We can also recover the client-computed gtRTT between
a client and a server which is reported by the client’s ntpd
after correcting the system clock. After the initial handshake
between a client and a server, the client sets both the ref id
and root delay fields in outgoing NTP request packets to
the server’s IP address and gtRTT estimate respectively. Thus,
when we see a value in ref id set to the IP addresses of
one of our NTP log collection servers, we can get the client’s
estimate of gtRTT to our servers from the root delay field.
This offers an opportunity to enhance the filtering process.
Furthermore, we found that for some client implementations
the ref id field is set to a wide variety of different NTP
server addresses, thus providing client-computed RTT values
between the client and multiple other servers.

We apply our observations on timestamp rotation behavior
and the inclusion of gtRTT to filtering latency samples for
clients that exhibit a constant polling interval. First, we check
if the packets between clients and servers contain gtRTT
values. Next, if the gtRTT values are present, we extract them
from the root delay field and select only those packets in
which the sum of OWDs is less than or equal to gtRTT. If
the gtRTT value is absent, we default to the mean plus one-
sigma deviation filter similar to prior work [15].

Sample smoothing. Finally, even with these NTP-specific
techniques for filtering OWD samples, there may yet be spikes
that cause inaccuracies. We apply a simple EWMA filter to
smooth spikes in latency measurements in all tier 3 accepted
samples. To choose the weighting factor («), we iterate from
0.1 to 0.9 such that the mean-squared error of filtered latencies
is minimized.

Apart from the measurements with constant or non-constant
polling value, a number of samples are either from SNTP
clients with one-shot requests or from NTP clients sending
(single or multiple) one-shot requests in our logs. Since some
or all of the timestamps are empty in the one-shot NTP and
SNTP measurements, we assign them to tier 0 if OWD cannot
be inferred. In addition, we found that a sizable number of
measurements also exhibited similar behavior despite multiple
one-way requests sent by NTP clients but with OWD infor-
mation that we cannot verify. We assign such measurements
to tier 1.

Putting it all together. We implemented our precision
framework in about 1,250 lines of C++ code and applied
it to our NTP traces. The result is a set of measurements
assigned to one of the following four tiers. The raw number of
measurements assigned to each tier are depicted in Table II.

e First, we assign all the one-shot measurements (e.g. SNTP)
to tier 0. These include measurements with empty values
in the timestamp field, partially filled timestamp fields, etc.
We note again that we cannot infer any latency information
from these measurements.

e Next, we assign the measurements that we filter using
our heuristics-based technique to tier 3. OWD measure-
ments in this tier are from well-synchronized clients.
As a by-product of the tight synchronization between
clients and references, we have a set of accurate client-
to-server/server-to-client OWD measurements in this tier.

o Next, those measurements that are rejected by our filter are
assigned to tier 2. The measurements in this tier are from
clients trying to achieve synchronization with references,
but are not well-synchronized. We note that we also apply
a constant bound for measurements: if the OWDs are less
than 1000ms, they are assigned into tier 2.

o Finally, in the above tier 2 classification, OWDs greater
than 1000ms are classified as tier 1. Furthermore, since
we cannot infer the level of synchronization for a number
of SNTP clients despite having multiple OWD samples,
we include those measurements in tier 1.

To illustrate concretely, Figure 1 shows the raw polling
values (top plot; dashed green curve) and unfiltered latencies
(2nd to top plot; solid yellow curve) extracted from NTP logs
for a client in our lab. In addition to the polling values and
unfiltered latencies, the figure shows gtRTT/2 (from the root
delay field) extracted from NTP logs (bottom plot; grey curve).
Observe that between times 25000-37500 the polling interval
increases and, indeed, there is a stabilization of OWDs to
accurate values. Likewise, between times 6000070000 the
polling interval decreases and there is some corresponding loss
of stability in OWD samples. The bottom two plots of Figure 1
show that during time 40000-60000 and the stabilization of
OWD (and likewise, the longest increasing trend in polling
value), latency samples are classified and filtered as tier 3
measurements (bottom plot; black curve), while before and
after that stable period samples are classified as tier 2 (3rd



plot from top; magenta curve). Also shown in the bottom plot
are the min., max. and avg. of the tier 3 filtered latencies.
For this experiment, only tier 2 and 3 latencies resulted from
processing the raw samples.

The tier 3 filtered samples shown in the bottom plot of
Figure 1 represent the most accurate estimates from the
TimeWeaver framework. We observe that the ntpd client’s
computed latency value (gtRTT/2) aligns well with our filtered
OWD estimate. Notice also the figure shows several spikes
in unfiltered OWD samples (e.g., two spikes between times
40000 and 50000) among other deficiencies, which are effec-
tively addressed through the TimeWeaver framework. Through
extensive examination of many individual client traces, results
for which are not shown here due to space constraints, we
found that our filtering technique correctly and consistently
eliminates poor samples and spikes that would otherwise
pollute OWD estimates.
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Fig. 1. Latencies extracted from NTP logs from a lab-based client before
and after applying filtering. Tier 3 and tier 2 measurements are shown
in black and magenta, respectively.

B. Comparison with ping measurements

To assess the effectiveness of our approach, the adminis-
trators of several of the NTP servers (MW1-4) used ping
to send 10 probes each to a random sample of more than
20,000 client hosts identified in their logs. Ping measurements
were issued simultaneously on a day that the NTP data was
collected. We do not argue that ping measurements provide
ground truth, rather that they provide a useful perspective
on the NTP measurements. We include clients for which our
algorithm assigned tiers 1, 2 or 3 for OWD samples. 6,370
out of 21,443 target clients responded to the pings.

Figure 2 shows a scatterplot comparison of the minimum of
s2c+c2s filtered latencies derived from NTP logs for the 6,370
clients compared with the corresponding minimum RTT values
from ping measurements. Latencies from 3,708 clients were
assigned to tier 3 by our framework and are shown as green
circles, and 2,662 latency samples were in tiers 2 and 1 and are
shown in red triangles and blue dots respectively. From these
data points, we observe that there are no extreme outliers that
are colored green. This indicates that our precision assignment
approach is effective in assigning poor latency samples to

lower tiers. Furthermore, a number of clients were assigned to
lower tiers by our algorithm even though the c2s+-s2c latencies
were comparable with the RTT measurements. On detailed
examination of such clients, we found that the polling values
were oscillating at the time when the packets were captured at
these four servers. In such cases, without further information
we must treat the latency samples as indeterminate and thus
assign them to a lower tier. Overall, our results show that
latency samples from NTP packet traces can indeed be used to
derive OWD estimates of different precisions that are suitable
for various applications.
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Fig. 2. Comparison of measured minimum c2s + s2c latencies from
NTP packets and RTT from ping measurements. Clients assigned to tier
3, 2 and 1 are denoted by green circles, red triangles, and blue dots,
respectively.

C. TimeWeaver vs. prior NTP filtering

A natural question is whether the filtering approach de-
scribed in prior work (see §4 in [15]), can be used to remove
bad OWD measurements? To answer this question, we used
the code from [15] and compared its filtering output vs.
TimeWeaver. Specifically, we randomly selected logs from
our data corpus from multiple NTP servers across multiple
days and compared the client and latency characteristics of
TimeWeaver versus those produced from the prior method.
Based on comparisons using one day’s-worth of data from the
JW1 server*, we found that the filtering approach used in [15]
is not widely applicable for the following reasons:

Client characteristics. (/) Out of the 18,620 unique clients
seen in the log of JW1 server on a randomly-selected day, [15]
only considers 8,804 clients due to its US-only filtering
constraint. On the contrary, TimeWeaver considers all 18,620
clients spread across many countries. (2) Of the 8,804 clients
considered by the prior method, a large fraction of clients
(i.e., about 3,631) were rejected due to missing timestamps,
negative latency values, and other reasons. TimeWeaver, on
the other hand, assigns such discarded measurements to lower
tiers, making it possible to use less accurate OWD values in
applications that have less stringent accuracy requirements.

Latency characteristics. Apart from considering the US-
only clients, the method from [15] also uses a 100ms OWD

“4Results from other days and other NTP servers exhibited similar charac-
teristics.



TABLE II
Number of measurements assigned to each tier by TimeWeaver.

\ [AGI [CII_[C2 [ CI3 [ CH4 | ENI [EN2 [JWI | JW2 | MWI | MW2 [ MW3 | MW4 | MIT [ PPI_| SUI | U0 | U2 | UB |
Tier O | 1.5e8 | 9.4e6 | 9.7e6 | 1.1e7 | 1.1e7 | 5.4e6 | 5.5¢6 | 3.0e6 | 1.7e7 | 2.4e6 | 5.2e8 1.8e8 | 2.6e8 | 5.5e8 | 4.7e6 | 2.4e8 | 1.9e8 | 6.7¢7 | 2.7¢7
Tier 1 | 1.3e8 | 5.2e¢6 | 5.2e6 | 4.9¢6 | 5.4e6 | 49e5 | 8.5e5 | 2.8¢6 | 1.6e7 | 1.le6 | 2.6e8 | 1.1e8 | 1.1e8 | 4.6e8 | 4.0e6 | 2.2e8 | 3.6e7 | 5.2¢7 | 2.0e7
Tier 2 | 4.2e7 | 7.0e6 | 6.5¢6 | 7.7¢6 | 6.9¢6 | 6.5¢6 | 6.2e6 | 3.3¢6 | 4.5¢6 | 9.2¢5 | 3.7¢7 | 5.4e7 | 1.7e7 | 3.9e8 | 6.4e5 | 6.8¢7 | 5.5¢7 | 1.2e8 | 9.6e7
Tier 3 | 3.0e7 | 1.5e6 | 8.4e5 | 1.4e6 | 7.0e5 | 7.8e5 | 8.4e5 | 2.4e6 | 2.9¢6 | 1.0e6 | 1.3e7 | 1.7e7 | 6.0e6 | 5.1e8 | 7.8e5 | 5.6e7 | 1.9¢7 | 3.6e7 | 3.2¢7

threshold to limit wired vs. wireless hosts. As a consequence,
the observed latency characteristics after applying TimeWeaver
(bottom) are completely different from [15] (top), as depicted
in Figure 3. First, the maximum of the extracted minimum
OWD is 100ms in prior work, whereas the maximum value
for a client in TimeWeaver’s tier 3 category is 992ms. Second,
about 80% of the clients filtered using [15] exhibited a latency
less than 50ms, while only 14% of the tier 3 clients had OWDs
less than 50ms using TimeWeaver due to a more flexible and
NTP-specific filtering approach.
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Fig. 3. CDF of minimum OWD latencies extracted using Durairajan
et al. [15] (top) versus TimeWeaver (bottom). Note that the x axis for
TimeWeaver (right) is cut at 1000ms to make the plots more comparable.

V. INTERNET DISTANCE ESTIMATION FROM OWDs

In this section, we demonstrate the utility of OWDs ex-
tracted for predicting unobserved latencies between clients
as well as for predicting latencies between NTP servers and
clients that were not measured. The predictions are based on
the tier 3 subset of OWDs extracted through TimeWeaver’s
precision assignment algorithm. A key observation we make
is that a matrix of Euclidean distances between points in
the 2-dimensional plane has rank 4. The matrix of geodetic
distances [30] on the sphere is not exactly low-rank, but
is well-approximated by a low-rank matrix. This implies a
significant level of correlation must exist among the pairwise
latencies, which our algorithm exploits.

A. Problem setup

We organize the latency matrix X in the following block-
form. Given m NTP servers and n clients, the latency matrix
is (m+mn) x (m+n) and can be arranged as follows

A B

5 o)
where A is the m x m sub-matrix corresponding to inter-
NTP server latency measurements, B is the n x m block that
corresponds to the c¢2s from m NTP servers to n clients, and
BT is the m x n sub-matrix corresponding to the s2c distances
from n clients to m NTP servers. Distance estimates from both
B and BT are extracted from the NTP logs and are partially
incomplete sub-matrices. The matrix C' corresponds to the c2c
distances, and is completely unobserverd.

Although C is completely unobserved, it may still be
possible to estimate these latencies from the measured data.
To understand why, suppose that we fully observe A and B.
If rank(X) = 4 (as discussed above), m >= 4, and the first

m rows/columns have rank 4, then we can complete C' with
C = BA'BT (1)

|

where A' is the pseudo-inverse of A.

Unlike prior efforts on distance estimation that assume a full
matrix of RTT measurements [1]-[4], the situation we face is
more challenging. The matrix B is only partially observed in
the logs and the matrix A is not observed at all. To deal with
this, we propose the following: (/) estimate the latencies in A
from the known physical distances between NTP servers, and
(2) employ a low-rank matrix completion method to deal with
the missing entries in B and C.

B. Estimating inter-NTP server distances

To estimate the distances between the m NTP servers, we
use the following approach. First, from the NTP pool server
list [25], we obtain the physical coordinates of the m NTP
servers used in our study. Using the Vincenty formula [31], we
compute the line-of-sight physical distances between all NTP
servers. We calculate the speed-of-light estimate of latencies
as roughly 2/ 3" the speed of light in air [32] to obtain, Ao,
the geo-based estimate of A.

Next, we reached out to the NTP server administrators
to measure the inter-NTP server latencies; 5 administrators
(managing 11 servers) responded positively. We performed 10
ping measurements from each of the 11 NTP servers and used
rtt/2 of the minimum of ping measurements to create A,
the rtt-based estimate of A.

Lastly, since A, is partially incomplete and Ag., only
gives the ideal lower bound of distances, we use a scaling



factor, 7, to obtain A. To derive , we use a simple linear
model to capture the sharing of information in the data (e.g.,
all MW servers are located in Madison, WI) and ~y is based on
linear model coefficients 5y and (1. That is, the coefficients
are obtained by solving a simple linear regression (y = 5y +
B1x) for non-zero entries in A, and using the obtained [
and 3, on Ay, for those measurements for which we do not
observe distances in A,;. The final inter-NTP distance matrix
A is a combination of A, and v applied on Age,.
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Fig. 4. CDF of relative errors using our approach (labeled TimeWeaver),
Vivaldi, Phoenix, DMF and IDES after matrix completion for incomplete
(top) and completed (bottom) data.

C. Distance estimation algorithm

The distance estimation algorithm we employ is based
on iterative hard-threshold singular value decomposition
(IHTSVD) [19]. This is an iterative algorithm that alternates
between truncating the SVD of the current estimate to a user-
specified rank k, and then replacing the values in the observed
entries with their original (observed) values. The algorithm can
be initialized by setting the missing entries in X arbitrarily. In
our experiments we initialize the missing values with the mean
latency in the NTP logs. Because Euclidean distance matrices
in 2-dimensions have rank 4, we set k = 4 in the algorithm.
We apply the algorithm to tier 3 minOWD values from NTP
clients that contact four or more servers. Since mobile and
wireless clients can confound our estimation, we identify and
remove those clients using Cymru lookup [33].

D. Assessing predicted distances

Comparison with other techniques. We compare the
relative error of the our distance estimates against prior dis-
tance estimation techniques including Vivaldi [1], IDES [2],
Phoenix [3], and DMF [4]. Figure 4-(top) shows the CDF
of relative error made by TimeWeaver-based predictions ver-
sus the other methods for predicting the missing values in

incomplete matrix X, where the sub-matrix B is partially
observed and sub-matrix A is completely unobserved. The
same OWD data is used in all cases. For 50% of the estimates,
TimeWeaver-based predictions were off by at most 6% from
the original values, while for only 12% of the estimates,
similar relative errors were achievable using the other distance
estimation techniques.

Figure 4-(bottom) shows the CDF of relative error for
predictions from the same set of entities (mentioned above)
but for the completed matrix X. In this analysis, the estimates
were randomly held-out and then predicted again. The plots
show that TimeWeaver-derived distance estimates are perfectly
accurate for 20% of the estimates, and have a relative error
of 10% for 50% of the estimates. For 80% of the estimates,
the predictions are off by 34% and beyond that the results are
comparable with DMF.

We approach latency/distance estimation as a low-rank
matrix completion problem. The basic ingredients in the
algorithm (matrix factorization) are also used in the prior
methods. However, our approach has features that can explain
its superior performance. Vivaldi aims to explicitly determine
a low-dimensional embedding of the network that agrees with
the measured latencies; we target distance estimation directly.
In this sense, our approach is similar to DMF, although we
use a centralized global optimization procedure and do not
require regularization beyond that imparted by the low-rank
constraint. IDES is also similar, but is landmark-based and
assumes few if any missing measurements. In contrast, our
approach is designed to handle cases in which most of the data
are missing. The results in this section show that even when
prior methods use minOWD, predictions using our approach
are more accurate, especially for the situation in which we
have incomplete data.

Self-consistency checks. In this analysis, we randomly hold
out available OWD values from matrix X and compare them
against the predicted values. Figure 5 shows the CDF of
distances held-out and the corresponding distances predicted
by our algorithm. For all these different held-out client groups,
our approach produced highly accurate estimates of OWDs
with an average error rate on the order of less than 2%.

E. Applicability to non-US regions

The gains that we see in distance estimation accuracy are
fundamentally based on TimeWeaver’s ability to accurately
filter and extract OWD measurements from NTP logs, making
it robust against the effects of asymmetry or NTP errors.
Hence, even for other non-US regions that are susceptible
to circuitous routing [34], we argue that our methods are
resistant to routing changes as long as accurate minimum OWD
measurement is available despite the presence of other large
and varying OWD measurements. We plan to investigate this
in detail as part of future work.

VI. RELATED WORK

Internet path characteristics. Empirical measurement of
Internet path properties (e.g., latency, loss, etc.) has been an
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active area of research for many years. Early studies of path
latencies include Mills’s report on RTTs collected using ICMP
echo requests [35] and Bolot’s work, which also examined
packet loss and queuing [36]. The landmark work of Paxson
used a set of specially-deployed systems to measure packet
loss and latency [11], and has informed much of the ongoing
work in this area. There are a number of efforts today that
take a similar approach of having specially-deployed systems
to collect an essentially continuous stream of measurements
such as latency, loss, and routing [37]-[39].

There are a number of specific efforts that have focused
on accurate estimation of OWD to account for asymmetry. A
common approach is to assume host clocks have been synchro-
nized (e.g., [40]-[42]) and to accept OWD measurements at
face value. Other work has explicitly addressed correction for
clock offset, drift, and skew, e.g., [11], [43], [44]. Yet other
works have attempted to estimate OWD using timestamps
in flow records [45] or through analysis of multiple one-
way measurements collected from a group of unsynchronized
hosts [46], [47]. An extensive analysis of path asymmetric
delays and their prevalence was done by Pathak et al. [48]
using the owping tool [49], emphasizing the need for accurate
OWDs.

Our work generalizes and extends prior work that identifies
NTP as a source of latency measurement [15], [26], [27].
In particular, we develop a comprehensive filtering algorithm
based on detailed examination of the NTP codebase that
enables accurate OWDs to be identified, and we develop and
propose new methods for distance estimation based on the
availability of these measurements.

Internet distance estimation. Apart from measuring la-
tencies, there have been a variety of techniques developed
to estimate latencies between arbitrary nodes in the In-
ternet. IDMaps [17] examined network distance prediction
from a topological perspective and influenced later work on
King [50], which expands on the IDMaps technique but uses
DNS servers as landmarks, and Meridian [51] which probes
landmarks on demand to predict network distances. The work
by Ng and Zhang on GNP [18] uses a low-dimensional
Euclidean space to embed the nodes by relying on well-
known pivots (or landmarks). Similar to GNP, Lighthouse [52]
uses a transition matrix to achieve embedding with reference
to any pivots. Tang et al. propose a virtual landmark-based
embedding scheme [53] which is computationally efficient

and is independent of landmark positions. Subsequent efforts
used different embedding systems, resulting in different per-
formance and accuracy characteristics [1], [54], and the work
by Mao et al. [55] proposes matrix factorization techniques to
determine network distances. One of the interesting questions
raised by Madhyastha et al. [56] regarding matrix factorization
is how OWDs from landmarks to arbitrary clients might be
measured. In light of our work, NTP servers naturally become
the landmarks and the OWDs to a large and distributed set of
clients are easily obtained.

VII. SUMMARY AND FUTURE WORK

In this paper, we consider the problem of gathering OWD
measurements in the Internet, at scale. Our approach is based
on passive measurement and analysis of NTP traffic. Based on
detailed analysis of the protocol, of the codebase, and of NTP
traces, we develop a new method and tool called TimeWeaver
for correcting and filtering OWD measurements extracted from
NTP packets. We apply TimeWeaver to a ~1TB corpus of NTP
trace data collected over a period of 30 days from 19 servers in
the US. We find that TimeWeaver offers much greater accuracy
for its resulting top-tier OWD estimates than prior work. We
also find that TimeWeaver’s filtering and precision classifying
approach results in a much broader set of OWD measurements
that can be extracted from raw NTP traffic. To illustrate the
utility of having accurate OWD measurements, we approach
the problem of distance estimation under the assumption that
accurate minOWD data is available and that measurement data
can be missing or incomplete. We use minOWD estimates
from a subset of NTP clients for which we have the highest
tier (tier 3) estimates, and which contact multiple servers. We
apply iterative hard-thresholded SVD to complete the matrix
of inter-host delays. We find that the resulting estimates are
highly accurate with relative errors are on the order of 2%.

Currently, we are extending TimeWeaver for real-time OWD
estimation. This requires a source for real-time NTP mea-
surements at strategic locations (pool.ntp.org is a simple
and cost effective option), and adaptation of TimeWeaver
to operate on streams of NTP data. We plan to consider
three application areas: IP geolocation, census and survey of
active Internet addresses, and network operations and man-
agement. Finally, we believe that TimeWeaver-based OWD
measurements from various tiers have significant potential for
continuous assessment of network availability, performance



and fault monitoring. We intend to consider each of these areas
in our future work.
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